[go: up one dir, main page]

WO2024225099A1 - Polycarbonate resin and optical member using said resin - Google Patents

Polycarbonate resin and optical member using said resin Download PDF

Info

Publication number
WO2024225099A1
WO2024225099A1 PCT/JP2024/014996 JP2024014996W WO2024225099A1 WO 2024225099 A1 WO2024225099 A1 WO 2024225099A1 JP 2024014996 W JP2024014996 W JP 2024014996W WO 2024225099 A1 WO2024225099 A1 WO 2024225099A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
formula
less
mol
resin according
Prior art date
Application number
PCT/JP2024/014996
Other languages
French (fr)
Japanese (ja)
Inventor
慧司 宇都
和徳 布目
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Publication of WO2024225099A1 publication Critical patent/WO2024225099A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention relates to polycarbonate resin and optical components using the resin.
  • Glass which has traditionally been used as a material for optical systems, is capable of achieving the various optical properties required and has excellent environmental resistance, but it has the problem of being difficult to process.
  • resins which are cheaper than glass materials and have excellent processability, have begun to be used for optical components.
  • Patent Document 1 describes an optical lens with a high refractive index and low orientation birefringence, made of a polycarbonate resin having a structure of pentacyclopentadecanedimethanol (hereinafter sometimes abbreviated as PCPDM) and 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (hereinafter sometimes abbreviated as BPEF).
  • PCPDM pentacyclopentadecanedimethanol
  • BPEF 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene
  • chromatic aberration is corrected by combining and using multiple lenses with different Abbe numbers.
  • polycarbonate resin from bisphenol A obtained by reacting 2,2-bis(4-hydroxyphenyl)propane (commonly known as bisphenol A) with phosgene or carbonate ester has excellent heat resistance and transparency, and also has excellent mechanical properties such as impact resistance, so it is widely used not only as a structural material but also as an optical material for optical disk substrates, various lenses, prisms, optical fibers, etc.
  • polycarbonate resins made from bisphenol A have the problem of large birefringence due to molecular orientation and residual stress during molding. Therefore, with the recent expansion of optical material applications, there is a strong demand for the development of materials with even lower birefringence.
  • Patent Document 2 describes a polycarbonate resin that has a high Abbe number but a low photoelastic coefficient, which is produced by copolymerizing bisphenol A and PCPDM.
  • Patent Document 3 proposes a method for producing a carbonate derivative without using a base by subjecting halogenated methane and a specific amount of a hydroxyl group-containing compound to a photoreaction in the presence of oxygen, and cites a copolymerized polycarbonate of BPEF and PCPDM as an example of the production method.
  • the polycarbonate resin having the above-mentioned PCPDM and BPEF structure when attempting to apply the polycarbonate resin having the above-mentioned PCPDM and BPEF structure to thin-walled optical components such as imaging lenses, it was difficult to mold, and further improvement in the orientation birefringence was also required.
  • the above-mentioned polycarbonate resin made of bisphenol A and PCPDM had issues such as room for improvement in the photoelastic coefficient, large orientation birefringence, and low refractive index and glass transition temperature.
  • the molecular weight of the obtained resin was high, making it unsuitable for injection molding applications and unable to be used for thin-walled optical components such as imaging lenses.
  • the weight-average molecular weight of the above-mentioned BPEF and PCPDM copolymer polycarbonate is extremely low at 3,360, and it cannot be said to be a sufficient polymer for use as a structural or optical material.
  • the first object of the present invention is to provide a polycarbonate resin that has excellent flowability and small orientation birefringence.
  • the second object of the present invention is to provide a polycarbonate resin that, in addition to the first object, has a high Abbe number and a small orientation birefringence and photoelastic coefficient.
  • the third object of the present invention is to provide a polycarbonate resin that, in addition to the first object, has a small orientation birefringence, a high refractive index, and a high glass transition temperature.
  • R 1 to R 4 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • Aspect 2 The polycarbonate resin according to embodiment 1, wherein R 1 to R 4 in formula (3) are hydrogen atoms.
  • Aspect 3 The polycarbonate resin according to aspect 1 or 2, wherein a molar ratio of the unit represented by the formula (1) and/or the formula (2) to the unit represented by the formula (3) is 99:1 to 1:99.
  • Aspect 4 A polycarbonate resin according to aspect 3, wherein a molar ratio of the units represented by the formula (1) and/or the formula (2) to the units represented by the formula (3) is 65:35 to 35:65.
  • Aspect 5 The polycarbonate resin according to aspect 1 or 2, wherein the absolute value of orientation birefringence is 7.0 ⁇ 10 -3 or less.
  • Aspect 6 3. The polycarbonate resin according to claim 1, having a photoelastic coefficient of less than 35 ⁇ 10 ⁇ 12 Pa.
  • Aspect 7 A polycarbonate resin according to embodiment 1, comprising units represented by formula (1) and/or formula (2) in an amount of 50 mol % or more in all repeating units, and having a weight average molecular weight Mw of 10,000 to 50,000.
  • Aspect 8 8. The polycarbonate resin according to embodiment 7, wherein the unit represented by formula (3) is contained in more than 0% and not more than 50 mol % of all repeating units.
  • Aspect 10 9. The polycarbonate resin according to claim 7 or 8, which has a photoelastic coefficient of less than 25 ⁇ 10 ⁇ 12 Pa.
  • Aspect 11 The polycarbonate resin according to aspect 7 or 8, having an Abbe number of 25.0 or more.
  • Aspect 13 13 13.
  • Aspect 14 The polycarbonate resin according to aspect 12 or 13, wherein a molar ratio of the units represented by the formula (1) and/or the formula (2) to the units represented by the formula (3) is from 1:99 to 49:51.
  • Aspect 15 14. The polycarbonate resin according to claim 12 or 13, wherein the absolute value of orientation birefringence is 3.0 ⁇ 10 ⁇ 3 or less.
  • Aspect 16 14. The polycarbonate resin according to claim 12 or 13, having a refractive index nd of 1.600 or more.
  • Aspect 17 14. The polycarbonate resin according to claim 12 or 13, having a glass transition temperature of 140° C. or higher.
  • Aspect 18 13 The polycarbonate resin according to claim 12 or 13, having a glass transition temperature of 140° C. or higher.
  • An optical member comprising the polycarbonate resin according to any one of claims 1, 2, 7, and 12.
  • the polycarbonate resin of the present invention has excellent fluidity and small orientation birefringence. Therefore, it can be suitably used for thin optical components such as imaging lenses, and the industrial effects it provides are exceptional.
  • the more preferred polycarbonate resin of the present invention has a high Abbe number, and further has a small orientation birefringence and photoelastic coefficient.
  • polycarbonate resins of the present invention have small orientation birefringence, and high refractive index and glass transition temperature.
  • the industrial effects of the polycarbonate resins of the present invention are exceptional.
  • First Embodiment ⁇ Polycarbonate resin> A polycarbonate resin containing a unit represented by formula (1) and/or formula (2) and a unit represented by formula (3), and having a weight average molecular weight Mw of 10,000 or more and 55,000 or less.
  • the polycarbonate resin of the present invention contains units represented by formula (1) and/or formula (2) and units represented by formula (3).
  • the units represented by formula (1) and/or formula (2) are contained in the total repeating units at a ratio of more than 0 mol% to less than 100 mol%, and the units represented by formula (3) are contained in the total repeating units at a ratio of more than 0 mol% to less than 100 mol%.
  • the units represented by formula (1) and/or formula (2) are preferably 10 mol% or more in the total repeating units, more preferably 20 mol% or more, and even more preferably 35 mol% or more.
  • the units represented by formula (1) and/or formula (2) are preferably 90 mol% or less in the total repeating units, more preferably 80 mol% or less, and even more preferably 65 mol% or less. Within the above ranges, the orientation birefringence is small, and the balance of the refractive index, Abbe number, and photoelastic coefficient is excellent.
  • the molar ratio of the units represented by formula (1) and/or formula (2) to the units represented by formula (3) is preferably 99:1 to 1:99, more preferably 80:20 to 20:80, and even more preferably 65:35 to 35:65. When the ratio of the units represented by formula (1) and/or formula (2) to the units represented by formula (3) is within the above range, the orientation birefringence is small, and the balance of the refractive index, Abbe number, and photoelastic coefficient is excellent.
  • the units represented by formula (1) and/or formula (2) refer to the combined units of formula (1) and formula (2) when the polycarbonate resin contains units represented by formula (1) and formula (2), and refer to either one of the units contained when the polycarbonate resin contains units represented by formula (1) or formula (2).
  • the polycarbonate resin of the present invention has a weight average molecular weight Mw of 10,000 or more, preferably 15,000 or more, and more preferably 20,000 or more.
  • Mw weight average molecular weight
  • the resin has sufficient mechanical strength as a structural material or optical material.
  • the weight average molecular weight Mw is 55,000 or less, more preferably 50,000 or less, even more preferably 40,000 or less, particularly preferably less than 35,000, and most preferably 30,000 or less.
  • the resin has excellent flowability during injection molding.
  • the polycarbonate resin of the present invention is used for a thin-walled optical member such as an imaging lens, it is preferable that the resin has excellent flowability.
  • the weight average molecular weight Mw can be measured by GPC using polystyrene with a known molecular weight as a standard sample and chloroform as a developing solvent.
  • the polycarbonate resin of the present invention preferably has an absolute value of orientation birefringence of 7.0 ⁇ 10 ⁇ 3 or less. If the absolute value of orientation birefringence is less than the above, it is preferable because birefringence due to molecular orientation is less likely to occur.
  • the orientation birefringence is measured at a wavelength of 589 nm after cutting a test piece of 70 mm in length (45 mm between chucks) and 15 mm in width from a cast film of 100 ⁇ m in thickness obtained from a polycarbonate resin and stretching it twice at Tg+10° C.
  • the polycarbonate resin of the present invention preferably has a photoelastic coefficient of less than 35 ⁇ 10 ⁇ 12 Pa. When the photoelastic coefficient is within the above range, birefringence due to stress is unlikely to occur, which is preferable.
  • the photoelastic coefficient is measured by cutting a test piece 50 mm long and 10 mm wide from a cast film having a thickness of 100 ⁇ m obtained from the polycarbonate resin, and using a Spectroellipsometer M-220 manufactured by JASCO Corporation.
  • the polycarbonate resin of the present invention preferably has a refractive index nd of 1.540 or more, measured at a temperature of 20°C and a wavelength of 587.56 nm.
  • a refractive index of this or more is preferable because it allows the optical component to be made thinner.
  • the refractive index nd may also be 1.650 or less.
  • a refractive index nd in the above range is preferable because it increases the degree of freedom in optical design when multiple lenses are used in combination.
  • the polycarbonate resin of the present invention preferably has an Abbe number of 25.0 or more.
  • An Abbe number of this or more is preferable because it reduces the chromatic aberration of the optical member.
  • the Abbe number may be 57.0 or less.
  • An Abbe number in the above range is preferable because it increases the degree of freedom in optical design when multiple lenses are used in combination.
  • the Abbe number ( ⁇ d) is calculated using the following formula from the refractive index at temperature: 20°C and wavelengths: 486.13 nm, 587.56 nm, and 656.27 nm.
  • ⁇ d (nd-1)/(nF-nC)
  • nd refractive index at a wavelength of 587.56 nm
  • nF refractive index at a wavelength of 486.13 nm
  • nC refers to the refractive index at a wavelength of 656.27 nm.
  • the polycarbonate resin of the present invention preferably has a glass transition temperature of 130°C or higher.
  • a glass transition temperature in the above range is preferable because it increases the temperature range in which the optical component can be used.
  • the glass transition temperature may be 160°C or lower.
  • a glass transition temperature in the above range is preferable because it provides an excellent balance between heat resistance and moldability.
  • the polycarbonate resin of the present invention preferably has a thermal decomposition temperature of 370°C or higher. Thermal decomposition temperatures above this level are preferred because they provide excellent processing stability when molding the polycarbonate resin of the present invention and also cause little discoloration.
  • the thermal decomposition temperature may also be 420°C or lower.
  • the thermal decomposition temperature can be measured by TGA (thermogravimetric analysis) and is the temperature at which the weight is reduced by 5%.
  • the polycarbonate resin of the present invention preferably has a melt viscosity (Pa ⁇ s) of 30 or more at 260°C and a shear rate of 1,216/sec. Also, it is preferable that the melt viscosity (Pa ⁇ s) is 500 or less at 260°C and a shear rate of 1,216/sec.
  • a melt viscosity in the above range is preferable because it has excellent moldability during injection molding. In particular, when injection molding thin-walled molded products such as lenses, the melt viscosity during molding is important, and a melt viscosity in the above range is preferable because it allows the desired lens shape to be obtained.
  • the melt viscosity is measured using a Capilograph 1D manufactured by Toyo Seiki Co., Ltd. after drying the polycarbonate resin at 120°C for 4 hours.
  • the specific viscosity of the polycarbonate resin of the present invention is preferably 0.12 to 0.32.
  • a specific viscosity of 0.12 to 0.32 provides an excellent balance between moldability and strength.
  • the specific viscosity is measured by measuring the specific viscosity ( ⁇ SP) of a solution of 0.7 g of polycarbonate resin dissolved in 100 ml of methylene chloride at 20°C using an Ostwald viscometer and calculating it from the following formula.
  • R 1 to R 4 in the above formula (3) each independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and the hydrocarbon group can be an alkyl group, Mention may be made of cycloalkyl groups and aryl groups.
  • alkyl group examples include methyl, ethyl, propyl, isopropyl, butyl, and t-butyl groups, with methyl and ethyl groups being preferred.
  • Cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and bicyclo[1.1.1]pentanyl groups.
  • Aryl groups include phenyl, tolyl, naphthyl, and xylyl groups, with phenyl being preferred.
  • R 1 to R 4 are each independently preferably a hydrogen atom, a methyl group, or a phenyl group, more preferably a hydrogen atom or a phenyl group, R 1 and R 2 are each independently preferably a hydrogen atom or a phenyl group, and R 3 and R 4 are further preferably a hydrogen atom.
  • the repeating units represented by the above formula (1) and/or formula (2) are repeating units derived from pentacyclopentadecanedimethanol, and in the above formula (1) and/or formula (2), the repeating units may be pure substances or mixtures of the respective isomers in any ratio.
  • Pentacyclopentadecanedimethanol includes the following structural formulas:
  • the repeating unit represented by the above formula (3) is preferably a repeating unit derived from 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene or 9,9-bis[4-(2-hydroxyethoxy)-3-phenylphenyl]fluorene, and more preferably a repeating unit derived from 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene.
  • the polycarbonate resin of the present invention may contain repeating units other than those represented by the above formulas (1) to (3) within the scope of obtaining the advantageous effects of the present invention.
  • dihydroxy compounds that provide such repeating units include ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, nonanediol, tricyclo[5.2.1.0 2,6 ]decanedimethanol, cyclohexane-1,4-dimethanol, decalin-2,6-dimethanol, norbornane dimethanol, cyclopentane-1,3-dimethanol, isosorbide, isomannide, isoidide, hydroquinone, resorcinol, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(3-methyl-4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphen
  • repeating units examples include 4,4'-(3,3,5-trimethylcyclohexylidene)bisphenol, 4,4'-cyclohexylidenebisphenol, 4,4'-(3-methylcyclohexylidene)bisphenol, bis(4-hydroxyphenyl)sulfone, bis(4-hydroxyphenyl)sulfide, biphenol, bisphenolfluorene, biscresolfluorene, 1,1'-bi-2-naphthol, and 2,2'-bis(2-hydroxyethoxy)-1,1'-binaphthalene.
  • Such repeating units may account for 30 mol % or less of all repeating units.
  • the sum of the repeating units represented by the above formulas (1) to (3) is preferably 70 mol % or more of the total repeating units, more preferably 80 mol % or more, and even more preferably 90 mol % or more.
  • the terminals of the polycarbonate resin of the present invention are composed of hydroxyl groups or phenyl groups, and the proportion of terminal phenyl groups in the total terminals is preferably 70 mol% or more, more preferably 80 mol% or more, even more preferably 90 mol% or more, and even more preferably 95 mol% or more.
  • the polycarbonate resin of the present invention has a total light transmittance of 80% or more for a 1 mm thick molded body, more preferably 85% or more, and particularly preferably 88% or more.
  • a 1 mm thick molded body can be obtained by subjecting the polycarbonate resin of the present invention to injection molding, hot press molding, melt extrusion molding, or the like.
  • the saturated water absorption of the polycarbonate resin of the present invention may be 0.10% to 0.70%, 0.20% to 0.70%, or 0.30% to 0.65%.
  • the polycarbonate resin of the present invention is produced by a reaction means known per se for producing a normal polycarbonate resin, for example, a method of reacting a dihydroxy compound with a carbonate precursor such as a carbonic acid diester. Next, the basic means for these production methods will be briefly described.
  • the transesterification reaction using a carbonic acid diester as a carbonate precursor is carried out by heating and stirring a specified ratio of dihydroxy component with a carbonic acid diester under an inert gas atmosphere, and distilling off the resulting alcohol or phenol.
  • the reaction temperature varies depending on the boiling point of the resulting alcohol or phenol, but is usually in the range of 120 to 300°C.
  • the reaction is completed by reducing the pressure from the beginning and distilling off the resulting alcohol or phenol. If necessary, a terminal terminator, antioxidant, etc. may also be added.
  • the carbonic acid diester used in the transesterification reaction includes esters of aryl groups and aralkyl groups having 6 to 12 carbon atoms, which may be substituted. Specific examples include diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl) carbonate, and m-cresyl carbonate. Of these, diphenyl carbonate is particularly preferred.
  • the amount of diphenyl carbonate used is preferably 0.95 to 1.10 mol, more preferably 0.98 to 1.04 mol, per mol of the total of the dihydroxy compounds.
  • a polymerization catalyst can be used to increase the polymerization rate.
  • examples of such polymerization catalysts include alkali metal compounds, alkaline earth metal compounds, nitrogen-containing compounds, etc.
  • Such compounds preferably include organic acid salts, inorganic salts, oxides, hydroxides, hydrides, alkoxides, and quaternary ammonium hydroxides of alkali metals and alkaline earth metals, and these compounds can be used alone or in combination.
  • alkali metal compounds include sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium hydroxide, sodium bicarbonate, sodium carbonate, potassium carbonate, cesium carbonate, lithium carbonate, sodium acetate, potassium acetate, cesium acetate, lithium acetate, sodium stearate, potassium stearate, cesium stearate, lithium stearate, sodium borohydride, sodium benzoate, potassium benzoate, cesium benzoate, lithium benzoate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, dilithium hydrogen phosphate, disodium phenylphosphate, disodium, dipotassium, dicesium and dilithium salts of bisphenol A, and sodium, potassium, cesium and lithium salts of phenol.
  • alkaline earth metal compounds include magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, magnesium diacetate, calcium diacetate, strontium diacetate, barium diacetate, etc.
  • nitrogen-containing compounds include quaternary ammonium hydroxides having alkyl or aryl groups, such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and trimethylbenzylammonium hydroxide.
  • bases or basic salts such as tetramethylammonium borohydride, tetrabutylammonium borohydride, tetrabutylammonium tetraphenylborate, and tetraphenylammonium tetraphenylborate.
  • transesterification catalysts include salts of zinc, tin, zirconium, lead, titanium, germanium, antimony, and osmium, such as zinc acetate, zinc benzoate, zinc 2-ethylhexanoate, tin chloride (II), tin chloride (IV), tin acetate (II), tin acetate (IV), dibutyltin dilaurate, dibutyltin oxide, dibutyltin dimethoxide, zirconium acetylacetonate, zirconium oxyacetate, zirconium tetrabutoxide, lead acetate (II), lead acetate (IV) titanium tetrabutoxide (IV), etc.
  • the catalysts used in WO 2011/010741 and JP 2017-179323 A may also be used.
  • a catalyst consisting of aluminum or a compound thereof and a phosphorus compound may be used.
  • the amount is preferably 80 ⁇ mol to 1000 ⁇ mol, more preferably 90 ⁇ mol to 800 ⁇ mol, and even more preferably 100 ⁇ mol to 600 ⁇ mol per 1 mol of the dihydroxy component.
  • Aluminum salts include organic and inorganic salts of aluminum.
  • organic salts of aluminum include aluminum carboxylates, specifically aluminum formate, aluminum acetate, aluminum propionate, aluminum oxalate, aluminum acrylate, aluminum laurate, aluminum stearate, aluminum benzoate, aluminum trichloroacetate, aluminum lactate, aluminum citrate, and aluminum salicylate.
  • inorganic salts of aluminum include aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, aluminum carbonate, aluminum phosphate, and aluminum phosphonate.
  • aluminum chelate compounds include aluminum acetylacetonate, aluminum acetylacetate, aluminum ethylacetoacetate, and aluminum ethylacetoacetate diisopropoxide.
  • Examples of phosphorus compounds include phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, phosphineous acid compounds, and phosphine compounds. Among these, phosphonic acid compounds, phosphinic acid compounds, and phosphine oxide compounds are particularly preferred, and phosphonic acid compounds are particularly preferred.
  • the amount of these polymerization catalysts used is preferably 0.1 ⁇ mol to 500 ⁇ mol, more preferably 0.5 ⁇ mol to 300 ⁇ mol, and even more preferably 1 ⁇ mol to 100 ⁇ mol per 1 mol of the dihydroxy component.
  • a catalyst deactivator can be added in the later stages of the reaction.
  • catalyst deactivators are effectively used as catalyst deactivators, and among these, ammonium salts and phosphonium salts of sulfonic acid are preferred.
  • salts of dodecylbenzenesulfonic acid such as tetrabutylphosphonium dodecylbenzenesulfonate and salts of paratoluenesulfonic acid such as tetrabutylammonium paratoluenesulfonate are preferred.
  • methyl benzenesulfonate, ethyl benzenesulfonate, butyl benzenesulfonate, octyl benzenesulfonate, phenyl benzenesulfonate, methyl paratoluenesulfonate, ethyl paratoluenesulfonate, butyl paratoluenesulfonate, octyl paratoluenesulfonate, phenyl paratoluenesulfonate, etc. are preferably used. tetrabutylphosphonium dodecylbenzenesulfonate is most preferably used.
  • the amount of the catalyst deactivator used is preferably 0.5 to 50 mol, more preferably 0.5 to 10 mol, and further preferably 0.8 to 5 mol, per mol of the catalyst.
  • the polycarbonate resin of the present invention can be used as a resin composition by appropriately adding additives such as a mold release agent, a heat stabilizer (sometimes also called an antioxidant), an ultraviolet absorber, a bluing agent, an antistatic agent, a flame retardant, a plasticizer, a filler, an antioxidant, a light stabilizer, a polymerized metal deactivator, a lubricant, a surfactant, an antibacterial agent, etc.
  • additives such as a mold release agent, a heat stabilizer (sometimes also called an antioxidant), an ultraviolet absorber, a bluing agent, an antistatic agent, a flame retardant, a plasticizer, a filler, an antioxidant, a light stabilizer, a polymerized metal deactivator, a lubricant, a surfactant, an antibacterial agent, etc.
  • a mold release agent sometimes also called an antioxidant
  • an ultraviolet absorber such as an ultraviolet absorber, a bluing agent, an antistatic agent, a flame retardant,
  • Particularly preferred release agents include stearic acid monoglyceride, stearic acid triglyceride, pentaerythritol tetrastearate, and a mixture of stearic acid triglyceride and stearyl stearate.
  • the amount of the ester in the release agent is preferably 90% by weight or more, and more preferably 95% by weight or more, when the release agent is taken as 100% by weight.
  • the content of the release agent is preferably in the range of 0.005 to 2.0 parts by weight, more preferably in the range of 0.01 to 0.6 parts by weight, and even more preferably in the range of 0.02 to 0.5 parts by weight, relative to 100 parts by weight of polycarbonate resin.
  • Heat stabilizers include phosphorus-based heat stabilizers, sulfur-based heat stabilizers, and hindered phenol-based heat stabilizers.
  • Particularly preferred phosphorus-based heat stabilizers include tris(2,4-di-tert-butylphenyl)phosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, tetrakis(2,4-di-tert-butylphenyl)-4,4'-biphenylene diphosphonite, distearyl pentaerythritol diphosphite, bis(2,4-dicumylphenyl)pentaerythritol diphosphite, cyclic neopentanetetraylbis(2,6-di-tert-butyl-4-methylphenyl phosphite), and bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite.
  • the content of the phosphorus-based heat stabilizer is preferably 0.001 to
  • a particularly preferred sulfur-based heat stabilizer is pentaerythritol-tetrakis(3-laurylthiopropionate).
  • the content of the sulfur-based heat stabilizer is preferably 0.001 to 0.2 parts by weight per 100 parts by weight of polycarbonate resin.
  • Preferred hindered phenol-based heat stabilizers include octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, pentaerythritol-tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], triethylene glycol-bis[3-(3-tert-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], 1,3,5-trimethyl-2,4,6-tris(3 ,5-di-tert-butyl-4-hydroxybenzyl)benzene, N,N-hexamethylenebis(3,5-di-tert-butyl-4-hydroxy-hydrocinnamide), 3,5-di-tert-butyl-4-hydroxy-benzylphospho
  • the content of the hindered phenol-based heat stabilizer is preferably 0.001 to 0.3 parts by weight per 100 parts by weight of polycarbonate resin.
  • Phosphorus-based heat stabilizers and hindered phenol-based heat stabilizers can also be used in combination.
  • At least one ultraviolet absorbing agent selected from the group consisting of benzotriazole-based ultraviolet absorbing agents, benzophenone-based ultraviolet absorbing agents, triazine-based ultraviolet absorbing agents, cyclic iminoester-based ultraviolet absorbing agents, and cyanoacrylate-based ultraviolet absorbing agents is preferred.
  • benzotriazole-based UV absorbers 2-(2-hydroxy-5-tert-octylphenyl)benzotriazole and 2,2'-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6-(2H-benzotriazol-2-yl)phenol] are more preferred.
  • benzophenone-based UV absorbers examples include 2-hydroxy-4-n-dodecyloxybenzophenone and 2-hydroxy-4-methoxy-2'-carboxybenzophenone.
  • Triazine-based UV absorbers include 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[(hexyl)oxy]-phenol, 2-(4,6-bis(2.4-dimethylphenyl)-1,3,5-triazin-2-yl)-5-[(octyl)oxy]-phenol, etc.
  • a particularly suitable cyclic iminoester UV absorber is 2,2'-p-phenylenebis(3,1-benzoxazin-4-one).
  • Cyanoacrylate-based UV absorbers include 1,3-bis-[(2'-cyano-3',3'-diphenylacryloyl)oxy]-2,2-bis[(2-cyano-3,3-diphenylacryloyl)oxy]methyl)propane and 1,3-bis-[(2-cyano-3,3-diphenylacryloyl)oxy]benzene.
  • the amount of UV absorber to be added is preferably 0.01 to 3.0 parts by weight per 100 parts by weight of polycarbonate resin, and within this range of addition, it is possible to impart sufficient weather resistance to molded polycarbonate resin products depending on the application.
  • the optical member of the present invention contains the above-mentioned polycarbonate resin.
  • Such optical members are not particularly limited as long as they are used for optical purposes in which the above-mentioned polycarbonate resin is useful, and examples of such optical members include optical disks, transparent conductive substrates, optical cards, sheets, films, optical fibers, lenses, prisms, optical films, substrates, optical filters, and hard coat films.
  • the optical member of the present invention may be composed of a resin composition containing the above-mentioned polycarbonate resin, and the resin composition may contain additives such as a heat stabilizer, a plasticizer, a light stabilizer, a polymerized metal deactivator, a flame retardant, a lubricant, an antistatic agent, a surfactant, an antibacterial agent, an ultraviolet absorber, a release agent, a bluing agent, a filler, and an antioxidant, as necessary.
  • the optical member of the present invention may in particular be an optical lens. Examples of such an optical lens include imaging lenses for mobile phones, smartphones, tablet terminals, personal computers, digital cameras, video cameras, vehicle-mounted cameras, surveillance cameras, etc., and sensing camera lenses such as TOF cameras.
  • the optical lens of the present invention When the optical lens of the present invention is manufactured by injection molding, it is preferable to mold it under conditions of a cylinder temperature of 220 to 350°C and a mold temperature of 70 to 180°C. It is more preferable to mold it under conditions of a cylinder temperature of 240 to 300°C and a mold temperature of 80 to 170°C. If the cylinder temperature is higher than 350°C, the polycarbonate resin will decompose and discolor, and if it is lower than 230°C, the melt viscosity will be high and molding will be difficult. Also, if the mold temperature is higher than 180°C, it will be difficult to remove the molded piece made of polycarbonate resin from the mold. On the other hand, if the mold temperature is less than 70°C, the resin will harden too quickly in the mold during molding, making it difficult to control the shape of the molded piece and making it difficult to fully transfer the shape applied to the mold.
  • the optical lens of the present invention is preferably implemented as an aspherical lens if necessary.
  • Aspherical lenses can reduce spherical aberration to essentially zero with a single lens, making it unnecessary to remove spherical aberration by combining multiple spherical lenses, which allows for weight reduction and reduced molding costs.
  • aspherical lenses are particularly useful as camera lenses, among other optical lenses.
  • the polycarbonate resin of the present invention since the polycarbonate resin of the present invention has high molding fluidity, it is useful as a material for optical lenses that are thin, small, and have complex shapes, and is particularly useful for imaging lenses and sensing camera lenses.
  • Specific lens sizes include a central thickness of 0.05 to 3.0 mm, more preferably 0.05 to 2.0 mm, even more preferably 0.1 to 2.0 mm, and particularly preferably 0.1 to 1.0 mm.
  • the diameter is 1.0 mm to 20.0 mm, more preferably 1.0 to 10.0 mm, and even more preferably 3.0 to 10.0 mm.
  • the shape is preferably a meniscus lens with one convex side and the other concave side.
  • the lens made of the polycarbonate resin of the present invention can be formed by any method such as mold molding, cutting, polishing, laser processing, electric discharge processing, etching, etc. Among these, mold molding is more preferable in terms of production costs.
  • Second Embodiment In the polycarbonate resin of the present invention, the matters described in the above-mentioned embodiment 1 are also applicable to embodiment 2 unless otherwise specified below.
  • the polycarbonate resin of the present invention contains a unit represented by formula (1) and/or formula (2) and a unit represented by formula (3), and preferably contains 50 mol% or more of the unit represented by formula (1) and/or formula (2) in the total repeating units.
  • the unit represented by formula (1) and/or formula (2) is preferably contained in 90 mol% or less of the total repeating units, more preferably 80 mol% or less, and even more preferably 65 mol% or less. It is also preferable that the unit represented by formula (3) is contained in more than 0% and 50 mol% or less of the total repeating units. It is more preferable that the unit represented by formula (3) is contained in 10 mol% or more of the total repeating units, more preferably 20 mol% or more, and particularly preferably 35 mol% or more. The above range is preferable because it has a high Abbe number and is excellent in orientation birefringence and photoelastic coefficient.
  • the molar ratio of the units represented by formula (1) and/or formula (2) to the units represented by formula (3) is preferably 99:1 to 50:50, more preferably 95:5 to 50:50, even more preferably 90:10 to 50:50, even more preferably 85:15 to 50:50, particularly preferably 80:20 to 50:50, and most preferably 65:35 to 50:50.
  • the ratio of the units represented by formula (1) and/or formula (2) to the units represented by formula (3) is within the above range, the Abbe number is high and the orientation birefringence and photoelastic coefficient are excellent, which is preferable.
  • the polycarbonate resin of the present invention has a weight average molecular weight Mw of 10,000 or more, preferably 15,000 or more, and more preferably 20,000 or more.
  • Mw weight average molecular weight
  • the resin has sufficient mechanical strength as a structural material or optical material.
  • the weight average molecular weight Mw is 55,000 or less, more preferably 50,000 or less, even more preferably 40,000 or less, particularly preferably less than 35,000, and most preferably 30,000 or less.
  • the resin has excellent flowability during injection molding.
  • the polycarbonate resin of the present invention is used for a thin-walled optical member such as an imaging lens, it is preferable that the resin has excellent flowability.
  • the weight average molecular weight Mw can be measured by GPC using polystyrene with a known molecular weight as a standard sample and chloroform as a developing solvent.
  • the polycarbonate resin of the present invention preferably has an absolute value of orientation birefringence of 7.0 ⁇ 10 ⁇ 3 or less, more preferably 5.0 ⁇ 10 ⁇ 3 or less, even more preferably 3.0 ⁇ 10 ⁇ 3 or less, even more preferably 2.5 ⁇ 10 ⁇ 3 or less, particularly preferably 2.0 ⁇ 10 ⁇ 3 or less, and most preferably 1.5 ⁇ 10 ⁇ 3 or less. If the absolute value of orientation birefringence is less than the above, it is preferable because birefringence due to molecular orientation is less likely to occur.
  • the orientation birefringence is measured at a wavelength of 589 nm after cutting a test piece of 70 mm in length (45 mm between chucks) and 15 mm in width from a cast film of 100 ⁇ m in thickness obtained from a polycarbonate resin and stretching it twice at Tg+10° C.
  • the polycarbonate resin of the present invention preferably has a photoelastic coefficient of less than 25 ⁇ 10 ⁇ 12 Pa, and more preferably 20 ⁇ 10 ⁇ 12 Pa or less.
  • a photoelastic coefficient in the above range is preferable because it is less likely to cause birefringence due to stress.
  • the photoelastic coefficient is measured by cutting a test piece 50 mm long and 10 mm wide from a cast film having a thickness of 100 ⁇ m obtained from the polycarbonate resin, and using a Spectroellipsometer M-220 manufactured by JASCO Corporation.
  • the polycarbonate resin of the present invention preferably has a refractive index nd measured at a temperature of 20°C and a wavelength of 587.56 nm of 1.540 or more, more preferably 1.550 or more, even more preferably 1.560 or more, even more preferably 1.570 or more, and particularly preferably 1.575 or more.
  • a refractive index of the above or higher is preferable because it allows the optical member to be made thin.
  • the refractive index nd may also be 1.610 or less, 1.600 or less, 1.590 or less, or 1.580 or less.
  • a refractive index nd in the above range is preferable because it increases the degree of freedom in optical design when multiple lenses are used in combination.
  • the polycarbonate resin of the present invention preferably has an Abbe number of 25.0 or more, more preferably 28.0 or more, even more preferably 31.0 or more, even more preferably 34.0 or more, and particularly preferably 36.0 or more.
  • An Abbe number of the above or higher is preferable because it reduces chromatic aberration of the optical member.
  • the Abbe number may also be 57.0 or less, 55.0 or less, 50.0 or less, or 45.0 or less.
  • An Abbe number in the above range is preferable because it increases the degree of freedom in optical design when multiple lenses are used in combination.
  • the Abbe number ( ⁇ d) is calculated using the following formula from the refractive index at temperature: 20°C and wavelengths: 486.13 nm, 587.56 nm, and 656.27 nm.
  • ⁇ d (nd-1)/(nF-nC)
  • nd refractive index at a wavelength of 587.56 nm
  • nF refractive index at a wavelength of 486.13 nm
  • nC refers to the refractive index at a wavelength of 656.27 nm.
  • the polycarbonate resin of the present invention preferably has a glass transition temperature of 130°C or higher, more preferably 133°C or higher, and even more preferably 136°C or higher.
  • a glass transition temperature in the above range is preferable because it increases the temperature range in which the optical component can be used.
  • the glass transition temperature may also be 155°C or lower, 150°C or lower, 145°C or lower, or 140°C or lower.
  • a glass transition temperature in the above range is preferable because it provides an excellent balance between heat resistance and moldability.
  • the polycarbonate resin of the present invention preferably has a thermal decomposition temperature of 370° C. or higher, more preferably 375° C. or higher.
  • a thermal decomposition temperature of 370° C. or higher is preferable because the polycarbonate resin of the present invention has excellent processing stability when molded and is less likely to be discolored.
  • the thermal decomposition temperature may be 420° C. or lower, or 400° C. or lower.
  • the thermal decomposition temperature can be measured by TGA (thermogravimetric analysis) and is the temperature at which the weight is reduced by 5%.
  • the polycarbonate resin of the present invention preferably has a melt viscosity (Pa ⁇ s) of 30 or more at 260°C and a shear rate of 1,216/sec, more preferably 50 or more, and even more preferably 70 or more.
  • the melt viscosity (Pa ⁇ s) at 260°C and a shear rate of 1,216/sec is preferably 500 or less, more preferably 400 or less, even more preferably 300 or less, and particularly preferably 200 or less.
  • the melt viscosity in the above range is preferable because it has excellent moldability during injection molding.
  • the melt viscosity during molding is important, and the melt viscosity in the above range is preferable because the desired lens shape can be obtained.
  • the melt viscosity is measured by using a Capillograph 1D manufactured by Toyo Seiki Co., Ltd. after drying the polycarbonate resin at 120°C for 4 hours.
  • the specific viscosity of the polycarbonate resin of the present invention is preferably 0.12 to 0.32, and more preferably 0.18 to 0.30.
  • a specific viscosity of 0.12 to 0.32 provides an excellent balance between moldability and strength.
  • the specific viscosity is measured by measuring the specific viscosity ( ⁇ SP) of a solution of 0.7 g of polycarbonate resin dissolved in 100 ml of methylene chloride at 20°C using an Ostwald viscometer and calculating it from the following formula.
  • the polycarbonate resin of the present invention contains a unit represented by formula (1) and/or formula (2) and a unit represented by formula (3), and preferably contains more than 0% and less than 50 mol% of the unit represented by formula (1) and/or formula (2) in the total repeating units.
  • the unit represented by formula (1) and/or formula (2) is preferably contained in 10 mol% or more of the total repeating units, more preferably 20 mol% or more, and even more preferably 35 mol% or more and less than 50 mol%. It is also preferable that the unit represented by formula (3) is contained in more than 50 mol% of the total repeating units.
  • the unit represented by formula (3) is preferably contained in 90 mol% or less of the total repeating units, more preferably 80 mol% or less, and even more preferably 65 mol% or less.
  • the above range is preferable because the orientation birefringence is small, and the refractive index and glass transition temperature are high.
  • the molar ratio of the units represented by formula (1) and/or formula (2) to the units represented by formula (3) is preferably 1:99 to 49:51, more preferably 5:95 to 49:51, even more preferably 10:90 to 49:51, even more preferably 15:85 to 49:51, particularly preferably 20:80 to 49:51, and most preferably 35:65 to 49:51.
  • the ratio of the units represented by formula (1) and/or formula (2) to the units represented by formula (3) is within the above range, the orientation birefringence is small, and the refractive index and glass transition temperature are high, which is preferable.
  • the polycarbonate resin of the present invention has a weight average molecular weight Mw of 10,000 or more, preferably 15,000 or more, and more preferably 20,000 or more.
  • Mw weight average molecular weight
  • the resin has sufficient mechanical strength as a structural material or optical material.
  • the weight average molecular weight Mw is 55,000 or less, more preferably 50,000 or less, even more preferably 40,000 or less, particularly preferably less than 35,000, and most preferably 30,000 or less.
  • the resin has excellent flowability during injection molding.
  • the polycarbonate resin of the present invention is used for a thin-walled optical member such as an imaging lens, it is preferable that the resin has excellent flowability.
  • the weight average molecular weight Mw can be measured by GPC using polystyrene with a known molecular weight as a standard sample and chloroform as a developing solvent.
  • the polycarbonate resin of the present invention preferably has an absolute value of orientation birefringence of 3.0 ⁇ 10 ⁇ 3 or less, more preferably 2.0 ⁇ 10 ⁇ 3 or less, even more preferably 1.0 ⁇ 10 ⁇ 3 or less, and even more preferably 0.5 ⁇ 10 ⁇ 3 or less. If the absolute value of orientation birefringence is less than the above, it is preferable because birefringence due to molecular orientation is less likely to occur.
  • the orientation birefringence is measured at a wavelength of 589 nm after cutting a test piece of 70 mm in length (45 mm between chucks) and 15 mm in width from a cast film of 100 ⁇ m in thickness obtained from a polycarbonate resin and stretching it twice at Tg+10° C.
  • the polycarbonate resin of the present invention preferably has a photoelastic coefficient of less than 35 ⁇ 10 ⁇ 12 Pa, more preferably 30 ⁇ 10 ⁇ 12 Pa or less, and even more preferably 25 ⁇ 10 ⁇ 12 Pa or less.
  • the photoelastic coefficient is measured by cutting a test piece 50 mm long and 10 mm wide from a cast film having a thickness of 100 ⁇ m obtained from the polycarbonate resin, and using a Spectroellipsometer M-220 manufactured by JASCO Corporation.
  • the polycarbonate resin of the present invention preferably has a refractive index nd measured at a temperature of 20°C and a wavelength of 587.56 nm of 1.600 or more, more preferably 1.605 or more, even more preferably 1.610 or more, even more preferably 1.615 or more, and particularly preferably 1.620 or more.
  • a refractive index of the above or higher is preferable because it allows the optical member to be made thin.
  • the refractive index nd may also be 1.650 or less, 1.645 or less, 1.640 or less, or 1.635 or less.
  • a refractive index nd in the above range is preferable because it increases the degree of freedom in optical design when multiple lenses are used in combination.
  • the polycarbonate resin of the present invention preferably has an Abbe number of 25.0 or more, and more preferably 30.0 or more.
  • An Abbe number of this or more is preferable because it reduces the chromatic aberration of the optical member.
  • the Abbe number may be 33.0 or less, or may be 32.0 or less.
  • An Abbe number in the above range is preferable because it increases the degree of freedom in optical design when multiple lenses are used in combination.
  • the Abbe number ( ⁇ d) is calculated using the following formula from the refractive index at temperature: 20°C and wavelengths: 486.13 nm, 587.56 nm, and 656.27 nm.
  • ⁇ d (nd-1)/(nF-nC)
  • nd refractive index at a wavelength of 587.56 nm
  • nF refractive index at a wavelength of 486.13 nm
  • nC refers to the refractive index at a wavelength of 656.27 nm.
  • the polycarbonate resin of the present invention preferably has a glass transition temperature of 138°C or higher, more preferably 140°C or higher, even more preferably 142°C or higher, and even more preferably 144°C or higher.
  • a glass transition temperature in the above range is preferable because it increases the temperature range in which the optical component can be used.
  • the glass transition temperature may also be 160°C or lower, 155°C or lower, or 150°C or lower.
  • a glass transition temperature in the above range is preferable because it provides an excellent balance between heat resistance and moldability.
  • the polycarbonate resin of the present invention preferably has a thermal decomposition temperature of 370°C or higher, more preferably 375°C or higher, and even more preferably 380°C or higher. Thermal decomposition temperatures above the above range are preferred because they provide excellent processing stability when molding the polycarbonate resin of the present invention and cause little discoloration.
  • the thermal decomposition temperature may be 420°C or lower, or 400°C or lower.
  • the thermal decomposition temperature can be measured by TGA (thermogravimetric analysis) and is the temperature at which the weight has decreased by 5%.
  • the polycarbonate resin of the present invention preferably has a melt viscosity (Pa ⁇ s) of 30 or more at 260°C and a shear rate of 1,216/sec, more preferably 50 or more, and even more preferably 70 or more.
  • the melt viscosity (Pa ⁇ s) at 260°C and a shear rate of 1,216/sec is preferably 500 or less, more preferably 400 or less, even more preferably 300 or less, and particularly preferably 200 or less.
  • a melt viscosity in the above range is preferable because it has excellent moldability during injection molding.
  • melt viscosity during molding is important, and a melt viscosity in the above range is preferable because the desired lens shape can be obtained.
  • the melt viscosity is measured using a Capilograph 1D manufactured by Toyo Seiki Co., Ltd. after drying the polycarbonate resin at 120°C for 4 hours.
  • the specific viscosity of the polycarbonate resin of the present invention is preferably 0.12 to 0.32, and more preferably 0.18 to 0.30.
  • a specific viscosity of 0.12 to 0.32 provides an excellent balance between moldability and strength.
  • the specific viscosity is measured by measuring the specific viscosity ( ⁇ SP) of a solution of 0.7 g of polycarbonate resin dissolved in 100 ml of methylene chloride at 20°C using an Ostwald viscometer and calculating it from the following formula.
  • ⁇ SP (t-t0)/t0 [t0 is the number of seconds it takes for methylene chloride to fall, and t is the number of seconds it takes for the sample solution to fall]
  • the evaluation was carried out by the following method.
  • ⁇ Copolymerization ratio of polycarbonate resin> The copolymerization ratio of each polycarbonate resin was calculated by measuring 1 H NMR using a JEOL JNM-ECZ400S.
  • ⁇ Weight average molecular weight (Mw) The weight average molecular weight Mw was measured using EcoSEC HLC-8320GPC manufactured by TOSOH under the conditions described below.
  • Detector UV-8420, solvent: chloroform, column: TOSOH TSKgel SupermultiporeHZM-M ⁇ 3 + TSKgel guard column (4.6 ⁇ 200 nm), measurement temperature: 40°C, flow rate: 0.35 ml/min, injection amount: 5 ⁇ l, sample concentration: 1 mg/5 ml, standard sample: TSKstandard Polystyrene ⁇ Refractive index> A 3 mm thick test piece of each polycarbonate resin was prepared and polished, and then the refractive index nd (587.56 nm) was measured using a Kalnew precision refractometer KPR-2000 manufactured by Shimadzu Corporation.
  • the Abbe number ( ⁇ d) was calculated from the refractive indexes at a temperature of 20° C. and wavelengths of 486.13 nm, 587.56 nm, and 656.27 nm using the following formula.
  • ⁇ d (nd-1)/(nF-nC) nd: refractive index at a wavelength of 587.56 nm, nF: refractive index at a wavelength of 486.13 nm, nC: refers to the refractive index at a wavelength of 656.27 nm.
  • )> Polycarbonate resin was dissolved in methylene chloride, cast on a glass petri dish, and thoroughly dried to prepare a cast film with a thickness of 100 ⁇ m. A test piece with a length of 70 mm (chuck distance 45 mm) and a width of 15 mm was cut from the film.
  • Example 1 87.70 g (0.20 mol) of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (hereinafter sometimes abbreviated as BPEF), 52.48 g (0.20 mol) of pentacyclopentadecane Dimethanol (hereinafter sometimes abbreviated as PCPDM), 89.12 g (0.42 mol) of diphenyl carbonate, and 17 ⁇ L of a 60 mmol/L aqueous solution of sodium bicarbonate (2.5 ⁇ mol of sodium bicarbonate) and 274 mmol/L of sodium bicarbonate were used as a catalyst.
  • BPEF 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene
  • PCPDM pentacyclopentadecane Dimethanol
  • PCPDM pentacyclopentadecane Dimethanol
  • the copolymerization ratio of the obtained polycarbonate resin derived from BPEF and PCPDM was measured by 1H NMR.
  • the weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, and orientation birefringence of the polycarbonate resin were The absolute value of the photoelastic coefficient and the melt viscosity were evaluated.
  • the resin thus obtained was then dried at 120° C.
  • Example 2 A polycarbonate resin was produced in the same manner as in Example 1, except that the amount of BPEF charged was 52.62 g (0.12 mol) and the amount of PCPDM charged was 73.47 g (0.28 mol).
  • the copolymerization ratio derived from BPEF and PCPDM was measured by 1H NMR.
  • the weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, and photoelasticity of the polycarbonate resin were The coefficient and melt viscosity were evaluated.
  • Example 3 A polycarbonate resin was produced in the same manner as in Example 1, except that the amount of BPEF charged was 43.85 g (0.10 mol) and the amount of PCPDM charged was 78.72 g (0.30 mol). The copolymerization ratio derived from BPEF and PCPDM was measured by 1H NMR.
  • Example 4 A polycarbonate resin was produced in the same manner as in Example 1, except that the amount of BPEF charged was 8.78 g (0.02 mol) and the amount of PCPDM charged was 99.71 g (0.38 mol).
  • the copolymerization ratio derived from BPEF and PCPDM was measured by 1H NMR.
  • the weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, and photoelasticity of the polycarbonate resin were The coefficient and melt viscosity were evaluated. Thereafter, in the same manner as in Example 1, a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a diameter of 5 mm was obtained by injection molding.
  • the internal pressure of the reactor was reduced over a period of 1 hour while maintaining the temperature. was set to 133 Pa (1 mmHg) or less. Thereafter, the temperature was raised to 235° C. at a rate of 105° C./hr, and the reaction was carried out for a total of 6 hours under stirring. After the reaction was completed, nitrogen was blown into the reactor to return it to normal pressure, and the obtained resin was taken out.
  • the copolymerization ratio of the polycarbonate resin derived from BPA and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute orientation birefringence of the polycarbonate resin were measured.
  • the copolymerization ratio derived from BPA and PCPDM was measured by 1H NMR.
  • the weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, and photoelasticity of the polycarbonate resin were measured.
  • the coefficient and melt viscosity were evaluated. After that, an attempt was made to injection mold a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a diameter of 5 mm in the same manner as in Example 1, but the melt viscosity of the resin was high. Therefore, it was not possible to mold a thin lens of this shape.
  • a polycarbonate resin was produced in the same manner as in Comparative Example 1, except that the amount of BPA charged was 27.40 g (0.12 mol) and the amount of PCPDM charged was 73.47 g (0.28 mol).
  • the copolymerization ratio derived from BPA and PCPDM was measured by 1H NMR.
  • the weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, and photoelasticity of the polycarbonate resin were measured. The coefficient and melt viscosity were evaluated.
  • the copolymerization ratio of the obtained polycarbonate resin derived from BPEF and PCPDM was measured by 1H NMR.
  • the weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, and orientation birefringence of the polycarbonate resin were also measured.
  • the absolute value, photoelastic coefficient and melt viscosity were evaluated.
  • the weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, and photoelasticity of the polycarbonate resin were The coefficient and melt viscosity were evaluated. After that, an attempt was made to injection mold a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a diameter of 5 mm in the same manner as in Example 1, but the melt viscosity of the resin was high. Therefore, it was not possible to mold a thin lens of this shape.
  • a polycarbonate resin was produced in the same manner as in Comparative Example 4, except that the amount of BPEF charged was 52.62 g (0.12 mol) and the amount of PCPDM charged was 73.47 g (0.28 mol).
  • the copolymerization ratio derived from BPEF and PCPDM was measured by 1H NMR.
  • the weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, and photoelasticity of the polycarbonate resin were The coefficient and melt viscosity were evaluated.
  • the melt viscosity of the first to fourth examples of the present invention is low, and therefore the moldability during injection molding is excellent.
  • the orientation birefringence is excellent, birefringence due to molecular orientation is unlikely to occur when obtaining an optical component by injection molding or the like.
  • the photoelastic coefficient is small, birefringence due to stress is unlikely to occur when obtaining an optical component by injection molding or the like. Therefore, it is preferable because the birefringence of the optical component is small.
  • Example 5 166.64 g (0.38 mol) of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (hereinafter sometimes abbreviated as BPEF), 5.25 g (0.02 mol) of pentacyclopentadecanedimethanol (hereinafter sometimes abbreviated as PCPDM), 89.12 g (0.42 mol) of diphenyl carbonate, and 17 ⁇ L of a 60 mmol/L aqueous sodium hydrogen carbonate solution (2.5 ⁇ mol of sodium hydrogen carbonate) and 227 ⁇ L of a 274 mmol/L aqueous tetramethylammonium hydroxide solution (15 ⁇ mol of tetramethylammonium hydroxide) were heated to 180 ° C.
  • PCPDM pentacyclopentadecanedimethanol
  • Example 6 A polycarbonate resin was produced in the same manner as in Example 1, except that the amount of BPEF charged was 131.56 g (0.30 mol) and the amount of PCPDM charged was 26.24 g (0.10 mol).
  • the copolymerization ratio of the obtained polycarbonate resin derived from BPEF and PCPDM was measured by 1H NMR.
  • the weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, photoelastic coefficient and melt viscosity of the polycarbonate resin were evaluated. Thereafter, a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a ⁇ 5 mm was obtained by injection molding in the same manner as in Example 1.
  • Example 7 A polycarbonate resin was produced in the same manner as in Example 1, except that the amount of BPEF charged was 96.47 g (0.22 mol) and the amount of PCPDM charged was 47.23 g (0.18 mol).
  • the copolymerization ratio of the obtained polycarbonate resin derived from BPEF and PCPDM was measured by 1H NMR.
  • the weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, photoelastic coefficient and melt viscosity of the polycarbonate resin were evaluated.
  • a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a ⁇ 5 mm was obtained by injection molding in the same manner as in Example 1.
  • the reactor internal pressure was set to 20kPa (150mmHg) and the temperature was raised to 200°C at a rate of 60°C/hr, and the reaction was carried out while maintaining the temperature for 40 minutes. Further, the temperature was raised to 225°C at a rate of 75°C/hr, and 40 minutes after the end of the temperature rise, the reactor internal pressure was lowered to 133Pa (1mmHg) or less over 1 hour while maintaining the temperature. Then, the temperature was raised to 235°C at a rate of 105°C/hr, and the reaction was carried out under stirring for a total of 6 hours. After the reaction was completed, nitrogen was blown into the reactor to return to normal pressure, and the obtained resin was taken out.
  • the copolymerization ratio of the obtained polycarbonate resin derived from BPA and PCPDM was measured by 1H NMR.
  • the weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, photoelastic coefficient and melt viscosity of the polycarbonate resin were evaluated. Then, injection molding of a lens with a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a ⁇ 5 mm was attempted in the same manner as in Example 1, but the melt viscosity of the resin was high, so it was not possible to mold a thin lens of that shape.
  • the weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, photoelastic coefficient and melt viscosity of the polycarbonate resin were evaluated. Thereafter, injection molding of a lens with a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a ⁇ 5 mm was attempted in the same manner as in Example 1, but the melt viscosity of the resin was high, so it was not possible to mold a thin lens of that shape.
  • a polycarbonate resin was produced in the same manner as in Comparative Example 4, except that the amount of BPEF charged was 122.79 g (0.28 mol) and the amount of PCPDM charged was 31.49 g (0.12 mol).
  • the copolymerization ratio of the obtained polycarbonate resin derived from BPEF and PCPDM was measured by 1H NMR.
  • the weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, photoelastic coefficient and melt viscosity of the polycarbonate resin were evaluated.
  • Examples 5 to 7 of the present invention have a lower melt viscosity, and therefore have excellent moldability during injection molding.
  • they have excellent orientation birefringence, birefringence due to molecular orientation is unlikely to occur when obtaining optical components by injection molding, etc.
  • they have a high refractive index and glass transition temperature, they are preferable as optical components.
  • the polycarbonate resin of the present invention is used for optical materials, and can be used for optical members such as lenses, prisms, optical disks, transparent conductive substrates, optical cards, sheets, films, optical fibers, optical films, optical filters, and hard coat films. It is particularly useful for imaging lenses or sensing camera lenses, and is extremely useful for imaging lenses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

[Problem] The first purpose of the present invention is to provide a polycarbonate resin that has excellent fluidity and has a small orientation birefringence. The second purpose of the present invention is, in addition to the first purpose, to further provide a polycarbonate resin that has a high Abbe number and has a small orientation birefringence and a small photoelastic coefficient. The third purpose of the present invention is, in addition to the first purpose, to further provide a polycarbonate resin that has a small orientation birefringence and has a high refractive index and a high glass transition temperature. [Solution] This polycarbonate resin includes a unit that is represented by formula (1) and/or formula (2), and a unit that is represented by formula (3), wherein the weight average molecular weight Mw is 10,000 to 55,000. (In formula (3), R1-R4 each independently represent a hydrogen atom or a C1-10 hydrocarbon group.)

Description

ポリカーボネート樹脂および該樹脂を用いた光学部材Polycarbonate resin and optical member using said resin

 本発明は、ポリカーボネート樹脂および該樹脂を用いた光学部材に関する。 The present invention relates to polycarbonate resin and optical components using the resin.

 光学系の材料として従来用いられていたガラスは要求される様々な光学特性を実現することが可能であると共に、環境耐性に優れているが、加工性が悪いという問題があった。これに対し、ガラス材料に比べて安価であると共に加工性に優れる樹脂が光学部材に用いられてきている。 Glass, which has traditionally been used as a material for optical systems, is capable of achieving the various optical properties required and has excellent environmental resistance, but it has the problem of being difficult to process. In response to this, resins, which are cheaper than glass materials and have excellent processability, have begun to be used for optical components.

 特許文献1にはペンタシクロペンタデカンジメタノール(以下、PCPDMと省略することがある)と9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(以下、BPEFと省略することがある)の構造を有するポリカーボネート樹脂からなる高屈折率かつ低配向複屈折である光学レンズが記載されている。 Patent Document 1 describes an optical lens with a high refractive index and low orientation birefringence, made of a polycarbonate resin having a structure of pentacyclopentadecanedimethanol (hereinafter sometimes abbreviated as PCPDM) and 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (hereinafter sometimes abbreviated as BPEF).

 また、光学ユニットの光学設計においては、互いにアッベ数が異なる複数のレンズを組み合わせて使用することにより色収差を補正することが知られている。例えば、低屈折率で高アッベ数の脂環式ポリオレフィン樹脂製のレンズと、高屈折率で低アッベ数のビスフェノールAからなるポリカーボネート(nd=1.59、νd=31)樹脂製のレンズとを組み合わせて色収差を補正することが行われている。近年、高屈折率で低アッベ数の樹脂開発が盛んに行われており、これに伴い、高アッベ数の樹脂の需要も高まっている。また、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称:ビスフェノールA)をホスゲンあるいは炭酸エステルと反応させて得られるビスフェノールAからのポリカーボネート樹脂は、耐熱性および透明性に優れ、しかも耐衝撃性等の機械的特性に優れていることから、構造材料はもとより、光学材料として光ディスク基板、各種レンズ、プリズム及び光ファイバー等に幅広く利用されている。しかし、ビスフェノールAからのポリカーボネート樹脂は、成形時の分子配向や残留応力に伴う複屈折が大きいという問題点を有している。そこで近年の光学材料用途の広がりに伴い、さらなる低複屈折の材料開発が強く求められている。例えば、特許文献2にはビスフェノールAとPCPDMとを共重合させることで、高アッベ数でありながら、光弾性係数の低いポリカーボネート樹脂が記載されている。また、特許文献3には酸素の存在下、ハロゲン化メタンと特定量の水酸基含有化合物とを光反応に付すことで、塩基を使用せずカーボネート誘導体を製造する方法が提案され、製造の一例として、BPEFとPCPDMとの共重合ポリカーボネートが例示されている。 In addition, in the optical design of optical units, it is known that chromatic aberration is corrected by combining and using multiple lenses with different Abbe numbers. For example, chromatic aberration is corrected by combining a lens made of alicyclic polyolefin resin with a low refractive index and high Abbe number with a lens made of polycarbonate resin (nd = 1.59, νd = 31) made of bisphenol A with a high refractive index and low Abbe number. In recent years, there has been active development of resins with high refractive index and low Abbe number, and as a result, the demand for resins with high Abbe number is also increasing. In addition, polycarbonate resin from bisphenol A obtained by reacting 2,2-bis(4-hydroxyphenyl)propane (commonly known as bisphenol A) with phosgene or carbonate ester has excellent heat resistance and transparency, and also has excellent mechanical properties such as impact resistance, so it is widely used not only as a structural material but also as an optical material for optical disk substrates, various lenses, prisms, optical fibers, etc. However, polycarbonate resins made from bisphenol A have the problem of large birefringence due to molecular orientation and residual stress during molding. Therefore, with the recent expansion of optical material applications, there is a strong demand for the development of materials with even lower birefringence. For example, Patent Document 2 describes a polycarbonate resin that has a high Abbe number but a low photoelastic coefficient, which is produced by copolymerizing bisphenol A and PCPDM. In addition, Patent Document 3 proposes a method for producing a carbonate derivative without using a base by subjecting halogenated methane and a specific amount of a hydroxyl group-containing compound to a photoreaction in the presence of oxygen, and cites a copolymerized polycarbonate of BPEF and PCPDM as an example of the production method.

特開2005-241962号JP 2005-241962 A 特開2000-302860号JP 2000-302860 A WO2020/100977号WO2020/100977

 しかし、上述したPCPDMとBPEFの構造を有するポリカーボネート樹脂は、撮像レンズ等の薄肉の光学部材へ適用しようとすると成形が難しく、さらに配向複屈折もさらなる改善が必要であった。また、上述したビスフェノールAとPCPDMからなるポリカーボネート樹脂は、光弾性係数に改善の余地があり、配向複屈折も大きいことに加え、屈折率やガラス転移温度が低いことが課題であった。さらに、得られた樹脂の分子量が高いため、射出成形用途には不向きであり、撮像レンズ等の薄肉の光学部材には使用できなかった。また、上述したBPEFとPCPDMの共重合ポリカーボネートは重量平均分子量が3,360と極めて低く、構造材料や光学材料として使用するには十分なポリマーとは言えない。 However, when attempting to apply the polycarbonate resin having the above-mentioned PCPDM and BPEF structure to thin-walled optical components such as imaging lenses, it was difficult to mold, and further improvement in the orientation birefringence was also required. In addition, the above-mentioned polycarbonate resin made of bisphenol A and PCPDM had issues such as room for improvement in the photoelastic coefficient, large orientation birefringence, and low refractive index and glass transition temperature. Furthermore, the molecular weight of the obtained resin was high, making it unsuitable for injection molding applications and unable to be used for thin-walled optical components such as imaging lenses. In addition, the weight-average molecular weight of the above-mentioned BPEF and PCPDM copolymer polycarbonate is extremely low at 3,360, and it cannot be said to be a sufficient polymer for use as a structural or optical material.

 そこで本発明の第一の目的は、流動性に優れ、かつ配向複屈折が小さいポリカーボネート樹脂を提供することにある。 The first object of the present invention is to provide a polycarbonate resin that has excellent flowability and small orientation birefringence.

 本発明の第二の目的は、第一の目的に加え、さらにアッベ数が高く、配向複屈折および光弾性係数が小さいポリカーボネート樹脂を提供することにある。 The second object of the present invention is to provide a polycarbonate resin that, in addition to the first object, has a high Abbe number and a small orientation birefringence and photoelastic coefficient.

 本発明の第三の目的は、第一の目的に加え、さらに配向複屈折が小さく、屈折率およびガラス転移温度が高いポリカーボネート樹脂を提供することにある。 The third object of the present invention is to provide a polycarbonate resin that, in addition to the first object, has a small orientation birefringence, a high refractive index, and a high glass transition temperature.

 本発明者らは、以下の態様を有する本発明により、上記課題を解決できることを見出した。 The inventors have discovered that the above problems can be solved by the present invention, which has the following features:

 すなわち、本発明は、以下の通りである。
《態様1》
 式(1)及び/又は式(2)で表される単位と、式(3)で表される単位を含み、重量平均分子量Mwが10,000~55,000であるポリカーボネート樹脂。
That is, the present invention is as follows.
Aspect 1
A polycarbonate resin containing a unit represented by formula (1) and/or formula (2) and a unit represented by formula (3), and having a weight average molecular weight Mw of 10,000 to 55,000.

Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002

(式中、R~R は、それぞれ独立に、水素原子又は炭素原子数1~10の炭化水素基を表す。)
《態様2》
 前記式(3)中のR~Rが水素原子である態様1に記載のポリカーボネート樹脂。
《態様3》
 前記式(1)及び/又は式(2)で表される単位と、前記式(3)で表される単位のモル比が99:1~1:99である態様1または2に記載のポリカーボネート樹脂。
《態様4》
 前記式(1)及び/又は式(2)で表される単位と、前記式(3)で表される単位のモル比が65:35~35:65である態様3に記載のポリカーボネート樹脂。
《態様5》
 配向複屈折の絶対値が7.0×10-3以下である態様1または2に記載のポリカーボネート樹脂。
《態様6》
 光弾性係数が35×10-12Pa未満である態様1または2に記載のポリカーボネート樹脂。
《態様7》
 式(1)及び/又は式(2)で表される単位を全繰り返し単位中に50モル%以上含み、重量平均分子量Mwが10,000~50,000である態様1に記載のポリカーボネート樹脂。
《態様8》
 式(3)で表される単位を全繰り返し単位中に0%を超え50モル%以下含む態様7に記載のポリカーボネート樹脂。
《態様9》
 前記式(1)及び/又は式(2)で表される単位と、前記式(3)で表される単位のモル比が99:1~50:50である態様7または8に記載のポリカーボネート樹脂。
《態様10》
 光弾性係数が25×10-12Pa未満である態様7または8に記載のポリカーボネート樹脂。
《態様11》
 アッベ数が25.0以上である態様7または8に記載のポリカーボネート樹脂。
《態様12》
 式(1)及び/又は式(2)で表される単位を全繰り返し単位中に0%を超え50モル%未満含み、重量平均分子量Mwが10,000~50,000である態様1に記載のポリカーボネート樹脂。
《態様13》
 式(3)で表される単位を全繰り返し単位中に50モル%を超えて含む態様12に記載のポリカーボネート樹脂。
《態様14》
 前記式(1)及び/又は式(2)で表される単位と、前記式(3)で表される単位のモル比が1:99~49:51である態様12または13に記載のポリカーボネート樹脂。
《態様15》
 配向複屈折の絶対値が3.0×10-3以下である態様12または13に記載のポリカーボネート樹脂。
《態様16》
 屈折率ndが1.600以上である態様12または13に記載のポリカーボネート樹脂。
《態様17》
 ガラス転移温度が140℃以上である態様12または13に記載のポリカーボネート樹脂。
《態様18》
 態様1、2、7または12のいずれか一項に記載のポリカーボネート樹脂からなる光学部材。
《態様19》
 前記光学部材が撮像レンズまたはセンシングカメラレンズである、態様18に記載の光学部材。
《態様20》
 中心部の厚みが0.05~3.0mmである態様19に記載の撮像レンズまたはセンシングカメラレンズ。
(In the formula, R 1 to R 4 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.)
Aspect 2
The polycarbonate resin according to embodiment 1, wherein R 1 to R 4 in formula (3) are hydrogen atoms.
Aspect 3
The polycarbonate resin according to aspect 1 or 2, wherein a molar ratio of the unit represented by the formula (1) and/or the formula (2) to the unit represented by the formula (3) is 99:1 to 1:99.
Aspect 4
A polycarbonate resin according to aspect 3, wherein a molar ratio of the units represented by the formula (1) and/or the formula (2) to the units represented by the formula (3) is 65:35 to 35:65.
Aspect 5
The polycarbonate resin according to aspect 1 or 2, wherein the absolute value of orientation birefringence is 7.0 × 10 -3 or less.
Aspect 6
3. The polycarbonate resin according to claim 1, having a photoelastic coefficient of less than 35×10 −12 Pa.
Aspect 7
A polycarbonate resin according to embodiment 1, comprising units represented by formula (1) and/or formula (2) in an amount of 50 mol % or more in all repeating units, and having a weight average molecular weight Mw of 10,000 to 50,000.
Aspect 8
8. The polycarbonate resin according to embodiment 7, wherein the unit represented by formula (3) is contained in more than 0% and not more than 50 mol % of all repeating units.
Aspect 9
A polycarbonate resin according to aspect 7 or 8, wherein a molar ratio of the units represented by the formula (1) and/or the formula (2) to the units represented by the formula (3) is from 99:1 to 50:50.
Aspect 10
9. The polycarbonate resin according to claim 7 or 8, which has a photoelastic coefficient of less than 25×10 −12 Pa.
Aspect 11
The polycarbonate resin according to aspect 7 or 8, having an Abbe number of 25.0 or more.
Aspect 12
A polycarbonate resin according to embodiment 1, which contains more than 0% and less than 50 mol% of units represented by formula (1) and/or formula (2) in all repeating units and has a weight average molecular weight Mw of 10,000 to 50,000.
Aspect 13
13. The polycarbonate resin according to claim 12, wherein the unit represented by formula (3) is contained in more than 50 mol % of all repeating units.
Aspect 14
The polycarbonate resin according to aspect 12 or 13, wherein a molar ratio of the units represented by the formula (1) and/or the formula (2) to the units represented by the formula (3) is from 1:99 to 49:51.
Aspect 15
14. The polycarbonate resin according to claim 12 or 13, wherein the absolute value of orientation birefringence is 3.0×10 −3 or less.
Aspect 16
14. The polycarbonate resin according to claim 12 or 13, having a refractive index nd of 1.600 or more.
Aspect 17
14. The polycarbonate resin according to claim 12 or 13, having a glass transition temperature of 140° C. or higher.
Aspect 18
13. An optical member comprising the polycarbonate resin according to any one of claims 1, 2, 7, and 12.
Aspect 19
20. The optical member according to claim 18, wherein the optical member is an imaging lens or a sensing camera lens.
Aspect 20
20. The imaging lens or sensing camera lens according to claim 19, wherein the thickness of the central portion is 0.05 to 3.0 mm.

 本発明のポリカーボネート樹脂は、流動性に優れ、かつ配向複屈折が小さい。そのため、例えば撮像レンズ等の薄肉の光学部材に好適に使用でき、その奏する産業上の効果は格別である。 The polycarbonate resin of the present invention has excellent fluidity and small orientation birefringence. Therefore, it can be suitably used for thin optical components such as imaging lenses, and the industrial effects it provides are exceptional.

 また、本発明のさらに好ましいポリカーボネート樹脂は、アッベ数が高く、さらに配向複屈折および光弾性係数が小さい。 Moreover, the more preferred polycarbonate resin of the present invention has a high Abbe number, and further has a small orientation birefringence and photoelastic coefficient.

 また、本発明の他のさらに好ましいポリカーボネート樹脂は、配向複屈折が小さく、屈折率およびガラス転移温度が高い。このように本発明のポリカーボネート樹脂の奏する産業上の効果は格別である。 Furthermore, other more preferred polycarbonate resins of the present invention have small orientation birefringence, and high refractive index and glass transition temperature. Thus, the industrial effects of the polycarbonate resins of the present invention are exceptional.

 本発明をさらに詳しく説明する。
《実施形態1》
<ポリカーボネート樹脂>
 式(1)及び/又は式(2)で表される単位と、式(3)で表される単位を含み、重量平均分子量Mwが10,000以上55,000以下であるポリカーボネート樹脂。
The present invention will now be described in further detail.
First Embodiment
<Polycarbonate resin>
A polycarbonate resin containing a unit represented by formula (1) and/or formula (2) and a unit represented by formula (3), and having a weight average molecular weight Mw of 10,000 or more and 55,000 or less.

 本発明のポリカーボネート樹脂は、式(1)及び/又は式(2)で表される単位と、式(3)で表される単位を含む。式(1)及び/又は式(2)で表される単位を全繰り返し単位中に0モル%を超え100モル%未満含み、また、式(3)で表される単位を全繰り返し単位中に0モル%を超え100モル%未満含む。式(1)及び/又は式(2)で表される単位を全繰り返し単位中に10モル%以上であると好ましく、20モル以上であるとより好ましく、35モル%以上であるとさらに好ましい。また、式(1)及び/又は式(2)で表される単位を全繰り返し単位中に90モル%以下であると好ましく、80モル%以下であるより好ましく、65モル%以下であるとさらに好ましい。上記範囲であると、配向複屈折が小さく、屈折率、アッベ数および光弾性係数のバランスに優れる。また、式(1)及び/又は式(2)で表される単位と、上記式(3)で表される単位のモル比が99:1~1:99であると好ましく、80:20~20:80であるとより好ましく、65:35~35:65であるとさらに好ましい。式(1)及び/又は式(2)で表される単位と、式(3)で表される単位が上記範囲であると、配向複屈折が小さく、屈折率、アッベ数、および光弾性係数のバランスに優れる。 The polycarbonate resin of the present invention contains units represented by formula (1) and/or formula (2) and units represented by formula (3). The units represented by formula (1) and/or formula (2) are contained in the total repeating units at a ratio of more than 0 mol% to less than 100 mol%, and the units represented by formula (3) are contained in the total repeating units at a ratio of more than 0 mol% to less than 100 mol%. The units represented by formula (1) and/or formula (2) are preferably 10 mol% or more in the total repeating units, more preferably 20 mol% or more, and even more preferably 35 mol% or more. The units represented by formula (1) and/or formula (2) are preferably 90 mol% or less in the total repeating units, more preferably 80 mol% or less, and even more preferably 65 mol% or less. Within the above ranges, the orientation birefringence is small, and the balance of the refractive index, Abbe number, and photoelastic coefficient is excellent. In addition, the molar ratio of the units represented by formula (1) and/or formula (2) to the units represented by formula (3) is preferably 99:1 to 1:99, more preferably 80:20 to 20:80, and even more preferably 65:35 to 35:65. When the ratio of the units represented by formula (1) and/or formula (2) to the units represented by formula (3) is within the above range, the orientation birefringence is small, and the balance of the refractive index, Abbe number, and photoelastic coefficient is excellent.

 なお、上述したモル%およびモル比の規定において、式(1)及び/又は式(2)で表される単位というのは、ポリカーボネート樹脂に式(1)及び式(2)で表される単位が含まれる場合は、式(1)及び式(2)の合計単位を表し、式(1)又は式(2)で表される単位のどちらか一方が含まれる場合、含まれるどちらか一方の単位を表す。 In the above-mentioned definitions of mole percent and mole ratio, the units represented by formula (1) and/or formula (2) refer to the combined units of formula (1) and formula (2) when the polycarbonate resin contains units represented by formula (1) and formula (2), and refer to either one of the units contained when the polycarbonate resin contains units represented by formula (1) or formula (2).

Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003

(式中、R~R は、それぞれ独立に、水素原子又は炭素原子数1~10の炭化
水素基を表す。)
 本発明のポリカーボネート樹脂は、重量平均分子量Mwが10,000以上であり、15,000以上であると好ましく、20,000以上であるとより好ましい。重量平均分子量Mwが10,000以上であると構造材料や光学材料として十分な機械強度があり好ましい。また、重量平均分子量Mwは55,000以下であり、50,000以下であるとより好ましく、40,000以下であるとさらに好ましく、35,000未満であると特に好ましく、30,000以下であると最も好ましい。重量平均分子量Mwが55,000以下であると射出成形時の流動性に優れるため好ましい。特に、本発明のポリカーボネート樹脂を撮像レンズ等の薄肉の光学部材に使用する場合に流動性に優れるため好ましい。重量平均分子量Mwは、分子量が既知のポリスチレンを標準サンプルとし、クロロホルムを展開溶媒としてGPCにより測定できる。
(In the formula, R 1 to R 4 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.)
The polycarbonate resin of the present invention has a weight average molecular weight Mw of 10,000 or more, preferably 15,000 or more, and more preferably 20,000 or more. When the weight average molecular weight Mw is 10,000 or more, it is preferable that the resin has sufficient mechanical strength as a structural material or optical material. In addition, the weight average molecular weight Mw is 55,000 or less, more preferably 50,000 or less, even more preferably 40,000 or less, particularly preferably less than 35,000, and most preferably 30,000 or less. When the weight average molecular weight Mw is 55,000 or less, it is preferable that the resin has excellent flowability during injection molding. In particular, when the polycarbonate resin of the present invention is used for a thin-walled optical member such as an imaging lens, it is preferable that the resin has excellent flowability. The weight average molecular weight Mw can be measured by GPC using polystyrene with a known molecular weight as a standard sample and chloroform as a developing solvent.

 本発明のポリカーボネート樹脂は、配向複屈折の絶対値が7.0×10-3以下であると好ましい。配向複屈折の絶対値が上記以下であると、分子配向による複屈折が生じにくくなるため好ましい。配向複屈折は、ポリカーボネート樹脂から得られる厚さ100μmのキャストフィルムから長さ70mm(チャック間45mm)、幅15mmの試験片を切り出し、Tg+10℃で2倍延伸した後に、波長589nmにおいて測定する。 The polycarbonate resin of the present invention preferably has an absolute value of orientation birefringence of 7.0×10 −3 or less. If the absolute value of orientation birefringence is less than the above, it is preferable because birefringence due to molecular orientation is less likely to occur. The orientation birefringence is measured at a wavelength of 589 nm after cutting a test piece of 70 mm in length (45 mm between chucks) and 15 mm in width from a cast film of 100 μm in thickness obtained from a polycarbonate resin and stretching it twice at Tg+10° C.

 本発明のポリカーボネート樹脂は、光弾性係数が35×10-12Pa未満であると好ましい。光弾性係数が上記範囲であると応力による複屈折が生じにくくなるため好ましい。光弾性係数はポリカーボネート樹脂から得られる厚さ100μmのキャストフィルムから長さ50mm、幅10mmの試験片を切り出し、日本分光(株)製Spectroellipsometer M-220を用い測定する。 The polycarbonate resin of the present invention preferably has a photoelastic coefficient of less than 35×10 −12 Pa. When the photoelastic coefficient is within the above range, birefringence due to stress is unlikely to occur, which is preferable. The photoelastic coefficient is measured by cutting a test piece 50 mm long and 10 mm wide from a cast film having a thickness of 100 μm obtained from the polycarbonate resin, and using a Spectroellipsometer M-220 manufactured by JASCO Corporation.

 本発明のポリカーボネート樹脂は、温度:20℃、波長:587.56nmで測定した屈折率ndが1.540以上であると好ましい。屈折率が上記以上であると、光学部材を薄くできるため好ましい。また、屈折率ndは1.650以下であってもよい。屈折率ndが上記範囲であると、複数のレンズを組み合わせて使用するうえで光学設計の自由度が上がるため好ましい。 The polycarbonate resin of the present invention preferably has a refractive index nd of 1.540 or more, measured at a temperature of 20°C and a wavelength of 587.56 nm. A refractive index of this or more is preferable because it allows the optical component to be made thinner. The refractive index nd may also be 1.650 or less. A refractive index nd in the above range is preferable because it increases the degree of freedom in optical design when multiple lenses are used in combination.

 本発明のポリカーボネート樹脂は、アッベ数が25.0以上であると好ましい。アッベ数が上記以上であると光学部材の色収差が小さくなるため好ましい。また、アッベ数は57.0以下であってもよい。アッベ数が上記範囲であると、複数のレンズを組み合わせて使用するうえで光学設計の自由度が上がるため好ましい。 The polycarbonate resin of the present invention preferably has an Abbe number of 25.0 or more. An Abbe number of this or more is preferable because it reduces the chromatic aberration of the optical member. The Abbe number may be 57.0 or less. An Abbe number in the above range is preferable because it increases the degree of freedom in optical design when multiple lenses are used in combination.

 ここで、アッベ数(νd)は、温度:20℃、波長:486.13nm、587.56nm、656.27nmの屈折率から、下記式を用いて算出する。 The Abbe number (νd) is calculated using the following formula from the refractive index at temperature: 20°C and wavelengths: 486.13 nm, 587.56 nm, and 656.27 nm.

  νd=(nd-1)/(nF-nC)
  nd:波長587.56nmでの屈折率、
  nF:波長486.13nmでの屈折率、
  nC:波長656.27nmでの屈折率を意味する。
νd=(nd-1)/(nF-nC)
nd: refractive index at a wavelength of 587.56 nm,
nF: refractive index at a wavelength of 486.13 nm,
nC: refers to the refractive index at a wavelength of 656.27 nm.

 本発明のポリカーボネート樹脂は、ガラス転移温度が130℃以上であると好ましい。ガラス転移温度が上記範囲であると、光学部材の使用できる温度範囲が高くなるため好ましい。また、ガラス転移温度は160℃以下であってもよい。ガラス転移温度が上記範囲であると耐熱性と成形性のバランスに優れるため好ましい。 The polycarbonate resin of the present invention preferably has a glass transition temperature of 130°C or higher. A glass transition temperature in the above range is preferable because it increases the temperature range in which the optical component can be used. The glass transition temperature may be 160°C or lower. A glass transition temperature in the above range is preferable because it provides an excellent balance between heat resistance and moldability.

 本発明のポリカーボネート樹脂は、熱分解温度が370℃以上であると好ましい。熱分解温度が上記以上であると本発明のポリカーボネート樹脂を成形加工する際の加工安定性に優れ、さらに着色も少ないため好ましい。また、熱分解温度は420℃以下であってもよい。熱分解温度はTGA(熱重量分析)により測定することができ、重量が5%減少した時の温度である。 The polycarbonate resin of the present invention preferably has a thermal decomposition temperature of 370°C or higher. Thermal decomposition temperatures above this level are preferred because they provide excellent processing stability when molding the polycarbonate resin of the present invention and also cause little discoloration. The thermal decomposition temperature may also be 420°C or lower. The thermal decomposition temperature can be measured by TGA (thermogravimetric analysis) and is the temperature at which the weight is reduced by 5%.

 本発明のポリカーボネート樹脂は、260℃、せん断速度1,216/secにおける溶融粘度(Pa・s)が30以上であると好ましい。また、260℃、せん断速度1,216/secにおける溶融粘度(Pa・s)が500以下であると好ましい。溶融粘度が上記範囲であると、射出成形時の成形性に優れるため好ましい。特にレンズ等の薄肉の成形物を射出成形する際は成形時の溶融粘度は重要であり、溶融粘度が上記範囲であると目的のレンズ形状が得られるため好ましい。溶融粘度は、ポリカーボネート樹脂を120℃で4時間乾燥した後、東洋精機(株)製キャピログラフ1Dによって測定される。 The polycarbonate resin of the present invention preferably has a melt viscosity (Pa·s) of 30 or more at 260°C and a shear rate of 1,216/sec. Also, it is preferable that the melt viscosity (Pa·s) is 500 or less at 260°C and a shear rate of 1,216/sec. A melt viscosity in the above range is preferable because it has excellent moldability during injection molding. In particular, when injection molding thin-walled molded products such as lenses, the melt viscosity during molding is important, and a melt viscosity in the above range is preferable because it allows the desired lens shape to be obtained. The melt viscosity is measured using a Capilograph 1D manufactured by Toyo Seiki Co., Ltd. after drying the polycarbonate resin at 120°C for 4 hours.

 本発明のポリカーボネート樹脂の比粘度は、0.12~0.32であることが好ましい。比粘度が0.12~0.32であると成形性と強度とのバランスに優れる。 The specific viscosity of the polycarbonate resin of the present invention is preferably 0.12 to 0.32. A specific viscosity of 0.12 to 0.32 provides an excellent balance between moldability and strength.

 比粘度の測定方法は、ポリカーボネート樹脂0.7gを塩化メチレン100mlに溶解した溶液の20℃における比粘度(ηSP)を、オストワルド粘度計にて測定し、以下の式から算出する。 The specific viscosity is measured by measuring the specific viscosity (ηSP) of a solution of 0.7 g of polycarbonate resin dissolved in 100 ml of methylene chloride at 20°C using an Ostwald viscometer and calculating it from the following formula.

  ηSP=(t-t0)/t0
[t0は、塩化メチレンの落下秒数、tは、試料溶液の落下秒数]
 本発明のポリカーボネート樹脂において、上記式(3)中のR~Rは、それぞれ独立に、水素原子又は炭素原子数1~10の炭化水素基を表し、炭化水素基としては、アルキル基、シクロアルキル基、及びアリール基を挙げることができる。
ηSP=(t-t0)/t0
[t0 is the number of seconds it takes for methylene chloride to fall, and t is the number of seconds it takes for the sample solution to fall]
In the polycarbonate resin of the present invention, R 1 to R 4 in the above formula (3) each independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and the hydrocarbon group can be an alkyl group, Mention may be made of cycloalkyl groups and aryl groups.

 アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基などが挙げられ、メチル基、エチル基が好ましい。 Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, butyl, and t-butyl groups, with methyl and ethyl groups being preferred.

 シクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、及びビシクロ[1.1.1]ペンタニル基等が挙げられる。 Cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and bicyclo[1.1.1]pentanyl groups.

 アリール基としては、フェニル基、トリル基、ナフチル基、キシリル基などが挙げられ、フェニル基が好ましい。 Aryl groups include phenyl, tolyl, naphthyl, and xylyl groups, with phenyl being preferred.

 R~Rは、それぞれ独立に、水素原子、メチル基、フェニル基が好ましく、水素原子又は、フェニル基がより好ましく、R及びRは、それぞれ独立に、水素原子又は、フェニル基であり、R及びRは、水素原子であることがさらに好ましい。 R 1 to R 4 are each independently preferably a hydrogen atom, a methyl group, or a phenyl group, more preferably a hydrogen atom or a phenyl group, R 1 and R 2 are each independently preferably a hydrogen atom or a phenyl group, and R 3 and R 4 are further preferably a hydrogen atom.

 上記式(1)および/または上記式(2)で表される繰返し単位は、ペンタシクロペンタデカンジメタノールから誘導される繰り返し単位であり、上記式(1)および/または上記式(2)では、純物質であっても各々の異性体が任意の比率で混ざった混合物であってもよい。なお、ペンタシクロペンタデカンジメタノールは以下の構造式を含む。 The repeating units represented by the above formula (1) and/or formula (2) are repeating units derived from pentacyclopentadecanedimethanol, and in the above formula (1) and/or formula (2), the repeating units may be pure substances or mixtures of the respective isomers in any ratio. Pentacyclopentadecanedimethanol includes the following structural formulas:

Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004

Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005

 上記式(3)で表される繰返し単位は、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンから誘導される繰り返し単位であることが好ましく、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレンから誘導される繰返し単位であることがより好ましい。 The repeating unit represented by the above formula (3) is preferably a repeating unit derived from 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene or 9,9-bis[4-(2-hydroxyethoxy)-3-phenylphenyl]fluorene, and more preferably a repeating unit derived from 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene.

 本発明のポリカーボネート樹脂は、上記の本発明の有利な効果が得られる範囲で、上記式(1)~(3)で表される繰返し単位以外の繰返し単位を含んでいてもよい。そのような繰返し単位をもたらすジヒドロキシ化合物としては、エチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、トリシクロ[5.2.1.02,6]デカンジメタノール、シクロヘキサン-1,4-ジメタノール、デカリン-2,6-ジメタノール、ノルボルナンジメタノール、シクロペンタン-1,3-ジメタノール、イソソルビド、イソマンニド、イソイジド、ヒドロキノン、レゾルシノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン、4,4’-(3,3,5-トリメチルシクロヘキシリデン)ビスフェノール、4,4’-シクロヘキシリデンビスフェノール、4,4’-(3-メチルシクロヘキシリデン)ビスフェノール、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルフィド、ビフェノール、ビスフェノールフルオレン、ビスクレゾールフルオレン、1,1’-ビ-2-ナフトール、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン等が挙げられる。このような繰返し単位は、全繰返し単位中に30mol%以下であってもよい。 The polycarbonate resin of the present invention may contain repeating units other than those represented by the above formulas (1) to (3) within the scope of obtaining the advantageous effects of the present invention. Examples of dihydroxy compounds that provide such repeating units include ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, nonanediol, tricyclo[5.2.1.0 2,6 ]decanedimethanol, cyclohexane-1,4-dimethanol, decalin-2,6-dimethanol, norbornane dimethanol, cyclopentane-1,3-dimethanol, isosorbide, isomannide, isoidide, hydroquinone, resorcinol, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(3-methyl-4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, bis(4-hydroxyphenyl)diphenylmethane, 1,3-bis(2- ... Examples of such repeating units include 4,4'-(3,3,5-trimethylcyclohexylidene)bisphenol, 4,4'-cyclohexylidenebisphenol, 4,4'-(3-methylcyclohexylidene)bisphenol, bis(4-hydroxyphenyl)sulfone, bis(4-hydroxyphenyl)sulfide, biphenol, bisphenolfluorene, biscresolfluorene, 1,1'-bi-2-naphthol, and 2,2'-bis(2-hydroxyethoxy)-1,1'-binaphthalene. Such repeating units may account for 30 mol % or less of all repeating units.

 本発明のポリカーボネート樹脂は、上記式(1)~(3)で表される繰返し単位の合計が全繰返し単位中に70mol%以上であると好ましく、80mol%以上であるとより好ましく、90mol%以上であるとよりいっそう好ましい。 In the polycarbonate resin of the present invention, the sum of the repeating units represented by the above formulas (1) to (3) is preferably 70 mol % or more of the total repeating units, more preferably 80 mol % or more, and even more preferably 90 mol % or more.

 本発明のポリカーボネート樹脂の末端は、水酸基またはフェニル基からなるが、末端フェニル基の割合は全末端中、70mol%以上であると好ましく、80mol%以上であるとより好ましく、90mol%以上であるとよりいっそう好ましく、95mol%以上であるとさらに好ましい。 The terminals of the polycarbonate resin of the present invention are composed of hydroxyl groups or phenyl groups, and the proportion of terminal phenyl groups in the total terminals is preferably 70 mol% or more, more preferably 80 mol% or more, even more preferably 90 mol% or more, and even more preferably 95 mol% or more.

 本発明のポリカーボネート樹脂は、1mm厚の成形体の全光線透過率が、80%以上であると好ましく、85%以上であるとより好ましく、88%以上であると特に好ましい。1mm厚の成形体は本発明のポリカーボネート樹脂を射出成形、熱プレス成形、溶融押出成形などすることで得られる。 The polycarbonate resin of the present invention has a total light transmittance of 80% or more for a 1 mm thick molded body, more preferably 85% or more, and particularly preferably 88% or more. A 1 mm thick molded body can be obtained by subjecting the polycarbonate resin of the present invention to injection molding, hot press molding, melt extrusion molding, or the like.

 本発明のポリカーボネート樹脂の飽和吸水率は0.10%~0.70%、0.20%~0.70%、0.30%~0.65%であってもよい。 The saturated water absorption of the polycarbonate resin of the present invention may be 0.10% to 0.70%, 0.20% to 0.70%, or 0.30% to 0.65%.

 <ポリカーボネート樹脂の製造方法>
 本発明のポリカーボネート樹脂は、通常のポリカーボネート樹脂を製造するそれ自体公知の反応手段、例えばジヒドロキシ化合物に炭酸ジエステルなどのカーボネート前駆物質を反応させる方法により製造される。次にこれらの製造方法について基本的な手段を簡単に説明する。
<Production method of polycarbonate resin>
The polycarbonate resin of the present invention is produced by a reaction means known per se for producing a normal polycarbonate resin, for example, a method of reacting a dihydroxy compound with a carbonate precursor such as a carbonic acid diester. Next, the basic means for these production methods will be briefly described.

 カーボネート前駆物質として炭酸ジエステルを用いるエステル交換反応は、不活性ガス雰囲気下、所定割合のジヒドロキシ成分を炭酸ジエステルと加熱しながら撹拌して、生成するアルコール又はフェノール類を留出させる方法により行われる。反応温度は生成するアルコール又はフェノール類の沸点などにより異なるが、通常120~300℃の範囲である。反応はその初期から減圧にして生成するアルコール又はフェノール類を留出させながら反応を完結させる。また、必要に応じて末端停止剤、酸化防止剤等を加えてもよい。 The transesterification reaction using a carbonic acid diester as a carbonate precursor is carried out by heating and stirring a specified ratio of dihydroxy component with a carbonic acid diester under an inert gas atmosphere, and distilling off the resulting alcohol or phenol. The reaction temperature varies depending on the boiling point of the resulting alcohol or phenol, but is usually in the range of 120 to 300°C. The reaction is completed by reducing the pressure from the beginning and distilling off the resulting alcohol or phenol. If necessary, a terminal terminator, antioxidant, etc. may also be added.

 前記エステル交換反応に使用される炭酸ジエステルとしては、置換されてもよい炭素数6~12のアリール基、アラルキル基等のエステルが挙げられる。具体的には、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート及びm-クレジルカーボネート等が例示される。なかでも特に、ジフェニルカーボネートが好ましい。ジフェニルカーボネートの使用量は、ジヒドロキシ化合物の合計1molに対して、好ましくは0.95~1.10mol、より好ましくは0.98~1.04molである。 The carbonic acid diester used in the transesterification reaction includes esters of aryl groups and aralkyl groups having 6 to 12 carbon atoms, which may be substituted. Specific examples include diphenyl carbonate, ditolyl carbonate, bis(chlorophenyl) carbonate, and m-cresyl carbonate. Of these, diphenyl carbonate is particularly preferred. The amount of diphenyl carbonate used is preferably 0.95 to 1.10 mol, more preferably 0.98 to 1.04 mol, per mol of the total of the dihydroxy compounds.

 また溶融重合法においては重合速度を速めるために、重合触媒を用いることができ、かかる重合触媒としては、アルカリ金属化合物、アルカリ土類金属化合物、含窒素化合物、等が挙げられる。 In addition, in the melt polymerization method, a polymerization catalyst can be used to increase the polymerization rate. Examples of such polymerization catalysts include alkali metal compounds, alkaline earth metal compounds, nitrogen-containing compounds, etc.

 このような化合物としては、アルカリ金属やアルカリ土類金属の、有機酸塩、無機塩、酸化物、水酸化物、水素化物、アルコキシド、4級アンモニウムヒドロキシド等が好ましく用いられ、これらの化合物は単独もしくは組み合わせて用いることができる。 Such compounds preferably include organic acid salts, inorganic salts, oxides, hydroxides, hydrides, alkoxides, and quaternary ammonium hydroxides of alkali metals and alkaline earth metals, and these compounds can be used alone or in combination.

 アルカリ金属化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化リチウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸セシウム、ステアリン酸リチウム、水素化ホウ素ナトリウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸セシウム、安息香酸リチウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、フェニルリン酸2ナトリウム、ビスフェノールAの2ナトリウム塩、2カリウム塩、2セシウム塩、2リチウム塩、フェノールのナトリウム塩、カリウム塩、セシウム塩、リチウム塩等が例示される。 Examples of alkali metal compounds include sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium hydroxide, sodium bicarbonate, sodium carbonate, potassium carbonate, cesium carbonate, lithium carbonate, sodium acetate, potassium acetate, cesium acetate, lithium acetate, sodium stearate, potassium stearate, cesium stearate, lithium stearate, sodium borohydride, sodium benzoate, potassium benzoate, cesium benzoate, lithium benzoate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, dilithium hydrogen phosphate, disodium phenylphosphate, disodium, dipotassium, dicesium and dilithium salts of bisphenol A, and sodium, potassium, cesium and lithium salts of phenol.

 アルカリ土類金属化合物としては、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、二酢酸マグネシウム、二酢酸カルシウム、二酢酸ストロンチウム、二酢酸バリウム等が例示される。 Examples of alkaline earth metal compounds include magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, magnesium diacetate, calcium diacetate, strontium diacetate, barium diacetate, etc.

 含窒素化合物としては、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド等のアルキル、アリール基等を有する4級アンモニウムヒドロキシド類が挙げられる。テトラメチルアンモニウムボロハイドライド、テトラブチルアンモニウムボロハイドライド、テトラブチルアンモニウムテトラフェニルボレート、テトラフェニルアンモニウムテトラフェニルボレート等の塩基あるいは塩基性塩等が例示される。 Examples of nitrogen-containing compounds include quaternary ammonium hydroxides having alkyl or aryl groups, such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, and trimethylbenzylammonium hydroxide. Examples include bases or basic salts, such as tetramethylammonium borohydride, tetrabutylammonium borohydride, tetrabutylammonium tetraphenylborate, and tetraphenylammonium tetraphenylborate.

 その他のエステル交換触媒としては亜鉛、スズ、ジルコニウム、鉛、チタン、ゲルマニウム、アンチモン、オスミウムの塩が挙げられ、例えば、酢酸亜鉛、安息香酸亜鉛、2-エチルヘキサン酸亜鉛、塩化スズ(II)、塩化スズ(IV)、酢酸スズ(II)、酢酸スズ(IV)、ジブチルスズジラウレート、ジブチルスズオキサイド、ジブチルスズジメトキシド、ジルコニウムアセチルアセトナート、オキシ酢酸ジルコニウム、ジルコニウムテトラブトキシド、酢酸鉛(II)、酢酸鉛(IV)チタンテトラブトキシド(IV)等が用いられる。国際公開第2011/010741号及び特開2017-179323号公報において使用されている触媒を用いてもよい。 Other transesterification catalysts include salts of zinc, tin, zirconium, lead, titanium, germanium, antimony, and osmium, such as zinc acetate, zinc benzoate, zinc 2-ethylhexanoate, tin chloride (II), tin chloride (IV), tin acetate (II), tin acetate (IV), dibutyltin dilaurate, dibutyltin oxide, dibutyltin dimethoxide, zirconium acetylacetonate, zirconium oxyacetate, zirconium tetrabutoxide, lead acetate (II), lead acetate (IV) titanium tetrabutoxide (IV), etc. The catalysts used in WO 2011/010741 and JP 2017-179323 A may also be used.

 さらに、アルミニウム又はその化合物とリン化合物とからなる触媒を用いてもよい。その場合、ジヒドロキシ成分1molに対し好ましくは、80μmol~1000μmol、より好ましくは90μmol~800μmol、さらに好ましくは100μmol~600μmolである。 Furthermore, a catalyst consisting of aluminum or a compound thereof and a phosphorus compound may be used. In that case, the amount is preferably 80 μmol to 1000 μmol, more preferably 90 μmol to 800 μmol, and even more preferably 100 μmol to 600 μmol per 1 mol of the dihydroxy component.

 アルミニウム塩としては、アルミニウムの有機酸塩及び無機酸塩を挙げることができる。アルミニウムの有機酸塩としては、例えば、アルミニウムのカルボン酸塩を挙げることができ、具体的にはギ酸アルミニウム、酢酸アルミニウム、プロピオン酸アルミニウム、蓚酸アルミニウム、アクリル酸アルミニウム、ラウリン酸アルミニウム、ステアリン酸アルミニウム、安息香酸アルミニウム、トリクロロ酢酸アルミニウム、乳酸アルミニウム、クエン酸アルミニウム、及びサリチル酸アルミニウムを挙げることができる。アルミニウムの無機酸塩としては、例えば、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、炭酸アルミニウム、リン酸アルミニウム、及びホスホン酸アルミニウムを挙げることができる。アルミニウムキレート化合物としては、例えば、アルミニウムアセチルアセトネート、アルミニウムアセチルアセテート、アルミニウムエチルアセトアセテート、及びアルミニウムエチルアセトアセテートジイソプロポキシドを挙げることができる。 Aluminum salts include organic and inorganic salts of aluminum. Examples of organic salts of aluminum include aluminum carboxylates, specifically aluminum formate, aluminum acetate, aluminum propionate, aluminum oxalate, aluminum acrylate, aluminum laurate, aluminum stearate, aluminum benzoate, aluminum trichloroacetate, aluminum lactate, aluminum citrate, and aluminum salicylate. Examples of inorganic salts of aluminum include aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, aluminum carbonate, aluminum phosphate, and aluminum phosphonate. Examples of aluminum chelate compounds include aluminum acetylacetonate, aluminum acetylacetate, aluminum ethylacetoacetate, and aluminum ethylacetoacetate diisopropoxide.

 リン化合物としては、例えば、ホスホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、及びホスフィン系化合物を挙げることができる。これらの中でも特に、ホスホン酸系化合物、ホスフィン酸系化合物、及びホスフィンオキサイド系化合物を挙げることができ、特にホスホン酸系化合物を挙げることができる。 Examples of phosphorus compounds include phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, phosphineous acid compounds, and phosphine compounds. Among these, phosphonic acid compounds, phosphinic acid compounds, and phosphine oxide compounds are particularly preferred, and phosphonic acid compounds are particularly preferred.

 これらの重合触媒の使用量は、ジヒドロキシ成分1molに対し好ましくは0.1μmol~500μmol、より好ましくは0.5μmol~300μmol、さらに好ましくは1μmol~100μmolである。 The amount of these polymerization catalysts used is preferably 0.1 μmol to 500 μmol, more preferably 0.5 μmol to 300 μmol, and even more preferably 1 μmol to 100 μmol per 1 mol of the dihydroxy component.

 また、反応後期に触媒失活剤を添加することもできる。使用する触媒失活剤としては、公知の触媒失活剤が有効に使用されるが、この中でもスルホン酸のアンモニウム塩、ホスホニウム塩が好ましい。更にドデシルベンゼンスルホン酸テトラブチルホスホニウム塩等のドデシルベンゼンスルホン酸の塩類、パラトルエンスルホン酸テトラブチルアンモニウム塩等のパラトルエンスルホン酸の塩類が好ましい。 Also, a catalyst deactivator can be added in the later stages of the reaction. Known catalyst deactivators are effectively used as catalyst deactivators, and among these, ammonium salts and phosphonium salts of sulfonic acid are preferred. Furthermore, salts of dodecylbenzenesulfonic acid such as tetrabutylphosphonium dodecylbenzenesulfonate and salts of paratoluenesulfonic acid such as tetrabutylammonium paratoluenesulfonate are preferred.

 またスルホン酸のエステルとして、ベンゼンスルホン酸メチル、ベンゼンスルホン酸エチル、ベンゼンスルホン酸ブチル、ベンゼンスルホン酸オクチル、ベンゼンスルホン酸フェニル、パラトルエンスルホン酸メチル、パラトルエンスルホン酸エチル、パラトルエンスルホン酸ブチル、パラトルエンスルホン酸オクチル、パラトルエンスルホン酸フェニル等が好ましく用いられる。なかでも、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩が最も好ましく使用される。 As sulfonic acid esters, methyl benzenesulfonate, ethyl benzenesulfonate, butyl benzenesulfonate, octyl benzenesulfonate, phenyl benzenesulfonate, methyl paratoluenesulfonate, ethyl paratoluenesulfonate, butyl paratoluenesulfonate, octyl paratoluenesulfonate, phenyl paratoluenesulfonate, etc. are preferably used. Among these, tetrabutylphosphonium dodecylbenzenesulfonate is most preferably used.

 これらの触媒失活剤の使用量はアルカリ金属化合物及び/又はアルカリ土類金属化合物より選ばれた少なくとも1種の重合触媒を用いた場合、その触媒1mol当たり好ましくは0.5~50molの割合で、より好ましくは0.5~10molの割合で、更に好ましくは0.8~5molの割合で使用することができる。
<任意の添加剤>
 本発明のポリカーボネート樹脂には、必要に応じて、離型剤、熱安定剤(場合によっては酸化防止剤とも言う)、紫外線吸収剤、ブルーイング剤、帯電防止剤、難燃剤、可塑剤、充填剤、酸化防止剤、光安定剤、重合金属不活性化剤、滑剤、界面活性剤、抗菌剤などの添加剤を適宜添加して樹脂組成物として用いることができる。具体的な離型剤、熱安定剤としては、国際公開2011/010741号パンフレットに記載されたものが好ましく挙げられる。
When at least one polymerization catalyst selected from alkali metal compounds and/or alkaline earth metal compounds is used, the amount of the catalyst deactivator used is preferably 0.5 to 50 mol, more preferably 0.5 to 10 mol, and further preferably 0.8 to 5 mol, per mol of the catalyst.
<Optional Additives>
The polycarbonate resin of the present invention can be used as a resin composition by appropriately adding additives such as a mold release agent, a heat stabilizer (sometimes also called an antioxidant), an ultraviolet absorber, a bluing agent, an antistatic agent, a flame retardant, a plasticizer, a filler, an antioxidant, a light stabilizer, a polymerized metal deactivator, a lubricant, a surfactant, an antibacterial agent, etc. Specific examples of the mold release agent and heat stabilizer include those described in WO2011/010741.

 特に好ましい離型剤としては、ステアリン酸モノグリセリド、ステアリン酸トリグリセリド、ペンタエリスリトールテトラステアレート、ステアリン酸トリグリセリドとステアリルステアレートの混合物が好ましく用いられる。また、離型剤中の前記エステルの量は、離型剤を100重量%とした時、90重量%以上が好ましく、95重量%以上がより好ましい。また、離型剤の含有量は、ポリカーボネート樹脂100重量部に対して0.005~2.0重量部の範囲が好ましく、0.01~0.6重量部の範囲がより好ましく、0.02~0.5重量部の範囲がさらに好ましい。 Particularly preferred release agents include stearic acid monoglyceride, stearic acid triglyceride, pentaerythritol tetrastearate, and a mixture of stearic acid triglyceride and stearyl stearate. The amount of the ester in the release agent is preferably 90% by weight or more, and more preferably 95% by weight or more, when the release agent is taken as 100% by weight. The content of the release agent is preferably in the range of 0.005 to 2.0 parts by weight, more preferably in the range of 0.01 to 0.6 parts by weight, and even more preferably in the range of 0.02 to 0.5 parts by weight, relative to 100 parts by weight of polycarbonate resin.

 熱安定剤としては、リン系熱安定剤、硫黄系熱安定剤及びヒンダードフェノール系熱安定剤が挙げられる。 Heat stabilizers include phosphorus-based heat stabilizers, sulfur-based heat stabilizers, and hindered phenol-based heat stabilizers.

 また、特に好ましいリン系の熱安定剤としては、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、ジスステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、環状ネオペンタンテトライルビス(2,6-ジ-tert-ブチル-4-メチルフェニルホスファイト)、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイトが挙げられる。また、リン系熱安定剤の含有量としては、ポリカーボネート樹脂100重量部に対して0.001~0.2重量部が好ましい。 Particularly preferred phosphorus-based heat stabilizers include tris(2,4-di-tert-butylphenyl)phosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, tetrakis(2,4-di-tert-butylphenyl)-4,4'-biphenylene diphosphonite, distearyl pentaerythritol diphosphite, bis(2,4-dicumylphenyl)pentaerythritol diphosphite, cyclic neopentanetetraylbis(2,6-di-tert-butyl-4-methylphenyl phosphite), and bis(2,4-di-tert-butylphenyl)pentaerythritol diphosphite. The content of the phosphorus-based heat stabilizer is preferably 0.001 to 0.2 parts by weight per 100 parts by weight of the polycarbonate resin.

 また、特に好ましい硫黄系熱安定剤としては、ペンタエリスリトール-テトラキス(3-ラウリルチオプロピオネート)である。また、硫黄系熱安定剤の含有量は、ポリカーボネート樹脂100重量部に対して0.001~0.2重量部が好ましい。 A particularly preferred sulfur-based heat stabilizer is pentaerythritol-tetrakis(3-laurylthiopropionate). The content of the sulfur-based heat stabilizer is preferably 0.001 to 0.2 parts by weight per 100 parts by weight of polycarbonate resin.

 また、好ましいヒンダードフェノール系熱安定剤としては、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、N,N-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナマイド)、3,5-ジ-tert-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、3,9-ビス{1,1-ジメチル-2-[β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル}-2,4,8,10-テトラオキサスピロ(5,5)ウンデカンが挙げられる。 Preferred hindered phenol-based heat stabilizers include octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, pentaerythritol-tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], triethylene glycol-bis[3-(3-tert-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], 1,3,5-trimethyl-2,4,6-tris(3 ,5-di-tert-butyl-4-hydroxybenzyl)benzene, N,N-hexamethylenebis(3,5-di-tert-butyl-4-hydroxy-hydrocinnamide), 3,5-di-tert-butyl-4-hydroxy-benzylphosphonate-diethyl ester, tris(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate, 3,9-bis{1,1-dimethyl-2-[β-(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]ethyl}-2,4,8,10-tetraoxaspiro(5,5)undecane.

 ヒンダードフェノール系熱安定剤の含有量としては、ポリカーボネート樹脂100重量部に対して0.001~0.3重量部が好ましい。 The content of the hindered phenol-based heat stabilizer is preferably 0.001 to 0.3 parts by weight per 100 parts by weight of polycarbonate resin.

 リン系熱安定剤とヒンダードフェノール系熱安定剤は、併用することもできる。 Phosphorus-based heat stabilizers and hindered phenol-based heat stabilizers can also be used in combination.

 紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤、環状イミノエステル系紫外線吸収剤及びシアノアクリレート系からなる群より選ばれた少なくとも1種の紫外線吸収剤が好ましい。 As the ultraviolet absorbing agent, at least one ultraviolet absorbing agent selected from the group consisting of benzotriazole-based ultraviolet absorbing agents, benzophenone-based ultraviolet absorbing agents, triazine-based ultraviolet absorbing agents, cyclic iminoester-based ultraviolet absorbing agents, and cyanoacrylate-based ultraviolet absorbing agents is preferred.

 ベンゾトリアゾール系紫外線吸収剤において、より好ましくは、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]である。 Of the benzotriazole-based UV absorbers, 2-(2-hydroxy-5-tert-octylphenyl)benzotriazole and 2,2'-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6-(2H-benzotriazol-2-yl)phenol] are more preferred.

 ベンゾフェノン系紫外線吸収剤としては、2-ヒドロキシ-4-n-ドデシルオキシベンソフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノンが挙げられる。 Examples of benzophenone-based UV absorbers include 2-hydroxy-4-n-dodecyloxybenzophenone and 2-hydroxy-4-methoxy-2'-carboxybenzophenone.

 トリアジン系紫外線吸収剤としては、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール、2-(4,6-ビス(2.4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-[(オクチル)オキシ]-フェノール等が挙げられる。 Triazine-based UV absorbers include 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-[(hexyl)oxy]-phenol, 2-(4,6-bis(2.4-dimethylphenyl)-1,3,5-triazin-2-yl)-5-[(octyl)oxy]-phenol, etc.

 環状イミノエステル系紫外線吸収剤としては、特に2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)が好適である。 A particularly suitable cyclic iminoester UV absorber is 2,2'-p-phenylenebis(3,1-benzoxazin-4-one).

 シアノアクリレート系紫外線吸収剤としては、1,3-ビス-[(2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ]-2,2-ビス[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]メチル)プロパン、及び1,3-ビス-[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]ベンゼン等が挙げられる。 Cyanoacrylate-based UV absorbers include 1,3-bis-[(2'-cyano-3',3'-diphenylacryloyl)oxy]-2,2-bis[(2-cyano-3,3-diphenylacryloyl)oxy]methyl)propane and 1,3-bis-[(2-cyano-3,3-diphenylacryloyl)oxy]benzene.

 紫外線吸収剤の配合量は、ポリカーボネート樹脂100重量部に対して好ましくは0.01~3.0重量部であり、かかる配合量の範囲であれば、用途に応じ、ポリカーボネート樹脂の成形品に十分な耐候性を付与することが可能である。 The amount of UV absorber to be added is preferably 0.01 to 3.0 parts by weight per 100 parts by weight of polycarbonate resin, and within this range of addition, it is possible to impart sufficient weather resistance to molded polycarbonate resin products depending on the application.

 <光学部材>
 本発明の光学部材は、上記のポリカーボネート樹脂を含む。そのような光学部材としては、上記のポリカーボネート樹脂が有用となる光学用途であれば、特に限定されないが、光ディスク、透明導電性基板、光カード、シート、フィルム、光ファイバー、レンズ、プリズム、光学膜、基盤、光学フィルター、ハードコート膜等を挙げることができる。
<Optical components>
The optical member of the present invention contains the above-mentioned polycarbonate resin. Such optical members are not particularly limited as long as they are used for optical purposes in which the above-mentioned polycarbonate resin is useful, and examples of such optical members include optical disks, transparent conductive substrates, optical cards, sheets, films, optical fibers, lenses, prisms, optical films, substrates, optical filters, and hard coat films.

 また、本発明の光学部材には、上記のポリカーボネート樹脂を含む樹脂組成物から構成されていてもよく、その樹脂組成物には、必要に応じて熱安定剤、可塑剤、光安定剤、重合金属不活性化剤、難燃剤、滑剤、帯電防止剤、界面活性剤、抗菌剤、紫外線吸収剤、離型剤、ブルーイング剤、充填剤、酸化防止剤等の添加剤を配合することができる。
<光学レンズ>
 本発明の光学部材として、特に光学レンズを挙げることができる。このような光学レンズとしては、携帯電話、スマートフォン、タブレット端末、パソコン、デジタルカメラ、ビデオカメラ、車載カメラ、監視カメラ等のための撮像レンズや、TOFカメラ等のセンシングカメラレンズを挙げることができる。
The optical member of the present invention may be composed of a resin composition containing the above-mentioned polycarbonate resin, and the resin composition may contain additives such as a heat stabilizer, a plasticizer, a light stabilizer, a polymerized metal deactivator, a flame retardant, a lubricant, an antistatic agent, a surfactant, an antibacterial agent, an ultraviolet absorber, a release agent, a bluing agent, a filler, and an antioxidant, as necessary.
<Optical lenses>
The optical member of the present invention may in particular be an optical lens. Examples of such an optical lens include imaging lenses for mobile phones, smartphones, tablet terminals, personal computers, digital cameras, video cameras, vehicle-mounted cameras, surveillance cameras, etc., and sensing camera lenses such as TOF cameras.

 本発明の光学レンズを射出成型で製造する場合、シリンダー温度220~350℃、金型温度70~180℃の条件にて成形することが好ましい。さらに好ましくは、シリンダー温度240~300℃、金型温度80~170℃の条件にて成形することが好ましい。シリンダー温度が350℃より高い場合では、ポリカーボネート樹脂が分解着色し、230℃より低い場合では、溶融粘度が高く成形が困難になりやすい。また金型温度が180℃より高い場合では、ポリカーボネート樹脂から成る成形片が金型から取り出すことが困難になりやすい。他方、金型温度が、70℃未満では、成型時の金型内で樹脂が早く固まり過ぎて成形片の形状が制御しにくくなったり、金型に付された賦型を十分に転写することが困難になりやすい。 When the optical lens of the present invention is manufactured by injection molding, it is preferable to mold it under conditions of a cylinder temperature of 220 to 350°C and a mold temperature of 70 to 180°C. It is more preferable to mold it under conditions of a cylinder temperature of 240 to 300°C and a mold temperature of 80 to 170°C. If the cylinder temperature is higher than 350°C, the polycarbonate resin will decompose and discolor, and if it is lower than 230°C, the melt viscosity will be high and molding will be difficult. Also, if the mold temperature is higher than 180°C, it will be difficult to remove the molded piece made of polycarbonate resin from the mold. On the other hand, if the mold temperature is less than 70°C, the resin will harden too quickly in the mold during molding, making it difficult to control the shape of the molded piece and making it difficult to fully transfer the shape applied to the mold.

 本発明の光学レンズは、必要に応じて非球面レンズの形を用いることが好適に実施される。非球面レンズは、1枚のレンズで球面収差を実質的にゼロとすることが可能であるため、複数の球面レンズの組み合わせで球面収差を取り除く必要が無く、軽量化及び成形コストの低減が可能になる。したがって、非球面レンズは、光学レンズの中でも特にカメラレンズとして有用である。 The optical lens of the present invention is preferably implemented as an aspherical lens if necessary. Aspherical lenses can reduce spherical aberration to essentially zero with a single lens, making it unnecessary to remove spherical aberration by combining multiple spherical lenses, which allows for weight reduction and reduced molding costs. As such, aspherical lenses are particularly useful as camera lenses, among other optical lenses.

 また、本発明のポリカーボネート樹脂は、成形流動性が高いため、薄肉小型で複雑な形状である光学レンズの材料として有用であり、特に撮像レンズやセンシングカメラレンズに有用である。具体的なレンズサイズとして、中心部の厚みが0.05~3.0mm、より好ましくは0.05~2.0mm、さらに好ましくは0.1~2.0mm、特に好ましくは0.1~1.0mmである。また、直径が1.0mm~20.0mm、より好ましくは1.0~10.0mm、さらに好ましくは、3.0~10.0mmである。また、その形状として片面が凸、片面が凹であるメニスカスレンズであることが好ましい。 In addition, since the polycarbonate resin of the present invention has high molding fluidity, it is useful as a material for optical lenses that are thin, small, and have complex shapes, and is particularly useful for imaging lenses and sensing camera lenses. Specific lens sizes include a central thickness of 0.05 to 3.0 mm, more preferably 0.05 to 2.0 mm, even more preferably 0.1 to 2.0 mm, and particularly preferably 0.1 to 1.0 mm. Also, the diameter is 1.0 mm to 20.0 mm, more preferably 1.0 to 10.0 mm, and even more preferably 3.0 to 10.0 mm. Also, the shape is preferably a meniscus lens with one convex side and the other concave side.

 本発明のポリカーボネート樹脂からなるレンズは、金型成形、切削、研磨、レーザー加工、放電加工、エッチングなど任意の方法により成形される。この中でも、製造コストの面から金型成形がより好ましい。
《実施形態2》
 本発明のポリカーボネート樹脂において、上記実施形態1で説明した事項は、以下で特に断りがない限り、実施形態2でも適用できる。
<ポリカーボネート樹脂>
 本発明のポリカーボネート樹脂は、式(1)及び/又は式(2)で表される単位と、式(3)で表される単位を含み、式(1)及び/又は式(2)で表される単位を全繰り返し単位中に50モル%以上含むことが好ましい。式(1)及び/又は式(2)で表される単位を全繰り返し単位中に90モル%以下含むことが好ましく、80モル%以下含むことがより好ましく、65モル%以下含むことがさらに好ましい。また、式(3)で表される単位を全繰り返し単位中に0%を超え50モル%以下含むことが好ましい。式(3)で表される単位を全繰り返し単位中に10モル%以上含むことがより好ましく、20モル%以上含むことがさらに好ましく、35モル%以上含むことが特に好ましくい。上記範囲であると、アッベ数が高く、さらに配向複屈折や光弾性係数に優れるため好ましい。また、式(1)及び/又は上記式(2)で表される単位と、上記式(3)で表される単位のモル比が99:1~50:50であると好ましく、95:5~50:50であるとより好ましく、90:10~50:50であるとよりいっそう好ましく、85:15~50:50であるとさらに好ましく、80:20~50:50であると特に好ましく、65:35~50:50であると最も好ましい。式(1)及び/又は式(2)で表される単位と、式(3)で表される単位が上記範囲であると、アッベ数が高く、さらに配向複屈折や光弾性係数に優れるため好ましい。
The lens made of the polycarbonate resin of the present invention can be formed by any method such as mold molding, cutting, polishing, laser processing, electric discharge processing, etching, etc. Among these, mold molding is more preferable in terms of production costs.
Second Embodiment
In the polycarbonate resin of the present invention, the matters described in the above-mentioned embodiment 1 are also applicable to embodiment 2 unless otherwise specified below.
<Polycarbonate resin>
The polycarbonate resin of the present invention contains a unit represented by formula (1) and/or formula (2) and a unit represented by formula (3), and preferably contains 50 mol% or more of the unit represented by formula (1) and/or formula (2) in the total repeating units. The unit represented by formula (1) and/or formula (2) is preferably contained in 90 mol% or less of the total repeating units, more preferably 80 mol% or less, and even more preferably 65 mol% or less. It is also preferable that the unit represented by formula (3) is contained in more than 0% and 50 mol% or less of the total repeating units. It is more preferable that the unit represented by formula (3) is contained in 10 mol% or more of the total repeating units, more preferably 20 mol% or more, and particularly preferably 35 mol% or more. The above range is preferable because it has a high Abbe number and is excellent in orientation birefringence and photoelastic coefficient. The molar ratio of the units represented by formula (1) and/or formula (2) to the units represented by formula (3) is preferably 99:1 to 50:50, more preferably 95:5 to 50:50, even more preferably 90:10 to 50:50, even more preferably 85:15 to 50:50, particularly preferably 80:20 to 50:50, and most preferably 65:35 to 50:50. When the ratio of the units represented by formula (1) and/or formula (2) to the units represented by formula (3) is within the above range, the Abbe number is high and the orientation birefringence and photoelastic coefficient are excellent, which is preferable.

Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006

(式中、R~R は、それぞれ独立に、水素原子又は炭素原子数1~10の炭化
水素基を表す。)
 本発明のポリカーボネート樹脂は、重量平均分子量Mwが10,000以上であり、15,000以上であると好ましく、20,000以上であるとより好ましい。重量平均分子量Mwが10,000以上であると構造材料や光学材料として十分な機械強度があり好ましい。また、重量平均分子量Mwは55,000以下であり、50,000以下であるとより好ましく、40,000以下であるとさらに好ましく、35,000未満であると特に好ましく、30,000以下であると最も好ましい。重量平均分子量Mwが50,000以下であると射出成形時の流動性に優れるため好ましい。特に、本発明のポリカーボネート樹脂を撮像レンズ等の薄肉の光学部材に使用する場合に流動性に優れるため好ましい。重量平均分子量Mwは、分子量が既知のポリスチレンを標準サンプルとし、クロロホルムを展開溶媒としてGPCにより測定できる。
(In the formula, R 1 to R 4 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.)
The polycarbonate resin of the present invention has a weight average molecular weight Mw of 10,000 or more, preferably 15,000 or more, and more preferably 20,000 or more. When the weight average molecular weight Mw is 10,000 or more, it is preferable that the resin has sufficient mechanical strength as a structural material or optical material. In addition, the weight average molecular weight Mw is 55,000 or less, more preferably 50,000 or less, even more preferably 40,000 or less, particularly preferably less than 35,000, and most preferably 30,000 or less. When the weight average molecular weight Mw is 50,000 or less, it is preferable that the resin has excellent flowability during injection molding. In particular, when the polycarbonate resin of the present invention is used for a thin-walled optical member such as an imaging lens, it is preferable that the resin has excellent flowability. The weight average molecular weight Mw can be measured by GPC using polystyrene with a known molecular weight as a standard sample and chloroform as a developing solvent.

 本発明のポリカーボネート樹脂は、配向複屈折の絶対値が7.0×10-3以下であると好ましく、5.0×10-3以下であるとより好ましく、3.0×10-3以下であるとよりいっそう好ましく、2.5×10-3以下であるとさらに好ましく、2.0×10-3以下であると特に好ましく、1.5×10-3以下であると最も好ましい。配向複屈折の絶対値が上記以下であると、分子配向による複屈折が生じにくくなるため好ましい。配向複屈折は、ポリカーボネート樹脂から得られる厚さ100μmのキャストフィルムから長さ70mm(チャック間45mm)、幅15mmの試験片を切り出し、Tg+10℃で2倍延伸した後に、波長589nmにおいて測定する。 The polycarbonate resin of the present invention preferably has an absolute value of orientation birefringence of 7.0×10 −3 or less, more preferably 5.0×10 −3 or less, even more preferably 3.0×10 −3 or less, even more preferably 2.5×10 −3 or less, particularly preferably 2.0×10 −3 or less, and most preferably 1.5×10 −3 or less. If the absolute value of orientation birefringence is less than the above, it is preferable because birefringence due to molecular orientation is less likely to occur. The orientation birefringence is measured at a wavelength of 589 nm after cutting a test piece of 70 mm in length (45 mm between chucks) and 15 mm in width from a cast film of 100 μm in thickness obtained from a polycarbonate resin and stretching it twice at Tg+10° C.

 本発明のポリカーボネート樹脂は、光弾性係数が25×10-12Pa未満であると好ましく、20×10-12Pa以下であるとより好ましい。光弾性係数が上記範囲であると応力による複屈折が生じにくくなるため好ましい。光弾性係数はポリカーボネート樹脂から得られる厚さ100μmのキャストフィルムから長さ50mm、幅10mmの試験片を切り出し、日本分光(株)製Spectroellipsometer M-220を用い測定する。 The polycarbonate resin of the present invention preferably has a photoelastic coefficient of less than 25×10 −12 Pa, and more preferably 20×10 −12 Pa or less. A photoelastic coefficient in the above range is preferable because it is less likely to cause birefringence due to stress. The photoelastic coefficient is measured by cutting a test piece 50 mm long and 10 mm wide from a cast film having a thickness of 100 μm obtained from the polycarbonate resin, and using a Spectroellipsometer M-220 manufactured by JASCO Corporation.

 本発明のポリカーボネート樹脂は、温度:20℃、波長:587.56nmで測定した屈折率ndが1.540以上であると好ましく、1.550以上であるとより好ましく、1.560以上であるとよりいっそう好ましく、1.570以上であるとさらに好ましく、1.575以上であると特に好ましい。屈折率が上記以上であると、光学部材を薄くできるため好ましい。また、屈折率ndは1.610以下であってもよく、1.600以下であってもよく、1.590以下であってもよく、1.580以下であってもよい。屈折率ndが上記範囲であると、複数のレンズを組み合わせて使用するうえで光学設計の自由度が上がるため好ましい。 The polycarbonate resin of the present invention preferably has a refractive index nd measured at a temperature of 20°C and a wavelength of 587.56 nm of 1.540 or more, more preferably 1.550 or more, even more preferably 1.560 or more, even more preferably 1.570 or more, and particularly preferably 1.575 or more. A refractive index of the above or higher is preferable because it allows the optical member to be made thin. The refractive index nd may also be 1.610 or less, 1.600 or less, 1.590 or less, or 1.580 or less. A refractive index nd in the above range is preferable because it increases the degree of freedom in optical design when multiple lenses are used in combination.

 本発明のポリカーボネート樹脂は、アッベ数が25.0以上であると好ましく、28.0以上であるとより好ましく、31.0以上であるとよりいっそう好ましく、34.0以上であるとさらに好ましく、36.0以上であると特に好ましくい。アッベ数が上記以上であると光学部材の色収差が小さくなるため好ましい。また、アッベ数は57.0以下であってもよく、55.0以下であってもよく、50.0以下であってもよく、45.0以下であってもよい。アッベ数が上記範囲であると、複数のレンズを組み合わせて使用するうえで光学設計の自由度が上がるため好ましい。 The polycarbonate resin of the present invention preferably has an Abbe number of 25.0 or more, more preferably 28.0 or more, even more preferably 31.0 or more, even more preferably 34.0 or more, and particularly preferably 36.0 or more. An Abbe number of the above or higher is preferable because it reduces chromatic aberration of the optical member. The Abbe number may also be 57.0 or less, 55.0 or less, 50.0 or less, or 45.0 or less. An Abbe number in the above range is preferable because it increases the degree of freedom in optical design when multiple lenses are used in combination.

 ここで、アッベ数(νd)は、温度:20℃、波長:486.13nm、587.56nm、656.27nmの屈折率から、下記式を用いて算出する。 The Abbe number (νd) is calculated using the following formula from the refractive index at temperature: 20°C and wavelengths: 486.13 nm, 587.56 nm, and 656.27 nm.

  νd=(nd-1)/(nF-nC)
  nd:波長587.56nmでの屈折率、
  nF:波長486.13nmでの屈折率、
  nC:波長656.27nmでの屈折率を意味する。
νd=(nd-1)/(nF-nC)
nd: refractive index at a wavelength of 587.56 nm,
nF: refractive index at a wavelength of 486.13 nm,
nC: refers to the refractive index at a wavelength of 656.27 nm.

 本発明のポリカーボネート樹脂は、ガラス転移温度が130℃以上であると好ましく、133℃以上であるとより好ましく、136℃以上であるとさらによりいっそう好ましい。ガラス転移温度が上記範囲であると、光学部材の使用できる温度範囲が高くなるため好ましい。また、ガラス転移温度は155℃以下であってもよく、150℃以下であってもよく、145℃以下であってもよく、140℃以下であってもよい。ガラス転移温度が上記範囲であると耐熱性と成形性のバランスに優れるため好ましい。 The polycarbonate resin of the present invention preferably has a glass transition temperature of 130°C or higher, more preferably 133°C or higher, and even more preferably 136°C or higher. A glass transition temperature in the above range is preferable because it increases the temperature range in which the optical component can be used. The glass transition temperature may also be 155°C or lower, 150°C or lower, 145°C or lower, or 140°C or lower. A glass transition temperature in the above range is preferable because it provides an excellent balance between heat resistance and moldability.

 本発明のポリカーボネート樹脂は、熱分解温度が370℃以上であると好ましく、375℃以上であるとより好ましい。熱分解温度が上記以上であると本発明のポリカーボネート樹脂を成形加工する際の加工安定性に優れ、さらに着色も少ないため好ましい。また、熱分解温度は420℃以下であってもよく、400℃以下であってもよい。熱分解温度はTGA(熱重量分析)により測定することができ、重量が5%減少した時の温度である。
本発明のポリカーボネート樹脂は、260℃、せん断速度1,216/secにおける溶融粘度(Pa・s)が30以上であると好ましく、50以上であるとより好ましく、70以上であるとさらに好ましい。260℃、せん断速度1,216/secにおける溶融粘度(Pa・s)が500以下であると好ましく、400以下であるとより好ましく、300以下であるとさらに好ましく、200以下であると特に好ましい。溶融粘度が上記範囲であると、射出成形時の成形性に優れるため好ましい。特にレンズ等の薄肉の成形物を射出成形する際は成形時の溶融粘度は重要であり、溶融粘度が上記範囲であると目的のレンズ形状が得られるため好ましい。溶融粘度は、ポリカーボネート樹脂を120℃で4時間乾燥した後、東洋精機(株)製キャピログラフ1Dによって測定される。
The polycarbonate resin of the present invention preferably has a thermal decomposition temperature of 370° C. or higher, more preferably 375° C. or higher. A thermal decomposition temperature of 370° C. or higher is preferable because the polycarbonate resin of the present invention has excellent processing stability when molded and is less likely to be discolored. The thermal decomposition temperature may be 420° C. or lower, or 400° C. or lower. The thermal decomposition temperature can be measured by TGA (thermogravimetric analysis) and is the temperature at which the weight is reduced by 5%.
The polycarbonate resin of the present invention preferably has a melt viscosity (Pa·s) of 30 or more at 260°C and a shear rate of 1,216/sec, more preferably 50 or more, and even more preferably 70 or more. The melt viscosity (Pa·s) at 260°C and a shear rate of 1,216/sec is preferably 500 or less, more preferably 400 or less, even more preferably 300 or less, and particularly preferably 200 or less. The melt viscosity in the above range is preferable because it has excellent moldability during injection molding. In particular, when injection molding a thin-walled molded product such as a lens, the melt viscosity during molding is important, and the melt viscosity in the above range is preferable because the desired lens shape can be obtained. The melt viscosity is measured by using a Capillograph 1D manufactured by Toyo Seiki Co., Ltd. after drying the polycarbonate resin at 120°C for 4 hours.

 本発明のポリカーボネート樹脂の比粘度は、0.12~0.32であることが好ましく、0.18~0.30であるとより好ましい。比粘度が0.12~0.32であると成形性と強度とのバランスに優れる。 The specific viscosity of the polycarbonate resin of the present invention is preferably 0.12 to 0.32, and more preferably 0.18 to 0.30. A specific viscosity of 0.12 to 0.32 provides an excellent balance between moldability and strength.

 比粘度の測定方法は、ポリカーボネート樹脂0.7gを塩化メチレン100mlに溶解した溶液の20℃における比粘度(ηSP)を、オストワルド粘度計にて測定し、以下の式から算出する。 The specific viscosity is measured by measuring the specific viscosity (ηSP) of a solution of 0.7 g of polycarbonate resin dissolved in 100 ml of methylene chloride at 20°C using an Ostwald viscometer and calculating it from the following formula.

  ηSP=(t-t0)/t0
[t0は、塩化メチレンの落下秒数、tは、試料溶液の落下秒数]
《実施形態3》
 本発明のポリカーボネート樹脂において、上記実施形態1で説明した事項は、以下で特に断りがない限り、実施形態3でも適用できる。
ηSP=(t-t0)/t0
[t0 is the number of seconds it takes for methylene chloride to fall, and t is the number of seconds it takes for the sample solution to fall]
Third Embodiment
In the polycarbonate resin of the present invention, the matters described in the above-mentioned embodiment 1 are also applicable to embodiment 3 unless otherwise specified below.

 <ポリカーボネート樹脂>
 本発明のポリカーボネート樹脂は、式(1)及び/又は式(2)で表される単位と、式(3)で表される単位を含み、式(1)及び/又は式(2)で表される単位を全繰り返し単位中に0%を超え50モル%未満含むことが好ましい。式(1)及び/又は式(2)で表される単位を全繰り返し単位中に10モル%以上含むことが好ましく、20モル%以上含むことがより好ましく、35モル%以上50モル%未満含むことがさらに好ましい。また、式(3)で表される単位を全繰り返し単位中に50モル%を超えて含むことが好ましい。式(3)で表される単位を全繰り返し単位中に90モル%以下含むことが好ましく、80モル%以下含むことがより好ましく、65モル%以下含むことがさらに好ましい。上記範囲であると、配向複屈折が小さく、屈折率およびガラス転移温度が高いため好ましい。また、式(1)及び/又は上記式(2)で表される単位と、上記式(3)で表される単位のモル比が1:99~49:51であると好ましく、5:95~49:51であるとより好ましく、10:90~49:51であるとよりいっそう好ましく、15:85~49:51であるとさらに好ましく、20:80~49:51であると特に好ましく、35:65~49:51であると最も好ましい。式(1)及び/又は式(2)で表される単位と、式(3)で表される単位が上記範囲であると、配向複屈折が小さく、屈折率およびガラス転移温度が高いため好ましい。
<Polycarbonate resin>
The polycarbonate resin of the present invention contains a unit represented by formula (1) and/or formula (2) and a unit represented by formula (3), and preferably contains more than 0% and less than 50 mol% of the unit represented by formula (1) and/or formula (2) in the total repeating units. The unit represented by formula (1) and/or formula (2) is preferably contained in 10 mol% or more of the total repeating units, more preferably 20 mol% or more, and even more preferably 35 mol% or more and less than 50 mol%. It is also preferable that the unit represented by formula (3) is contained in more than 50 mol% of the total repeating units. The unit represented by formula (3) is preferably contained in 90 mol% or less of the total repeating units, more preferably 80 mol% or less, and even more preferably 65 mol% or less. The above range is preferable because the orientation birefringence is small, and the refractive index and glass transition temperature are high. Also, the molar ratio of the units represented by formula (1) and/or formula (2) to the units represented by formula (3) is preferably 1:99 to 49:51, more preferably 5:95 to 49:51, even more preferably 10:90 to 49:51, even more preferably 15:85 to 49:51, particularly preferably 20:80 to 49:51, and most preferably 35:65 to 49:51. When the ratio of the units represented by formula (1) and/or formula (2) to the units represented by formula (3) is within the above range, the orientation birefringence is small, and the refractive index and glass transition temperature are high, which is preferable.

Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007

(式中、R~R は、それぞれ独立に、水素原子又は炭素原子数1~10の炭化
水素基を表す。)
 本発明のポリカーボネート樹脂は、重量平均分子量Mwが10,000以上であり、15,000以上であると好ましく、20,000以上であるとより好ましい。重量平均分子量Mwが10,000以上であると構造材料や光学材料として十分な機械強度があり好ましい。また、重量平均分子量Mwは55,000以下であり、50,000以下であるとより好ましく、40,000以下であるとさらに好ましく、35,000未満であると特に好ましく、30,000以下であると最も好ましい。重量平均分子量Mwが50,000以下であると射出成形時の流動性に優れるため好ましい。特に、本発明のポリカーボネート樹脂を撮像レンズ等の薄肉の光学部材に使用する場合に流動性に優れるため好ましい。重量平均分子量Mwは、分子量が既知のポリスチレンを標準サンプルとし、クロロホルムを展開溶媒としてGPCにより測定できる。
(In the formula, R 1 to R 4 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.)
The polycarbonate resin of the present invention has a weight average molecular weight Mw of 10,000 or more, preferably 15,000 or more, and more preferably 20,000 or more. When the weight average molecular weight Mw is 10,000 or more, it is preferable that the resin has sufficient mechanical strength as a structural material or optical material. In addition, the weight average molecular weight Mw is 55,000 or less, more preferably 50,000 or less, even more preferably 40,000 or less, particularly preferably less than 35,000, and most preferably 30,000 or less. When the weight average molecular weight Mw is 50,000 or less, it is preferable that the resin has excellent flowability during injection molding. In particular, when the polycarbonate resin of the present invention is used for a thin-walled optical member such as an imaging lens, it is preferable that the resin has excellent flowability. The weight average molecular weight Mw can be measured by GPC using polystyrene with a known molecular weight as a standard sample and chloroform as a developing solvent.

 本発明のポリカーボネート樹脂は、配向複屈折の絶対値が3.0×10-3以下であると好ましく、2.0×10-3以下であるとより好ましく、1.0×10-3以下であるとよりいっそう好ましく、0.5×10-3以下であるとさらに好ましい。配向複屈折の絶対値が上記以下であると、分子配向による複屈折が生じにくくなるため好ましい。配向複屈折は、ポリカーボネート樹脂から得られる厚さ100μmのキャストフィルムから長さ70mm(チャック間45mm)、幅15mmの試験片を切り出し、Tg+10℃で2倍延伸した後に、波長589nmにおいて測定する。 The polycarbonate resin of the present invention preferably has an absolute value of orientation birefringence of 3.0×10 −3 or less, more preferably 2.0×10 −3 or less, even more preferably 1.0×10 −3 or less, and even more preferably 0.5×10 −3 or less. If the absolute value of orientation birefringence is less than the above, it is preferable because birefringence due to molecular orientation is less likely to occur. The orientation birefringence is measured at a wavelength of 589 nm after cutting a test piece of 70 mm in length (45 mm between chucks) and 15 mm in width from a cast film of 100 μm in thickness obtained from a polycarbonate resin and stretching it twice at Tg+10° C.

 本発明のポリカーボネート樹脂は、光弾性係数が35×10-12Pa未満であると好ましく、30×10-12Pa以下であるとより好ましく、25×10-12Pa以下であるとよりいっそう好ましい。光弾性係数が上記範囲であると応力による複屈折が生じにくくなるため好ましい。光弾性係数はポリカーボネート樹脂から得られる厚さ100μmのキャストフィルムから長さ50mm、幅10mmの試験片を切り出し、日本分光(株)製Spectroellipsometer M-220を用い測定する。 The polycarbonate resin of the present invention preferably has a photoelastic coefficient of less than 35×10 −12 Pa, more preferably 30×10 −12 Pa or less, and even more preferably 25×10 −12 Pa or less. When the photoelastic coefficient is within the above range, birefringence due to stress is unlikely to occur, which is preferable. The photoelastic coefficient is measured by cutting a test piece 50 mm long and 10 mm wide from a cast film having a thickness of 100 μm obtained from the polycarbonate resin, and using a Spectroellipsometer M-220 manufactured by JASCO Corporation.

 本発明のポリカーボネート樹脂は、温度:20℃、波長:587.56nmで測定した屈折率ndが1.600以上であると好ましく、1.605以上であるとより好ましく、1.610以上であるとよりいっそう好ましく、1.615以上であるとさらに好ましく、1.620以上であると特に好ましいい。屈折率が上記以上であると、光学部材を薄くできるため好ましい。また、屈折率ndは1.650以下であってもよく、1.645以下であってもよく、1.640以下であってもよく、1.635以下であってもよい。屈折率ndが上記範囲であると、複数のレンズを組み合わせて使用するうえで光学設計の自由度が上がるため好ましい。 The polycarbonate resin of the present invention preferably has a refractive index nd measured at a temperature of 20°C and a wavelength of 587.56 nm of 1.600 or more, more preferably 1.605 or more, even more preferably 1.610 or more, even more preferably 1.615 or more, and particularly preferably 1.620 or more. A refractive index of the above or higher is preferable because it allows the optical member to be made thin. The refractive index nd may also be 1.650 or less, 1.645 or less, 1.640 or less, or 1.635 or less. A refractive index nd in the above range is preferable because it increases the degree of freedom in optical design when multiple lenses are used in combination.

 本発明のポリカーボネート樹脂は、アッベ数が25.0以上であると好ましく、30.0以上であるとより好ましい。アッベ数が上記以上であると光学部材の色収差が小さくなるため好ましい。また、アッベ数は33.0以下であってもよく、32.0以下であってもよい。アッベ数が上記範囲であると、複数のレンズを組み合わせて使用するうえで光学設計の自由度が上がるため好ましい。 The polycarbonate resin of the present invention preferably has an Abbe number of 25.0 or more, and more preferably 30.0 or more. An Abbe number of this or more is preferable because it reduces the chromatic aberration of the optical member. The Abbe number may be 33.0 or less, or may be 32.0 or less. An Abbe number in the above range is preferable because it increases the degree of freedom in optical design when multiple lenses are used in combination.

 ここで、アッベ数(νd)は、温度:20℃、波長:486.13nm、587.56nm、656.27nmの屈折率から、下記式を用いて算出する。 The Abbe number (νd) is calculated using the following formula from the refractive index at temperature: 20°C and wavelengths: 486.13 nm, 587.56 nm, and 656.27 nm.

  νd=(nd-1)/(nF-nC)
  nd:波長587.56nmでの屈折率、
  nF:波長486.13nmでの屈折率、
  nC:波長656.27nmでの屈折率を意味する。
νd=(nd-1)/(nF-nC)
nd: refractive index at a wavelength of 587.56 nm,
nF: refractive index at a wavelength of 486.13 nm,
nC: refers to the refractive index at a wavelength of 656.27 nm.

 本発明のポリカーボネート樹脂は、ガラス転移温度が138℃以上であると好ましく、140℃以上であるとより好ましく、142℃以上であるとよりいっそう好ましく、144℃以上であるとさらに好ましい。ガラス転移温度が上記範囲であると、光学部材の使用できる温度範囲が高くなるため好ましい。また、ガラス転移温度は160℃以下であってもよく、155℃以下であってもよく、150℃以下であってもよい。ガラス転移温度が上記範囲であると耐熱性と成形性のバランスに優れるため好ましい。 The polycarbonate resin of the present invention preferably has a glass transition temperature of 138°C or higher, more preferably 140°C or higher, even more preferably 142°C or higher, and even more preferably 144°C or higher. A glass transition temperature in the above range is preferable because it increases the temperature range in which the optical component can be used. The glass transition temperature may also be 160°C or lower, 155°C or lower, or 150°C or lower. A glass transition temperature in the above range is preferable because it provides an excellent balance between heat resistance and moldability.

 本発明のポリカーボネート樹脂は、熱分解温度が370℃以上であると好ましく、375℃以上であるとより好ましく、380℃以上であるとさらに好ましい。熱分解温度が上記以上であると本発明のポリカーボネート樹脂を成形加工する際の加工安定性に優れ、さらに着色も少ないため好ましい。また、熱分解温度は420℃以下であってもよく、400℃以下であってもよい。熱分解温度はTGA(熱重量分析)により測定することができ、重量が5%減少した時の温度である。 The polycarbonate resin of the present invention preferably has a thermal decomposition temperature of 370°C or higher, more preferably 375°C or higher, and even more preferably 380°C or higher. Thermal decomposition temperatures above the above range are preferred because they provide excellent processing stability when molding the polycarbonate resin of the present invention and cause little discoloration. The thermal decomposition temperature may be 420°C or lower, or 400°C or lower. The thermal decomposition temperature can be measured by TGA (thermogravimetric analysis) and is the temperature at which the weight has decreased by 5%.

 本発明のポリカーボネート樹脂は、260℃、せん断速度1,216/secにおける溶融粘度(Pa・s)が30以上であると好ましく、50以上であるとより好ましく、70以上であるとさらに好まし。260℃、せん断速度1,216/secにおける溶融粘度(Pa・s)が500以下であると好ましく、400以下であるとより好ましく、300以下であるとさらに好ましく、200以下であると特に好ましい。溶融粘度が上記範囲であると、射出成形時の成形性に優れるため好ましい。特にレンズ等の薄肉の成形物を射出成形する際は成形時の溶融粘度は重要であり、溶融粘度が上記範囲であると目的のレンズ形状が得られるため好ましい。溶融粘度は、ポリカーボネート樹脂を120℃で4時間乾燥した後、東洋精機(株)製キャピログラフ1Dによって測定される。 The polycarbonate resin of the present invention preferably has a melt viscosity (Pa·s) of 30 or more at 260°C and a shear rate of 1,216/sec, more preferably 50 or more, and even more preferably 70 or more. The melt viscosity (Pa·s) at 260°C and a shear rate of 1,216/sec is preferably 500 or less, more preferably 400 or less, even more preferably 300 or less, and particularly preferably 200 or less. A melt viscosity in the above range is preferable because it has excellent moldability during injection molding. In particular, when injection molding a thin-walled molded product such as a lens, the melt viscosity during molding is important, and a melt viscosity in the above range is preferable because the desired lens shape can be obtained. The melt viscosity is measured using a Capilograph 1D manufactured by Toyo Seiki Co., Ltd. after drying the polycarbonate resin at 120°C for 4 hours.

 本発明のポリカーボネート樹脂の比粘度は、0.12~0.32であることが好ましく、0.18~0.30であるとより好ましい。比粘度が0.12~0.32であると成形性と強度とのバランスに優れる。 The specific viscosity of the polycarbonate resin of the present invention is preferably 0.12 to 0.32, and more preferably 0.18 to 0.30. A specific viscosity of 0.12 to 0.32 provides an excellent balance between moldability and strength.

 比粘度の測定方法は、ポリカーボネート樹脂0.7gを塩化メチレン100mlに溶解した溶液の20℃における比粘度(ηSP)を、オストワルド粘度計にて測定し、以下の式から算出する。 The specific viscosity is measured by measuring the specific viscosity (ηSP) of a solution of 0.7 g of polycarbonate resin dissolved in 100 ml of methylene chloride at 20°C using an Ostwald viscometer and calculating it from the following formula.

  ηSP=(t-t0)/t0
[t0は、塩化メチレンの落下秒数、tは、試料溶液の落下秒数] 本発明を以下の実施例でさらに具体的に説明をするが、本発明はこれによって限定されるものではない。
ηSP=(t-t0)/t0
[t0 is the number of seconds it takes for methylene chloride to fall, and t is the number of seconds it takes for the sample solution to fall] The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

 下記の方法で評価を行った。
<ポリカーボネート樹脂の共重合比>
 JEOL製JNM-ECZ400SにてH NMRを測定することによって、各ポリカーボネート樹脂の共重合比を算出した。
<重量平均分子量(Mw)
 TOSOH製EcoSEC HLC-8320GPCにて、下記記載の条件で重量平均分子量Mwを測定した。
The evaluation was carried out by the following method.
<Copolymerization ratio of polycarbonate resin>
The copolymerization ratio of each polycarbonate resin was calculated by measuring 1 H NMR using a JEOL JNM-ECZ400S.
<Weight average molecular weight (Mw)
The weight average molecular weight Mw was measured using EcoSEC HLC-8320GPC manufactured by TOSOH under the conditions described below.

 検出器:UV-8420、溶媒:クロロホルム、カラム:TOSOH製 TSKgel SupermultiporeHZM-M ×3 + TSKgel guardcolumn(4.6×200nm)、測定温度:40℃、流速:0.35ml/min、インジェクション量:5μl、サンプル濃度:1mg/5ml、標準サンプル:TSKstandard Polystyrene
<屈折率>
 各ポリカーボネート樹脂の3mm厚試験片を作製し研磨した後、島津製作所製のカルニュー精密屈折計KPR-2000を使用して、屈折率nd(587.56nm)を測定した。
<アッベ数>
 アッベ数(νd)は、温度:20℃、波長:486.13nm、587.56nm、656.27nmの屈折率から、下記式を用いて算出した。
Detector: UV-8420, solvent: chloroform, column: TOSOH TSKgel SupermultiporeHZM-M × 3 + TSKgel guard column (4.6 × 200 nm), measurement temperature: 40°C, flow rate: 0.35 ml/min, injection amount: 5 μl, sample concentration: 1 mg/5 ml, standard sample: TSKstandard Polystyrene
<Refractive index>
A 3 mm thick test piece of each polycarbonate resin was prepared and polished, and then the refractive index nd (587.56 nm) was measured using a Kalnew precision refractometer KPR-2000 manufactured by Shimadzu Corporation.
<Abbe number>
The Abbe number (νd) was calculated from the refractive indexes at a temperature of 20° C. and wavelengths of 486.13 nm, 587.56 nm, and 656.27 nm using the following formula.

  νd=(nd-1)/(nF-nC)
  nd:波長587.56nmでの屈折率、
  nF:波長486.13nmでの屈折率、
  nC:波長656.27nmでの屈折率を意味する。
<配向複屈折の絶対値(|Δn|)>
 ポリカーボネート樹脂を塩化メチレンに溶解した後、ガラスシャーレ上にキャストし、十分乾燥することで厚さ100μmのキャストフィルムを作製した。該フィルムから長さ70mm(チャック間45mm)、幅15mmの試験片を切り出し、Tg+10℃で2倍延伸し、日本分光(株)製エリプソメーターM-220を用いて589nmにおける位相差(Re)を測定し、下記式より配向複屈折の絶対値(|Δn|)を求めた。
νd=(nd-1)/(nF-nC)
nd: refractive index at a wavelength of 587.56 nm,
nF: refractive index at a wavelength of 486.13 nm,
nC: refers to the refractive index at a wavelength of 656.27 nm.
<Absolute value of orientation birefringence (|Δn|)>
Polycarbonate resin was dissolved in methylene chloride, cast on a glass petri dish, and thoroughly dried to prepare a cast film with a thickness of 100 μm. A test piece with a length of 70 mm (chuck distance 45 mm) and a width of 15 mm was cut from the film. A film was cut out, stretched twice at Tg+10° C., and the phase difference (Re) at 589 nm was measured using an Ellipsometer M-220 manufactured by JASCO Corporation. The absolute value of the orientation birefringence (|Δn|) was calculated from the following formula: I asked.

  |Δn|=|Re/d|
  Δn:配向複屈折
  Re:位相差(nm)
  d:厚さ(nm)
<光弾性係数>
 ポリカーボネート樹脂を塩化メチレンに溶解した後、ガラスシャーレ上にキャストし、十分乾燥することで厚さ100μmのキャストフィルムを作製した。該フィルムから長さ50mm、幅10mmの試験片を切り出し、日本分光(株)製エリプソメーターM-220を用いて光弾性係数を測定した。
<ガラス転移温度(Tg)>
 得られたポリカーボネート樹脂をティー・エイ・インスツルメント・ジャパン(株)製Discovery DSC 25Auto型により、昇温速度20℃/minで測定した。試料は5~10mgで測定した。
<熱分解温度(Td-5)>
 得られたポリカーボネート樹脂をティー・エイ・インスツルメント・ジャパン(株)製SDT650型により、昇温速度20℃/minで測定し、50℃の時の重量を基準に重量が5%減少した時の温度を求めた。試料は3~4mgで測定した。
<溶融粘度(Pa・s)>
 ポリカーボネート樹脂を120℃で4時間乾燥した後、東洋精機(株)製キャピログラフ1Dにより、260℃、せん断速度1,216/secにおける溶融粘度を測定した。
<実施例1>
 87.70g(0.20mol)の9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(以下、BPEFと省略することがある)、52.48g(0.20mol)のペンタシクロペンタデカンジメタノール(以下、PCPDMと省略することがある)、89.12g(0.42mol)のジフェニルカーボネート、及び触媒として濃度60mmol/Lの炭酸水素ナトリウム水溶液17μL(炭酸水素ナトリウム2.5μmol)と274mmol/Lのテトラメチルアンモニウムヒドロキシド水溶液227μL(テトラメチルアンモニウムヒドロキシド15μmol)を、窒素雰囲気下180℃に加熱し溶融させた。その後、反応器内圧を40分間かけて20kPaまで減圧しながら、60℃/hrの速度で250℃まで昇温した。理論量の70%のフェノールが留出した後、1時間かけて反応器内圧を133Pa以下とした。その後、反応器内圧133Pa以下、260℃で40分撹拌し反応を終了させ、樹脂を取り出した。得られたポリカーボネート樹脂のBPEFおよびPCPDMに由来する共重合比を、1H NMRによって測定した。該ポリカーボネート樹脂の重量平均分子量Mw、屈折率、アッベ数、ガラス転移温度、熱分解温度、配向複屈折の絶対値、光弾性係数および溶融粘度を評価した。その後、得られた樹脂を120℃で4時間乾燥した後、樹脂の質量を基準としてビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイトを0.05質量%、グリセリンモノステアレートを0.10質量%加えて、ベント付きφ15mm二軸押出機を用いてペレット化した。該ペレットを120℃で4時間乾燥後、シリンダー温度:260℃、金型温度:ポリカーボネート樹脂のTg-5℃で、厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズを射出成形により得た。
<実施例2>
 BPEFの仕込量を52.62g(0.12mol)、PCPDMの仕込量を73.47g(0.28mol)とする以外は実施例1と同様にして、ポリカーボネート樹脂を製造した。得られたポリカーボネート樹脂のBPEFおよびPCPDMに由来する共重合比を、1H NMRによって測定した。該ポリカーボネート樹脂の重量平均分子量Mw、屈折率、アッベ数、ガラス転移温度、熱分解温度、配向複屈折の絶対値、光弾性係数および溶融粘度を評価した。その後、実施例1と同様の方法で厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズを射出成形により得た。
<実施例3>
 BPEFの仕込量を43.85g(0.10mol)、PCPDMの仕込量を78.72g(0.30mol)とする以外は実施例1と同様にして、ポリカーボネート樹脂を製造した。得られたポリカーボネート樹脂のBPEFおよびPCPDMに由来する共重合比を、1H NMRによって測定した。該ポリカーボネート樹脂の重量平均分子量Mw、屈折率、アッベ数、ガラス転移温度、熱分解温度、配向複屈折の絶対値、光弾性係数および溶融粘度を評価した。その後、実施例1と同様の方法で厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズを射出成形により得た。
<実施例4>
 BPEFの仕込量を8.78g(0.02mol)、PCPDMの仕込量を99.71g(0.38mol)とする以外は実施例1と同様にして、ポリカーボネート樹脂を製造した。得られたポリカーボネート樹脂のBPEFおよびPCPDMに由来する共重合比を、1H NMRによって測定した。該ポリカーボネート樹脂の重量平均分子量Mw、屈折率、アッベ数、ガラス転移温度、熱分解温度、配向複屈折の絶対値、光弾性係数および溶融粘度を評価した。その後、実施例1と同様の方法で厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズを射出成形により得た。
<比較例1>
 45.66g(0.20mol)のビスフェノールA(以下、BPAと省略することがある)、52.48g(0.20mol)のPCPDM、86.97g(0.406mol)のジフェニルカーボネート、及び触媒として炭酸水素ナトリウム1.09mg(12μmol)を、窒素雰囲気下180℃に加熱し溶融させた。その後、反応器内圧を20kPa(150mmHg)とすると同時に60℃/hrの速度で200℃まで昇温を行い、40分間その温度に保し反応を行った。さらに、75℃/hrの速度で225℃まで昇温し、昇温終了後の40分後、その温度を保持しながら1時間かけて反応器内圧を133Pa(1mmHg)以下とした。その後、105℃/hrの速度で235℃まで昇温し合計6時間撹拌下で反応を行い、反応終了後、反応器内に窒素を吹き込み常圧に戻し、得られた樹脂を取り出した。得られたポリカーボネート樹脂のBPAおよびPCPDMに由来する共重合比を、1H NMRによって測定した。該ポリカーボネート樹脂の重量平均分子量Mw、屈折率、アッベ数、ガラス転移温度、熱分解温度、配向複屈折の絶対値、光弾性係数および溶融粘度を評価した。その後、実施例1と同様の方法で厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズの射出成形試みたが、樹脂の溶融粘度が高いため、当該形状の薄肉レンズを成形することができなかった。
<比較例2>
 BPAの仕込量を63.92g(0.28mol)、PCPDMの仕込量を31.49g(0.12mol)とする以外は比較例1と同様にして、ポリカーボネート樹脂を製造した。得られたポリカーボネート樹脂のBPAおよびPCPDMに由来する共重合比を、1H NMRによって測定した。該ポリカーボネート樹脂の重量平均分子量Mw、屈折率、アッベ数、ガラス転移温度、熱分解温度、配向複屈折の絶対値、光弾性係数および溶融粘度を評価した。その後、実施例1と同様の方法で厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズの射出成形試みたが、樹脂の溶融粘度が高いため、当該形状の薄肉レンズを成形することができなかった。
<比較例3>
 BPAの仕込量を27.40g(0.12mol)、PCPDMの仕込量を73.47g(0.28mol)とする以外は比較例1と同様にして、ポリカーボネート樹脂を製造した。得られたポリカーボネート樹脂のBPAおよびPCPDMに由来する共重合比を、1H NMRによって測定した。該ポリカーボネート樹脂の重量平均分子量Mw、屈折率、アッベ数、ガラス転移温度、熱分解温度、配向複屈折の絶対値、光弾性係数および溶融粘度を評価した。その後、実施例1と同様の方法で厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズの射出成形試みたが、樹脂の溶融粘度が高いため、当該形状の薄肉レンズを成形することができなかった。
<比較例4>
 87.70g(0.20mol)のBPEF、52.48g(0.20mol)のPCPDM、87.40g(0.41mol)のジフェニルカーボネート、及び触媒として濃度60mmol/Lの炭酸水素ナトリウム水溶液17μL(炭酸水素ナトリウム2.5μmol)と274mmol/Lのテトラメチルアンモニウムヒドロキシド水溶液227μL(テトラメチルアンモニウムヒドロキシド15μmol)を、窒素雰囲気下180℃に加熱し溶融させた。その後、反応器内圧を40分間かけて20kPaまで減圧しながら、60℃/hrの速度で250℃まで昇温した。理論量の70%のフェノールが留出した後、1時間かけて反応器内圧を133Pa以下とした。その後、反応器内圧133Pa以下、260℃で40分撹拌し反応を終了させ、樹脂を取り出した。得られたポリカーボネート樹脂のBPEFおよびPCPDMに由来する共重合比を、1H NMRによって測定した。該ポリカーボネート樹脂の重量平均分子量Mw、屈折率、アッベ数、ガラス転移温度、熱分解温度、配向複屈折の絶対値、光弾性係数および溶融粘度を評価した。その後、実施例1と同様の方法で厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズの射出成形試みたが、樹脂の溶融粘度が高いため、当該形状の薄肉レンズを成形することができなかった。
<比較例5>
 BPEFの仕込量を70.16g(0.16mol)、PCPDMの仕込量を62.97g(0.24mol)とする以外は比較例4と同様にして、ポリカーボネート樹脂を製造した。得られたポリカーボネート樹脂のBPEFおよびPCPDMに由来する共重合比を、1H NMRによって測定した。該ポリカーボネート樹脂の重量平均分子量Mw、屈折率、アッベ数、ガラス転移温度、熱分解温度、配向複屈折の絶対値、光弾性係数および溶融粘度を評価した。その後、実施例1と同様の方法で厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズの射出成形試みたが、樹脂の溶融粘度が高いため、当該形状の薄肉レンズを成形することができなかった。
<比較例6>
 BPEFの仕込量を52.62g(0.12mol)、PCPDMの仕込量を73.47g(0.28mol)とする以外は比較例4と同様にして、ポリカーボネート樹脂を製造した。得られたポリカーボネート樹脂のBPEFおよびPCPDMに由来する共重合比を、1H NMRによって測定した。該ポリカーボネート樹脂の重量平均分子量Mw、屈折率、アッベ数、ガラス転移温度、熱分解温度、配向複屈折の絶対値、光弾性係数および溶融粘度を評価した。その後、実施例1と同様の方法で厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズの射出成形試みたが、樹脂の溶融粘度が高いため、当該形状の薄肉レンズを成形することができなかった。
|Δn|=|Re/d|
Δn: Orientation birefringence Re: Phase difference (nm)
d: thickness (nm)
<Photoelastic coefficient>
Polycarbonate resin was dissolved in methylene chloride, cast on a glass petri dish, and thoroughly dried to prepare a cast film with a thickness of 100 μm. A test piece with a length of 50 mm and a width of 10 mm was cut out from the film and measured using a JASCO Corporation ( The photoelastic coefficient was measured using an Ellipsometer M-220 manufactured by Epson Corporation.
<Glass transition temperature (Tg)>
The obtained polycarbonate resin was measured at a temperature rise rate of 20° C./min using a Discovery DSC 25Auto model manufactured by TA Instruments Japan Co., Ltd. The measurement was performed using 5 to 10 mg of the sample.
<Thermal decomposition temperature (Td-5)>
The polycarbonate resin thus obtained was measured at a heating rate of 20° C./min using an SDT650 model manufactured by TA Instruments Japan Co., Ltd., and the weight loss was determined as the weight loss of 5% based on the weight at 50° C. The temperature was measured. The sample was 3 to 4 mg.
<Melt viscosity (Pa s)>
The polycarbonate resin was dried at 120° C. for 4 hours, and then the melt viscosity was measured at 260° C. and a shear rate of 1,216/sec using a Capilograph 1D manufactured by Toyo Seiki Seisakusho Co., Ltd.
Example 1
87.70 g (0.20 mol) of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (hereinafter sometimes abbreviated as BPEF), 52.48 g (0.20 mol) of pentacyclopentadecane Dimethanol (hereinafter sometimes abbreviated as PCPDM), 89.12 g (0.42 mol) of diphenyl carbonate, and 17 μL of a 60 mmol/L aqueous solution of sodium bicarbonate (2.5 μmol of sodium bicarbonate) and 274 mmol/L of sodium bicarbonate were used as a catalyst. 227 μL of tetramethylammonium hydroxide aqueous solution (15 μmol of tetramethylammonium hydroxide) was heated to 180° C. in a nitrogen atmosphere to melt the solution. Then, the pressure inside the reactor was reduced to 20 kPa over 40 minutes while heating the reactor at 60° C./ The temperature was raised to 250° C. at a rate of 1000 rpm. After 70% of the theoretical amount of phenol was distilled off, the pressure inside the reactor was reduced to 133 Pa or less over 1 hour. The reaction was then terminated by stirring at 260° C. for 40 minutes with the pressure inside the reactor at 133 Pa or less, and the resin was taken out. The copolymerization ratio of the obtained polycarbonate resin derived from BPEF and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, and orientation birefringence of the polycarbonate resin were The absolute value of the photoelastic coefficient and the melt viscosity were evaluated. The resin thus obtained was then dried at 120° C. for 4 hours, and then the bis(2,6-di-tert-butyl-4- 0.05% by mass of (methylphenyl)pentaerythritol diphosphite and 0.10% by mass of glycerin monostearate were added, and the mixture was pelletized using a vented φ15 mm twin-screw extruder. The pellets were dried at 120° C. for 4 hours, and then molded at a cylinder temperature of 260° C. and a mold temperature of Tg-5° C. of polycarbonate resin to produce lenses having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a diameter of 5 mm. It was obtained by injection molding.
Example 2
A polycarbonate resin was produced in the same manner as in Example 1, except that the amount of BPEF charged was 52.62 g (0.12 mol) and the amount of PCPDM charged was 73.47 g (0.28 mol). The copolymerization ratio derived from BPEF and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, and photoelasticity of the polycarbonate resin were The coefficient and melt viscosity were evaluated. Thereafter, in the same manner as in Example 1, a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a diameter of 5 mm was obtained by injection molding.
Example 3
A polycarbonate resin was produced in the same manner as in Example 1, except that the amount of BPEF charged was 43.85 g (0.10 mol) and the amount of PCPDM charged was 78.72 g (0.30 mol). The copolymerization ratio derived from BPEF and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, and photoelasticity of the polycarbonate resin were The coefficient and melt viscosity were evaluated. Thereafter, in the same manner as in Example 1, a lens having a thickness of 0.3 mm, a convex surface curvature radius of 5 mm, a concave surface curvature radius of 4 mm, and a diameter of 5 mm was obtained by injection molding.
Example 4
A polycarbonate resin was produced in the same manner as in Example 1, except that the amount of BPEF charged was 8.78 g (0.02 mol) and the amount of PCPDM charged was 99.71 g (0.38 mol). The copolymerization ratio derived from BPEF and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, and photoelasticity of the polycarbonate resin were The coefficient and melt viscosity were evaluated. Thereafter, in the same manner as in Example 1, a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a diameter of 5 mm was obtained by injection molding.
<Comparative Example 1>
45.66 g (0.20 mol) of bisphenol A (hereinafter sometimes abbreviated as BPA), 52.48 g (0.20 mol) of PCPDM, 86.97 g (0.406 mol) of diphenyl carbonate, and carbonate as a catalyst 1.09 mg (12 μmol) of sodium hydrogen was heated to 180° C. in a nitrogen atmosphere to melt it. Then, the pressure inside the reactor was increased to 20 kPa (150 mmHg) and the temperature was increased to 200° C. at a rate of 60° C./hr. The reaction was continued for 40 minutes at that temperature. The temperature was then increased to 225° C. at a rate of 75° C./hr. After 40 minutes from the end of the temperature increase, the internal pressure of the reactor was reduced over a period of 1 hour while maintaining the temperature. was set to 133 Pa (1 mmHg) or less. Thereafter, the temperature was raised to 235° C. at a rate of 105° C./hr, and the reaction was carried out for a total of 6 hours under stirring. After the reaction was completed, nitrogen was blown into the reactor to return it to normal pressure, and the obtained resin was taken out. The copolymerization ratio of the polycarbonate resin derived from BPA and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute orientation birefringence of the polycarbonate resin were measured. The value, photoelastic coefficient and melt viscosity were evaluated. After that, injection molding of a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm and a diameter of 5 mm was attempted in the same manner as in Example 1, but the resin Due to the high melt viscosity, it was not possible to mold a thin lens of that shape.
<Comparative Example 2>
A polycarbonate resin was produced in the same manner as in Comparative Example 1, except that the amount of BPA charged was 63.92 g (0.28 mol) and the amount of PCPDM charged was 31.49 g (0.12 mol). The copolymerization ratio derived from BPA and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, and photoelasticity of the polycarbonate resin were measured. The coefficient and melt viscosity were evaluated. After that, an attempt was made to injection mold a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a diameter of 5 mm in the same manner as in Example 1, but the melt viscosity of the resin was high. Therefore, it was not possible to mold a thin lens of this shape.
<Comparative Example 3>
A polycarbonate resin was produced in the same manner as in Comparative Example 1, except that the amount of BPA charged was 27.40 g (0.12 mol) and the amount of PCPDM charged was 73.47 g (0.28 mol). The copolymerization ratio derived from BPA and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, and photoelasticity of the polycarbonate resin were measured. The coefficient and melt viscosity were evaluated. After that, an attempt was made to injection mold a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a diameter of 5 mm in the same manner as in Example 1, but the melt viscosity of the resin was high. Therefore, it was not possible to mold a thin lens of this shape.
<Comparative Example 4>
87.70 g (0.20 mol) of BPEF, 52.48 g (0.20 mol) of PCPDM, 87.40 g (0.41 mol) of diphenyl carbonate, and 17 μL of a 60 mmol/L aqueous sodium bicarbonate solution (hydrogen carbonate) as a catalyst. Sodium (2.5 μmol) and 227 μL of a 274 mmol/L aqueous solution of tetramethylammonium hydroxide (15 μmol of tetramethylammonium hydroxide) were heated to 180° C. in a nitrogen atmosphere and melted. Then, the pressure inside the reactor was reduced to 20 kPa over a period of 40 minutes. The pressure was reduced to 100° C., and the temperature was raised to 250° C. at a rate of 60° C./hr. After 70% of the theoretical amount of phenol was distilled off, the pressure inside the reactor was reduced to 133 Pa or less over one hour. The mixture was stirred at 260° C. for 40 minutes under a pressure of 133 Pa or less to complete the reaction, and the resin was taken out. The copolymerization ratio of the obtained polycarbonate resin derived from BPEF and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, and orientation birefringence of the polycarbonate resin were also measured. The absolute value, photoelastic coefficient and melt viscosity were evaluated. After that, injection molding of a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a diameter of 5 mm was attempted in the same manner as in Example 1, but the resin However, due to the high melt viscosity of the resin, it was not possible to mold a thin lens having the above shape.
<Comparative Example 5>
A polycarbonate resin was produced in the same manner as in Comparative Example 4, except that the amount of BPEF charged was 70.16 g (0.16 mol) and the amount of PCPDM charged was 62.97 g (0.24 mol). The copolymerization ratio derived from BPEF and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, and photoelasticity of the polycarbonate resin were The coefficient and melt viscosity were evaluated. After that, an attempt was made to injection mold a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a diameter of 5 mm in the same manner as in Example 1, but the melt viscosity of the resin was high. Therefore, it was not possible to mold a thin lens of this shape.
<Comparative Example 6>
A polycarbonate resin was produced in the same manner as in Comparative Example 4, except that the amount of BPEF charged was 52.62 g (0.12 mol) and the amount of PCPDM charged was 73.47 g (0.28 mol). The copolymerization ratio derived from BPEF and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, and photoelasticity of the polycarbonate resin were The coefficient and melt viscosity were evaluated. After that, injection molding of a lens with a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a diameter of 5 mm was attempted in the same manner as in Example 1, but the melt viscosity of the resin was high. Therefore, it was not possible to mold a thin lens of this shape.

Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

 本発明の実施例1~4は、比較例と比べ、溶融粘度が低いため、射出成形時の成形性に優れる。また、配向複屈折に優れるため、射出成形等で光学部材を得る際に分子配向による複屈折が生じにくい。また、光弾性係数が小さいため射出成形等で光学部材を得る際に応力による複屈折が生じにくい。よって、光学部材の複屈折が小さくなるため好ましい。
<実施例5>
 166.64g(0.38mol)の9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(以下、BPEFと省略することがある)、5.25g(0.02mol)のペンタシクロペンタデカンジメタノール(以下、PCPDMと省略することがある)、89.12g(0.42mol)のジフェニルカーボネート、及び触媒として濃度60mmol/Lの炭酸水素ナトリウム水溶液17μL(炭酸水素ナトリウム2.5μmol)と274mmol/Lのテトラメチルアンモニウムヒドロキシド水溶液227μL(テトラメチルアンモニウムヒドロキシド15μmol)を、窒素雰囲気下180℃に加熱し溶融させた。その後、反応器内圧を40分間かけて20kPaまで減圧しながら、60℃/hrの速度で250℃まで昇温した。理論量の70%のフェノールが留出した後、1時間かけて反応器内圧を133Pa以下とした。その後、反応器内圧133Pa以下、260℃で40分撹拌し反応を終了させ、樹脂を取り出した。得られたポリカーボネート樹脂のBPEFおよびPCPDMに由来する共重合比を、1H NMRによって測定した。該ポリカーボネート樹脂の重量平均分子量Mw、屈折率、アッベ数、ガラス転移温度、熱分解温度、配向複屈折の絶対値、光弾性係数および溶融粘度を評価した。その後、実施例1と同様の方法で厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズを射出成形により得た。
<実施例6>
 BPEFの仕込量を131.56g(0.30mol)、PCPDMの仕込量を26.24g(0.10mol)とする以外は実施例1と同様にして、ポリカーボネート樹脂を製造した。得られたポリカーボネート樹脂のBPEFおよびPCPDMに由来する共重合比を、1H NMRによって測定した。該ポリカーボネート樹脂の重量平均分子量Mw、屈折率、アッベ数、ガラス転移温度、熱分解温度、配向複屈折の絶対値、光弾性係数および溶融粘度を評価した。その後、実施例1と同様の方法で厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズを射出成形により得た。
<実施例7>
 BPEFの仕込量を96.47g(0.22mol)、PCPDMの仕込量を47.23g(0.18mol)とする以外は実施例1と同様にして、ポリカーボネート樹脂を製造した。得られたポリカーボネート樹脂のBPEFおよびPCPDMに由来する共重合比を、1H NMRによって測定した。該ポリカーボネート樹脂の重量平均分子量Mw、屈折率、アッベ数、ガラス転移温度、熱分解温度、配向複屈折の絶対値、光弾性係数および溶融粘度を評価した。その後、実施例1と同様の方法で厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズを射出成形により得た。
<比較例7>
 45.66g(0.20mol)のビスフェノールA(以下、BPAと省略することがある)、52.48g(0.20mol)のPCPDM、86.97g(0.406mol)のジフェニルカーボネート、及び触媒として炭酸水素ナトリウム1.09mg(12μmol)を、窒素雰囲気下180℃に加熱し溶融させた。その後、反応器内圧を20kPa(150mmHg)とすると同時に60℃/hrの速度で200℃まで昇温を行い、40分間その温度に保し反応を行った。さらに、75℃/hrの速度で225℃まで昇温し、昇温終了後の40分後、その温度を保持しながら1時間かけて反応器内圧を133Pa(1mmHg)以下とした。その後、105℃/hrの速度で235℃まで昇温し合計6時間撹拌下で反応を行い、反応終了後、反応器内に窒素を吹き込み常圧に戻し、得られた樹脂を取り出した。得られたポリカーボネート樹脂のBPAおよびPCPDMに由来する共重合比を、1H NMRによって測定した。該ポリカーボネート樹脂の重量平均分子量Mw、屈折率、アッベ数、ガラス転移温度、熱分解温度、配向複屈折の絶対値、光弾性係数および溶融粘度を評価した。その後、実施例1と同様の方法で厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズの射出成形試みたが、樹脂の溶融粘度が高いため、当該形状の薄肉レンズを成形することができなかった。
<比較例8>
 BPAの仕込量を63.92g(0.28mol)、PCPDMの仕込量を31.49g(0.12mol)とする以外は比較例1と同様にして、ポリカーボネート樹脂を製造した。得られたポリカーボネート樹脂のBPAおよびPCPDMに由来する共重合比を、1H NMRによって測定した。該ポリカーボネート樹脂の重量平均分子量Mw、屈折率、アッベ数、ガラス転移温度、熱分解温度、配向複屈折の絶対値、光弾性係数および溶融粘度を評価した。その後、実施例1と同様の方法で厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズの射出成形試みたが、樹脂の溶融粘度が高いため、当該形状の薄肉レンズを成形することができなかった。
<比較例9>
 BPAの仕込量を27.40g(0.12mol)、PCPDMの仕込量を73.47g(0.28mol)とする以外は比較例1と同様にして、ポリカーボネート樹脂を製造した。得られたポリカーボネート樹脂のBPAおよびPCPDMに由来する共重合比を、1H NMRによって測定した。該ポリカーボネート樹脂の重量平均分子量Mw、屈折率、アッベ数、ガラス転移温度、熱分解温度、配向複屈折の絶対値、光弾性係数および溶融粘度を評価した。その後、実施例1と同様の方法で厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズの射出成形試みたが、樹脂の溶融粘度が高いため、当該形状の薄肉レンズを成形することができなかった。
<比較例10>
 BPEFの仕込量を122.79g(0.28mol)、PCPDMの仕込量を31.49g(0.12mol)とする以外は比較例4と同様にして、ポリカーボネート樹脂を製造した。得られたポリカーボネート樹脂のBPEFおよびPCPDMに由来する共重合比を、1H NMRによって測定した。該ポリカーボネート樹脂の重量平均分子量Mw、屈折率、アッベ数、ガラス転移温度、熱分解温度、配向複屈折の絶対値、光弾性係数および溶融粘度を評価した。その後、実施例1と同様の方法で厚さ0.3mm、凸面曲率半径5mm、凹面曲率半径4mm、φ5mmのレンズの射出成形試みたが、樹脂の溶融粘度が高いため、当該形状の薄肉レンズを成形することができなかった。
In comparison with the comparative examples, the melt viscosity of the first to fourth examples of the present invention is low, and therefore the moldability during injection molding is excellent. In addition, since the orientation birefringence is excellent, birefringence due to molecular orientation is unlikely to occur when obtaining an optical component by injection molding or the like. In addition, since the photoelastic coefficient is small, birefringence due to stress is unlikely to occur when obtaining an optical component by injection molding or the like. Therefore, it is preferable because the birefringence of the optical component is small.
Example 5
166.64 g (0.38 mol) of 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (hereinafter sometimes abbreviated as BPEF), 5.25 g (0.02 mol) of pentacyclopentadecanedimethanol (hereinafter sometimes abbreviated as PCPDM), 89.12 g (0.42 mol) of diphenyl carbonate, and 17 μL of a 60 mmol/L aqueous sodium hydrogen carbonate solution (2.5 μmol of sodium hydrogen carbonate) and 227 μL of a 274 mmol/L aqueous tetramethylammonium hydroxide solution (15 μmol of tetramethylammonium hydroxide) were heated to 180 ° C. under a nitrogen atmosphere and melted. Thereafter, the pressure inside the reactor was reduced to 20 kPa over 40 minutes, while the temperature was raised to 250 ° C. at a rate of 60 ° C./hr. After 70% of the theoretical amount of phenol was distilled out, the pressure inside the reactor was reduced to 133 Pa or less over 1 hour. Then, the reaction was terminated by stirring at 260° C. for 40 minutes at a pressure inside the reactor of 133 Pa or less, and the resin was taken out. The copolymerization ratio of the obtained polycarbonate resin derived from BPEF and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, photoelastic coefficient and melt viscosity of the polycarbonate resin were evaluated. Then, a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a φ5 mm was obtained by injection molding in the same manner as in Example 1.
Example 6
A polycarbonate resin was produced in the same manner as in Example 1, except that the amount of BPEF charged was 131.56 g (0.30 mol) and the amount of PCPDM charged was 26.24 g (0.10 mol). The copolymerization ratio of the obtained polycarbonate resin derived from BPEF and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, photoelastic coefficient and melt viscosity of the polycarbonate resin were evaluated. Thereafter, a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a φ5 mm was obtained by injection molding in the same manner as in Example 1.
Example 7
A polycarbonate resin was produced in the same manner as in Example 1, except that the amount of BPEF charged was 96.47 g (0.22 mol) and the amount of PCPDM charged was 47.23 g (0.18 mol). The copolymerization ratio of the obtained polycarbonate resin derived from BPEF and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, photoelastic coefficient and melt viscosity of the polycarbonate resin were evaluated. Thereafter, a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a φ5 mm was obtained by injection molding in the same manner as in Example 1.
<Comparative Example 7>
45.66g (0.20mol) of bisphenol A (hereinafter sometimes abbreviated as BPA), 52.48g (0.20mol) of PCPDM, 86.97g (0.406mol) of diphenyl carbonate, and 1.09mg (12μmol) of sodium hydrogen carbonate as a catalyst were heated to 180°C under a nitrogen atmosphere and melted. Thereafter, the reactor internal pressure was set to 20kPa (150mmHg) and the temperature was raised to 200°C at a rate of 60°C/hr, and the reaction was carried out while maintaining the temperature for 40 minutes. Further, the temperature was raised to 225°C at a rate of 75°C/hr, and 40 minutes after the end of the temperature rise, the reactor internal pressure was lowered to 133Pa (1mmHg) or less over 1 hour while maintaining the temperature. Then, the temperature was raised to 235°C at a rate of 105°C/hr, and the reaction was carried out under stirring for a total of 6 hours. After the reaction was completed, nitrogen was blown into the reactor to return to normal pressure, and the obtained resin was taken out. The copolymerization ratio of the obtained polycarbonate resin derived from BPA and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, photoelastic coefficient and melt viscosity of the polycarbonate resin were evaluated. Then, injection molding of a lens with a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a φ5 mm was attempted in the same manner as in Example 1, but the melt viscosity of the resin was high, so it was not possible to mold a thin lens of that shape.
<Comparative Example 8>
A polycarbonate resin was produced in the same manner as in Comparative Example 1, except that the amount of BPA charged was 63.92 g (0.28 mol) and the amount of PCPDM charged was 31.49 g (0.12 mol). The copolymerization ratio of the obtained polycarbonate resin derived from BPA and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, photoelastic coefficient and melt viscosity of the polycarbonate resin were evaluated. Thereafter, an injection molding of a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a φ5 mm was attempted in the same manner as in Example 1, but the melt viscosity of the resin was high, so it was not possible to mold a thin lens of that shape.
<Comparative Example 9>
A polycarbonate resin was produced in the same manner as in Comparative Example 1, except that the amount of BPA charged was 27.40 g (0.12 mol) and the amount of PCPDM charged was 73.47 g (0.28 mol). The copolymerization ratio of the obtained polycarbonate resin derived from BPA and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, photoelastic coefficient and melt viscosity of the polycarbonate resin were evaluated. Thereafter, injection molding of a lens with a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a φ5 mm was attempted in the same manner as in Example 1, but the melt viscosity of the resin was high, so it was not possible to mold a thin lens of that shape.
<Comparative Example 10>
A polycarbonate resin was produced in the same manner as in Comparative Example 4, except that the amount of BPEF charged was 122.79 g (0.28 mol) and the amount of PCPDM charged was 31.49 g (0.12 mol). The copolymerization ratio of the obtained polycarbonate resin derived from BPEF and PCPDM was measured by 1H NMR. The weight average molecular weight Mw, refractive index, Abbe number, glass transition temperature, thermal decomposition temperature, absolute value of orientation birefringence, photoelastic coefficient and melt viscosity of the polycarbonate resin were evaluated. Thereafter, injection molding of a lens having a thickness of 0.3 mm, a convex curvature radius of 5 mm, a concave curvature radius of 4 mm, and a φ5 mm was attempted in the same manner as in Example 1, but the melt viscosity of the resin was high, so it was not possible to mold a thin lens of that shape.

Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009

 本発明の実施例5~7は、比較例と比べ、溶融粘度が低いため、射出成形時の成形性に優れる。また、配向複屈折に優れるため、射出成形等で光学部材を得る際に分子配向による複屈折が生じにくい。また、屈折率およびガラス転移温度が高いため、光学部材として好ましい。 Compared to the comparative examples, Examples 5 to 7 of the present invention have a lower melt viscosity, and therefore have excellent moldability during injection molding. In addition, because they have excellent orientation birefringence, birefringence due to molecular orientation is unlikely to occur when obtaining optical components by injection molding, etc. In addition, because they have a high refractive index and glass transition temperature, they are preferable as optical components.

 本発明のポリカーボネート樹脂は、光学材料に用いられ、レンズ、プリズム、光ディスク、透明導電性基板、光カード、シート、フィルム、光ファイバー、光学膜、光学フィルター、ハードコート膜等の光学部材に用いることができ、特に撮像レンズまたはセンシングカメラレンズに有用であり、撮像レンズに極めて有用である。
 
The polycarbonate resin of the present invention is used for optical materials, and can be used for optical members such as lenses, prisms, optical disks, transparent conductive substrates, optical cards, sheets, films, optical fibers, optical films, optical filters, and hard coat films. It is particularly useful for imaging lenses or sensing camera lenses, and is extremely useful for imaging lenses.

Claims (20)

 式(1)及び/又は式(2)で表される単位と、式(3)で表される単位を含み、重量平均分子量Mwが10,000~55,000であるポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000001
(式中、R~R は、それぞれ独立に、水素原子又は炭素原子数1~10の炭化水素基を表す。)
A polycarbonate resin containing a unit represented by formula (1) and/or formula (2) and a unit represented by formula (3), and having a weight average molecular weight Mw of 10,000 to 55,000.
Figure JPOXMLDOC01-appb-C000001
(In the formula, R 1 to R 4 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.)
 前記式(3)中のR~Rが水素原子である請求項1に記載のポリカーボネート樹脂。 2. The polycarbonate resin according to claim 1, wherein R 1 to R 4 in the formula (3) are hydrogen atoms.  前記式(1)及び/又は式(2)で表される単位と、前記式(3)で表される単位のモル比が99:1~1:99である請求項1または2に記載のポリカーボネート樹脂。 The polycarbonate resin according to claim 1 or 2, in which the molar ratio of the units represented by formula (1) and/or formula (2) to the units represented by formula (3) is 99:1 to 1:99.  前記式(1)及び/又は式(2)で表される単位と、前記式(3)で表される単位のモル比が65:35~35:65である請求項3に記載のポリカーボネート樹脂。 The polycarbonate resin according to claim 3, wherein the molar ratio of the units represented by formula (1) and/or formula (2) to the units represented by formula (3) is 65:35 to 35:65.  配向複屈折の絶対値が7.0×10-3以下である請求項1または2に記載のポリカーボネート樹脂。 3. The polycarbonate resin according to claim 1, wherein the absolute value of orientation birefringence is 7.0×10 −3 or less.  光弾性係数が35×10-12Pa未満である請求項1または2に記載のポリカーボネート樹脂。 3. The polycarbonate resin according to claim 1, which has a photoelastic coefficient of less than 35×10 −12 Pa.  式(1)及び/又は式(2)で表される単位を全繰り返し単位中に50モル%以上含み、重量平均分子量Mwが10,000~50,000である請求項1に記載のポリカーボネート樹脂。 The polycarbonate resin according to claim 1, which contains 50 mol % or more of the units represented by formula (1) and/or formula (2) in all repeating units and has a weight average molecular weight Mw of 10,000 to 50,000.  式(3)で表される単位を全繰り返し単位中に0%を超え50モル%以下含む請求項7に記載のポリカーボネート樹脂。 The polycarbonate resin according to claim 7, which contains more than 0% and not more than 50 mol% of the units represented by formula (3) in all repeating units.  前記式(1)及び/又は式(2)で表される単位と、前記式(3)で表される単位のモル比が99:1~50:50である請求項7または8に記載のポリカーボネート樹脂。 The polycarbonate resin according to claim 7 or 8, in which the molar ratio of the units represented by formula (1) and/or formula (2) to the units represented by formula (3) is 99:1 to 50:50.  光弾性係数が25×10-12Pa未満である請求項7または8に記載のポリカーボネート樹脂。 9. The polycarbonate resin according to claim 7, which has a photoelastic coefficient of less than 25×10 −12 Pa.  アッベ数が25.0以上である請求項7または8に記載のポリカーボネート樹脂。 The polycarbonate resin according to claim 7 or 8, which has an Abbe number of 25.0 or more.  式(1)及び/又は式(2)で表される単位を全繰り返し単位中に0%を超え50モル%未満含み、重量平均分子量Mwが10,000~50,000である請求項1に記載のポリカーボネート樹脂。 The polycarbonate resin according to claim 1, which contains more than 0% and less than 50 mol% of units represented by formula (1) and/or formula (2) in all repeating units and has a weight average molecular weight Mw of 10,000 to 50,000.  式(3)で表される単位を全繰り返し単位中に50モル%を超えて含む請求項12に記載のポリカーボネート樹脂。 The polycarbonate resin according to claim 12, which contains more than 50 mol% of the units represented by formula (3) in all repeating units.  前記式(1)及び/又は式(2)で表される単位と、前記式(3)で表される単位のモル比が1:99~49:51である請求項12または13に記載のポリカーボネート樹脂。 The polycarbonate resin according to claim 12 or 13, in which the molar ratio of the units represented by formula (1) and/or formula (2) to the units represented by formula (3) is 1:99 to 49:51.  配向複屈折の絶対値が3.0×10-3以下である請求項12または13に記載のポリカーボネート樹脂。 The polycarbonate resin according to claim 12 or 13, wherein the absolute value of orientation birefringence is 3.0×10 −3 or less.  屈折率ndが1.600以上である請求項12または13に記載のポリカーボネート樹脂。 The polycarbonate resin according to claim 12 or 13, having a refractive index nd of 1.600 or more.  ガラス転移温度が140℃以上である請求項12または13に記載のポリカーボネート樹脂。 The polycarbonate resin according to claim 12 or 13, having a glass transition temperature of 140°C or higher.  請求項1、2、7または12のいずれか一項に記載のポリカーボネート樹脂からなる光学部材。 An optical member made of the polycarbonate resin according to any one of claims 1, 2, 7 and 12.  前記光学部材が撮像レンズまたはセンシングカメラレンズである、請求項18に記載の光学部材。 The optical member according to claim 18, wherein the optical member is an imaging lens or a sensing camera lens.  中心部の厚みが0.05~3.0mmである請求項19に記載の撮像レンズまたはセンシングカメラレンズ。 The imaging lens or sensing camera lens according to claim 19, wherein the thickness of the center portion is 0.05 to 3.0 mm.
PCT/JP2024/014996 2023-04-25 2024-04-15 Polycarbonate resin and optical member using said resin WO2024225099A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023-071249 2023-04-25
JP2023071250 2023-04-25
JP2023-071250 2023-04-25
JP2023071249 2023-04-25

Publications (1)

Publication Number Publication Date
WO2024225099A1 true WO2024225099A1 (en) 2024-10-31

Family

ID=93256382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/014996 WO2024225099A1 (en) 2023-04-25 2024-04-15 Polycarbonate resin and optical member using said resin

Country Status (2)

Country Link
TW (1) TW202506811A (en)
WO (1) WO2024225099A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010318A1 (en) * 2015-07-13 2017-01-19 帝人株式会社 Imaging lens
WO2017175693A1 (en) * 2016-04-05 2017-10-12 三菱瓦斯化学株式会社 Polycarbonate copolymer, optical lens and film in which said polycarbonate copolymer is used, and method for producing said copolymer
WO2018181157A1 (en) * 2017-03-31 2018-10-04 三菱瓦斯化学株式会社 Polycarbonate resin composition and optical lens using same
WO2019044214A1 (en) * 2017-08-30 2019-03-07 帝人株式会社 Thermoplastic resin and optical member
WO2019188702A1 (en) * 2018-03-30 2019-10-03 帝人株式会社 Polycarbonate resin and optical member containing same
WO2020100977A1 (en) * 2018-11-15 2020-05-22 国立大学法人神戸大学 Method for producing carbonate derivative

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010318A1 (en) * 2015-07-13 2017-01-19 帝人株式会社 Imaging lens
WO2017175693A1 (en) * 2016-04-05 2017-10-12 三菱瓦斯化学株式会社 Polycarbonate copolymer, optical lens and film in which said polycarbonate copolymer is used, and method for producing said copolymer
WO2018181157A1 (en) * 2017-03-31 2018-10-04 三菱瓦斯化学株式会社 Polycarbonate resin composition and optical lens using same
WO2019044214A1 (en) * 2017-08-30 2019-03-07 帝人株式会社 Thermoplastic resin and optical member
WO2019188702A1 (en) * 2018-03-30 2019-10-03 帝人株式会社 Polycarbonate resin and optical member containing same
WO2020100977A1 (en) * 2018-11-15 2020-05-22 国立大学法人神戸大学 Method for producing carbonate derivative

Also Published As

Publication number Publication date
TW202506811A (en) 2025-02-16

Similar Documents

Publication Publication Date Title
US11286342B2 (en) Polycarbonate resin, method for producing same, and optical lens
JP7136265B2 (en) Method for producing thermoplastic resin
KR102607476B1 (en) Imaging lens
JP2024026220A (en) Thermoplastic resin and optical components containing it
JP7506173B2 (en) Thermoplastic resin and optical member containing same
EP4559950A1 (en) Thermoplastic resin and optical member
WO2024225099A1 (en) Polycarbonate resin and optical member using said resin
JP7646071B2 (en) Thermoplastic resin and optical member containing same
JP2013001887A (en) Polycarbonate copolymer for optical lens and optical lens comprising the polycarbonate
CN113439099A (en) Polycarbonate resin composition and optical lens using same
TWI881089B (en) Resin composition and optical lens and optical film containing the same
JP6130255B2 (en) Polyester carbonate copolymer
JP2024055310A (en) Thermoplastic resin composition and optical member containing same
WO2023085340A1 (en) Polycarbonate resin, and optical lens and optical film using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24796853

Country of ref document: EP

Kind code of ref document: A1