[go: up one dir, main page]

WO2024224522A1 - Method for producing copper particles - Google Patents

Method for producing copper particles Download PDF

Info

Publication number
WO2024224522A1
WO2024224522A1 PCT/JP2023/016495 JP2023016495W WO2024224522A1 WO 2024224522 A1 WO2024224522 A1 WO 2024224522A1 JP 2023016495 W JP2023016495 W JP 2023016495W WO 2024224522 A1 WO2024224522 A1 WO 2024224522A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
fluid
reducing agent
raw material
solution
Prior art date
Application number
PCT/JP2023/016495
Other languages
French (fr)
Japanese (ja)
Inventor
真衣 吉住
眞一 榎村
Original Assignee
エム・テクニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エム・テクニック株式会社 filed Critical エム・テクニック株式会社
Priority to PCT/JP2023/016495 priority Critical patent/WO2024224522A1/en
Publication of WO2024224522A1 publication Critical patent/WO2024224522A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Definitions

  • the present invention relates to a method for producing copper particles. More specifically, the present invention relates to a method for producing copper particles whose average particle size is controlled within the range of 1 nm to 1000 nm, and a method for controlling the average particle size of copper particles within the range of 1 nm to 1000 nm.
  • metal particles of various particle sizes are required depending on the electronic device and the formation method for which they are intended. Furthermore, when applying metal particles using screen printing, inkjet printing, dispensers, etc., if there is a distribution in the particle sizes of the metal particles used, not only can clogging occur, but wettability with the substrate can deteriorate, resulting in defects during printing, so a uniform particle size is required.
  • Patent Document 1 describes a method for producing copper microparticles by adding a reducing agent to a solvent containing copper oxide as the raw material, a complexing agent, and a protective agent. Impurity ions are removed by subjecting the gelatin used as the protective agent to an enhanced desalting process, and the enhanced desalting gelatin controls the particle shape and prevents particle aggregation, but the desalting process requires several passes using an ion exchange membrane, making the process complicated and increasing production costs.
  • Patent Document 2 describes a method for producing copper powder that is granular in shape and has a particle size of 0.1 ⁇ m to 3.0 ⁇ m. After mixing with a dispersant solution, a reducing agent solution is added at a temperature range of 50°C to 90°C to produce particles with high oxidation resistance. It also states that if the average particle size is less than 0.1 ⁇ m, the particles tend to aggregate and are difficult to form into a paste.
  • Patent Document 3 describes a method for synthesizing copper nanoparticles in an aqueous solution and producing copper nanoparticles that form low wiring resistance. It states that by using ascorbic acid as a reducing agent and antioxidant, the OH group of ascorbic acid adheres to the surface of the copper particles, suppressing the oxidation of copper.
  • a reducing agent other than ascorbic acid may be used in combination, but a follow-up test showed that when hydrazine monohydrate was used as the reducing agent and ascorbic acid was used as the antioxidant, an oxide layer was confirmed on the surface of the generated copper particles when the amount of hydrazine monohydrate added was 10% by weight or more relative to the ascorbic acid, and the antioxidant effect of copper particles was confirmed only when copper ions were reduced with ascorbic acid.
  • ascorbic acid is used as a reducing agent, its reducing power is lower than that of hydrazine monohydrate, and it is difficult to produce copper particles with a small particle size of, for example, 50 nm or less.
  • the object of the present invention is to provide a manufacturing method that can easily and stably produce copper particles with a controlled average particle size using a method suitable for mass production without requiring complex chemical reactions or heat treatment.
  • the average particle size can be controlled by adjusting the oxidation-reduction potential of a copper raw material solution containing copper particle raw materials, and that copper particles with a controlled average particle size can be continuously and stably obtained, thus completing the present invention.
  • a method for producing copper particles having an average particle size in the range of 1 nm to 1000 nm comprising: The method includes a step of mixing at least a first fluid and a second fluid to precipitate copper particles, one of the first fluid and the second fluid is a copper raw material solution containing a raw material of copper particles; the other of the first fluid and the second fluid is a reducing agent solution containing at least one reducing agent; the copper source solution contains at least monovalent copper ions and/or divalent copper ions, a potential difference between an oxidation-reduction potential of the copper raw material solution and an oxidation-reduction potential of the reducing agent solution is set so as to obtain the average particle diameter.
  • a ligand coordinated to a copper ion in the copper source solution is at least one selected from water, a hydroxide ion, ammonia, a halide ion, an amino acid, a phosphine, a carboxylic acid, a thiol, a cyanide ion, a thiocyanide ion, a nitrile, an amine, and ethylenediaminetetraacetic acid;
  • the method according to claim 1 or 2 wherein the redox potential of the copper raw material solution is set by selecting the ligand.
  • the reducing agent is at least one selected from the group consisting of ascorbates, ferrous sulfate, sulfites, hydroxylamine, formic acid, hydroquinone, reducing sugars, aldehydes, tetrahydroborates, hydrazine, and hydrazine compounds;
  • [5] The manufacturing method according to any one of [1] to [4], wherein the mixed liquid obtained by mixing the first fluid and the second fluid contains oxidized ascorbic acid.
  • the oxide layer on the surface of the copper particles is 4 nm or less.
  • One of the copper raw material solution and the reducing agent solution passes between the processing surfaces while forming a thin film fluid; the other of the copper raw material solution and the reducing agent solution is introduced into the space between the processing surfaces through another introduction path independent of the flow path introduced into the space between the processing surfaces, and from an opening formed in at least one of the processing surfaces;
  • a method for controlling the average particle size of copper particles to within a range of 1 nm to 1000 nm comprising: The method includes a step of mixing at least a first fluid and a second fluid to precipitate copper particles, one of the first fluid and the second fluid is a copper raw material solution containing a raw material of copper particles; the other of the first fluid and the second fluid is a reducing agent solution containing at least one reducing agent; the copper source solution contains at least monovalent copper ions and/or divalent copper ions,
  • a control method comprising changing a potential difference between an oxidation-reduction potential of the copper raw material solution and an oxidation-reduction potential of the reducing agent solution.
  • the manufacturing method of the present invention does not require complex chemical reactions or heat treatments, and is suitable for mass production, allowing for the easy and stable production of copper particles with a controlled average particle size.
  • 1 is a schematic cross-sectional view of a fluid treatment arrangement according to an embodiment of the present invention.
  • 2 is a schematic plan view of a first processing surface of the fluid treatment device shown in FIG. 1.
  • 1 is a TEM photograph of copper particles obtained in Example 1 of the present invention.
  • 1 is a TEM photograph of copper particles obtained in Example 9 of the present invention.
  • the method for producing copper particles of the present invention is a method for producing copper particles having an average particle diameter in the range of 1 nm to 1000 nm,
  • the method includes a step of mixing at least a first fluid and a second fluid to precipitate copper particles, one of the first fluid and the second fluid is a copper raw material solution containing a raw material of copper particles; the other of the first fluid and the second fluid is a reducing agent solution containing at least one reducing agent; the copper source solution contains at least monovalent copper ions and/or divalent copper ions,
  • the production method is characterized in that a potential difference between an oxidation-reduction potential of the copper raw material solution and an oxidation-reduction potential of the reducing agent solution is set so as to obtain the average particle diameter.
  • the raw material of the copper particles used in the production method of the present invention is not particularly limited as long as it can supply monovalent copper ions or divalent copper ions in the solution, and examples of the raw material include copper simple substance, oxide, hydroxide, salt, etc. These raw materials of the copper particles may be used alone or in combination.
  • Examples of raw materials for copper particles that supply monovalent copper ions include copper(I) chloride, copper(I) sulfide, and copper(I) oxide.
  • Examples of raw materials for copper particles that supply divalent copper ions include copper(II) oxide, copper(II) chloride, copper(II) sulfate, copper(II) nitrate, copper(II) acetate, copper(II) citrate, copper(II) hydroxide, copper(II) carbonate, and copper(II) sulfide.
  • a copper raw material solution can also be prepared by adding an oxidizing agent or reducing agent to monovalent copper ions and/or divalent copper ions to oxidize or reduce the copper ions. That is, by adding a required amount of oxidizing agent to a solution in which monovalent copper ions have been dissolved, some of the monovalent copper ions can be oxidized and converted to divalent copper ions. By adding a required amount of reducing agent to a solution in which divalent copper ions have been dissolved, some of the divalent copper ions can be reduced and converted to monovalent copper ions.
  • the ligand that coordinates with the copper ions in the copper raw material solution can be at least one selected from the group consisting of water, hydroxide ions, ammonia, halide ions, amino acids, phosphines, carboxylic acids, thiols, cyanide ions, thiocyanide ions, nitriles, amines, ethylenediaminetetraacetic acid, and the like.
  • a raw material containing the ligand can be added to the copper raw material solution.
  • the raw material containing the ligand can be a substance containing chloride ions, such as hydrochloric acid or a salt with chloride ions as the anion.
  • the redox potential of the copper raw material solution can be changed by changing the type and concentration of the ligand.
  • At least the copper particle raw material and the ligand raw material are mixed in a solvent to dissolve or molecularly disperse them, thereby preparing a copper raw material solution.
  • reducing agent and reducing agent solution examples include ascorbic acid salts, ferrous sulfate, sulfite salts, hydroxylamine, formic acid, hydroquinone, reducing sugar, aldehyde, tetrahydroboric acid salts (sodium borohydride, potassium borohydride, etc.), hydrazine, hydrazine compounds, etc., and ascorbic acid salts, hydrazine, and hydrazine compounds are preferred. These may be used alone or in combination.
  • at least the reducing agent can be mixed in a solvent to dissolve or molecularly disperse the reducing agent solution.
  • a basic substance can be mixed in the reducing agent solution.
  • the basic substance include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, metal alkoxides, quaternary ammoniums such as tetramethylammonium hydroxide, ammonia, amines, etc.
  • the solvent is not particularly limited as long as it can dissolve or molecularly disperse the raw material of the copper particles and the reducing agent, and examples thereof include water, organic solvents, and mixed solvents thereof.
  • examples of water include tap water, ion-exchanged water, pure water, ultrapure water, RO water, and the like.
  • organic solvents examples include alcohol solvents such as ethanol, ethylene glycol, and glycerin, ketone solvents such as acetone and 2-butanone, ether solvents such as diethyl ether and tetrahydrofuran, aromatic solvents such as toluene and xylene, amine solvents such as triethylamine and ethylenediamine, amide solvents such as N,N-dimethylformamide, aliphatic hydrocarbon solvents such as hexane and liquid paraffin, nitrile solvents such as acetonitrile, sulfoxide solvents such as dimethyl sulfoxide, halogen-based solvents such as dichloromethane, ester solvents such as ethyl acetate and ethylene glycol monoethyl ether acetate, carboxylic acid solvents such as acetic acid and propionic acid, aprotic polar solvents such as carbon disulfide and N-methyl-2-pyrrolidon
  • Each of the solvents may be used alone, or a plurality of solvents may be used in combination. From the viewpoint of the solubility of the copper particle raw material and the reducing agent, it is preferable to prepare the copper raw material solution and the reducing agent solution using an alcohol solvent or a mixed solvent of water and an alcohol solvent.
  • Additives such as oxidizing agents or reducing agents for changing the valence of copper ions in the copper raw material solution, acidic or basic substances or their salts for adjusting the pH or ion concentration, surface protective agents for preventing particle aggregation, surfactants, dispersants, etc. can be added to the solvent as needed.
  • acidic substances include inorganic acids such as aqua regia, hydrochloric acid, nitric acid, fuming nitric acid, sulfuric acid, and fuming sulfuric acid, and organic acids such as formic acid, acetic acid, chloroacetic acid, dichloroacetic acid, oxalic acid, trifluoroacetic acid, and trichloroacetic acid.
  • Surface protective agents, surfactants, and dispersants can be various commonly used commercial products, products, or newly synthesized products. Examples include dispersants such as anionic surfactants, cationic surfactants, nonionic surfactants, and various polymers. These may be used alone or in combination of two or more. Surface protective agents, surfactants, and dispersants may be contained in either the copper raw material solution or the reducing agent solution, or both.
  • the apparatus for preparing the copper raw material solution or the reducing agent solution is preferably an apparatus that realizes homogeneous mixing by applying a shear force to the fluid, such as an apparatus that rotates stirrers of various shapes such as rod-shaped, plate-shaped, propeller-shaped, etc. in a tank, an apparatus equipped with a screen that rotates relative to the stirrers, etc.
  • a rotary disperser the stirrer disclosed in Japanese Patent No. 5147091 can be used.
  • the rotary dispersing machine may be of a batch type or a continuous type.
  • the supply and discharge of fluid to the stirring tank may be performed continuously, or a continuous mixer may be used without using a stirring tank, and the stirring energy can be appropriately controlled using a known stirrer or stirring means.
  • the stirring energy is described in detail in JP 4-114725 by the applicant of the present application.
  • the stirring method in the present invention is not particularly limited, but can be performed using various shear type, friction type, high pressure jet type, ultrasonic type stirrers, dissolvers, emulsifiers, dispersers, homogenizers, etc.
  • Examples include continuous emulsifiers such as Ultra Turrax (IKA), Polytron (Kinematica), TK Homomixer (Primix), Ebara Milder (Ebara Corporation), TK Homomic Lineflow (Primix), Colloid Mill (Kobe Steel Pantech), Thrasher (Nippon Coke Industrial Co., Ltd.), Trigonal Wet Fine Mill (Mitsui Miike Chemical Engineering Co., Ltd.), Cavitron (Eurotech), and Fine Flow Mill (Pacific Ocean Machinery Co., Ltd.), and batch or continuous dual-use emulsifiers such as Clearmix (M Technique), Clearmix Dissolver (M Technique), and Filmix (Primix).
  • Clearmix M Technique
  • Clearmix Dissolver M Technique
  • Filmix Principal Organic Materials
  • the copper raw material solution and the reducing agent solution can be mixed by a known method such as a batch type in a beaker or tank, a tubular reactor, or a continuous type in which a reaction is performed in a microreactor.
  • a fluid treatment device that can contact and mix at least two types of fluids to be treated between at least two processing surfaces, at least one of which rotates relative to the other, as described in JP 2011-189348 A shown in Figs. 1 and 2, specifically, a device similar to the forced thin film microreactor ULREA manufactured by M Technique Co., Ltd.
  • the number of types of fluids to be treated and the number of flow paths used in the fluid treatment device are two in the example of Fig. 1, they may be three or more.
  • the shape, size, and number of the introduction openings provided in each processing part are not particularly limited and may be appropriately changed.
  • the shape of the opening d20 may be a concentric annular shape surrounding the central opening of the processing surface 2, which is a ring-shaped disk, and the annular opening may be continuous or discontinuous.
  • An introduction opening may be provided immediately before the first and second processing surfaces 1 and 2 or further upstream.
  • the average particle size of the copper particles produced by the production method of the present invention can be controlled by setting the redox potential of the copper raw material solution.
  • the redox potential of the copper raw material solution can be changed by changing the molar concentration ratio of monovalent copper ions to the total copper ions in the copper raw material solution ([Cu + ]/([Cu + ]+[Cu 2+ ])) or by selecting a ligand that coordinates to the copper ions in the copper raw material solution.
  • One of the reasons for the change in the average particle size is thought to be due to the free energy and reaction rate of each copper ion.
  • the free energy of each copper ion is correlated with the redox potential.
  • the free energy in the actual reaction system changes not only depending on the valence of the ion, but also depending on the ligand, the concentration in the solution, and other coexisting compounds.
  • the driving force of the reduction reaction increases as the potential difference between the redox potential of the copper raw material solution and the redox potential of the reducing agent solution increases, so the reaction rate increases, and a large number of crystal nuclei of copper particles are generated, which reduces the copper raw material concentration near the crystal nuclei and produces a small amount of copper particles.
  • the potential difference between Cu 2+ /Cu + is +0.56 V at the standard hydrogen electrode potential, and the potential difference between Cu + /Cu is +0.12 V, and the particle size is smaller when copper particles are produced from a Cu(II) solution.
  • the redox potentials obtained from the standard free energy of formation of Cu(NH 3 ) 4 2+ ions and Cu(NH 3 ) 2+ ions are -0.028 V and -0.100 V, respectively, and it was expected that the copper particles from the Cu(II) ammine complex would be smaller because the redox potential of the Cu(NH 3 ) 4 2+ ion is more noble, but the particle sizes obtained in the examples implemented this time were 185.3 nm and 59.6 nm, respectively, which is the opposite of the prediction.
  • the standard free energy of formation in the literature is a value in an aqueous solution
  • the embodiment uses a mixed solvent of ethylene glycol and water, so the coordination state of the copper ions is different from that in the case of water alone. Accordingly, it is considered that the standard free energy of formation in pure water has changed to the standard free energy of formation in ethylene glycol and pure water, and it is presumed that the oxidation-reduction potential is different from that in an aqueous solution.
  • the potential of the ORP meter reflecting the oxidation-reduction potential of the copper raw material solution is more noble than that of the Cu(I) ammine complex, and it is predicted that the driving force of the reduction reaction to copper particles is greater when the Cu(I) ammine complex is used than when the Cu(II) ammine complex is used, and the experimental results actually support this. For this reason, it is considered that the potential of the ORP meter reflecting the oxidation-reduction potential of the copper raw material solution replaces the oxidation-reduction potential of the copper raw material solution being used, and in the present invention, the particle size control of copper can also be performed based on the potential of the copper raw material solution measured by the ORP meter.
  • the reference electrode for the ORP meter is an Ag/AgCl (KCl saturated) electrode, and this electrode potential is +0.199 V nobler than the standard hydrogen electrode that is often used in the literature, so conversion is necessary when comparing with literature values.
  • the pH during the reaction can be adjusted by controlling the concentrations of the copper particle raw material, basic substance, acidic substance, etc. contained in the copper raw material solution and the reducing agent solution, and the introduction flow rates of the copper raw material solution and the reducing agent solution. Since the reduction reaction of most reducing agents proceeds well under alkaline conditions, the pH during the reaction is preferably 7 to 14, more preferably 8 to 13.
  • the oxidation-reduction potential of the reducing agent solution can also be changed by selecting a reducing agent.
  • the molar concentration ratio ([e - ]/([Cu + ]+2 ⁇ [Cu 2+ ])) of the electron donating amount of the reducing agent in the reducing agent solution to the amount of electrons required to reduce the copper ions in the copper raw material solution to metallic copper is preferably 1 or more and 100 or less, and more preferably 1.5 or more and 50 or less.
  • Oxidized ascorbic acid is generated by the oxidation of ascorbic acid when copper ions are reduced by using ascorbic acids as a reducing agent, and when other reducing agents are used and oxidized ascorbic acid is not generated, oxidized ascorbic acid can be added to the copper raw material solution and/or the reducing agent solution in advance to make it present in the system.
  • FT-IR confirmed that oxidized ascorbic acid such as dehydroascorbic acid is bonded to copper on the surface of the particles obtained under the above conditions, and oxidation hardly progresses even when stored under air, allowing stable storage.
  • the copper particles produced by the production method of the present invention can be washed as necessary.
  • the washing method there is no particular limitation on the washing method, and various known methods such as decantation, centrifugation, and filtration can be used.
  • the washing solvent a solvent capable of dissolving the inorganic salt, which is a by-product, can be used, and examples thereof include alcohols such as methanol, pure water, and ion-exchanged water. From the viewpoint of preventing oxidation of the copper particles, alcohols are preferred, and deoxygenated alcohols are more preferred.
  • At least one selected from the group consisting of the temperature of the first fluid, the temperature of the second fluid, and the temperature of the mixed fluid obtained by mixing the first fluid and the second fluid is 100°C or higher.
  • This at least one temperature is more preferably 110 to 250°C, and even more preferably 120 to 200°C.
  • the manufacturing method of the present invention makes it possible to manufacture copper particles with a controlled particle size in a simple and stable manner, in a manner suitable for mass production.
  • the method for controlling the average particle size of copper particles of the present invention is a method for controlling the average particle size of copper particles to within a range of 1 nm to 1000 nm,
  • the method includes a step of mixing at least a first fluid and a second fluid to precipitate copper particles, one of the first fluid and the second fluid is a copper raw material solution containing a raw material of copper particles; the other of the first fluid and the second fluid is a reducing agent solution containing at least one reducing agent; the copper source solution contains at least monovalent copper ions and/or divalent copper ions,
  • the control method is characterized by changing the oxidation-reduction potential of the copper raw material solution.
  • the average particle size of the copper particles can be controlled by referring to the description of the above-mentioned method for producing copper particles.
  • liquid A refers to the first treated fluid introduced from the first introduction part d1 of the device shown in Figure 1
  • liquid B refers to the second treated fluid introduced from the second introduction part d2 of the device.
  • Example 1 A copper source solution and a reducing agent solution were each prepared using a Clearmix (product name: CLM-0.8S, manufactured by M Technique), which is a high-speed rotary dispersion and emulsification device. Specifically, argon was flowed into the solvent in advance to perform bubbling for 1 hour, and the solvent was deoxidized. Based on the formulation of the copper raw material solution shown in Example 1 of Table 1, the copper particle raw material, the solvent, and the additive were mixed, and the mixture was homogeneously mixed by stirring for 30 minutes at a rotor speed of 20,000 rpm using Clearmix at an argon atmosphere and a preparation temperature of 50 ° C., and the copper particle raw material and the additive were dissolved in the solvent to prepare a copper raw material solution.
  • a Clearmix product name: CLM-0.8S, manufactured by M Technique
  • Example 1 of Table 1 based on the formulation of the reducing agent solution shown in Example 1 of Table 1, the reducing agent, the basic substance, and the solvent were mixed, and the mixture was homogeneously mixed by stirring for 30 minutes at a rotor speed of 15,000 rpm using Clearmix at an argon atmosphere and a preparation temperature of 45 ° C., to prepare a reducing agent solution.
  • the prepared copper raw material solution and the reducing agent solution were mixed in the fluid treatment device shown in FIG. 1 under the treatment conditions shown in Table 1.
  • the copper raw material solution was introduced between the treatment surfaces as the first fluid to be treated (liquid A) from the first inlet d1 of the fluid treatment device shown in FIG. 1, and while the treatment unit 10 was operated at a rotation speed of 2000 rpm, the reducing agent solution was introduced between the treatment surfaces 1 and 2 as the second fluid to be treated (liquid B) from the second inlet d2 of the fluid treatment device shown in FIG. 1, and mixed in the thin film fluid.
  • Copper particles were precipitated between the treatment surfaces 1 and 2, and a discharge liquid containing the copper particles was discharged from between the treatment surfaces 1 and 2 of the fluid treatment device.
  • the discharge liquid containing the copper particles was collected in a beaker b via a vessel v.
  • the introduction temperatures (liquid delivery temperatures) of liquid A and liquid B were measured using a thermometer installed in the sealed introduction path (first introduction part d1 and second introduction part d2) that leads between the processing surfaces 1 and 2.
  • the introduction temperature of liquid A shown in Table 1 is the actual temperature of liquid A in the first introduction part d1
  • the introduction temperature of liquid B is the actual temperature of liquid B in the second introduction part d2.
  • the pH of the treated fluids and the temperature at the time of pH measurement were measured.
  • the copper particle dispersion discharged from the device and collected in beaker b was measured at room temperature.
  • a dry powder and a wet cake sample were prepared from the discharged liquid containing the copper particles collected in beaker b.
  • the preparation method was performed according to a known method, specifically, the discharged liquid containing the copper particles was collected by centrifugation, the copper particles were allowed to settle and the supernatant liquid was removed, and then the copper particles were washed by repeating washing and settling twice with methanol deoxygenated by argon flow, and a part of the finally obtained wet cake of copper particles was dried to make a dry powder. The other was used as a wet cake sample.
  • Example 2 (Preparation of sample for TEM observation) A part of the wet cake sample of the copper particles after the washing treatment obtained in Example 1 was dispersed in methanol. The obtained dispersion was dropped onto a grid with a supporting film and dried to prepare a sample for TEM observation.
  • the transmission electron microscope JEM-2100 (manufactured by JEOL) was used for the transmission electron microscope (TEM) observation.
  • the observation conditions were an acceleration voltage of 200 kV and an observation magnification of 10,000 to 500,000 times.
  • the average particle size (D) is the average value of the primary particle size, and is the average value of the results of measuring the particle sizes of 100 particles by TEM observation.
  • the thickness of the oxide layer on the particle surface was measured under the condition of an observation magnification of 500,000 times.
  • X-ray diffraction measurement For the X-ray diffraction (XRD) measurement, an EMPYREAN powder X-ray diffraction measuring device (manufactured by Malvern Panalytical) was used. The measurement conditions were: measurement range: 10 to 100 [°2Theta] Cu anticathode, tube voltage: 45 kV, tube current: 40 mA, and scanning speed: 0.3°/min.
  • Example 2 to 13 In Examples 2 to 13, similarly to Example 1, the copper source solution and the reducing agent solution were mixed in accordance with the respective formulations and treatment conditions shown in Table 1, and particles were precipitated between the treatment surfaces 1 and 2. Dry powder and wet cake samples were prepared from the discharged liquid containing copper particles that was discharged from the fluid treatment device and recovered in a beaker b via a vessel v, and TEM observation and XRD measurement were performed in the same manner as in Example 1.
  • Comparative Example 1 In Comparative Example 1, except that sodium ascorbate was omitted from the reducing agent solution, the copper raw material solution and the reducing agent solution were mixed in the same manner as in Example 1 under the respective formulations and treatment conditions shown in Table 6, and particles were precipitated between the treatment surfaces 1 and 2.
  • a dry powder and a wet cake sample were prepared from the discharged liquid containing copper particles that was discharged from the fluid treatment device and recovered in a beaker b via a vessel v, and TEM observation and XRD measurement were performed in the same manner as in Example 1.
  • Comparative Example 1 The measurement results for Comparative Example 1 are shown in Table 2.
  • the thickness of the oxide layer on the particle surface was 5.6 nm.
  • XRD measurement confirmed the copper diffraction pattern and the cuprous oxide diffraction pattern, confirming that the particles were partially oxidized.
  • the manufacturing method of the present invention makes it possible to easily produce copper particles with a controlled average particle size.
  • the manufacturing method of the present invention does not require complex chemical reactions or heat treatments, and is suitable for mass production, allowing for the easy and stable production of copper particles with a controlled average particle size.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

The present application provides a method for producing copper particles having an average particle diameter within the range of 1 nm to 1,000 nm, the method being characterized by comprising a step of mixing at least a first fluid and a second fluid to precipitate copper particles, wherein one of the first fluid and the second fluid is a copper raw material solution containing a raw material of the copper particles, the other of the first fluid and the second fluid is a reducing agent solution containing at least one kind of reducing agent, the copper raw material solution contains monovalent copper ions and/or divalent copper ions, and the oxidation-reduction potential of the copper raw material solution is set so that the average particle diameter is achieved. According to this production method, copper particles having a controlled average particle diameter can be supplied easily and stably by using a method suitable for large-scale production without requiring a complex chemical reaction or a heat treatment.

Description

銅粒子の製造方法Manufacturing method of copper particles

 本発明は、銅粒子の製造方法に関する。より詳細には、本発明は、平均粒子径が1nm~1000nmの範囲内で制御された銅粒子の製造方法、及び銅粒子の平均粒子径を1nm~1000nmの範囲内で制御する方法に関する。 The present invention relates to a method for producing copper particles. More specifically, the present invention relates to a method for producing copper particles whose average particle size is controlled within the range of 1 nm to 1000 nm, and a method for controlling the average particle size of copper particles within the range of 1 nm to 1000 nm.

 近年、電子機器の基板における配線や電極を形成する材料として金属粒子を分散した導電性ペーストが使用されている。金属粒子には高い導電性を示す銀が主に使用されているが、銀は高価であり、更にマイグレーションの問題がある。そのため、銅を使用する検討が多くなされているが、微粒化することで質量に対する表面積が多くなるため、銅粒子が酸化しやすいという問題がある。 In recent years, conductive pastes with dispersed metal particles have been used as materials for forming wiring and electrodes on the substrates of electronic devices. Silver, which has high conductivity, is the most commonly used metal particle, but it is expensive and has migration issues. For this reason, there has been much consideration of using copper, but the problem is that the copper particles are prone to oxidation because the surface area relative to the mass increases when the particles are atomized.

 配線や電極は目的とする電子機器及び形成方法により各種粒子径の金属粒子が求められている。更にスクリーン印刷、インクジェット印刷、ディスペンサーなどを用いて金属微粒子を塗布する場合、使用する金属微粒子の粒子径に分布があると、詰まりなどが発生する恐れがあるだけでなく基板との濡れ性が悪化し、印刷時に欠陥などが発生する可能性があるため、粒度が揃っていることが要求される。 For wiring and electrodes, metal particles of various particle sizes are required depending on the electronic device and the formation method for which they are intended. Furthermore, when applying metal particles using screen printing, inkjet printing, dispensers, etc., if there is a distribution in the particle sizes of the metal particles used, not only can clogging occur, but wettability with the substrate can deteriorate, resulting in defects during printing, so a uniform particle size is required.

 特許文献1には、銅酸化物を原料に錯化剤と保護剤とを加えた溶媒に還元剤を添加することで銅微粒子を生成させる方法が記載されている。保護剤として使用しているゼラチンに強化脱塩処理を行うことで不純物イオンを除去しており、強化脱塩ゼラチンにより、粒形の制御と粒子の凝集防止を行っているが、前記脱塩処理はイオン交換膜を使用した処理を数回実施するため、工程が煩雑になり、製造コストが増加する要因となる。 Patent Document 1 describes a method for producing copper microparticles by adding a reducing agent to a solvent containing copper oxide as the raw material, a complexing agent, and a protective agent. Impurity ions are removed by subjecting the gelatin used as the protective agent to an enhanced desalting process, and the enhanced desalting gelatin controls the particle shape and prevents particle aggregation, but the desalting process requires several passes using an ion exchange membrane, making the process complicated and increasing production costs.

 特許文献2には、形状が粒状で粒径が0.1μm~3.0μmである銅粉の製造方法が記載されている。分散剤溶液を混合した後、50℃以上90℃以下の範囲で還元剤溶液を添加することで耐酸化性の高い粒子を製造している。また、平均粒径が0.1μm未満であると粒子が凝集し易くなり、ペースト化しにくくなることが述べられている。 Patent Document 2 describes a method for producing copper powder that is granular in shape and has a particle size of 0.1 μm to 3.0 μm. After mixing with a dispersant solution, a reducing agent solution is added at a temperature range of 50°C to 90°C to produce particles with high oxidation resistance. It also states that if the average particle size is less than 0.1 μm, the particles tend to aggregate and are difficult to form into a paste.

 特許文献3には、水溶液中で銅ナノ粒子を合成し、低い配線抵抗を形成するための銅ナノ粒子の製造方法が記載されている。 還元剤及び抗酸化物質としてアスコルビン酸を用いることで銅粒子表面にアスコルビン酸のOH基が付着し、銅の酸化を抑制していると述べられている。アスコルビン酸と異なる還元剤を併用してもよいと記載があるが、追試を行ったところ還元剤としてヒドラジン一水和物を使用し、抗酸化物質としてアスコルビン酸を用いた場合、ヒドラジン一水和物の添加量がアスコルビン酸に対して10重量%以上になると生成した銅粒子表面に酸化物層が確認されており、実質、アスコルビン酸で銅イオンを還元した場合にのみ銅粒子の酸化防止効果が確認されている。アスコルビン酸を還元剤に使用した場合、ヒドラジン一水和物などと比べ還元力が低いため、例えば50nm以下の小さな粒子径の銅粒子を製造することは難しい。 Patent Document 3 describes a method for synthesizing copper nanoparticles in an aqueous solution and producing copper nanoparticles that form low wiring resistance. It states that by using ascorbic acid as a reducing agent and antioxidant, the OH group of ascorbic acid adheres to the surface of the copper particles, suppressing the oxidation of copper. It states that a reducing agent other than ascorbic acid may be used in combination, but a follow-up test showed that when hydrazine monohydrate was used as the reducing agent and ascorbic acid was used as the antioxidant, an oxide layer was confirmed on the surface of the generated copper particles when the amount of hydrazine monohydrate added was 10% by weight or more relative to the ascorbic acid, and the antioxidant effect of copper particles was confirmed only when copper ions were reduced with ascorbic acid. When ascorbic acid is used as a reducing agent, its reducing power is lower than that of hydrazine monohydrate, and it is difficult to produce copper particles with a small particle size of, for example, 50 nm or less.

特開2012-241213号JP 2012-241213 A 特開2017-137530号JP 2017-137530 A 特開2017-71816号JP 2017-71816 A

 昨今の需要から銅粒子の平均粒子径を精密に制御すること、簡便に安定して得ることが求められている。しかし、前記のように従来技術ではその要求を満足に満たすことは難しかった。
 本発明の課題は、上記状況を鑑み、複雑な化学反応や熱処理を必要とせず、大量生産に適した方法で、平均粒子径が制御された銅粒子を簡便に安定して得ることができる製造方法を提供することにある。
In response to recent demand, there is a demand to precisely control the average particle size of copper particles and to obtain them easily and stably, but as described above, it has been difficult to satisfy these demands using conventional techniques.
In view of the above circumstances, the object of the present invention is to provide a manufacturing method that can easily and stably produce copper particles with a controlled average particle size using a method suitable for mass production without requiring complex chemical reactions or heat treatment.

 本発明者らは上記課題を解決するべく鋭意検討した結果、銅粒子の原料を含む銅原料溶液の酸化還元電位を調整することで平均粒子径を制御することができ、平均粒子径が制御された銅粒子を連続的に安定して得ることができることを見出して本発明を完成した。 As a result of intensive research conducted by the inventors to solve the above problems, they discovered that the average particle size can be controlled by adjusting the oxidation-reduction potential of a copper raw material solution containing copper particle raw materials, and that copper particles with a controlled average particle size can be continuously and stably obtained, thus completing the present invention.

 [1] 1nm~1000nmの範囲内の平均粒子径を有する銅粒子の製造方法であって、
 少なくとも第1の流体と第2の流体とを混合させて銅粒子を析出させる工程を含み、
 第1の流体と第2の流体の一方が、銅粒子の原料を含む銅原料溶液であり、
 第1の流体と第2の流体の他方が、少なくとも1種類以上の還元剤を含む還元剤溶液であり、
 前記銅原料溶液は少なくとも1価の銅イオン及び/又は2価の銅イオンを含み、
 前記平均粒子径になるように、前記銅原料溶液の酸化還元電位と前記還元剤溶液の酸化還元電位との電位差を設定することを特徴とする、製造方法。
[1] A method for producing copper particles having an average particle size in the range of 1 nm to 1000 nm, comprising:
The method includes a step of mixing at least a first fluid and a second fluid to precipitate copper particles,
one of the first fluid and the second fluid is a copper raw material solution containing a raw material of copper particles;
the other of the first fluid and the second fluid is a reducing agent solution containing at least one reducing agent;
the copper source solution contains at least monovalent copper ions and/or divalent copper ions,
a potential difference between an oxidation-reduction potential of the copper raw material solution and an oxidation-reduction potential of the reducing agent solution is set so as to obtain the average particle diameter.

 [2] 前記銅原料溶液中の全銅イオンに対する1価の銅イオンのモル濃度比([Cu]/([Cu]+[Cu2+]))を調整することで前記銅原料溶液の酸化還元電位を設定する、[1]に記載の製造方法。
 [3] 前記銅原料溶液中の銅イオンに配位する配位子が、水、水酸化物イオン、アンモニア、ハロゲン化物イオン、アミノ酸、ホスフィン類、カルボン酸、チオール、シアン化物イオン、チオシアン化物イオン、ニトリル類、アミン類、及びエチレンジアミン四酢酸から選択される少なくとも1つであり、
 前記配位子を選択することで前記銅原料溶液の酸化還元電位を設定する、[1]又は[2]に記載の製造方法。
[2] The production method according to [1], wherein an oxidation-reduction potential of the copper source solution is set by adjusting a molar concentration ratio ([Cu + ]/([Cu + ]+[Cu 2+ ])) of monovalent copper ions to total copper ions in the copper source solution.
[3] a ligand coordinated to a copper ion in the copper source solution is at least one selected from water, a hydroxide ion, ammonia, a halide ion, an amino acid, a phosphine, a carboxylic acid, a thiol, a cyanide ion, a thiocyanide ion, a nitrile, an amine, and ethylenediaminetetraacetic acid;
The method according to claim 1 or 2, wherein the redox potential of the copper raw material solution is set by selecting the ligand.

 [4] 前記還元剤がアスコルビン酸塩類、硫酸第一鉄、亜硫酸塩類、ヒドロキシルアミン、ギ酸、ヒドロキノン、還元糖、アルデヒド、テトラヒドロほう酸類、ヒドラジン、及びヒドラジン化合物から選択される少なくとも1つであり、
 前記還元剤を選択することで前記還元剤溶液の酸化還元電位を設定する、[1]~[3]のいずれかに記載の製造方法。
 [5] 前記第1の流体と前記第2の流体とを混合後の混合液中に酸化型アスコルビン酸が含まれる、[1]~[4]のいずれかに記載の製造方法。
 [6] 前記銅粒子の表面の酸化物層が4nm以下である、[1]~[5]のいずれかに記載の製造方法。
[4] The reducing agent is at least one selected from the group consisting of ascorbates, ferrous sulfate, sulfites, hydroxylamine, formic acid, hydroquinone, reducing sugars, aldehydes, tetrahydroborates, hydrazine, and hydrazine compounds;
The manufacturing method according to any one of [1] to [3], wherein the redox potential of the reducing agent solution is set by selecting the reducing agent.
[5] The manufacturing method according to any one of [1] to [4], wherein the mixed liquid obtained by mixing the first fluid and the second fluid contains oxidized ascorbic acid.
[6] The method according to any one of [1] to [5], wherein the oxide layer on the surface of the copper particles is 4 nm or less.

 [7] 前記銅原料溶液と前記還元剤溶液を含む少なくとも2つの被処理流体を、対向して配設された接近離反可能な相対的に回転する処理用面間に連続的に導入し、
 対向して配設された接近離反可能な相対的に回転する処理用面間で前記少なくとも2つの被処理流体を混合させることで銅粒子を析出させ、
 前記析出した銅粒子を含む混合流体を前記処理用面間から吐出させて連続的に銅粒子を製造する、[1]~[6]のいずれかに記載の製造方法。
 [8] 前記銅原料溶液と前記還元剤溶液の一方が、薄膜流体を形成しながら前記処理用面間を通過し、
 前記銅原料溶液と前記還元剤溶液の他方が、前記処理用面間に導入される流路とは独立した他の導入路を経て、前記処理用面の少なくともいずれか一方に形成された開口部から前記処理用面間に導入され、
 前記銅原料溶液と前記還元剤溶液が前記処理用面間で混合される、[7]に記載の製造方法。
[7] Continuously introducing at least two fluids to be treated, including the copper raw material solution and the reducing agent solution, between processing surfaces that are disposed opposite to each other and rotate relatively and are capable of approaching and separating from each other;
mixing the at least two fluids to be treated between processing surfaces disposed opposite to each other and rotating relatively to each other so as to be able to approach and separate from each other, thereby precipitating copper particles;
The method according to any one of [1] to [6], wherein a mixed fluid containing the precipitated copper particles is discharged from between the processing surfaces to continuously produce copper particles.
[8] One of the copper raw material solution and the reducing agent solution passes between the processing surfaces while forming a thin film fluid;
the other of the copper raw material solution and the reducing agent solution is introduced into the space between the processing surfaces through another introduction path independent of the flow path introduced into the space between the processing surfaces, and from an opening formed in at least one of the processing surfaces;
The method according to [7], wherein the copper source solution and the reducing agent solution are mixed between the processing surfaces.

 [9] 銅粒子の平均粒子径を1nm~1000nmの範囲内で制御する方法であって、
 少なくとも第1の流体と第2の流体とを混合させて銅粒子を析出させる工程を含み、
 第1の流体と第2の流体の一方が、銅粒子の原料を含む銅原料溶液であり、
 第1の流体と第2の流体の他方が、少なくとも1種類以上の還元剤を含む還元剤溶液であり、
 前記銅原料溶液は少なくとも1価の銅イオン及び/又は2価の銅イオンを含み、
 前記銅原料溶液の酸化還元電位と前記還元剤溶液の酸化還元電位との電位差を変化させることを特徴とする、制御方法。
[9] A method for controlling the average particle size of copper particles to within a range of 1 nm to 1000 nm, comprising:
The method includes a step of mixing at least a first fluid and a second fluid to precipitate copper particles,
one of the first fluid and the second fluid is a copper raw material solution containing a raw material of copper particles;
the other of the first fluid and the second fluid is a reducing agent solution containing at least one reducing agent;
the copper source solution contains at least monovalent copper ions and/or divalent copper ions,
A control method comprising changing a potential difference between an oxidation-reduction potential of the copper raw material solution and an oxidation-reduction potential of the reducing agent solution.

 本発明の製造方法によって、複雑な化学反応や熱処理を必要とせず、大量生産に適した方法で、平均粒子径が制御された銅粒子を簡便に安定して製造することができる。 The manufacturing method of the present invention does not require complex chemical reactions or heat treatments, and is suitable for mass production, allowing for the easy and stable production of copper particles with a controlled average particle size.

本発明の実施態様に係る流体処理装置の略断面図である。1 is a schematic cross-sectional view of a fluid treatment arrangement according to an embodiment of the present invention. 図1に示す流体処理装置の第1処理用面の略平面図である。2 is a schematic plan view of a first processing surface of the fluid treatment device shown in FIG. 1. 本発明の実施例1で得られた銅粒子のTEM写真である。1 is a TEM photograph of copper particles obtained in Example 1 of the present invention. 本発明の実施例9で得られた銅粒子のTEM写真である。1 is a TEM photograph of copper particles obtained in Example 9 of the present invention.

 以下に、本発明の実施態様の一例をとりあげて説明する。
1.銅粒子の製造方法
 本発明の銅粒子の製造方法は、1nm~1000nmの範囲内の平均粒子径を有する銅粒子の製造方法であって、
 少なくとも第1の流体と第2の流体とを混合させて銅粒子を析出させる工程を含み、
 第1の流体と第2の流体の一方が、銅粒子の原料を含む銅原料溶液であり、
 第1の流体と第2の流体の他方が、少なくとも1種類以上の還元剤を含む還元剤溶液であり、
 前記銅原料溶液は少なくとも1価の銅イオン及び/又は2価の銅イオンを含み、
 前記平均粒子径になるように、前記銅原料溶液の酸化還元電位と前記還元剤溶液の酸化還元電位との電位差を設定することを特徴とする、製造方法である。
An example of an embodiment of the present invention will be described below.
1. Method for producing copper particles The method for producing copper particles of the present invention is a method for producing copper particles having an average particle diameter in the range of 1 nm to 1000 nm,
The method includes a step of mixing at least a first fluid and a second fluid to precipitate copper particles,
one of the first fluid and the second fluid is a copper raw material solution containing a raw material of copper particles;
the other of the first fluid and the second fluid is a reducing agent solution containing at least one reducing agent;
the copper source solution contains at least monovalent copper ions and/or divalent copper ions,
The production method is characterized in that a potential difference between an oxidation-reduction potential of the copper raw material solution and an oxidation-reduction potential of the reducing agent solution is set so as to obtain the average particle diameter.

(銅粒子の原料及び銅原料溶液の調製)
 本発明の製造方法で用いられる銅粒子の原料は、溶液中で1価の銅イオン又は2価の銅イオンを供給できるものであれば特に限定されず、銅の単体、酸化物、水酸化物、塩等が挙げられる。これらの銅粒子の原料は単独で使用してもよく、あるいは複数を併用してもよい。
(Preparation of copper particle raw material and copper raw material solution)
The raw material of the copper particles used in the production method of the present invention is not particularly limited as long as it can supply monovalent copper ions or divalent copper ions in the solution, and examples of the raw material include copper simple substance, oxide, hydroxide, salt, etc. These raw materials of the copper particles may be used alone or in combination.

 1価の銅イオンを供給する銅粒子の原料としては、例えば、塩化銅(I)、硫化銅(I)、酸化銅(I)等が挙げられる。
 2価の銅イオンを供給する銅粒子の原料としては、例えば、酸化銅(II)、塩化銅(II)、硫酸銅(II)、硝酸銅(II)、酢酸銅(II)、クエン酸銅(II)、水酸化銅(II)、炭酸銅(II)、硫化銅(II)等が挙げられる。
Examples of raw materials for copper particles that supply monovalent copper ions include copper(I) chloride, copper(I) sulfide, and copper(I) oxide.
Examples of raw materials for copper particles that supply divalent copper ions include copper(II) oxide, copper(II) chloride, copper(II) sulfate, copper(II) nitrate, copper(II) acetate, copper(II) citrate, copper(II) hydroxide, copper(II) carbonate, and copper(II) sulfide.

 1価の銅イオン及び/又は2価の銅イオンに酸化剤若しくは還元剤を添加して銅イオンを酸化若しくは還元することで、銅原料溶液を調製することもできる。すなわち、1価の銅イオンを溶解した液に必要量の酸化剤を加えることで、1価の銅イオンの一部を酸化して2価の銅イオンに変えることができる。2価の銅イオンを溶解した液に必要量の還元剤を加えることで2価の銅イオンの一部を還元して1価の銅イオンに変えることができる。 A copper raw material solution can also be prepared by adding an oxidizing agent or reducing agent to monovalent copper ions and/or divalent copper ions to oxidize or reduce the copper ions. That is, by adding a required amount of oxidizing agent to a solution in which monovalent copper ions have been dissolved, some of the monovalent copper ions can be oxidized and converted to divalent copper ions. By adding a required amount of reducing agent to a solution in which divalent copper ions have been dissolved, some of the divalent copper ions can be reduced and converted to monovalent copper ions.

 銅原料溶液中の銅イオンに配位する配位子として、例えば、水、水酸化物イオン、アンモニア、ハロゲン化物イオン、アミノ酸、ホスフィン類、カルボン酸、チオール、シアン化物イオン、チオシアン化物イオン、ニトリル類、アミン類、エチレンジアミン四酢酸等から選択される少なくとも1つが挙げられる。配位子を配位させるために、前記配位子を含む原料を銅原料溶液に添加することができる。前記配位子を含む原料は、例として塩化物イオンを配位させる場合は塩化物イオンを含む物質として、塩酸や塩化ナトリウムなどの塩化物イオンをアニオンとする塩が挙げられる。前記配位子の種類、濃度の変更により銅原料溶液の酸化還元電位を変化させることができる。 The ligand that coordinates with the copper ions in the copper raw material solution can be at least one selected from the group consisting of water, hydroxide ions, ammonia, halide ions, amino acids, phosphines, carboxylic acids, thiols, cyanide ions, thiocyanide ions, nitriles, amines, ethylenediaminetetraacetic acid, and the like. In order to coordinate the ligand, a raw material containing the ligand can be added to the copper raw material solution. For example, when coordinating chloride ions, the raw material containing the ligand can be a substance containing chloride ions, such as hydrochloric acid or a salt with chloride ions as the anion. The redox potential of the copper raw material solution can be changed by changing the type and concentration of the ligand.

 本発明の製造方法において、少なくとも前記銅粒子の原料及び前記配位子の原料を溶媒に混合することで溶解又は分子分散させて銅原料溶液を調製することができる。 In the manufacturing method of the present invention, at least the copper particle raw material and the ligand raw material are mixed in a solvent to dissolve or molecularly disperse them, thereby preparing a copper raw material solution.

(還元剤及び還元剤溶液の調製)
 本発明の製造方法で用いられる還元剤としては、例えば、アスコルビン酸塩類、硫酸第一鉄、亜硫酸塩類、ヒドロキシルアミン、ギ酸、ヒドロキノン、還元糖、アルデヒド、テトラヒドロほう酸類(水素化ホウ素ナトリウム、水素化ホウ素カリウム等)、ヒドラジン、ヒドラジン化合物等が挙げられ、アスコルビン酸塩類、ヒドラジン、ヒドラジン化合物が好ましい。これらは単独で使用してもよく、あるいは複数を併用してもよい。本発明において、少なくとも前記還元剤を溶媒に混合することで溶解又は分子分散させて還元剤溶液を調整することができる。還元剤の多くはアルカリ性条件下で還元反応がよく進行するため、還元剤溶液中に塩基性物質を混合することができる。塩基性物質としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、金属アルコシキド、水酸化テトラメチルアンモニウム等の第4級アンモニウム類、アンモニア、アミン類等が挙げられる。
(Preparation of reducing agent and reducing agent solution)
Examples of the reducing agent used in the production method of the present invention include ascorbic acid salts, ferrous sulfate, sulfite salts, hydroxylamine, formic acid, hydroquinone, reducing sugar, aldehyde, tetrahydroboric acid salts (sodium borohydride, potassium borohydride, etc.), hydrazine, hydrazine compounds, etc., and ascorbic acid salts, hydrazine, and hydrazine compounds are preferred. These may be used alone or in combination. In the present invention, at least the reducing agent can be mixed in a solvent to dissolve or molecularly disperse the reducing agent solution. Since most reducing agents undergo reduction reactions well under alkaline conditions, a basic substance can be mixed in the reducing agent solution. Examples of the basic substance include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, metal alkoxides, quaternary ammoniums such as tetramethylammonium hydroxide, ammonia, amines, etc.

(溶媒)
 溶媒としては、前記銅粒子の原料及び前記還元剤等を溶解又は分子分散できるものであれば特に限定されず、例えば水、有機溶媒、又はこれらの混合溶媒が挙げられる。水としては、水道水、イオン交換水、純水、超純水、RO水等が挙げられる。有機溶媒としては、エタノール、エチレングリコール、グリセリン等のアルコール溶媒、アセトン、2-ブタノン等のケトン溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル溶媒、トルエン、キシレン等の芳香族溶媒、トリエチルアミン、エチレンジアミン等のアミン溶媒、N,N-ジメチルホルムアミド等のアミド溶媒、ヘキサン、流動パラフィン等の脂肪族炭化水素溶媒、アセトニトリル等のニトリル溶媒、ジメチルスルホキシド等のスルホキシド溶媒、ジクロロメタン等のハロゲン系溶媒、酢酸エチル、エチレングリコールモノエチルエーテルアセテート等のエステル溶媒、酢酸、プロピオン酸等のカルボン酸溶媒、二硫化炭素、N-メチル-2-ピロリドン等の非プロトン性極性溶媒、イオン性液体、スルホン酸化合物等が挙げられる。溶媒はそれぞれ単独で使用してもよく、又は複数を併用してもよい。銅粒子の原料及び還元剤の溶解度の観点から、アルコール溶媒、又は水とアルコール溶媒との混合溶媒を用いて、銅原料溶液及び還元剤溶液を調製することが好ましい。
(solvent)
The solvent is not particularly limited as long as it can dissolve or molecularly disperse the raw material of the copper particles and the reducing agent, and examples thereof include water, organic solvents, and mixed solvents thereof. Examples of water include tap water, ion-exchanged water, pure water, ultrapure water, RO water, and the like. Examples of organic solvents include alcohol solvents such as ethanol, ethylene glycol, and glycerin, ketone solvents such as acetone and 2-butanone, ether solvents such as diethyl ether and tetrahydrofuran, aromatic solvents such as toluene and xylene, amine solvents such as triethylamine and ethylenediamine, amide solvents such as N,N-dimethylformamide, aliphatic hydrocarbon solvents such as hexane and liquid paraffin, nitrile solvents such as acetonitrile, sulfoxide solvents such as dimethyl sulfoxide, halogen-based solvents such as dichloromethane, ester solvents such as ethyl acetate and ethylene glycol monoethyl ether acetate, carboxylic acid solvents such as acetic acid and propionic acid, aprotic polar solvents such as carbon disulfide and N-methyl-2-pyrrolidone, ionic liquids, sulfonic acid compounds, and the like. Each of the solvents may be used alone, or a plurality of solvents may be used in combination. From the viewpoint of the solubility of the copper particle raw material and the reducing agent, it is preferable to prepare the copper raw material solution and the reducing agent solution using an alcohol solvent or a mixed solvent of water and an alcohol solvent.

 溶媒には、銅原料液中の銅イオンの価数を変更するための酸化剤や還元剤、pHやイオン濃度を調整するための酸性物質や塩基性物質又はその塩、粒子の凝集を防止するための表面保護剤、界面活性剤、分散剤等の添加剤を適宜必要に応じて添加することができる。酸性物質としては、例えば王水、塩酸、硝酸、発煙硝酸、硫酸、発煙硫酸等の無機酸や、ギ酸、酢酸、クロロ酢酸、ジクロロ酢酸、シュウ酸、トリフルオロ酢酸、トリクロロ酢酸等の有機酸が挙げられる。表面保護剤、界面活性剤及び分散剤としては、一般的に用いられる様々な市販品、製品又は新規に合成されたもの等を使用することができる。例えば、陰イオン性界面活性剤、陽イオン性界面活性剤、非イオン性界面活性剤、各種ポリマー等の分散剤等を挙げることができる。これらは単独で使用してもよく、2種以上を併用してもよい。表面保護剤、界面活性剤及び分散剤は、銅原料溶液か還元剤溶液のいずれか、又は双方に含まれていてもよい。 Additives such as oxidizing agents or reducing agents for changing the valence of copper ions in the copper raw material solution, acidic or basic substances or their salts for adjusting the pH or ion concentration, surface protective agents for preventing particle aggregation, surfactants, dispersants, etc. can be added to the solvent as needed. Examples of acidic substances include inorganic acids such as aqua regia, hydrochloric acid, nitric acid, fuming nitric acid, sulfuric acid, and fuming sulfuric acid, and organic acids such as formic acid, acetic acid, chloroacetic acid, dichloroacetic acid, oxalic acid, trifluoroacetic acid, and trichloroacetic acid. Surface protective agents, surfactants, and dispersants can be various commonly used commercial products, products, or newly synthesized products. Examples include dispersants such as anionic surfactants, cationic surfactants, nonionic surfactants, and various polymers. These may be used alone or in combination of two or more. Surface protective agents, surfactants, and dispersants may be contained in either the copper raw material solution or the reducing agent solution, or both.

(調製装置)
 本発明の製造方法において銅原料溶液又は還元剤溶液を調製する装置としては、棒状、板状、プロペラ状等の種々の形状の撹拌子を槽内で回転させる装置、撹拌子に対して相対的に回転するスクリーンを備えた装置等、流体にせん断力を加えるなどして、均質な混合を実現する装置が望ましい。回転式分散機の好ましい例としては、特許第5147091号に開示されている撹拌機を適用することができる。
(Preparation Apparatus)
In the production method of the present invention, the apparatus for preparing the copper raw material solution or the reducing agent solution is preferably an apparatus that realizes homogeneous mixing by applying a shear force to the fluid, such as an apparatus that rotates stirrers of various shapes such as rod-shaped, plate-shaped, propeller-shaped, etc. in a tank, an apparatus equipped with a screen that rotates relative to the stirrers, etc. As a preferred example of a rotary disperser, the stirrer disclosed in Japanese Patent No. 5147091 can be used.

 回転式分散機はバッチ式で行うものであってもよく、連続式で行うものであってもよい。連続式で行う装置の場合、撹拌槽に対する流体の供給と排出とを連続的に行うものであってもよく、撹拌槽を用いずに連続式のミキサーを用いて行うものであってもよく、公知の撹拌機や撹拌手段を用いて、適宜撹拌エネルギーを制御することができる。なお、撹拌エネルギーに関しては、本願出願人による特開平4-114725号公報に詳述されている。本発明における撹拌の方法は特に限定されないが、各種せん断式、摩擦式、高圧ジェット式、超音波式等の撹拌機、溶解機、乳化機、分散機、ホジナイザー等を用いて実施することができる。一例としては、ウルトラタラックス(IKA製)、ポリトロン(キネマティカ製)、TKホモミキサー(プライミクス製)、エバラマイルダー(荏原製作所製)、TKホモミックラインフロー(プライミクス製)、コロイドミル(神鋼パンテック製)、スラッシャー(日本コークス工業製)、トリゴナル湿式微粉砕機(三井三池化工機製)、キャビトロン(ユーロテック製)、ファインフローミル(太平洋機工製)等の連続式乳化機、クレアミックス(エム・テクニック製)、クレアミックスディゾルバー(エム・テクニック製)、フィルミックス(プライミクス製)等のバッチ式若しくは連続両用乳化機を挙げることができる。特に、銅原料液又は銅析出溶液の調製を、回転する撹拌翼を備えた撹拌機、特に前記のクレアミックス(エム・テクニック製)やクレアミックスディゾルバー(エム・テクニック製)を用いて行うことが望ましい。 The rotary dispersing machine may be of a batch type or a continuous type. In the case of a continuous type device, the supply and discharge of fluid to the stirring tank may be performed continuously, or a continuous mixer may be used without using a stirring tank, and the stirring energy can be appropriately controlled using a known stirrer or stirring means. The stirring energy is described in detail in JP 4-114725 by the applicant of the present application. The stirring method in the present invention is not particularly limited, but can be performed using various shear type, friction type, high pressure jet type, ultrasonic type stirrers, dissolvers, emulsifiers, dispersers, homogenizers, etc. Examples include continuous emulsifiers such as Ultra Turrax (IKA), Polytron (Kinematica), TK Homomixer (Primix), Ebara Milder (Ebara Corporation), TK Homomic Lineflow (Primix), Colloid Mill (Kobe Steel Pantech), Thrasher (Nippon Coke Industrial Co., Ltd.), Trigonal Wet Fine Mill (Mitsui Miike Chemical Engineering Co., Ltd.), Cavitron (Eurotech), and Fine Flow Mill (Pacific Ocean Machinery Co., Ltd.), and batch or continuous dual-use emulsifiers such as Clearmix (M Technique), Clearmix Dissolver (M Technique), and Filmix (Primix). In particular, it is desirable to prepare the copper raw material solution or copper precipitation solution using a stirrer equipped with rotating stirring blades, particularly the above-mentioned Clearmix (M Technique) and Clearmix Dissolver (M Technique).

(製造方法:装置)
 本発明の製造方法において、銅原料溶液と還元剤溶液との混合を、ビーカーやタンク内で行うバッチ式、管型反応器、マイクロリアクターで反応を行う連続式等の公知の方法で実施することができる。その中でも、図1及び図2に示す特開2011-189348号公報に記載の、少なくとも一方が他方に対して相対的に回転する少なくとも2枚の処理用面の間において、少なくとも2種類の被処理流体を接触、混合することができる流体処理装置、具体的には、エム・テクニック社製の強制薄膜式マイクロリアクターULREAと同様のものを用いることが好ましい。なお、前記流体処理装置に用いるの被処理流体の種類とその流路の数は、図1の例では、2つとしたが、3つ以上であってもよい。また、各処理用部に設けられる導入用の開口部は、その形状や大きさや数は特に制限はなく適宜変更して実施しうる。たとえば、図1に示すように開口部d20の形状は、リング状ディスクである処理用面2の中央の開口を取り巻く同心円状の円環形状であってもよく、その円環形状の開口部は連続していてもよいし、不連続であってもよい。また、前記第1及び第2の処理用面間1、2の直前あるいは更に上流側に導入用の開口部を設けてもよい。
(Manufacturing method: equipment)
In the manufacturing method of the present invention, the copper raw material solution and the reducing agent solution can be mixed by a known method such as a batch type in a beaker or tank, a tubular reactor, or a continuous type in which a reaction is performed in a microreactor. Among them, it is preferable to use a fluid treatment device that can contact and mix at least two types of fluids to be treated between at least two processing surfaces, at least one of which rotates relative to the other, as described in JP 2011-189348 A shown in Figs. 1 and 2, specifically, a device similar to the forced thin film microreactor ULREA manufactured by M Technique Co., Ltd. Note that, although the number of types of fluids to be treated and the number of flow paths used in the fluid treatment device are two in the example of Fig. 1, they may be three or more. In addition, the shape, size, and number of the introduction openings provided in each processing part are not particularly limited and may be appropriately changed. For example, as shown in Fig. 1, the shape of the opening d20 may be a concentric annular shape surrounding the central opening of the processing surface 2, which is a ring-shaped disk, and the annular opening may be continuous or discontinuous. An introduction opening may be provided immediately before the first and second processing surfaces 1 and 2 or further upstream.

(平均粒子径)
 本発明の製造方法で製造される銅粒子の平均粒子径は、銅原料溶液の酸化還元電位を設定することで制御することができる。また、銅原料溶液中の全銅イオンに対する1価の銅イオンのモル濃度比([Cu]/([Cu]+[Cu2+]))を変化させるか、又は前記銅原料溶液中の銅イオンに配位する配位子を選択することで、銅原料溶液の酸化還元電位を変化させることができる。平均粒子径が変化する理由の1つとして、それぞれの銅イオンの自由エネルギー及び反応速度によることが考えられる。反応における酸化還元電位の電位差:Eと標準生成自由エネルギーの差:ΔGの関係は下記式で表される。ここで、Eは、標準水素電極に対する値として求められる。
 ΔG=-nFE
 n:反応に関与する電子数
 F:ファラデー定数
(Average particle size)
The average particle size of the copper particles produced by the production method of the present invention can be controlled by setting the redox potential of the copper raw material solution. In addition, the redox potential of the copper raw material solution can be changed by changing the molar concentration ratio of monovalent copper ions to the total copper ions in the copper raw material solution ([Cu + ]/([Cu + ]+[Cu 2+ ])) or by selecting a ligand that coordinates to the copper ions in the copper raw material solution. One of the reasons for the change in the average particle size is thought to be due to the free energy and reaction rate of each copper ion. The relationship between the potential difference E of the redox potential in the reaction and the difference ΔG of the standard free energy of formation is expressed by the following formula. Here, E is calculated as a value relative to the standard hydrogen electrode.
ΔG = -nFE
n: number of electrons involved in the reaction F: Faraday constant

 前記の式のとおり、各銅イオンの自由エネルギーは酸化還元電位と相関がある。ただし、実際の反応系における自由エネルギーは、イオンの価数だけでなく、配位子によっても変化し、溶液中の濃度や、共存する他の化合物によっても変化する。銅原料溶液と還元剤溶液を混合した際、銅原料溶液の酸化還元電位と還元剤溶液の酸化還元電位の電位差が大きいほうが還元反応の駆動力は大きくなるので、反応速度が速くなり、銅粒子の結晶核が多数生成することで結晶核近傍の銅原料濃度が低下して、微量な銅粒子が生成する。酸化還元電位の文献値を使用すると、塩化物イオン存在下ではCu2+/Cuの電位差は標準水素電極電位で+0.56Vであり、Cu/Cuの電位差は+0.12Vであり、Cu(II)溶液から銅粒子を作製するほうが粒子径は小さくなる。 As shown in the above formula, the free energy of each copper ion is correlated with the redox potential. However, the free energy in the actual reaction system changes not only depending on the valence of the ion, but also depending on the ligand, the concentration in the solution, and other coexisting compounds. When the copper raw material solution and the reducing agent solution are mixed, the driving force of the reduction reaction increases as the potential difference between the redox potential of the copper raw material solution and the redox potential of the reducing agent solution increases, so the reaction rate increases, and a large number of crystal nuclei of copper particles are generated, which reduces the copper raw material concentration near the crystal nuclei and produces a small amount of copper particles. When the literature value of the redox potential is used, in the presence of chloride ions, the potential difference between Cu 2+ /Cu + is +0.56 V at the standard hydrogen electrode potential, and the potential difference between Cu + /Cu is +0.12 V, and the particle size is smaller when copper particles are produced from a Cu(II) solution.

 一方、溶液中の銅イオンは、溶媒和などによって溶媒分子と部分的に配位するため、調製した銅原料溶液のすべての酸化還元電位を文献値から求めることが困難な場合がある。文献データがない場合、それぞれのイオンの標準生成自由エネルギーより計算することができる。この考え方にそって、例えば、アンモニア分子が配位したCuアンミン錯体の場合、Cu(NH 2+イオンとCu(NH2+イオンそれぞれの標準生成自由エネルギーから求めた酸化還元電位は-0.028Vと-0.100Vであり、Cu(NH 2+イオンの方が、酸化還元電位が貴となるため、Cu(II)アンミン錯体からの銅粒子の方が微小となることが予想されたが、今回実施した実施例で得られた粒子径はそれぞれ185.3nm、59.6nmと予想と反対の結果となっている。この原因の1つの理由として、前記文献値の標準生成自由エネルギーは水溶液中の値であり、実施例はエチレングリコールと水の混合溶媒であることから、銅イオンの配位状態が水のみの場合と異なっている。これに伴って、純水中での標準生成自由エネルギーは、エチレングリコールと純水における標準生成自由エネルギーに変化していると考えられるため、水溶液中での酸化還元電位とは異なっていると推測される。銅原料溶液の酸化還元電位を反映するORPメーターでの電位は、実施例ではCu(I)アンミン錯体の方が貴であり、銅粒子への還元反応の駆動力は、Cu(I)アンミン錯体を用いた方がCu(II)アンミン錯体を用いた場合より大きくなることが予想され、実際に実験結果はこれを支持する結果となっている。このようなことから、銅原料溶液の酸化還元電位を反映しているORPメーターの電位は、使用している銅原料溶液の酸化還元電位を代替していると考えられ、本発明においても銅の粒子径制御はORPメーターによる銅原料溶液の電位を元に行うことが可能である。 On the other hand, since copper ions in a solution are partially coordinated with solvent molecules due to solvation, it may be difficult to obtain all the redox potentials of the prepared copper raw material solution from literature values. If there is no literature data, it can be calculated from the standard free energy of formation of each ion. According to this idea, for example, in the case of a Cu ammine complex coordinated with ammonia molecules, the redox potentials obtained from the standard free energy of formation of Cu(NH 3 ) 4 2+ ions and Cu(NH 3 ) 2+ ions are -0.028 V and -0.100 V, respectively, and it was expected that the copper particles from the Cu(II) ammine complex would be smaller because the redox potential of the Cu(NH 3 ) 4 2+ ion is more noble, but the particle sizes obtained in the examples implemented this time were 185.3 nm and 59.6 nm, respectively, which is the opposite of the prediction. One of the reasons for this is that the standard free energy of formation in the literature is a value in an aqueous solution, and the embodiment uses a mixed solvent of ethylene glycol and water, so the coordination state of the copper ions is different from that in the case of water alone. Accordingly, it is considered that the standard free energy of formation in pure water has changed to the standard free energy of formation in ethylene glycol and pure water, and it is presumed that the oxidation-reduction potential is different from that in an aqueous solution. In the embodiment, the potential of the ORP meter reflecting the oxidation-reduction potential of the copper raw material solution is more noble than that of the Cu(I) ammine complex, and it is predicted that the driving force of the reduction reaction to copper particles is greater when the Cu(I) ammine complex is used than when the Cu(II) ammine complex is used, and the experimental results actually support this. For this reason, it is considered that the potential of the ORP meter reflecting the oxidation-reduction potential of the copper raw material solution replaces the oxidation-reduction potential of the copper raw material solution being used, and in the present invention, the particle size control of copper can also be performed based on the potential of the copper raw material solution measured by the ORP meter.

 ORPメーターの基準電極は、Ag/AgCl(KCl飽和)電極であり、この電極電位は、文献によく用いられる標準水素電極に対して、+0.199V貴であるので、文献値との比較を行う場合は換算が必要である。 The reference electrode for the ORP meter is an Ag/AgCl (KCl saturated) electrode, and this electrode potential is +0.199 V nobler than the standard hydrogen electrode that is often used in the literature, so conversion is necessary when comparing with literature values.

(pH調整)
 本発明の製造方法において、反応時のpHの調整は、銅原料溶液及び還元剤溶液に含まれる銅粒子原料、塩基性物質、酸性物質等の濃度、銅原料溶液及び還元剤溶液の導入流量を制御することにより実施できる。還元剤の多くはアルカリ性条件下で還元反応がよく進行するため、反応時のpHは7以上14以下が好ましく、8以上13以下が更に好ましい。
(pH Adjustment)
In the production method of the present invention, the pH during the reaction can be adjusted by controlling the concentrations of the copper particle raw material, basic substance, acidic substance, etc. contained in the copper raw material solution and the reducing agent solution, and the introduction flow rates of the copper raw material solution and the reducing agent solution. Since the reduction reaction of most reducing agents proceeds well under alkaline conditions, the pH during the reaction is preferably 7 to 14, more preferably 8 to 13.

(還元剤)
 銅原料溶液の酸化還元電位と還元剤溶液の酸化還元電位との電位差を設定するために、還元剤を選択することで、還元剤溶液の酸化還元電位を変化させることもできる。
 銅原料溶液中の銅イオンを金属銅に還元するために必要電子量に対する還元剤溶液中の還元剤の電子供与量のモル濃度比([e]/([Cu]+2×[Cu2+]))は1以上100以下が好ましく、1.5以上50以下が更に好ましい。1以下の場合、酸化物が混ざるようになり、100以上の場合は原料の使用量が増えるため、製造コストが上がり好ましくない。[e]/([Cu]+2×[Cu2+])を高くすると反応速度が速くなり、粒子径が小さくなり、[e]/([Cu]+2×[Cu2+])を低くすると粒子径は大きくなる。
(Reducing Agent)
In order to set the potential difference between the oxidation-reduction potential of the copper raw material solution and the oxidation-reduction potential of the reducing agent solution, the oxidation-reduction potential of the reducing agent solution can also be changed by selecting a reducing agent.
The molar concentration ratio ([e - ]/([Cu + ]+2×[Cu 2+ ])) of the electron donating amount of the reducing agent in the reducing agent solution to the amount of electrons required to reduce the copper ions in the copper raw material solution to metallic copper is preferably 1 or more and 100 or less, and more preferably 1.5 or more and 50 or less. If it is 1 or less, oxides will be mixed in, and if it is 100 or more, the amount of raw material used will increase, which is not preferable as it increases the production cost. Increasing [e - ]/([Cu + ]+2×[Cu 2+ ]) increases the reaction rate and reduces the particle diameter, and decreasing [e - ]/([Cu + ]+2×[Cu 2+ ]) increases the particle diameter.

(酸化防止)
 銅原料溶液と還元剤溶液との混合後の溶液中に酸化型アスコルビン酸が存在することで、得られた銅粒子の酸化を防止することができる。酸化型アスコルビン酸は還元剤としてアスコルビン酸類を使用することで、銅イオンを還元した際にアスコルビン酸が酸化し生成するほか、他の還元剤を使用する場合に、酸化型アスコルビン酸が生成しない場合は、銅原料溶液及び/又は還元剤溶液に事前に酸化型アスコルビン酸を添加することで系内に存在させることができる。前記条件で得られた粒子の表面にはデヒドロアスコルビン酸等の酸化型アスコルビン酸が銅と結合していることがFT-IRから確認され、大気下で保存した場合でも酸化がほとんど進行せず、安定に保存することができる。
(Anti-oxidation)
The presence of oxidized ascorbic acid in the solution obtained after mixing the copper raw material solution and the reducing agent solution can prevent oxidation of the obtained copper particles. Oxidized ascorbic acid is generated by the oxidation of ascorbic acid when copper ions are reduced by using ascorbic acids as a reducing agent, and when other reducing agents are used and oxidized ascorbic acid is not generated, oxidized ascorbic acid can be added to the copper raw material solution and/or the reducing agent solution in advance to make it present in the system. FT-IR confirmed that oxidized ascorbic acid such as dehydroascorbic acid is bonded to copper on the surface of the particles obtained under the above conditions, and oxidation hardly progresses even when stored under air, allowing stable storage.

(粒子の洗浄)
 本発明の製造方法で製造される銅粒子を、必要に応じて洗浄を行うことができる。洗浄方法に特に制限はなく、デカンテーション、遠心分離、ろ過等の種々の公知の方法を使用することができる。洗浄溶媒としては副生成物である無機塩を溶解できる溶媒を用いればよく、例えば、メタノールなどのアルコール類や純水、イオン交換水が挙げられ、銅粒子の酸化防止の観点からアルコール類が好ましく、脱酸素したアルコール類が更に好ましい。
(Cleaning of particles)
The copper particles produced by the production method of the present invention can be washed as necessary. There is no particular limitation on the washing method, and various known methods such as decantation, centrifugation, and filtration can be used. As the washing solvent, a solvent capable of dissolving the inorganic salt, which is a by-product, can be used, and examples thereof include alcohols such as methanol, pure water, and ion-exchanged water. From the viewpoint of preventing oxidation of the copper particles, alcohols are preferred, and deoxygenated alcohols are more preferred.

 本発明の製造方法において、第1の流体の温度と、第2の流体の温度と、第1の流体及び第2の流体を混合した混合流体の温度とからなる群から選択された少なくとも1つが100℃以上であることが好ましい。この少なくとも1つの温度としては、より好ましくは110~250℃が挙げられ、更に好ましくは120~200℃が挙げられる。温度を100℃以上にすることによって、銅粒子の結晶性が上がるほか、温度が高いほうが反応速度も上がるため、粒子径が小さくなる傾向となる。 In the manufacturing method of the present invention, it is preferable that at least one selected from the group consisting of the temperature of the first fluid, the temperature of the second fluid, and the temperature of the mixed fluid obtained by mixing the first fluid and the second fluid is 100°C or higher. This at least one temperature is more preferably 110 to 250°C, and even more preferably 120 to 200°C. By raising the temperature to 100°C or higher, the crystallinity of the copper particles increases, and the higher the temperature, the higher the reaction rate, so the particle size tends to become smaller.

 本発明の製造方法によって、大量生産に適した方法で、粒子径が制御された銅粒子を簡便に安定して得ることができる銅粒子を製造することができる。 The manufacturing method of the present invention makes it possible to manufacture copper particles with a controlled particle size in a simple and stable manner, in a manner suitable for mass production.

2.銅粒子の平均粒子径の制御方法
 本発明の銅粒子の平均粒子径の制御方法は、銅粒子の平均粒子径を1nm~1000nmの範囲内で制御する方法であって、
 少なくとも第1の流体と第2の流体とを混合させて銅粒子を析出させる工程を含み、
 第1の流体と第2の流体の一方が、銅粒子の原料を含む銅原料溶液であり、
 第1の流体と第2の流体の他方が、少なくとも1種類以上の還元剤を含む還元剤溶液であり、
 前記銅原料溶液は少なくとも1価の銅イオン及び/又は2価の銅イオンを含み、
 前記銅原料溶液の酸化還元電位を変化させることを特徴とする、制御方法である。
 銅粒子の平均粒子径の制御方法は、前記の銅粒子の製造方法の説明を参考にして実施することができる。
2. Method for controlling the average particle size of copper particles The method for controlling the average particle size of copper particles of the present invention is a method for controlling the average particle size of copper particles to within a range of 1 nm to 1000 nm,
The method includes a step of mixing at least a first fluid and a second fluid to precipitate copper particles,
one of the first fluid and the second fluid is a copper raw material solution containing a raw material of copper particles;
the other of the first fluid and the second fluid is a reducing agent solution containing at least one reducing agent;
the copper source solution contains at least monovalent copper ions and/or divalent copper ions,
The control method is characterized by changing the oxidation-reduction potential of the copper raw material solution.
The average particle size of the copper particles can be controlled by referring to the description of the above-mentioned method for producing copper particles.

 以下、本発明について実施例を用いて説明するが、本発明はこれらの実施例に限定されるものではない。以下の実施例及び比較例において、A液とは、図1に示す装置の第1導入部d1から導入される第1の被処理流体を指し、B液とは、同じく装置の第2導入部d2から導入される第2の被処理流体を指す。 The present invention will be described below using examples, but the present invention is not limited to these examples. In the following examples and comparative examples, liquid A refers to the first treated fluid introduced from the first introduction part d1 of the device shown in Figure 1, and liquid B refers to the second treated fluid introduced from the second introduction part d2 of the device.

(実施例1)
 高速回転式分散乳化装置であるクレアミックス(製品名:CLM-0.8S、エム・テクニック製)を用いて、銅原料溶液と還元剤溶液のそれぞれを調製した。
 具体的には、事前に溶媒にアルゴンをフローしてバブリングを1時間行い、溶媒の脱酸素を行った。表1の実施例1に示す銅原料溶液の処方に基づいて銅粒子原料と溶媒、添加剤とを混合し、アルゴン雰囲気下、調製温度50℃にて、クレアミックスを用いてローターの回転数20000rpmにて30分間撹拌することにより均質に混合し、銅粒子の原料及び添加剤を溶媒に溶解させて、銅原料溶液を調製した。また、表1の実施例1に示す還元剤溶液の処方に基づいて還元剤と塩基性物質、溶媒とを混合し、アルゴン雰囲気下、調製温度45℃、クレアミックスを用いてローターの回転数15000rpmにて30分間撹拌することにより均質に混合し、還元剤溶液を調製した。
Example 1
A copper source solution and a reducing agent solution were each prepared using a Clearmix (product name: CLM-0.8S, manufactured by M Technique), which is a high-speed rotary dispersion and emulsification device.
Specifically, argon was flowed into the solvent in advance to perform bubbling for 1 hour, and the solvent was deoxidized. Based on the formulation of the copper raw material solution shown in Example 1 of Table 1, the copper particle raw material, the solvent, and the additive were mixed, and the mixture was homogeneously mixed by stirring for 30 minutes at a rotor speed of 20,000 rpm using Clearmix at an argon atmosphere and a preparation temperature of 50 ° C., and the copper particle raw material and the additive were dissolved in the solvent to prepare a copper raw material solution. In addition, based on the formulation of the reducing agent solution shown in Example 1 of Table 1, the reducing agent, the basic substance, and the solvent were mixed, and the mixture was homogeneously mixed by stirring for 30 minutes at a rotor speed of 15,000 rpm using Clearmix at an argon atmosphere and a preparation temperature of 45 ° C., to prepare a reducing agent solution.

 次に、調製した調製した銅原料溶液と還元剤溶液とを、図1に示す流体処理装置にて表1に示す処理条件にて混合した。具体的には、図1に示す流体処理装置の第1導入部d1から第1の被処理流体(A液)として銅原料溶液を処理用面間に導入し、処理用部10を回転数2000rpmで運転しながら、図1に示す流体処理装置の第2導入部d2から第2の被処理流体(B液)として還元剤溶液を処理用面1、2間に導入し薄膜流体中で混合した。銅粒子が処理用面1、2間で析出され、銅粒子を含む吐出液を流体処理装置の処理用面1、2間から吐出させた。銅粒子を含む吐出液を、ベッセルvを介してビーカーbに回収した。 Next, the prepared copper raw material solution and the reducing agent solution were mixed in the fluid treatment device shown in FIG. 1 under the treatment conditions shown in Table 1. Specifically, the copper raw material solution was introduced between the treatment surfaces as the first fluid to be treated (liquid A) from the first inlet d1 of the fluid treatment device shown in FIG. 1, and while the treatment unit 10 was operated at a rotation speed of 2000 rpm, the reducing agent solution was introduced between the treatment surfaces 1 and 2 as the second fluid to be treated (liquid B) from the second inlet d2 of the fluid treatment device shown in FIG. 1, and mixed in the thin film fluid. Copper particles were precipitated between the treatment surfaces 1 and 2, and a discharge liquid containing the copper particles was discharged from between the treatment surfaces 1 and 2 of the fluid treatment device. The discharge liquid containing the copper particles was collected in a beaker b via a vessel v.

 A液並びにB液の導入温度(送液温度)は、処理用面1、2間に通じる密封された導入路(第1導入部d1と第2導入部d2)内に設けられた温度計を用いて測定したものであり、表1に示すA液の導入温度は、第1導入部d1内の実際のA液の温度であり、同じくB液の導入温度は、第2導入部d2内の実際のB液の温度である。 The introduction temperatures (liquid delivery temperatures) of liquid A and liquid B were measured using a thermometer installed in the sealed introduction path (first introduction part d1 and second introduction part d2) that leads between the processing surfaces 1 and 2. The introduction temperature of liquid A shown in Table 1 is the actual temperature of liquid A in the first introduction part d1, and the introduction temperature of liquid B is the actual temperature of liquid B in the second introduction part d2.

 pH測定には、HORIBA製の型番D-51のpHメーターを用いた。ORP測定には東亜ディーケーケー製の型番RM-30PのORPメーターを用いた。第1と第2の各被処理流体を流体処理装置に導入する前に、その被処理流体のpHと、pH測定時の温度を測定した。また、銅原料溶液と還元剤溶液との混合直後の混合流体のpH及びORPを測定することは困難なため、同装置から吐出させ、ビーカーbに回収した銅粒子分散液を室温にて測定した。 A HORIBA pH meter, model D-51, was used for pH measurements. A DKK-TOA ORP meter, model RM-30P, was used for ORP measurements. Before introducing the first and second treated fluids into the fluid treatment device, the pH of the treated fluids and the temperature at the time of pH measurement were measured. In addition, since it is difficult to measure the pH and ORP of the mixed fluid immediately after mixing the copper raw material solution and the reducing agent solution, the copper particle dispersion discharged from the device and collected in beaker b was measured at room temperature.

 ビーカーbに回収した銅粒子を含む吐出液から、乾燥粉体とウェットケーキサンプルを作製した。作製方法は公知の方法に従い行ったもので、具体的には銅粒子を含む吐出液を遠心分離にて回収し、銅粒子を沈降させて上澄み液を除去し、その後、アルゴンフローにより脱酸素したメタノールによる洗浄と沈降とを繰り返し2回行うことで銅粒子を洗浄し、最終的に得られた銅粒子のウェットケーキの一部を乾燥させて乾燥粉体とした。他方はウェットケーキサンプルとした。 A dry powder and a wet cake sample were prepared from the discharged liquid containing the copper particles collected in beaker b. The preparation method was performed according to a known method, specifically, the discharged liquid containing the copper particles was collected by centrifugation, the copper particles were allowed to settle and the supernatant liquid was removed, and then the copper particles were washed by repeating washing and settling twice with methanol deoxygenated by argon flow, and a part of the finally obtained wet cake of copper particles was dried to make a dry powder. The other was used as a wet cake sample.

(TEM観察用試料作製)
 実施例1で得られた洗浄処理後の銅粒子のウェットケーキサンプルの一部をメタノールに分散させた。得られた分散液を支持膜付きグリッドに滴下して乾燥させて、TEM観察用試料とした。
(Preparation of sample for TEM observation)
A part of the wet cake sample of the copper particles after the washing treatment obtained in Example 1 was dispersed in methanol. The obtained dispersion was dropped onto a grid with a supporting film and dried to prepare a sample for TEM observation.

(透過型電子顕微鏡)
 透過型電子顕微鏡(TEM)観察には、透過型電子顕微鏡、JEM-2100(JEOL製)を用いた。観察条件は、加速電圧を200kV、観察倍率を1万倍から50万倍とした。平均粒子径(D)は一次粒子径の平均値であり、TEM観察にて、100個の粒子について粒子径を測定した結果の平均値を示した。また、観察倍率を50万倍とした条件で粒子表面の酸化物層の厚みを測定した。
(Transmission Electron Microscope)
A transmission electron microscope, JEM-2100 (manufactured by JEOL) was used for the transmission electron microscope (TEM) observation. The observation conditions were an acceleration voltage of 200 kV and an observation magnification of 10,000 to 500,000 times. The average particle size (D) is the average value of the primary particle size, and is the average value of the results of measuring the particle sizes of 100 particles by TEM observation. In addition, the thickness of the oxide layer on the particle surface was measured under the condition of an observation magnification of 500,000 times.

(X線回折測定)
 X線回折(XRD)測定には、粉末X線回折測定装置EMPYREAN(Malvern Panalytical製)を使用した。測定条件は、測定範囲:10~100[°2Theta] Cu対陰極、管電圧45kV、管電流40mA、走査速度0.3°/minとした。
(X-ray diffraction measurement)
For the X-ray diffraction (XRD) measurement, an EMPYREAN powder X-ray diffraction measuring device (manufactured by Malvern Panalytical) was used. The measurement conditions were: measurement range: 10 to 100 [°2Theta] Cu anticathode, tube voltage: 45 kV, tube current: 40 mA, and scanning speed: 0.3°/min.

(実施例2~13)
 実施例2~13では、実施例1と同様に、表1に記載されている銅原料溶液と還元剤溶液の各処方、処理条件にて混合し、粒子を処理用面1、2間で析出させた。流体処理装置から吐出させ、ベッセルvを介してビーカーbに回収した銅粒子を含む吐出液から、乾燥粉体とウェットケーキサンプルを作製し、実施例1と同様の手順でTEM観察、XRD測定を行った。
(Examples 2 to 13)
In Examples 2 to 13, similarly to Example 1, the copper source solution and the reducing agent solution were mixed in accordance with the respective formulations and treatment conditions shown in Table 1, and particles were precipitated between the treatment surfaces 1 and 2. Dry powder and wet cake samples were prepared from the discharged liquid containing copper particles that was discharged from the fluid treatment device and recovered in a beaker b via a vessel v, and TEM observation and XRD measurement were performed in the same manner as in Example 1.

 実施例1~13の測定結果を表1~2に示す。また、実施例1及び9で得られた銅粒子のTEM写真を図3及び図4に示す。 The measurement results for Examples 1 to 13 are shown in Tables 1 and 2. TEM photographs of the copper particles obtained in Examples 1 and 9 are shown in Figures 3 and 4.

 表1~2及び図3と図4に記載の通り、銅原料液中の原料の全銅イオンに対する1価の銅イオンのモル比及び配位子を変化させることで、銅原料溶液の酸化還元電位を変化させることができ、平均粒子径を制御することができた。 As shown in Tables 1 and 2 and Figures 3 and 4, by changing the molar ratio of monovalent copper ions to the total copper ions in the raw material in the copper raw material solution and the ligands, it was possible to change the redox potential of the copper raw material solution and control the average particle size.

(比較例1)
 比較例1では、還元剤溶液からアスコルビン酸ナトリウムを除いたこと以外については実施例1と同様に表6に記載されている銅原料溶液と還元剤溶液の各処方、処理条件にて混合し、粒子を処理用面1、2間で析出させた。流体処理装置から吐出させ、ベッセルvを介してビーカーbに回収した銅粒子を含む吐出液から、乾燥粉体とウェットケーキサンプルを作製し、実施例1と同様の手順でTEM観察、XRD測定を行った。
(Comparative Example 1)
In Comparative Example 1, except that sodium ascorbate was omitted from the reducing agent solution, the copper raw material solution and the reducing agent solution were mixed in the same manner as in Example 1 under the respective formulations and treatment conditions shown in Table 6, and particles were precipitated between the treatment surfaces 1 and 2. A dry powder and a wet cake sample were prepared from the discharged liquid containing copper particles that was discharged from the fluid treatment device and recovered in a beaker b via a vessel v, and TEM observation and XRD measurement were performed in the same manner as in Example 1.

 比較例1の測定結果を表2に示す。比較例では粒子表面の酸化物層の厚みが5.6nmとなった。また、XRD測定にて銅の回折パターンと亜酸化銅の回折パターンが確認され、粒子が一部酸化していることが確認された。 The measurement results for Comparative Example 1 are shown in Table 2. In the comparative example, the thickness of the oxide layer on the particle surface was 5.6 nm. In addition, XRD measurement confirmed the copper diffraction pattern and the cuprous oxide diffraction pattern, confirming that the particles were partially oxidized.

 実施例及び比較例から分かる通り、本発明の製造方法によって簡便に平均粒子径が制御された銅粒子を製造することができた。 As can be seen from the examples and comparative examples, the manufacturing method of the present invention makes it possible to easily produce copper particles with a controlled average particle size.

 本発明の製造方法によって、複雑な化学反応や熱処理を必要とせず、大量生産に適した方法で、平均粒子径が制御された銅粒子を簡便に安定して製造することができる。 The manufacturing method of the present invention does not require complex chemical reactions or heat treatments, and is suitable for mass production, allowing for the easy and stable production of copper particles with a controlled average particle size.

 1  第1処理用面
 2  第2処理用面
10  第1処理用部
11  第1ホルダ
20  第2処理用部
21  第2ホルダ
d1  第1導入部
d2  第2導入部
d20 開口部
1 First processing surface 2 Second processing surface 10 First processing member 11 First holder 20 Second processing member 21 Second holder d1 First introduction part d2 Second introduction part d20 Opening

Claims (9)

 1nm~1000nmの範囲内の平均粒子径を有する銅粒子の製造方法であって、
 少なくとも第1の流体と第2の流体とを混合させて銅粒子を析出させる工程を含み、
 第1の流体と第2の流体の一方が、銅粒子の原料を含む銅原料溶液であり、
 第1の流体と第2の流体の他方が、少なくとも1種類以上の還元剤を含む還元剤溶液であり、
 前記銅原料溶液は少なくとも1価の銅イオン及び/又は2価の銅イオンを含み、
 前記平均粒子径になるように、前記銅原料溶液の酸化還元電位と前記還元剤溶液の酸化還元電位との電位差を設定することを特徴とする、製造方法。
A method for producing copper particles having an average particle size in the range of 1 nm to 1000 nm,
The method includes a step of mixing at least a first fluid and a second fluid to precipitate copper particles,
one of the first fluid and the second fluid is a copper raw material solution containing a raw material of copper particles;
the other of the first fluid and the second fluid is a reducing agent solution containing at least one reducing agent;
the copper source solution contains at least monovalent copper ions and/or divalent copper ions,
a potential difference between an oxidation-reduction potential of the copper raw material solution and an oxidation-reduction potential of the reducing agent solution is set so as to obtain the average particle diameter.
 前記銅原料溶液中の全銅イオンに対する1価の銅イオンのモル濃度比([Cu]/([Cu]+[Cu2+]))を調整することで前記銅原料溶液の酸化還元電位を設定する、請求項1に記載の製造方法。 2. The method according to claim 1, wherein the redox potential of the copper source solution is set by adjusting a molar concentration ratio ([Cu + ]/([Cu + ]+[Cu 2+ ])) of monovalent copper ions to total copper ions in the copper source solution.  前記銅原料溶液中の銅イオンに配位する配位子が、水、水酸化物イオン、アンモニア、ハロゲン化物イオン、アミノ酸、ホスフィン類、カルボン酸、チオール、シアン化物イオン、チオシアン化物イオン、ニトリル類、アミン類、及びエチレンジアミン四酢酸から選択される少なくとも1つであり、
 前記配位子を選択することで前記銅原料溶液の酸化還元電位を設定する、請求項1又は2に記載の製造方法。
a ligand coordinated to the copper ion in the copper source solution is at least one selected from water, hydroxide ions, ammonia, halide ions, amino acids, phosphines, carboxylic acids, thiols, cyanide ions, thiocyanide ions, nitriles, amines, and ethylenediaminetetraacetic acid;
The method according to claim 1 or 2, wherein the redox potential of the copper raw material solution is set by selecting the ligand.
 前記還元剤がアスコルビン酸塩類、硫酸第一鉄、亜硫酸塩類、ヒドロキシルアミン、ギ酸、ヒドロキノン、還元糖、アルデヒド、テトラヒドロほう酸類、ヒドラジン、及びヒドラジン化合物から選択される少なくとも1つであり、
 前記還元剤を選択することで前記還元剤溶液の酸化還元電位を設定する、請求項1~3のいずれかに記載の製造方法。
the reducing agent is at least one selected from ascorbate salts, ferrous sulfate, sulfite salts, hydroxylamine, formic acid, hydroquinone, reducing sugars, aldehydes, tetrahydroboric acids, hydrazine, and hydrazine compounds;
The method according to any one of claims 1 to 3, wherein the oxidation-reduction potential of the reducing agent solution is set by selecting the reducing agent.
 前記第1の流体と前記第2の流体とを混合後の混合液中に酸化型アスコルビン酸が含まれる、請求項1~4のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 4, wherein the mixed liquid obtained by mixing the first fluid and the second fluid contains oxidized ascorbic acid.  前記銅粒子の表面の酸化物層が4nm以下である、請求項1~5のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 5, wherein the oxide layer on the surface of the copper particles is 4 nm or less.  前記銅原料溶液と前記還元剤溶液を含む少なくとも2つの被処理流体を、対向して配設された接近離反可能な相対的に回転する処理用面間に連続的に導入し、
 対向して配設された接近離反可能な相対的に回転する処理用面間で前記少なくとも2つの被処理流体を混合させることで銅粒子を析出させ、
 前記析出した銅粒子を含む混合流体を前記処理用面間から吐出させて連続的に銅粒子を製造する、請求項1~6のいずれかに記載の製造方法。
Continuously introducing at least two fluids to be treated, including the copper raw material solution and the reducing agent solution, between processing surfaces disposed opposite to each other and rotating relatively so as to be capable of approaching and separating from each other;
mixing the at least two fluids to be treated between processing surfaces disposed opposite to each other and rotating relatively to each other so as to be able to approach and separate from each other, thereby precipitating copper particles;
The method according to any one of claims 1 to 6, wherein the mixed fluid containing the precipitated copper particles is discharged from between the processing surfaces to continuously produce copper particles.
 前記銅原料溶液と前記還元剤溶液の一方が、薄膜流体を形成しながら前記処理用面間を通過し、
 前記銅原料溶液と前記還元剤溶液の他方が、前記処理用面間に導入される流路とは独立した他の導入路を経て、前記処理用面の少なくともいずれか一方に形成された開口部から前記処理用面間に導入され、
 前記銅原料溶液と前記還元剤溶液が前記処理用面間で混合される、請求項7に記載の製造方法。
one of the copper source solution and the reducing agent solution passes between the processing surfaces while forming a thin film fluid;
the other of the copper raw material solution and the reducing agent solution is introduced into the space between the processing surfaces through another introduction path independent of the flow path introduced into the space between the processing surfaces, and from an opening formed in at least one of the processing surfaces;
The method of claim 7 , wherein the copper source solution and the reducing agent solution are mixed between the processing surfaces.
 銅粒子の平均粒子径を1nm~1000nmの範囲内で制御する方法であって、
 少なくとも第1の流体と第2の流体とを混合させて銅粒子を析出させる工程を含み、
 第1の流体と第2の流体の一方が、銅粒子の原料を含む銅原料溶液であり、
 第1の流体と第2の流体の他方が、少なくとも1種類以上の還元剤を含む還元剤溶液であり、
 前記銅原料溶液は少なくとも1価の銅イオン及び/又は2価の銅イオンを含み、
 前記銅原料溶液の酸化還元電位と前記還元剤溶液の酸化還元電位との電位差を変化させることを特徴とする、制御方法。
A method for controlling the average particle size of copper particles to within a range of 1 nm to 1000 nm, comprising the steps of:
The method includes a step of mixing at least a first fluid and a second fluid to precipitate copper particles,
one of the first fluid and the second fluid is a copper raw material solution containing a raw material of copper particles;
the other of the first fluid and the second fluid is a reducing agent solution containing at least one reducing agent;
the copper source solution contains at least monovalent copper ions and/or divalent copper ions,
A control method comprising changing a potential difference between an oxidation-reduction potential of the copper raw material solution and an oxidation-reduction potential of the reducing agent solution.
PCT/JP2023/016495 2023-04-26 2023-04-26 Method for producing copper particles WO2024224522A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/016495 WO2024224522A1 (en) 2023-04-26 2023-04-26 Method for producing copper particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/016495 WO2024224522A1 (en) 2023-04-26 2023-04-26 Method for producing copper particles

Publications (1)

Publication Number Publication Date
WO2024224522A1 true WO2024224522A1 (en) 2024-10-31

Family

ID=93256198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016495 WO2024224522A1 (en) 2023-04-26 2023-04-26 Method for producing copper particles

Country Status (1)

Country Link
WO (1) WO2024224522A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008393A1 (en) * 2007-07-06 2009-01-15 M.Technique Co., Ltd. Method for producing nanoparticles by forced ultra-thin film rotary processing
JP2022151975A (en) * 2021-03-29 2022-10-12 三菱マテリアル株式会社 Copper particles and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008393A1 (en) * 2007-07-06 2009-01-15 M.Technique Co., Ltd. Method for producing nanoparticles by forced ultra-thin film rotary processing
JP2022151975A (en) * 2021-03-29 2022-10-12 三菱マテリアル株式会社 Copper particles and method for producing the same

Similar Documents

Publication Publication Date Title
US8293144B2 (en) Composition containing fine silver particles, production method thereof, method for producing fine silver particles, and paste having fine silver particles
JP5355007B2 (en) Method for producing spherical silver powder
JP5393451B2 (en) Method for producing highly dispersible spherical silver powder particles and silver particles formed therefrom
JP5903887B2 (en) Method for producing ink for printing method
JP5449154B2 (en) Method for forming electrically conductive copper pattern layer by laser irradiation
Guo et al. Preparation and dispersive mechanism of highly dispersive ultrafine silver powder
US8366799B2 (en) Silver particles and a process for making them
JP6168009B2 (en) Method for producing core-shell catalyst
JP5424545B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
CN112605394A (en) Preparation method of silver powder for conductive paste
JPWO2018142943A1 (en) Method for producing highly crystalline silver fine particles
TWI855655B (en) Spherical silver powder, method for producing spherical silver powder, device for producing spherical silver powder, and conductive paste
Sannohe et al. Synthesis of monodispersed silver particles: Synthetic techniques to control shapes, particle size distribution and lightness of silver particles
WO2024224522A1 (en) Method for producing copper particles
JP3607656B2 (en) Method for producing noble metal nanoparticles
EP2101334B1 (en) Silver particle dispersion and process for producing the same
JP6713662B2 (en) Method for producing metal nanoparticles
JP2009215501A (en) Low-viscosity dispersion liquid for inkjet
JP4945202B2 (en) Method for producing metal fine particle dispersion
US20190104618A1 (en) Method for solvent-free printing conductors on substrate
JP5124822B2 (en) Method for producing composite metal powder and dispersion thereof
KR20110065020A (en) Method for preparing metal nanoparticles using an SPI membrane and a micro mixer
JP2014029017A (en) Method for producing metal fine particle composition
JP7670920B1 (en) Silver powder, method for producing silver powder, silver powder production device, and resin-cured conductive paste
JP2011184766A (en) Method for producing solder powder, and solder powder obtained by the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23935302

Country of ref document: EP

Kind code of ref document: A1