[go: up one dir, main page]

WO2024224017A1 - Variable-pitch vane for an unducted aeronautical thruster - Google Patents

Variable-pitch vane for an unducted aeronautical thruster Download PDF

Info

Publication number
WO2024224017A1
WO2024224017A1 PCT/FR2024/050526 FR2024050526W WO2024224017A1 WO 2024224017 A1 WO2024224017 A1 WO 2024224017A1 FR 2024050526 W FR2024050526 W FR 2024050526W WO 2024224017 A1 WO2024224017 A1 WO 2024224017A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
leading edge
thickness
skeleton line
stator
Prior art date
Application number
PCT/FR2024/050526
Other languages
French (fr)
Inventor
Guillaume Claude Robert BELMON
David Jacques Georges VANPOUILLE
Julien Michel TAMIZIER
Myriam Amanda QUARANTA
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Publication of WO2024224017A1 publication Critical patent/WO2024224017A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/18Aerodynamic features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/162Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/36Application in turbines specially adapted for the fan of turbofan engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/121Fluid guiding means, e.g. vanes related to the leading edge of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/301Cross-sectional characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Definitions

  • TITLE Variable-pitch blade for an unducted aeronautical propeller
  • the invention relates to a variable-pitch blade for an unducted aeronautical propeller, as well as a turbomachine comprising such blades.
  • the search for minimizing pollutant emissions linked to air transport involves in particular improving the efficiency of propulsion systems, and more particularly the propulsive efficiency which characterizes the efficiency with which the energy which is communicated to the air passing through the engine is converted into thrust force useful for propulsion.
  • a known principle for improving propulsive efficiency is to modify the elements of the low-pressure system of the thrusters, which contribute immediately to the generation of thrust, in combination with other known elements of the turbomachine, such as the high-pressure body and the combustion chamber.
  • These elements typically include a low-pressure turbine, a low-pressure transmission system driving a fan, a secondary flow straightener guiding the flow of the latter.
  • One solution aims to reduce the compression ratio of the fan, thereby reducing the flow velocity at the engine outlet and the kinetic energy losses associated with it.
  • BPR engine dilution ratio
  • FIG. 1 illustrates such an unducted turbomachine 1, of the type designated by the acronym USF (for Unducted Single Fan in English).
  • the turbomachine 1 comprises a propeller wheel 3 upstream (or rotor 3) with variable timing and a downstream rectifier wheel 5 (or stator 5) with fixed or variable timing.
  • upstream and downstream are understood relative to a main axis X of the turbomachine 1, which coincides with the axis of rotation of the rotor 3, and relative to a normal flow direction of the air during operation of the turbomachine 1.
  • the turbomachine 1 is in a “puller” type configuration, that is to say with the rotor 3 and the stator 5 upstream of the turbine, and is generally mounted on the fuselage or under a wing of the aircraft by a mast 7.
  • a turbomachine can be in a so-called “pusher” configuration with the propellers downstream of the turbine for mounting at the rear of the aircraft.
  • the rotor 3 and the stator 5 each comprise a plurality of blades 10 distributed circumferentially around the main axis X.
  • the rotor 3 is a movable propeller rotating around the X axis so as to drive the air and generate a primary flow Fp sent into the turbomachine and a secondary flow Fs flowing outside the turbomachine.
  • This rotor 3 is a variable-pitch propeller with a slow rotation speed, that is to say that each blade 10 comprises a blade mounted so as to rotate about a radial axis, so as to modify its pitch angle to maximize its thrust according to the flight point (takeoff, cruise, landing, etc.), the slow rotation speed making it possible to maximize the propulsion energy efficiency.
  • Such an unducted turbomachine does not comprise an external casing surrounding the secondary flow Fs. Only the primary flow Fp is guided in a central casing of the turbomachine.
  • the acoustic attenuation of the noise generated by the turbomachine is significantly reduced, particularly for low frequencies (below 500 Hz).
  • the admissible sound levels are highly constrained, particularly for the take-off and landing phases, which implies an optimization of the blades to reduce the noise level, not having access to the classic attenuation solutions of ducted turbomachines.
  • the blades of the variable-pitch vanes, in an unducted turbomachine are particularly sensitive to non-uniform air flows, with non-axial incidence, i.e. forming a non-zero angle with the direction of the main axis X of the turbomachine, due to the absence of an external casing guiding the secondary flow.
  • air flows appear notably during the take-off and landing phases of the aircraft and can generate transverse forces and moments in the plane of the propeller. These forces are transient, and vary for each blade during its rotation, with differences depending on the rising or falling position of the blade. Consequently, over one revolution of the engine, the same propeller blade is subjected to variable forces dependent on its azimuthal position.
  • the stator blades located downstream of the propeller will also have a variable incidence depending on their azimuthal position.
  • a known solution for reducing the noise level generated by the blades is to uniformly reduce the radial length of the blades of the downstream impeller, i.e. of the stator 5 in the case shown. In this way, the impact of the vortices formed at the radially external ends of the blades of the rotor 3 on the stator blades is limited in that these vortices pass radially outside the stator blades.
  • This solution is called “clipping", or “cropping”, or “truncation”, or even “clipping”, of the blades of the downstream impeller.
  • a “clipping” or clipping rate can be defined as the ratio of the difference in radius between the rotor and the stator to the radius of the rotor, generally expressed as a percentage.
  • the invention aims to overcome these drawbacks by proposing an unducted turbomachine which is robust to variations in the incidence of air flows at different operating points corresponding to different phases of flight, and which offers satisfactory aerodynamic and acoustic behavior for a wide range of rotation speeds.
  • the invention relates to a variable-pitch blade for an unducted aeronautical propeller, comprising a blade extending along a blade axis, from a root to a tip of the blade, the blade defining a leading edge, a trailing edge, and intrados and extrados surfaces extending from the leading edge to the trailing edge, the blade comprising, in any section plane orthogonal to the blade axis:
  • skeleton line extending from the leading edge to the trailing edge, equidistant from the intrados surface and the extrados surface, having a total length measured along the skeleton line from the leading edge to the trailing edge
  • leading edge thickness defined as a length of a first segment extending from the intrados edge to the extrados edge and intersecting perpendicularly the skeleton line at a first point on the skeleton line located at a distance from the leading edge, measured along the skeleton line, equal to 0.2% of the total length of the skeleton line
  • a capture zone thickness defined as a length of a second segment extending from the intrados edge to the extrados edge and perpendicularly intersecting the line of skeleton at a second point on the skeleton line located at a distance from the leading edge, measured along the skeleton line, equal to 5% of the total length of the skeleton line, characterized in that, for each section plane orthogonal to the blade axis, the ratio between the thickness of the capture zone and the thickness of the leading edge is between 2.5 and 8.
  • Such a blade makes it possible to significantly limit aerodynamic separations at the leading edge of the propellers when they operate at low speed and with a high incidence to reach the target thrust during the take-off phase of the aircraft. This then significantly reduces the formation of a downstream vortex, which otherwise constitutes a very energy-consuming propeller wake and is very penalizing from an acoustic point of view.
  • the ratio between the capture zone thickness and the leading edge thickness can be between 3.5 and 5.
  • the ratio between the thickness of the capture zone and the thickness of the leading edge may be between 3 and 8.
  • Such a feature makes it possible to improve robustness to variations in incidence, particularly on the bottom of the blade, which generates the primary flow supplying the turbine in the case of the rotor, and therefore requires less performance from the blade regardless of the flight envelope, or in the case of the stator, which takes up the most thrust.
  • the ratio between the thickness of the capture zone and the thickness of the leading edge may be between 2.5 and 5.
  • Such a feature makes it possible to optimize the aerodynamic performance of the blade on the upper part while maintaining sufficient robustness to variations in incidence and satisfactory acoustic performance.
  • the ratio of the capture zone thickness to the leading edge thickness for any section plane of a lower portion of the blade extending from the root over a height of between 0% and 35% of a total height of the blade measured between the root and the tip may be greater than or equal to the ratio of the capture zone thickness to the leading edge thickness for any section plane of an upper portion of the blade extending to the tip over a height of between 35% and 100% of the total height of the blade.
  • Such a variation in the aerodynamic performance of the blade is particularly advantageous for a dual-flow thruster, by optimizing the lower part of the blade for good supply of the radially internal primary flow and by making it possible to have different characteristics for the upper part of the blade, more suited to the supply of the radially external secondary flow.
  • the blade may comprise, in each section plane orthogonal to the blade axis, a maximum thickness, defined as a length of a third segment extending from the intrados edge to the extrados edge and perpendicularly intersecting the skeleton line at a third point, for which the length of the third segment is maximum over an extent of the skeleton line, in which said third point is located at a distance from the leading edge, measured along the skeleton line, greater than or equal to 15%, and advantageously between 15% and 40% of the total length of the skeleton line.
  • a maximum thickness defined as a length of a third segment extending from the intrados edge to the extrados edge and perpendicularly intersecting the skeleton line at a third point, for which the length of the third segment is maximum over an extent of the skeleton line, in which said third point is located at a distance from the leading edge, measured along the skeleton line, greater than or equal to 15%, and advantageously between 15% and 40% of the total length of the skeleton line.
  • Such a feature allows to move the maximum thickness away from the leading edge and thus improve the performance of the blade.
  • the ratio may be strictly increasing from the leading edge to said third point and strictly decreasing from said third point to the trailing edge.
  • the blade may be a rotor blade mounted on a mobile disk rotating around a main axis.
  • the invention also relates to an unducted propeller for an aircraft, comprising at least one rotor and one stator, spaced along a main axis of the propeller, at least one of the rotor and the stator comprising a plurality of blades as above, distributed circumferentially around the main axis, in particular between 3 and 25 blades, advantageously between 8 and 16 blades.
  • Such a number of blades constitutes an advantageous compromise between propulsion energy performance and the noise generated.
  • the one arranged upstream relative to the main axis may comprise at least two more blades than the one arranged downstream.
  • Such a feature helps to reduce the noise of the turbomachine. Indeed, in the case where the number of rotor and stator blades are equal, the rotor wake assembly interacts with the stator blades simultaneously, which increases the noise levels.
  • the stator can be arranged downstream and have a clipping rate of between 5% and 15% and in particular between 7% and 12%.
  • the lengths of the stator blades may be non-uniform, with blade lengths in the lower part of the stator being less than the blade lengths in the upper part of the stator.
  • Such a feature allows to have a higher clipping rate below the stator, where the noise generated is the most important and therefore where noise reduction is most necessary, and a lower clipping in the upper part, where it is less required. Thus, the compromise between noise reduction and propulsive efficiency is improved.
  • Each blade may have a chord length defined as the maximum over a span of the blade of a distance between the leading edge and the trailing edge in a cross-section plane to the blade axis, the rotor and the stator having spacings separating neighboring blades, measured in a circumferential direction, in which a solidity of the rotor and the stator, defined as the ratio of the chord length to the spacing separating neighboring blades, may be less than or equal to 3, and in particular less than or equal to 1 for that arranged furthest upstream of the rotor and the stator, relative to the main axis.
  • a ratio between an axial distance separating the rotor and the stator and an external diameter of the rotor may be between 0.01 and 0.5, preferably between 0.15 and 0.35.
  • Such a feature allows efficient rectification of the flow at the rotor outlet by the stator and improves the aerodynamic performance of the propeller.
  • Figure 1 is a side view of an unducted turbomachine according to the invention
  • Figure 2 is a side view of a rotor blade of the turbomachine of Figure 1
  • Figure 3 is a cross-sectional view of the blade of Figure 2
  • Figure 4 is a cross-sectional profile of the blade of Figures 2 and 3.
  • An unducted turbomachine 1 is shown in Figure 1, defining a central axis X and comprising a rotor 3 and a stator 5 spaced along the main axis X.
  • the stator 5 is positioned downstream of the rotor 3.
  • the turbomachine 1 also comprises at least one engine arranged in its internal space, said engine possibly being a heat engine, in particular of the turboshaft, turbojet, turbofan type, and/or an electric engine, and/or a hydrogen engine, and/or a hybrid engine combining several of these technologies.
  • the rotor 3 and the stator 5 both comprise a plurality of blades 10 extending substantially radially from the main axis X and regularly distributed circumferentially around the axis X.
  • the blades 10 of the rotor 3 may have different dimensions from the blades 10 of the stator 5, in particular different blade lengths.
  • the rotor 3 comprises at least two blades 10 more than the stator 5.
  • the rotor 3 has a radius R1, measured from the central axis to a tip of each blade 10 of the rotor 3.
  • stator 5 has a radius R2 measured from the central axis to a tip of each blade 10 of the stator 5.
  • the radius R2 of the stator 5 is less than the radius R1 of the rotor 3, in particular less than the radius R1 by between 5% and 15% of the value of R1 and in particular by between 7% and 12% of the value of R1.
  • the stator 5 has a clipping rate, as defined above, of between 5% and 15% and in particular between 7% and 12%. This clipping rate allows an additional reduction in the noise generated at the stator, but remains sufficiently moderate so as not to significantly reduce the propulsive efficiency of the turbomachine.
  • a diameter D of the turbomachine 1 as twice the largest of the two radii R1, R2.
  • the blades 10 are variable-pitch blades, that is to say, the blades of which are movable in rotation around a radial axis in order to vary the pitch angle of each blade of the rotor 3 or the stator 5 in a controlled manner.
  • the axes of rotation of the blades, or blade axes, of the rotor blades 3 are included in a plane P1 perpendicular to the main axis X, and the axes of the blades of the stator 5 are included in a plane P2 perpendicular to the main axis X and spaced from the plane P1 by a distance S measured along the main axis X.
  • the plane P2 is defined at the level of the center of gravity of the blades 10.
  • a ratio S/D, between the axial distance S separating the planes P1 and P2, and one separating the rotor 3 from the stator 5, and the external diameter of the turbomachine 1 is between 0.01 and 0.5, preferably between 0.15 and 0.35.
  • a blade 10 is shown in more detail in Figure 2.
  • the blade 10 comprises a root 12, a blade 14 and a tip 16.
  • the blade 14 extends along a blade axis Z perpendicular to the main axis X and included in the plane P1 described above.
  • the blade 14 defines a leading edge 18 formed by the most upstream line of the blade 14 and a trailing edge 20 formed by the most downstream line.
  • the blade 14 comprises a lower surface 22 and an upper surface 24 extending from the leading edge to the trailing edge on either side of the blade 14.
  • a blade height H is defined as the distance measured along the blade axis Z separating the root 12 from the tip 16, and a chord length C as the distance separating the leading edge 18 from the trailing edge 20, measured in a plane of transverse section P.
  • the solidity is less than 3 for the rotor and the stator, and preferably less than 1 for the one placed furthest upstream, that is to say the rotor 3 in the case shown.
  • a height h of a plane of transverse section P is defined as the distance measured along the blade axis Z between the root 12 and the plane of section P.
  • Figures 3 and 4 represent transverse sections of the blade 14 in a section plane P located at a height h.
  • a skeleton line LS is defined as the curved line extending from the leading edge 18 to the trailing edge 20 and equidistant from the intrados surface 22 and the extrados surface 24.
  • the length of the skeleton line LS is strictly greater than the chord length C in the plane P, which separates the leading edge 18 from the trailing edge 20, measured in a straight line.
  • the pitch angle y of the blade 14 is represented as the angle between the chord C and the transverse plane P1.
  • the pitch angle y can be modified by rotating the blade 14 around the blade axis Z.
  • a thickness of the blade 14 in the section plane P at a height h is defined as the length of a segment perpendicular to the skeleton line LS and extending from the intrados edge 22 to the extrados edge 24.
  • a leading edge thickness Ep0.2 as the length of a first segment S1 which intersects the skeleton line LS perpendicularly at a first point A1 located at a distance, measured along the skeleton line LS, equal to 0.2% of the total length of the skeleton line LS.
  • a capture zone thickness Ep5 is defined as the length of a second segment S2 which intersects the skeleton line LS perpendicularly at a second point A2 located at a distance, measured along the skeleton line LS, equal to 5% of the total length of the skeleton line LS.
  • the ratio R Ep5/Ep0.2 between the thickness of the capture zone Ep5 and the thickness of the leading edge Ep0.2 is characteristic of the performance of the blade and its robustness to variations in incidence.
  • low values of R correspond to blades with high aerodynamic performance
  • high R values correspond to blades that are robust at incidence.
  • R values between 2.5 and 8 provide an advantageous compromise allowing good performance for the blade while reducing the risks of detachment and having satisfactory acoustic performance.
  • a lower part of the blade 14 is distinguished, for heights h between 0 and 35% of the total height H, and an upper part of the blade, for heights h between 35% and 100% of the total height H of the blade 14.
  • the ratio R is advantageously between 3 and 8, emphasizing the resistance of the blade to variations in incidence. Indeed, the aerodynamic performances are less critical in the lower part, which concentrates the primary flow Fp towards the turbine.
  • the ratio R is advantageously between 2.5 and 5 in order to emphasize the aerodynamic performance of the blade 14 on the upper part generating the secondary flow Fs.
  • ratio R over the entire lower part is advantageously greater than the ratio R over the entire upper part of the blade 14.
  • a maximum thickness Epmax as the length of a third segment S3 which intersects the skeleton line LS perpendicularly at a third point A3 and for which the measured length is maximum over the entire skeleton line.
  • the blade thickness varies monotonically from the leading edge to the maximum Epmax, then again monotonically from the maximum Epmax to the trailing edge.
  • the third point A3 is located at a distance from the leading edge measured along the skeleton line LS greater than or equal to 15% of the total length of said skeleton line LS. This makes it possible to move the maximum thickness sufficiently away from the leading edge to have satisfactory performance. More preferably, the point A3 is located at a distance from the leading edge of between 15% and 40% of the total length of said skeleton line LS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Golf Clubs (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

The invention relates to a variable pitch vane for an unducted aeronautical thruster, the vane comprising an airfoil (14) which defines a leading edge (18), a trailing edge (20), a pressure side surface (22) and a suction side surface (24), comprising: a mean camber line (LS), a leading edge thickness (Ep0.2) defined as a length of a first segment (S1) intersecting the mean camber line at a first point (A1) located at 0.2% of the total length of the mean camber line and a capture zone thickness (Ep5) defined as a length of a second segment (S2) intersecting the mean camber line at a second point (A2) located at 5% of the total length of the mean camber line. For each sectional plane (P), the ratio (R) of the capture zone thickness (Ep5) to the leading edge thickness (Ep0, 2) is between 2.5 and 8.

Description

DESCRIPTION DESCRIPTION

TITRE : Aube à calage variable de propulseur aéronautique non-caréné TITLE: Variable-pitch blade for an unducted aeronautical propeller

Domaine technique de l’invention Technical field of the invention

L’invention concerne une aube à calage variable de propulseur aéronautique non-caréné, ainsi qu’une turbomachine comprenant de telles aubes. The invention relates to a variable-pitch blade for an unducted aeronautical propeller, as well as a turbomachine comprising such blades.

Etat de la technique antérieure State of the prior art

La recherche de la minimisation des émissions polluantes liées au transport aérien passe notamment par l’amélioration de l’efficacité des systèmes de propulsion, et plus particulièrement du rendement propulsif qui caractérise l’efficacité avec laquelle l’énergie qui est communiquée à l’air qui traverse le moteur est convertie en effort de poussée utile pour la propulsion. The search for minimizing pollutant emissions linked to air transport involves in particular improving the efficiency of propulsion systems, and more particularly the propulsive efficiency which characterizes the efficiency with which the energy which is communicated to the air passing through the engine is converted into thrust force useful for propulsion.

Un principe connu permettant d’améliorer le rendement propulsif consiste à modifier les éléments du système basse-pression des propulseurs, qui contribuent de manière immédiate à la génération de la poussée, en combinaison avec d’autres éléments connus de la turbomachine, comme le corps haute pression et la chambre de combustion. Ces éléments comprennent typiquement une turbine basse pression, un système de transmission basse pression entraînant une soufflante, un redresseur de flux secondaire guidant l’écoulement de ce dernier. Une solution vise à diminuer le taux de compression de la soufflante, diminuant par là-même la vitesse d’écoulement en sortie du moteur et les pertes d’énergie cinétique qui lui sont liées. A known principle for improving propulsive efficiency is to modify the elements of the low-pressure system of the thrusters, which contribute immediately to the generation of thrust, in combination with other known elements of the turbomachine, such as the high-pressure body and the combustion chamber. These elements typically include a low-pressure turbine, a low-pressure transmission system driving a fan, a secondary flow straightener guiding the flow of the latter. One solution aims to reduce the compression ratio of the fan, thereby reducing the flow velocity at the engine outlet and the kinetic energy losses associated with it.

L’une des principales conséquences de cette diminution de vitesse d’écoulement en sortie du moteur est qu’il est nécessaire de faire transiter à travers la partie basse pression (ou flux secondaire) un débit massique d’air plus important afin d’assurer un niveau de poussée donnée. Ceci conduit donc à une augmentation du taux de dilution du moteur (ou BPR, pour ByPass Ratio, en anglais), défini comme le rapport entre le débit massique passant dans le flux secondaire (flux froid), et le débit massique passant dans le flux primaire (flux chaud) et alimentant notamment la chambre de combustion. One of the main consequences of this reduction in the flow rate at the engine outlet is that it is necessary to pass a greater mass flow of air through the low pressure part (or secondary flow) in order to ensure a given thrust level. This therefore leads to an increase in the engine dilution ratio (or BPR, for ByPass Ratio), defined as the ratio between the mass flow passing through the secondary flow (cold flow), and the mass flow passing through the primary flow (hot flow) and supplying in particular the combustion chamber.

Les diamètres de soufflante très importants nécessaires pour une telle dilution entraîneraient une augmentation très importante des dimensions du carter et de la nacelle, entraînant le développement de turbomachines non-carénées palliant ce problème. The very large fan diameters required for such dilution would result in a very significant increase in the dimensions of the casing and the nacelle, leading to the development of unducted turbomachines to overcome this problem.

La figure 1 illustre une telle turbomachine 1 non-carénée, du type désigné par l’acronyme USF (pour Unducted Single Fan en anglais). La turbomachine 1 comprend une roue d’hélice 3 amont (ou rotor 3) à calage variable et une roue de redresseur 5 aval (ou stator 5) à calage fixe ou variable. Figure 1 illustrates such an unducted turbomachine 1, of the type designated by the acronym USF (for Unducted Single Fan in English). The turbomachine 1 comprises a propeller wheel 3 upstream (or rotor 3) with variable timing and a downstream rectifier wheel 5 (or stator 5) with fixed or variable timing.

Les termes « amont » et « aval » sont entendus relativement à un axe principal X de la turbomachine 1 , qui est confondu avec l’axe de rotation du rotor 3, et relativement à une direction d’écoulement normal de l’air lors du fonctionnement de la turbomachine 1 . The terms “upstream” and “downstream” are understood relative to a main axis X of the turbomachine 1, which coincides with the axis of rotation of the rotor 3, and relative to a normal flow direction of the air during operation of the turbomachine 1.

La turbomachine 1 est en configuration de type « puller », c’est à dire avec le rotor 3 et le stator 5 en amont de la turbine, et est généralement montée sur le fuselage ou sous une aile de l’aéronef par un mât 7. Alternativement, une turbomachine peut se présenter en configuration dite « pusher » avec les hélices à l’aval de la turbine pour un montage à l’arrière de l’aéronef. The turbomachine 1 is in a “puller” type configuration, that is to say with the rotor 3 and the stator 5 upstream of the turbine, and is generally mounted on the fuselage or under a wing of the aircraft by a mast 7. Alternatively, a turbomachine can be in a so-called “pusher” configuration with the propellers downstream of the turbine for mounting at the rear of the aircraft.

Le rotor 3 et le stator 5 comprennent chacun une pluralité d’aubes 10 réparties circonférentiellement autour de l’axe principal X. The rotor 3 and the stator 5 each comprise a plurality of blades 10 distributed circumferentially around the main axis X.

Le rotor 3 est une hélice mobile en rotation autour de l’axe X de manière à entraîner l’air et à générer un flux primaire Fp envoyé dans la turbomachine et un flux secondaire Fs s’écoulant à l’extérieur de la turbomachine. The rotor 3 is a movable propeller rotating around the X axis so as to drive the air and generate a primary flow Fp sent into the turbomachine and a secondary flow Fs flowing outside the turbomachine.

Ce rotor 3 est une hélice à calage variable et à régime de rotation lent, c’est-à-dire que chaque aube 10 comprend une pale montée mobile en rotation autour d’un axe radial, de manière à modifier son angle de calage pour maximiser sa poussée selon le point de vol (décollage, croisière, atterrissage, etc), la vitesse de rotation lente permettant de maximiser le rendement énergétique de propulsion. Une telle turbomachine non-carénée ne comprend pas de carter externe entourant le flux secondaire Fs. Seul le flux primaire Fp est guidé dans un carter central de la turbomachine. This rotor 3 is a variable-pitch propeller with a slow rotation speed, that is to say that each blade 10 comprises a blade mounted so as to rotate about a radial axis, so as to modify its pitch angle to maximize its thrust according to the flight point (takeoff, cruise, landing, etc.), the slow rotation speed making it possible to maximize the propulsion energy efficiency. Such an unducted turbomachine does not comprise an external casing surrounding the secondary flow Fs. Only the primary flow Fp is guided in a central casing of the turbomachine.

L’atténuation acoustique du bruit généré par la turbomachine est fortement réduite, notamment pour les basses fréquences (inférieures à 500 Hz). Les niveaux sonores admissibles sont fortement contraints, notamment pour les phases de décollage et d’atterrissage, ce qui implique une optimisation des aubes pour réduire le niveau de bruit, n’ayant pas accès aux solutions classiques d’atténuation des turbomachines carénées. The acoustic attenuation of the noise generated by the turbomachine is significantly reduced, particularly for low frequencies (below 500 Hz). The admissible sound levels are highly constrained, particularly for the take-off and landing phases, which implies an optimization of the blades to reduce the noise level, not having access to the classic attenuation solutions of ducted turbomachines.

Enfin, les pales des aubes à calage variable, dans une turbomachine non-carénée, sont particulièrement sensibles aux flux d’air non uniformes, à incidence non-axiale, c’est-à-dire formant un angle non-nul avec la direction de l’axe principal X de la turbomachine, du fait de l’absence de carter externe guidant le flux secondaire. De tels flux d’air apparaissent notablement au cours des phases de décollage et d’atterrissage de l’aéronef et peuvent générer des forces et des moments transverses dans le plan de l’hélice. Ces efforts sont transitoires, et varient pour chaque pale au cours de sa rotation, avec des différences selon la position montante ou descendante de la pale. Par conséquent, sur un tour du moteur, une même pale d’hélice est soumise à des efforts variables dépendants de sa position azimutale. Les aubes du stators situées en aval de l’hélice auront aussi une incidence variable selon leur position azimutale. Finally, the blades of the variable-pitch vanes, in an unducted turbomachine, are particularly sensitive to non-uniform air flows, with non-axial incidence, i.e. forming a non-zero angle with the direction of the main axis X of the turbomachine, due to the absence of an external casing guiding the secondary flow. Such air flows appear notably during the take-off and landing phases of the aircraft and can generate transverse forces and moments in the plane of the propeller. These forces are transient, and vary for each blade during its rotation, with differences depending on the rising or falling position of the blade. Consequently, over one revolution of the engine, the same propeller blade is subjected to variable forces dependent on its azimuthal position. The stator blades located downstream of the propeller will also have a variable incidence depending on their azimuthal position.

Une solution connue permettant de réduire le niveau de bruit généré par les aubes est de diminuer uniformément la longueur radiale des aubes de la roue situé en aval, c’est-à-dire du stator 5 dans le cas représenté. De cette manière, l’impact des tourbillons formés au niveau des extrémités radialement externes des aubes du rotor 3 sur les aubes du stator est limitée en ce que ces tourbillons passent radialement à l’extérieur des aubes de stator. Cette solution est appelée « clipping », ou « cropping », ou « troncature », ou encore « écrêtage », des pales de la roue aval. On peut définir un taux de « clipping » ou d’écrêtage comme le rapport de la différence de rayon entre le rotor et le stator sur le rayon du rotor, généralement exprimé en pourcentage. A known solution for reducing the noise level generated by the blades is to uniformly reduce the radial length of the blades of the downstream impeller, i.e. of the stator 5 in the case shown. In this way, the impact of the vortices formed at the radially external ends of the blades of the rotor 3 on the stator blades is limited in that these vortices pass radially outside the stator blades. This solution is called "clipping", or "cropping", or "truncation", or even "clipping", of the blades of the downstream impeller. A "clipping" or clipping rate can be defined as the ratio of the difference in radius between the rotor and the stator to the radius of the rotor, generally expressed as a percentage.

Cependant, cette solution peut encore être améliorée. En effet, un fort taux d’écrêtage réduit notablement le rendement propulsif de la turbomachine. De plus, la réduction de bruit est surtout effective en incidence nulle, et ne permet pas forcément un résultat satisfaisant dans les situations à incidence importante. However, this solution can still be improved. Indeed, a high clipping rate significantly reduces the propulsive efficiency of the turbomachine. In addition, noise reduction is mainly effective at zero incidence, and does not necessarily provide a satisfactory result in situations with high incidence.

Présentation de l’invention Presentation of the invention

L’invention vise à remédier à ces inconvénients, en proposant une turbomachine non-carénée robuste aux variations d’incidence des flux d’air sur différents points de fonctionnement correspondant à différente phases de vol, et offrant un comportement aérodynamique et acoustique satisfaisant pour une large gamme de vitesses de rotation. The invention aims to overcome these drawbacks by proposing an unducted turbomachine which is robust to variations in the incidence of air flows at different operating points corresponding to different phases of flight, and which offers satisfactory aerodynamic and acoustic behavior for a wide range of rotation speeds.

A cet effet, l’invention a pour objet une aube à calage variable de propulseur aéronautique non-caréné, comprenant une pale s’étendant selon un axe de pale, depuis un pied jusqu’à un sommet de la pale, la pale définissant un bord d’attaque, un bord de fuite, et des surfaces d’intrados et d’extrados s’étendant du bord d’attaque au bord de fuite, la pale comprenant, dans tout plan de section orthogonal à l’axe de pale : For this purpose, the invention relates to a variable-pitch blade for an unducted aeronautical propeller, comprising a blade extending along a blade axis, from a root to a tip of the blade, the blade defining a leading edge, a trailing edge, and intrados and extrados surfaces extending from the leading edge to the trailing edge, the blade comprising, in any section plane orthogonal to the blade axis:

- une ligne de squelette s’étendant du bord d’attaque au bord de fuite, équidistante de la surface d’intrados et de la surface d’extrados, présentant une longueur totale mesurée le long de la ligne de squelette depuis le bord d’attaque jusqu’au bord de fuite, - a skeleton line extending from the leading edge to the trailing edge, equidistant from the intrados surface and the extrados surface, having a total length measured along the skeleton line from the leading edge to the trailing edge,

- une épaisseur de bord d’attaque, définie comme une longueur d’un premier segment s’étendant du bord d’intrados au bord d’extrados et coupant perpendiculairement la ligne de squelette en un premier point de la ligne de squelette situé à une distance du bord d’attaque, mesurée le long de la ligne de squelette, égale à 0,2% de la longueur totale de la ligne de squelette, - a leading edge thickness, defined as a length of a first segment extending from the intrados edge to the extrados edge and intersecting perpendicularly the skeleton line at a first point on the skeleton line located at a distance from the leading edge, measured along the skeleton line, equal to 0.2% of the total length of the skeleton line,

- une épaisseur de zone de captation, définie comme une longueur d’un deuxième segment s’étendant du bord d’intrados au bord d’extrados et coupant perpendiculairement la ligne de squelette en un deuxième point de la ligne de squelette situé à une distance du bord d’attaque, mesurée le long de la ligne de squelette, égale à 5% de la longueur totale de la ligne de squelette, caractérisée en ce que, pour chaque plan de section orthogonal à l’axe de pale, le rapport entre l’épaisseur de zone de captation et l’épaisseur de bord d’attaque est compris entre 2,5 et 8. - a capture zone thickness, defined as a length of a second segment extending from the intrados edge to the extrados edge and perpendicularly intersecting the line of skeleton at a second point on the skeleton line located at a distance from the leading edge, measured along the skeleton line, equal to 5% of the total length of the skeleton line, characterized in that, for each section plane orthogonal to the blade axis, the ratio between the thickness of the capture zone and the thickness of the leading edge is between 2.5 and 8.

Une telle aube permet de limiter fortement les décollements aérodynamiques au niveau du bord d’attaque des hélices lorsqu’elles fonctionnent en basse vitesse et avec une incidence élevée pour atteindre la poussée cible lors de la phase de décollage de l’aéronef. Ceci réduit alors fortement la formation d’un tourbillon en aval, qui constitue sinon un sillage d’hélice très énergivore et très pénalisant d’un point de vue acoustique. Such a blade makes it possible to significantly limit aerodynamic separations at the leading edge of the propellers when they operate at low speed and with a high incidence to reach the target thrust during the take-off phase of the aircraft. This then significantly reduces the formation of a downstream vortex, which otherwise constitutes a very energy-consuming propeller wake and is very penalizing from an acoustic point of view.

Pour chaque plan de section orthogonal à l’axe de pale, le rapport entre l’épaisseur de zone de captation et l’épaisseur de bord d’attaque peut être compris entre 3,5 et 5. For each section plane orthogonal to the blade axis, the ratio between the capture zone thickness and the leading edge thickness can be between 3.5 and 5.

Une telle caractéristique permet un meilleur compromis entre la robustesse de la pale aux variations d’incidence et l’efficacité aérodynamique. Such a characteristic allows a better compromise between the robustness of the blade to variations in incidence and aerodynamic efficiency.

Sur une portion inférieure de la pale s’étendant depuis le pied sur une hauteur comprise entre 0% et 35% d’une hauteur totale de la pale mesurée entre le pied et le sommet, pour chaque plan de section de ladite portion inférieure, le rapport entre l’épaisseur de zone de captation et l’épaisseur de bord d’attaque peut être compris entre 3 et 8. On a lower portion of the blade extending from the root over a height of between 0% and 35% of a total height of the blade measured between the root and the tip, for each section plane of said lower portion, the ratio between the thickness of the capture zone and the thickness of the leading edge may be between 3 and 8.

Une telle caractéristique permet d’améliorer la robustesse aux variations d’incidence en particulier sur le bas de pale, qui génère le flux primaire alimentant la turbine dans le cas du rotor, et nécessite donc moins de performance de la pale quel que soit le domaine de vol, ou dans le cas du stator, qui reprend le plus de poussée. Such a feature makes it possible to improve robustness to variations in incidence, particularly on the bottom of the blade, which generates the primary flow supplying the turbine in the case of the rotor, and therefore requires less performance from the blade regardless of the flight envelope, or in the case of the stator, which takes up the most thrust.

Sur une portion supérieure de la pale s’étendant jusqu’au sommet, sur une hauteur comprise entre 35% et 100% d’une hauteur totale de la pale mesurée entre le pied et le sommet, pour chaque plan de section de ladite portion supérieure, le rapport entre l’épaisseur de zone de captation et l’épaisseur de bord d’attaque peut être compris entre 2,5 et 5. On an upper portion of the blade extending to the tip, over a height of between 35% and 100% of a total height of the blade measured between the root and the tip, for each section plane of said upper portion, the ratio between the thickness of the capture zone and the thickness of the leading edge may be between 2.5 and 5.

Une telle caractéristique permet d’optimiser les performances aérodynamiques de la pale sur la partie haute tout en maintenant une robustesse suffisante aux variations d’incidence et des performances acoustiques satisfaisantes. Such a feature makes it possible to optimize the aerodynamic performance of the blade on the upper part while maintaining sufficient robustness to variations in incidence and satisfactory acoustic performance.

Le rapport entre l’épaisseur de zone de captation et l’épaisseur de bord d’attaque pour tout plan de section d’une portion inférieure de la pale s’étendant depuis le pied sur une hauteur comprise entre 0% et 35% d’une hauteur totale de la pale mesurée entre le pied et le sommet peut être supérieur ou égal au rapport entre l’épaisseur de zone de captation et l’épaisseur de bord d’attaque pour tout plan de section d’une portion supérieure de la pale s’étendant jusqu’au sommet sur une hauteur comprise entre 35% et 100% de la hauteur totale de la pale. Une telle caractéristique permet de répartir les performances aérodynamiques de la pale sur les parties les plus critiques et d’améliorer la robustesse à l’incidence des parties basses de la pale. Une telle variation des performances aérodynamiques de la pale est particulièrement avantageuse pour un propulseur bi-flux, en optimisant la partie basse de la pale pour une bonne alimentation du flux primaire radialement interne et en permettant d’avoir des caractéristiques différentes pour la partie haute de la pale, plus adaptées à l’alimentation du flux secondaire, radialement externe. The ratio of the capture zone thickness to the leading edge thickness for any section plane of a lower portion of the blade extending from the root over a height of between 0% and 35% of a total height of the blade measured between the root and the tip may be greater than or equal to the ratio of the capture zone thickness to the leading edge thickness for any section plane of an upper portion of the blade extending to the tip over a height of between 35% and 100% of the total height of the blade. Such a feature makes it possible to distribute the aerodynamic performance of the blade over the most critical parts and to improve the robustness to incidence of the lower parts of the blade. Such a variation in the aerodynamic performance of the blade is particularly advantageous for a dual-flow thruster, by optimizing the lower part of the blade for good supply of the radially internal primary flow and by making it possible to have different characteristics for the upper part of the blade, more suited to the supply of the radially external secondary flow.

La pale peut comprendre, dans chaque plan de section orthogonal à l’axe de pale, une épaisseur maximale, définie comme une longueur d’un troisième segment s’étendant du bord d’intrados au bord d’extrados et coupant perpendiculairement la ligne de squelette en un troisième point, pour laquelle la longueur du troisième segment est maximale sur une étendue de la ligne de squelette, dans laquelle ledit troisième point est situé à une distance du bord d’attaque, mesurée le long de la ligne de squelette, supérieure ou égale à 15%, et avantageusement compris entre 15% et 40% de la longueur totale de la ligne de squelette. The blade may comprise, in each section plane orthogonal to the blade axis, a maximum thickness, defined as a length of a third segment extending from the intrados edge to the extrados edge and perpendicularly intersecting the skeleton line at a third point, for which the length of the third segment is maximum over an extent of the skeleton line, in which said third point is located at a distance from the leading edge, measured along the skeleton line, greater than or equal to 15%, and advantageously between 15% and 40% of the total length of the skeleton line.

Une telle caractéristique permet d’éloigner le maximum d’épaisseur du bord d’attaque et ainsi d’améliorer les performances de la pale. Such a feature allows to move the maximum thickness away from the leading edge and thus improve the performance of the blade.

Le rapport peut être strictement croissant depuis le bord d’attaque jusqu’audit troisième point et strictement décroissant depuis ledit troisième point jusqu’au bord de fuite. The ratio may be strictly increasing from the leading edge to said third point and strictly decreasing from said third point to the trailing edge.

L’aube peut être une aube de rotor montée sur un disque mobile en rotation autour d’un axe principal. The blade may be a rotor blade mounted on a mobile disk rotating around a main axis.

L’invention concerne également un propulseur non-caréné pour aéronef, comprenant au moins un rotor et un stator, espacés selon un axe principal du propulseur, au moins l’un parmi le rotor et le stator comprenant une pluralité d’aubes comme plus haut, réparties circonférentiellement autour de l’axe principal, notamment entre 3 et 25 aubes, avantageusement entre 8 et 16 aubes. The invention also relates to an unducted propeller for an aircraft, comprising at least one rotor and one stator, spaced along a main axis of the propeller, at least one of the rotor and the stator comprising a plurality of blades as above, distributed circumferentially around the main axis, in particular between 3 and 25 blades, advantageously between 8 and 16 blades.

Un tel nombre d’aubes constitue un compromis avantageux entre les performances énergétiques de propulsion et le bruit généré. Such a number of blades constitutes an advantageous compromise between propulsion energy performance and the noise generated.

Parmi le rotor et le stator, celui disposé en amont relativement à l’axe principal peut comprendre au moins deux aubes de plus que celui disposé en aval. Among the rotor and the stator, the one arranged upstream relative to the main axis may comprise at least two more blades than the one arranged downstream.

Une telle caractéristique permet de réduire le bruit de la turbomachine. En effet, dans le cas où le nombre de pales du rotor et du stator sont égaux, l’ensemble de sillages du rotor interagit avec les pales du stator simultanément, ce qui augmente les niveaux sonores. Such a feature helps to reduce the noise of the turbomachine. Indeed, in the case where the number of rotor and stator blades are equal, the rotor wake assembly interacts with the stator blades simultaneously, which increases the noise levels.

Le stator peut être disposé en aval et présenter un taux d’écrêtage compris entre 5% et 15% et notamment entre 7% et 12%. The stator can be arranged downstream and have a clipping rate of between 5% and 15% and in particular between 7% and 12%.

Une telle caractéristique permet une réduction supplémentaire du bruit généré au niveau du stator, sans réduire sensiblement le rendement propulsif de la turbomachine. Les longueurs des aubes du stator peuvent être non-homogènes, avec des longueurs d’aubes en partie basse du stator inférieures aux longueurs d’aubes en partie haute du stator. Such a feature allows a further reduction of the noise generated at the stator level, without significantly reducing the propulsive efficiency of the turbomachine. The lengths of the stator blades may be non-uniform, with blade lengths in the lower part of the stator being less than the blade lengths in the upper part of the stator.

Une telle caractéristique permet d’avoir un taux d’écrêtage supérieur en dessous du stator, là où le bruit généré est le plus important et donc où la réduction de bruit est la plus nécessaire, et un écrêtage plus faible en partie haute, là où il est moins requis. Ainsi, le compromis entre réduction de bruit et rendement propulsif est amélioré. Such a feature allows to have a higher clipping rate below the stator, where the noise generated is the most important and therefore where noise reduction is most necessary, and a lower clipping in the upper part, where it is less required. Thus, the compromise between noise reduction and propulsive efficiency is improved.

Chaque pale peut présenter une longueur de corde définie comme le maximum sur une étendue de la pale d’une distance entre le bord d’attaque et le bord de fuite dans un plan de section transverse à l’axe de pale, le rotor et le stator présentant des écartements séparant les pales voisines, mesurés selon une direction circonférentielle, dans lequel une solidité du rotor et du stator, définie comme le rapport de la longueur de corde sur l’écartement séparant les pales voisines, peut être inférieure ou égale à 3, et notamment inférieure ou égale à 1 pour celui disposé le plus en amont du rotor et du stator, relativement à l’axe principal. Each blade may have a chord length defined as the maximum over a span of the blade of a distance between the leading edge and the trailing edge in a cross-section plane to the blade axis, the rotor and the stator having spacings separating neighboring blades, measured in a circumferential direction, in which a solidity of the rotor and the stator, defined as the ratio of the chord length to the spacing separating neighboring blades, may be less than or equal to 3, and in particular less than or equal to 1 for that arranged furthest upstream of the rotor and the stator, relative to the main axis.

Un rapport entre une distance axiale séparant le rotor et le stator et un diamètre externe du rotor peut être compris entre 0,01 et 0,5, de préférence entre 0,15 et 0,35. A ratio between an axial distance separating the rotor and the stator and an external diameter of the rotor may be between 0.01 and 0.5, preferably between 0.15 and 0.35.

Une telle caractéristique permet un redressement efficace du flux en sortie de rotor par le stator et améliore les performances aérodynamiques du propulseur. Such a feature allows efficient rectification of the flow at the rotor outlet by the stator and improves the aerodynamic performance of the propeller.

Brève description des figures Brief description of the figures

La figure 1 est une vue de côté d’une turbomachine non-carénée selon l’invention, la figure 2 est une vue de côté d’une aube de rotor de la turbomachine de la figure 1 , la figure 3 est une vue en coupe transverse de l’aube de la figure 2, et la figure 4 est un profil de coupe transverse de l’aube des figures 2 et 3. Figure 1 is a side view of an unducted turbomachine according to the invention, Figure 2 is a side view of a rotor blade of the turbomachine of Figure 1, Figure 3 is a cross-sectional view of the blade of Figure 2, and Figure 4 is a cross-sectional profile of the blade of Figures 2 and 3.

Description détaillée de l’invention Detailed description of the invention

Une turbomachine 1 non carénée est représentée à la figure 1 , définissant un axe central X et comprenant un rotor 3 et un stator 5 espacés selon l’axe principal X. Le stator 5 est positionné en aval du rotor 3. An unducted turbomachine 1 is shown in Figure 1, defining a central axis X and comprising a rotor 3 and a stator 5 spaced along the main axis X. The stator 5 is positioned downstream of the rotor 3.

La turbomachine 1 comprend également au moins un moteur disposé dans son espace interne, ledit moteur pouvant être un moteur thermique, en particulier de type turbomoteur, turboréacteur, turbosoufflante, et/ou un moteur électrique, et/ou un moteur à hydrogène, et/ou un moteur hybride combinant plusieurs de ces technologies. Le rotor 3 et le stator 5 comprennent tous deux une pluralité d’aubes 10 s’étendant sensiblement radialement depuis l’axe principal X et réparties régulièrement circonférentiellement autour de l’axe X. Les aubes 10 du rotor 3 peuvent présenter des dimensions différentes des aubes 10 du stator 5, notamment des longueurs de pales différentes. The turbomachine 1 also comprises at least one engine arranged in its internal space, said engine possibly being a heat engine, in particular of the turboshaft, turbojet, turbofan type, and/or an electric engine, and/or a hydrogen engine, and/or a hybrid engine combining several of these technologies. The rotor 3 and the stator 5 both comprise a plurality of blades 10 extending substantially radially from the main axis X and regularly distributed circumferentially around the axis X. The blades 10 of the rotor 3 may have different dimensions from the blades 10 of the stator 5, in particular different blade lengths.

Avantageusement, le rotor 3 comprend au moins deux aubes 10 de plus que le stator 5.Advantageously, the rotor 3 comprises at least two blades 10 more than the stator 5.

Le rotor 3 présente un rayon R1 , mesuré depuis l’axe central jusqu’à un sommet de chaque aube 10 du rotor 3. The rotor 3 has a radius R1, measured from the central axis to a tip of each blade 10 of the rotor 3.

Pareillement, le stator 5 présente un rayon R2 mesuré depuis l’axe central jusqu’à un sommet de chaque aube 10 du stator 5. Similarly, the stator 5 has a radius R2 measured from the central axis to a tip of each blade 10 of the stator 5.

Selon un mode de réalisation, le rayon R2 du stator 5 est inférieur au rayon R1 du rotor 3, notamment inférieur au rayon R1 d’entre 5% et 15% de la valeur de R1 et en particulier d’entre 7% et 12% de la valeur de R1 . Autrement dit, le stator 5 présente un taux d’écrêtage, comme définit plus haut, compris entre 5% et 15% et notamment entre 7% et 12%. Ce taux d’écrêtage permet une réduction supplémentaire du bruit généré au niveau du stator, mais reste suffisamment modéré pour ne pas réduire sensiblement le rendement propulsif de la turbomachine. According to one embodiment, the radius R2 of the stator 5 is less than the radius R1 of the rotor 3, in particular less than the radius R1 by between 5% and 15% of the value of R1 and in particular by between 7% and 12% of the value of R1. In other words, the stator 5 has a clipping rate, as defined above, of between 5% and 15% and in particular between 7% and 12%. This clipping rate allows an additional reduction in the noise generated at the stator, but remains sufficiently moderate so as not to significantly reduce the propulsive efficiency of the turbomachine.

On définit un diamètre D de la turbomachine 1 comme le double du plus grand des deux rayons R1 , R2. We define a diameter D of the turbomachine 1 as twice the largest of the two radii R1, R2.

Les aubes 10 sont des aubes à calage variable, c’est-à-dire dont les pales sont mobiles en rotation autour d’un axe radial afin de faire varier l’angle de calage de chaque pale du rotor 3 ou du stator 5 de manière contrôlée. The blades 10 are variable-pitch blades, that is to say, the blades of which are movable in rotation around a radial axis in order to vary the pitch angle of each blade of the rotor 3 or the stator 5 in a controlled manner.

Les axes de rotation des pales, ou axes de pales, des aubes du rotor 3 sont inclus dans un plan P1 perpendiculaire à l’axe principal X, et les axes des pales du stator 5 sont inclus dans un plan P2 perpendiculaire à l’axe principal X et écarté du plan P1 d’une distance S mesurée le long de l’axe principal X. The axes of rotation of the blades, or blade axes, of the rotor blades 3 are included in a plane P1 perpendicular to the main axis X, and the axes of the blades of the stator 5 are included in a plane P2 perpendicular to the main axis X and spaced from the plane P1 by a distance S measured along the main axis X.

Dans le cas où les aubes du stator 5 sont des aubes à calage fixe, on définit le plan P2 au niveau du centre de gravité des aubes 10. In the case where the blades of the stator 5 are fixed-pitch blades, the plane P2 is defined at the level of the center of gravity of the blades 10.

Avantageusement, un rapport S/D, entre la distance axiale S séparant les plans P1 et P2, et one séparant le rotor 3 du stator 5, et le diamètre externe de la turbomachine 1 est compris entre 0,01 et 0,5, de préférence entre 0,15 et 0,35. Advantageously, a ratio S/D, between the axial distance S separating the planes P1 and P2, and one separating the rotor 3 from the stator 5, and the external diameter of the turbomachine 1 is between 0.01 and 0.5, preferably between 0.15 and 0.35.

Une aube 10 est représentée plus en détail à la figure 2. L’aube 10 comprend un pied 12, une pale 14 et un sommet 16. La pale 14 s’étend selon un axe de pale Z perpendiculaire à l’axe principal X et compris dans le plan P1 décrit plus haut. A blade 10 is shown in more detail in Figure 2. The blade 10 comprises a root 12, a blade 14 and a tip 16. The blade 14 extends along a blade axis Z perpendicular to the main axis X and included in the plane P1 described above.

La pale 14 définit un bord d’attaque 18 formé par la ligne la plus en amont de la pale 14 et un bord de fuite 20 formé par la ligne la plus en aval. La pale 14 comprend une surface d’intrados 22 et une surface d’extrados 24 s’étendant du bord d’attaque au bord de fuite de part et d’autre de la pale 14. The blade 14 defines a leading edge 18 formed by the most upstream line of the blade 14 and a trailing edge 20 formed by the most downstream line. The blade 14 comprises a lower surface 22 and an upper surface 24 extending from the leading edge to the trailing edge on either side of the blade 14.

On définit une hauteur de pale H comme la distance mesurée selon l’axe de pale Z séparant le pied 12 du sommet 16, et une longueur de corde C comme la distance séparant le bord d’attaque 18 du bord de fuite 20, mesurée dans un plan de section transverse P. A blade height H is defined as the distance measured along the blade axis Z separating the root 12 from the tip 16, and a chord length C as the distance separating the leading edge 18 from the trailing edge 20, measured in a plane of transverse section P.

On définit un ratio dit de solidité TT = C/E du rotor 3 ou du stator 5 comme le rapport entre la longueur de corde C mesurée au sommet 16 et un écartement E entre les sommets 16 de deux aubes 10 voisines du rotor 3 ou du stator 5. We define a so-called solidity ratio TT = C/E of the rotor 3 or the stator 5 as the ratio between the chord length C measured at the tip 16 and a spacing E between the tips 16 of two neighboring blades 10 of the rotor 3 or the stator 5.

Avantageusement, la solidité est inférieure à 3 pour le rotor et le stator, et préférentiellement inférieure à 1 pour celui placé le plus en amont, c’est-à-dire le rotor 3 dans le cas représenté. On définit une hauteur h d’un plan de section transverse P comme la distance mesurée selon l’axe de pale Z entre le pied 12 et le plan de section P. Advantageously, the solidity is less than 3 for the rotor and the stator, and preferably less than 1 for the one placed furthest upstream, that is to say the rotor 3 in the case shown. A height h of a plane of transverse section P is defined as the distance measured along the blade axis Z between the root 12 and the plane of section P.

Les figures 3 et 4 représentent des sections transverses de la pale 14 dans un plan de section P situé à une hauteur h. Figures 3 and 4 represent transverse sections of the blade 14 in a section plane P located at a height h.

Dans le plan P, on définit une ligne de squelette LS comme la ligne courbe s’étendant du bord d’attaque 18 au bord de fuite 20 et équidistante de la surface d’intrados 22 et de la surface d’extrados 24. In the plane P, a skeleton line LS is defined as the curved line extending from the leading edge 18 to the trailing edge 20 and equidistant from the intrados surface 22 and the extrados surface 24.

La longueur de la ligne de squelette LS est strictement supérieure à la longueur de corde C dans le plan P, qui sépare le bord d’attaque 18 du bord de fuite 20, mesurée en ligne droite.The length of the skeleton line LS is strictly greater than the chord length C in the plane P, which separates the leading edge 18 from the trailing edge 20, measured in a straight line.

On représente l’angle de calage y de la pale 14 comme l’angle entre la corde C et le plan transverse P1 . L’angle de calage y est modifiable par rotation de la pale 14 autour de l’axe de pale Z. The pitch angle y of the blade 14 is represented as the angle between the chord C and the transverse plane P1. The pitch angle y can be modified by rotating the blade 14 around the blade axis Z.

Comme représenté sur la figure 4, on définit une épaisseur de la pale 14 dans le plan de section P à une hauteur h comme la longueur d’un segment perpendiculaire à la ligne de squelette LS et s’étendant du bord d’intrados 22 au bord d’extrados 24. As shown in Figure 4, a thickness of the blade 14 in the section plane P at a height h is defined as the length of a segment perpendicular to the skeleton line LS and extending from the intrados edge 22 to the extrados edge 24.

On définit ainsi une épaisseur de bord d’attaque Ep0,2 comme la longueur d’un premier segment S1 qui coupe la ligne de squelette LS perpendiculairement en un premier point A1 situé à une distance, mesurée le long de la ligne de squelette LS, égale à 0,2% de la longueur totale de la ligne de squelette LS. We thus define a leading edge thickness Ep0.2 as the length of a first segment S1 which intersects the skeleton line LS perpendicularly at a first point A1 located at a distance, measured along the skeleton line LS, equal to 0.2% of the total length of the skeleton line LS.

De même, on définit une épaisseur de zone de captation Ep5 comme la longueur d’un deuxième segment S2 qui coupe la ligne de squelette LS perpendiculairement en un deuxième point A2 situé à une distance, mesurée le long de la ligne de squelette LS, égale à 5% de la longueur totale de la ligne de squelette LS. Similarly, a capture zone thickness Ep5 is defined as the length of a second segment S2 which intersects the skeleton line LS perpendicularly at a second point A2 located at a distance, measured along the skeleton line LS, equal to 5% of the total length of the skeleton line LS.

Le ratio R = Ep5/Ep0,2 entre l’épaisseur de zone de captation Ep5 et l’épaisseur de bord d’attaque Ep0,2 est caractéristique des performances de la pale et de sa robustesse aux variations d’incidence. Notamment, les valeurs faibles de R correspondent à des pales à hautes performances aérodynamiques, tandis que les valeurs élevées de R correspondent à des pales robustes à l’incidence. The ratio R = Ep5/Ep0.2 between the thickness of the capture zone Ep5 and the thickness of the leading edge Ep0.2 is characteristic of the performance of the blade and its robustness to variations in incidence. In particular, low values of R correspond to blades with high aerodynamic performance, while high R values correspond to blades that are robust at incidence.

Ainsi, les valeurs de R comprises entre 2,5 et 8 fournissent un compromis avantageux permettant une bonne performance pour la pale tout en réduisant les risques de décollement et en ayant des performances acoustiques satisfaisantes. Thus, R values between 2.5 and 8 provide an advantageous compromise allowing good performance for the blade while reducing the risks of detachment and having satisfactory acoustic performance.

Ces valeurs minimale et maximale du rapport R sont valables pour tout plan de section P de la pale 14, c’est-à-dire sur toute la hauteur H de la pale 14. These minimum and maximum values of the ratio R are valid for any section plane P of the blade 14, that is to say over the entire height H of the blade 14.

Le comportement de la pale 14 est encore plus satisfaisant pour des valeurs de R comprises entre 3,5 et 5 sur l’ensemble de la hauteur H. The behavior of blade 14 is even more satisfactory for R values between 3.5 and 5 over the entire height H.

Selon un mode de réalisation avantageux, on distingue une partie basse de la pale 14, pour des hauteurs h comprises entre 0 et 35% de la hauteur totale H, et une partie haute de la pale, pour des hauteurs h comprises entre 35% et 100% de la hauteur totale H de la pale 14.According to an advantageous embodiment, a lower part of the blade 14 is distinguished, for heights h between 0 and 35% of the total height H, and an upper part of the blade, for heights h between 35% and 100% of the total height H of the blade 14.

Sur toute la partie basse de la pale 14, le rapport R est avantageusement compris entre 3 et 8, mettant l’emphase sur la résistance de la pale aux variations d’incidence. En effet, les performances aérodynamiques sont moins critiques en partie basse, qui concentre le flux primaire Fp vers la turbine. Over the entire lower part of the blade 14, the ratio R is advantageously between 3 and 8, emphasizing the resistance of the blade to variations in incidence. Indeed, the aerodynamic performances are less critical in the lower part, which concentrates the primary flow Fp towards the turbine.

Sur toute la partie haute de la pale 14, le rapport R est avantageusement compris entre 2,5 et 5 afin de mettre l’accent sur les performances aérodynamiques de la pale 14 sur la partie haute générant le flux secondaire Fs. Over the entire upper part of the blade 14, the ratio R is advantageously between 2.5 and 5 in order to emphasize the aerodynamic performance of the blade 14 on the upper part generating the secondary flow Fs.

De plus, le rapport R sur l’ensemble de la partie basse est avantageusement supérieur au rapport R sur l’ensemble de la partie haute de la pale 14. Furthermore, the ratio R over the entire lower part is advantageously greater than the ratio R over the entire upper part of the blade 14.

L’application de ces critères est valable peu importe la forme de la zone de bord d’attaque, que ce soit pour un bord d’attaque sensiblement circulaire, comme pour un bord d’attaque sensiblement asymétrique. The application of these criteria is valid regardless of the shape of the leading edge area, whether for a substantially circular leading edge or for a substantially asymmetrical leading edge.

Comme précédemment, on définit une épaisseur maximale Epmax comme la longueur d’un troisième segment S3 qui coupe la ligne de squelette LS perpendiculairement en un troisième point A3 et pour lequel la longueur mesurée est maximale sur l’ensemble de la ligne de squelette. As before, we define a maximum thickness Epmax as the length of a third segment S3 which intersects the skeleton line LS perpendicularly at a third point A3 and for which the measured length is maximum over the entire skeleton line.

Avantageusement, l’épaisseur de pale varie de manière monotone depuis le bord d’attaque jusqu’au maximum Epmax, puis à nouveau de manière monotone depuis le maximum Epmax jusqu’au bord de fuite. Advantageously, the blade thickness varies monotonically from the leading edge to the maximum Epmax, then again monotonically from the maximum Epmax to the trailing edge.

De préférence, le troisième point A3 est situé à une distance du bord d’attaque mesurée le long de la ligne de squelette LS supérieure ou égale à 15% de la longueur totale de ladite ligne de squelette LS. Cela permet d’éloigner suffisamment le maximum d’épaisseur du bord d’attaque pour avoir des performances satisfaisantes. De manière encore préférée, le point A3 est situé à une distance du bord d’attaque comprise entre 15% et 40% de la longueur totale de ladite ligne de squelette LS. Preferably, the third point A3 is located at a distance from the leading edge measured along the skeleton line LS greater than or equal to 15% of the total length of said skeleton line LS. This makes it possible to move the maximum thickness sufficiently away from the leading edge to have satisfactory performance. More preferably, the point A3 is located at a distance from the leading edge of between 15% and 40% of the total length of said skeleton line LS.

Claims

REVENDICATIONS 1 . Aube (10) à calage variable de propulseur (1 ) aéronautique non-caréné, comprenant une pale (14) s’étendant selon un axe de pale (Z), depuis un pied (12) jusqu’à un sommet (16) de la pale (14), la pale (14) définissant un bord d’attaque (18), un bord de fuite (20), et des surfaces d’intrados (22) et d’extrados (24) s’étendant du bord d’attaque (18) au bord de fuite (20), la pale (14) comprenant, dans tout plan de section (P) orthogonal à l’axe de pale (Z) :1. Variable-pitch blade (10) for an unducted aeronautical propeller (1), comprising a blade (14) extending along a blade axis (Z), from a root (12) to a tip (16) of the blade (14), the blade (14) defining a leading edge (18), a trailing edge (20), and intrados (22) and extrados (24) surfaces extending from the leading edge (18) to the trailing edge (20), the blade (14) comprising, in any section plane (P) orthogonal to the blade axis (Z): - une ligne de squelette (LS) s’étendant du bord d’attaque (18) au bord de fuite (20), équidistante de la surface d’intrados (22) et de la surface d’extrados (24), présentant une longueur totale mesurée le long de la ligne de squelette (LS) depuis le bord d’attaque (18) jusqu’au bord de fuite (20), - a skeleton line (LS) extending from the leading edge (18) to the trailing edge (20), equidistant from the intrados surface (22) and the extrados surface (24), having a total length measured along the skeleton line (LS) from the leading edge (18) to the trailing edge (20), - une épaisseur de bord d’attaque (Ep0,2), définie comme une longueur d’un premier segment (S1 ) s’étendant du bord d’intrados (22) au bord d’extrados (24) et coupant perpendiculairement la ligne de squelette (LS) en un premier point (A1 ) de la ligne de squelette (LS) situé à une distance du bord d’attaque (18), mesurée le long de la ligne de squelette (LS), égale à 0,2% de la longueur totale de la ligne de squelette (LS), - a leading edge thickness (Ep0.2), defined as a length of a first segment (S1) extending from the intrados edge (22) to the extrados edge (24) and perpendicularly intersecting the skeleton line (LS) at a first point (A1) of the skeleton line (LS) located at a distance from the leading edge (18), measured along the skeleton line (LS), equal to 0.2% of the total length of the skeleton line (LS), - une épaisseur de zone de captation (Ep5), définie comme une longueur d’un deuxième segment (S2) s’étendant du bord d’intrados (22) au bord d’extrados (24) et coupant perpendiculairement la ligne de squelette (LS) en un deuxième point (A2) de la ligne de squelette (LS) situé à une distance du bord d’attaque (18), mesurée le long de la ligne de squelette (LS), égale à 5% de la longueur totale de la ligne de squelette (LS), caractérisée en ce que, pour chaque plan de section (P) orthogonal à l’axe de pale (Z), le rapport (R) entre l’épaisseur de zone de captation (Ep5) et l’épaisseur de bord d’attaque (Ep0,2) est compris entre 2,5 et 8, dans laquelle le rapport (R) entre l’épaisseur de zone de captation (Ep5) et l’épaisseur de bord d’attaque (Ep0,2) pour tout plan de section (P) d’une portion inférieure de la pale (14) s’étendant depuis le pied (12) sur une hauteur (h) comprise entre 0% et 35% d’une hauteur totale (H) de la pale (14) mesurée entre le pied (12) et le sommet (16) est supérieur ou égal au rapport entre l’épaisseur de zone de captation (Ep5) et l’épaisseur de bord d’attaque (Ep0,2) pour tout plan de section (P) d’une portion supérieure de la pale (14) s’étendant jusqu’au sommet (16) sur une hauteur (h) comprise entre 35% et 100% de la hauteur totale de la pale (14). - a capture zone thickness (Ep5), defined as a length of a second segment (S2) extending from the intrados edge (22) to the extrados edge (24) and perpendicularly intersecting the skeleton line (LS) at a second point (A2) of the skeleton line (LS) located at a distance from the leading edge (18), measured along the skeleton line (LS), equal to 5% of the total length of the skeleton line (LS), characterized in that, for each section plane (P) orthogonal to the blade axis (Z), the ratio (R) between the capture zone thickness (Ep5) and the leading edge thickness (Ep0.2) is between 2.5 and 8, in which the ratio (R) between the capture zone thickness (Ep5) and the leading edge thickness (Ep0.2) for any section plane (P) of a lower portion of the blade (14) extending from the root (12) over a height (h) between 0% and 35% of a total height (H) of the blade (14) measured between the root (12) and the tip (16) is greater than or equal to the ratio between the thickness of the capture zone (Ep5) and the thickness of the leading edge (Ep0.2) for any section plane (P) of an upper portion of the blade (14) extending to the tip (16) over a height (h) between 35% and 100% of the total height of the blade (14). 2. Aube (10) selon la revendication 1 , dans laquelle, pour chaque plan de section (P) orthogonal à l’axe de pale (Z), le rapport (R) entre l’épaisseur de zone de captation (Ep5) et l’épaisseur de bord d’attaque (Ep0,2) est compris entre 3,5 et 5. 2. Blade (10) according to claim 1, in which, for each section plane (P) orthogonal to the blade axis (Z), the ratio (R) between the thickness of the capture zone (Ep5) and the thickness of the leading edge (Ep0.2) is between 3.5 and 5. 3. Aube (10) selon la revendication 1 ou 2, dans laquelle, sur une portion inférieure de la pale (14) s’étendant depuis le pied (12) sur une hauteur (h) comprise entre 0% et 35% d’une hauteur totale (H) de la pale (14) mesurée entre le pied (12) et le sommet (16), pour chaque plan de section (P) de ladite portion inférieure, le rapport (R) entre l’épaisseur de zone de captation (Ep5) et l’épaisseur de bord d’attaque (Ep0,2) est compris entre 3 et 8. 3. Blade (10) according to claim 1 or 2, in which, on a lower portion of the blade (14) extending from the root (12) over a height (h) of between 0% and 35% of a total height (H) of the blade (14) measured between the root (12) and the tip (16), for each section plane (P) of said lower portion, the ratio (R) between the thickness of the capture zone (Ep5) and the thickness of the leading edge (Ep0.2) is between 3 and 8. 4. Aube (10) selon l’une des revendications précédentes, dans laquelle, sur une portion supérieure de la pale (14) s’étendant jusqu’au sommet (16), sur une hauteur (h) comprise entre 35% et 100% d’une hauteur totale (H) de la pale (14) mesurée entre le pied (12) et le sommet (16), pour chaque plan de section (P) de ladite portion supérieure, le rapport (R) entre l’épaisseur de zone de captation (Ep5) et l’épaisseur de bord d’attaque (Ep0,2) est compris entre 2,5 et 5. 4. Blade (10) according to one of the preceding claims, in which, on an upper portion of the blade (14) extending to the tip (16), over a height (h) of between 35% and 100% of a total height (H) of the blade (14) measured between the root (12) and the tip (16), for each section plane (P) of said upper portion, the ratio (R) between the thickness of the capture zone (Ep5) and the thickness of the leading edge (Ep0.2) is between 2.5 and 5. 5. Aube (10) selon l’une des revendications précédentes, dans laquelle la pale (14) comprend, dans chaque plan de section (P) orthogonal à l’axe de pale (Z), une épaisseur maximale (Epmax), définie comme une longueur d’un troisième segment (S3) s’étendant du bord d’intrados (22) au bord d’extrados (24) et coupant perpendiculairement la ligne de squelette (LS) en un troisième point (A3), pour laquelle la longueur du troisième segment (S3) est maximale sur une étendue de la ligne de squelette (LS), dans laquelle ledit troisième point (A3) est situé à une distance du bord d’attaque (18), mesurée le long de la ligne de squelette (LS), supérieure ou égale à 15% de la longueur totale de la ligne de squelette (LS), et avantageusement comprise entre 15% et 40% de la longueur totale de la ligne de squelette (LS). 5. Blade (10) according to one of the preceding claims, in which the blade (14) comprises, in each section plane (P) orthogonal to the blade axis (Z), a maximum thickness (Epmax), defined as a length of a third segment (S3) extending from the intrados edge (22) to the extrados edge (24) and perpendicularly intersecting the skeleton line (LS) at a third point (A3), for which the length of the third segment (S3) is maximum over an extent of the skeleton line (LS), in which said third point (A3) is located at a distance from the leading edge (18), measured along the skeleton line (LS), greater than or equal to 15% of the total length of the skeleton line (LS), and advantageously between 15% and 40% of the total length of the skeleton line (LS). 6. Aube (10) selon l’une des revendications précédentes, dans laquelle l’aube (10) est une aube de rotor (3) montée sur un disque mobile en rotation autour d’un axe principal (X). 6. Blade (10) according to one of the preceding claims, in which the blade (10) is a rotor blade (3) mounted on a mobile disk rotating about a main axis (X). 7. Propulseur (1 ) non-caréné pour aéronef, comprenant au moins un rotor (3) et un stator (5) espacés selon un axe principal (X) du propulseur (1 ), au moins l’un parmi le rotor (3) et le stator (5) comprenant une pluralité d’aubes (10) selon l’une des revendications précédentes, réparties circonférentiellement autour de l’axe principal (X), notamment entre 3 et 25 aubes (10), avantageusement entre 8 et 16 aubes (10). 7. Unducted propeller (1) for an aircraft, comprising at least one rotor (3) and one stator (5) spaced along a main axis (X) of the propeller (1), at least one of the rotor (3) and the stator (5) comprising a plurality of blades (10) according to one of the preceding claims, distributed circumferentially around the main axis (X), in particular between 3 and 25 blades (10), advantageously between 8 and 16 blades (10). 8. Propulseur (1 ) selon la revendication précédente, dans lequel, parmi le rotor (3) et le stator (3), celui disposé en amont relativement à l’axe principal (X) comprend au moins deux aubes (10) de plus que celui disposé en aval. 8. Thruster (1) according to the preceding claim, in which, among the rotor (3) and the stator (3), the one arranged upstream relative to the main axis (X) comprises at least two blades (10) more than the one arranged downstream. 9. Propulseur (1 ) selon la revendication 7 ou 8, dans lequel le stator (5) est disposé en aval et présente un taux d’écrêtage compris entre 5% et 15% et notamment entre 7% et 12%. 9. Thruster (1) according to claim 7 or 8, in which the stator (5) is arranged downstream and has a clipping rate of between 5% and 15% and in particular between 7% and 12%. 10. Propulseur (1 ) selon l’une des revendications 7 à 9, dans lequel chaque pale (14) présente une longueur de corde (C) définie comme le maximum sur une étendue de la pale (14) d’une distance entre le bord d’attaque (18) et le bord de fuite (20) dans un plan de section (P) transverse à l’axe de pale (Z), le rotor (3) et le stator (5) présentant des écartements (E) séparant les pales (14) voisines, mesurés selon une direction circonférentielle, dans lequel une solidité (TT) du rotor (3) et du stator (5), définie comme le rapport de la longueur de corde (C) sur l’écartement (E) séparant les pales voisines, est inférieure ou égale à 3, et notamment inférieure ou égale à 1 pour celui disposé le plus en amont du rotor (3) et du stator (5), relativement à l’axe principal (Z). 10. A thruster (1) according to one of claims 7 to 9, wherein each blade (14) has a chord length (C) defined as the maximum over an extent of the blade (14) of a distance between the leading edge (18) and the trailing edge (20) in a section plane (P) transverse to the blade axis (Z), the rotor (3) and the stator (5) having spacings (E) separating neighboring blades (14), measured in a circumferential direction, wherein a solidity (TT) of the rotor (3) and the stator (5), defined as the ratio of the chord length (C) to the spacing (E) separating neighboring blades, is less than or equal to 3, and in particular less than or equal to 1 for the one located furthest upstream of the rotor (3) and the stator (5), relative to the main axis (Z). 11. Propulseur (1 ) selon l’une des revendications 7 à 10, dans lequel un rapport (S/D) entre une distance axiale (S) séparant le rotor (3) et le stator (5) et un diamètre externe (D) du propulseur (1 ) est compris entre 0,01 et 0,5, de préférence entre 0,15 et 0,35. 11. Thruster (1) according to one of claims 7 to 10, in which a ratio (S/D) between an axial distance (S) separating the rotor (3) and the stator (5) and an external diameter (D) of the thruster (1) is between 0.01 and 0.5, preferably between 0.15 and 0.35.
PCT/FR2024/050526 2023-04-28 2024-04-23 Variable-pitch vane for an unducted aeronautical thruster WO2024224017A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2304303A FR3148256A1 (en) 2023-04-28 2023-04-28 Variable pitch blade of unducted aeronautical propeller
FRFR2304303 2023-04-28

Publications (1)

Publication Number Publication Date
WO2024224017A1 true WO2024224017A1 (en) 2024-10-31

Family

ID=87747858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2024/050526 WO2024224017A1 (en) 2023-04-28 2024-04-23 Variable-pitch vane for an unducted aeronautical thruster

Country Status (2)

Country Link
FR (1) FR3148256A1 (en)
WO (1) WO2024224017A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0306434A2 (en) * 1987-09-03 1989-03-08 United Technologies Corporation Airfoiled blade
US4830574A (en) * 1988-02-29 1989-05-16 United Technologies Corporation Airfoiled blade
US11608743B1 (en) * 2022-02-04 2023-03-21 General Electric Company Low-noise blade for an open rotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0306434A2 (en) * 1987-09-03 1989-03-08 United Technologies Corporation Airfoiled blade
US4830574A (en) * 1988-02-29 1989-05-16 United Technologies Corporation Airfoiled blade
US11608743B1 (en) * 2022-02-04 2023-03-21 General Electric Company Low-noise blade for an open rotor

Also Published As

Publication number Publication date
FR3148256A1 (en) 2024-11-01

Similar Documents

Publication Publication Date Title
EP2895703B1 (en) Turbomachine comprising a plurality of variable geometry vanes mounted upstream of the fan
EP3676480B1 (en) Turbomachine fan flow-straightener vane, turbomachine assembly comprising such a vane, and turbomachine equipped with said vane or with said assembly
FR2999151A1 (en) PROPELLER BLADE FOR TURBOMACHINE
WO2018138439A1 (en) Improved leading edge profile of vanes
EP4073369A1 (en) Aero-propulsion system with improved propulsion efficiency
FR3125797A1 (en) Propeller for an aircraft
EP2976507B1 (en) Blade and blade dihedral angle
WO2024224017A1 (en) Variable-pitch vane for an unducted aeronautical thruster
EP4025789B1 (en) Polyspherical hub of a turbomachine for adjustable blades
FR3104644A1 (en) Aeronautical propulsion system with improved propulsive efficiency
EP4229286B1 (en) Aeronautical propulsion system with improved propulsion efficiency
BE1030039B1 (en) FLOW SEPARATOR IN A TURBOMACHINE
FR3070440A1 (en) DRAWING BOW AND STRUCTURAL TREE CONNECTED IN A PRIMARY VEIN
EP4237664B1 (en) Fairing element for surrounding an obstacle in a fluid flow
WO2023237836A1 (en) Unducted thrust-generating assembly comprising a flow-straightening stator
WO2024121519A1 (en) Aeronautical thruster
WO2024121507A1 (en) Stator part with blade and fin arrangement in a turbomachine
WO2023021258A1 (en) Stator part of a turbomachine comprising an airfoil and a fin defining between them a decreasing surface from upstream to downstream in the gas flow direction
WO2025022060A1 (en) Unducted aeronautical propulsion unit for aircraft
WO2025022061A1 (en) Unducted aeronautical propulsion unit for aircraft
WO2025022080A1 (en) Fan for aeronautical propulsion
WO2025022062A1 (en) Unducted aeronautical propulsion unit for aircraft
WO2024121463A1 (en) Aircraft propulsion assembly
FR3151353A1 (en) FLOW SEPARATION SPOUT FOR AN AIRCRAFT TURBOMACHINE
WO2024200946A1 (en) Turbomachine comprising rows of stator vanes and a diffuser in a channel in which a third flow circulates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24727466

Country of ref document: EP

Kind code of ref document: A1