WO2024223596A1 - Compositions - Google Patents
Compositions Download PDFInfo
- Publication number
- WO2024223596A1 WO2024223596A1 PCT/EP2024/061139 EP2024061139W WO2024223596A1 WO 2024223596 A1 WO2024223596 A1 WO 2024223596A1 EP 2024061139 W EP2024061139 W EP 2024061139W WO 2024223596 A1 WO2024223596 A1 WO 2024223596A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbonate
- composition according
- ether
- methyl
- acid
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 127
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims abstract description 92
- 239000004417 polycarbonate Substances 0.000 claims abstract description 85
- 229920000515 polycarbonate Polymers 0.000 claims abstract description 74
- 229920000570 polyether Polymers 0.000 claims abstract description 64
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 61
- 239000004721 Polyphenylene oxide Substances 0.000 claims abstract description 58
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 29
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims abstract description 21
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims abstract description 18
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims abstract description 15
- 125000005587 carbonate group Chemical group 0.000 claims abstract description 15
- 150000002148 esters Chemical class 0.000 claims abstract description 14
- 239000004094 surface-active agent Substances 0.000 claims description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 125000000217 alkyl group Chemical group 0.000 claims description 15
- 239000007787 solid Substances 0.000 claims description 11
- 238000010348 incorporation Methods 0.000 claims description 8
- 238000004140 cleaning Methods 0.000 claims description 5
- 125000004185 ester group Chemical group 0.000 claims description 5
- 241001465754 Metazoa Species 0.000 claims description 4
- 230000003750 conditioning effect Effects 0.000 claims description 4
- 235000013305 food Nutrition 0.000 claims description 4
- 150000005678 chain carbonates Chemical class 0.000 claims description 3
- 239000002417 nutraceutical Substances 0.000 claims description 3
- 235000021436 nutraceutical agent Nutrition 0.000 claims description 3
- 125000006528 (C2-C6) alkyl group Chemical group 0.000 claims 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 67
- 239000003054 catalyst Substances 0.000 description 66
- 238000006243 chemical reaction Methods 0.000 description 47
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 45
- -1 hydrocarbyl alcohol derivatives Chemical class 0.000 description 38
- 150000002118 epoxides Chemical class 0.000 description 34
- 229910002092 carbon dioxide Inorganic materials 0.000 description 33
- 239000000463 material Substances 0.000 description 27
- 239000002253 acid Substances 0.000 description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 20
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 20
- 229910052751 metal Inorganic materials 0.000 description 20
- 239000002184 metal Substances 0.000 description 20
- 239000007844 bleaching agent Substances 0.000 description 19
- 239000002736 nonionic surfactant Substances 0.000 description 19
- 229920000642 polymer Polymers 0.000 description 19
- 238000000034 method Methods 0.000 description 16
- 239000007858 starting material Substances 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 15
- 150000001298 alcohols Chemical class 0.000 description 14
- 239000003446 ligand Substances 0.000 description 13
- 150000007524 organic acids Chemical class 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 125000003118 aryl group Chemical group 0.000 description 12
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- 102000004190 Enzymes Human genes 0.000 description 11
- 108090000790 Enzymes Proteins 0.000 description 11
- 229940088598 enzyme Drugs 0.000 description 11
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 10
- 125000001424 substituent group Chemical group 0.000 description 10
- 125000001931 aliphatic group Chemical group 0.000 description 9
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 9
- 239000000178 monomer Substances 0.000 description 9
- 239000010457 zeolite Substances 0.000 description 9
- 229910021536 Zeolite Inorganic materials 0.000 description 8
- 125000002723 alicyclic group Chemical group 0.000 description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 8
- 239000002304 perfume Substances 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 150000007513 acids Chemical class 0.000 description 7
- 239000003945 anionic surfactant Substances 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 7
- 239000011572 manganese Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- CIEZZGWIJBXOTE-UHFFFAOYSA-N 2-[bis(carboxymethyl)amino]propanoic acid Chemical compound OC(=O)C(C)N(CC(O)=O)CC(O)=O CIEZZGWIJBXOTE-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 235000005985 organic acids Nutrition 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 235000019482 Palm oil Nutrition 0.000 description 5
- 108091005804 Peptidases Proteins 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- 125000002947 alkylene group Chemical group 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- 125000001072 heteroaryl group Chemical group 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 239000002540 palm oil Substances 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- VKZRWSNIWNFCIQ-WDSKDSINSA-N (2s)-2-[2-[[(1s)-1,2-dicarboxyethyl]amino]ethylamino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NCCN[C@H](C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-WDSKDSINSA-N 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- 102000013142 Amylases Human genes 0.000 description 4
- 108010065511 Amylases Proteins 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 239000004365 Protease Substances 0.000 description 4
- 239000012190 activator Substances 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 229910000323 aluminium silicate Inorganic materials 0.000 description 4
- 235000019418 amylase Nutrition 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 235000015165 citric acid Nutrition 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 150000004967 organic peroxy acids Chemical class 0.000 description 4
- 150000002978 peroxides Chemical class 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 150000004032 porphyrins Chemical class 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 239000003760 tallow Substances 0.000 description 4
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 3
- PQHYOGIRXOKOEJ-UHFFFAOYSA-N 2-(1,2-dicarboxyethylamino)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NC(C(O)=O)CC(O)=O PQHYOGIRXOKOEJ-UHFFFAOYSA-N 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 150000002191 fatty alcohols Chemical class 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 125000001183 hydrocarbyl group Chemical group 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 150000004965 peroxy acids Chemical class 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-M phenolate Chemical compound [O-]C1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-M 0.000 description 3
- 229940031826 phenolate Drugs 0.000 description 3
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 229940001593 sodium carbonate Drugs 0.000 description 3
- 235000017550 sodium carbonate Nutrition 0.000 description 3
- 241000894007 species Species 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 125000004642 (C1-C12) alkoxy group Chemical group 0.000 description 2
- 125000000171 (C1-C6) haloalkyl group Chemical group 0.000 description 2
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 description 2
- AURFNYPOUVLIAV-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]-2-hydroxyacetic acid Chemical compound OC(=O)C(O)N(CC(O)=O)CCN(CC(O)=O)CC(O)=O AURFNYPOUVLIAV-UHFFFAOYSA-N 0.000 description 2
- WHNBDXQTMPYBAT-UHFFFAOYSA-N 2-butyloxirane Chemical compound CCCCC1CO1 WHNBDXQTMPYBAT-UHFFFAOYSA-N 0.000 description 2
- SYURNNNQIFDVCA-UHFFFAOYSA-N 2-propyloxirane Chemical compound CCCC1CO1 SYURNNNQIFDVCA-UHFFFAOYSA-N 0.000 description 2
- 239000004382 Amylase Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 125000006538 C11 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical group [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- 102000005575 Cellulases Human genes 0.000 description 2
- 108010084185 Cellulases Proteins 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 239000001692 EU approved anti-caking agent Substances 0.000 description 2
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- 239000004367 Lipase Substances 0.000 description 2
- 102000004882 Lipase Human genes 0.000 description 2
- 108090001060 Lipase Proteins 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- JYXGIOKAKDAARW-UHFFFAOYSA-N N-(2-hydroxyethyl)iminodiacetic acid Chemical compound OCCN(CC(O)=O)CC(O)=O JYXGIOKAKDAARW-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 229910000503 Na-aluminosilicate Inorganic materials 0.000 description 2
- 108700020962 Peroxidase Proteins 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 150000008051 alkyl sulfates Chemical class 0.000 description 2
- 125000004414 alkyl thio group Chemical group 0.000 description 2
- 239000002280 amphoteric surfactant Substances 0.000 description 2
- 229940025131 amylases Drugs 0.000 description 2
- 230000003625 amylolytic effect Effects 0.000 description 2
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 2
- 150000004303 annulenes Chemical class 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000005110 aryl thio group Chemical group 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical class B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 2
- 229910000085 borane Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 125000002843 carboxylic acid group Chemical group 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- MRUAUOIMASANKQ-UHFFFAOYSA-N cocamidopropyl betaine Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O MRUAUOIMASANKQ-UHFFFAOYSA-N 0.000 description 2
- 229940073507 cocamidopropyl betaine Drugs 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- VWWMOACCGFHMEV-UHFFFAOYSA-N dicarbide(2-) Chemical compound [C-]#[C-] VWWMOACCGFHMEV-UHFFFAOYSA-N 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- WJJMNDUMQPNECX-UHFFFAOYSA-N dipicolinic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=N1 WJJMNDUMQPNECX-UHFFFAOYSA-N 0.000 description 2
- VTIIJXUACCWYHX-UHFFFAOYSA-L disodium;carboxylatooxy carbonate Chemical compound [Na+].[Na+].[O-]C(=O)OOC([O-])=O VTIIJXUACCWYHX-UHFFFAOYSA-L 0.000 description 2
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 239000002979 fabric softener Substances 0.000 description 2
- 239000003349 gelling agent Substances 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001165 hydrophobic group Chemical group 0.000 description 2
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 2
- 150000002466 imines Chemical class 0.000 description 2
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical compound OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 2
- 239000002563 ionic surfactant Substances 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 2
- UWKAYLJWKGQEPM-LBPRGKRZSA-N linalyl acetate Chemical compound CC(C)=CCC[C@](C)(C=C)OC(C)=O UWKAYLJWKGQEPM-LBPRGKRZSA-N 0.000 description 2
- 235000019421 lipase Nutrition 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 125000001196 nonadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 2
- OZCWUNHGNVXCCO-UHFFFAOYSA-N oxiran-2-ylmethyl hydrogen carbonate Chemical class OC(=O)OCC1CO1 OZCWUNHGNVXCCO-UHFFFAOYSA-N 0.000 description 2
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 2
- 229960003330 pentetic acid Drugs 0.000 description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920005646 polycarboxylate Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000007142 ring opening reaction Methods 0.000 description 2
- CZCBTSFUTPZVKJ-UHFFFAOYSA-N rose oxide Chemical compound CC1CCOC(C=C(C)C)C1 CZCBTSFUTPZVKJ-UHFFFAOYSA-N 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 235000012217 sodium aluminium silicate Nutrition 0.000 description 2
- QSKQNALVHFTOQX-UHFFFAOYSA-M sodium nonanoyloxybenzenesulfonate Chemical compound [Na+].CCCCCCCCC(=O)OC1=CC=CC=C1S([O-])(=O)=O QSKQNALVHFTOQX-UHFFFAOYSA-M 0.000 description 2
- 229940045872 sodium percarbonate Drugs 0.000 description 2
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 2
- 150000003462 sulfoxides Chemical class 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- DCCWEYXHEXDZQW-BYPYZUCNSA-N (2s)-2-[bis(carboxymethyl)amino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)N(CC(O)=O)CC(O)=O DCCWEYXHEXDZQW-BYPYZUCNSA-N 0.000 description 1
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 1
- VXWBQOJISHAKKM-UHFFFAOYSA-N (4-formylphenyl)boronic acid Chemical compound OB(O)C1=CC=C(C=O)C=C1 VXWBQOJISHAKKM-UHFFFAOYSA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 description 1
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 1
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- ZWVKLVQFUVAASH-ZPUQHVIOSA-N (e)-2-[[(e)-1,2-dicarboxyethenyl]amino]but-2-enedioic acid Chemical compound OC(=O)\C=C(C(O)=O)\N\C(C(O)=O)=C\C(O)=O ZWVKLVQFUVAASH-ZPUQHVIOSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- ARHHHLXAKOLHIS-UHFFFAOYSA-N 2-[(1,2-dicarboxy-1-hydroxyethyl)amino]-2-hydroxybutanedioic acid Chemical compound OC(=O)CC(O)(C(O)=O)NC(O)(C(O)=O)CC(O)=O ARHHHLXAKOLHIS-UHFFFAOYSA-N 0.000 description 1
- IULJSGIJJZZUMF-UHFFFAOYSA-N 2-hydroxybenzenesulfonic acid Chemical compound OC1=CC=CC=C1S(O)(=O)=O IULJSGIJJZZUMF-UHFFFAOYSA-N 0.000 description 1
- XMHDLKFMJMNOAX-UHFFFAOYSA-N 2-methyl-3-(2-methylprop-2-enoxy)prop-1-ene Chemical compound CC(=C)COCC(C)=C XMHDLKFMJMNOAX-UHFFFAOYSA-N 0.000 description 1
- XEEYSDHEOQHCDA-UHFFFAOYSA-N 2-methylprop-2-ene-1-sulfonic acid Chemical compound CC(=C)CS(O)(=O)=O XEEYSDHEOQHCDA-UHFFFAOYSA-N 0.000 description 1
- 102100032487 Beta-mannosidase Human genes 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- NXQLETUDPAVCIE-WNQIDUERSA-N C(C)OC(C(C(=O)O)OCC)C(=O)O.N[C@@H](CC(=O)O)C(=O)O Chemical compound C(C)OC(C(C(=O)O)OCC)C(=O)O.N[C@@H](CC(=O)O)C(=O)O NXQLETUDPAVCIE-WNQIDUERSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 235000019499 Citrus oil Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 244000178870 Lavandula angustifolia Species 0.000 description 1
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical group [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- IAFYJQKMJLWKKI-UHFFFAOYSA-N OC(=O)C(O)C(O)(C(O)=O)NC(O)(C(O)=O)C(O)C(O)=O Chemical compound OC(=O)C(O)C(O)(C(O)=O)NC(O)(C(O)=O)C(O)C(O)=O IAFYJQKMJLWKKI-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 239000004141 Sodium laurylsulphate Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011952 anionic catalyst Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 108010055059 beta-Mannosidase Proteins 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 125000005586 carbonic acid group Chemical group 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000010500 citrus oil Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- XSNQECSCDATQEL-UHFFFAOYSA-N dihydromyrcenol Chemical compound C=CC(C)CCCC(C)(C)O XSNQECSCDATQEL-UHFFFAOYSA-N 0.000 description 1
- 229930008394 dihydromyrcenol Natural products 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 238000004851 dishwashing Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical compound [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000005553 heteroaryloxy group Chemical group 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- 229930007744 linalool Natural products 0.000 description 1
- UWKAYLJWKGQEPM-UHFFFAOYSA-N linalool acetate Natural products CC(C)=CCCC(C)(C=C)OC(C)=O UWKAYLJWKGQEPM-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005394 methallyl group Chemical group 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- LPUQAYUQRXPFSQ-DFWYDOINSA-M monosodium L-glutamate Chemical compound [Na+].[O-]C(=O)[C@@H](N)CCC(O)=O LPUQAYUQRXPFSQ-DFWYDOINSA-M 0.000 description 1
- 235000013923 monosodium glutamate Nutrition 0.000 description 1
- 239000004223 monosodium glutamate Substances 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- GKTNLYAAZKKMTQ-UHFFFAOYSA-N n-[bis(dimethylamino)phosphinimyl]-n-methylmethanamine Chemical compound CN(C)P(=N)(N(C)C)N(C)C GKTNLYAAZKKMTQ-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- ZOCHHNOQQHDWHG-UHFFFAOYSA-N n-hexan-3-ol Natural products CCCC(O)CC ZOCHHNOQQHDWHG-UHFFFAOYSA-N 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- LJDZFAPLPVPTBD-UHFFFAOYSA-N nitroformic acid Chemical compound OC(=O)[N+]([O-])=O LJDZFAPLPVPTBD-UHFFFAOYSA-N 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 108010087558 pectate lyase Proteins 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 150000004707 phenolate Chemical class 0.000 description 1
- VVTMNCICAIKIRN-UHFFFAOYSA-N phenyl benzoate;sodium Chemical compound [Na].C=1C=CC=CC=1C(=O)OC1=CC=CC=C1 VVTMNCICAIKIRN-UHFFFAOYSA-N 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229930007790 rose oxide Natural products 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 229940071207 sesquicarbonate Drugs 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 239000000429 sodium aluminium silicate Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229920006301 statistical copolymer Polymers 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000007916 tablet composition Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- WMOVHXAZOJBABW-UHFFFAOYSA-N tert-butyl acetate Chemical compound CC(=O)OC(C)(C)C WMOVHXAZOJBABW-UHFFFAOYSA-N 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- JSPLKZUTYZBBKA-UHFFFAOYSA-N trioxidane Chemical group OOO JSPLKZUTYZBBKA-UHFFFAOYSA-N 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 description 1
- KJIOQYGWTQBHNH-UHFFFAOYSA-N undecanol Chemical compound CCCCCCCCCCCO KJIOQYGWTQBHNH-UHFFFAOYSA-N 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
- C08G65/2642—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
- C08G65/2645—Metals or compounds thereof, e.g. salts
- C08G65/2663—Metal cyanide catalysts, i.e. DMC's
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/18—Block or graft polymers
- C08G64/183—Block or graft polymers containing polyether sequences
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
- C08G65/2603—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/331—Polymers modified by chemical after-treatment with organic compounds containing oxygen
Definitions
- the present invention relates to compositions comprising polycarbonate block polyethers.
- Non-ionic surfactants are typically produced using a mono-ol starter having a large hydrophobic block.
- Examples include palm oil alcohols which provide the hydrophobic block. Palm oil usage has led to deforestation of other plant species and a corresponding reduction in the natural habitat for a number of endangered species. As a consequence, replacements for palm oil alcohols and the like (C12-C20 alcohols) are being sought.
- WO2010/062703 and WO2015/031348 describe polymer compositions and supercritical CO2 solutions of a potentially wide range of such polymers to assist with oil extraction. Such solutions form an emulsion waste product with water to assist with the oil extraction. There is no indication of any solubility in water or the use of such a water soluble polymer.
- the polymer compositions are designed to dissolve in liquid or supercritical CO2 applications.
- WO2010/062703 mentions examples with a polyether block and a polycarbonate block but such is not exemplified, and the blocks are not fully characterised or tested.
- WO2015/031348 describes polycarbonate blocks of the type:
- APC is a polycarbonate and C x H y is a saturated or unsaturated hydrocarbon.
- the terminal group Y can be H or several other groups such as a polyether chain, but the latter is not exemplified or further identified.
- US2021309801 A1 discloses degradable ethylene oxide-based copolymers manufactured via boron-activated copolymerization of ethylene oxide monomers with carbon dioxide and their use as surfactants. Certain tri-block amphiphilic compounds are reported.
- hydrocarbyl alcohol derivatives As the hydrophobic section, either form fossil fuel or plant-based sources (such as palm oil) with lower hydrocarbyl sources which are cheaper and more readily available and potentially produced from bio sources such as bioethanol or butanol.
- composition comprising a polycarbonate block polyether of the formula I:
- PC represents a carbonate block with P repeat units of formula: wherein R e1 , R e2 , R e3 , and R e4 are independently selected from H, methyl, ethyl, propyl, butyl, or an ether, ester or carbonate group, with the proviso that when one of R e1 , R e2 , R e3 , and R e4 is methyl, ethyl, propyl, butyl, or an ether, ester or carbonate group, the remaining R e1 , R e2 , R e3 , and R e4 are H;
- PE represents a polyether block with Q repeat units of formula: wherein R e1 ’, R e2 ’, R e3 ’, and R e4 ’ are independently selected from H, methyl, ethyl, propyl, butyl, or an ether, ester or carbonate groups, with the proviso that when one of R e1 , R e2 , R e3 , and R e4 is methyl, ethyl, propyl, butyl, or an ether, ester or carbonate group, the remaining R e1 ’, R e2 ’, R e3 ’, and R e4 ’ are H;
- Z 1 is R, R-O, R-C(O)-O or R-O-C(O)-O;
- R is an optionally substituted straight or branched chain C1-C11 alkyl group
- Z 2 is H, R, R-(O)C or R-O-(O)C; and wherein the value of P is greater than the value of Q.
- Z 1 is R-C(O)-O or R-O-C(O)-O.
- Z 1 is a short (e.g. C2-C5 or C2-C4) chain carbonate or ester group.
- Z 2 is H or methyl, most preferably, Z 2 is methyl.
- the polycarbonate block polyethers in compositions of the present invention are surface-active agents.
- polycarbonate block polyethers in compositions of the present invention are surfactants.
- compositions of the invention are for use in the treatment, appearance, cleaning, caring or conditioning of the person and/or animals; the home or any of its contents; and foods including beverages and neutraceuticals.
- compositions will comprise a further component beyond the polycarbonate block polyether polymer as described herein.
- the further component may be a functional material or an excipient I filler or the like.
- the further component is not limited to but may include any of ionic surfactants (such as alkyl sulfates, phosphates, alkyl ether sulfates, quaternary ammoniums salts), amphoteric surfactants (such as cocamidopropyl betaine), chelating agents (such as EDTA, silicates), bleaches, enzymes, anti-foaming agents, perfumes, optical brighteners, fabric softeners, colourants, gelling agents, anti-caking agents, salts, preservatives, and anti-corrosion agents.
- ionic surfactants such as alkyl sulfates, phosphates, alkyl ether sulfates, quaternary ammoniums salts
- amphoteric surfactants such as cocamidopropyl betaine
- chelating agents such as EDTA, silicates
- bleaches enzymes, anti-foaming agents, perfumes, optical brighteners, fabric soft
- the polycarbonate block acts as the hydrophobe and the polyether block acts as the hydrophile.
- the starter molecule does not need to be a large hydrocarbon chain such as that found in palm oil alcohols and other long chain alcohols and can instead be short chain alcohols or other starters, which are used to initiate synthesis of the polycarbonate block with a carbonate catalyst, prior to synthesis of a polyether block with an ether catalyst.
- Lower alcohol starters are also less expensive and more likely to be environmentally sustainable.
- a mono-hydroxyl functional polyether that can be used as an initiator for synthesis of a polycarbonate block with a carbonate catalyst, creating a polycarbonate block polyether via an alternative route, with no need for a long or short chain alcohol starter.
- this method is used for production, it is preferable to end-cap the polycarbonate block, for example via reaction with an anhydride, to provide stability towards basic conditions and prevent degradation of the polycarbonate block.
- a suitably balanced hydrophobic polycarbonate and hydrophilic polyether block provides an alternative surfactant with much greater flexibility in design that is not dependent on environmentally damaging higher alcohols. This allows surfactants to be produced with smaller terminal hydrocarbyl groups.
- a composition of the first aspect in the form of a solid tablet for dissolving in water Preferably, the solid tablet is a dishwasher tablet.
- an aqueous composition comprising the polycarbonate block polyether of formula I as aforesaid, and water, and optionally further functional materials and/or excipients.
- composition of the first aspect for the treatment, appearance, cleaning, caring or conditioning of the person and/or animals, the home or any of its contents, foods, drinks and nutraceuticals.
- compositions of the first aspect for the treatment, appearance, cleaning, caring or conditioning of the person and/or animals, the home or any of its contents, foods, drinks and nutraceuticals.
- the polycarbonate block polyether has greater than 10wt% CO2 incorporation, more typically, greater than 15, 20 or 21wt% CO2 incorporation.
- the polycarbonate block polyether has 10 to 40wt% CO2 incorporation, typically, 15 to 40wt% CO2 incorporation, more typically, 20 to 40wt% CO2 incorporation. (Wt% CO2 incorporation can be established analytically by for example 1 H NMR spectroscopy as described in US20140323670.)
- the epoxide in both the polycarbonate and polyether sections is independently selected from ethylene oxide (EO), propylene oxide (PO), butylene oxide, pentylene oxide, hexylene oxide, glycidyl ethers, glycidyl esters or glycidyl carbonates, or a mixture of two or more thereof.
- EO ethylene oxide
- PO propylene oxide
- butylene oxide pentylene oxide
- hexylene oxide glycidyl ethers
- glycidyl esters or glycidyl carbonates or a mixture of two or more thereof.
- the epoxide is ethylene oxide, propylene oxide, butylene oxide or a mixture thereof, preferably ethylene oxide or propylene oxide.
- the epoxide is ethylene oxide or propylene oxide or a mixture thereof, preferably ethylene oxide or propylene oxide, typically ethylene oxide.
- the polycarbonate and the polyether blocks respectively may be referred to as a random copolymer or a statistical copolymer.
- R e1 , R e2 R e3 , R e4 R e1 ’, R e2 ’, R e3 ’, and R e4 ’ will depend on the nature of the epoxide used to prepare the polycarbonate or polyether. However, when one of R e1 to R e4 or one of R e1 ’ to R e2 ’ is methyl, ethyl, propyl, butyl, or an ether, ester or carbonate group the remaining three groups are H.
- R e1 , R e2 R e3 , R e4 R e1 ’, R e2 ’, R e3 ’, and R e4 ’ are H.
- each occurrence of R e1 and/or R e2 may not be the same, for example if a mixture of ethylene oxide and propylene oxide are used in the PC block, R e1 (or R e3 ) may be independently hydrogen or methyl, and R e2 (or R e4 ) may be independently hydrogen or methyl.
- R e1 or R e3
- R e2 or R e4
- the adjacent epoxide monomer units in the backbone may be head-to-tail linkages, head-to-head linkages, or tail-to- tail linkages.
- the polycarbonate block polyether has a molecular weight (Mn) in the range of from about 300 to 20,000 Da, more preferably in the range of from about 400 to 8000 Da, most preferably from about 500 to 6000 Da.
- Mn molecular weight
- the polycarbonate block of the polycarbonate block polyether preferably has a molecular weight (Mn) in the range of from about 200 to 4000 Da, more preferably in the range of from about 200 to 2000 Da, most preferably from about 200 to 1000 Da, especially from about 400 to 800 Da.
- Mn molecular weight
- the polyether block of the polycarbonate block polyether preferably has a molecular weight (Mn) in the range of from about 100 to 20,000 Da, more preferably of from about 200 to 10,000 Da, most preferably from about 200 to 5000 Da.
- the Mn and hence the PDI (polydispersity index) of the polymers used in the compositions of the invention may be measured using Gel Permeation Chromatography (GPC).
- GPC Gel Permeation Chromatography
- the GPC may be measured using an Agilent 1260 Infinity GPC machine with two Agilent PLgel p-m mixed-D columns in series.
- the samples may be measured at room temperature (293K) in THF with a flow rate of 1 mL/min against narrow polystyrene standards (e.g., polystyrene low EasiVials supplied by Agilent Technologies with a range of Mn from 405 to 49,450 g/mol).
- the samples may be measured against polyethylene glycol) standards, such as polyethylene glycol EasiVials supplied by Agilent Technologies.
- the polycarbonate block of the polycarbonate block polyether may have at least 50% carbonate linkages, preferably at least 60% carbonate linkages, preferably at least 70% carbonate linkages, preferably at least 76% carbonate linkages, preferably at least 80% carbonate linkages, more preferably at least 85% carbonate linkages, at least 90% carbonate linkages or at least 95% carbonate linkages.
- the polycarbonate block of the polycarbonate block polyether may also comprise ether linkages.
- the polycarbonate block may have less than 50% ether linkages, preferably less than 40% ether linkages, preferably less than 30% ether linkages, preferably less than 24% ether linkages, preferably less than 20% ether linkages, more preferably less than 15% ether linkages, less than 10% ether linkages, less than 5% ether linkages, less than 3% ether linkages or less than 1 % ether linkages.
- the polycarbonate block comprises ether linkages
- the polycarbonate block will not solely comprise P repeat units of formula: i.e., solely carbonate linkages, but will instead comprise a mixture of both carbonate linkages as shown, and ether linkages as shown for the PE block.
- P is the sum of carbonate linkages and ether linkages in the PC block.
- Each carbonate or ether linkage comprises a repeat unit that may be derived from an alkylene oxide moiety, i.e:
- P may be considered as the number of repeat alkylene oxide derived moieties in the PC block.
- the polycarbonate block may be a generally alternating polycarbonate residue. If the epoxide is asymmetric, then the polycarbonate may have between 0-100% head to tail linkages, preferably between 40-100% head to tail linkages, more preferably between 50-100%.
- the polycarbonate may have a statistical distribution of head to head, tail to tail and head to tail linkages in the order 1 :2:1 , indicating a non-stereoselective ring opening of the epoxide, or it may preferentially make head to tail linkages in the order of more than 50%, optionally more than 60%, more than 70%, more than 80%, or more than 90%.
- the polyether block comprises only ether linkages.
- the polyether block is at least 90% derived, typically, at least 95% derived, more typically, at least 99%, most typically, 100% derived from epoxides.
- the polyether block has less than 40% carbonate linkages, typically, less than 30% carbonate linkages, typically, less than 20% carbonate linkages, more typically, less than 10% carbonate linkages, most typically less than 5%, less than 2% or less than 1 % carbonate linkages.
- the polyether block may have 0% carbonate linkages.
- the polyether block comprises carbonate linkages
- the polyether block will not solely comprise Q repeat units of formula:
- Each ether or carbonate linkage comprises a repeat unit that may be derived from an alkylene oxide moiety, i.e.
- Q may be considered as the number of repeat alkylene oxide derived moieties in the PE block.
- the polycarbonate block is derived from epoxide and CO2, more typically, epoxide and CO2 provide at least 70% of the residues in the block, especially, at least 80% of the residues in the block, more especially, at least 90% of the residues in the block, most especially, the polycarbonate block at least 95% of the residues in the block are residues of epoxide and CO2.
- the polycarbonate block includes ethylene oxide and/or propylene oxide residues and optionally butylene oxide.
- At least 30% of the epoxide residues of the polycarbonate block may be ethylene oxide or propylene oxide residues, typically, at least 50% of the epoxide residues of the polycarbonate block are ethylene oxide or propylene oxide residues, more typically, at least 75% of the epoxide residues of the polycarbonate block are ethylene oxide or propylene oxide residues, most typically, at least 90% of the epoxide residues of the polycarbonate block are ethylene oxide or propylene oxide residues.
- the polycarbonate block is derived from CO2 i.e., the carbonates incorporate CO2 residues.
- the polycarbonate block has between 70-100% carbonate linkages, more typically, 80-100%, most typically, 90-100%.
- the value of P in Formula I is greater than the value of Q.
- the difference between the value of P and the value of Q may be in the range of from about 1 to about 10, for example in the range of from about 1 to about 5, or from about 1 to about 3.
- the ratio of P to Q is no more than about 1 .25:1 , more preferably no more than about 1.15:1 , even more preferably no more than about 1.125:1 , and most preferably no more than about 1.1 :1..
- the value of P is typically from about 3 to about 100, preferably from about 3 to about 50 from about 3 to about 20.
- the value of Q is typically from about 3 to about 100, preferably from about 3 to about 50, from about 5 to about 20 or from about 5 to about 15.
- the value of P may be from about 15 to about 100.
- the value of Q may be from about 15 to about 100 (all with the proviso that P is greater than Q)
- the value of Q is between 12 and 19, more preferably it is between 15 and 18.
- Z 1 is R, R-O, R-C(O)-O or R-O-C(O)-O.
- Z 1 is R-C(O)-O or R-O-C(O)-O.
- Z 1 is a short (e.g. C2-C5 or C2-C4) chain carbonate or ester group.
- R is a Ci to C11 alkyl group.
- R may be a linear or branched Ci to Cn alkyl group.
- R is a C2 to C11 alkyl group, more preferably a C2 to Ce or a C2 to C5 alkyl group, typically a C2 to C4 alkyl group.
- R is a linear alkyl group, preferably a linear C2-C11 alkyl group.
- R is derived from a Ci to Cn alcohol, preferably a C2 to Ce alcohol, typically a C2 to C5 alcohol or a C2 to C4 alcohol.
- R is derived from a linear Ci to Cn alcohol, preferably a linear C2 to Ce or a C2 to C5 alcohol, typically a linear C2 to C4 alcohol or a linear C2 to C4 alcohol.
- the Ci to C11 alcohol is derived from renewable feedstocks.
- the alcohol may be bioethanol etc.
- Z 2 is H, R, R-(O)C or R-O-(O)C, preferably Z 2 is H or methyl.
- R e1 , R e2 , R e3 , and R e4 may independently be selected from H, methyl, or ethyl; R e1 ’, R e2 ’, R e3 ’, and R e4 ’ may independently be selected from H, methyl, or ethyl, Z 2 may be methyl or H and the polyether block may have less than 2% carbonate linkages.
- the polycarbonate block polyether may be suitable for use in an aqueous surfactant composition.
- the polycarbonate block polyether may be provided in the form of a solid tablet for dissolving in water, for example a dishwasher tablet.
- a solid tablet for dissolving in water comprising a composition according to the first aspect of the invention.
- the solid tablet is a dishwasher tablet.
- the polycarbonate block polyether may be present in the solid tablet at a level of 0.1 to 50wt%, preferably 0.1 to 15wt%, more preferably 5 to 15wt%.
- an aqueous surfactant composition comprising the polycarbonate block polyether as aforesaid, and water.
- the polycarbonate block polyether has a solubility in water of at least 0.25g/mol.
- the composition is a solution, i.e., the polycarbonate block polyether is present in solution.
- the polycarbonate block polyether is present in solution at a level of > 0.1wt%.
- the solid tablet or aqueous surfactant composition may further comprise any other suitable additives.
- suitable additives are not limited to but may include ionic surfactants (such as alkyl sulfates, phosphates, alkyl ether sulfates, quaternary ammoniums salts), amphoteric surfactants (such as cocamidopropyl betaine), chelating agents (such as EDTA, silicates), bleaches, enzymes, anti-foaming agents, perfumes, optical brighteners, fabric softeners, colourants, gelling agents, anti-caking agents, salts, preservatives, and anti-corrosion agents.
- ionic surfactants such as alkyl sulfates, phosphates, alkyl ether sulfates, quaternary ammoniums salts
- amphoteric surfactants such as cocamidopropyl betaine
- chelating agents such as EDTA, silicates
- bleaches
- a process for producing a composition according to the first aspect of the invention comprising the steps of (i) reacting carbon dioxide and an epoxide in the presence of a carbonate catalyst, and a monofunctional starter compound to form a polycarbonate compound and (ii) reaction of the polycarbonate compound of step (i) with an epoxide and an ether catalyst to produce the polycarbonate block polyether of formula I as herein described, before combining with at least one other material to form a composition according to the first aspect of the invention.
- the monofunctional starter may be a Ci to Cn alcohol or a Ci to Cn carboxylic acid.
- the monofunctional starter is a Ci to Cn alcohol, preferably a C2 to Cn alcohol, typically a C2-6 alcohol or C2-4 alcohol.
- the epoxide is selected from ethylene oxide, propylene oxide, butylene oxide, pentylene oxide, hexylene oxide, glycidyl ethers, glycidyl esters or glycidyl carbonates or a mixture of two or more thereof.
- the epoxide is selected from ethylene oxide, propylene oxide or a mixture thereof, preferably ethylene oxide.
- the carbonate catalyst may be heterogeneous or homogeneous.
- the carbonate catalyst may be a mono-metallic, bimetallic, or multi-metallic homogeneous complex or it may be a non-metallic Lewis acid-base pair (for example based upon combination of boranes and ammonium salts, as disclosed in patents WO2016/203408, WO2020/121262, W02021/005470).
- the carbonate catalyst may comprise phenol or phenolate ligands.
- the carbonate catalyst may be a bimetallic complex comprising phenol or phenolate ligands.
- the two metals may be the same or different.
- the carbonate catalyst may be a catalyst of formula (IV): wherein:
- M is a metal cation represented by M-(L) V ;
- x is an integer from 1 to 4, preferably x is 1 or 2; is a multidentate ligand or plurality of multidentate ligands;
- L is a coordinating ligand, for example, L may be a neutral ligand, or an anionic ligand that is capable of ring-opening an epoxide; v is an integer that independently satisfies the valency of each M, and/or the preferred coordination geometry of each M or is such that the complex represented by formula (IV) above has an overall neutral charge.
- each v may independently be 0, 1 , 2 or 3, e.g., v may be 1 or 2.
- each L may be different.
- multidentate ligand includes bidentate, tridentate, tetradentate and higher dentate ligands.
- Each multidentate ligand may be a macrocyclic ligand or an open ligand.
- Such catalysts include those in WO2010/022388 (metal salens and derivatives, metal porphyrins, corroles and derivatives, metal tetraaza annulenes and derivatives), W02010/028362 (metal salens and derivatives, metal porphyrins, corroles and derivatives, metal tetraaza annulenes and derivatives), WO2008/136591 (metal salens), WO2011/105846 (metal salens), WO2014/148825 (metal salens), WO2013/012895 (metal salens), EP2258745A1 (metal porphyrins and derivatives), JP2008081518A (metal porphyrins and derivatives), CN101412809 (metal salens and derivatives), WO2019/126221 (metal aminotriphenol complexes), US9018318 (metal beta- diiminate complexes), US6133402A (metal beta-diiminate complexes)
- the carbonate catalysts are bimetallic phenolate catalysts.
- Suitable bimetallic phenolate complexes are those described in W02009/130470, WO2013/034750, WO2016/012786, WO2016/012785, WO2012/037282 and WO2019/048878A1 , the entire contents of which, especially, insofar as they relate to suitable carbonate catalysts for the reaction of CO2 and epoxide, in the presence of a starter and optionally a solvent as defined herein are incorporated herein by reference.
- the ether catalyst may be any catalyst suitable for polymerising epoxides to form polyethers.
- Suitable ether catalysts include DMC catalysts, metal alkoxides, boron-based catalysts such as BF3 or BH3, anionic catalysts such as KOH, cationic, acidic or superacidic catalysts (such as HSbFe, CF3SO3H), PFs, activated monomer catalysts, organic catalysts such as imidazole or phosphazene reagents and metallosalenate catalysts.
- the ether catalyst is a DMC catalyst.
- DMC catalysts which can be used in the process of the invention include those described in US 3,427,256, US 5,536,883, US 6,291 ,388, US 6,486,361 , US 6,608,231 , US 7,008,900, US 5,482,908, US 5,780,584, US 5,783,513, US 5,158,922, US 5,693,584, US 7,81 1 ,958, US 6,835,687, US 6,699,961 , US 6,716,788, US 6,977,236, US 7,968,754, US 7,034,103, US 4,826,953, US 4,500 704, US 7,977,501 , US 9,315,622, EP-A-1568414, EP-A- 1529566, and WO 2015/022290, the entire contents of which are incorporated by reference.
- the ratio of the carbonate catalyst to the ether catalyst may be in the range of from about 300:1 to about 1 :100, for example, from about 120:1 to about 1 :75, such as from about 40:1 to about 1 :50, e.g. from about 30:1 to about 1 :30 such as from about 20:1 to about 1 :1 , for example from about 10:1 to about 2:1 , e.g. from about 5:1 to about 1 :5. These ratios are mass ratios.
- the process may be carried out in a one pot reactor or may be a dual reactor process.
- the polycarbonate block polyether may be manufactured in a multiple reactor system; the system comprising a first and second reactor wherein a first reaction takes place in the first reactor and a second reaction takes place in the second reactor; wherein the first reaction is the reaction of a carbonate catalyst with CO2 and epoxide, in the presence of a monofunctional starter compound, and optionally a solvent, to produce a polycarbonate compound and the second reaction is the semi-batch or continuous reaction of an ether catalyst with the polycarbonate compound of the first reaction and epoxide to produce the polycarbonate block polyether, before combining with at least one other material to yield the composition of the first aspect of the invention.
- the reaction mixture from the first step contains less than 5% CO2 by weight of the reaction mixture prior to the second step, preferably less than 2.5%, such as less than 1 .0%, less than 0.5% or less than 0.1 %.
- the second step is carried out without the independent addition of CO2, however it can be carried out under a pressure of CO2.
- the polyether block produced in the second step may have less than 40% carbonate linkages, preferably less than 30% carbonate linkages or less than 20% carbonate linkages, more preferably less than 10%, less than 5%, less than 2% or less than 1 % carbonate linkages.
- the polyether block produced in the second step is substantially free from carbonate linkages.
- the second step is carried out substantially in the absence of CO2. Accordingly, by substantially in the absence of CO2 is meant that the second step is carried out in the presence of less than 4% CO2 by weight, preferably less than 2%, such as less than 1 .0%, less than 0.5% or less than 0.1 % by weight of total reactants, catalyst, and products in the second step.
- Adding the components in the separate steps may be useful to increase activity of the catalysts and may lead to a more efficient process, compared with a process in which all of the materials are provided at the start of the process. Large amounts of some of the components present throughout the process may reduce efficiency of the catalysts. Reacting this material in separate steps may prevent this reduced efficiency of the catalysts and/or may optimise catalyst activity.
- the reaction conditions of each step can be tailored to optimise the reactions for each catalyst.
- the ether catalyst may be pre-activated prior to addition in the second step. Such pre-activation may be achieved by mixing one or both catalysts with epoxide (and optionally other components). Pre-activation of the ether catalyst is useful as it enables safe control of the reaction (preventing uncontrolled increase of unreacted monomer content) and removes unpredictable activation periods.
- any residual CO2 from the first step may be removed from the crude reaction product of the first step prior to commencement of the second step such that the second step is carried out without CO2, it will be appreciated that a small amount of CO2 may be present in the reaction mixture in the second step as an unused reagent of the first step. Alternatively, both steps may be carried out under a pressure of CO2.
- the reactions of the present invention may be carried out in the presence of a solvent; however, it will also be appreciated that the processes may also be carried out in the absence of a solvent.
- a solvent may be toluene, hexane, t-butyl acetate, diethyl carbonate, dimethyl carbonate, dioxane, dichlorobenzene, methylene chloride, propylene carbonate, ethylene carbonate, acetone, ethyl acetate, propyl acetate, n-butyl acetate, tetrahydrofuran (THF), etc.
- the solvent may be toluene, hexane, acetone, ethyl acetate and n-butyl acetate.
- Adding the components in the separate reactions and reactors may be useful to increase activity of the catalysts and may lead to a more efficient process, compared with a process in which all of the materials are provided at the start of one reaction. Large amounts of some of the components present throughout the reaction may reduce efficiency of the catalysts. Reacting this material in separate reactors may prevent this reduced efficiency of the catalysts and/or may optimise catalyst activity.
- the reaction conditions of each reactor can be tailored to optimise the reactions for each catalyst.
- not loading the total amount of each component at the start of the reaction and having the catalyst for the first reaction in a separate reactor to the catalyst for the second reaction may lead to even catalysis, and more uniform polymer products. This in turn may lead to polymers having a narrower molecular weight distribution, desired ratio, and distribution along the chain of ether to carbonate linkages, and/or improved stability.
- Having the reactions with the two different catalysts separate and mixing only certain components in the first reaction and adding the remainder in the second reaction may also be useful, for example by adding a pre-activated ether catalyst or adding the reaction mixture to a pre-activated ether catalyst.
- Preferred ether catalysts and carbonate catalysts are as described above.
- the first reaction may be carried out in more than one reactorthat feeds the crude reaction mixture into the second reaction, and reactor, continuously.
- the second reaction is run in a continuous mode.
- the product of the first reaction may be stored for subsequent later use in the second reactor.
- the polycarbonate block polyether may be formed by reacting a monofunctional polyether starter compound with an epoxide and carbon dioxide in the presence of a carbonate catalyst.
- a method of producing a composition according to the first aspect of the invention wherein a mono-hydroxy functional polyether is reacted (i) with a carbonate catalyst, epoxide and CO2 and (ii) with an end-capping group, such as an anhydride, to produce the polycarbonate block polyether, before combining with a least one other material to yield the composition of the invention.
- the resulting polycarbonate block is end capped with any suitable functional group.
- End capping the polycarbonate block stabilises the polycarbonate block polyether.
- the polycarbonate block is end capped with a suitable anhydride, typically an alkyl anhydride.
- the monofunctional polyether starter compound may be any suitable monofunctional polyether starter compound, typically a monofunctional PEG compound.
- alkyl refers to saturated, linear- or branched- chain hydrocarbon radicals derived by removal of a single hydrogen atom from an aliphatic moiety.
- An alkyl group may be a “C1-20 alkyl group”, that is an alkyl group that is a straight or branched chain with 1 to 20 carbons. The alkyl group therefore has 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19 or 20 carbon atoms.
- an alkyl group is a C1-15 alkyl, preferably a C1-12 alkyl, more preferably a C1-10 alkyl, even more preferably a C1-8 alkyl, even more preferably a C1-6 alkyl group.
- an ester group is optionally -OC(O)R 1 - or -C(O)OR 1 - wherein R 1 can be an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl group. R 1 may be unsubstituted aliphatic, alicyclic or aryl.
- R 1 is methyl, ethyl, propyl, or phenyl.
- the ester group may be terminated by an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl group. It will be appreciated that if R 1 is hydrogen, then the group defined by - OC(O)R 1 - or -C(O)OR 1 - will be a carboxylic acid group.
- a carbonate group is optionally -OC(O)OR 2 wherein R 2 can be hydrogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl group. R 2 may be optionally substituted aliphatic, alicyclic or aryl.
- R 2 is hydrogen, methyl, ethyl, propyl, butyl (for example n- butyl, isobutyl, or tert-butyl), phenyl, pentafluorophenyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, trifluoromethyl, cyclohexyl, benzyl or adamantyl.
- R 2 is methyl, ethyl, propyl, or phenyl. It will be appreciated that if R 2 is hydrogen, then the group defined by -OC(O)OR 2 will be a carbonic acid group.
- a carbonate functional group is -OC(O)O- and may be derived from a suitable source. Generally, it is derived from CO2.
- An ether group is optionally -OR 3 wherein R 3 can be an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl group. R 3 may be unsubstituted aliphatic, alicyclic or aryl.
- R 3 is methyl, ethyl, propyl, butyl (for example n-butyl, isobutyl, or tert-butyl), phenyl, pentafluorophenyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, trifluoromethyl or adamantyl.
- R 3 is methyl, ethyl, propyl, or phenyl.
- the term “optionally substituted” means that one or more of the hydrogen atoms in the optionally substituted moiety is replaced by a suitable substituent.
- an "optionally substituted” group may have a suitable substituent at each substitutable position of the group, and when more than one position in any given structure may be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position.
- Combinations of substituents envisioned by this invention are preferably those that result in the formation of stable compounds.
- stable refers to compounds that are chemically feasible and can exist for long enough at room temperature i.e. (16-25°C) to allow for their detection, isolation and/or use in chemical synthesis.
- Substituents may be depicted as attached to a bond that crosses a bond in a ring of the depicted molecule. This convention indicates that one or more of the substituents may be attached to the ring at any available position (usually in place of a hydrogen atom of the structure). In cases where an atom of a ring has two substitutable positions, two groups (either the same or different) may be present on that atom.
- Preferred optional substituents for use in the present invention include, but are not limited to, halogen, hydroxy, nitro, carboxylate, carbonate, alkoxy, aryloxy, alkylthio, arylthio, heteroaryloxy, alkylaryl, amino, amido, imine, nitrile, silyl, silyl ether, ester, sulfoxide, sulfonyl, acetylide, phosphinate, sulfonate or optionally substituted aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl groups (for example, optionally substituted by halogen, hydroxy, nitro, carbonate, alkoxy, aryloxy, alkylthio, arylthio, amino, imine, nitrile, silyl, sulfoxide, sulfonyl, phosphinate, sulfonate or acetylide).
- Particularly preferred optional substituents for use in the present invention are selected from nitro, C1-12 alkoxy (e.g., OMe, OEt, O'Pr, O n Bu, O*Bu), Ce-is aryl, C2-14 heteroaryl, C2-14 heteroalicyclic, C1-6 alkyl, C1-6 haloalkyl, F, Cl, Br, I and OH, wherein in each of said C1-12 alkoxy, Ce-is aryl, C2-14 heteroaryl, C2-14 heteroalicyclic, C1-6 alkyl and C1-6 haloalkyl group may be optionally substituted by an optional substituent as defined herein.
- C1-12 alkoxy e.g., OMe, OEt, O'Pr, O n Bu, O*Bu
- the relevant materials are continually or constantly added during the course of a reaction. This may be achieved by, for example, adding a stream of material with either a constant flow rate or with a variable flow rate.
- the one or more materials are added in an essentially non-stop fashion. It is noted, however, that non-stop addition of the materials may need to be briefly interrupted for practical considerations, for example to refill or replace a container of the materials from which these materials are being added.
- reaction may be conducted over a long period of time, such as a number of days, weeks, months, etc.
- reaction materials may be continually topped-up and/or products of the reaction may be tapped-off.
- catalysts may not be consumed during a reaction, catalysts may in any case require topping-up, since tapping-off may deplete the amount of catalyst present.
- a continuous reaction may employ continuous addition of materials.
- a continuous reaction may employ a discontinuous (i.e., batch-wise or semi batch-wise) addition of materials
- series used herein refers to when two or more reactors are connected so that the crude reaction mixture can flow from the first reactor to the second reactor.
- nested used herein refers to when two or more reactors are configured so that one is located within the other.
- the second reactor when the second reactor is located inside the first reactor, allowing the conditions of both reactors to influence the other.
- compositions of the invention include those in the form of a solid tablet preferably a dishwasher tablet.
- Dishwasher tablets are generally used in dishwashing machines and are also referred to herein as “machine dishwasher tablets”.
- Machine dishwasher compositions of the invention may be in any other suitable form, such as in the form of a liquid (e.g. gel), powder or a mixture thereof (e.g. a multi-compartmental capsule). They may be in unit-dose or non-unit dose form. Examples of unit-dose forms are tablets and capsules.
- a machine dishwash composition is preferably provided as a water-soluble or water-dispersible unit dose.
- Particularly preferred unit doses are in the form of pouches, which comprise at least one further non-shape stable ingredient, such as a liquid and/or powder; or in the form of tablets.
- the unit dose is sized and shaped as to fit in the dosing cup of a conventional domestic machine dishwasher.
- the unit-dose machine dishwash composition has a unit weight of 5 to 50 grams, more preferably a unit weight of 10 to 30 grams, even more preferably a unit weight of 12 to 25 grams.
- Advantageous unit dose pouches preferably have more than one compartment.
- Advantageous unit dose tablets are those which have more than one visually distinct tablet region.
- Such regions can be formed by e.g. two distinct (colored) layers or a tablet having a main body and a distinct insert, such as forming a nested-egg.
- a distinct insert such as forming a nested-egg.
- one benefit of using multi-compartmental pouches/ multi-region tablets is that it can be used to reduce/prevent undesired chemical reactions between two or more ingredients during storage by physical segregation.
- a unit dose dishwash composition is wrapped to improve hygiene and consumer safety.
- the wrapper advantageously is based on water-soluble film which preferably a polyvinylalcohol (PVA) based film.
- PVA polyvinylalcohol
- Such wrapping prevents direct contact of the composition with the skin of the consumer when placing the unit dose in the dosing cup/holder of a e.g. machine dishwasher.
- a further benefit of course is that the consumer also does not need to remove a water-soluble wrapping before use. pH profile
- the composition advantageously provides a pH of a solution of 1 wt.% of the composition in water as measured at 25 degrees Celsius of from 7.0 to 12.0, more preferably of from 8.0 to 11 .0 and even more preferably of from 8.5 to 10.5.
- Non-ionic surfactants preferably solid tablet compositions.
- these may further comprise further non-ionic surfactants, preferably the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
- further non-ionic surfactants preferably the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
- low- foaming nonionic surfactants are used particularly from the group of alkoxylated alcohols.
- alcohol ethoxylates with linear residues prepared from alcohols of natural origin with 12 to 18 C atoms, for example from coconut, palm, tallow fat or oleyl alcohol, and on average 2 to 8 mol of EO per mol of alcohol are preferred.
- the preferred ethoxylated alcohols include for example C12-14 alcohols with 3 EO to 4 EO, C9-12 alcohol with 7 EO, C13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C12-18 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C12-14 alcohol with 3 EO and C12-19 alcohol with 5 EO.
- Preferred tallow fatty alcohols with more than 12 EO have from 60 to 100 EO, and more preferably from 70 to 90 EO.
- Particularly preferred tallow fatty alcohols with more than 12 EO are tallow fatty alcohols with 80 EO.
- Nonionic surfactants from the group of alkoxylated alcohols are likewise particularly preferentially used.
- Preferably used nonionic surfactants originate from the groups comprising alkoxylated nonionic surfactants, in particular ethoxylated primary alcohols and mixtures of these surfactants with structurally complex surfactants such as polyoxypropylene/ polyoxyethylene/ polyoxypropylene (PO/EO/PO Such (PO/EO/PO) nonionic surfactants are furthermore distinguished by good foam control.
- n is from 0 to 5 and m from 10 to 50, more preferably wherein n is from 0 to 3 and m is from 15 to 40, and even more preferably wherein n is 0 and m is from 18 to 25.
- Surfactants according to this formula were particularly useful in reducing spotting of dishware treated in a machine dish washer.
- at least 50 wt. % of the nonionic surfactant comprised by the composition of the invention is nonionic surfactant according to this formula.
- Such nonionic surfactants are commercially available, for example under the tradename Dehypon WET (Supplier: BASF) and Genapol EC50 (Supplier Clariant).
- the composition preferably comprises from 0.1 to 20 wt. % of a nonionic surfactant or a mixture of two or more non-ionic surfactants.
- the preferred amount of total non-ionic surfactant if from 1 to 18 wt. %, more preferably from 4 to 16 wt. % and even more preferably from 6 to 12 wt.%. Such levels are considered optimal.
- the nonionic surfactant is preferably present in amounts of 25 to 90 wt. % based on the total weight of the surfactant system.
- Anionic surfactants can be present for example in amounts in the range from 5 to 40 wt. % of the surfactant system.
- the composition may comprise one or more further surfactants.
- Anionic surfactants may be chosen from the anionic surfactants described "Surface Active Agents” Vol. 1 , by Schwartz & Perry, Interscience 1949, Vol. 2 by Schwartz, Perry & Berch, Interscience 1958, in the current edition of "McCutcheon’s Emulsifiers and Detergents” published by Manufacturing Confectioners Company or in "Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981.
- the surfactants used are saturated.
- Amineoxide surfactants may also be used in the present invention as anti-redeposition surfactant. Examples of suitable amineoxide surfactants are C10-C18 alkyl dimethylamine oxide and C10-C18 acylamido alkyl dimethylamine oxide.
- the amount of anionic surfactant is preferably is at most 5 wt. %, and more preferably at most 2 wt. % and even more preferably at most 1 .5 wt. %.
- suitable anionic surfactants are methylester sulphonates or sodium lauryl sulphate.
- the composition comprises essentially no anionic surfactant.
- Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
- Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070. Zeolite and carbonate (carbonate (including bicarbonate and sesquicarbonate) are preferred further builders.
- the builder may be crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate.
- Aluminosilicates are materials having the general formula: 0.8-1 .5 M2O. AI2O3. 0.8-6 SiC>2, where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g.
- the preferred sodium aluminosilicates contain 1.5-3.5 SiC>2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature.
- the ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
- Alkali carbonate is appreciated in view of its double function as builder and buffer and is preferably present in the composition.
- the preferred amount of alkali carbonate in the composition is from 2 to 75 wt.%, more preferably from 10 to 50 wt.% and even more preferably from 20 to 40 wt.%.
- Such level of alkali carbonate provides good Ca 2+ and Mg 2+ ion scavenging for most types of water hardness levels, as well as other builder effects, such as providing good buffering capacity.
- the preferred alkali carbonates are sodium- and/or potassium carbonate of which sodium carbonate is particularly preferred.
- the alkali carbonate present in the composition of the invention can be present as such or as part of a more complex ingredient (e.g. sodium carbonate in sodium percarbonate).
- Aminopolycarboxylates are well known in the detergent industry and sometimes referred to as aminopolycarboxylic acids chelants. They are generally appreciated as being strong builders. Suitable aminopolycarboxylic acids include glutamic acid N,N-diacetic acid (GLDA), methylglycinediacetic acid (MGDA), ethylenediaminedisuccinic acid (EDDS), iminodisuccinic acid (IDS), iminodimalic acid (IDM), ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), diethylenetriaminepentaacetic acid (DTPA), hydroxyethyliminodiacetic acid (HEIDA) aspartic acid diethoxysuccinic acid (AES) aspartic acid- N,N-diacetic acid (ASDA) , hydroxyethylene-diaminetetraacetic acid (HEDTA), hydroxyethylethylene
- Preferred aminopolycarboxylates are GLDA, MGDA, EDDS, IDS, IDM or a mixture thereof, more preferred are GLDA, MGDA, EDDS or a mixture thereof and even more preferred are GLDA and MGDA or a mixture thereof.
- GLDA is especially preferred as it can be made from bio-based materials (e.g. monosodium glutamate, which itself can be made as by-product from corn fermentation).
- GLDA itself is highly biodegradable.
- MGDA is more preferred in view of it being somewhat less hygroscopic, which improves stability of the composition during storage.
- the dishwash composition preferably comprises from 0.5 to 40 wt. % free acid equivalent of aminopolycarboxylate.
- a particularly preferred amount of free acid equivalent of aminopolycarboxylate is from 0.5 to 20 wt. %, even more preferably from 1 .0 to 15 wt. %, still even more preferably from 2.0 to 10 wt. % and still even more preferably from 3.0 to 8 wt.%.
- the dish wash composition beneficially is phosphate-free, i.e., contains at most 1.0 wt. %, preferably at most 0.8 wt.%, more preferably at most 0.5 wt. %, even more preferably at most 0.2 wt.% of phosphate and still even more preferably contains essentially no phosphate.
- the dishwash composition beneficially is phosphonate-free i.e., contains at most 1.0 wt. % of phosphonate, preferably at most 0.8 wt. %, more preferably at most 0.5 wt. %, even more preferably at most 0.2 wt. % of phosphonate and still even more preferably contains essentially no phosphonate.
- phosphonates and phosphates are 1-hydroxyethane-1 ,1- diphosphonic acid (HEDP), diethylenetriamine-penta (methylenephosphonic acid) (DTPMP), ethylenediaminetetra-methylenephosphonate (EDTMP), tripolyphosphate and pyrophosphate.
- HEDP 1-hydroxyethane-1 ,1- diphosphonic acid
- DTPMP diethylenetriamine-penta
- ETMP ethylenediaminetetra-methylenephosphonate
- tripolyphosphate tripolyphosphate and pyrophosphate.
- organic acids and/or their corresponding salts are beneficial in providing improved detergency whilst capable of being made from renewable materials (e.g. plant-based) and readily biodegradable.
- Said further organic acid used in dishwash compositions of the invention can be any organic acid. Particularly good results were achieved with organic acids being polyacids (i.e. acids having more than one carboxylic acid group), and more particularly with di- or tricarboxylic organic acids.
- the organic acids used in the invention have an average molecular mass of at most 500 Dalton, more preferably of at most 400 Dalton and most preferably of at most 300 Dalton, the molecular mass being based on the free acid equivalent.
- the organic acid is not a polymer-based acid.
- the organic acid employed in accordance with the invention preferably comprises 3 to 25 carbon atoms, more preferably 4 to 15 carbon atoms.
- the organic acids preferably are those which are also found naturally occurring, such as in plants.
- organic acids of note are acetic acid, citric acid, aspartic acid, lactic acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, saccharic acids, their salts, or mixtures thereof.
- Citric acid was found highly advantageous. Citric acid is naturally occurring, highly biodegradable as well as providing added builder activity and disintegration properties.
- Advantageously dishwash compositions of the invention comprise a free acid equivalent of organic acid of from 1 to 30 wt. %, more preferably of from 5 to 20 wt. % and even more preferably from 8.0 to 15 wt.%.
- Preferred salt forms of the further organic acid are alkali metal salts and beneficially their sodium salts.
- a dishwash composition of the invention preferably comprises from 0.1 to 25 wt. % of bleach.
- Inorganic and/or organic bleaches can be used.
- Bleach may be selected from peroxides, organic peracids, salts of organic peracids and combinations thereof.
- the bleach is selected from peroxides (including peroxide salts such as sodium percarbonate), organic peracids, salts of organic peracids and combinations thereof. More preferably, the bleach is a peroxide. Most preferably, the bleach is a percarbonate. Further preferred, the bleach is a coated percarbonate. More preferred amounts of bleach are from 1 .0 to 25 wt.%, even more preferably at from 2.0 to 20 wt. % and still even more preferably from 5 to 15 wt.%.
- a dishwash composition of the invention preferably comprises one or more bleach activators such as peroxyacid bleach precursors.
- Peroxyacid bleach precursors are well known in the art. As non-limiting examples can be named N, N, N', N'-tetraacetyl ethylene diamine (TAED), sodium nonanoyloxybenzene sulphonate (SNOBS), sodium benzoyloxybenzene sul phonate (SBOBS) and the cationic peroxyacid precursor (SPCC) as described in US-A-4, 751 ,015.
- a beneficial amount of bleach activator is from 0.1 to 10 wt.%, more preferably from 0.5 to 5 wt.% and even more preferably from 1 .0 to 4 wt. %.
- Bleach catalysts function by oxidizing typically via peroxide or a peracid to form a bleaching species. They require the presence of an oxidizable soil so that they can be reduced back to the starting bleach activator state.
- a preferred bleach catalyst is a manganese complex of formula (A):
- Such bleach catalysts are described in EP0458397A2.
- a beneficial amount of bleach catalyst is from 0.0001 to 2.0 wt. %, more preferably from 0.001 to 1 .5 wt.%, even more preferably from 0.01 to 1 .0 wt. %.
- Dishwash compositions of the invention preferably comprise enzyme.
- enzymes suitable for use in the cleaning compositions of this invention include lipases, cellulases, peroxidases, proteases (proteolytic enzymes), amylases (amylolytic enzymes) and others.
- Well- known and preferred examples of these enzymes are proteases, amylases, cellulases, peroxidases, mannanases, pectate lyases and lipases and combinations thereof, of which proteolytic and amylolytic enzymes are the more preferred.
- Enzymes may be added in liquid, granular or in encapsulated form to the dishwash composition, but preferably are not encapsulated. If enzymes are present the dishwash composition preferably also contains enzyme stabilizers such as polyalcohols/borax, calcium, formate or protease inhibitors like 4- formylphenyl boronic acid.
- Preferred levels of protease are from 0.1 to 10 mg, more preferably from 0.2 to 5 mg, most preferably 0.4 to about 4 mg active protease per gram of the dishwash composition.
- Preferred levels of amylase are from 0.01 to 5, more preferably from 0.02 to 2, most preferably from 0.05 to about 1 mg active amylase per gram of the dishwash composition.
- a dishwash composition of the invention beneficially comprises dispersing polymer.
- Dispersing polymers can be chosen from the group of anti-spotting agents and/or anti-scaling agents.
- suitable anti-spotting polymeric agents include hydrophobically modified polycarboxylic acids such as AcusolTM460 ND (ex Dow) and AlcosperseTM747 by Nouryon, whereas also synthetic clays, and preferably those synthetic clays which have a high surface area can be useful to reduce spotting, in particular those formed where soil and dispersed remnants are present at places where the water collects on the floor when the water subsequently evaporates.
- Suitable anti-scaling agents are water soluble dispersing polymers prepared from an allyloxybenzenesulfonic acid monomer, a methallyl sulfonic acid monomer, a copolymerizable nonionic monomer and a copolymerizable olefinically unsaturated carboxylic acid monomer as described in US5547612 or known as acrylic sulphonated polymers as described in EP851022.
- Polymers of this type include polyacrylate with methyl methacrylate, sodium methallyl sulphonate and sulphophenol methallyl ether such as AlcosperseTM240 supplied (Nouryon).
- terpolymer containing polyacrylate with 2-acrylamido-2 methylpropane sulphonic acid such as Acumer 3100 supplied by Dow.
- polymers and copolymers of acrylic acid having a molecular weight between 500 and 20,000 can also be used, such as homo-polymeric polycarboxylic acid compounds with acrylic acid as the monomeric unit.
- the average weight of such homo-polymers in the acid form preferably ranges from 1 ,000 to 100,000 particularly from 3,000 to 10,000 e.g. Sokolan TM PA 25 from BASF or AcusolTM425 from Dow.
- polycarboxylates co-polymers derived from monomers of acrylic acid and maleic acid such as CP5 from BASF.
- the average molecular weight of these polymers in the acid form preferably ranges from 4,000 to 70,000.
- Modified polycarboxylates like SokalanTM CP50 from BASF or AlcoguardTM4160 from Nouryon may also be used.
- Mixture of anti-scaling agents may also be used. Particularly useful is a mixture of organic phosphonates and polymers of acrylic acid.
- the preferred amount of dispersing polymer is from 0.1 to 6 wt. %, more preferably from 0.2 to 4 wt. %, and even more preferably from 0.3 to 2 wt. %.
- Machine dish wash compositions preferably comprise one or more colorants, one or more perfumes and more advantageously a mixture of at least one colorant and at least one perfume.
- Colorants are beneficially present in an amount of from 0.0001 to 8 wt. %, more preferably from 0.001 to 4 wt. % and even more preferably from 0.001 to 1 .5 wt. %.
- Perfume may be present in the range from 0.1 to 1 wt. %.
- Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.
- CTFA Cosmetic, Toiletry and Fragrance Association
- top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]).
- Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol. Examples
- Table 1 Example surface active agents.
- EO is ethylene oxide
- PC is propylene carbonate
- the P:Q ratio for samples 1 ,2,3 is 1 .0625:1 , 1 .125:1 and 1 .25:1 respectively.
- polycarbonate block polyethers of the compositions of the invention are soluble in water, reduce surface tension and facilitate micelle creation providing surfactant 0 behaviour.
- Catalyst (1) was prepared according to Example 2 of WO2017/037441 .
- Polyethylene glycol monomethyl ether was added to a 100 mL Parr high pressure reactor.
- the vessel was dried by 5 heating to 100 °C under vacuum for 60 mins before cooling and filling with low pressure CO2.
- the mono-ol was dissolved in dichloromethane containing triethylamine (1.3 eq.) and alkyl anhydride (1.05 eq.) and reacted at reflux for 16 h.
- the end-capped mono-ol was washed with water and brine, dried over sodium sulfate, and concentrated to dryness in vacuo to afford the desired product.
- Ethylene carbonate by-product was removed using a Kugelrohr or short path evaporator (SPE).
- Example 1 results An alternative method of making the surface active agents of the invention is described below.
- Mono-ol starter was added to a 100 mL Parr high pressure reactor system.
- the vessel was dried by heating to 100 °C under vacuum for 60 mins before cooling and filling with low pressure CO2.
- Catalyst (1) (see example 1) was added.
- Pre-dried mono-ol starter and a DMC composed of zinc hexacyanocobaltate and tert-butyl alcohol (2) was added to a 100 mL Parr high pressure reactor system. The vessel was held under vacuum for approximately 2 mins before filling with low pressure N2 and then anhydrous ethyl acetate (15 mL).
- This vessel was then heated with 130 °C with stirring and the DMC activated with 2 portions of approximately 0.3 g PO. After activation (as evidenced by pressure drops) the external heater was removed, optionally the reactor could be pressurized with CO2, then the mixture was cooled to the target addition temperature.
- the mixture from Reaction 1 was added onto the active DMC system over approximately 60-90 mins. Once addition of the mixture was complete, the mixture was left to “cook-out” for several hours before cooling, venting and taking samples for analysis by NMR and GPC.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Toxicology (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
L'invention concerne une composition comprenant un polyéther séquencé de polycarbonate de formule I Z1-(PC)P-(PE)Q-Z2.....<sp />(I), dans laquelle PC représente un bloc carbonate avec P unités de répétition de la formule dans laquelle Re1, Re2, Re3 et Re4 sont indépendamment choisis parmi un H, un méthyle, un éthyle, un propyle, un butyle ou un éther, un ester ou un groupe carbonate, à condition que lorsque l'un de Re1, Re2, Re3 et Re4 représente un méthyle, un éthyle, un propyle, un butyle ou un éther, un ester ou un groupe carbonate, les Re1, Re2, Re3 et Re4 restant représentent un H ; PE représente un bloc polyéther ayant Q unités de répétition de la formule dans laquelle Re1', Re2', Re3' et Re4' sont indépendamment choisis parmi un H, un méthyle, un éthyle, un propyle, un butyle ou un éther, un ester ou des groupes carbonates, à condition que lorsque l'un de Re1, Re2, Re3 et Re4 représente un méthyle, un éthyle, un propyle, un butyle ou un éther, un ester ou un groupe carbonate, les Re1', Re2', Re3' et Re4' restant représentent un H ; Z1 représente R, R, R-O, R-C(O)-O- ou R-O-C(O)-O ; R représente un groupe alkyle en C1-C11 à chaîne droite ou ramifiée éventuellement substitué ; Z2 représente H, R, R-(O)C ou R-O-(O)C ; et la valeur de P ne dépassant pas la valeur de Q.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP23169773 | 2023-04-25 | ||
EP23169773.1 | 2023-04-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024223596A1 true WO2024223596A1 (fr) | 2024-10-31 |
Family
ID=89847644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2024/061139 WO2024223596A1 (fr) | 2023-04-25 | 2024-04-23 | Compositions |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024223596A1 (fr) |
Citations (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3427256A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanide complex compounds |
US4500704A (en) | 1983-08-15 | 1985-02-19 | The Dow Chemical Company | Carbon dioxide oxirane copolymers prepared using double metal cyanide complexes |
US4751015A (en) | 1987-03-17 | 1988-06-14 | Lever Brothers Company | Quaternary ammonium or phosphonium substituted peroxy carbonic acid precursors and their use in detergent bleach compositions |
US4826953A (en) | 1985-11-14 | 1989-05-02 | Shell Oil Company | Process for the preparation of polycarbonates from epoxy compound and carbon dioxide |
EP0384070A2 (fr) | 1988-11-03 | 1990-08-29 | Unilever Plc | Zéolite P, son procédé de préparation et son utilisation dans les compositions détergentes |
EP0458397A2 (fr) | 1990-05-21 | 1991-11-27 | Unilever N.V. | Activation du blanchiment |
US5158922A (en) | 1992-02-04 | 1992-10-27 | Arco Chemical Technology, L.P. | Process for preparing metal cyanide complex catalyst |
US5482908A (en) | 1994-09-08 | 1996-01-09 | Arco Chemical Technology, L.P. | Highly active double metal cyanide catalysts |
US5547612A (en) | 1995-02-17 | 1996-08-20 | National Starch And Chemical Investment Holding Corporation | Compositions of water soluble polymers containing allyloxybenzenesulfonic acid monomer and methallyl sulfonic acid monomer and methods for use in aqueous systems |
US5693584A (en) | 1996-08-09 | 1997-12-02 | Arco Chemical Technology, L.P. | Highly active double metal cyanide catalysts |
EP0851022A2 (fr) | 1996-12-23 | 1998-07-01 | Unilever N.V. | Compositions de rincage contenant des polymères antitartres |
US5780584A (en) | 1995-07-24 | 1998-07-14 | Arco Chemical Technology, L.P. | Highly active double metal cyanide complex catalysts |
US5783513A (en) | 1997-03-13 | 1998-07-21 | Arco Chemical Technology, L.P. | Process for making double metal cyanide catalysts |
US6133402A (en) | 1998-08-04 | 2000-10-17 | Cornell Research Foundation, Inc. | Polycarbonates made using high activity catalysts |
US6291388B1 (en) | 1998-03-10 | 2001-09-18 | Bayer Aktiengesellschaft | Double metal cyanide catalysts for producing polyether polyols |
US6486361B1 (en) | 1999-08-06 | 2002-11-26 | Bayer Aktiengesellschaft | Method for preparing polyether polyols |
US6608231B1 (en) | 1998-09-16 | 2003-08-19 | Bayer Aktiengesellschaft | Double-metal cyanide catalysts for producing polyether polyols |
US6699961B2 (en) | 2000-03-30 | 2004-03-02 | Shell Oil Company | DMC complex catalyst and process for its preparation |
US6716788B2 (en) | 2002-06-14 | 2004-04-06 | Shell Oil Company | Preparation of a double metal cyanide catalyst |
US6835687B2 (en) | 2000-04-20 | 2004-12-28 | Bayer Aktiengesellschaft | Method for producing double metal cyanide (DMC) catalysts |
EP1529566A1 (fr) | 2003-11-07 | 2005-05-11 | Bayer MaterialScience LLC | Alcools tertiaires insatures comme ligands pour DMC catalyseurs actives |
EP1568414A1 (fr) | 2004-02-27 | 2005-08-31 | Repsol Quimica S.A. | Catalyseur à base de cyanure métallique double avec des ethers couronnes, leurs preparations et utilisations |
US6977236B2 (en) | 2002-06-14 | 2005-12-20 | Shell Oil Company | Preparation of a double metal cyanide catalyst |
US7008900B1 (en) | 1999-02-11 | 2006-03-07 | Bayer Aktiengesellschaft | Double metal cyanide catalysts for producing polyether polyols |
US7034103B2 (en) | 2003-08-26 | 2006-04-25 | Bayer Antwerpen N.V. | Process for production of polyols with hydroxide containing double metal cyanide (DMC) catalysts |
JP2008081518A (ja) | 2006-09-25 | 2008-04-10 | Tokyo Univ Of Science | アルキレンオキシドと二酸化炭素の共重合体の製造方法、及び共重合体 |
WO2008136591A1 (fr) | 2007-05-04 | 2008-11-13 | Sk Energy Co., Ltd. | Procédé pour produire des polycarbonates et complexe de coordination utilisé pour ce faire |
CN101412809A (zh) | 2008-11-28 | 2009-04-22 | 大连理工大学 | 用于合成聚碳酸酯的单活性点催化剂 |
WO2009130470A1 (fr) | 2008-04-25 | 2009-10-29 | Imperial Innovations Limited | Complexes catalytiques bimétalliques pour la copolymérisation de dioxyde de carbone et d’un époxyde |
WO2010022388A2 (fr) | 2008-08-22 | 2010-02-25 | Novomer, Inc. | Catalyseurs et procédés de synthèse de polymère |
WO2010028362A1 (fr) | 2008-09-08 | 2010-03-11 | Novomer, Inc. | Compositions de polycarbonate-polyol et procédés |
WO2010062703A1 (fr) | 2008-11-01 | 2010-06-03 | Novomer, Inc. | Copolymères à bloc de polycarbonate |
US7811958B2 (en) | 2005-03-10 | 2010-10-12 | Basf Aktiengesellschaft | Method for producing an DMC catalyst |
EP2258745A1 (fr) | 2008-03-25 | 2010-12-08 | Asahi Glass Company, Limited | Composé hydroxy, son procédé de fabrication et prépolymère et polyuréthane comprenant chacun le composé hydroxy |
US7968754B2 (en) | 2003-11-13 | 2011-06-28 | Basf Aktiengesellschaft | Method for producing polyether alcohols |
US7977501B2 (en) | 2006-07-24 | 2011-07-12 | Bayer Materialscience Llc | Polyether carbonate polyols made via double metal cyanide (DMC) catalysis |
WO2011105846A2 (fr) | 2010-02-25 | 2011-09-01 | Sk Energy Co., Ltd. | Système catalytique d'anions nitrate pour la copolymérisation de dioxyde/époxyde carbone |
WO2012037282A2 (fr) | 2010-09-14 | 2012-03-22 | Novomer, Inc. | Catalyseurs et procédés de synthèse de polymères |
US8278239B2 (en) | 2004-10-08 | 2012-10-02 | Cornell Research Foundation, Inc. | Polycarbonates made using highly selective catalysts |
WO2013012895A1 (fr) | 2011-07-18 | 2013-01-24 | Novomer, Inc. | Complexes métalliques |
WO2013034750A2 (fr) | 2011-09-08 | 2013-03-14 | Imperial Innovations Limited | Procédé de synthèse de polycarbonates en présence d'un catalyseur bimétallique et d'un agent de transfert de chaîne |
WO2014148825A1 (fr) | 2013-03-21 | 2014-09-25 | Sk Innovation Co.,Ltd. | Procédé de préparation de poly(carbonate d'alkylène) par copolymérisation de dioxyde de carbone et d'époxyde en présence d'un nouveau complexe |
US20140323670A1 (en) | 2011-12-16 | 2014-10-30 | Bayer Intellectual Property Gmbh | Method for producing polyether carbonate polyols |
WO2015022290A1 (fr) | 2013-08-12 | 2015-02-19 | Repsol, S.A. | Procédé de préparation de polyols de carbonate de polyéther |
WO2015031348A1 (fr) | 2013-08-26 | 2015-03-05 | Sasol Chemicals (Usa) Llc | Agents tensioactifs à base de polycarbonates aliphatiques |
US9018318B2 (en) | 2011-09-02 | 2015-04-28 | BASF SE Corporation | Catalysts for the preparation of carbonates from epoxides and CO2 |
WO2016012785A1 (fr) | 2014-07-22 | 2016-01-28 | Econic Technologies Ltd | Catalyseurs |
US9315622B2 (en) | 2011-07-18 | 2016-04-19 | Covestro Deutschland Ag | Process for the production of polyether carbonate polyols |
WO2016203408A1 (fr) | 2015-06-15 | 2016-12-22 | King Abdullah University Of Science And Technology | Utilisation d'additifs afin d'affiner la composition de motifs carbonate dans le polymère formé par copolymérisation de co2 avec un époxyde : application à la synthèse de copolymères séquencés à base de polycarbonate et de substances téléchéliques |
WO2017037441A1 (fr) | 2015-08-28 | 2017-03-09 | Econic Technologies Limited | Procédé de préparation de polyols |
WO2019048878A1 (fr) | 2017-09-07 | 2019-03-14 | Econic Technologies Ltd | Procédé de polymérisation |
WO2019126221A1 (fr) | 2017-12-22 | 2019-06-27 | Saudi Aramco Technologies Company | Catalyseurs pour la production de polycarbonate |
WO2020121262A2 (fr) | 2018-12-12 | 2020-06-18 | King Abdullah University Of Science And Technology | Polyols de polycarbonate |
WO2021005470A1 (fr) | 2019-07-05 | 2021-01-14 | King Abdullah University Of Science And Technology | Récupération et réutilisation d'activateurs et d'initiateurs après une synthèse de polycarbonate |
US20210309801A1 (en) | 2018-09-17 | 2021-10-07 | King Abdullah University Of Science And Technology | Ethylene oxide-based copolymers |
-
2024
- 2024-04-23 WO PCT/EP2024/061139 patent/WO2024223596A1/fr active Search and Examination
Patent Citations (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3427256A (en) | 1963-02-14 | 1969-02-11 | Gen Tire & Rubber Co | Double metal cyanide complex compounds |
US4500704A (en) | 1983-08-15 | 1985-02-19 | The Dow Chemical Company | Carbon dioxide oxirane copolymers prepared using double metal cyanide complexes |
US4826953A (en) | 1985-11-14 | 1989-05-02 | Shell Oil Company | Process for the preparation of polycarbonates from epoxy compound and carbon dioxide |
US4751015A (en) | 1987-03-17 | 1988-06-14 | Lever Brothers Company | Quaternary ammonium or phosphonium substituted peroxy carbonic acid precursors and their use in detergent bleach compositions |
EP0384070A2 (fr) | 1988-11-03 | 1990-08-29 | Unilever Plc | Zéolite P, son procédé de préparation et son utilisation dans les compositions détergentes |
EP0458397A2 (fr) | 1990-05-21 | 1991-11-27 | Unilever N.V. | Activation du blanchiment |
US5158922A (en) | 1992-02-04 | 1992-10-27 | Arco Chemical Technology, L.P. | Process for preparing metal cyanide complex catalyst |
US5536883A (en) | 1994-09-08 | 1996-07-16 | Arco Chemical Technology, L.P. | Highly active double metal cyanide catalysts and epoxide polymerization |
US5482908A (en) | 1994-09-08 | 1996-01-09 | Arco Chemical Technology, L.P. | Highly active double metal cyanide catalysts |
US5547612A (en) | 1995-02-17 | 1996-08-20 | National Starch And Chemical Investment Holding Corporation | Compositions of water soluble polymers containing allyloxybenzenesulfonic acid monomer and methallyl sulfonic acid monomer and methods for use in aqueous systems |
US5780584A (en) | 1995-07-24 | 1998-07-14 | Arco Chemical Technology, L.P. | Highly active double metal cyanide complex catalysts |
US5693584A (en) | 1996-08-09 | 1997-12-02 | Arco Chemical Technology, L.P. | Highly active double metal cyanide catalysts |
EP0851022A2 (fr) | 1996-12-23 | 1998-07-01 | Unilever N.V. | Compositions de rincage contenant des polymères antitartres |
US5783513A (en) | 1997-03-13 | 1998-07-21 | Arco Chemical Technology, L.P. | Process for making double metal cyanide catalysts |
US6291388B1 (en) | 1998-03-10 | 2001-09-18 | Bayer Aktiengesellschaft | Double metal cyanide catalysts for producing polyether polyols |
US6133402A (en) | 1998-08-04 | 2000-10-17 | Cornell Research Foundation, Inc. | Polycarbonates made using high activity catalysts |
US6608231B1 (en) | 1998-09-16 | 2003-08-19 | Bayer Aktiengesellschaft | Double-metal cyanide catalysts for producing polyether polyols |
US7008900B1 (en) | 1999-02-11 | 2006-03-07 | Bayer Aktiengesellschaft | Double metal cyanide catalysts for producing polyether polyols |
US6486361B1 (en) | 1999-08-06 | 2002-11-26 | Bayer Aktiengesellschaft | Method for preparing polyether polyols |
US6699961B2 (en) | 2000-03-30 | 2004-03-02 | Shell Oil Company | DMC complex catalyst and process for its preparation |
US6835687B2 (en) | 2000-04-20 | 2004-12-28 | Bayer Aktiengesellschaft | Method for producing double metal cyanide (DMC) catalysts |
US6716788B2 (en) | 2002-06-14 | 2004-04-06 | Shell Oil Company | Preparation of a double metal cyanide catalyst |
US6977236B2 (en) | 2002-06-14 | 2005-12-20 | Shell Oil Company | Preparation of a double metal cyanide catalyst |
US7034103B2 (en) | 2003-08-26 | 2006-04-25 | Bayer Antwerpen N.V. | Process for production of polyols with hydroxide containing double metal cyanide (DMC) catalysts |
EP1529566A1 (fr) | 2003-11-07 | 2005-05-11 | Bayer MaterialScience LLC | Alcools tertiaires insatures comme ligands pour DMC catalyseurs actives |
US7968754B2 (en) | 2003-11-13 | 2011-06-28 | Basf Aktiengesellschaft | Method for producing polyether alcohols |
EP1568414A1 (fr) | 2004-02-27 | 2005-08-31 | Repsol Quimica S.A. | Catalyseur à base de cyanure métallique double avec des ethers couronnes, leurs preparations et utilisations |
US8278239B2 (en) | 2004-10-08 | 2012-10-02 | Cornell Research Foundation, Inc. | Polycarbonates made using highly selective catalysts |
US7811958B2 (en) | 2005-03-10 | 2010-10-12 | Basf Aktiengesellschaft | Method for producing an DMC catalyst |
US7977501B2 (en) | 2006-07-24 | 2011-07-12 | Bayer Materialscience Llc | Polyether carbonate polyols made via double metal cyanide (DMC) catalysis |
JP2008081518A (ja) | 2006-09-25 | 2008-04-10 | Tokyo Univ Of Science | アルキレンオキシドと二酸化炭素の共重合体の製造方法、及び共重合体 |
WO2008136591A1 (fr) | 2007-05-04 | 2008-11-13 | Sk Energy Co., Ltd. | Procédé pour produire des polycarbonates et complexe de coordination utilisé pour ce faire |
EP2258745A1 (fr) | 2008-03-25 | 2010-12-08 | Asahi Glass Company, Limited | Composé hydroxy, son procédé de fabrication et prépolymère et polyuréthane comprenant chacun le composé hydroxy |
WO2009130470A1 (fr) | 2008-04-25 | 2009-10-29 | Imperial Innovations Limited | Complexes catalytiques bimétalliques pour la copolymérisation de dioxyde de carbone et d’un époxyde |
WO2010022388A2 (fr) | 2008-08-22 | 2010-02-25 | Novomer, Inc. | Catalyseurs et procédés de synthèse de polymère |
WO2010028362A1 (fr) | 2008-09-08 | 2010-03-11 | Novomer, Inc. | Compositions de polycarbonate-polyol et procédés |
WO2010062703A1 (fr) | 2008-11-01 | 2010-06-03 | Novomer, Inc. | Copolymères à bloc de polycarbonate |
CN101412809A (zh) | 2008-11-28 | 2009-04-22 | 大连理工大学 | 用于合成聚碳酸酯的单活性点催化剂 |
WO2011105846A2 (fr) | 2010-02-25 | 2011-09-01 | Sk Energy Co., Ltd. | Système catalytique d'anions nitrate pour la copolymérisation de dioxyde/époxyde carbone |
WO2012037282A2 (fr) | 2010-09-14 | 2012-03-22 | Novomer, Inc. | Catalyseurs et procédés de synthèse de polymères |
US9315622B2 (en) | 2011-07-18 | 2016-04-19 | Covestro Deutschland Ag | Process for the production of polyether carbonate polyols |
WO2013012895A1 (fr) | 2011-07-18 | 2013-01-24 | Novomer, Inc. | Complexes métalliques |
US9018318B2 (en) | 2011-09-02 | 2015-04-28 | BASF SE Corporation | Catalysts for the preparation of carbonates from epoxides and CO2 |
WO2013034750A2 (fr) | 2011-09-08 | 2013-03-14 | Imperial Innovations Limited | Procédé de synthèse de polycarbonates en présence d'un catalyseur bimétallique et d'un agent de transfert de chaîne |
US20140323670A1 (en) | 2011-12-16 | 2014-10-30 | Bayer Intellectual Property Gmbh | Method for producing polyether carbonate polyols |
WO2014148825A1 (fr) | 2013-03-21 | 2014-09-25 | Sk Innovation Co.,Ltd. | Procédé de préparation de poly(carbonate d'alkylène) par copolymérisation de dioxyde de carbone et d'époxyde en présence d'un nouveau complexe |
WO2015022290A1 (fr) | 2013-08-12 | 2015-02-19 | Repsol, S.A. | Procédé de préparation de polyols de carbonate de polyéther |
WO2015031348A1 (fr) | 2013-08-26 | 2015-03-05 | Sasol Chemicals (Usa) Llc | Agents tensioactifs à base de polycarbonates aliphatiques |
WO2016012786A1 (fr) | 2014-07-22 | 2016-01-28 | Econic Technologies Ltd | Catalyseurs |
WO2016012785A1 (fr) | 2014-07-22 | 2016-01-28 | Econic Technologies Ltd | Catalyseurs |
WO2016203408A1 (fr) | 2015-06-15 | 2016-12-22 | King Abdullah University Of Science And Technology | Utilisation d'additifs afin d'affiner la composition de motifs carbonate dans le polymère formé par copolymérisation de co2 avec un époxyde : application à la synthèse de copolymères séquencés à base de polycarbonate et de substances téléchéliques |
WO2017037441A1 (fr) | 2015-08-28 | 2017-03-09 | Econic Technologies Limited | Procédé de préparation de polyols |
WO2019048878A1 (fr) | 2017-09-07 | 2019-03-14 | Econic Technologies Ltd | Procédé de polymérisation |
WO2019126221A1 (fr) | 2017-12-22 | 2019-06-27 | Saudi Aramco Technologies Company | Catalyseurs pour la production de polycarbonate |
US20210309801A1 (en) | 2018-09-17 | 2021-10-07 | King Abdullah University Of Science And Technology | Ethylene oxide-based copolymers |
WO2020121262A2 (fr) | 2018-12-12 | 2020-06-18 | King Abdullah University Of Science And Technology | Polyols de polycarbonate |
WO2021005470A1 (fr) | 2019-07-05 | 2021-01-14 | King Abdullah University Of Science And Technology | Récupération et réutilisation d'activateurs et d'initiateurs après une synthèse de polycarbonate |
Non-Patent Citations (6)
Title |
---|
CTFA: "International Buyers Guide", 1992, CFTA PUBLICATIONS |
H. STACHE: "McCutcheon's Emulsifiers and Detergents", 1981, MANUFACTURING CONFECTIONERS COMPANY |
JIA MINGCHEN ET AL: "Surfactant-Emulating Amphiphilic Polycarbonates and Other Functional Polycarbonates through Metal-Free Copolymerization of CO 2 with Ethylene Oxide", vol. 9, no. 30, 21 July 2021 (2021-07-21), US, pages 10370 - 10380, XP093081105, ISSN: 2168-0485, Retrieved from the Internet <URL:https://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.1c03751> DOI: 10.1021/acssuschemeng.1c03751 * |
OPD: "Chemicals Buyers Directory", 1993, SCHNELL PUBLISHING CO |
POUCHER, JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS, vol. 6, no. 2, 1955, pages 80 |
SCHWARTZPERRY: "Surface Active Agents", vol. 1, 1949, INTERSCIENCE |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2983533T3 (es) | Etoxilatos de oligopropilenimina modificados anfotéricamente para mejorar la eliminación de manchas de los detergentes para ropa | |
AU2022378881A1 (en) | Compositions | |
ES2841413T3 (es) | Proceso de limpieza de vajilla | |
AU2017286154B2 (en) | Automatic dishwashing compositions with spot prevention surfactant | |
US10696925B2 (en) | Automatic dishwashing compositions with dispersant blend | |
EP3619288B1 (fr) | Composition de détergent | |
EP3976749B1 (fr) | Détergent contenant un ester de glycérol éthoxylé pour le lavage de la vaisselle en machine | |
WO2024223596A1 (fr) | Compositions | |
EP4396319A1 (fr) | Détergent pour lave-vaisselle | |
EP4347766B1 (fr) | Détergent de lave-vaisselle | |
EP4347767B1 (fr) | Détergent de lave-vaisselle | |
US20240400939A1 (en) | Detergent compositions for machine dishwashing comprising ethoxylated glycerol esters and modified fatty alcohol alkoxylates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24720240 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) |