[go: up one dir, main page]

WO2024222148A1 - 一种降解pp、pe的降解助剂 - Google Patents

一种降解pp、pe的降解助剂 Download PDF

Info

Publication number
WO2024222148A1
WO2024222148A1 PCT/CN2024/076678 CN2024076678W WO2024222148A1 WO 2024222148 A1 WO2024222148 A1 WO 2024222148A1 CN 2024076678 W CN2024076678 W CN 2024076678W WO 2024222148 A1 WO2024222148 A1 WO 2024222148A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
aid
degradation
photosensitizer
polymer
Prior art date
Application number
PCT/CN2024/076678
Other languages
English (en)
French (fr)
Inventor
张海波
Original Assignee
中联融鑫(北京)科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联融鑫(北京)科技开发有限公司 filed Critical 中联融鑫(北京)科技开发有限公司
Publication of WO2024222148A1 publication Critical patent/WO2024222148A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present application relates to the field of polymer materials, and in particular to a degradation aid for degrading PP and PE.
  • Polypropylene is a semi-crystalline thermoplastic. It is a colorless, odorless, non-toxic, translucent, and lightweight general-purpose synthetic plastic made by addition polymerization of propylene.
  • Polyethylene (PE) is a crystalline thermoplastic resin made by polymerization of ethylene. Both PP and PE are important general-purpose resins.
  • PP has the advantages of low specific gravity, outstanding stress cracking resistance and wear resistance, good heat resistance and chemical stability, but poor brittleness and low-temperature impact resistance.
  • PE has excellent electrical insulation, chemical resistance, low-temperature resistance, and good processing fluidity, but its disadvantages are also quite prominent, such as poor heat resistance, poor atmospheric aging resistance, and easy stress cracking.
  • polymer alloys such as PP/PE blends also provide the possibility of more types of commercial use and are favored by more and more researchers.
  • PP polymer alloy
  • PE polymer alloy
  • PP/PE blends there is the problem of environmental pollution caused by waste. Therefore, how to better improve the degradation performance of such plastics and reduce environmental pollution has become a current research hotspot.
  • the present application provides a degradation aid for degrading PP and PE to solve the environmental pollution problem caused by discarded resin materials.
  • the present application provides a degradation aid for degrading PP and PE.
  • the degradation aid mainly comprises the following raw materials in parts by weight: 3-9 parts of a photosensitizer, 2-5 parts of mesoporous silica, 50-76 parts of a biodegradable polymer and 1-5 parts of an organic decomposition aid.
  • the photosensitizer is easy to diffuse and precipitate from the surface of the polymer, and migrate to the material in contact with the polymer, which will reduce the decomposition effect of the polymer after it is discarded. Therefore, the inventors of this application intend to improve the precipitation of photosensitizers on the premise of simplifying the processing technology as much as possible, thereby improving the degradation performance of the polymer.
  • Mesoporous silica is a porous microsphere material with a pore size between 2 and 50 nm, which has good strength, thermal stability and high specific surface area.
  • the inventors used the porous microspheres of mesoporous silica as a photosensitizer carrier to first introduce the photosensitizer into the biodegradable polymer, and then into polymers such as PP, PE or PP/PE alloys, thereby improving the degree of precipitation of the photosensitizer from the polymer and thus improving the degradation performance of the polymer.
  • the photosensitizer and the organic decomposition aid are both encapsulated in the biodegradable polymer.
  • the organic decomposition aid will use its ability to recruit microorganisms to decompose, so that the biodegradable polymer is decomposed more quickly, the exposure of the photosensitizer is increased, and the decomposition of the polymer is greatly accelerated.
  • the photosensitizer is selected from one or more of ferric eleostearate, dodecylferrocene, benzophenone, stearic acid, cerium stearate, iron stearate and nickel stearate.
  • the biodegradable polymer is selected from one or more of polylactic acid, polyhydroxyalkanoate, polybutylene succinate, polycaprolactone, PBAT (copolymer of butylene adipate and butylene terephthalate), polyvinyl alcohol and poly-L-lactic acid.
  • the organic decomposition aid is selected from one or more of lactose, galactose, vitamin E polyethylene glycol succinate and diisostearyl malate.
  • the invention further comprises the following raw materials in parts by weight: 0.5-1.6 parts of a dispersant and 0.8-2 parts of tricarboxylic acid, wherein the dispersant is selected from polypropylene wax and/or polyethylene wax.
  • the invention comprises the following raw materials in parts by weight: 4-6 parts of photosensitizer, 2.5-3.6 parts of mesoporous silica, 58-66 parts of biodegradable polymer, 2-3 parts of organic decomposition aid, 0.9-1.2 parts of dispersant and 1.3-1.8 parts of tricarboxylic acid.
  • the addition ratio of the prodegradant in PP or PE or PP/PE blend is 10wt%-30wt%.
  • the prodegradant is processed by the following steps:
  • the photosensitizer, the mesoporous silica, the dispersant and the tricarboxylic acid are mixed, and then the organic decomposition aid and the biodegradable polymer are added to obtain the degradation aid.
  • the mesoporous silica, the dispersant and the tricarboxylic acid are stirred and mixed at 130-170° C. for 50-70 minutes, and then the photosensitizer is added, the rotation speed is increased by 50-80 rpm, and the mixture is stirred and mixed for 60-90 minutes, and then extruded and granulated to obtain a first auxiliary material, and then the first auxiliary material is mixed with the organic decomposition auxiliary agent and the biodegradable polymer to obtain the degradation auxiliary agent.
  • the organic decomposition aid is heated until it is melted, and then the first auxiliary material is quickly added at a rotation speed of 100-150 rpm. After the addition, the temperature is lowered at a rate of 5-10°C/min until it reaches room temperature, and then the biodegradable polymer is added, and the material is discharged into a twin-screw extruder for extrusion and granulation to obtain the degradation aid.
  • the photosensitizer is easy to diffuse and precipitate from the surface of the polymer, and migrate to the material in contact with the polymer, which will reduce the decomposition effect of the polymer after it is discarded. Therefore, the inventors of this application intend to improve the precipitation of photosensitizers on the premise of simplifying the processing technology as much as possible, thereby improving the degradation performance of the polymer.
  • Mesoporous silica is a porous microsphere material with a pore size between 2 and 50 nm, which has good strength, thermal stability and high specific surface area.
  • the inventors used the porous microspheres of mesoporous silica as a photosensitizer carrier to first introduce the photosensitizer into the biodegradable polymer, and then into polymers such as PP, PE or PP/PE alloys, thereby improving the degree of precipitation of the photosensitizer from the polymer and thus improving the degradation performance of the polymer.
  • the photosensitizer and the organic decomposition aid are both encapsulated in the biodegradable polymer.
  • the organic decomposition aid will use its ability to recruit microorganisms to decompose, so that the biodegradable polymer is decomposed more quickly, the exposure of the photosensitizer is increased, and the decomposition of the polymer is greatly accelerated.
  • FIG. 1 is a photograph of test materials of Test Example 1 provided in an embodiment of the present application.
  • FIG. 2 is a graph showing the cumulative production of carbon dioxide according to an embodiment of the present application.
  • FIG. 3 is a graph showing the biodegradability of the embodiment of the present application.
  • FIG4 is a photograph of the test sample provided in the example of the present application after being mixed with compost, and a photograph after being stacked for 140 days.
  • FIG5 is a graph showing the time-cumulative carbon dioxide production (g/container) of blank, sample and reference materials provided in the examples of the present application.
  • FIG. 6 is a time-biodegradation percentage (%) curve of the samples and reference materials provided in the examples of the present application.
  • the present application provides a degradation aid for degrading PP and PE, which mainly includes the following raw materials in parts by weight:
  • the organic decomposition aid used in the present invention has the effect of attracting microorganisms in the natural environment to approach, so as to promote the accelerated decomposition of the biodegradable polymer by the microorganisms.
  • the biodegradable polymer used in the present invention is a polymer that can be made from natural resources that can be obtained repeatedly, such as microorganisms, animals, and plants.
  • the biodegradable polymer has the physical properties of traditional plastics and can replace traditional plastics based on petroleum. Compared with traditional plastics, it is more environmentally friendly and its market demand is also growing significantly.
  • the photosensitizers are easy to diffuse and precipitate from the surface of the polymer, and migrate to the substances in contact with the polymer, which will reduce the decomposition effect of the polymer after it is discarded. Therefore, the inventors of this application intend to improve the precipitation of photosensitizers while simplifying the processing technology as much as possible, thereby improving the degradation performance of the polymer.
  • Mesoporous silica is a porous microsphere material with a pore size between 2 and 50 nm, which has good strength, thermal stability and high specific surface area.
  • the inventor intends to use the porous microsphere characteristics of mesoporous silica as a photosensitizer carrier, first bring the photosensitizer into the biodegradable polymer, and then enter the polymer such as PP, PE or PP/PE alloy, so as to improve the degree of precipitation of the photosensitizer from the polymer, and then improve the degradation performance of the polymer.
  • the photosensitizer and the organic decomposition aid are both encapsulated in the biodegradable polymer.
  • the organic decomposition aid When the polymer added with such a degradation aid is discarded, the organic decomposition aid will use its ability to recruit microorganisms to decompose the biodegradable polymer more quickly, and the exposure of the photosensitizer will be increased, greatly accelerating the decomposition of the polymer.
  • the combined use of photosensitizer, biodegradable polymer, and organic decomposition aid makes it possible for PP, PE or PP/PE blends to have dual degradation capabilities-biodegradability and photodegradability, and the degradation rate is fast.
  • Photosensitizer is selected from one or more of eleostearic acid iron, dodecyl ferrocene, benzophenone, stearic acid, cerium stearate, ferric stearate and nickel stearate.It is found by the inventor's experiment that when photosensitizer is selected from one or more of eleostearic acid iron, cerium stearate, ferric stearate and nickel stearate, polymer degradation performance is slightly better, it is speculated that the combination of polymer segment and metal ion makes the entanglement distribution of photosensitizer in mesoporous silica more intricate and stable, while polymer segment makes photosensitizer and mesoporous silica compatible in polymers such as biodegradable polymers, PP, PE or PP/PE alloys, and the migration of photosensitizer and mesoporous silica is further restricted.
  • the raw materials for the preparation of eleostearic acid iron include
  • Eleurotic acid contains three conjugated double bonds, so it has a wide absorption range and stronger absorption effect on ultraviolet light.
  • the iron ion a photosensitive group
  • the absorption range of eleurotic acid iron for ultraviolet light can basically cover the wavelength range of ultraviolet light and reach the wavelength range of visible light, which further improves the ability of eleurotic acid iron to obtain energy from light.
  • Iron ions absorb ultraviolet light to form an excited state. The excited iron ions react with polypropylene and polyethylene to induce them to produce a large number of free radicals, thereby promoting the degradation rate of the resin.
  • the biodegradable polymer can be selected from one or more of polylactic acid (PLA), polyhydroxyalkanoate (PHA), polybutylene succinate (PBS), polycaprolactone (PCL), PBAT, polyvinyl alcohol (PVA) and poly-L-lactic acid.
  • PLA polylactic acid
  • PHA polyhydroxyalkanoate
  • PBS polybutylene succinate
  • PCL polycaprolactone
  • PBAT polyvinyl alcohol
  • PVA poly-L-lactic acid
  • the biodegradable polymer is used to make the photosensitizer more evenly distributed in the final polymer (PP, PE or PP/PE alloy), and on the other hand, the biodegradable polymer is used to induce the final polymer to degrade more quickly and thoroughly.
  • PCL is a semi-crystalline thermoplastic resin with a crystallinity of about 45%.
  • the mechanical properties of PCL are similar to those of medium-density polyolefins, and its softness and tensile strength are similar to those of nylon.
  • the glass transition temperature of PCL is about -60 ⁇ 65°C, the melting point is 59 ⁇ 64°C, and the decomposition temperature is about 250°C. Due to the low melting point of PCL, it becomes soft at about 40°C, which limits its application range.
  • lactone groups in the PCL molecule gives it good biodegradability and physiological compatibility, can support the growth of fungi, can be used as a carbon source for microorganisms, and will slowly degrade in the soil.
  • the average degradation time is 12-18 months. It is an excellent biodegradable polymer.
  • PBAT is a thermoplastic biodegradable plastic, a copolymer of butylene adipate and butylene terephthalate, with the properties of both PBA and PBT, with good ductility and elongation at break, as well as good heat resistance and impact resistance. In addition, it has excellent biodegradability, making it one of the most popular and best-used biodegradable materials in biodegradable plastic research.
  • Polybutylene succinate is a polymer compound, a white semi-crystalline polymer. Depending on the molecular structure and molecular weight, the crystallinity ranges from 30% to 60%, and the crystallization temperature is 75°C. The mechanical properties of high molecular weight PBS are better than PE, and the melting point is about 115°C, which meets the use requirements of general plastics. It is stable in a dry environment, so it can maintain stable performance during a long storage and trial period.
  • Poly-L-lactic acid is a polymer material synthesized by chemical methods using L-lactic acid fermented from bioresources such as starch and molasses as raw materials.
  • PLLC is a thermoplastic material with similar plasticity to polystyrene and polyester. It has high crystallinity and rigidity and excellent tensile strength.
  • Polyvinyl alcohol is the only vinyl polymer that can be used by bacteria as a carbon source and energy source. Under the action of bacteria and enzymes, it can be degraded by 75% in 46 days. It is a biodegradable polymer material that can be mass-produced by non-petroleum routes at a low price. It has outstanding oil resistance, solvent resistance and gas barrier properties, and has unique advantages in food and drug packaging. Starch-based polyvinyl alcohol plastics are completely biodegradable (referring to materials that can be completely decomposed into low-molecular compounds by microorganisms (such as bacteria, fungi and algae) under appropriate and time-limited natural environmental conditions).
  • Polylactic acid is polymerized from lactide monomers extracted from plant sugars and can be completely degraded into water and carbon dioxide under industrial composting.
  • Polyhydroxyalkanoates are aliphatic copolyesters of different structures synthesized by microorganisms through fermentation of various carbon sources. They can not only be used for packaging materials, agricultural films, etc., but can also be widely used in pharmaceuticals, cosmetics, animal feed and other fields.
  • the organic decomposition aid is selected from one or more of lactose, galactose, vitamin E polyethylene glycol succinate and diisostearyl malate.
  • the inventors also proposed that 0.5-1.6 parts by weight of a dispersant and 0.8-2 parts by weight of a tricarboxylic acid can be added to the degradant raw material.
  • the dispersant is selected from polypropylene wax and/or polyethylene wax.
  • polypropylene wax and/or polyethylene wax as a dispersant can not only improve the uniformity of the dispersion of the photosensitizer in the mesoporous silica, but also improve the uniformity of the dispersion of the degradation agent in the final polymer after the degradation agent is mixed with PP, PE or PP/PE alloy.
  • the dispersant greatly improves the uniform dispersion of the degradation agent by virtue of the mutual attraction and entanglement of similar chain segments with polypropylene or polyethylene, thereby making PP, PE or PP/PE alloy more uniformly and quickly degradable.
  • the biodegradable polymer wrapped with the photosensitizer can also be more stably and quickly mixed with PP, PE or PP/PE alloy.
  • the tricarboxylic acid can be one or more of citric acid, aconitic acid, and tricarboxylic acid.
  • the degradation aid for degrading PP and PE provided by the present invention can select raw materials according to the following weight parts: 4-6 parts of photosensitizer, 2.5-3.6 parts of mesoporous silica, 58-66 parts of biodegradable polymer, 2-3 parts of organic decomposition aid, 0.9-1.2 parts of dispersant and 1.3-1.8 parts of tricarboxylic acid.
  • the degradation aid for degrading PP and PE provided by the present invention is added to PP or PE or PP/PE blend for use, when the addition ratio of the degradation aid is 10wt%-30wt%, the degradation performance and other mechanical properties of PP or PE or PP/PE blend are comprehensively excellent.
  • the inventors propose to prepare the degradation promotor by the following processing steps:
  • the mesoporous silica, the dispersant and the tricarboxylic acid are stirred and mixed at 130-170° C. for 50-70 minutes to make the mesoporous silica dispersed sufficiently evenly, reduce agglomeration, and the tricarboxylic acid dispersed sufficiently evenly. Then the photosensitizer is added, the rotation speed is increased by 50-80 rpm, and the stirring and mixing is performed for 60-90 minutes.
  • the mesoporous silica, the dispersant and the tricarboxylic acid can be further dispersed, and the photosensitizer is continuously inserted into the pores of the mesoporous silica, so that the photosensitizer gradually sinks deeply in the pores of the mesoporous silica.
  • the presence of the tricarboxylic acid further strengthens the combination of the photosensitizer and the mesoporous silica.
  • the combination of the photosensitizer and the mesoporous silica is made more disordered, making it more difficult for the photosensitizer to migrate, thereby ensuring the degradation ability of the polymer.
  • the stirring and mixing is completed for 60-90 minutes, and then extruded and granulated to obtain the first auxiliary material.
  • the organic decomposition aid is heated until it is melted, and then the first auxiliary material is quickly added at a rotation speed of 100-150rpm. After the addition is completed, the mixture is uniformly stirred at a rotation speed of 100-150rpm, and the temperature is reduced at a rate of 5-10°C/min, so that the organic decomposition aid is gradually fixed on the surface of the first auxiliary material until it drops to room temperature.
  • biodegradable polymer is added, and the material is discharged into a twin-screw extruder for extrusion granulation, so that an ordered three-layer structure of biodegradable polymer-organic decomposition aid-first auxiliary material is formed as much as possible, so that after being added to PP, PE or PP/PE alloy, the use stability of PP, PE or PP/PE alloy is better, and the degradation performance can also be guaranteed after being discarded, and finally the degradation aid is obtained.
  • the present application also provides a PP, PE or PP/PE alloy, to which the above-mentioned degradation aid is added.
  • This embodiment provides a PP composite material, which contains 90wt% PP and 10wt% prodegradant, and the PP composite material is obtained by blending PP and the prodegradant.
  • PP is purchased from Dongguan Fuzhong Plastic Raw Materials Co., Ltd.
  • the raw materials and preparation methods used for the degradation aid are as follows:
  • mesoporous silica 5 g of mesoporous silica, a dispersant (1.6 g of polypropylene wax) and tricarboxylic acid (2 g of aconitic acid) were stirred and mixed at 170°C for 50 minutes, and then a photosensitizer (9 g of dodecylferrocene) was added, the rotation speed was increased to 80 rpm, and the mixture was stirred and mixed for 60 minutes, and then extruded and granulated to obtain the first auxiliary material.
  • a photosensitizer 9 g of dodecylferrocene
  • the organic decomposition aid (5 g of lactose) was heated until it was melted, and then the first auxiliary material was quickly added at a speed of 150 rpm. After the addition, it was stirred at a speed of 150 rpm, and the temperature was lowered at a rate of 10°C/min until it reached room temperature. Then, the biodegradable polymer (76 g of polylactic acid) was added, and the material was discharged into a twin-screw extruder for extrusion and granulation to obtain the degradable aid.
  • This embodiment provides a PP composite material, which contains 70wt% PP and 30wt% prodegradant.
  • the PP and prodegradant are blended to obtain the PP composite material.
  • PP is purchased from Dongguan Fuzhong Plastic Raw Materials Co., Ltd. ....
  • the raw materials and preparation methods used for the degradation aid are as follows:
  • the organic decomposition aid (1 g of galactose) was heated until it was melted, and then the first auxiliary material was quickly added at a speed of 100 rpm. After the addition, it was stirred at a speed of 100 rpm, and the temperature was lowered at a rate of 5°C/min until it reached room temperature. Then, the biodegradable polymer (50 g of polyhydroxyalkanoate) was added, and the material was discharged into a twin-screw extruder for extrusion and granulation to obtain the degradable aid.
  • This embodiment provides a PP composite material, which contains 80wt% PP and 20wt% prodegradant, and the PP and the prodegradant are blended to obtain the PP composite material.
  • PP is purchased from Dongguan Fuzhong Plastic Raw Materials Co., Ltd.
  • the raw materials and preparation methods used for the degradation aid are as follows:
  • mesoporous silica 4 g of mesoporous silica, a dispersant (1.2 g of polypropylene wax) and tricarboxylic acid (1.2 g of tricarboxylic acid) were stirred and mixed at 150° C. for 60 minutes, and then a photosensitizer (6 g of ferric eleostearate) was added, the rotation speed was increased to 70 rpm, and the mixture was stirred and mixed for 80 minutes, and then extruded and granulated to obtain the first auxiliary material.
  • a photosensitizer 6 g of ferric eleostearate
  • the organic decomposition aid (3 g of vitamin E polyethylene glycol succinate) was heated until melted, and then the first aid was quickly added at a speed of 130 rpm. After the addition, it was stirred at a uniform speed of 130 rpm, and the temperature was lowered at a rate of 8°C/min until it reached room temperature. Then, the biodegradable polymer (61 g of polybutylene succinate) was added, and the material was discharged into a twin-screw extruder for extrusion and granulation to obtain the degradation aid.
  • This embodiment provides a PE composite material, which contains 90wt% PE and 10wt% prodegradant, and the PE composite material is obtained by blending PE and the prodegradant.
  • PE is purchased from Dongguan Yongmao Plastic Raw Materials Co., Ltd.
  • the raw materials and preparation methods used for the degradation aid are as follows:
  • mesoporous silica 3 g of mesoporous silica, a dispersant (0.5 g of polyethylene wax) and tricarboxylic acid (0.8 g of citric acid) were stirred and mixed at 130°C for 70 minutes, and then a photosensitizer (4 g of benzophenone) was added. The rotation speed was increased to 60 rpm, and the mixture was stirred and mixed for 65 minutes, and then extruded and granulated to obtain the first auxiliary material.
  • a dispersant 0.5 g of polyethylene wax
  • tricarboxylic acid 0.8 g of citric acid
  • the organic decomposition aid (2 g of diisostearyl malate) was heated until melted, and then the first aid was quickly added at a speed of 110 rpm. After the addition, it was stirred at a speed of 110 rpm and cooled at a rate of 6°C/min until it reached room temperature. Then, the biodegradable polymer (55 g of polycaprolactone) was added and the material was discharged into a twin-screw extruder for extrusion and granulation to obtain the degradation aid.
  • This embodiment provides a PE composite material, which contains 70wt% PE and 30wt% prodegradant, and the PE composite material is obtained by blending PE and the prodegradant.
  • PE is purchased from Dongguan Yongmao Plastic Raw Materials Co., Ltd.
  • the raw materials and preparation methods used for the degradation aid are as follows:
  • mesoporous silica 4 g of mesoporous silica, a dispersant (0.9 g of polyethylene wax) and tricarboxylic acids (0.8 g of citric acid and 0.5 g of aconitic acid) were stirred and mixed at 140°C for 65 minutes, and then a photosensitizer (4 g of nickel stearate) was added. The rotation speed was increased to 56 rpm, and the mixture was stirred and mixed for 75 minutes, and then extruded and granulated to obtain the first auxiliary material.
  • a dispersant 0.9 g of polyethylene wax
  • tricarboxylic acids 0.8 g of citric acid and 0.5 g of aconitic acid
  • the organic decomposition aid (2 g of diisostearyl malate and 1 g of galactose) was heated until melted, and then the first auxiliary material was quickly added at a speed of 110 rpm. After the addition, the mixture was stirred at a speed of 110 rpm and cooled at a rate of 6°C/min until it reached room temperature. Then, the biodegradable polymer (45 g of polycaprolactone and 13 g of PBAT) was added, and the mixture was discharged into a twin-screw extruder for extrusion and granulation to obtain the degradable aid.
  • This embodiment provides a PE composite material, which contains 85wt% PE and 15wt% prodegradant, and the PE composite material is obtained by blending PE and the prodegradant.
  • PE is purchased from Dongguan Yongmao Plastic Raw Materials Co., Ltd.
  • the raw materials and preparation methods used for the degradation aid are as follows:
  • mesoporous silica 3.6 g of mesoporous silica, a dispersant (1.2 g of polyethylene wax) and tricarboxylic acids (1 g of tricarboxylic acid and 0.8 g of aconitic acid) were stirred and mixed at 140°C for 65 minutes, and then a photosensitizer (6 g of iron stearate) was added. The rotation speed was increased to 75 rpm, and the mixture was stirred and mixed for 70 minutes, and then extruded and granulated to obtain the first auxiliary material.
  • a dispersant 1.2 g of polyethylene wax
  • tricarboxylic acids 1 g of tricarboxylic acid and 0.8 g of aconitic acid
  • the organic decomposition aid (2 g of diisostearyl malate) was heated until melted, and then the first aid was quickly added at a speed of 130 rpm. After the addition, it was stirred at a speed of 130 rpm and cooled at a rate of 7°C/min until it reached room temperature. Then, the biodegradable polymer (33 g of polyvinyl alcohol and 33 g of poly (L-lactic acid)) was added, and the material was discharged into a twin-screw extruder for extrusion and granulation to obtain the degradable aid.
  • This embodiment provides a PP/PE blend material, which contains 45% PP, 45% PE, and 10wt% prodegradant.
  • the blend material is obtained by melt blending the three materials according to a conventional blending process.
  • the raw materials and preparation methods used for the degradation aid are as follows:
  • mesoporous silica, dispersant (0.5 g of polyethylene wax and 0.5 g of polypropylene wax) and tricarboxylic acid (1 g of tricarboxylic acid and 0.8 g of aconitic acid) were stirred and mixed at 140°C for 65 minutes, and then a photosensitizer (4 g of cerium stearate) was added. The rotation speed was increased to 65 rpm, and the mixture was stirred and mixed for 70 minutes, and then extruded and granulated to obtain the first auxiliary material.
  • the organic decomposition aid (2 g of diisostearyl malate and 2 g of vitamin E polyethylene glycol succinate) was heated until melted, and then the first auxiliary material was quickly added at a speed of 130 rpm. After the addition, the mixture was stirred uniformly at a speed of 130 rpm, and the temperature was lowered at a rate of 7°C/min until it reached room temperature. Then, a biodegradable polymer (33 g of polyvinyl alcohol, 33 g of poly-L-lactic acid and 4 g of polybutylene succinate) was added, and the material was discharged into a twin-screw extruder for extrusion and granulation to obtain the degradation aid.
  • a biodegradable polymer 33 g of polyvinyl alcohol, 33 g of poly-L-lactic acid and 4 g of polybutylene succinate
  • This embodiment provides a PP/PE blend material, which contains 35% PP, 35% PE, and 30wt% prodegradant.
  • the blend material is obtained by melt blending the three materials according to a conventional blending process.
  • the raw materials and preparation methods used for the degradation aid are as follows:
  • mesoporous silica, dispersant (0.25 g of polyethylene wax and 0.25 g of polypropylene wax) and tricarboxylic acid (1.3 g of tricarboxylic acid) were stirred and mixed at 140°C for 65 minutes, and then photosensitizer (4 g of cerium stearate and 3 parts of ferrous eleostearate) were added, the rotation speed was increased to 65 rpm, and the mixture was stirred and mixed for 70 minutes, and then extruded and granulated to obtain the first auxiliary material.
  • the organic decomposition aid (1 g of lactose and 1.5 g of vitamin E polyethylene glycol succinate) was heated until melted, and then the first auxiliary material was quickly added at a speed of 130 rpm. After the addition, the mixture was stirred at a speed of 130 rpm and cooled at a rate of 7°C/min until it reached room temperature. Then, the biodegradable polymer (30 g of polyvinyl alcohol and 32 g of polylactic acid) was added, and the material was discharged into a twin-screw extruder for extrusion and granulation to obtain the degradation aid.
  • This embodiment provides a PP/PE blend material, which contains 30% PP, 45% PE, and 25wt% prodegradant.
  • the blend material is obtained by melt blending the three materials according to a conventional blending process.
  • the raw materials and preparation methods used for the degradation aid are as follows:
  • mesoporous silica 3.1 g of mesoporous silica, dispersant (0.8 g of polyethylene wax and 0.8 g of polypropylene wax) and tricarboxylic acid (0.9 g of citric acid) were stirred and mixed at 140°C for 65 minutes, and then a photosensitizer (4 g of cerium stearate and 3 parts of ferrous eleostearate) was added. The rotation speed was increased to 65 rpm, and the mixture was stirred and mixed for 70 minutes, and then extruded and granulated to obtain the first auxiliary material.
  • dispersant 0.8 g of polyethylene wax and 0.8 g of polypropylene wax
  • tricarboxylic acid 0.9 g of citric acid
  • the organic decomposition aid (1 g of lactose and 1.5 g of vitamin E polyethylene glycol succinate) was heated until melted, and then the first auxiliary material was quickly added at a speed of 130 rpm. After the addition, the mixture was stirred at a speed of 130 rpm and cooled at a rate of 7°C/min until it reached room temperature. Then, the biodegradable polymer (30 g of polycaprolactone and 30 g of polylactic acid) was added, and the material was discharged into a twin-screw extruder for extrusion and granulation to obtain the degradation aid.
  • Example 3 The only difference from Example 3 is the lack of mesoporous silica.
  • Example 6 The difference from Example 6 is that the photosensitizer nickel stearate is replaced with an equal mass of benzophenone.
  • Test basis and method Determination of the final aerobic biodegradability of materials under controlled composting conditions, using the method of measuring the released carbon dioxide, general method GB/T19277.1-2011.
  • test materials The characteristics of the test materials, reference materials and inoculum are shown in Table 1. Photos of the test materials are shown in Figure 1.
  • the dry weight ratio of inoculum to test material/reference material in each 2L test bottle was approximately 6:1; the test system was aerated with decarbonated air so that the oxygen concentration discharged from each test bottle was not less than 6%, and the test was carried out at 58°C ⁇ 2°C and in the dark; the amount of carbon dioxide produced was determined by titration during the test.
  • test results The biodegradability of the test material was 81.3% at the end of the 95th day of the test (the three parallel values were 78.3%, 81.9%, 83.8%, and the average value was 81.3%), and the relative biodegradability was 94.4%.
  • This method determines the ultimate aerobic biodegradability and disintegration of the test material under conditions simulating intense aerobic composting.
  • the inoculum used comes from a stable, mature compost, if possible, from the compost of organic matter from municipal solid waste.
  • the test material is mixed with the inoculum and introduced into a static composting container. In this container, the mixture is subjected to intense aerobic composting at a specified temperature, oxygen concentration and humidity. The test period does not exceed 6 months.
  • carbon dioxide, water, mineralized inorganic salts and new biomass are the final products of biodegradation.
  • the carbon dioxide produced is continuously monitored and measured regularly during the test, and the amount of carbon dioxide produced is calculated.
  • the ratio of the actual amount of carbon dioxide produced by the test material in the test to the theoretical amount of carbon dioxide that the material can produce is the biodegradation percentage.
  • the theoretical release of carbon dioxide can be calculated from the actual measured total organic carbon (TOC) content.
  • TOC total organic carbon
  • Microcrystalline cellulose (column chromatography FCC)
  • Preliminary treatment Screen through a 0.5 cm sieve to remove impurities and inert substances.
  • the test was carried out at a constant temperature of 58°C ⁇ 2°C, weak light, and without any steam that may affect the growth of microorganisms.
  • Sodium hydroxide absorption method When measuring CO2 , remove the sodium hydroxide absorption bottle that is directly connected to it for measurement, and move the remaining two absorption bottles forward in sequence to connect them to the anti-backflow device, and connect a newly prepared sodium hydroxide absorption bottle at the end. The removed absorption bottle is titrated with HCI standard solution.
  • the mixture in the test container is mixed by inversion and shaking every week.
  • the pH of the mixture is measured and the following properties are observed: the odor of the exhaust gas from the test container, the moisture, color, and mold formation of the compost, and the structural changes and degree of disintegration of the test material.
  • the theoretical carbon dioxide release (ThCO 2 ) produced by the test material in each compost container is calculated according to formula (1) and expressed in grams (g).
  • ThCO 2 M ToT ⁇ C ToT ⁇ 44/12 (1)
  • C ToT ratio of total organic carbon to total dry solids in the test material, expressed in grams per gram (g/g);
  • 44 and 12 represent the molecular weight of carbon dioxide and the atomic weight of carbon respectively.
  • the biodegradation percentage Dt of the test material is calculated based on the cumulative amount of carbon dioxide released using formula (2)
  • (CO 2 ) B the average value of the cumulative carbon dioxide released by the blank containers, in grams per container (g/container);
  • ThCO 2 The theoretical release of carbon dioxide produced by the test material, in grams per container (g/container).
  • the biodegradability of the reference material was calculated using the same method.
  • Figure 4 A is a photo of the test sample after mixing with compost
  • Figure 4 B is a photo after 140 days.
  • Figure 5 is a time-cumulative carbon dioxide production (g/container) curve of blank, sample and reference material.
  • Figure 6 is a time-biodegradation percentage (%) curve of sample and reference material.
  • the biodegradation percentages of the three reaction bottles of the reference material at the end of the test were 82.63%, 82.75% and 82.55%, respectively, with an average of 82.6%.
  • the relative deviations of the biodegradation percentages of the three reaction bottles were 0.04%, 0.18% and 0.06%, respectively, all less than 20%.
  • the average decomposition rate is: 75.4%, ⁇ 60%, which is qualified; the relative decomposition rate is: 91.2%, ⁇ 90%, which is qualified; the organic component (volatile solid content) is: 56.2%, ⁇ 51%, which is qualified.
  • Example 1 The degradation behavior of the samples provided in Example 1, Example 3, Example 4, Example 6, Example 9, Comparative Example 1, and Comparative Example 2 was studied by simulating the light and rain environment exposed in the natural environment using an ultraviolet aging box (Tianjin Yonglida Material Testing Machine Co., Ltd.).
  • the seven samples provided in the prepared embodiments and comparative examples were made into films according to the national standard GB/T 1040.2, and cut into standard strips, which were placed in an ultraviolet aging box for degradation. Spray for 10 minutes every 12 hours, take out the samples at 5 days, 10 days, 15 days, 20 days, 25 days, and 30 days, and dry them at 65°C for 4 hours. Five parallel samples were made for each sample.
  • the standard tensile specimens prepared according to the standard GB/T 1040.2 were tested on the QJ210A-1000N universal testing machine produced by Shanghai Qingji Instrument Technology Co., Ltd. for the tensile properties of the sample films before and after degradation, with a tensile rate of 2 mm/min. Five specimens were tested in each group, and the average value was obtained.
  • the maximum tensile force reduction rate of the samples is shown in Table 5, which shows that the mechanical properties of the samples provided in Example 3 are particularly significantly reduced, and the degradation performance is more prominent.
  • the molecular weight distribution and molecular weight of the sample were determined using a gel chromatograph (1200 SERIES) produced by Agilent Technologies, USA.
  • Sample preparation The sample was dissolved in chloroform, filtered through an ultra-microporous filter membrane with a syringe, and 2 ml was injected for testing. Chloroform was used as solvent and polystyrene was used as the standard sample.
  • the degradation aid for degrading PP and PE provided in the present application can effectively ensure the degradation ability of resins such as PP, PE, and PP/PE blends, and has a simple production process, low cost, and is suitable for industrial production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

本发明涉及一种降解PP、PE的降解助剂,涉及高分子材料领域,该降解助剂主要包括按重量份数计的以下原料:光敏剂3-9份、介孔二氧化硅2-5份、生物降解聚合物50-76份和有机分解助剂1-5份。发明人借助介孔二氧化硅的多孔微球特性作为光敏剂载体,将光敏剂首先带入至生物降解聚合物中,再进入PP、PE或者PP/PE合金等聚合物中,从而改善光敏剂从聚合物中析出的程度,进而提升聚合物的降解性能。同时,光敏剂与有机分解助剂均被包裹于生物降解聚合物内,当添加有此类降解助剂的聚合物被废弃后,有机分解助剂将利用其招募微生物分解的能力,使生物降解聚合物更加快速得到分解,光敏剂暴露程度提高,大大加速聚合物的分解。

Description

一种降解PP、PE的降解助剂 技术领域
本申请涉及高分子材料领域,尤其涉及一种降解PP、PE的降解助剂。
背景技术
聚丙烯(Polypropylene,简称PP)是一种半结晶的热塑性塑料,是丙烯通过加聚反应而成的一种无色、无臭、无毒、半透明、性能优良的轻质通用合成塑料。聚乙烯(Polyethylene ,简称PE)是乙烯经聚合制得的一种结晶热塑性树脂。PP和PE都是重要的通用大品种树脂,PP具有比重小、耐应力开裂性和耐磨性能突出、耐热性和化学稳定性较好等优点,但脆性和低温抗冲击性能较差。PE具有优良的电绝缘性、耐化学性、耐低温性和良好的加工流动性等特点,但耐热性差、耐大气老化性能差以及易应力开裂等缺点也相当突出。因此,PP/PE共混物一类的高分子合金也为更多类的商业化使用提供了可能,受到了越来越多的研究者青睐。然而,不管是PP或者是PE或者是PP/PE共混物,都存在废弃带来的环境污染问题,因此如何更好的改善此类塑料的降解性能,从而减小环境污染,成为当前的研究热点。
发明内容
本申请提供了一种降解PP、PE的降解助剂,以解决树脂材料废弃后带来的环境污染问题。
本申请提供了一种降解PP、PE的降解助剂,该降解助剂主要包括按重量份数计的以下原料:光敏剂3-9份、介孔二氧化硅2-5份、生物降解聚合物50-76份和有机分解助剂1-5份。
本申请实施例提供的上述技术方案与现有技术相比至少具有如下优点:
大多数聚合物并不吸收285NM以上波长的光能,但是,如果在聚合物中加入光敏感基团或添加具有光敏感作用的化学助剂,可加速光化学反映的过程,这些物质吸收光能后产生自由基,或者将激发态能量传递给聚合物使其产生自由基,然后促进高分子材料发生氧化反应,使聚合物快速发生降解。虽然将光敏剂直接添加进PP、PE或者PP/PE合金中较为简单快捷,加工成本也更低廉,但这类简单的添加行为后,光敏剂容易从聚合物表面扩散析出,并向聚合物接触的物质迁移,会降低聚合物废弃后的分解效果。因此,本申请发明人拟在尽可能简化加工工艺的前提下,改善光敏剂的析出情况,从而提升聚合物的降解性能。介孔二氧化硅是一种孔径介于2 ~ 50 nm的多孔微球材料,具有较好的强度、热稳定性以及高的比表面积。发明人借助介孔二氧化硅的多孔微球特性作为光敏剂载体,将光敏剂首先带入至生物降解聚合物中,再进入PP、PE或者PP/PE合金等聚合物中,从而改善光敏剂从聚合物中析出的程度,进而提升聚合物的降解性能。同时,光敏剂与有机分解助剂均被包裹于生物降解聚合物内,当添加有此类降解助剂的聚合物被废弃后,有机分解助剂将利用其招募微生物分解的能力,使生物降解聚合物更加快速得到分解,光敏剂暴露程度提高,大大加速聚合物的分解。
进一步地,所述光敏剂选自桐酸铁、十二烷基二茂铁、二苯甲酮、硬脂酸、硬脂酸铈、硬脂酸铁和硬脂酸镍中的一种或多种。
进一步地,所述生物降解聚合物选自聚乳酸、聚羟基脂肪酸酯、聚丁二酸丁二醇酯、聚己内酯、PBAT(己二酸丁二醇酯和对苯二甲酸丁二醇酯的共聚物)、聚乙烯醇和聚L-乳酸中的一种或多种。
进一步地,所述有机分解助剂选自由乳糖、半乳糖、维生素E聚乙二醇琥珀酸酯和二异硬脂醇苹果酸酯中的一种或多种。
进一步地,还包括按重量份数计的以下原料:分散剂0.5-1.6份和三羧酸0.8-2份,所述分散剂选自聚丙烯蜡和/或聚乙烯蜡。
进一步地,包括按重量份数计的以下原料:光敏剂4-6份、介孔二氧化硅2.5-3.6份、生物降解聚合物58-66份、有机分解助剂2-3份、分散剂0.9-1.2份和三羧酸1.3-1.8份。
进一步地,所述降解助剂在PP或PE或PP/PE共混物中的添加比例为10wt%-30wt%。
进一步地,所述降解助剂采用以下步骤加工而成:
将所述光敏剂、所述介孔二氧化硅、所述分散剂和所述三羧酸混合后,再加入所述有机分解助剂和所述生物降解聚合物,即得所述降解助剂。
进一步地,将所述介孔二氧化硅、所述分散剂和所述三羧酸在130-170℃下搅拌混合50-70分钟,再加入所述光敏剂,将转速提高50-80rpm,搅拌混合60-90分钟,再挤出造粒,得第一助料,再将所述第一助料和所述有机分解助剂、所述生物降解聚合物混合制料,得所述降解助剂。
进一步地,将所述有机分解助剂加热至熔融,再在100-150rpm的转速下快速加入所述第一助料,加毕后,以5-10℃/min的速度降温,直至降至室温,再加入所述生物降解聚合物,放料至双螺杆挤出机挤出造粒,即得所述降解助剂。
本申请实施例提供的上述技术方案与现有技术相比至少具有如下优点:
大多数聚合物并不吸收285NM以上波长的光能,但是,如果在聚合物中加入光敏感基团或添加具有光敏感作用的化学助剂,可加速光化学反映的过程,这些物质吸收光能后产生自由基,或者将激发态能量传递给聚合物使其产生自由基,然后促进高分子材料发生氧化反应,使聚合物快速发生降解。虽然将光敏剂直接添加进PP、PE或者PP/PE合金中较为简单快捷,加工成本也更低廉,但这类简单的添加行为后,光敏剂容易从聚合物表面扩散析出,并向聚合物接触的物质迁移,会降低聚合物废弃后的分解效果。因此,本申请发明人拟在尽可能简化加工工艺的前提下,改善光敏剂的析出情况,从而提升聚合物的降解性能。介孔二氧化硅是一种孔径介于2 ~ 50 nm的多孔微球材料,具有较好的强度、热稳定性以及高的比表面积。发明人借助介孔二氧化硅的多孔微球特性作为光敏剂载体,将光敏剂首先带入至生物降解聚合物中,再进入PP、PE或者PP/PE合金等聚合物中,从而改善光敏剂从聚合物中析出的程度,进而提升聚合物的降解性能。同时,光敏剂与有机分解助剂均被包裹于生物降解聚合物内,当添加有此类降解助剂的聚合物被废弃后,有机分解助剂将利用其招募微生物分解的能力,使生物降解聚合物更加快速得到分解,光敏剂暴露程度提高,大大加速聚合物的分解。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的测试例1的试验材料照片。
图2为本申请实施例提供的二氧化碳累计产生量曲线图。
图3为本申请实施例提供的生物分解率曲线图。
图4为本申请实施例提供的试验样品与堆肥混合后的照片,以及堆放140天后的照片。
图5为本申请实施例提供的空白、样品及参比材料时间-累计二氧化碳产生量(g/容器)曲线图。
图6为本申请实施例提供的样品及参比材料的时间-生物分解百分率(%)曲线图。
本发明的实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有特别说明,本申请中用到的各种原材料、试剂、仪器和设备等,均可通过市场购买得到或者可通过现有方法制备得到。
本申请提供了一种降解PP、PE的降解助剂,其主要包括按重量份数计的以下原料:
光敏剂3-9份、介孔二氧化硅2-5份、生物降解聚合物50-76份和有机分解助剂1-5份。
本发明中所采用的有机分解助剂具有吸引自然环境中的微生物趋近的效果,以促进生物降解聚合物加速被微生物分解。
本发明中使用的生物降解聚合物是可以借由可不断重复取得的天然资源,如微生物、动物、植物所制成的聚合物。该生物降解聚合物具有传统塑料的物理特性,可以代替以石油为基质的传统塑料,相较于传统塑料更为环境友善,其市场的需求量也在显著增长。
大多数聚合物并不吸收285NM以上波长的光能,但是,如果在聚合物中加入光敏感基团或添加具有光敏感作用的化学助剂,可加速光化学反映的过程,这些物质吸收光能后产生自由基,或者将激发态能量传递给聚合物使其产生自由基,然后促进高分子材料发生氧化反应,使聚合物快速发生降解。虽然将光敏剂直接添加进PP、PE或者PP/PE合金中较为简单快捷,加工成本也更低廉,但这类简单的添加行为后,光敏剂容易从聚合物表面扩散析出,并向聚合物接触的物质迁移,会降低聚合物废弃后的分解效果。因此,本申请发明人拟在尽可能简化加工工艺的前提下,改善光敏剂的析出情况,从而提升聚合物的降解性能。
介孔二氧化硅是一种孔径介于2 ~ 50 nm的多孔微球材料,具有较好的强度、热稳定性以及高的比表面积。发明人拟借助介孔二氧化硅的多孔微球特性作为光敏剂载体,将光敏剂首先带入至生物降解聚合物中,再进入PP、PE或者PP/PE合金等聚合物中,从而改善光敏剂从聚合物中析出的程度,进而提升聚合物的降解性能。同时,光敏剂与有机分解助剂均被包裹于生物降解聚合物内,当添加有此类降解助剂的聚合物被废弃后,有机分解助剂将利用其招募微生物分解的能力,使生物降解聚合物更加快速得到分解,光敏剂暴露程度提高,大大加速聚合物的分解。光敏剂、生物降解聚合物、有机分解助剂的联合使用,使得当该降解助剂添加入PP、PE或PP/PE共混物中使用后,PP、PE或PP/PE共混物将具备双降解能力--生物降解性和光降解性,降解速度快。
光敏剂选自桐酸铁、十二烷基二茂铁、二苯甲酮、硬脂酸、硬脂酸铈、硬脂酸铁和硬脂酸镍中的一种或多种。通过发明人试验发现,当光敏剂选自桐酸铁、硬脂酸铈、硬脂酸铁和硬脂酸镍中的一种或多种时,聚合物降解性能稍优,推测是高分子链段与金属离子的结合使得光敏剂在介孔二氧化硅中的缠绕分布更加错综复杂且稳定,同时高分子链段使得光敏剂与介孔二氧化硅在生物降解聚合物、PP、PE或者PP/PE合金等聚合物中相容程度更高,光敏剂、介孔二氧化硅的迁移受到进一步限制。桐酸铁的制备原料包括桐油、乙醇、氢氧化钠溶液、六水合氯化铁等。桐酸和桐酸铁在紫外光范围内的吸收峰要远高于其他常规试剂。桐酸含有三个共轭双键,因此对紫外光具有很宽的吸收范围和更强的吸收作用,桐酸合成桐酸铁之后,加入了铁离子这一光敏基团,可以进一步的增强桐酸吸收紫外光的范围和能力,桐酸铁对于紫外光的吸收范围基本可以覆盖紫外光的波长范围,并达到可见光的波长范围,也就进一步提高了桐酸铁从光照中获取能量的能力。铁离子吸收紫外光形成激发态,激发态的铁离子与聚丙烯、聚乙烯作用来促使其产生大量自由基,从而促进树脂的降解速率。激发态的铁离子与树脂作用产生自由基后会回归铁离子的常规态,继续与桐酸协同作用吸收紫外光,循环进行,通过级联反应不断地促使树脂形成新的自由基,使得树脂的光降解速率得到极大提升。
进一步地,生物降解聚合物可以选自聚乳酸(PLA)、聚羟基脂肪酸酯(PHA)、聚丁二酸丁二醇酯(PBS)、聚己内酯(PCL)、PBAT、聚乙烯醇(PVA)和聚L-乳酸中的一种或多种。一方面利用生物降解聚合物使得光敏剂在最终的聚合物(PP、PE或者PP/PE合金)中分布更加均匀,另一方面利用生物降解聚合物诱导最终的聚合物更加快速、更加彻底的进行降解行为。
PCL是一种半晶型的热塑性树脂,结晶度约为45%左右,PCL的力学性能与中密度聚烯烃相似,其柔软程度、拉伸强度与尼龙类似。PCL的玻璃化温度约为-60~65℃,熔点为59~64℃,分解温度约为250℃,由于PCL的熔点低,在约40℃左右就变软,因而限制了其应用范围。但PCL分子中内酯基的存在,使其具有较好的生物降解性能和生理相容性,能支持真菌的生长,可作为微生物的碳源,在泥土中会缓慢降解,平均降解时间为12-18个月,属于优良生物降解类聚合物。
PBAT属于热塑性生物降解塑料,是己二酸丁二醇酯和对苯二甲酸丁二醇酯的共聚物,兼具PBA和PBT的特性,既有较好的延展性和断裂伸长率,也有较好的耐热性和冲击性能;此外,还具有优良的生物降解性,是生物降解塑料研究中非常受欢迎和市场应用最好的降解材料之一。
聚丁二酸丁二醇酯(PBS)是一种高分子化合物,为白色半结晶型聚合物。。根据不同的分子结构和分子量,结晶度范围为30%~60%,结晶化温度为75℃。高分子量的PBS的力学性能优于PE,熔点115℃左右,满足通用塑料的使用要求,其在干燥环境中稳定,因而可在较长的贮存和试用期内保持性能稳定,由于其结构单元中含有易水解的酯基,在堆肥等接触特定微生物等条件下,易被自然界中的多种微生物或动、植物内的酶分解、代谢,最终形成CO2和H2O,从而避免污染环境。需要说明的是,PBS在泥土、海水及堆肥中都能完全生物降解,因此可在使用后迅速得到降解。
聚L-乳酸(PLLC)是以淀粉、糖蜜等生物资源为原料发酵制得L-乳酸,再用化学方法合成的高分子材料。PLLC是热塑性材料,其可塑性与聚苯乙烯和聚酯相似,其结晶性和刚性都比较高,抗张强度优良。
聚乙烯醇(简称PVA)是唯一可被细菌作为碳源和能源利用的乙烯基聚合物,在细菌和酶的作用下,46天可降解75%,属于一种生物可降解高分子材料,可由非石油路线大规模生产,价格低廉,其耐油、耐溶剂及气体阻隔性能出众,在食品、药品包装方面具有独特优势。而淀粉基聚乙烯醇塑料可完全生物降解(是指在适当和可表明期限的自然环境条件下,能够被微生物(如细菌、真菌和藻类等)完全分解变成低分子化合物的材料)。
聚乳酸(PLA)是由植物糖分提取的丙交酯单体聚合而成,在工业堆肥下可完全降解为水和二氧化碳。聚羟基脂肪酸酯(PHA)是由微生物通过各种碳源发酵而合成的不同结构的脂肪族共聚聚酯,不仅能够用于包装材料、农膜等,还能广泛的应用于药品、化妆品、动物饲料等领域。
进一步地,有机分解助剂选自由乳糖、半乳糖、维生素E聚乙二醇琥珀酸酯和二异硬脂醇苹果酸酯中的一种或多种。
为进一步提高光敏剂的分散均匀性,发明人还提出可以向降解助剂原料中加入按重量份数计的分散剂0.5-1.6份和三羧酸0.8-2份,进一步地,所述分散剂选自聚丙烯蜡和/或聚乙烯蜡。
选用聚丙烯蜡和/或聚乙烯蜡作为分散剂,不仅可以提高光敏剂在介孔二氧化硅内的分散均匀程度,还能在降解助剂与PP、PE或者PP/PE合金混合后,提高降解助剂在最终聚合物中的分散均匀程度。分散剂借助与聚丙烯或聚乙烯相似链段的相互吸引缠绕,大大提高降解助剂的均匀分散程度,从而使得PP、PE或者PP/PE合金更加均匀、快速的产生降解行为。与此同时,辅以三羧酸作为相容剂,使得包裹有光敏剂的生物降解聚合物也能更稳定、更快速的与PP、PE或者PP/PE合金进行均匀混合。三羧酸可以是柠檬酸、乌头酸、三甲酸中的一种或多种。
更进一步地,本发明所提供的降解PP、PE的降解助剂,可以按以下重量份选取原料:光敏剂4-6份、介孔二氧化硅2.5-3.6份、生物降解聚合物58-66份、有机分解助剂2-3份、分散剂0.9-1.2份和三羧酸1.3-1.8份。
经过发明人反复实验,当将本发明所提供的降解PP、PE的降解助剂添加至PP或PE或PP/PE共混物中进行使用时,该降解助剂的添加比例为10wt%-30wt%时,PP或PE或PP/PE共混物所具备的降解性能以及其他力学性能综合较优。
为了使本发明所提供的降解PP、PE的降解助剂性能更优,发明人提出采用以下加工步骤进行该降解助剂的制备:
将所述介孔二氧化硅、所述分散剂和所述三羧酸在130-170℃下搅拌混合50-70分钟,使介孔二氧化硅分散的足够均匀,减小团聚现象,三羧酸也分散的足够均匀,再加入所述光敏剂,将转速提高50-80rpm,搅拌混合60-90分钟,在转速提高后,能使介孔二氧化硅、分散剂和三羧酸在进一步分散的过程中,不断插入光敏剂,使得光敏剂在介孔二氧化硅的多孔中逐渐深陷,加之三羧酸的存在,进一步加强光敏剂与介孔二氧化硅的结合,又在不断的搅拌中,使光敏剂与介孔二氧化硅的结合更加无序,使光敏剂迁移更加困难,从而保证聚合物的降解能力。搅拌混合60-90分钟完成,再挤出造粒,得第一助料。
将所述有机分解助剂加热至熔融,再在100-150rpm的转速下快速加入所述第一助料,加毕后,以100-150rpm的转速匀速搅拌,同时以5-10℃/min的速度降温,使有机分解助剂逐步被固定在第一助料表面,直至降至室温,再加入所述生物降解聚合物,放料至双螺杆挤出机挤出造粒,使得尽可能形成生物降解聚合物--有机分解助剂--第一助料的有序三层结构,以便在加入到PP、PE或者PP/PE合金后,PP、PE或者PP/PE合金的使用稳定性更优,废弃后,降解性能也能得到保障,最终即得所述降解助剂。
本申请还提供一种PP、PE或者PP/PE合金,其添加有上述降解助剂。
下面结合具体的实施例,进一步阐述本申请。应理解,这些实施例仅用于说明本申请而不用于限制本申请的范围。下列实施例中未注明具体条件的实验方法,通常按照国家标准测定。若没有相应的国家标准,则按照通用的国际标准、常规条件、或按照制造厂商所建议的条件进行。
实施例1
本实施例提供一种PP复合材料,其中含有PP 90wt%,降解助剂10wt%,PP与降解助剂共混即得PP复合材料。PP购买自东莞市富中塑胶原料有限公司。
其中,降解助剂采用的原料及制备方法如下:
将介孔二氧化硅5g、分散剂(聚丙烯蜡1.6g)和三羧酸(乌头酸2g)在170℃下搅拌混合50分钟,再加入光敏剂(十二烷基二茂铁9g),将转速提高80rpm,搅拌混合60分钟,然后再挤出造粒,得第一助料。
将有机分解助剂(乳糖5g)加热至熔融,再在150rpm的转速下快速加入第一助料,加毕后,以150rpm的转速匀速搅拌,同时以10℃/min的速度降温,直至降至室温,再加入生物降解聚合物(聚乳酸76g),放料至双螺杆挤出机挤出造粒,即得降解助剂。
实施例2
本实施例提供一种PP复合材料,其中含有PP 70wt%,降解助剂30wt%,PP与降解助剂共混即得PP复合材料。PP购买自东莞市富中塑胶原料有限公司。....
其中,降解助剂采用的原料及制备方法如下:
将介孔二氧化硅2g、分散剂(聚丙烯蜡0.5g)和三羧酸(柠檬酸0.8g)在130℃下搅拌混合70分钟,再加入光敏剂(硬脂酸3g),将转速提高50rpm,搅拌混合90分钟,然后再挤出造粒,得第一助料。
将有机分解助剂(半乳糖1g)加热至熔融,再在100rpm的转速下快速加入第一助料,加毕后,以100rpm的转速匀速搅拌,同时以5℃/min的速度降温,直至降至室温,再加入生物降解聚合物(聚羟基脂肪酸酯50g),放料至双螺杆挤出机挤出造粒,即得降解助剂。
实施例3
本实施例提供一种PP复合材料,其中含有PP 80wt%,降解助剂20wt%,PP与降解助剂共混即得PP复合材料。PP购买自东莞市富中塑胶原料有限公司。
其中,降解助剂采用的原料及制备方法如下:
将介孔二氧化硅4g、分散剂(聚丙烯蜡1.2g)和三羧酸(三甲酸1.2g)在150℃下搅拌混合60分钟,再加入光敏剂(桐酸铁6g),将转速提高70rpm,搅拌混合80分钟,然后再挤出造粒,得第一助料。
将有机分解助剂(维生素E聚乙二醇琥珀酸酯3g)加热至熔融,再在130rpm的转速下快速加入第一助料,加毕后,以130rpm的转速匀速搅拌,同时以8℃/min的速度降温,直至降至室温,再加入生物降解聚合物(聚丁二酸丁二醇酯61g),放料至双螺杆挤出机挤出造粒,即得降解助剂。
实施例4
本实施例提供一种PE复合材料,其中含有PE 90wt%,降解助剂10wt%,PE与降解助剂共混即得PE复合材料。PE购买自东莞勇茂塑胶原料有限公司。
其中,降解助剂采用的原料及制备方法如下:
将介孔二氧化硅3g、分散剂(聚乙烯蜡0.5g)和三羧酸(柠檬酸0.8g)在130℃下搅拌混合70分钟,再加入光敏剂(二苯甲酮4g),将转速提高60rpm,搅拌混合65分钟,然后再挤出造粒,得第一助料。
将有机分解助剂(二异硬脂醇苹果酸酯2g)加热至熔融,再在110rpm的转速下快速加入第一助料,加毕后,以110rpm的转速匀速搅拌,同时以6℃/min的速度降温,直至降至室温,再加入生物降解聚合物(聚己内酯55g),放料至双螺杆挤出机挤出造粒,即得降解助剂。
实施例5
本实施例提供一种PE复合材料,其中含有PE 70wt%,降解助剂30wt%,PE与降解助剂共混即得PE复合材料。PE购买自东莞勇茂塑胶原料有限公司。
其中,降解助剂采用的原料及制备方法如下:
将介孔二氧化硅4g、分散剂(聚乙烯蜡0.9g)和三羧酸(柠檬酸0.8g和乌头酸0.5g)在140℃下搅拌混合65分钟,再加入光敏剂(硬脂酸镍4g),将转速提高56rpm,搅拌混合75分钟,然后再挤出造粒,得第一助料。
将有机分解助剂(二异硬脂醇苹果酸酯2g和半乳糖1g)加热至熔融,再在110rpm的转速下快速加入第一助料,加毕后,以110rpm的转速匀速搅拌,同时以6℃/min的速度降温,直至降至室温,再加入生物降解聚合物(聚己内酯45g和PBAT 13g),放料至双螺杆挤出机挤出造粒,即得降解助剂。
实施例6
本实施例提供一种PE复合材料,其中含有PE 85wt%,降解助剂15wt%,PE与降解助剂共混即得PE复合材料。PE购买自东莞勇茂塑胶原料有限公司。
其中,降解助剂采用的原料及制备方法如下:
将介孔二氧化硅3.6g、分散剂(聚乙烯蜡1.2g)和三羧酸(三甲酸1g和乌头酸0.8g)在140℃下搅拌混合65分钟,再加入光敏剂(硬脂酸铁6g),将转速提高75rpm,搅拌混合70分钟,然后再挤出造粒,得第一助料。
将有机分解助剂(二异硬脂醇苹果酸酯2g)加热至熔融,再在130rpm的转速下快速加入第一助料,加毕后,以130rpm的转速匀速搅拌,同时以7℃/min的速度降温,直至降至室温,再加入生物降解聚合物(聚乙烯醇33g和聚L-乳酸33g),放料至双螺杆挤出机挤出造粒,即得降解助剂。
实施例7
本实施例提供一种PP/PE共混物材料,其中含有PP 45%,PE 45%,降解助剂10wt%。按照常规共混工艺将三者熔融共混即得共混物材料。
其中,降解助剂采用的原料及制备方法如下:
将介孔二氧化硅2.5g、分散剂(聚乙烯蜡0.5g和聚丙烯蜡0.5g)和三羧酸(三甲酸1g和乌头酸0.8g)在140℃下搅拌混合65分钟,再加入光敏剂(硬脂酸铈4g),将转速提高65rpm,搅拌混合70分钟,然后再挤出造粒,得第一助料。
将有机分解助剂(二异硬脂醇苹果酸酯2g和维生素E聚乙二醇琥珀酸酯2g)加热至熔融,再在130rpm的转速下快速加入第一助料,加毕后,以130rpm的转速匀速搅拌,同时以7℃/min的速度降温,直至降至室温,再加入生物降解聚合物(聚乙烯醇33g、聚L-乳酸33g和聚丁二酸丁二醇酯4g),放料至双螺杆挤出机挤出造粒,即得降解助剂。
实施例8
本实施例提供一种PP/PE共混物材料,其中含有PP 35%,PE 35%,降解助剂30wt%。按照常规共混工艺将三者熔融共混即得共混物材料。
其中,降解助剂采用的原料及制备方法如下:
将介孔二氧化硅4.5g、分散剂(聚乙烯蜡0.25g和聚丙烯蜡0.25g)和三羧酸(三甲酸1.3g)在140℃下搅拌混合65分钟,再加入光敏剂(硬脂酸铈4g和桐酸铁3份),将转速提高65rpm,搅拌混合70分钟,然后再挤出造粒,得第一助料。
将有机分解助剂(乳糖1g和维生素E聚乙二醇琥珀酸酯1.5g)加热至熔融,再在130rpm的转速下快速加入第一助料,加毕后,以130rpm的转速匀速搅拌,同时以7℃/min的速度降温,直至降至室温,再加入生物降解聚合物(聚乙烯醇30g、聚乳酸32g),放料至双螺杆挤出机挤出造粒,即得降解助剂。
实施例9
本实施例提供一种PP/PE共混物材料,其中含有PP 30%,PE 45%,降解助剂25wt%。按照常规共混工艺将三者熔融共混即得共混物材料。
其中,降解助剂采用的原料及制备方法如下:
将介孔二氧化硅3.1g、分散剂(聚乙烯蜡0.8g和聚丙烯蜡0.8g)和三羧酸(柠檬酸0.9g)在140℃下搅拌混合65分钟,再加入光敏剂(硬脂酸铈4g和桐酸铁3份),将转速提高65rpm,搅拌混合70分钟,然后再挤出造粒,得第一助料。
将有机分解助剂(乳糖1g和维生素E聚乙二醇琥珀酸酯1.5g)加热至熔融,再在130rpm的转速下快速加入第一助料,加毕后,以130rpm的转速匀速搅拌,同时以7℃/min的速度降温,直至降至室温,再加入生物降解聚合物(聚己内酯30g、聚乳酸30g),放料至双螺杆挤出机挤出造粒,即得降解助剂。
对比例1
与实施例3的区别仅在于缺少了介孔二氧化硅。
对比例2
与实施例6的区别仅在于将光敏剂硬脂酸镍换成了等质量的二苯甲酮。
测试例1
实施例3提供的PP复合材料最终需氧生物分解能力的测定
1.检测依据和方法:受控堆肥条件下材料最终需氧生物分解能力的测定,采用测定释放的二氧化碳的方法,通用方法GB/T19277.1-2011。
2.试验材料、参比材料和接种物特性如下表1所示。试验材料照片如附图1所示。
表 1
3.试验条件
试验时,每个2L试验瓶的接种物和试验材料/参比材料的干重比约为6:1;用脱二氧化碳的空气给试验体系曝气,使各试验瓶排出的氧气浓度不低于6%,并在58℃±2℃和黑暗条件下进行试验;试验期间采用滴定法测定二氧化碳产生量。
4.试验期间累计二氧化碳产生量,g/瓶,结果如下表2所示。二氧化碳累计产生量曲线图如附图2所示。
表 2
5.试验期间累计分解率结果如下表3所示。生物分解率曲线图如附图3所示。
表 3
6.检测结果:试验材料在第95天试验结束时的生物分解率为81.3%(三个平行值分别为78.3%、81.9%、83.8%,平均值81.3%),相对生物分解率为94.4%。
7.检测结论:经检测,该样品的相对生物分解率检测结果符合《生物降解塑料与制品降解性能及标识要求》(GB/T 41010-2021)中“相对生物降解率应≥90%”的要求,和符合海南省地方标准《全生物降解塑料制品通用技术要求》(DB46/T 505-2020)中混合物“相对生物分解率应≥90%”的要求。
测试例2
实施例6提供的PE复合材料的生物降解测试(在受控堆肥条件下最终需氧生物分解能力的测定)
1.检测依据:GB/T 19277.1-2011
2.检测结果汇总如下表4所示。
表 4
3.试验原理
本测定方法在模拟强烈需氧堆肥条件下,测定试验材料最终需氧生物分解能力和崩解程度。使用的接种物来自于稳定的、腐熟的堆肥,如可能,从城市固体废弃物中有机物的堆肥中获取。试验材料与接种物混合,导入静态堆肥容器。在该容器中,混合物在规定的温度,氧浓度和湿度下进行强烈的需氧堆肥。试验周期不超过6个月,
在试验材料的需氧生物分解过程中,二氧化碳、水、矿化无机盐及新的生物质都是最终生物分解的产物。在试验中连续监测、定期测量产生的二氧化碳,器计产生的二氧化碳量。试验材料在试验中实际产生的二氧化碳量与该材料可以产生的二氧化碳的理论量之比为生物分解百分率。
根据实际测量的总有机碳(TOC)含量可以计算出二氧化碳的理论释放量。生物分解百分率不包括已转化为新的细胞生物质的碳量,因为它在试验周期内不代谢为二氧化碳。
4.试验材料
4.1 样品
名称:实施例6提供的PE复合材料,制成塑料袋(膜)的形式
性状:固体
保存条件:常温
4.2 参比物
参比材料
名称:微晶纤维素(柱层析FCC)
参比物编号:68005761
批号:20210720
来源:国药集团化学试剂有限公司
分子式:(C 6H 10O 5)n
分子量:(162.14)n
CAS No.: 9004-34-6
性状:白色或类白色粉末
保存条件:室温干燥保存
4.3 接种物
名称:好氧堆肥
来源:自制
肥龄:3 个月
前期处理:过0.5cm筛筛选,去除杂质和惰性物质。
4.4 试验条件
试验于58℃±2℃恒温,弱光,没有任何会影响微生物生长的蒸汽条件下进行。
5. 试验方法
(1)用无CO 2的水饱和空气以0.05L/min流量对试验体系进行曝气,于58℃±2℃条件下进行试验。
(2)第一周每天测定两次反应容器O 2浓度含量,以后测量次数可以减少。必要时,调节
空气流量。在开始的45d内每天测定一次CO 2的吸收量,之后每周测量2次。
(3)CO 2的测定:
氢氧化钠吸收法:测定CO 2时,拆出直接连接氢氧化钠吸收瓶来测定,其余两个吸收瓶顺序前移连接至防倒吸装置,并在末端连接上一个新配制的氢氧化钠吸收瓶。拆下的吸收瓶用HCI标准溶液进行滴定。
(4)每天对试验装置进行气密性检查。
(5)每周对试验容器混合物进行颠倒振荡混匀,同时测定混合物的pH以及观察以下性状:试验容器排放气的气味,堆肥湿度、色泽、霉菌生成,试验材料结构变化、崩解程度。
(6)计算二氧化碳理论释放量
按式(1)计算每个堆肥容器中试验材料产生的二氧化碳理论释放量(ThCO 2),以克(g)表示。
ThCO 2= M ToT× C ToT×44/12                                      (1)
式中:
M ToT:试验开始时加入堆肥容器的试验材料中的总干固体,单位为克(g);
C ToT:试验材料中总有机碳与总干固体的比,单位为克每克(g/g);
44和12:分别表示二氧化碳的分子量和碳的原子量。
(7)计算生物分解百分率
每个测量期间用式((2)根据累计放出的二氧化碳的量,计算试验材料生物分解百分率Dt
(%):
Dt=[(CO 2) T-(CO 2) B]/ ThCO 2×100                                (2)
式中:
(CO 2) T:每个含有试验混合物的堆肥容器累计放出的二氧化碳量,单位为克每个容器(g/容器);
(CO 2) B:空白容器累计放出的二氧化碳量平均值,单位为克每个容器(g/容器) ;
ThCO 2:试验材料产生的二氧化碳理论释放量,单位为克每个容器(g/容器)。
如果每个结果的相对偏差小于20%,则计算平均生物分解百分率,否则,单独使用每一个堆肥容器的数值。
使用同样方法计算参比材料的生物分解率。
6.试验结果
试验结果如附图4、图5、图6所示。图4中的A为试验样品与堆肥混合后的照片,图4中的B为140天后的照片。图5为空白、样品及参比材料时间-累计二氧化碳产生量(g/容器)曲线图。图6为样品及参比材料的时间-生物分解百分率(%)曲线图。
(1)参比材料3个反应瓶在试验结束时(第140天)的生物分解百分率分别为:82.63%,82.75%和82.55%,平均值为82.6%;3个反应瓶的生物分解百分率相对偏差分别为0.04%,0.18%和0.06%;均不大于20%。
(2)测试样品3个反应瓶在试验结束时(第140天)的生物分解百分率分别为:75.40%,75.27%和75.54%;平均生物分解百分率为:75.4%。3个反应瓶的生物分解百分率相对偏差分别为0.01%,0.17%和0.18%;均不大于20%。相对分解率:91.2%。样品挥发性固体含量为:56.2%。
(3)平均分解率为:75.4%,≥60%,判定合格;相对分解率:91.2%,≥90%,判定合格,有机成分(挥发性固体含量):56.2%,≥51%,判定合格。
测试例3
模拟自然环境下实施例提供的样品的降解行为分析
1.测试方法
利用紫外老化箱(天津永利达材料试验机有限公司)模拟暴露在自然环境中的光照和雨淋环境,研究实施例1、实施例3、实施例4、实施例6、实施例9、对比例1、对比例2提供的样品的降解行为。按照国标GB/T 1040.2将制备好的上述实施例及对比例提供的七种样品制成薄膜,并剪成标准样条,置于紫外老化箱中进行降解。每隔12h喷淋10min,分别于5天、10天、15天、20天、25天和30天取出样品,在65℃下干燥4h。每个样做5个平行样。
2.力学性能分析
将依据标准 GB/T 1040.2 制备的标准拉伸试样,在上海倾技仪器科技有限公司生产的QJ210A-1000N万能试验机上测试样品薄膜降解前后的拉伸性能,拉伸速率为2mm/min。每组测试5个试样,求得平均值,样品的最大拉伸力下降率如表5所示,由此可见,实施例3提供的样品力学性能下降尤为显著,降解性能较为突出。
表 5
3.凝胶色谱分析(GPC)
采用美国安捷伦公司生产的凝胶色谱仪(1200SERIES)测定样品的分子量分布和分子量。样品制备:将试样溶于三氯甲烷中,用注射器经超微孔过滤膜过滤后,注入2ml进行测试。采用三氯甲烷溶剂,聚苯乙烯为标样。
经测试,在老化箱中降解30天后,样品分子量都明显降低,实施例3提供的样品其数均分子量降低了86.39%,实施例6提供的样品其数均分子量降低了83.61%,该两组样品分子量降幅相对其他组别样品较优。
综上所述,本申请提供的降解PP、PE的降解助剂能够有效保障PP、PE、PP/PE共混物等树脂的降解能力,且制作工艺简单,成本低廉,适合工业化生产。
本申请的各种实施例可以以一个范围的形式存在;应当理解,以一范围形式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
以上所述仅是本申请的具体实施方式,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种降解PP、PE的降解助剂,其特征在于,包括按重量份数计的以下原料:
    光敏剂3-9份、介孔二氧化硅2-5份、生物降解聚合物50-76份和有机分解助剂1-5份。
  2. 根据权利要求1所述的降解PP、PE的降解助剂,其特征在于,所述光敏剂选自桐酸铁、十二烷基二茂铁、二苯甲酮、硬脂酸、硬脂酸铈、硬脂酸铁和硬脂酸镍中的一种或多种。
  3. 根据权利要求1所述的降解PP、PE的降解助剂,其特征在于,所述生物降解聚合物选自聚乳酸、聚羟基脂肪酸酯、聚丁二酸丁二醇酯、聚己内酯、PBAT、聚乙烯醇和聚L-乳酸中的一种或多种。
  4. 根据权利要求1所述的降解PP、PE的降解助剂,其特征在于,所述有机分解助剂选自由乳糖、半乳糖、维生素E聚乙二醇琥珀酸酯和二异硬脂醇苹果酸酯中的一种或多种。
  5. 根据权利要求1所述的降解PP、PE的降解助剂,其特征在于,还包括按重量份数计的以下原料:分散剂0.5-1.6份和三羧酸0.8-2份,所述分散剂选自聚丙烯蜡和/或聚乙烯蜡。
  6. 根据权利要求5所述的降解PP、PE的降解助剂,其特征在于,包括按重量份数计的以下原料:光敏剂4-6份、介孔二氧化硅2.5-3.6份、生物降解聚合物58-66份、有机分解助剂2-3份、分散剂0.9-1.2份和三羧酸1.3-1.8份。
  7. 根据权利要求1-6任一项所述的降解PP、PE的降解助剂,其特征在于,所述降解助剂在PP或PE或PP/PE共混物中的添加比例为10wt%-30wt%。
  8. 根据权利要求5所述的降解PP、PE的降解助剂,其特征在于,所述降解助剂采用以下步骤加工而成:
    将所述光敏剂、所述介孔二氧化硅、所述分散剂和所述三羧酸混合后,再加入所述有机分解助剂和所述生物降解聚合物,即得所述降解助剂。
  9. 根据权利要求8所述的降解PP、PE的降解助剂,其特征在于,将所述介孔二氧化硅、所述分散剂和所述三羧酸在130-170℃下搅拌混合50-70分钟,再加入所述光敏剂,将转速提高50-80rpm,搅拌混合60-90分钟,再挤出造粒,得第一助料,再将所述第一助料和所述有机分解助剂、所述生物降解聚合物混合制料,得所述降解助剂。
  10. 根据权利要求9所述的降解PP、PE的降解助剂,其特征在于,将所述有机分解助剂加热至熔融,再在100-150rpm的转速下快速加入所述第一助料,加毕后,以5-10℃/min的速度降温,直至降至室温,再加入所述生物降解聚合物,放料至双螺杆挤出机挤出造粒,即得所述降解助剂。
PCT/CN2024/076678 2023-04-26 2024-02-07 一种降解pp、pe的降解助剂 WO2024222148A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310458172.2 2023-04-26
CN202310458172.2A CN116178921B (zh) 2023-04-26 2023-04-26 一种降解pp、pe的降解助剂

Publications (1)

Publication Number Publication Date
WO2024222148A1 true WO2024222148A1 (zh) 2024-10-31

Family

ID=86450915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/076678 WO2024222148A1 (zh) 2023-04-26 2024-02-07 一种降解pp、pe的降解助剂

Country Status (2)

Country Link
CN (1) CN116178921B (zh)
WO (1) WO2024222148A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116178921B (zh) * 2023-04-26 2023-06-27 中联融鑫(北京)科技开发有限公司 一种降解pp、pe的降解助剂
CN116656045A (zh) * 2023-07-04 2023-08-29 厦门永晋鸿塑胶工业有限公司 一种可降解的pp复合材料及其制备方法
CN116875012A (zh) * 2023-08-01 2023-10-13 厦门丽龙彩印刷包装股份有限公司 一种可降解抗菌包装盒及其制备方法
CN118325236B (zh) * 2024-06-07 2024-08-16 金达科技股份有限公司 一种自然环境下生物降解聚丙烯材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639106B1 (ko) * 2006-07-14 2006-10-31 신호철 복합 분해성 수지 조성물 및 그 제조방법
KR20130140347A (ko) * 2012-06-14 2013-12-24 신호철 합성수지용 첨가제를 포함하는 복합 분해성 수지 조성물 및 그 제조방법
CN109575536A (zh) * 2018-12-25 2019-04-05 淄博成达塑化有限公司 改性聚乙醇酸生物降解地膜及其制备方法
US20210309848A1 (en) * 2020-04-02 2021-10-07 Singular Solutions Inc. Plastic pro-biodegradation additives, biodegradable plastic compositions, and related methods
CN114395190A (zh) * 2022-01-26 2022-04-26 岳阳兴长石化股份有限公司 一种可光降解的聚丙烯材料及其制备方法
CN116178921A (zh) * 2023-04-26 2023-05-30 中联融鑫(北京)科技开发有限公司 一种降解pp、pe的降解助剂

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0813862A2 (pt) * 2007-08-02 2017-06-06 Basf Se método para melhorar a degradação de polímeros naturais e/ou sintéticos ou um artigo polimérico, composto, e, artigo polimérico
CN114716697A (zh) * 2021-06-21 2022-07-08 中联融鑫(北京)科技开发有限公司 一种生物降解塑料母料及由该母料制成的塑料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100639106B1 (ko) * 2006-07-14 2006-10-31 신호철 복합 분해성 수지 조성물 및 그 제조방법
KR20130140347A (ko) * 2012-06-14 2013-12-24 신호철 합성수지용 첨가제를 포함하는 복합 분해성 수지 조성물 및 그 제조방법
CN109575536A (zh) * 2018-12-25 2019-04-05 淄博成达塑化有限公司 改性聚乙醇酸生物降解地膜及其制备方法
US20210309848A1 (en) * 2020-04-02 2021-10-07 Singular Solutions Inc. Plastic pro-biodegradation additives, biodegradable plastic compositions, and related methods
CN114395190A (zh) * 2022-01-26 2022-04-26 岳阳兴长石化股份有限公司 一种可光降解的聚丙烯材料及其制备方法
CN116178921A (zh) * 2023-04-26 2023-05-30 中联融鑫(北京)科技开发有限公司 一种降解pp、pe的降解助剂

Also Published As

Publication number Publication date
CN116178921A (zh) 2023-05-30
CN116178921B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
WO2024222148A1 (zh) 一种降解pp、pe的降解助剂
EP0683207B1 (en) L-lactic acid polymer composition, molded product and film
RU2480495C2 (ru) Новая биоразлагаемая полимерная композиция, пригодная для получения биоразлагаемого пластика, и способ получения указанной композиции
CN102108196B (zh) 一种聚乳酸可降解材料的制备方法
CN101747605B (zh) 一种可完全生物降解发泡材料及其制备方法
US20080113887A1 (en) Biodegradable nanopolymer compositions and biodegradable articles made thereof
KR20230170990A (ko) 탄수화물 기반 중합체 물질
JPH06500819A (ja) ポリヒドロキシ酸と相溶化剤を含有するフィルム
KR101184750B1 (ko) 폴리비닐알코올 및 셀룰로오스계 고분자를 혼합한 분해도가 조절된 혼합 생분해성 고분자 필름 및 이의 제조방법
WO2014032393A1 (zh) 一种全生物降解材料及其制备方法
CN101235156A (zh) 一种聚乳酸/热塑性淀粉挤出吹塑薄膜及其生产方法与应用
KR20210024448A (ko) 플라스틱 물질로의 생분해성 부여 첨가제의 추가
CN106084700A (zh) 一种低成本可控全生物降解地膜及其制备方法
JP2022539870A (ja) 強度及び他の特性を向上させるための、小粒子デンプン及びデンプンベースの材料と合成高分子とのブレンド
KR100428953B1 (ko) 마스터배치용 지방족 폴리에스테르조성물 및 상기조성물을 이용한 지방족 폴리에스테르필름의 제조방법
CN106336634B (zh) 一种改进的生物降解购物袋及其制备方法
JP2009155531A (ja) 樹脂組成物及びその製造方法並びに該樹脂組成物からなるフィルム
CN102093682A (zh) 一种轻质聚乳酸复合材料及其制备方法
CN112175361B (zh) 一种高阻隔抗拉伸抑菌膜类可降解材料及其制备方法
JP5233335B2 (ja) 樹脂組成物並びに該樹脂組成物からなる成形品及びフィルム
JP3430125B2 (ja) マスターバッチ用脂肪族ポリエステル組成物及び該組成物を用いる脂肪族ポリエステルフィルムの製造方法
DE60010856T2 (de) Verfahren zur herstellung eines aliphatischen polyester mit ausgezeichneter stabilität
JP3321379B2 (ja) 生分解性多孔質フィルム
CN114921063B (zh) 一类耐热聚对苯二甲酸-己二酸-丁二醇酯/聚乳酸组合物、成核剂及其制备方法
CN118638377A (zh) 一种pva复合抗菌薄膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24795536

Country of ref document: EP

Kind code of ref document: A1