[go: up one dir, main page]

WO2024219400A1 - Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2024219400A1
WO2024219400A1 PCT/JP2024/015170 JP2024015170W WO2024219400A1 WO 2024219400 A1 WO2024219400 A1 WO 2024219400A1 JP 2024015170 W JP2024015170 W JP 2024015170W WO 2024219400 A1 WO2024219400 A1 WO 2024219400A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
structural unit
organic group
formula
Prior art date
Application number
PCT/JP2024/015170
Other languages
French (fr)
Japanese (ja)
Inventor
直史 長谷川
淳 橋本
佳道 森本
夏樹 佐藤
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Publication of WO2024219400A1 publication Critical patent/WO2024219400A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element.
  • Liquid crystal display devices have been widely used as display units for personal computers, smartphones, mobile phones, television receivers, etc.
  • Liquid crystal display devices include, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, pixel electrodes and a common electrode that apply an electric field to the liquid crystal layer, an alignment film that controls the orientation of the liquid crystal molecules in the liquid crystal layer, and thin film transistors (TFTs) that switch the electric signals supplied to the pixel electrodes.
  • Known methods for driving liquid crystal molecules include vertical electric field methods such as the TN (Twisted Nematic) method and the VA (Vertical Alignment) method, and horizontal electric field methods such as the IPS (In-Plane Switching) method and the FFS (Fringe Field Switching) method.
  • liquid crystal alignment agents containing polyimide have been actively studied as liquid crystal alignment agents for liquid crystal alignment films used in in-plane switching liquid crystal display elements.
  • polyimide has excellent liquid crystal alignment properties, it has the disadvantage of poor solubility in organic solvents. Therefore, when dissolving polyimide in an organic solvent, a highly soluble polar organic solvent such as N-methylpyrrolidone is used.
  • polar organic solvents have the disadvantage of high solubility but high hygroscopicity. Therefore, when preparing a liquid crystal alignment film using a liquid crystal alignment agent containing the above polar organic solvent, it is necessary to control the application environment of the liquid crystal alignment agent from the viewpoint of improving the performance of the obtained liquid crystal alignment film.
  • the solubility of the liquid crystal alignment agent decreases due to moisture absorption before heat treatment, polyimide precipitates, and the liquid crystal alignment film becomes white (hygroscopic whitening) may occur.
  • the production of polyimide requires large amounts of reagents and large production facilities, which poses problems in terms of handling (safety, environmental impact, equipment costs, etc.).
  • the present inventors have focused on a liquid crystal aligning agent using a polyamic acid.
  • liquid crystal alignment films used in liquid crystal display elements such as those of the IPS and FFS modes require a high alignment control force to suppress image retention caused by long-term AC driving (hereinafter also referred to as AC image retention), but it has become clear that there is a problem in that it is not always possible to obtain a film that meets such high level requirements.
  • the object of the present invention is to provide a liquid crystal alignment agent containing two or more types of polyamic acid, which suppresses deterioration of liquid crystal alignment properties during storage at room temperature, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element.
  • a liquid crystal aligning agent comprising the following polymer (A) and polymer (B):
  • the structural unit (a-1Ta) represented by the following formula (1T a ) is contained as a structural unit derived from a tetracarboxylic acid derivative
  • the diamine-derived structural unit includes a structural unit (a-1Da) represented by the following formula (1D a ):
  • At least a part of the terminals of the polyamic acid (A) contains a non-amino group, and the non-amino group is a functional group represented by the following structural formula (E):
  • the structural unit (b-1Tb) represented by the following formula (1T b ) is contained as a structural unit derived from a tetracarboxylic acid derivative
  • Xa represents a tetravalent organic group represented by the following formula (x-1).
  • Ya represents a divalent organic group derived from a diamine.
  • Each Z independently represents a hydrogen atom or a monovalent organic group.
  • R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, an alkoxy group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 6 carbon atoms, an alkyloxycarbonyl group having 2 to 6 carbon atoms, or a phenyl group, and at least one of R 1 to R 4 represents a group other than a hydrogen atom as defined above.
  • Xb represents a tetravalent organic group derived from an aromatic tetracarboxylic dianhydride, a tetravalent organic group represented by the following formula (x-2), or a tetravalent organic group ( T5a ) having an alicyclic structure having five or more members.
  • Yb represents a divalent organic group derived from a diamine.
  • Z has the same meaning as Z in formula ( 1Da ).
  • Q is a monovalent organic group selected from the following groups (e1) to (e3).
  • * represents a bond.
  • (e1) an acyclic hydrocarbon group having 1 to 6 carbon atoms;
  • (e2) a monovalent organic group having 1 to 2 carboxy groups and 2 to 30 carbon atoms (however, the monovalent organic group does not include an acid anhydride group).
  • (e3) A monovalent organic group having two or more Boc groups and having 1 to 30 carbon atoms excluding Boc, the monovalent organic group having a protected amino moiety selected from the group consisting of *1-NH(Boc), *1-N(Boc) 2 and *1-N(Boc)-*1 (*1 represents a bond bonded to a carbon atom).
  • the protected amino moieties may be the same or different.
  • the present invention provides a liquid crystal alignment agent containing two or more types of polyamic acid, which suppresses deterioration of liquid crystal alignment properties during storage at room temperature, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element.
  • 1 is a schematic cross-sectional view showing an example of an IPS mode in-plane switching liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention.
  • 1 is a schematic cross-sectional view showing an example of an FFS mode in-plane switching liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention.
  • a liquid crystal alignment agent containing a specific polymer component containing a specific polymer component, a liquid crystal alignment film formed using the liquid crystal alignment agent, and a liquid crystal display element having the liquid crystal alignment film will be described in detail.
  • the explanation of the constituent elements described below is an example of one embodiment of the present invention, and the present invention is not limited to these contents.
  • examples of a "halogen atom” include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • tert- meaning tertiary is also represented as “t-”.
  • Boc represents a tert-butoxycarbonyl group
  • "*" represents a bond.
  • the liquid crystal aligning agent of the present invention contains the above polymer (A) and polymer (B). At least a part of the terminals of the polyamic acid (A) in the polymer (A) contains a non-amino group, and the non-amino group is a functional group represented by the above structural formula (E). That is, preferably, at least a part of the terminal amino groups of the polyamic acid (A) are modified to have the non-amino group.
  • the proportion of terminal amino groups in the polyamic acid (A) is 60% or less based on all the terminals of the polyamic acid (A).
  • At least a part of the terminals of the polyamic acid (B) in the polymer (B) of the present invention may contain the non-amino group. That is, preferably, at least a part of the terminal amino groups of the polyamic acid (B) may be modified to have the non-amino group.
  • the non-amino group which the terminal of the polyamic acid (B) may contain, from the viewpoint of suitably obtaining the effects of the present invention, may be a functional group represented by structural formula (E) exemplified for the polyamic acid (A) in the polymer (A), and a similar functional group may be used as a preferred embodiment.
  • the term "abundance of terminal amino groups" as used herein means, for example, in the case of polyamic acid (A), the proportion of terminals that are amino groups expressed as a percentage based on all terminals of polyamic acid (A).
  • the phrase "based on all of the terminals of the polyamic acid (A)” means that the total number of amino terminals and non-amino terminals of the polyamic acid (A) is taken as 100%, and includes the case where any terminal is 0%.
  • the abundance of terminal amino groups can be estimated from the amount of change in peak intensity of terminal amino groups using 1 H-NMR.
  • the abundance of terminal amino groups in the polyamic acid (A) used in the present invention is preferably 30% or less, more preferably 10% or less, and even more preferably 1% or less.
  • the abundance of terminal amino groups in the polyamic acid (A) used in the present invention may be 0%. That is, all of the terminals of the polyamic acid (A) used in the present invention may contain the non-amino group.
  • the non-amino group is a functional group represented by the above structural formula (E).
  • the functional group represented by the above structural formula (E) is preferably bonded to a nitrogen atom of the diamine residue.
  • Preferred specific examples of the above (e1) include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a vinyl group, and a methacryl group.
  • Preferred specific examples of the above (e1) include residues derived from acyclic aliphatic dicarboxylic acid anhydrides such as acetic anhydride, acrylic anhydride, methacrylic anhydride, propionic anhydride, butyric anhydride, valeric anhydride, isovaleric anhydride, hexanoic anhydride, or heptanoic anhydride.
  • acyclic aliphatic dicarboxylic acid anhydrides such as acetic anhydride, acrylic anhydride, methacrylic anhydride, propionic anhydride, butyric anhydride, valeric anhydride, isovaleric anhydride, hexanoic anhydride, or heptanoic anhydride.
  • a preferred specific example of the above (e2) is a monovalent organic group having a residue derived from a dicarboxylic acid anhydride and having one or two carboxy groups (however, the monovalent organic group does not include an acid anhydride group).
  • dicarboxylic acid anhydrides that give the above (e2) include a compound (e2-1) that does not have an alkoxysilane structure and a compound (e2-2) that has an alkoxysilane structure.
  • the compound (e2-1) include aromatic or aliphatic cyclic dicarboxylic acid anhydrides such as phthalic anhydride, maleic anhydride, succinic anhydride, allylsuccinic anhydride, itaconic anhydride, trimellitic anhydride, 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, 4-ethynylphthalic anhydride, and cyclohexene-1,2-dicarboxylic acid anhydride.
  • the aliphatic ring in the aliphatic cyclic dicarboxylic acid anhydride may be a saturated aliphatic ring or an unsaturated aliphatic ring.
  • compound (e2-2) include 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylpropyl succinic anhydride, 4-(3-trimethoxysilylpropyl)cyclohexane-1,2-dicarboxylic anhydride, 4-(3-triethoxysilylpropyl)cyclohexane-1,2-dicarboxylic anhydride, 4-(3-trimethoxysilylpropyl)phthalic anhydride, 4-(3-triethoxysilylpropyl)phthalic anhydride; 2-(methoxydimethylsilyl)ethyl succinic anhydride, 3-(dimethylmethoxysilyl)propyl succinic anhydride, and 3-(dimethylethoxysilyl)propyl succinic anhydride, such as (C1 to C6)alkoxydimethylsilyl(C2 to C8)alkyl succinic anhydrides; 2-
  • di(C1-6)alkoxymethylsilyl(C2-8)alkyl succinic anhydride such as succinic acid
  • tri(C1-6)alkoxysilyl(C2-8)alkyl succinic anhydride such as 2-(trimethoxysilyl)ethyl succinic anhydride, 2-(triethoxysilyl)ethyl succinic anhydride, [3-(trimethoxysilyl)propyl]succinic anhydride, or [3-(triethoxysilyl)propyl]succinic anhydride
  • 4-(3-dimethylmethoxysilylpropyl)cyclohexane-1,2-dicarboxylic anhydride 4-(3-dimethylethoxysilylpropyl)cyclohexane-1,2-dicarboxylic anhydride, 4-(3-dimethylethoxysilylpropyl)phthalic anhydride, or 4-(3-dimethylethoxy
  • the number of protected amino moieties is one or more, and from the viewpoint of the effect of liquid crystal alignment, the number of protected amino moieties is preferably four or less.
  • the above (e3) can be obtained, for example, by using an active ester compound (e) represented by R—O—C( ⁇ O)-E3 (R represents an active ester forming group, and E3 represents the above (e3)).
  • active ester forming group means a chemical group that, together with the carbonyl group to which it is attached, forms an ester that activates the carbonyl group for coupling reactions with amino-containing compounds to form amide groups or other coupling reactions.
  • Examples of the active ester-forming group include groups obtained by removing a hydroxy group from a hydroxy compound such as 1-hydroxybenzotriazole (HOBt), 1-hydroxy-7-azabenzotriazole (HOAt), N-hydroxysuccinimide (HOSu), ethyl 2-cyano-2-(hydroxyimino)acetate (oxyma), 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine (HOOBt or HODhbt), N-hydroxy-5-norbornene-2,3-dicarboximide (HONB), 2,3,4,5,6-pentafluorophenol (HOPfp), or 6-chloro-1-hydroxy-1H-benzotriazole (Cl-HOBt) (see, for example, WATANABE Chemical's catalog, Amino acids and chiral building blocks to new medicine.
  • HOBt 1-hydroxybenzotriazole
  • HOAt 1-hydroxy-7-azabenzotriazole
  • hydroxy compounds (Ae)).
  • groups obtained by removing a hydroxy group from HOBt, HOAt, HOSu or HOOBt are preferred, and groups obtained by removing a hydroxy group from HOBt, HOAt or HOOBt are more preferred.
  • the active ester forming group represents a group derived from HOSu
  • E3 more preferably has two or more of the above-mentioned protected amino moieties, from the viewpoint of suitably achieving the effects of the present invention.
  • the active ester compound (e3) is synthesized, for example, from a carboxylic acid represented by "W-COOH" (W has the same meaning as the above (e3). Hereinafter, this is also referred to as carboxylic acid (W)) and the above hydroxy compound (Ae).
  • W carboxylic acid
  • the organic group having 1 to 30 carbon atoms excluding the Boc group in W is preferably an organic group having 1 to 12 carbon atoms, and more preferably an organic group having 1 to 6 carbon atoms.
  • the above carboxylic acid (W) has two or more Boc groups and has a group having a protected amino moiety selected from the group consisting of *1-NH(Boc), *1-N(Boc) 2 , and "*1-N(Boc)-*1" (*1 represents a bond bonded to a carbon atom) in the molecule.
  • the carboxylic acid (W) can be obtained by protecting the amino groups of a carboxy-containing polyamine (pA) having two or more amino groups, such as a carboxy-containing diamine. The amino groups may be protected either partially or entirely.
  • polyamines (pA) include diaminobenzoic acids such as 3,5-diaminobenzoic acid; carboxybiphenyl compounds such as 4,4'-diaminobiphenyl-3-carboxylic acid; carboxydiphenylalkanes such as 4,4'-diaminodiphenylmethane-3-carboxylic acid or 4,4'-diaminodiphenylethane-3-carboxylic acid; aromatic polyamines such as carboxydiphenyl ethers such as 4,4'-diaminodiphenylether-3-carboxylic acid or 4,4'-diaminodiphenylether-3-carboxylic acid; and aliphatic polyamines such as arginine, lysine, ornithine, or histidine.
  • diaminobenzoic acids such as 3,5-diaminobenzoic acid
  • carboxybiphenyl compounds such as 4,4'-diamin
  • the carboxylic acid (W) and the polyamine (pA) preferably have a nitrogen atom-containing heterocycle or a derivative thereof.
  • the nitrogen atom-containing heterocycle include aziridine, azetidine, pyrrole, imidazole, imidazolidine, pyrrolidine, piperidine, piperazine, morpholine, pyrazole, indole, benzimidazole, and carbazole.
  • Specific examples of the derivative of the nitrogen atom-containing heterocycle include compounds in which any hydrogen atom of the nitrogen atom-containing heterocycle is replaced by a substituent.
  • substituents examples include a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, a halogen atom, a nitro group, a cyano group, a trifluoromethyl group, -NR 7 R 8 , or a -CONR 7 R 8 group, where R 7 and R 8 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • Preferred specific examples of the active ester compound (e3) are any of the compounds represented by the following formulae (e3-1) to (e3-4).
  • the polyamic acid (A) in the polymer (A) of the present invention has a structural unit (a-1Ta) represented by the above formula (1T a ) as a structural unit derived from a tetracarboxylic acid derivative.
  • the polymer (A) may be composed of one or more types of structural units, and the structural unit (a-1Ta) may be one or more types.
  • Xa in the above formula (1T a ) represents a tetravalent organic group represented by the above formula (x-1).
  • Specific examples of the alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, in R 1 to R 4 in formula (x- 1 ) include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, an n-pentyl group, etc.
  • alkenyl group having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms, in R 1 to R 4 include a vinyl group, a propenyl group, a butynyl group, etc., which may be linear or branched.
  • alkynyl group having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms, in R 1 to R 4 include an ethynyl group, a 1-propynyl group, a 2-propynyl group, etc.
  • examples of the monovalent organic group containing a fluorine atom and having 1 to 6, preferably 1 to 4, carbon atoms include a fluoromethyl group, a trifluoromethyl group, a trifluoromethoxy group, a 2,2,2-trifluoroethyl group, a 2,2,2-trifluoroethoxy group, a pentafluoroethyl group, and a pentafluoropropyl group.
  • the above formula (x-1) is preferably selected from the group consisting of the following formulas (x1-1) to (x1-5).
  • the structural unit (a-1Ta) contained in the polyamic acid (A) of the present invention is preferably 60 mol% or more, more preferably 70 mol% or more, and most preferably 100 mol% relative to 1 mole of all structural units derived from the tetracarboxylic acid derivative contained in the polyamic acid (A).
  • the polyamic acid (A) of the present invention may have a structural unit (a-2Ta) represented by the following formula (2T a ) as a structural unit derived from a tetracarboxylic acid derivative.
  • the structural unit (2-1Ta) may be of one type or of two or more types.
  • X2a represents a tetravalent organic group derived from a tetracarboxylic dianhydride other than the tetravalent organic group represented by the above formula (x-1).
  • tetravalent organic group for X2a in the above formula (2T a ) include a tetravalent organic group (T 5a ) having an alicyclic structure with five or more members, and a tetravalent organic group obtained by removing two acid anhydride groups from the following tetracarboxylic dianhydrides (hereinafter collectively referred to as "other tetracarboxylic dianhydrides").
  • acyclic aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride or tetracarboxylic dianhydrides represented by the following formulae (AL-1) to (AL-7); alicyclic tetracarboxylic dianhydrides such as 1,2,3,4-cyclobutanetetracarboxylic dianhydride (provided that the tetravalent organic group ( T ) excluding tetracarboxylic dianhydrides having the above structure.
  • More preferred examples of the above other tetracarboxylic dianhydrides include 1,2,3,4-butane tetracarboxylic dianhydride, 1,2,3,4-cyclobutane tetracarboxylic dianhydride, pyromellitic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfone tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-biphenyl tetracarboxylic dianhydride, and 2,2',3,3'-biphenyl tetracarboxylic dianhydride
  • the tetravalent organic group (T 5a ) is preferably a tetravalent organic group having a 5- to 8-membered alicyclic structure, and more preferably a tetravalent organic group having a 5- to 7-membered alicyclic structure.
  • the 5- or more-membered alicyclic structure means that, when the alicyclic structure to which the acid anhydride group is bonded is a polycyclic structure, each of the rings contained in the polycyclic structure has 5 or more atoms constituting the ring.
  • the alicyclic structure may be bonded to at least one of the two acid anhydride groups, and may have a chain hydrocarbon structure or an aromatic ring structure together with the alicyclic structure.
  • Preferred specific examples of the tetravalent organic group (T 5a ) include tetravalent organic groups represented by any of the following formulas (X 5a -1) to (X 5a -18). From the viewpoint of suitably obtaining the effects of the present invention, the tetravalent organic group (T 5a ) is more preferably (X 5a -1) to (X 5a -4).
  • the proportion of the structural unit represented by formula (2T a ) contained in the polyamic acid (A) is preferably 40 mol % or less, and more preferably 30 mol % or less, based on 1 mol of all structural units derived from tetracarboxylic acid derivatives contained in the polyamic acid (A).
  • the liquid crystal aligning agent of the present invention contains, together with the above-mentioned polyamic acid (A), a polyamic acid (B) having a structural unit derived from a tetracarboxylic acid derivative and a structural unit derived from a diamine, the polyamic acid including, as the structural unit derived from the tetracarboxylic acid derivative, a structural unit (b-1Tb) represented by the above-mentioned formula (1T b ).
  • the polyamic acid (B) may be composed of one kind or two or more kinds.
  • each of the structural units constituting the polyamic acid (B) may be composed of one kind or two or more kinds.
  • Examples of the tetravalent organic group that provides X b in the above formula (1T b ) include a tetravalent organic group obtained by removing two anhydride groups (-C( ⁇ O)-O-C( ⁇ O)-) from an aromatic tetracarboxylic dianhydride, a tetravalent organic group obtained by removing two anhydride groups from 1,2,3,4-cyclobutane tetracarboxylic dianhydride, and a tetravalent organic group obtained by removing two anhydride groups from a tetracarboxylic dianhydride having the above tetravalent organic group (T 5a ).
  • the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups, including at least one carboxy group bonded to an aromatic ring.
  • the tetravalent organic group derived from an aromatic tetracarboxylic dianhydride in Xb is preferably a tetracarboxylic dianhydride having a benzene ring.
  • the tetravalent organic group derived from an aromatic tetracarboxylic dianhydride in Xb is a tetravalent organic group obtained by removing two anhydride groups from the aromatic tetracarboxylic dianhydride exemplified as X2a in the above formula (2T a ) .
  • the polyamic acid (B) preferably contains more than 40 mol % of the structural unit (b-1Tb) relative to 1 mole of all structural units derived from the tetracarboxylic acid derivative contained in the polyamic acid (B), and more preferably contains 50 mol % or more of the structural unit (b-1Tb).
  • the polyamic acid (B) of the present invention may have a structural unit (b-2Tb) represented by the following formula (2T b ) as a structural unit derived from a tetracarboxylic acid derivative.
  • b-2Tb a structural unit represented by the following formula (2T b ) as a structural unit derived from a tetracarboxylic acid derivative.
  • X2b represents a tetravalent organic group other than Xb .
  • tetravalent organic group of X 2b in the above formula (2T b ) include a tetravalent organic group obtained by removing two anhydride groups from an acyclic aliphatic tetracarboxylic acid dianhydride, a tetravalent organic group represented by the above formula (X-2), and a tetravalent organic group other than the above tetravalent organic group (T 5a ), which is obtained by removing two anhydride groups from an alicyclic tetracarboxylic acid dianhydride.
  • the acyclic aliphatic tetracarboxylic acid dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure, but is not necessarily composed of a chain hydrocarbon structure alone, and may have an alicyclic structure or an aromatic ring structure as a part thereof.
  • Alicyclic tetracarboxylic dianhydrides are acid dianhydrides obtained by intramolecular dehydration of four carboxy groups, including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to an aromatic ring.
  • the tetravalent organic group for X2b is preferably a tetravalent organic group obtained by removing two anhydride groups from a tetracarboxylic acid dianhydride having at least one partial structure selected from the group consisting of a substituted cyclobutane ring structure and a cyclobutene ring structure, or a tetravalent organic group obtained by removing two anhydride groups from an acyclic aliphatic tetracarboxylic acid dianhydride exemplified as the other tetracarboxylic acid dianhydrides described above.
  • More preferred X2b is a tetravalent organic group represented by the above formula (x-1) or a tetravalent organic group obtained by removing two anhydride groups from the acyclic aliphatic tetracarboxylic acid dianhydrides exemplified above as the other tetracarboxylic acid dianhydrides.
  • the polyamic acid (B) preferably contains less than 60 mol % of the structural unit (b-2Tb) relative to 1 mol of all structural units derived from the tetracarboxylic acid derivative contained in the polyamic acid (B), and more preferably contains 50 mol % or less of the structural unit (b-2Tb).
  • the polyamic acid (A) in the polymer (A) of the present invention has a structural unit (a-1Da) represented by the above formula (1D a ) as a structural unit derived from a diamine.
  • the structural unit (a-1D a ) may be of one type or of two or more types.
  • the monovalent organic group for Z in the above formula (1D a ) is a monovalent hydrocarbon group having 1 to 6 carbon atoms, a methylene group of the hydrocarbon group being -O-, -S-, -CO-, -COO-, -COS-, -NR 3 -, -CO-NR 3 -, -Si(R 3 ) 2 - (wherein R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • R 3s may be the same or different), -SO 2 - or the like; a monovalent group in which at least one hydrogen atom bonded to a carbon atom of the above-mentioned monovalent hydrocarbon group or the above-mentioned monovalent group A is substituted with a halogen atom, a hydroxy group, an alkoxy group, a nitro group, an amino group, a mercapto group, a nitroso group, an alkylsilyl group, an alkoxysilyl group, a silanol group, a sulfino group, a phosphino group, a carboxy group, a cyano group, a sulfo group, an acyl group, or the like; and a monovalent group having a heterocycle.
  • an alkyl group having 1 to 6 carbon atoms an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a t-butoxycarbonyl group is preferable, an alkyl group having 1 to 3 carbon atoms is more preferable, and a methyl group is even more preferable.
  • the two Z's in the above formula (1D a ) are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and more preferably a hydrogen atom or a methyl group.
  • the polyamic acid (B) in the polymer (B) of the present invention has a structural unit (b-1Db) represented by the above formula (1D b ) as a structural unit derived from a diamine.
  • the structural unit (b-1Db) may be of one type or of two or more types.
  • the monovalent organic group of Z in the above formula (1D b ) has the same meaning as Z in the above formula (1D a ).
  • Examples of the structural units of the structural unit (a-1Da) and the structural unit (b-1Db) include structural units (1D-1) derived from diamines selected from the group consisting of diamines represented by diamine (0) "H-N(Z)-Ar 1 -L 1 -A-L 1' -Ar 1' -N(Z)-H", diamine (Ph) "H-N(Z)-Ar-N(Z)-H", and diamine (0)'"H-N(Z)-Ar 2 -L 2 -A 2 -L 2' -Ar 2' -N(Z)-H", or structural units (1D-2) derived from diamines other than the diamine (0), diamine (Ph), and diamine (0)' (hereinafter also referred to as other diamines), with the structural unit (1D-1) being more preferred.
  • diamines represented by diamine (0) "H-N(Z)-Ar 1 -L 1 -A-L 1' -
  • Ar 1 and Ar 1' each independently represent a benzene ring, a biphenyl structure, or a naphthalene ring. Any hydrogen atom on the ring of Ar 1 or Ar 1' may be substituted with a monovalent group.
  • A represents a divalent organic group having an alkylene structure and having 1 to 10 carbon atoms.
  • Examples of the monovalent organic group for R in -NR-, -C( ⁇ O)-NR-, or -NR-C( ⁇ O)- representing L 1 and L 1' in the diamine (0) include an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an alkenyl group having 2 to 3 carbon atoms, an acyl group having 2 to 3 carbon atoms, an alkylsilyl group having 1 to 3 carbon atoms, an alkoxysilyl group having 1 to 3 carbon atoms, a Boc group, or a monovalent organic group in which at least a portion of the hydrogen atoms in these groups have been substituted with at least one of a halogen atom and a hydroxy group.
  • Examples of the monovalent group that is a substituent for any hydrogen atom on the rings of Ar 1 and Ar 1' in the diamine (0) include monovalent groups such as a halogen atom; an alkyl group having 1 to 3 carbon atoms; an alkyl group having 1 to 3 carbon atoms in which at least a portion of the hydrogen atoms are substituted with a halogen atom or a hydroxy group; an alkoxy group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms in which at least a portion of the hydrogen atoms are substituted with at least one of the above halogen atoms and a hydroxy group; an alkenyl group having 2 to 3 carbon atoms; an acyl group having 2 to 3 carbon atoms; an alkylsilyl group having 1 to 3 carbon atoms; an alkoxysilyl group having 1 to 3 carbon atoms; a hydroxy group, and a nitrile group.
  • monovalent groups such as
  • Ar 1 and Ar 1′ in the diamine (0) include 1,4-phenylene, 1,3-phenylene, 2-methyl-1,4-phenylene, 2-ethyl-1,4-phenylene, 2-propyl-1,4-phenylene, 2-butyl-1,4-phenylene, 2-isopropyl-1,4-phenylene, 2-t-butyl-1,4-phenylene, 2-methoxy-1,4-phenylene, 2-ethoxy-1,4-phenylene, 2-propoxy-1,4-phenylene, 2-butoxy-1,4-phenylene, 2-fluoro-1,4-phenylene, and the like.
  • benzene rings which may have a substituent such as 4,4'-biphenylylene, 2-methyl-4,4'-biphenylylene, 2-ethyl-4,4'-biphenylylene, 2-propyl-4,4'-biphenylylene, 2-butyl-4,4'-biphenylylene, 2,3,5,6-tetramethyl-1,4-phenylene, 4-phenylene, 2,3-dimethyl-1,4-phenylene, 4-methyl-1,3-phenylene, 5-methyl-1,3-phenylene, 4-fluoro-1,3-phenylene, 2,3,5,6-tetramethyl-1,4-phenylene, etc.
  • a of the diamine (0) is a divalent organic group having 1 to 10 carbon atoms and an alkylene structure.
  • the alkylene structure has three or more carbon-carbon bonds, any carbon-carbon bond constituting the alkylene structure may be replaced with a carbon-carbon double bond.
  • R represents a hydrogen atom or a monovalent organic group.
  • the two R's may be the same or different.
  • n is an integer of 1 to 10, more preferably an integer of 2 to 10, and further preferably an integer of 2 to 6.
  • m1 and m2 each independently represent an integer of 0 to 4;
  • n' represents an integer of 1 to 6; the sum of m1, m2 and n' is 1 to 8.
  • n1 and n2 each independently represent an integer of 1 to 6, and the sum of n1 and n2 is 2 to 10.
  • n1 and n2 each independently represent an integer of 1 to 6, and the sum of n1 and n2 is 2 to 9.
  • R represents a hydrogen atom or a monovalent organic group.
  • R represents a hydrogen atom or a monovalent organic group.
  • the monovalent organic group include the structures exemplified for R in -C( ⁇ O)-NR- representing L 1 and L 1' in formula (H 1 ) of diamine (0) above.
  • the polyamic acid (A) may contain, as a structural unit derived from a diamine, at least one structural unit represented by the above formula (1D a ), in which Y a is a divalent organic group having three or more benzene rings.
  • the benzene ring in the "divalent organic group having three or more benzene rings” includes a benzene ring constituting a condensed ring.
  • the polyamic acid (A) preferably has a structural unit represented by formula (1D a ) in which at least one of Y a is a divalent organic group derived from diamine (0) in which Ar 1 and Ar 1 ' have the same structure, and at least one of the other Y a is a divalent organic group derived from diamine (0) in which Ar 1 and Ar 1' have different structures.
  • the combination of the biphenyl structure which may have the above-mentioned substituent and the biphenyl structure which may have the above-mentioned substituent, the combination of the naphthalene ring which may have the above-mentioned substituent and the naphthalene ring which may have the above-mentioned substituent can be mentioned.
  • Also as a preferred combination when Ar 1 and Ar 1' are different structures, the combination of the benzene ring which may have the above-mentioned substituent and the biphenyl structure which may have the above-mentioned substituent, the combination of the benzene ring which may have the above-mentioned substituent and the naphthalene ring which may have the above-mentioned substituent, the combination of the biphenyl structure which may have the above-mentioned substituent and the naphthalene ring which may have the above-mentioned substituent and the combination of the biphenyl structure which may
  • the structural unit (1D-1) preferably has a divalent organic group represented by any one of the following formulas (h1-1) to (h1-22), a divalent organic group obtained by removing two amino groups from a diamine represented by the below-described formula (d Da -1), or a divalent organic group obtained by removing two amino groups from a diamine represented by the below-described formulas (Am-1) to (Am-2).
  • the bonding positions of the benzene ring are preferably the 1- and 4-positions
  • the bonding positions of the naphthalene ring are preferably the 2- and 6-positions.
  • the total number of —CH 2 — groups is 10 or less.
  • the total number of -CH 2 - is 8 or less, and two m's may be the same or different.
  • the hydrogen atoms on the benzene rings in the following formulas (h1-1) to (h1-22) may be substituted with a methyl group, a methoxy group, or a fluorine atom.
  • Ar represents a benzene ring, a biphenyl structure, a naphthalene ring, or a divalent organic group represented by the following formula (Im).
  • Any hydrogen atom on the benzene ring, biphenyl structure, or naphthalene ring of Ar may be substituted with a monovalent group, and examples of the monovalent group include a halogen atom, an alkyl group having 1 to 3 carbon atoms, an alkyl group having 1 to 3 carbon atoms in which at least a portion of the hydrogen atoms is substituted with a halogen atom or a hydroxy group, an alkoxy group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms in which at least a portion of the hydrogen atoms is substituted with at least one of the halogen atoms and the hydroxy group, an alkenyl group having 2 to 3 carbon atoms, an acyl group having 2 to 3 carbon
  • X represents a tetravalent organic group obtained by removing two anhydride groups from an acyclic or alicyclic tetracarboxylic acid dianhydride.
  • X in the above formula (Im) is preferably a tetravalent organic group represented by the above formula (x-1) or any of the above formulas (X 5a -1) to (X 5a -4), or a tetravalent organic group obtained by removing two anhydride groups from 1,2,3,4-butanetetracarboxylic dianhydride.
  • the divalent organic group represented by the above formula (Im) is preferably a structure represented by the following formulas (Im-1) to (Im-6).
  • diamine (Ph) Preferred specific examples include p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 1,4-diamino-2,5-methoxybenzene, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3-trifluoromethyl-4,4'-diaminobiphenyl, 2-trifluoromethyl-4,4'-diaminobiphenyl, 3-flu
  • diaminobiphenyl examples include fluoro-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,3'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 4,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6-diaminonaphthalene,
  • Diamine (0)' is a diamine represented by "HN(Z)-Ar 2 -L 2 -A 2 -L 2' -Ar 2' -N(Z)-H".
  • Ar 2 and Ar 2' each independently represent a benzene ring, a biphenyl structure, a naphthalene ring, or an aromatic heterocycle. Any hydrogen atom on the ring of Ar 2 and Ar 2' may be substituted with a monovalent group.
  • a 2 represents a divalent organic group having an alkylene group.
  • a 2 is preferably a divalent organic group having 1 to 30 carbon atoms, more preferably a divalent organic group having 1 to 20 carbon atoms, and even more preferably a divalent organic group having 1 to 18 carbon atoms.
  • any one of Ar 2 , Ar 2′ and A 2 has a heterocycle.
  • the heterocyclic ring include a pyrrole ring, an imidazole ring, a pyrazole ring, a triazole ring, a pyridine ring, a pyrimidine ring, a pyridazine ring, a pyrazine ring, an indole ring, a benzimidazole ring, a purine ring, a quinoline ring, an isoquinoline ring, a naphthyridine ring, a quinoxaline ring, a phthalazine ring, a triazine ring, a carbazole ring, an acridine ring, a piperidine ring, a piperazine ring, a pyrrolidine ring, a hexamethyleneimine ring, etc.
  • a pyridine ring a pyrimidine ring, a pyrazine ring, a benzimidazole ring, a piperidine ring, a piperazine ring, a quinoline ring, a carbazole ring, or an acridine ring is preferred.
  • diamine (0)' include diamines represented by the following (d Da -8), 4-[4-[(4-aminophenoxy)methyl]-4,5-dihydro-4-methyl-2-oxazolyl]-benzeneamine, 4-[4-[(4-aminophenoxy)methyl]-4,5-dihydro-2-oxazolyl]-benzeneamine, and diamines represented by the following (d Ht -1) to (d Ht -8).
  • d Ht -6 and d Ht -8 are preferably 1,4-bis(p-aminobenzyl)piperazine and 4,4'-[4,4'-propane-1,3-diylbis(piperidine-1,4-diyl)]dianiline.
  • the polyamic acid (A) and/or polyamic acid (B) preferably contains 5 to 100 mol % of the structural unit (1D-1) relative to 1 mole of all structural units derived from diamine contained in the polyamic acid (A) and/or polyamic acid (B), more preferably 5 to 95 mol %, even more preferably 10 to 95 mol %, and even more preferably 20 to 80 mol %.
  • Examples of the other diamine in the structural unit (1D-2) derived from the other diamine include the following. 4-aminobenzylamine, 2-(4-aminophenyl)ethylamine, semi-aromatic diamines having a secondary amino group and a primary amino group (preferably 4-(2-(methylamino)ethyl)aniline) (herein, the semi-aromatic diamine refers to a diamine in which one amino group is bonded to an aromatic ring and the other amino group is not bonded to an aromatic ring), 4-(2-aminoethyl)aniline, 2-(6-aminonaphthyl)ethylamine, and other specific diamines (hereinafter, these are also referred to as specific diamines (1));
  • 2,4-diaminophenol 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diamino-3,3'-dihydroxybiphenyl; 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, 4,4'-diaminobiphenyl-3-carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid, 4,4'-diaminodiphenylethane-3-carboxylic acid, 4,4'-diaminobiphenyl-3,3'-dica diamines having a carboxy group such as carboxylic acid, 4,4'-diaminobiphenyl-2,2'-dicarboxylic acid, 3,3'-diaminobiphenyl-4
  • diamines having a steroid skeleton such as cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, cholestanyl 3,5-diaminobenzoate, cholestanyl 3,5-diaminobenzoate, lanostannyl 3,5-diaminobenzoate, and 3,6-bis(4-aminobenzoyloxy)cholestane; diamines represented by the following formulae (V-1) to (V-2); Diamines having a siloxane bond such as metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, and other acyclic aliphatic diamines;
  • X 13 in (z-13) represents a methyl group or a phenyl group.
  • X 19 represents —C( ⁇ O)—, —O—, or —NH—.
  • R 19 and R 19′ each independently represent a hydrogen atom or a methyl group.
  • X 22 represents —CH 2 —, —(CH 2 ) 3 —, or —NH—.
  • m and n are integers of 0 to 3 (with the proviso that 1 ⁇ m+n ⁇ 4 is satisfied), j is an integer of 0 or 1, and X 1 represents -(CH 2 ) a - (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, -CH 2 O-, -CH 2 -OCO-, -COO-, or -OCO-.
  • R 1 represents a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or an alkoxyalkyl group having 3 to 10 carbon atoms.
  • X 2 represents -O-, -CH 2 O-, -CH 2
  • (z-2) and (V-2) when there are two m, n, X 1 and R 1 , each independently has the above definition.
  • D in -N(D)- of the other diamines described above is preferably a carbamate-based organic group such as a benzyloxycarbonyl group, a 9-fluorenylmethyloxycarbonyl group, an allyloxycarbonyl group, or a Boc group.
  • the Boc group is particularly preferred from the viewpoints that it is efficiently eliminated by heat, is eliminated at a relatively low temperature, and is discharged as a harmless gas upon elimination.
  • diamine having a thermally detachable group examples include diamines selected from the following formulae (d Da -1) to (d Da -10), with diamines selected from the following formulae (d Da -2) to (d Da -7) and (d Da -9) to (d Da -10) being more preferred.
  • diamines selected from the following formulae (d Da -3) to (d Da -5) the total number of carbon atoms in the linking groups linking the benzene rings is 11 or more.
  • R represents a hydrogen atom or a Boc group.
  • the polyamic acid (A) and/or the polyamic acid (B) used in the present invention has the above structural unit (1D-2)
  • the content of the structural units derived from the specific diamine (1) is preferably 5 to 95 mol %, more preferably 5 to 90 mol %, and even more preferably 20 to 80 mol %, based on 1 mol of all the structural units derived from diamines contained in the polyamic acid (A) and/or the polyamic acid (B).
  • the polyamic acid (A) and/or the polyamic acid (B) may contain, as the structural unit (1D-2), a structural unit derived from a diamine having a thermally detachable group.
  • the structural unit derived from a diamine having a thermally detachable group is preferably 5 to 40 mol %, more preferably 5 to 35 mol %, and even more preferably 5 to 30 mol %, relative to 1 mol of all structural units derived from diamines contained in the polyamic acid (A) and/or the polyamic acid (B).
  • the polyamic acid (A) and/or the polyamic acid (B) is a structural unit derived from a diamine other than the diamine having the thermally detachable group as the structural unit (1D-2), the diamine having no side chain group having 3 or more carbon atoms.
  • examples of diamines having a side chain group with 3 or more carbon atoms include diamines having the above-mentioned photoalignment group having a side chain group with 3 or more carbon atoms, diamines having the above-mentioned photopolymerizable group at an end and having a side chain group with 3 or more carbon atoms, diamines having the above-mentioned radical polymerization initiator function and having a side chain group with 3 or more carbon atoms, diamines having the above-mentioned specific nitrogen atom-containing structure and having a side chain group with 3 or more carbon atoms, diamines having the above-mentioned steroid skeleton, diamines represented by the above formulas (V-1) to (V-2) and the like having a side chain group with 3 or more carbon atoms, etc.
  • the polyamic acid (A) and / or the polyamic acid ( B ) have a divalent organic group obtained by removing two amino groups from a diamine having a urea bond (for example, a diamine (0) in which A is a divalent organic group (q2), or a diamine having a urea bond exemplified in the above other diamines), the diamine having an amide bond, the diamine (Ph), the diamine (0)', the diamine having the specific nitrogen atom-containing structure, the diamine having a carboxy group, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, p-phenylenediamine, and m-phenylenediamine (these are also collectively referred to as "specific divalent organic group
  • the polyamic acid (A) and/or the polyamic acid (B) may contain structural units (b-1Db) represented by formula (1D b ) in which the above Y a and/or Y b are the above specific divalent organic group (b), in an amount of 5 mol % or more, preferably 10 mol % or more, and more preferably 20 mol % or more, relative to 1 mol of the total structural units derived from diamine contained in the polyamic acid (A) and/or the polyamic acid (B).
  • structural units (b-1Db) represented by formula (1D b ) in which the above Y a and/or Y b are the above specific divalent organic group (b), in an amount of 5 mol % or more, preferably 10 mol % or more, and more preferably 20 mol % or more, relative to 1 mol of the total structural units derived from diamine contained in the polyamic acid (A) and/or the polyamic acid (B).
  • the polyamic acid (A) and/or the polyamic acid (B) is a structural unit derived from a diamine other than the diamine having the thermally detachable group, and the other diamine is a structural unit derived from a diamine having no side chain group having 3 or more carbon atoms, as the structural unit (b-1Db).
  • Examples of the monovalent organic group for Z in the above formula (1D b ) include the structures exemplified for Z in the above formula (1D a ).
  • One embodiment of the liquid crystal aligning agent of the present invention includes the following embodiments (BL1) to (BL2), but is not limited thereto.
  • Aspect (BL1) An aspect in which the polyamic acid (A) contains the structural unit (1D-1) in an amount of 5 to 95 mol % relative to 1 mol of all structural units derived from diamine contained in the polyamic acid (A), and the polyamic acid (B) contains the specific divalent organic group (b) in an amount of 10 mol % or more relative to 1 mol of all structural units derived from diamine contained in the polyamic acid (B).
  • the polyamic acid (A) contains the above structural unit (1D-1) in an amount of 5 to 95 mol % relative to 1 mol of all structural units derived from diamines contained in the polyamic acid (A),
  • the polyamic acid (B) contains the specific divalent organic group (b) in an amount of 10 to 95 mol % relative to 1 mol of all structural units derived from diamine contained in the polyamic acid (B), and contains the structural units (1D-1) excluding the specific divalent organic group (b) in an amount of 5 to 90 mol % relative to 1 mol of all structural units derived from diamine contained in the polyamic acid (B).
  • the content ratio of polyamic acid (A) and polyamic acid (B) in terms of the mass ratio of [polyamic acid (A)/polyamic acid (B)] may be 10/90 to 90/10, 20/80 to 90/10, or 20/80 to 80/20.
  • the polyamic acid contained in the liquid crystal aligning agent of the present invention can be produced, for example, by the following method.
  • a polymer having an amic acid structure (polyamic acid) is obtained by reacting a tetracarboxylic dianhydride component, a diamine component, and an amino terminal modifier added as necessary.
  • the polyamic acid has a structure represented by the above formula (1D a ), for example, a diamine having a structure of -N(Z)-Y a -N(Z)- (Y a and Z are defined as above) is used as the diamine component, and a tetracarboxylic dianhydride having X a (X a is defined as above) is used as the tetracarboxylic acid derivative component.
  • the ratio of the tetracarboxylic dianhydride and diamine used in the production of polyamic acid is preferably 0.5 to 2 equivalents, more preferably 0.8 to 1.2 equivalents, of the acid anhydride group of the tetracarboxylic dianhydride relative to 1 equivalent of the amino group of the diamine.
  • the reaction temperature in the production of the polyamic acid is preferably ⁇ 20 to 150° C., more preferably 0 to 100° C.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours.
  • the polyamic acid can be produced at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the reaction can be carried out at a high concentration in the early stage of the reaction, and then a solvent can be added.
  • At least a part of the terminals of the polyamic acid (A) contains the non-amino group. At least a part of the terminals of the polyamic acid (B) may contain the non-amino group.
  • the non-amino group can be formed, for example, by using an amino terminal modifier.
  • Preferred specific examples of the amino terminal modifier include the above-mentioned acyclic aliphatic dicarboxylic acid anhydrides, the compound (e2-1), the compound (e2-2), and the active ester compound (e3).
  • the polyamic acid (A) and/or polyamic acid (B) can be obtained, for example, by the following production method (a), production method (b), or a method using both of them.
  • the ratio of the diamine to the tetracarboxylic dianhydride used in the production of the polyamic acid may be equal to or greater than the ratio of the tetracarboxylic dianhydride, and the amount of the acid anhydride group of the tetracarboxylic dianhydride is preferably 0.5 to 1.0 equivalent, more preferably 0.8 to 1.0 equivalent, per equivalent of the amino group of the diamine.
  • the proportion of the amino terminal modifier used is preferably 40 parts by mol or less, and more preferably 30 parts by mol or less, per 100 parts by mol of the total of the diamine components used.
  • the proportion of the amino terminal modifier used is preferably 0.1 part by mol or more, and more preferably 0.2 part by mol or more, per 100 parts by mol of the total of the diamine components used.
  • the temperature when reacting the polyamic acid with the amino terminal modifier may be the same as the reaction temperature in the production of the polyamic acid, or the reaction may be carried out while heating.
  • the heating temperature is preferably 30 to 80° C., more preferably 30 to 60° C.
  • the reaction time is preferably 0.1 to 24 hours, more preferably 1 to 24 hours.
  • organic solvents used in the production of the polyamic acid include cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, and 1,3-dimethyl-2-imidazolidinone.
  • solvents such as methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether can be used.
  • the polyamic acid used in the present invention preferably has a solution viscosity of, for example, 10 to 1000 mPa ⁇ s when the polyamic acid is made into a solution having a concentration of 10 to 15% by mass from the viewpoint of workability.
  • the solution viscosity (mPa ⁇ s) of the polymer is a value measured at 25° C. using an E-type rotational viscometer for a polymer solution having a concentration of 10 to 15% by mass prepared using a good solvent for the polymer (e.g., ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc.).
  • the polyamic acid has a polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of preferably 1,000 to 500,000, more preferably 2,000 to 300,000.
  • Mw/Mn polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography
  • the liquid crystal alignment agent of the present invention may contain other polymers other than the polymer (A) and the polymer (B).
  • the other polymers include at least one polymer (Q) selected from the group consisting of polyimide precursors other than the polymer (A) and the polymer (B) and polyimides which are imidized products of the polyimide precursors, polysiloxanes, polyesters, polyamides, polyureas, polyorganosiloxanes, cellulose derivatives, polyacetals, polystyrene derivatives, poly(styrene-maleic anhydride) copolymers, poly(isobutylene-maleic anhydride) copolymers, poly(vinyl ether-maleic anhydride) copolymers, poly(styrene-phenylmaleimide) derivatives, and polymers selected from the group consisting of poly(meth)acrylates.
  • poly(styrene-maleic anhydride) copolymers include SMA1000, SMA2000, SMA3000 (manufactured by Cray Valley Corporation) and GSM301 (manufactured by Gifu Ceramics Manufacturing Co., Ltd.).
  • poly(isobutylene-maleic anhydride) copolymers include ISOBAM-600 (manufactured by Kuraray Co., Ltd.).
  • poly(vinyl ether-maleic anhydride) copolymers include Gantrez AN-139 (methyl vinyl ether maleic anhydride resin, manufactured by Ashland Corporation). The other polymers may be used alone or in combination of two or more.
  • the content ratio of the other polymers is preferably 10 to 90 parts by mass, more preferably 20 to 80 parts by mass, based on 100 parts by mass of the polymer component contained in the liquid crystal alignment agent.
  • the polymer component is a general term for the polymer (A), the polymer (B), and other polymers other than these polymers contained in the liquid crystal alignment agent.
  • the polymer component refers to the polymer (A) and the polymer (B).
  • a liquid crystal aligning agent comprising the following polymer (A) and polymer (B), which gives a liquid crystal alignment film having a change in rotation angle represented by the following formula 1 of less than 0.2°.
  • the structural unit (a-1Ta) represented by the following formula (1T a ) is contained as a structural unit derived from a tetracarboxylic acid derivative,
  • the diamine-derived structural unit includes a structural unit (a-1Da) represented by the following formula (1D a ):
  • Ya represents a divalent organic group derived from a diamine.
  • Each Z independently represents a hydrogen atom or a monovalent organic group.
  • R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, an alkoxy group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 6 carbon atoms, an alkyloxycarbonyl group having 2 to 6 carbon atoms, or a phenyl group, and at least one of R 1 to R 4 represents a group other than a hydrogen atom as defined above.
  • Xb represents a tetravalent organic group derived from an aromatic tetracarboxylic dianhydride, a tetravalent organic group represented by the following formula (x-2), or a tetravalent organic group ( T5a ) having an alicyclic structure having five or more members.
  • Yb represents a divalent organic group derived from a diamine.
  • Z has the same meaning as Z in formula ( 1Da ).
  • Q is a monovalent organic group selected from the following groups (e1) to (e3).
  • * represents a bond.
  • (e1) an acyclic hydrocarbon group having 1 to 6 carbon atoms;
  • (e2) a monovalent organic group having 1 to 2 carboxy groups and 2 to 30 carbon atoms (however, the monovalent organic group does not include an acid anhydride group).
  • (e3) A monovalent organic group having two or more Boc groups and having 1 to 30 carbon atoms excluding Boc, the monovalent organic group having a protected amino moiety selected from the group consisting of *1-NH(Boc), *1-N(Boc) 2 and *1-N(Boc)-*1 (*1 represents a bond bonded to a carbon atom).
  • the protected amino moieties may be the same or different.
  • ⁇ a rotation angle of liquid crystal cell
  • ⁇ b rotation angle of liquid crystal cell using the same liquid crystal alignment agent left at room temperature for 48 hours (in the above formula 1, the rotation angle is Two substrates with liquid crystal alignment films are used as a set. A sealant is applied onto one substrate, and the other substrate is attached so that the liquid crystal alignment film faces each other and the alignment direction is 0°. The sealant is then hardened, liquid crystal is injected, and the injection port is sealed to obtain a liquid crystal cell.
  • the amount of change in the rotation angle represented by the above formula 1 is preferably 0.12° or less, and more preferably less than 0.12°.
  • the change in the rotation angle of the liquid crystal cell using the liquid crystal alignment agent according to another embodiment of the present invention was less than 0.2°, and the deterioration of the liquid crystal alignment property due to being left at room temperature was suppressed.
  • the meanings of the symbols in the liquid crystal aligning agent according to another embodiment of the present invention are the same as those of the above-mentioned liquid crystal aligning agent, including preferred embodiments.
  • the liquid crystal aligning agent of the present invention is used for preparing a liquid crystal alignment film, and takes the form of a coating liquid from the viewpoint of forming a uniform thin film.
  • the liquid crystal aligning agent of the present invention is also preferably a coating liquid containing the above-mentioned polymer component and a solvent.
  • the content (concentration) of the polymer component contained in the liquid crystal alignment agent of the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed, but from the viewpoint of forming a uniform and defect-free coating film, it is preferably 1 mass % or more relative to the total amount of the liquid crystal alignment agent, and from the viewpoint of storage stability of the solution, it is preferably 10 mass % or less.
  • the total content ratio of the polymer (A) and the polymer (B) in the liquid crystal alignment agent is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and even more preferably 50 parts by mass or more, relative to 100 parts by mass of the total of the polymers contained in the liquid crystal alignment agent.
  • the content ratio of the polymer (A) and the polymer (B) is preferably 10 to 90 parts by mass, more preferably 20 to 80 parts by mass, relative to 100 parts by mass of the polymer components contained in the liquid crystal alignment agent.
  • the solvent contained in the liquid crystal alignment agent is not particularly limited as long as it dissolves the polymer components uniformly.
  • Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethyllactamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylsulfoxide, ⁇ -butyrolactone, ⁇ -valerolactone, 1,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N,N-dimethylpropanamide, and 3-butoxy-N,N-dimethylpropanamide.
  • N-(n-propyl)-2-pyrrolidone N-isopropyl-2-pyrrolidone
  • N-(n-butyl)-2-pyrrolidone N-(tert-butyl)-2-pyrrolidone
  • N-(n-pentyl)-2-pyrrolidone N-(3-methoxypropyl)-2-pyrrolidone
  • N-(2-ethoxyethyl)-2-pyrrolidone N-(4-methoxybutyl)-2-pyrrolidone
  • N-cyclohexyl-2-pyrrolidone N-cyclohexyl-2-pyrrolidone (collectively referred to as "good solvents").
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, or ⁇ -butyrolactone is preferred.
  • the content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass, of the total solvent contained in the liquid crystal alignment agent.
  • the solvent contained in the liquid crystal alignment agent is preferably a mixed solvent that uses, in addition to the above solvent, a solvent (also called a poor solvent) that improves the coatability when applying the liquid crystal alignment agent and the surface smoothness of the coating film.
  • a solvent also called a poor solvent
  • Specific examples of poor solvents to be used in combination are listed below, but are not limited to these.
  • the content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass, of the total solvent contained in the liquid crystal alignment agent.
  • the type and content of the poor solvent are appropriately selected depending on the coating device, coating conditions, coating environment, etc. of the liquid crystal alignment agent.
  • diisobutyl carbinol propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, and diisobutyl ketone are preferred.
  • Preferred solvent combinations of good and poor solvents include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, and N-methyl-2-pyrrolidone and ⁇ Examples include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, propylene glycol monobutyl ether, and diisobutyl ketone, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, propylene glycol monobutyl
  • the liquid crystal alignment agent of the present invention may additionally contain components other than the polymer component and the solvent (hereinafter also referred to as additive components).
  • additive components include compounds for increasing the strength of the liquid crystal alignment film (hereinafter also referred to as cross-linking compounds), adhesion aids for increasing the adhesion between the liquid crystal alignment film and the substrate or between the liquid crystal alignment film and the sealant, dielectrics or conductive substances for adjusting the dielectric constant or electrical resistance of the liquid crystal alignment film, and imidization promoters for promoting imidization.
  • crosslinkable compound examples include at least one crosslinkable compound selected from the group consisting of a crosslinkable compound (c-1) having at least one substituent selected from an epoxy group, an oxetanyl group, an oxazoline structure, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group, and an alkoxy group, and a crosslinkable compound (c-2) having a polymerizable unsaturated group.
  • a crosslinkable compound (c-1) having at least one substituent selected from an epoxy group, an oxetanyl group, an oxazoline structure, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group, and an alkoxy group
  • a crosslinkable compound (c-2) having a polymerizable unsaturated group.
  • crosslinkable compounds (c-1) and (c-2) include the following compounds: Compounds having an epoxy group include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, bisphenol A type epoxy resins such as Epicoat 828 (manufactured by Mitsubishi Chemical Corporation), and bisphenol A type epoxy resins such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation).
  • Compounds having an epoxy group include ethylene glycol diglycidyl ether,
  • Phenol F type epoxy resins hydrogenated bisphenol A type epoxy resins such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), biphenyl skeleton-containing epoxy resins such as YX6954BH30 (manufactured by Mitsubishi Chemical Corporation), phenol novolac type epoxy resins such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), (o, m, p-)cresol novolac type epoxy resins such as EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.), tetrakis(glycidyloxymethyl)methane, N,N,N',N'-tetraglycidyl-1,4-phenylenediamine, N,N,N',N'-tetraglycidyl-2,2'-dimethyl-4.4'-diaminobiphenyl, 2,2-bis[4-(N,N-diglycidyl-4-aminophenoxy
  • crosslinkable compounds are examples of crosslinkable compounds, and are not limited to these.
  • other components than those mentioned above disclosed on pages 53 [0105] to 55 [0116] of WO2015/060357 may be used.
  • Two or more types of crosslinkable compounds may be used in combination.
  • the content of the crosslinkable compound in the liquid crystal alignment agent is preferably 0.5 to 20 parts by mass, and more preferably 1 to 15 parts by mass, per 100 parts by mass of the polymer component contained in the liquid crystal alignment agent.
  • adhesion aid examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyl trimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-3-triethoxysilylpropyltriethylenetetramine,
  • the content of the adhesion assistant in the liquid crystal alignment agent is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, per 100 parts by mass of the polymer component contained in the liquid crystal alignment agent.
  • Dielectric or conductive materials include, for example, monoamines having a nitrogen-containing aromatic heterocycle, such as 3-picolylamine.
  • the content of the dielectric or conductive substance in the liquid crystal alignment agent is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, per 100 parts by mass of the polymer component contained in the liquid crystal alignment agent.
  • the liquid crystal alignment film of the present invention is formed using the liquid crystal aligning agent of the present invention.
  • the method for producing a liquid crystal alignment film of the present invention includes, for example, applying the above-mentioned liquid crystal alignment agent to a substrate, baking the same, and irradiating the resulting film with polarized radiation.
  • a preferred embodiment of the method for producing a liquid crystal alignment film of the present invention includes, for example, a step of applying the above-mentioned liquid crystal alignment agent to a substrate (step (1)), a step of baking the applied liquid crystal alignment agent (step (2)), and, in some cases, a step of performing an alignment treatment on the film obtained in step (2) (step (3)).
  • the substrate to which the liquid crystal alignment agent used in the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a plastic substrate such as a polycarbonate substrate, etc. can also be used.
  • a substrate on which an ITO (Indium Tin Oxide) electrode for driving the liquid crystal is formed from the viewpoint of simplifying the process.
  • an opaque material such as a silicon wafer can be used for only one substrate, and in this case, a material that reflects light such as aluminum can also be used for the electrode.
  • a substrate on which an electrode made of a transparent conductive film or a metal film patterned into a comb tooth shape is provided and an opposing substrate on which no electrode is provided are used.
  • Methods for applying the liquid crystal alignment agent to a substrate and forming a film include screen printing, offset printing, flexographic printing, the inkjet method, and the spray method.
  • the inkjet method is the most suitable for application and film formation.
  • An IPS substrate which is a comb-tooth electrode substrate used in the IPS system (mode) has a base material, a plurality of linear electrodes formed on the base material and arranged in a comb-tooth shape, and a liquid crystal alignment film formed on the base material so as to cover the linear electrodes.
  • the FFS substrate which is a comb-tooth electrode substrate used in the FFS method (mode), has a base material, a surface electrode formed on the base material, an insulating film formed on the surface electrode, a plurality of linear electrodes formed on the insulating film and arranged in a comb-tooth shape, and a liquid crystal alignment film formed on the insulating film so as to cover the linear electrodes.
  • FIG. 1 is a schematic cross-sectional view showing an example of an IPS mode in-plane switching liquid crystal display device having a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention.
  • liquid crystal 3 is sandwiched between a comb-tooth electrode substrate 2 having a liquid crystal alignment film 2c and a counter substrate 4 having a liquid crystal alignment film 4a.
  • the comb-tooth electrode substrate 2 has a base material 2a, a plurality of linear electrodes 2b formed on the base material 2a and arranged in a comb-tooth shape, and a liquid crystal alignment film 2c formed on the base material 2a so as to cover the linear electrodes 2b.
  • the counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2c is the liquid crystal alignment film of the present invention.
  • the liquid crystal alignment film 4c is also the liquid crystal alignment film of the present invention.
  • IPS LCD element 1 of FIG. 1 when a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as indicated by electric field lines L.
  • FIG. 2 is a schematic cross-sectional view showing an example of an FFS mode in-plane switching liquid crystal display device having a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention.
  • liquid crystal 3 is sandwiched between a comb-tooth electrode substrate 2 having a liquid crystal alignment film 2h and a counter substrate 4 having a liquid crystal alignment film 4a.
  • the comb-tooth electrode substrate 2 has a base material 2d, a plane electrode 2e formed on the base material 2d, an insulating film 2f formed on the plane electrode 2e, a plurality of linear electrodes 2g formed on the insulating film 2f and arranged in a comb-tooth shape, and a liquid crystal alignment film 2h formed on the insulating film 2f so as to cover the linear electrodes 2g.
  • the counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2h is the liquid crystal alignment film of the present invention.
  • the liquid crystal alignment film 4a is also the liquid crystal alignment film of the present invention.
  • the IPS LCD element 1 shown in FIG. 2 when a voltage is applied to the plane electrodes 2e and the linear electrodes 2g, an electric field is generated between the plane electrodes 2e and the linear electrodes 2g as indicated by electric field lines L.
  • Step (2) is a step of baking the liquid crystal alignment agent applied on the substrate to form a film.
  • the solvent can be evaporated or the amic acid or amic acid ester in the polymer can be thermally imidized by a heating means such as a hot plate, a heat circulation oven, or an IR (infrared) oven.
  • the drying and baking steps after the application of the liquid crystal alignment agent of the present invention can be performed at any temperature and time, and may be performed multiple times.
  • the temperature at which the solvent of the liquid crystal alignment agent is evaporated can be, for example, 40 to 180°C as the temperature of the heating means, but may be 40 to 150°C from the viewpoint of shortening the process.
  • the baking time is not particularly limited, but is, for example, 1 to 10 minutes, preferably 1 to 5 minutes.
  • a further baking step can be performed at a temperature of, for example, 150 to 300°C, preferably 150 to 250°C as the temperature of the heating means.
  • the baking time in the thermal imidization step is not particularly limited, but is, for example, 5 to 40 minutes, and preferably 5 to 30 minutes. If the film-like material after firing is too thin, the reliability of the liquid crystal display device may decrease, so the thickness is preferably 5 to 300 nm, and more preferably 10 to 200 nm.
  • Step (3) is a step of performing an alignment treatment on the film obtained in step (2).
  • the alignment treatment method for the liquid crystal alignment film includes a rubbing treatment method and a photo-alignment treatment method, and the photo-alignment treatment method is preferable.
  • the photo-alignment treatment method includes a method in which the surface of the film-like material is irradiated with polarized radiation in a certain direction, and optionally heated to impart liquid crystal alignment properties (also called liquid crystal alignment ability).
  • the radiation ultraviolet rays or visible light having a wavelength of 100 to 800 nm can be used. Among them, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and more preferably, ultraviolet rays having a wavelength of 200 to 400 nm are preferable.
  • the radiation dose is preferably 1 to 10,000 mJ/ cm2 , and more preferably 100 to 5,000 mJ/ cm2 .
  • Examples of light sources for the irradiation light include low-pressure mercury lamps, high-pressure mercury lamps, deep UV lamps, deuterium lamps, metal halide lamps, argon resonance lamps, xenon lamps, mercury-xenon lamps, excimer lasers (e.g., KrF excimer lasers), fluorescent lamps, LED lamps, halogen lamps (e.g., sodium lamps), and microwave-excited electrodeless lamps.
  • excimer lasers e.g., KrF excimer lasers
  • fluorescent lamps e.g., LED lamps
  • halogen lamps e.g., sodium lamps
  • the extinction ratio of the polarized ultraviolet light is more preferably 10:1 or greater, and even more preferably 20:1 or greater.
  • the substrate having the film-like material may be irradiated while being heated at 50 to 250° C.
  • the liquid crystal alignment film thus produced can stably align liquid crystal molecules in a certain direction.
  • the liquid crystal alignment film irradiated with polarized radiation by the above-mentioned method can be contacted with a solvent or the liquid crystal alignment film irradiated with radiation can be heat-treated.
  • the solvent used in the contact treatment is not particularly limited, so long as it dissolves the decomposition products generated from the film-like material by irradiation with radiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate, and the like.
  • water, 2-propanol, 1-methoxy-2-propanol, or ethyl lactate is preferred from the standpoint of versatility and solvent safety.
  • Water, 1-methoxy-2-propanol, or ethyl lactate is more preferred.
  • the solvent may be one type or a combination of two or more types.
  • the above-mentioned contact treatments include immersion treatment and spray treatment (also called spray treatment).
  • the treatment time in these treatments is preferably 10 seconds to 1 hour in order to efficiently dissolve the decomposition products generated from the film-like material by irradiation with radiation.
  • immersion treatment for 1 minute to 30 minutes is more preferable.
  • the solvent during the above-mentioned contact treatment may be at room temperature or heated, but is preferably 10 to 80°C, and more preferably 20 to 50°C.
  • ultrasonic treatment or the like may be performed as necessary in terms of the solubility of the decomposition products.
  • rinsing also called rinsing
  • a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, etc.
  • calcination temperature is preferably 150 to 300°C, more preferably 180 to 250°C, and even more preferably 200 to 230°C.
  • the calcination time is preferably 10 seconds to 30 minutes, and more preferably 1 minute to 10 minutes.
  • the heat treatment of the coating film irradiated with the above radiation is preferably carried out at 50 to 300° C. for 1 to 30 minutes, and more preferably at 120 to 250° C. for 1 to 30 minutes.
  • the liquid crystal display element of the present invention has the liquid crystal alignment film of the present invention.
  • the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film for a liquid crystal display element of a horizontal electric field type such as an IPS type or an FFS type, from the viewpoint of obtaining high liquid crystal alignment properties, and is particularly useful as a liquid crystal alignment film for a liquid crystal display element of an FFS type.
  • a liquid crystal display element can be manufactured by obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention, preparing a liquid crystal cell by a known method, and disposing a liquid crystal in the liquid crystal cell. Specifically, the following two methods can be mentioned.
  • the first method first, two substrates are placed facing each other with a gap (cell gap) between them so that their liquid crystal alignment films face each other.
  • the periphery of the two substrates is bonded together using a sealant, and the liquid crystal composition is injected and filled into the substrate surfaces and the cell gap defined by the sealant so that it comes into contact with the film surface, and then the injection hole is sealed.
  • the second method is called the ODF (One Drop Fill) method.
  • ODF One Drop Fill
  • a UV-curable sealant is applied to a specified location on one of the two substrates on which a liquid crystal alignment film has been formed, and liquid crystal composition is then dropped onto several specified locations on the liquid crystal alignment film surface.
  • the other substrate is then attached so that the liquid crystal alignment film faces the other substrate, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface.
  • the entire surface of the substrate is irradiated with UV light to cure the sealant.
  • the liquid crystal composition used it is further desirable to heat the liquid crystal composition used to a temperature at which it assumes an isotropic phase, and then slowly cool it to room temperature to remove flow alignment that occurs during liquid crystal filling.
  • the two substrates are disposed opposite each other so that the rubbing directions of the coating films are at a predetermined angle, for example, perpendicular or anti-parallel to each other.
  • the substrates are disposed opposite each other so that the alignment directions are at a predetermined angle, for example, perpendicular or anti-parallel to each other.
  • the sealing agent may be, for example, an epoxy resin containing a hardener and aluminum oxide spheres as spacers.
  • the liquid crystal may be a nematic liquid crystal or a smectic liquid crystal, of which the nematic liquid crystal is preferred.
  • the liquid crystal composition is not particularly limited, and is a composition containing at least one type of liquid crystal compound (liquid crystal molecule), and may be either a liquid crystal composition having a positive dielectric anisotropy (also called a positive type liquid crystal composition or positive type liquid crystal) or a liquid crystal composition having a negative dielectric anisotropy (also called a negative type liquid crystal composition or negative type liquid crystal), although a negative type liquid crystal material is preferred.
  • a positive dielectric anisotropy also called a positive type liquid crystal composition or positive type liquid crystal
  • a liquid crystal composition having a negative dielectric anisotropy also called a negative type liquid crystal composition or negative type liquid crystal
  • the liquid crystal composition may contain a liquid crystal compound having a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., a trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocycle, a cycloalkane, a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring, or may contain a compound having two or more rigid portions (mesogenic skeletons) that exhibit liquid crystallinity in the molecule (e.g., a bimesogenic compound in which two rigid biphenyl structures or terphenyl structures are linked by an alkyl group).
  • a fluorine atom-containing group e.g., a trifluoromethyl group
  • a cyano group e.g., an alky
  • the liquid crystal composition may be a liquid crystal composition exhibiting a nematic phase, a liquid crystal composition exhibiting a smectic phase, or a liquid crystal composition exhibiting a cholesteric phase.
  • the liquid crystal composition may further contain additives, such as photopolymerizable monomers having a polymerizable group, optically active compounds (e.g., S-811 manufactured by Merck, etc.), antioxidants, ultraviolet absorbers, dyes, antifoaming agents, polymerization initiators, or polymerization inhibitors.
  • additives such as photopolymerizable monomers having a polymerizable group, optically active compounds (e.g., S-811 manufactured by Merck, etc.), antioxidants, ultraviolet absorbers, dyes, antifoaming agents, polymerization initiators, or polymerization inhibitors.
  • the positive type liquid crystal include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019, and MLC-7081 manufactured by Merck.
  • Examples of negative type liquid crystals include MLC-6608, MLC-6609, MLC-6610, MLC-6882, MLC-6886, MLC-7026, MLC-7026-000, MLC-7026-100, and MLC-7029 manufactured by Merck.
  • MLC-3023 manufactured by Merck is an example of a liquid crystal containing a compound having a polymerizable group.
  • polarizing plates are installed. Specifically, a pair of polarizing plates are attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • polarizing plates include a polarizing film called an "H film” in which polyvinyl alcohol is stretched and oriented while iodine is absorbed, sandwiched between cellulose acetate protective films, and a polarizing plate made of the H film itself.
  • H film a polarizing film in which polyvinyl alcohol is stretched and oriented while iodine is absorbed, sandwiched between cellulose acetate protective films, and a polarizing plate made of the H film itself.
  • NMP N-methyl-2-pyrrolidone
  • NEP N-ethyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • MDPA 3-methoxy-N,N-dimethylpropanamide
  • BCS Butyl cellosolve (ethylene glycol monobutyl ether)
  • DAA Diacetone alcohol
  • AD-1 Acetic acid
  • AD-2 3-glycidoxypropyltriethoxysilane
  • AD-3 to AD-6 Compounds of the following structural formula
  • the abundance rate of the terminal amino groups was calculated from the ratio of the peak intensity of the terminal amino groups of each polyamic acid powder to the peak intensity of the terminal amino groups of the polyamic acid powder that was not end-modified (analysis conditions are as follows).
  • BOP Reagent Benzotriazolyl-N-hydroxytris(dimethylamino)phosphonium hexafluorophosphate salt
  • Synthesis Examples 38 to 53> The same operations as in Synthesis Examples 3 and 4 were carried out using the polymer solutions and amino terminal modifiers shown in Table 2 below, to obtain polymer solutions C-12 to C-27.
  • Example 1 Using the above polymer solution B-1 and the above polymer solution C-1, the polymer solution C-1 (2.3 g) and the polymer solution B-1 (2.3 g) were mixed so that the mass ratio of the two types of polymers was 50:50. To this mixture, NMP (9.6 g), BCS (5.0 g), an NMP solution containing 1 mass% AD-2 (0.5 g), and an NMP solution containing 10 wt% AD-3 (0.3 g) were added with stirring, and further stirred at room temperature for 2 hours to obtain the liquid crystal alignment agent (AL-1) of the present invention. In addition, a liquid crystal alignment agent (AL-1-48h) was also obtained by leaving it at room temperature for 48 hours to evaluate the deterioration suppression effect of liquid crystal alignment.
  • Examples 2 to 14 and Comparative Examples 1 to 3 The same operation as in Example 1 was carried out with the composition shown in Table 4 below, and the liquid crystal alignment agents (AL-2) to (AL-14), (AL-2-48h) to (AL-14-48h) of Examples 2 to 14 of the present invention and (AL-R1) to (AL-R3), (AL-R1-48h) to (AL-R3-48h) of Comparative Examples 1 to 3 were obtained.
  • Examples 15 to 41 and Comparative Examples 4 to 30 With the composition shown in Table 5 below, the same operation as in Example 1 was carried out to obtain the liquid crystal alignment agents (AL-15) to (AL-41), (AL-15-48h) to (AL-41-48h) of Examples 15 to 41 of the present invention and the liquid crystal alignment agents (AL-R4) to (AL-R30), (AL-R4-48h) to (AL-R30-48h) of Comparative Examples 4 to 30.
  • the liquid crystal alignment agent obtained above was used to prepare the following FFS drive liquid crystal cell.
  • the liquid crystal cell for the FFS mode was a set of a first glass substrate on which an FOP (Finger on Plate) electrode layer consisting of a planar common electrode, an insulating layer, and a comb-shaped pixel electrode was formed on the surface, and a second glass substrate on which a columnar spacer with a height of 4 ⁇ m was formed on the surface and an ITO film for preventing static electricity was formed on the back surface.
  • FOP Finger on Plate
  • the pixel electrode had a comb-like shape in which a plurality of electrode elements with a width of 3 ⁇ m, which were bent at an inner angle of 160° at the center, were arranged in parallel at intervals of 6 ⁇ m, and one pixel had a first region and a second region with a line connecting the bends of the plurality of electrode elements as a boundary.
  • the liquid crystal alignment film formed on the first glass substrate was oriented so that the direction dividing the inner angle of the pixel bend was orthogonal to the alignment direction of the liquid crystal, and the liquid crystal alignment film formed on the second glass substrate was oriented so that the alignment direction of the liquid crystal on the first substrate coincided with the alignment direction of the liquid crystal on the second substrate when the liquid crystal cell was produced.
  • liquid crystal alignment agents obtained in the above Examples 1 to 14 and Comparative Examples 1 to 3 were filtered through a filter with a pore size of 1.0 ⁇ m, and then applied by spin coating to the surfaces of the above electrode-attached substrate and a glass substrate having a columnar spacer with a height of 4 ⁇ m and an ITO film formed on the back surface. After drying for 2 minutes on a hot plate at 80° C., the substrate was baked for 30 minutes in a hot air circulation oven at 230° C. to form a coating film with a thickness of 100 nm.
  • the coating surface was irradiated with 0.3 J/ cm2 of ultraviolet light having a wavelength of 254 nm and linearly polarized with an extinction ratio of 26:1 through a polarizing plate.
  • the substrate was baked in a hot air circulating oven at 230°C for 30 minutes to obtain a substrate with a liquid crystal alignment film.
  • a coating film having a thickness of 100 nm was formed in the same manner as above using the liquid crystal alignment agents obtained in the above Example 41 and Comparative Example 30.
  • an alignment treatment was performed by changing the above photo-alignment treatment to the following rubbing alignment treatment. Specifically, the substrate on which the coating film was formed was rubbed with a rayon cloth (roller diameter: 140 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm/sec, indentation length: 0.4 mm), then ultrasonically cleaned in pure water for 1 minute, water droplets were removed by air blowing, and the substrate was dried at 80° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film.
  • the two substrates thus obtained were combined into a set, a sealant was applied onto one substrate, and the other substrate was attached so that the liquid crystal alignment film faces each other and the alignment direction was 0°, after which the sealant was cured to prepare an empty cell.
  • Liquid crystal MLC-3019 (Merck) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to prepare an FFS drive liquid crystal cell.
  • the obtained FFS drive liquid crystal cell was heated at 120°C for 1 hour, left at 23°C overnight, and then used for the evaluation described below.
  • a liquid crystal cell was placed between two polarizing plates arranged so that the polarization axes were perpendicular to each other, a backlight was turned on, the arrangement angle of the liquid crystal cell was adjusted so that the transmitted light intensity of the first region of the pixel was minimized, and then the rotation angle required when the liquid crystal cell was rotated so that the transmitted light intensity of the second region of the pixel was minimized was obtained. It can be said that the smaller the value of this rotation angle, the better the afterimage characteristics due to long-term AC driving.
  • liquid crystal cell using the liquid crystal aligning agent of the present invention has good liquid crystal alignment, that is, the deterioration of the liquid crystal alignment when left at room temperature is suppressed.
  • a detailed comparison is as follows. A comparison of Examples 1 and 2 with Comparative Example 1 shows that the lower the abundance rate of the terminal amino group, the better the liquid crystal alignment property. A comparison of Examples 2 and 10 with Comparative Examples 1 and 2 shows that the contribution of the abundance rate of the terminal amino group to the liquid crystal alignment property varies greatly depending on the type of polyamic acid.
  • Comparative Example 3 also shows that when acetic acid is added as an additive (i.e., when the terminal amino group is not modified to have a non-amino group of formula (E)), the deterioration of the liquid crystal alignment property cannot be suppressed. Moreover, the change in the rotation angle of the liquid crystal cell using the liquid crystal aligning agent of the present invention was all less than 0.2°, and it was confirmed that the deterioration of the liquid crystal alignment property due to being left at room temperature was suppressed.
  • the rotation angles ⁇ a and ⁇ b were calculated in the same manner for the liquid crystal alignment agents (AL-15) to (AL-41), (AL-15-48h) to (AL-41-48h), (AL-R4) to (AL-R30), (AL-R4-48h) to (AL-R30-48h) obtained in the above Examples 15 to 41 and Comparative Examples 4 to 30.
  • ) due to storage at room temperature for each liquid crystal alignment agent was used as an index representing the degree of deterioration of the liquid crystal alignment property, and if this value is lower than 0.2°, it was defined as " ⁇ ", and if it is 0.2° or more, it was defined as " ⁇ ".
  • Table 7 The evaluation results are shown in Table 7.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Provided are: a liquid crystal aligning agent that contains two or more kinds of polyamic acids and in which deterioration of liquid crystal orientation during storage at room temperature is suppressed; a liquid crystal alignment film obtained from the liquid crystal aligning agent; and a liquid crystal display element. The liquid crystal aligning agent contains a polymer (A) and a polymer (B) as indicated below. Polymer (A): A polyamic acid (A) having a structural unit derived from a tetracarboxylic acid derivative and a structural unit derived from a diamine, the polyamic acid (A) containing: a structural unit (a-1Ta) represented by the formula (1Ta) as the structural unit derived from the tetracarboxylic acid derivative; and a structural unit (a-1Da) represented by the formula (1Da) as the structural unit derived from the diamine. At least some of the terminals of the polyamic acid (A) contain a non-amino group, the non-amino group being a functional group represented by the structural formula (E), and the abundance ratio of the terminal amino group of the polyamic acid (A) with respect to all of the terminals of the polyamic acid (A) is 60% or less. Polymer (B): A polyamic acid (B) having a structural unit derived from a tetracarboxylic acid derivative and a structural unit derived from a diamine, the polyamic acid containing: a structural unit (b-1Tb) represented by the formula (1Tb) as the structural unit derived from the tetracarboxylic acid derivative; and a structural unit (b-1Db) represented by the formula (1Db) as the structural unit derived from the diamine.

Description

液晶配向剤、液晶配向膜、液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element

 本発明は、液晶配向剤、液晶配向膜、及び液晶表示素子に関する。 The present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element.

 従来から液晶表示装置は、パーソナルコンピュータ、スマートフォン、携帯電話、テレビジョン受像機等の表示部として幅広く用いられている。液晶表示装置は、例えば、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。液晶分子の駆動方式としては、TN(Twisted Nematic)方式、VA(Vertical Alignment)方式等の縦電界方式や、IPS(In-Plane Switching)方式、FFS(Fringe Field Switching)方式等の横電界方式が知られている。 Liquid crystal display devices have been widely used as display units for personal computers, smartphones, mobile phones, television receivers, etc. Liquid crystal display devices include, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, pixel electrodes and a common electrode that apply an electric field to the liquid crystal layer, an alignment film that controls the orientation of the liquid crystal molecules in the liquid crystal layer, and thin film transistors (TFTs) that switch the electric signals supplied to the pixel electrodes. Known methods for driving liquid crystal molecules include vertical electric field methods such as the TN (Twisted Nematic) method and the VA (Vertical Alignment) method, and horizontal electric field methods such as the IPS (In-Plane Switching) method and the FFS (Fringe Field Switching) method.

 現在、工業的に最も普及している液晶配向膜は、電極基板上に形成された、ポリアミック酸及び/又はこれをイミド化したポリイミドに代表される重合体からなる膜の表面に、配向処理を行うことで作製されている。近年では、液晶表示素子の高性能化、高精細化、大型化に伴い、偏光された放射線を照射することにより、液晶配向能を付与する光配向法が検討されている。光配向法は、光異性化反応を利用したもの、光架橋反応を利用したもの、光分解反応を利用したもの等が提案されている(例えば、非特許文献1、特許文献1参照)。 Currently, the most widely used industrial liquid crystal alignment film is produced by performing an alignment treatment on the surface of a film made of a polymer, typically polyamic acid and/or polyimide obtained by imidizing it, formed on an electrode substrate. In recent years, as liquid crystal display elements have become more powerful, precise, and large, photo-alignment methods that impart liquid crystal alignment ability by irradiating polarized radiation have been investigated. Proposed photo-alignment methods include those that utilize a photoisomerization reaction, a photocrosslinking reaction, and a photodecomposition reaction (see, for example, Non-Patent Document 1 and Patent Document 1).

特開平9-297313号公報Japanese Patent Application Publication No. 9-297313

「液晶光配向膜」木戸脇、市村 機能材料 1997年11月号 Vol.17、 No.11 13~22ページ"Liquid crystal photoalignment film" Kidowaki, Ichimura, Functional Materials, November 1997, Vol. 17, No. 11, pp. 13-22

 従来、横電界方式の液晶表示素子に用いられる液晶配向膜用の液晶配向剤として、ポリイミドを含有する液晶配向剤が盛んに検討されてきた。しかし、ポリイミドは優れた液晶配向性を有する半面、有機溶媒に対する溶解性に乏しいという欠点を有する。そのためポリイミドを有機溶媒に溶解させる場合に、N-メチルピロリドンなどの溶解性の高い極性有機溶媒が用いられている。しかし、極性有機溶媒は、溶解性が高い反面、吸湿性が高いという欠点を有する。したがって、上記極性有機溶媒を含む液晶配向剤を用いて液晶配向膜を作製する場合、得られる液晶配向膜の性能を高める観点から、液晶配向剤の塗布環境を制御する必要が生じる。特に湿度が高い環境で塗布を行うと、加熱処理前の吸湿によって液晶配向剤の溶解性が下がり、ポリイミドが析出し、液晶配向膜が白くなる(吸湿白化)問題が発生する場合があった。
 また、ポリイミドの製造は、大量の試薬や大型の製造設備が必要となり、取り扱い性(安全性、環境負荷、設備費等)の面で課題を抱える。
 本発明者は、上記事情に鑑み、ポリアミック酸を用いる液晶配向剤に着目した。ところが、特性の異なる2種類以上のポリアミック酸を含有する液晶配向剤を用いた場合、上記吸湿白化の抑制や、取り扱い性の観点で好ましい一方、保管時に液晶配向性の劣化が進行することが明らかとなった。
 特に、IPS方式やFFS方式に代表される液晶表示素子に用いられる液晶配向膜には、長期交流駆動によって発生する残像(以下、AC残像ともいう)を抑制するための高い配向規制力が必要となるが、このような高いレベルの要求に応えられるものが必ずしも得られない、といった問題が発生することが明らかとなった。
Conventionally, liquid crystal alignment agents containing polyimide have been actively studied as liquid crystal alignment agents for liquid crystal alignment films used in in-plane switching liquid crystal display elements. However, while polyimide has excellent liquid crystal alignment properties, it has the disadvantage of poor solubility in organic solvents. Therefore, when dissolving polyimide in an organic solvent, a highly soluble polar organic solvent such as N-methylpyrrolidone is used. However, polar organic solvents have the disadvantage of high solubility but high hygroscopicity. Therefore, when preparing a liquid crystal alignment film using a liquid crystal alignment agent containing the above polar organic solvent, it is necessary to control the application environment of the liquid crystal alignment agent from the viewpoint of improving the performance of the obtained liquid crystal alignment film. In particular, when the application is performed in a high humidity environment, the solubility of the liquid crystal alignment agent decreases due to moisture absorption before heat treatment, polyimide precipitates, and the liquid crystal alignment film becomes white (hygroscopic whitening) may occur.
Furthermore, the production of polyimide requires large amounts of reagents and large production facilities, which poses problems in terms of handling (safety, environmental impact, equipment costs, etc.).
In view of the above circumstances, the present inventors have focused on a liquid crystal aligning agent using a polyamic acid. However, it has become clear that, when a liquid crystal aligning agent containing two or more kinds of polyamic acids having different characteristics is used, the liquid crystal alignment property deteriorates during storage, although it is preferable from the viewpoints of suppressing the above-mentioned whitening due to moisture absorption and ease of handling.
In particular, liquid crystal alignment films used in liquid crystal display elements such as those of the IPS and FFS modes require a high alignment control force to suppress image retention caused by long-term AC driving (hereinafter also referred to as AC image retention), but it has become clear that there is a problem in that it is not always possible to obtain a film that meets such high level requirements.

 以上のようなことから、本発明の目的は、室温保管時の液晶配向性の劣化が抑制された、2種類以上のポリアミック酸を含有する液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び液晶表示素子を提供することにある。 In view of the above, the object of the present invention is to provide a liquid crystal alignment agent containing two or more types of polyamic acid, which suppresses deterioration of liquid crystal alignment properties during storage at room temperature, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element.

 本発明者は、上記課題を達成するために鋭意研究を行った結果、特定の非アミノ末端構造を有し、且つ、特定のテトラカルボン酸誘導体由来の構造単位とジアミン由来の構造単位とを有する第一のポリアミック酸と、特定のテトラカルボン酸誘導体由来の構造単位とジアミン由来の構造単位とを有する第二のポリアミック酸と、を含む液晶配向剤を用いることが、上記の目的を達成するために極めて有効であることを見出し、本発明を完成させた。 As a result of intensive research conducted by the present inventors to achieve the above object, it was discovered that using a liquid crystal alignment agent containing a first polyamic acid having a specific non-amino terminal structure and a structural unit derived from a specific tetracarboxylic acid derivative and a structural unit derived from a diamine, and a second polyamic acid having a structural unit derived from a specific tetracarboxylic acid derivative and a structural unit derived from a diamine, is extremely effective in achieving the above object, and the present invention was completed.

 本発明は、以下の態様を包含するものである。
  下記の重合体(A)及び重合体(B)を含有することを特徴とする液晶配向剤。
  重合体(A):テトラカルボン酸誘導体由来の構造単位と、ジアミン由来の構造単位と、を有するポリアミック酸(A)であって、
  テトラカルボン酸誘導体由来の構造単位として、下記式(1T)で表される構造単位(a-1Ta)を含み、
  ジアミン由来の構造単位として、下記式(1D)で表される構造単位(a-1Da)を含み、
  上記ポリアミック酸(A)の少なくとも一部の末端が、非アミノ基を含み、該非アミノ基が、下記の構造式(E)で表される官能基であって、
  ポリアミック酸(A)の末端アミノ基の存在率が、ポリアミック酸(A)の全ての末端を基準として、60%以下である、上記ポリアミック酸。
  重合体(B):テトラカルボン酸誘導体由来の構造単位と、ジアミン由来の構造単位と、を有するポリアミック酸(B)であって、
  テトラカルボン酸誘導体由来の構造単位として、下記式(1T)で表される構造単位(b-1Tb)を含み、
  ジアミン由来の構造単位として、下記式(1D)で表される構造単位(b-1Db)を含む、上記ポリアミック酸。

Figure JPOXMLDOC01-appb-C000013
(式中Xは、下記式(x-1)で表される4価の有機基を表す。式(1D)中、Yはジアミン由来の2価の有機基を表す。Zはそれぞれ独立して、水素原子又は1価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000014
(式(x-1)中、R~Rはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、炭素数1~6のアルコキシ基、炭素数2~6のアルコキシアルキル基、炭素数2~6のアルキルオキシカルボニル基、又はフェニル基を表し、R~Rの少なくとも一つは上記定義中の水素原子以外の基を表す。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000015
(式中Xは、芳香族テトラカルボン酸二無水物由来の4価の有機基、下記式(x-2)で表される4価の有機基、又は5員環以上の脂環構造を有する4価の有機基(T5a)を表す。式(1D)中、Yはジアミン由来の2価の有機基を表す。Zは上記式(1D)のZと同義である。)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
(式(E)中、Qは、下記の基(e1)~(e3)のいずれかから選ばれる1価の有機基である。*は結合手を表す。)
 (e1)炭素数1~6の非環式炭化水素基
 (e2)カルボキシ基を1~2つ有し、且つ、炭素数が2~30の1価の有機基(但し、該1価の有機基は酸無水基を含まない。)
 (e3)Bocを2つ以上有し、且つ、Bocを除く炭素数が1~30の1価の有機基であって、上記1価の有機基は、*1-NH(Boc)、*1-N(Boc)、及び「*1-N(Boc)-*1」(*1は、炭素原子に結合する結合手を表す。)からなる群から選ばれる保護アミノ部位を有する。なお、保護アミノ部位が2つ以上である場合、各保護アミノ部位は同一であっても良く、異なっていても良い。 The present invention includes the following aspects.
A liquid crystal aligning agent comprising the following polymer (A) and polymer (B):
Polymer (A): A polyamic acid (A) having a structural unit derived from a tetracarboxylic acid derivative and a structural unit derived from a diamine,
The structural unit (a-1Ta) represented by the following formula (1T a ) is contained as a structural unit derived from a tetracarboxylic acid derivative,
The diamine-derived structural unit includes a structural unit (a-1Da) represented by the following formula (1D a ):
At least a part of the terminals of the polyamic acid (A) contains a non-amino group, and the non-amino group is a functional group represented by the following structural formula (E):
The polyamic acid (A), wherein the proportion of terminal amino groups present in the polyamic acid (A) is 60% or less based on all terminals of the polyamic acid (A).
Polymer (B): A polyamic acid (B) having a structural unit derived from a tetracarboxylic acid derivative and a structural unit derived from a diamine,
The structural unit (b-1Tb) represented by the following formula (1T b ) is contained as a structural unit derived from a tetracarboxylic acid derivative,
The above polyamic acid, which contains a structural unit (b-1Db) represented by the following formula (1D b ) as a structural unit derived from a diamine:
Figure JPOXMLDOC01-appb-C000013
(In the formula, Xa represents a tetravalent organic group represented by the following formula (x-1). In formula ( 1Da ), Ya represents a divalent organic group derived from a diamine. Each Z independently represents a hydrogen atom or a monovalent organic group.)
Figure JPOXMLDOC01-appb-C000014
(In formula (x-1), R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, an alkoxy group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 6 carbon atoms, an alkyloxycarbonyl group having 2 to 6 carbon atoms, or a phenyl group, and at least one of R 1 to R 4 represents a group other than a hydrogen atom as defined above. * represents a bond.)
Figure JPOXMLDOC01-appb-C000015
(In the formula, Xb represents a tetravalent organic group derived from an aromatic tetracarboxylic dianhydride, a tetravalent organic group represented by the following formula (x-2), or a tetravalent organic group ( T5a ) having an alicyclic structure having five or more members. In formula ( 1Db ), Yb represents a divalent organic group derived from a diamine. Z has the same meaning as Z in formula ( 1Da ).)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
(In formula (E), Q is a monovalent organic group selected from the following groups (e1) to (e3). * represents a bond.)
(e1) an acyclic hydrocarbon group having 1 to 6 carbon atoms; (e2) a monovalent organic group having 1 to 2 carboxy groups and 2 to 30 carbon atoms (however, the monovalent organic group does not include an acid anhydride group).
(e3) A monovalent organic group having two or more Boc groups and having 1 to 30 carbon atoms excluding Boc, the monovalent organic group having a protected amino moiety selected from the group consisting of *1-NH(Boc), *1-N(Boc) 2 and *1-N(Boc)-*1 (*1 represents a bond bonded to a carbon atom). When there are two or more protected amino moieties, the protected amino moieties may be the same or different.

 本発明によれば、室温保管時の液晶配向性の劣化が抑制された、2種類以上のポリアミック酸を含有する液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び液晶表示素子を提供することができる。 The present invention provides a liquid crystal alignment agent containing two or more types of polyamic acid, which suppresses deterioration of liquid crystal alignment properties during storage at room temperature, a liquid crystal alignment film obtained from the liquid crystal alignment agent, and a liquid crystal display element.

本発明の液晶配向剤から得られる液晶配向膜を具備するIPSモードの横電界液晶表示素子の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of an IPS mode in-plane switching liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention. 本発明の液晶配向剤から得られる液晶配向膜を具備するFFSモードの横電界液晶表示素子の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of an FFS mode in-plane switching liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention.

 以下、特定の重合体成分を含有する液晶配向剤、該液晶配向剤を用いて形成される液晶配向膜、及び該液晶配向膜を有する液晶表示素子について詳細に説明するが、以下に記載する構成要件の説明は、本発明の一実施態様としての一例であり、これらの内容に特定されるものではない。
 以下の説明において、「ハロゲン原子」として、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。また、第三級を意味する「tert-」は、「t-」とも表す。「Boc」は、tert-ブトキシカルボニル基を表し、「*」は結合手を表す。
Hereinafter, a liquid crystal alignment agent containing a specific polymer component, a liquid crystal alignment film formed using the liquid crystal alignment agent, and a liquid crystal display element having the liquid crystal alignment film will be described in detail. However, the explanation of the constituent elements described below is an example of one embodiment of the present invention, and the present invention is not limited to these contents.
In the following description, examples of a "halogen atom" include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Furthermore, "tert-" meaning tertiary is also represented as "t-". "Boc" represents a tert-butoxycarbonyl group, and "*" represents a bond.

(末端アミノ基)
 本発明の液晶配向剤は、上記の重合体(A)及び重合体(B)を含有する。重合体(A)におけるポリアミック酸(A)の少なくとも一部の末端が、非アミノ基を含み、該非アミノ基が、上記の構造式(E)で表される官能基である。すなわち、好ましくは、上記ポリアミック酸(A)の少なくとも一部の末端アミノ基は、該非アミノ基を有するように修飾されている。
 ポリアミック酸(A)の末端アミノ基の存在率は、ポリアミック酸(A)の全ての末端を基準として、60%以下である。
 なお、本発明の重合体(B)におけるポリアミック酸(B)の少なくとも一部の末端は、該非アミノ基を含んでもよい。すなわち、好ましくは、上記ポリアミック酸(B)の少なくとも一部の末端アミノ基は、該非アミノ基を有するように修飾されていてもよい。
 ポリアミック酸(B)の末端が含んでもよい該非アミノ基は、本発明の効果を好適に得る観点から、重合体(A)におけるポリアミック酸(A)で例示した構造式(E)で表される官能基が挙げられ、好ましい態様として同様の官能基が挙げられる。
(Terminal Amino Group)
The liquid crystal aligning agent of the present invention contains the above polymer (A) and polymer (B). At least a part of the terminals of the polyamic acid (A) in the polymer (A) contains a non-amino group, and the non-amino group is a functional group represented by the above structural formula (E). That is, preferably, at least a part of the terminal amino groups of the polyamic acid (A) are modified to have the non-amino group.
The proportion of terminal amino groups in the polyamic acid (A) is 60% or less based on all the terminals of the polyamic acid (A).
At least a part of the terminals of the polyamic acid (B) in the polymer (B) of the present invention may contain the non-amino group. That is, preferably, at least a part of the terminal amino groups of the polyamic acid (B) may be modified to have the non-amino group.
The non-amino group which the terminal of the polyamic acid (B) may contain, from the viewpoint of suitably obtaining the effects of the present invention, may be a functional group represented by structural formula (E) exemplified for the polyamic acid (A) in the polymer (A), and a similar functional group may be used as a preferred embodiment.

 ここで言う「末端アミノ基の存在率」とは、例えば、ポリアミック酸(A)の場合、ポリアミック酸(A)の全ての末端を基準として、末端がアミノ基である割合を%で表したものである。
 なお、「ポリアミック酸(A)の全ての末端を基準として」とは、ポリアミック酸(A)が有するアミノ末端及び非アミノ末端の合計数を100%とした場合を意味し、いずれかの末端が0%である場合の合計数を含む。
 末端アミノ基の存在率は、H-NMRを用いて、末端アミノ基のピーク強度の変化量から見積もることができる。本発明で用いられるポリアミック酸(A)の末端アミノ基の存在率は、好ましくは30%以下、より好ましくは10%以下であり、さらに好ましくは1%以下である。また、本発明で用いられるポリアミック酸(A)の末端アミノ基の存在率は、0%であってもよい。すなわち、本発明で用いられるポリアミック酸(A)の全ての末端が、該非アミノ基を含んでもよい。
The term "abundance of terminal amino groups" as used herein means, for example, in the case of polyamic acid (A), the proportion of terminals that are amino groups expressed as a percentage based on all terminals of polyamic acid (A).
The phrase "based on all of the terminals of the polyamic acid (A)" means that the total number of amino terminals and non-amino terminals of the polyamic acid (A) is taken as 100%, and includes the case where any terminal is 0%.
The abundance of terminal amino groups can be estimated from the amount of change in peak intensity of terminal amino groups using 1 H-NMR. The abundance of terminal amino groups in the polyamic acid (A) used in the present invention is preferably 30% or less, more preferably 10% or less, and even more preferably 1% or less. The abundance of terminal amino groups in the polyamic acid (A) used in the present invention may be 0%. That is, all of the terminals of the polyamic acid (A) used in the present invention may contain the non-amino group.

 非アミノ基は、上記構造式(E)で表される官能基である。上記構造式(E)で表される官能基は、ジアミン残基が有する窒素原子と結合していることが好ましい。
 上記(e1)の好ましい具体例として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ビニル基、メタクリル基が挙げられる。
 上記(e1)の好ましい具体例として、無水酢酸、無水アクリル酸、無水メタクリル酸、無水プロピオン酸、無水酪酸、吉草酸無水物、イソ吉草酸無水物、ヘキサン酸無水物、又はヘプタン酸無水物等の非環式脂肪族ジカルボン酸無水物に由来する残基が挙げられる。
The non-amino group is a functional group represented by the above structural formula (E). The functional group represented by the above structural formula (E) is preferably bonded to a nitrogen atom of the diamine residue.
Preferred specific examples of the above (e1) include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a vinyl group, and a methacryl group.
Preferred specific examples of the above (e1) include residues derived from acyclic aliphatic dicarboxylic acid anhydrides such as acetic anhydride, acrylic anhydride, methacrylic anhydride, propionic anhydride, butyric anhydride, valeric anhydride, isovaleric anhydride, hexanoic anhydride, or heptanoic anhydride.

 上記(e2)の好ましい具体例として、ジカルボン酸無水物に由来する残基を有し、且つ、カルボキシ基を1~2つ有する1価の有機基(但し、該1価の有機基は酸無水基を含まない。)が挙げられる。
 上記(e2)を与えるジカルボン酸無水物の具体例として、アルコキシシラン構造を有しない化合物(e2-1)、アルコキシシラン構造を有する化合物(e2-2)が挙げられる。
 化合物(e2-1)の具体例として、フタル酸無水物、マレイン酸無水物、コハク酸無水物、アリルコハク酸無水物、イタコン酸無水物、トリメリット酸無水物、1,2,4-シクロヘキサントリカルボン酸-1,2-無水物、4-エチニルフタル酸無水物、又は、シクロヘキセン-1,2-ジカルボン酸無水物等の芳香族、又は脂肪族環式ジカルボン酸無水物が挙げられる。
 上記脂肪族環式ジカルボン酸無水物における脂肪族環は、飽和脂肪族環であってもよく、不飽和脂肪族環であってもよい。
 化合物(e2-2)の具体例として、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシリルプロピルコハク酸無水物、4-(3-トリメトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物、4-(3-トリエトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物、4-(3-トリメトキシシリルプロピル)フタル酸無水物、4-(3-トリエトキシシリルプロピル)フタル酸無水物;2-(メトキシジメチルシリル)エチル無水コハク酸、3-(ジメチルメトキシシリル)プロピルコハク酸無水物、又は3-(ジメチルエトキシシリル)プロピルコハク酸無水物等の、(炭素数1~6)アルコキシジメチルシリル(炭素数2~8)アルキル無水コハク酸;2-(ジメトキシメチルシリル)エチル無水コハク酸等の、ジ(炭素数1~6)アルコキシメチルシリル(炭素数2~8)アルキル無水コハク酸;2-(トリメトキシシリル)エチル無水コハク酸、2-(トリエトキシシリル)エチル無水コハク酸、[3-(トリメトキシシリル)プロピル]コハク酸無水物、又は[3-(トリエトキシシリル)プロピル]コハク酸無水物等の、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸;4-(3-ジメチルメトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物、4-(3-ジメチルエトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物、4-(3-ジメチルメトキシシリルプロピル)フタル酸無水物、若しくは4-(3-ジメチルエトキシシリルプロピル)フタル酸無水物が挙げられる。
A preferred specific example of the above (e2) is a monovalent organic group having a residue derived from a dicarboxylic acid anhydride and having one or two carboxy groups (however, the monovalent organic group does not include an acid anhydride group).
Specific examples of dicarboxylic acid anhydrides that give the above (e2) include a compound (e2-1) that does not have an alkoxysilane structure and a compound (e2-2) that has an alkoxysilane structure.
Specific examples of the compound (e2-1) include aromatic or aliphatic cyclic dicarboxylic acid anhydrides such as phthalic anhydride, maleic anhydride, succinic anhydride, allylsuccinic anhydride, itaconic anhydride, trimellitic anhydride, 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, 4-ethynylphthalic anhydride, and cyclohexene-1,2-dicarboxylic acid anhydride.
The aliphatic ring in the aliphatic cyclic dicarboxylic acid anhydride may be a saturated aliphatic ring or an unsaturated aliphatic ring.
Specific examples of compound (e2-2) include 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylpropyl succinic anhydride, 4-(3-trimethoxysilylpropyl)cyclohexane-1,2-dicarboxylic anhydride, 4-(3-triethoxysilylpropyl)cyclohexane-1,2-dicarboxylic anhydride, 4-(3-trimethoxysilylpropyl)phthalic anhydride, 4-(3-triethoxysilylpropyl)phthalic anhydride; 2-(methoxydimethylsilyl)ethyl succinic anhydride, 3-(dimethylmethoxysilyl)propyl succinic anhydride, and 3-(dimethylethoxysilyl)propyl succinic anhydride, such as (C1 to C6)alkoxydimethylsilyl(C2 to C8)alkyl succinic anhydrides; 2-(dimethoxymethylsilyl)ethyl anhydride. Examples of the di(C1-6)alkoxymethylsilyl(C2-8)alkyl succinic anhydride such as succinic acid; tri(C1-6)alkoxysilyl(C2-8)alkyl succinic anhydride such as 2-(trimethoxysilyl)ethyl succinic anhydride, 2-(triethoxysilyl)ethyl succinic anhydride, [3-(trimethoxysilyl)propyl]succinic anhydride, or [3-(triethoxysilyl)propyl]succinic anhydride; 4-(3-dimethylmethoxysilylpropyl)cyclohexane-1,2-dicarboxylic anhydride, 4-(3-dimethylethoxysilylpropyl)cyclohexane-1,2-dicarboxylic anhydride, 4-(3-dimethylethoxysilylpropyl)phthalic anhydride, or 4-(3-dimethylethoxysilylpropyl)phthalic anhydride.

 上記(e3)において、本発明の効果を好適に得る観点から、保護アミノ部位の数は1個以上であり、液晶配向性の効果の点から、保護アミノ部位の数は4個以下であることが好ましい。
 上記(e3)は、例えば、R-O-C(=O)-E3(Rは、活性エステル形成基を表す。E3は、上記(e3)を表す。)で表される活性エステル化合物(e)を用いて得られる。
In the above (e3), from the viewpoint of optimally obtaining the effects of the present invention, the number of protected amino moieties is one or more, and from the viewpoint of the effect of liquid crystal alignment, the number of protected amino moieties is preferably four or less.
The above (e3) can be obtained, for example, by using an active ester compound (e) represented by R—O—C(═O)-E3 (R represents an active ester forming group, and E3 represents the above (e3)).

 ここで、「活性エステル形成基」は、それが結合しているカルボニル基と共に、アミド基を形成するアミノ基含有化合物とのカップリング反応やその他のカップリング反応について、上記カルボニル基を活性化するエステルを形成する化学基を意味する。 Here, "active ester forming group" means a chemical group that, together with the carbonyl group to which it is attached, forms an ester that activates the carbonyl group for coupling reactions with amino-containing compounds to form amide groups or other coupling reactions.

 活性エステル形成基の例は、1-ヒドロキシベンゾトリアゾール(HOBt)、1-ヒドロキシ-7-アザベンゾトリアゾール(HOAt)、N-ヒドロキシスクシンイミド(HOSu)、2-シアノ-2-(ヒドロキシイミノ)酢酸エチル(oxyma)、3,4-ジヒドロ-3-ヒドロキシ-4-オキソ-1,2,3-ベンゾトリアジン(HOOBtまたはHODhbt)、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミド(HONB)、2,3,4,5,6-ペンタフルオロフェノール(HOPfp)、又は、6-クロロ-1-ヒドロキシ-1H-ベンゾトリアゾール(Cl-HOBt)などのヒドロキシ化合物(例えば、WATANABE Chemicalのカタログ、Amino acids and chiral building blocks to new medicine参照。以下、これらを総称して、ヒドロキシ化合物(Ae)ともいう。)からヒドロキシ基を除いた基が挙げられる。これらの中でも、本発明の効果を好適に得る観点から、HOBt、HOAt、HOSu又はHOOBtからヒドロキシ基を除いた基が好ましく、HOBt、HOAt、又はHOOBtからヒドロキシ基を除いた基がより好ましい。
 また、活性エステル形成基が、HOSuに由来する基を表す場合、E3は本発明の効果を好適に得る観点から、上記保護アミノ部位を2つ以上有することがより好ましい。
Examples of the active ester-forming group include groups obtained by removing a hydroxy group from a hydroxy compound such as 1-hydroxybenzotriazole (HOBt), 1-hydroxy-7-azabenzotriazole (HOAt), N-hydroxysuccinimide (HOSu), ethyl 2-cyano-2-(hydroxyimino)acetate (oxyma), 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine (HOOBt or HODhbt), N-hydroxy-5-norbornene-2,3-dicarboximide (HONB), 2,3,4,5,6-pentafluorophenol (HOPfp), or 6-chloro-1-hydroxy-1H-benzotriazole (Cl-HOBt) (see, for example, WATANABE Chemical's catalog, Amino acids and chiral building blocks to new medicine. Hereinafter, these are collectively referred to as hydroxy compounds (Ae)). Among these, from the viewpoint of suitably obtaining the effects of the present invention, groups obtained by removing a hydroxy group from HOBt, HOAt, HOSu or HOOBt are preferred, and groups obtained by removing a hydroxy group from HOBt, HOAt or HOOBt are more preferred.
When the active ester forming group represents a group derived from HOSu, E3 more preferably has two or more of the above-mentioned protected amino moieties, from the viewpoint of suitably achieving the effects of the present invention.

 上記活性エステル化合物(e3)は、例えば、「W-COOH」(Wは、上記(e3)と同義である。以下、カルボン酸(W)ともいう。)で表されるカルボン酸と、上記ヒドロキシ化合物(Ae)から合成される。
 Wにおける、上記のBoc基を除く炭素数が1~30の有機基としては、炭素数が1~12の有機基であることが好ましく、炭素数が1~6の有機基であることがより好ましい。
 上記カルボン酸(W)は、Bocを2つ以上有し、且つ、分子内に*1-NH(Boc)、*1-N(Boc)、及び「*1-N(Boc)-*1」(*1は、炭素原子に結合する結合手を表す。)からなる群から選ばれる保護アミノ部位を有する基を有する。
 上記カルボン酸(W)は、例えば、カルボキシ基含有ジアミンに代表される、2つ以上のアミノ基を有するカルボキシ基含有ポリアミン(pA)が有するアミノ基を保護することにより得られる。なお、アミノ基の保護は、アミンが有するアミノ基の一部が保護されてもよく、全てのアミノ基が保護されていてもよい。
The active ester compound (e3) is synthesized, for example, from a carboxylic acid represented by "W-COOH" (W has the same meaning as the above (e3). Hereinafter, this is also referred to as carboxylic acid (W)) and the above hydroxy compound (Ae).
The organic group having 1 to 30 carbon atoms excluding the Boc group in W is preferably an organic group having 1 to 12 carbon atoms, and more preferably an organic group having 1 to 6 carbon atoms.
The above carboxylic acid (W) has two or more Boc groups and has a group having a protected amino moiety selected from the group consisting of *1-NH(Boc), *1-N(Boc) 2 , and "*1-N(Boc)-*1" (*1 represents a bond bonded to a carbon atom) in the molecule.
The carboxylic acid (W) can be obtained by protecting the amino groups of a carboxy-containing polyamine (pA) having two or more amino groups, such as a carboxy-containing diamine. The amino groups may be protected either partially or entirely.

 ポリアミン(pA)の具体例として、3,5-ジアミノ安息香酸等のジアミノ安息香酸類;4,4’-ジアミノビフェニル-3-カルボン酸等のカルボキシビフェニル系化合物;4,4’-ジアミノジフェニルメタン-3-カルボン酸、又は4,4’-ジアミノジフェニルエタン-3-カルボン酸等のカルボキシジフェニルアルカン類;4,4’-ジアミノジフェニルエーテル-3-カルボン酸、又は4,4’-ジアミノジフェニルエーテル-3-カルボン酸等のカルボキシジフェニルエーテル類に代表される芳香族ポリアミン;アルギニン、リシン、オルニチン、又はヒスチジン等の脂肪族ポリアミンが挙げられる。 Specific examples of polyamines (pA) include diaminobenzoic acids such as 3,5-diaminobenzoic acid; carboxybiphenyl compounds such as 4,4'-diaminobiphenyl-3-carboxylic acid; carboxydiphenylalkanes such as 4,4'-diaminodiphenylmethane-3-carboxylic acid or 4,4'-diaminodiphenylethane-3-carboxylic acid; aromatic polyamines such as carboxydiphenyl ethers such as 4,4'-diaminodiphenylether-3-carboxylic acid or 4,4'-diaminodiphenylether-3-carboxylic acid; and aliphatic polyamines such as arginine, lysine, ornithine, or histidine.

 上記カルボン酸(W)及びポリアミン(pA)は、本発明の効果を好適に得る観点から、中でも、窒素原子含有複素環又はその誘導体を有することが好ましい。該窒素原子含有複素環の具体例として、アジリジン、アゼチジン、ピロール、イミダゾール、イミダゾリジン、ピロリジン、ピペリジン、ピペラジン、モルホリン、ピラゾール、インドール、ベンズイミダゾール、又はカルバゾールが挙げられる。また、窒素原子含有複素環の誘導体の具体例としては、該窒素原子含有複素環が有する任意の水素原子が、置換基により置換されてなる化合物が挙げられる。
 上記置換基としては、例えば、直鎖状もしくは分枝鎖状の炭素数1~4のアルキル基、直鎖状もしくは分枝鎖状の炭素数1~4のアルコキシ基、ヒドロキシ基、ハロゲン原子、ニトロ基、シアノ基、トリフルオロメチル基、-NR、又は、-CONR基が挙げられ、RおよびRは、それぞれ独立して、水素原子、直鎖状もしくは分枝鎖状の炭素数1~4のアルキル基を表す。
From the viewpoint of obtaining the effects of the present invention, the carboxylic acid (W) and the polyamine (pA) preferably have a nitrogen atom-containing heterocycle or a derivative thereof.Specific examples of the nitrogen atom-containing heterocycle include aziridine, azetidine, pyrrole, imidazole, imidazolidine, pyrrolidine, piperidine, piperazine, morpholine, pyrazole, indole, benzimidazole, and carbazole.Specific examples of the derivative of the nitrogen atom-containing heterocycle include compounds in which any hydrogen atom of the nitrogen atom-containing heterocycle is replaced by a substituent.
Examples of the substituent include a linear or branched alkyl group having 1 to 4 carbon atoms, a linear or branched alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, a halogen atom, a nitro group, a cyano group, a trifluoromethyl group, -NR 7 R 8 , or a -CONR 7 R 8 group, where R 7 and R 8 each independently represent a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms.

 上記活性エステル化合物(e3)の好ましい具体例として、下記式(e3-1)~(e3-4)で表される化合物のいずれかであることが好ましい。 Preferred specific examples of the active ester compound (e3) are any of the compounds represented by the following formulae (e3-1) to (e3-4).

Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018

<ポリアミック酸(A)>
(ポリアミック酸(A)が有するテトラカルボン酸誘導体由来の構造単位)
 本発明の重合体(A)におけるポリアミック酸(A)は、テトラカルボン酸誘導体由来の構造単位として、上記式(1T)で表される構造単位(a-1Ta)を有する。尚、重合体(A)は1種類又は2種類以上で構成されてもよく、構造単位(a-1Ta)は1種類又は2種類以上であってもよい。
<Polyamic Acid (A)>
(Structural Unit Derived from Tetracarboxylic Acid Derivative Contained in Polyamic Acid (A))
The polyamic acid (A) in the polymer (A) of the present invention has a structural unit (a-1Ta) represented by the above formula (1T a ) as a structural unit derived from a tetracarboxylic acid derivative. The polymer (A) may be composed of one or more types of structural units, and the structural unit (a-1Ta) may be one or more types.

 上記式(1T)のXは、上記式(x-1)で表される4価の有機基を表す。
 上記式(x-1)のR~Rにおける炭素数1~6、好ましくは1~4のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基などが挙げられる。上記R~Rにおける炭素数2~6、好ましくは2~4のアルケニル基の具体例としては、ビニル基、プロペニル基、ブチニル基などが挙げられ、これらは直鎖状でも分岐状でもよい。上記R~Rにおける炭素数2~6、好ましくは2~4のアルキニル基の具体例としては、例えばエチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。
 上記R~Rにおける、フッ素原子を含有する炭素数1~6、好ましくは1~4の1価の有機基としては、フルオロメチル基、トリフルオロメチル基、トリフルオロメトキシ基、2,2,2-トリフルオロエチル基、2,2,2-トリフルオロエトキシ基、ペンタフルオロエチル基、ペンタフルオロプロピル基などが挙げられる。
Xa in the above formula (1T a ) represents a tetravalent organic group represented by the above formula (x-1).
Specific examples of the alkyl group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, in R 1 to R 4 in formula (x- 1 ) include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a t-butyl group, an n-pentyl group, etc. Specific examples of the alkenyl group having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms, in R 1 to R 4 include a vinyl group, a propenyl group, a butynyl group, etc., which may be linear or branched. Specific examples of the alkynyl group having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms, in R 1 to R 4 include an ethynyl group, a 1-propynyl group, a 2-propynyl group, etc.
In the above R 1 to R 4 , examples of the monovalent organic group containing a fluorine atom and having 1 to 6, preferably 1 to 4, carbon atoms include a fluoromethyl group, a trifluoromethyl group, a trifluoromethoxy group, a 2,2,2-trifluoroethyl group, a 2,2,2-trifluoroethoxy group, a pentafluoroethyl group, and a pentafluoropropyl group.

 上記式(x-1)は、なかでも、下記式(x1-1)~(x1-5)からなる群から選ばれるものが好ましい。 The above formula (x-1) is preferably selected from the group consisting of the following formulas (x1-1) to (x1-5).

Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019

 本発明のポリアミック酸(A)が有する構造単位(a-1Ta)は、本発明の効果を好適に得る観点から、ポリアミック酸(A)が有するテトラカルボン酸誘導体由来の全構造単位1モルに対して、60モル%以上が好ましく、70モル%以上がより好ましく、100モル%が最も好ましい。 From the viewpoint of optimally obtaining the effects of the present invention, the structural unit (a-1Ta) contained in the polyamic acid (A) of the present invention is preferably 60 mol% or more, more preferably 70 mol% or more, and most preferably 100 mol% relative to 1 mole of all structural units derived from the tetracarboxylic acid derivative contained in the polyamic acid (A).

 本発明のポリアミック酸(A)は、テトラカルボン酸誘導体由来の構造単位として、下記式(2T)で表される構造単位(a-2Ta)を有していてもよい。構造単位(2-1Ta)は1種類又は2種類以上であってもよい

Figure JPOXMLDOC01-appb-C000020
(式中X2aは、上記式(x-1)で表される4価の有機基以外のテトラカルボン酸二無水物由来の4価の有機基を表す。) The polyamic acid (A) of the present invention may have a structural unit (a-2Ta) represented by the following formula (2T a ) as a structural unit derived from a tetracarboxylic acid derivative. The structural unit (2-1Ta) may be of one type or of two or more types.
Figure JPOXMLDOC01-appb-C000020
(In the formula, X2a represents a tetravalent organic group derived from a tetracarboxylic dianhydride other than the tetravalent organic group represented by the above formula (x-1).)

 上記式(2T)におけるX2aの4価の有機基の具体例として、5員環以上の脂環構造を有する4価の有機基(T5a)、又は、以下のテトラカルボン酸二無水物(以下、これらを総称して、「その他のテトラカルボン酸二無水物」ともいう。)から2つの酸無水物基を除いた4価の有機基が挙げられる。 Specific examples of the tetravalent organic group for X2a in the above formula (2T a ) include a tetravalent organic group (T 5a ) having an alicyclic structure with five or more members, and a tetravalent organic group obtained by removing two acid anhydride groups from the following tetracarboxylic dianhydrides (hereinafter collectively referred to as "other tetracarboxylic dianhydrides").

 1,2,3,4-ブタンテトラカルボン酸二無水物、又は下記式(AL-1)~(AL-7)で表されるテトラカルボン酸二無水物などの非環式脂肪族テトラカルボン酸二無水物;1,2,3,4-シクロブタンテトラカルボン酸二無水物などの脂環式テトラカルボン酸二無水物(但し、4価の有機基(T5a)を有するテトラカルボン酸二無水物を除く。);ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジ(フタル酸無水物)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)-2,2-ジフェニルプロパン二無水物、エチレングリコールビスアンヒドロトリメリテート、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、4,4’-カルボニルジフタル酸無水物、4,4’-オキシジ(1,4-フェニレン)ビス(フタル酸)二無水物、又は4,4’-メチレンジ(1,4-フェニレン)ビス(フタル酸)二無水物などの芳香族テトラカルボン酸二無水物;そのほか、日本特開2010-97188号公報に記載のテトラカルボン酸二無水物など。

Figure JPOXMLDOC01-appb-C000021
acyclic aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride or tetracarboxylic dianhydrides represented by the following formulae (AL-1) to (AL-7); alicyclic tetracarboxylic dianhydrides such as 1,2,3,4-cyclobutanetetracarboxylic dianhydride (provided that the tetravalent organic group ( T ) excluding tetracarboxylic dianhydrides having the above structure. ) ; pyromellitic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfone tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-perfluoroisopropylidenedi(phthalic anhydride), 3,3',4,4'-biphenyl tetracarboxylic dianhydride, 2,2',3,3'-biphenyl aromatic tetracarboxylic dianhydrides such as 4,4'-bis(3,4-dicarboxyphenoxy)-2,2-diphenylpropane dianhydride, ethylene glycol bisanhydrotrimellitate, 4,4'-(hexafluoroisopropylidene)diphthalic anhydride, 4,4'-carbonyldiphthalic anhydride, 4,4'-oxydi(1,4-phenylene)bis(phthalic acid) dianhydride, or 4,4'-methylenedi(1,4-phenylene)bis(phthalic acid) dianhydride; and tetracarboxylic dianhydrides described in JP 2010-97188 A.
Figure JPOXMLDOC01-appb-C000021

 上記その他のテトラカルボン酸二無水物のより好ましい例としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物が挙げられる。 More preferred examples of the above other tetracarboxylic dianhydrides include 1,2,3,4-butane tetracarboxylic dianhydride, 1,2,3,4-cyclobutane tetracarboxylic dianhydride, pyromellitic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-diphenylsulfone tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-biphenyl tetracarboxylic dianhydride, and 2,2',3,3'-biphenyl tetracarboxylic dianhydride.

 上記4価の有機基(T5a)としては、5~8員環の脂環構造を有する4価の有機基が好ましく、5~7員環の脂環構造を有する4価の有機基がより好ましい。なお、5員環以上の脂環構造とは、酸無水基が結合する脂環構造が多環式構造の場合には、その多環式構造に含まれるそれぞれの環において、環を構成する原子数がいずれも5以上であることを示す。また、前記脂環構造は2つの酸無水基の少なくとも一つに結合していればよく、脂環構造とともに鎖状炭化水素構造や芳香環構造を有していてもよい。
 4価の有機基(T5a)の好ましい具体例としては、下記式(X5a-1)~(X5a-18)のいずれかで表される4価の有機基が挙げられる。4価の有機基(T5a)は、本発明の効果を好適に得る観点から、(X5a-1)~(X5a-4)がより好ましい。
The tetravalent organic group (T 5a ) is preferably a tetravalent organic group having a 5- to 8-membered alicyclic structure, and more preferably a tetravalent organic group having a 5- to 7-membered alicyclic structure. The 5- or more-membered alicyclic structure means that, when the alicyclic structure to which the acid anhydride group is bonded is a polycyclic structure, each of the rings contained in the polycyclic structure has 5 or more atoms constituting the ring. The alicyclic structure may be bonded to at least one of the two acid anhydride groups, and may have a chain hydrocarbon structure or an aromatic ring structure together with the alicyclic structure.
Preferred specific examples of the tetravalent organic group (T 5a ) include tetravalent organic groups represented by any of the following formulas (X 5a -1) to (X 5a -18). From the viewpoint of suitably obtaining the effects of the present invention, the tetravalent organic group (T 5a ) is more preferably (X 5a -1) to (X 5a -4).

Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022

 ポリアミック酸(A)が有する式(2T)で表される構造単位の割合は、ポリアミック酸(A)が有するテトラカルボン酸誘導体由来の全構造単位1モルに対して、40モル%以下が好ましく、30モル%以下がより好ましい。 The proportion of the structural unit represented by formula (2T a ) contained in the polyamic acid (A) is preferably 40 mol % or less, and more preferably 30 mol % or less, based on 1 mol of all structural units derived from tetracarboxylic acid derivatives contained in the polyamic acid (A).

 ポリアミック酸(A)が有する、ジアミン由来の構造単位の詳細は、後述する。 Details of the diamine-derived structural units contained in polyamic acid (A) will be described later.

<ポリアミック酸(B)>
(ポリアミック酸(B)が有するテトラカルボン酸誘導体由来の構造単位)
 本発明の液晶配向剤は、上記ポリアミック酸(A)とともに、テトラカルボン酸誘導体由来の構造単位と、ジアミン由来の構造単位と、を有するポリアミック酸(B)であって、テトラカルボン酸誘導体由来の構造単位として、上記式(1T)で表される構造単位(b-1Tb)を含む、上記ポリアミック酸を含有する。
 ポリアミック酸(B)は、1種類又は2種類以上で構成されてもよい。また、ポリアミック酸(B)を構成する上記構造単位は、それぞれ、1種類又は2種類以上で構成されてもよい。
<Polyamic Acid (B)>
(Structural Units Derived from Tetracarboxylic Acid Derivatives Contained in Polyamic Acid (B))
The liquid crystal aligning agent of the present invention contains, together with the above-mentioned polyamic acid (A), a polyamic acid (B) having a structural unit derived from a tetracarboxylic acid derivative and a structural unit derived from a diamine, the polyamic acid including, as the structural unit derived from the tetracarboxylic acid derivative, a structural unit (b-1Tb) represented by the above-mentioned formula (1T b ).
The polyamic acid (B) may be composed of one kind or two or more kinds. In addition, each of the structural units constituting the polyamic acid (B) may be composed of one kind or two or more kinds.

 上記式(1T)のXを与える4価の有機基としては、芳香族テトラカルボン酸二無水物から2つの無水基(-C(=O)-O-C(=O)-)を除いた4価の有機基、1,2,3,4-シクロブタンテトラカルボン酸二無水物から2つの無水基を除いた4価の有機基、又は、上記4価の有機基(T5a)を有するテトラカルボン酸二無水物から2つの無水基を除いた4価の有機基が挙げられる。
 ここで、芳香族テトラカルボン酸二無水物は、芳香環に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。
 本発明の効果を好適に得る観点において、上記Xにおける芳香族テトラカルボン酸二無水物由来の4価の有機基は、ベンゼン環を有するテトラカルボン酸二無水物が好ましい。より好ましいXにおける芳香族テトラカルボン酸二無水物由来の4価の有機基は、上記式(2T)におけるX2aで例示した芳香族テトラカルボン酸二無水物から2つの無水基を除いた4価の有機基である。
Examples of the tetravalent organic group that provides X b in the above formula (1T b ) include a tetravalent organic group obtained by removing two anhydride groups (-C(═O)-O-C(═O)-) from an aromatic tetracarboxylic dianhydride, a tetravalent organic group obtained by removing two anhydride groups from 1,2,3,4-cyclobutane tetracarboxylic dianhydride, and a tetravalent organic group obtained by removing two anhydride groups from a tetracarboxylic dianhydride having the above tetravalent organic group (T 5a ).
Here, the aromatic tetracarboxylic dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups, including at least one carboxy group bonded to an aromatic ring.
From the viewpoint of obtaining the effects of the present invention, the tetravalent organic group derived from an aromatic tetracarboxylic dianhydride in Xb is preferably a tetracarboxylic dianhydride having a benzene ring. More preferably, the tetravalent organic group derived from an aromatic tetracarboxylic dianhydride in Xb is a tetravalent organic group obtained by removing two anhydride groups from the aromatic tetracarboxylic dianhydride exemplified as X2a in the above formula (2T a ) .

 ポリアミック酸(B)は、本発明の効果を好適に得る観点において、構造単位(b-1Tb)を、ポリアミック酸(B)が含有するテトラカルボン酸誘導体由来の全構造単位1モルに対して、40モル%より多く含むことが好ましく、50モル%以上含むことがより好ましい。 In order to obtain the effects of the present invention, the polyamic acid (B) preferably contains more than 40 mol % of the structural unit (b-1Tb) relative to 1 mole of all structural units derived from the tetracarboxylic acid derivative contained in the polyamic acid (B), and more preferably contains 50 mol % or more of the structural unit (b-1Tb).

 本発明のポリアミック酸(B)は、テトラカルボン酸誘導体由来の構造単位として、下記式(2T)で表される構造単位(b-2Tb)を有していてもよい。

Figure JPOXMLDOC01-appb-C000023
(式中X2bは、X以外の4価の有機基を表す。) The polyamic acid (B) of the present invention may have a structural unit (b-2Tb) represented by the following formula (2T b ) as a structural unit derived from a tetracarboxylic acid derivative.
Figure JPOXMLDOC01-appb-C000023
(In the formula, X2b represents a tetravalent organic group other than Xb .)

 上記式(2T)におけるX2bの4価の有機基の具体例として、非環式脂肪族テトラカルボン酸二無水物から2つの無水基を除いた4価の有機基、上記式(X-2)で表される4価の有機基、及び、上記4価の有機基(T5a)以外の4価の有機基であって、脂環式テトラカルボン酸二無水物から2つの無水基を除いた4価の有機基が挙げられる。
 ここで、非環式脂肪族テトラカルボン酸二無水物は、鎖状炭化水素構造に結合する4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香環構造を有していてもよい。
 脂環式テトラカルボン酸二無水物は、脂環式構造に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、これら4つのカルボキシ基はいずれも芳香環には結合していない。また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香環構造を有していてもよい。
 本発明の効果を好適に得る観点において、上記X2bにおける4価の有機基は、置換シクロブタン環構造、及びシクロブテン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物から2つの無水基を除いた4価の有機基、又は、上記その他のテトラカルボン酸二無水物で例示した非環式脂肪族テトラカルボン酸二無水物から2つの無水基を除いた4価の有機基が好ましい。
 より好ましいX2bは、上記式(x-1)で表される4価の有機基、又は上記その他のテトラカルボン酸二無水物で例示した非環式脂肪族テトラカルボン酸二無水物から2つの無水基を除いた4価の有機基が挙げられる。
Specific examples of the tetravalent organic group of X 2b in the above formula (2T b ) include a tetravalent organic group obtained by removing two anhydride groups from an acyclic aliphatic tetracarboxylic acid dianhydride, a tetravalent organic group represented by the above formula (X-2), and a tetravalent organic group other than the above tetravalent organic group (T 5a ), which is obtained by removing two anhydride groups from an alicyclic tetracarboxylic acid dianhydride.
Here, the acyclic aliphatic tetracarboxylic acid dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups bonded to a chain hydrocarbon structure, but is not necessarily composed of a chain hydrocarbon structure alone, and may have an alicyclic structure or an aromatic ring structure as a part thereof.
Alicyclic tetracarboxylic dianhydrides are acid dianhydrides obtained by intramolecular dehydration of four carboxy groups, including at least one carboxy group bonded to an alicyclic structure. However, none of these four carboxy groups are bonded to an aromatic ring. In addition, they do not necessarily have to be composed of an alicyclic structure alone, and may have a chain hydrocarbon structure or an aromatic ring structure as part of them.
From the viewpoint of suitably obtaining the effects of the present invention, the tetravalent organic group for X2b is preferably a tetravalent organic group obtained by removing two anhydride groups from a tetracarboxylic acid dianhydride having at least one partial structure selected from the group consisting of a substituted cyclobutane ring structure and a cyclobutene ring structure, or a tetravalent organic group obtained by removing two anhydride groups from an acyclic aliphatic tetracarboxylic acid dianhydride exemplified as the other tetracarboxylic acid dianhydrides described above.
More preferred X2b is a tetravalent organic group represented by the above formula (x-1) or a tetravalent organic group obtained by removing two anhydride groups from the acyclic aliphatic tetracarboxylic acid dianhydrides exemplified above as the other tetracarboxylic acid dianhydrides.

 ポリアミック酸(B)は、本発明の効果を好適に得る観点において、構造単位(b-2Tb)を、ポリアミック酸(B)が含有するテトラカルボン酸誘導体由来の全構造単位1モルに対して、60モル%より少ないことが好ましく、50モル%以下であることがより好ましい。 In order to obtain the effects of the present invention, the polyamic acid (B) preferably contains less than 60 mol % of the structural unit (b-2Tb) relative to 1 mol of all structural units derived from the tetracarboxylic acid derivative contained in the polyamic acid (B), and more preferably contains 50 mol % or less of the structural unit (b-2Tb).

 ポリアミック酸(B)が有する、ジアミン由来の構造単位の詳細は、後述する。 Details of the diamine-derived structural units contained in polyamic acid (B) will be described later.

(ポリアミック酸(A)およびポリアミック酸(B)が有するジアミン由来の構造単位)
 本発明の重合体(A)におけるポリアミック酸(A)は、ジアミン由来の構造単位として、上記式(1D)で表される構造単位(a-1Da)を有する。構造単位(a-1D)は1種類又は2種類以上であってもよい。
(Structural Units Derived from Diamines Contained in Polyamic Acid (A) and Polyamic Acid (B))
The polyamic acid (A) in the polymer (A) of the present invention has a structural unit (a-1Da) represented by the above formula (1D a ) as a structural unit derived from a diamine. The structural unit (a-1D a ) may be of one type or of two or more types.

 上記式(1D)におけるZの1価の有機基としては、炭素数1~6の1価の炭化水素基、当該炭化水素基のメチレン基を-O-、-S-、-CO-、-COO-、-COS-、-NR-、-CO-NR-、-Si(R-(ただし、Rは、水素原子又は炭素数1~6の1価の炭化水素基である。Rが2個である場合、Rは互いに同一であっても良く、異なっていても良い。)、-SO-等で置き換えてなる1価の基A、上記1価の炭化水素基又は上記1価の基Aの炭素原子に結合する水素原子の少なくとも1個をハロゲン原子、ヒドロキシ基、アルコキシ基、ニトロ基、アミノ基、メルカプト基、ニトロソ基、アルキルシリル基、アルコキシシリル基、シラノール基、スルフィノ基、ホスフィノ基、カルボキシ基、シアノ基、スルホ基、アシル基等で置換してなる1価の基、複素環を有する1価の基が挙げられる。
 上記式(1D)におけるZの1価の有機基としては、中でも、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、又はt-ブトキシカルボニル基が好ましく、炭素数1~3のアルキル基が更に好ましく、メチル基がより一層好ましい。
 上記式(1D)における2つのZは、本発明の効果を好適に得る観点から、それぞれ独立に、水素原子又は炭素数1~3のアルキル基が好ましく、水素原子又はメチル基がより好ましい。
The monovalent organic group for Z in the above formula (1D a ) is a monovalent hydrocarbon group having 1 to 6 carbon atoms, a methylene group of the hydrocarbon group being -O-, -S-, -CO-, -COO-, -COS-, -NR 3 -, -CO-NR 3 -, -Si(R 3 ) 2 - (wherein R 3 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms. When there are two R 3s , R 3s may be the same or different), -SO 2 - or the like; a monovalent group in which at least one hydrogen atom bonded to a carbon atom of the above-mentioned monovalent hydrocarbon group or the above-mentioned monovalent group A is substituted with a halogen atom, a hydroxy group, an alkoxy group, a nitro group, an amino group, a mercapto group, a nitroso group, an alkylsilyl group, an alkoxysilyl group, a silanol group, a sulfino group, a phosphino group, a carboxy group, a cyano group, a sulfo group, an acyl group, or the like; and a monovalent group having a heterocycle.
As the monovalent organic group for Z in the above formula (1D a ), an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, or a t-butoxycarbonyl group is preferable, an alkyl group having 1 to 3 carbon atoms is more preferable, and a methyl group is even more preferable.
In order to suitably obtain the effects of the present invention, the two Z's in the above formula (1D a ) are each independently preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and more preferably a hydrogen atom or a methyl group.

 本発明の重合体(B)におけるポリアミック酸(B)は、ジアミン由来の構造単位として、上記式(1D)で表される構造単位(b-1Db)を有する。構造単位(b-1Db)は1種類又は2種類以上であってもよい。上記式(1D)におけるZの1価の有機基は、上記式(1D)のZと同義である。 The polyamic acid (B) in the polymer (B) of the present invention has a structural unit (b-1Db) represented by the above formula (1D b ) as a structural unit derived from a diamine. The structural unit (b-1Db) may be of one type or of two or more types. The monovalent organic group of Z in the above formula (1D b ) has the same meaning as Z in the above formula (1D a ).

 上記構造単位(a-1Da)及び構造単位(b-1Db)の構造単位として、ジアミン(0)「H-N(Z)-Ar-L-A-L1’-Ar1’-N(Z)-H」、ジアミン(Ph)「H-N(Z)-Ar-N(Z)-H」及び、ジアミン(0)’「H-N(Z)-Ar-L-A-L2’-Ar2’-N(Z)-H」で表されるジアミンからなる群から選ばれるジアミン由来の構造単位(1D-1)、又は、上記ジアミン(0)、ジアミン(Ph)及びジアミン(0)’以外のジアミン(以下、その他のジアミンとも言う。)由来の構造単位(1D-2)が挙げられるが、なかでも構造単位(1D-1)がより好ましい。
 ここで、Ar、Ar1’は、それぞれ独立して、ベンゼン環、ビフェニル構造、又はナフタレン環を表す。Ar、Ar1’の環上の任意の水素原子は、1価の基で置換されてもよい。Aは、アルキレン構造を有する炭素数1~10の2価の有機基を表す。
 L、L1’は、それぞれ独立して、単結合、-O-、-S-、-C(=O)-、-O-C(=O)-、-NR-(Rは水素原子又は1価の有機基を表す。)、-C(=O)-NR-(Rは水素原子又は1価の有機基を表す。)、又は-NR-C(=O)-(Rは水素原子又は1価の有機基を表す。)を表す。
Examples of the structural units of the structural unit (a-1Da) and the structural unit (b-1Db) include structural units (1D-1) derived from diamines selected from the group consisting of diamines represented by diamine (0) "H-N(Z)-Ar 1 -L 1 -A-L 1' -Ar 1' -N(Z)-H", diamine (Ph) "H-N(Z)-Ar-N(Z)-H", and diamine (0)'"H-N(Z)-Ar 2 -L 2 -A 2 -L 2' -Ar 2' -N(Z)-H", or structural units (1D-2) derived from diamines other than the diamine (0), diamine (Ph), and diamine (0)' (hereinafter also referred to as other diamines), with the structural unit (1D-1) being more preferred.
Here, Ar 1 and Ar 1' each independently represent a benzene ring, a biphenyl structure, or a naphthalene ring. Any hydrogen atom on the ring of Ar 1 or Ar 1' may be substituted with a monovalent group. A represents a divalent organic group having an alkylene structure and having 1 to 10 carbon atoms.
L 1 and L 1' each independently represent a single bond, -O-, -S-, -C(=O)-, -O-C(=O)-, -NR- (R represents a hydrogen atom or a monovalent organic group), -C(=O)-NR- (R represents a hydrogen atom or a monovalent organic group), or -NR-C(=O)- (R represents a hydrogen atom or a monovalent organic group).

(ジアミン(0))
 上記ジアミン(0)のL、L1’を表す-NR-、-C(=O)-NR-、又は-NR-C(=O)-におけるRの1価の有機基としては、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数2~3のアルケニル基、炭素数2~3のアシル基、炭素数1~3のアルキルシリル基、炭素数1~3のアルコキシシリル基、Boc基、又はこれらの基が有する水素原子の少なくとも一部がハロゲン原子及びヒドロキシ基の少なくともいずれかで置換された1価の有機基が挙げられる。
(Diamine (0))
Examples of the monovalent organic group for R in -NR-, -C(═O)-NR-, or -NR-C(═O)- representing L 1 and L 1' in the diamine (0) include an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an alkenyl group having 2 to 3 carbon atoms, an acyl group having 2 to 3 carbon atoms, an alkylsilyl group having 1 to 3 carbon atoms, an alkoxysilyl group having 1 to 3 carbon atoms, a Boc group, or a monovalent organic group in which at least a portion of the hydrogen atoms in these groups have been substituted with at least one of a halogen atom and a hydroxy group.

 上記ジアミン(0)のAr及びAr1’の環上の任意の水素原子の置換基である1価の基としては、ハロゲン原子;炭素数1~3のアルキル基;水素原子の少なくとも一部がハロゲン原子若しくはヒドロキシ基で置換された炭素数1~3のアルキル基;炭素数1~3のアルコキシ基、水素原子の少なくとも一部が上記ハロゲン原子及びヒドロキシ基の少なくともいずれかで置換された炭素数1~3のアルコキシ基;炭素数2~3のアルケニル基;炭素数2~3のアシル基;炭素数1~3のアルキルシリル基;炭素数1~3のアルコキシシリル基;ヒドロキシ基、ニトリル基などの1価の基が挙げられる。 Examples of the monovalent group that is a substituent for any hydrogen atom on the rings of Ar 1 and Ar 1' in the diamine (0) include monovalent groups such as a halogen atom; an alkyl group having 1 to 3 carbon atoms; an alkyl group having 1 to 3 carbon atoms in which at least a portion of the hydrogen atoms are substituted with a halogen atom or a hydroxy group; an alkoxy group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms in which at least a portion of the hydrogen atoms are substituted with at least one of the above halogen atoms and a hydroxy group; an alkenyl group having 2 to 3 carbon atoms; an acyl group having 2 to 3 carbon atoms; an alkylsilyl group having 1 to 3 carbon atoms; an alkoxysilyl group having 1 to 3 carbon atoms; a hydroxy group, and a nitrile group.

 上記ジアミン(0)のAr及びAr1’の具体例としては、1,4-フェニレン、1,3-フェニレン、2-メチル-1,4-フェニレン、2-エチル-1,4-フェニレン、2-プロピル-1,4-フェニレン、2-ブチル-1,4-フェニレン、2-イソプロピル-1,4-フェニレン、2-t-ブチル-1,4-フェニレン、2-メトキシ-1,4-フェニレン、2-エトキシ-1,4-フェニレン、2-プロポキシ-1,4-フェニレン、2-ブトキシ-1,4-フェニレン、2-フルオロ-1,4-フェニレン、2,3-ジメチル-1,4-フェニレン、4-メチル-1,3-フェニレン、5-メチル-1,3-フェニレン、4-フルオロ-1,3-フェニレン、2,3,5,6-テトラメチル-1,4-フェニレンなどの置換基を有してもよいベンゼン環;4,4’-ビフェニリレン、2-メチル-4,4’-ビフェニリレン、2-エチル-4,4’-ビフェニリレン、2-プロピル-4,4’-ビフェニリレン、2-ブチル-4,4’-ビフェニリレン、2-t-ブチル-4,4’-ビフェニリレン、2-メトキシ-4,4’-ビフェニリレン、2-エトキシ-4,4’-ビフェニリレン、2-フルオロ-4,4’-ビフェニリレン、3-メチル-4,4’-ビフェニリレン、3-エチル-4,4’-ビフェニリレン、3-プロピル-4,4’-ビフェニリレン、3-ブチル-4,4’-ビフェニリレン、3-t-ブチル-4,4’-ビフェニリレン、3-メトキシ-4,4’-ビフェニリレン、3-エトキシ-4,4’-ビフェニリレン、3-フルオロ-4,4’-ビフェニリレン、2,2’-ジメチル-4,4’-ビフェニリレン、3,3’-ジメチル-4,4’-ビフェニリレン、3,3’-ビフェニリレン、5-メチル-3,3’-ビフェニリレン、5,5’-ジメチル-3,3’-ビフェニリレンなどの置換基を有してもよいビフェニル構造;1,5-ナフチレン、2,6-ナフチレン、1-メチル-2,6-ナフチレンなどの置換基を有してもよいナフタレン環などが挙げられる。 Specific examples of Ar 1 and Ar 1′ in the diamine (0) include 1,4-phenylene, 1,3-phenylene, 2-methyl-1,4-phenylene, 2-ethyl-1,4-phenylene, 2-propyl-1,4-phenylene, 2-butyl-1,4-phenylene, 2-isopropyl-1,4-phenylene, 2-t-butyl-1,4-phenylene, 2-methoxy-1,4-phenylene, 2-ethoxy-1,4-phenylene, 2-propoxy-1,4-phenylene, 2-butoxy-1,4-phenylene, 2-fluoro-1,4-phenylene, and the like. benzene rings which may have a substituent such as 4,4'-biphenylylene, 2-methyl-4,4'-biphenylylene, 2-ethyl-4,4'-biphenylylene, 2-propyl-4,4'-biphenylylene, 2-butyl-4,4'-biphenylylene, 2,3,5,6-tetramethyl-1,4-phenylene, 4-phenylene, 2,3-dimethyl-1,4-phenylene, 4-methyl-1,3-phenylene, 5-methyl-1,3-phenylene, 4-fluoro-1,3-phenylene, 2,3,5,6-tetramethyl-1,4-phenylene, etc. -t-butyl-4,4'-biphenylylene, 2-methoxy-4,4'-biphenylylene, 2-ethoxy-4,4'-biphenylylene, 2-fluoro-4,4'-biphenylylene, 3-methyl-4,4'-biphenylylene, 3-ethyl-4,4'-biphenylylene, 3-propyl-4,4'-biphenylylene, 3-butyl-4,4'-biphenylylene, 3-t-butyl-4,4'-biphenylylene, 3-methoxy-4,4'-biphenylylene, 3-ethoxy-4,4'-biphenylylene biphenyl structures which may have a substituent, such as phenylylene, 3-fluoro-4,4'-biphenylylene, 2,2'-dimethyl-4,4'-biphenylylene, 3,3'-dimethyl-4,4'-biphenylylene, 3,3'-biphenylylene, 5-methyl-3,3'-biphenylylene, and 5,5'-dimethyl-3,3'-biphenylylene; and naphthalene rings which may have a substituent, such as 1,5-naphthylene, 2,6-naphthylene, and 1-methyl-2,6-naphthylene.

 上記ジアミン(0)のAは、アルキレン構造を有する炭素数1~10の2価の有機基である。アルキレン構造が3以上の炭素-炭素結合を有する場合、アルキレン構造を構成する任意の炭素-炭素結合は、炭素-炭素二重結合で置き換えられてもよい。Aは、好ましくは、炭素数1~10のアルキレン基(q0);当該アルキレン基の炭素-炭素結合間に、-O-、-C(=O)-、-NH-、-O-C(=O)-、-C(=O)-O-、-NR-C(=O)-、-C(=O)-NR-、又は-NR-(Rは1価の有機基を表す。)が挿入されてなる2価の有機基(q1);或いは当該アルキレン基の炭素-炭素結合間に、-NR-C(=O)-NR-(Rは水素原子又は1価の有機基を表す。)を少なくとも1つ有する2価の有機基(q2)である。
 ここで、上記-NR-C(=O)-NR-におけるRの1価の有機基としては、上記ジアミン(0)のL及びL1’を表す-C(=O)-NR-におけるRについて例示した構造が挙げられる。
A of the diamine (0) is a divalent organic group having 1 to 10 carbon atoms and an alkylene structure. When the alkylene structure has three or more carbon-carbon bonds, any carbon-carbon bond constituting the alkylene structure may be replaced with a carbon-carbon double bond. A is preferably an alkylene group (q0) having 1 to 10 carbon atoms; a divalent organic group (q1) in which -O-, -C(=O)-, -NH-, -O-C(=O)-, -C(=O)-O-, -NR-C(=O)-, -C(=O)-NR-, or -NR- (R represents a monovalent organic group) is inserted between the carbon-carbon bonds of the alkylene group; or a divalent organic group (q2) having at least one -NR-C(=O)-NR- (R represents a hydrogen atom or a monovalent organic group) between the carbon-carbon bonds of the alkylene group.
Here, examples of the monovalent organic group for R in the above -NR-C(=O)-NR- include the structures exemplified for R in -C(=O)-NR- representing L1 and L1 ' in the above diamine (0).

 上記(q0)、(q1)、(q2)の好ましい具体例は、下記のとおりである。
 *-(CH-*、
 *-(CHn1-O-(CHn2-*、
 *-(CHn1-NR-(CHn2-*、
 *-(CHm1-O-C(=O)-(CHn’-C(=O)-O-(CH)m2-*、
 *-(CHm1-C(=O)-O-(CHn’-O-C(=O)-(CH)m2-*、
 *-(CHm1-C(=O)-NR-(CHn’-NR-C(=O)-(CH)m2-*、
 *-(CHm1-NR-C(=O)- (CHn’-C(=O)-NR-(CH)m2-*、
 *-(CHn1-NR-C(=O)-NR-(CHn2-*
Preferred specific examples of the above (q0), (q1) and (q2) are as follows.
*-( CH2 ) n- *,
*-(CH 2 ) n1 -O-(CH 2 ) n2 -*,
*-(CH 2 ) n1 -NR-(CH 2 ) n2 -*,
*-(CH 2 ) m1 -O-C(=O)-(CH 2 ) n' -C(=O)-O-(CH 2 ) m2 -*,
*-(CH 2 ) m1 -C(=O)-O-(CH 2 ) n' -O-C(=O)-(CH 2 ) m2 -*,
*-(CH 2 ) m1 -C(=O)-NR-(CH 2 ) n' -NR-C(=O)-(CH 2 ) m2 -*,
*-(CH 2 ) m1 -NR-C(=O)- (CH 2 ) n' -C(=O)-NR-(CH 2 ) m2 -*,
*-(CH 2 ) n1 -NR-C(=O)-NR-(CH 2 ) n2 -*

 上記化学式中、Rは、水素原子又は1価の有機基を表す。該1価の有機基としては、上記ジアミン(0)のL及びL1’を表す-C(=O)-NR-におけるRについて例示した構造が挙げられる。2つのRは互いに同一でも異なっても良い。
 nは1~10の整数であり、より好ましくは2~10の整数であり、さらに好ましくは2~6の整数である。
 m1、m2は、それぞれ独立して0~4の整数であり、n’は、1~6の整数であり、m1、m2及びn’の合計は1~8である。
 *-(CHn1-O-(CHn2-*におけるn1、n2は、それぞれ独立して1~6の整数であり、n1及びn2の合計は2~10である。
 *-(CHn1-NR-C(=O)-NR-(CHn2-*におけるn1、n2は、それぞれ独立して1~6の整数であり、n1及びn2の合計は2~9である。
In the above chemical formula, R represents a hydrogen atom or a monovalent organic group. Examples of the monovalent organic group include the structures exemplified for R in -C(=O)-NR- representing L1 and L1 ' in the above diamine (0). The two R's may be the same or different.
n is an integer of 1 to 10, more preferably an integer of 2 to 10, and further preferably an integer of 2 to 6.
m1 and m2 each independently represent an integer of 0 to 4; n' represents an integer of 1 to 6; the sum of m1, m2 and n' is 1 to 8.
In the formula *-(CH 2 ) n1 -O-(CH 2 ) n2 -*, n1 and n2 each independently represent an integer of 1 to 6, and the sum of n1 and n2 is 2 to 10.
In the formula *-(CH 2 ) n1 -NR-C(═O)-NR-(CH 2 ) n2 -*, n1 and n2 each independently represent an integer of 1 to 6, and the sum of n1 and n2 is 2 to 9.

 *-L-A-L1’-*は、本発明の効果を好適に得る観点から、以下の態様が好ましい。下記式における、m1、m2、n、n’、n1、n2の定義は上記式と同じである。また、下記式におけるRは、水素原子又は1価の有機基を表す。2つのRが存在する場合には、それぞれ独立して上記の定義を有する。上記1価の有機基としては、上記ジアミン(0)式(H)のL及びL1’を表す-C(=O)-NR-におけるRについて例示した構造が挙げられる。
  *-(CH-*、-O-(CH-O-*、
  *-NR-(CH-NR-*、
  *-O-(CHn1-O-(CHn2-O-*、
  *-O-(CHn1-NR-(CHn2-O-*、
  *-C(=O)-(CH-C(=O)-*、
  *-C(=O)-NR-(CH-O-*、
  *-O-C(=O)-(CH-O-*、
  *-O-C(=O)-(CH-O-C(=O)-*、
  *-O-C(=O)-(CH-C(=O)-O-*、
  *-(CH)m1-O-C(=O)-(CH)n’-C(=O)-O-(CH)m2-*
  *-S-(CH-S-*、
  *-C(=O)-NR-(CH-NR-C(=O)-*、
  *-C(=O)-O-(CH-O-C(=O)-*、
  *-(CH)m1-C(=O)-O-(CHn’-O-C(=O)-(CH)m2-*
  *-O-(CH-*、*-S-(CH-*、
  *-NR-C(=O)-(CH-C(=O)-NR-*
  *-(CHm1-C(=O)-NR-(CHn’-NR-C(=O)-(CH)m2-*、
  *-(CHm1-NR-C(=O)- (CHn’-C(=O)-NR-(CH)m2-*、
  *-(CHn1-NR-C(=O)-NR-(CHn2-*
 さらに、本発明の効果を好適に得る観点から、*-(CH-*、*-O-(CH-O-*、*-O-(CH-*が好ましい。
From the viewpoint of suitably obtaining the effects of the present invention, the following embodiments are preferred for *-L 1 -A-L 1' -*. In the formula below, the definitions of m1, m2, n, n', n1, and n2 are the same as in the formula above. Furthermore, in the formula below, R represents a hydrogen atom or a monovalent organic group. When two R are present, each of them independently has the above definition. Examples of the monovalent organic group include the structures exemplified for R in -C(═O)-NR- representing L 1 and L 1' in formula (H 1 ) of diamine (0) above.
*-(CH 2 ) n -*, -O-(CH 2 ) n -O-*,
*-NR-(CH 2 ) n -NR-*,
*-O-(CH 2 ) n1 -O-(CH 2 ) n2 -O-*,
*-O-(CH 2 ) n1 -NR-(CH 2 ) n2 -O-*,
*-C(=O)-(CH 2 ) n -C(=O)-*,
*-C(=O)-NR-(CH 2 ) n -O-*,
*-O-C(=O)-(CH 2 ) n -O-*,
*-OC(=O)-(CH 2 ) n -OC(=O)-*,
*-O-C(=O)-(CH 2 ) n -C(=O)-O-*,
*-(CH 2 ) m1 -O-C(=O)-(CH 2 ) n' -C(=O)-O-(CH 2 ) m2 -*
*-S-(CH 2 ) n -S-*,
*-C(=O)-NR-(CH 2 ) n -NR-C(=O)-*,
*-C(=O)-O-(CH 2 ) n -O-C(=O)-*,
*-(CH 2 ) m1 -C(=O)-O-(CH 2 ) n' -O-C(=O)-(CH 2 ) m2 -*
*-O-(CH 2 ) n -*, *-S-(CH 2 ) n -*,
*-NR-C(=O)-(CH 2 ) n -C(=O)-NR-*
*-(CH 2 ) m1 -C(=O)-NR-(CH 2 ) n' -NR-C(=O)-(CH 2 ) m2 -*,
*-(CH 2 ) m1 -NR-C(=O)- (CH 2 ) n' -C(=O)-NR-(CH 2 ) m2 -*,
*-(CH 2 ) n1 -NR-C(=O)-NR-(CH 2 ) n2 -*
Furthermore, from the viewpoint of suitably obtaining the effects of the present invention, *-(CH 2 ) n -*, *-O-(CH 2 ) n -O-* and *-O-(CH 2 ) n -* are preferred.

 ポリアミック酸(A)は、ジアミン由来の構造単位として、Yがベンゼン環を3つ以上有する2価の有機基である、上記式(1D)で表される構造単位を少なくとも一つ含んでもよい。
 ここで、「ベンゼン環を3つ以上有する2価の有機基」におけるベンゼン環には、縮合環を構成するベンゼン環も含まれる。そして、上記ジアミン(0)におけるベンゼン環の数を数える場合、それぞれ、ナフタレン環はベンゼン環を2つ有するとし、アントラセン環はベンゼン環を3つ有するとし、ビフェニル構造はベンゼン環を2つ有するとして数える。
The polyamic acid (A) may contain, as a structural unit derived from a diamine, at least one structural unit represented by the above formula (1D a ), in which Y a is a divalent organic group having three or more benzene rings.
Here, the benzene ring in the "divalent organic group having three or more benzene rings" includes a benzene ring constituting a condensed ring. When counting the number of benzene rings in the diamine (0), a naphthalene ring is counted as having two benzene rings, an anthracene ring is counted as having three benzene rings, and a biphenyl structure is counted as having two benzene rings.

 ポリアミック酸(A)は、本発明の効果を好適に得る観点から、Yの少なくとも一つが、ArとAr1’が同じ構造となるジアミン(0)に由来する2価の有機基であって、他のYの少なくとも一つがArとAr1’が異なる構造となるジアミン(0)に由来する2価の有機基である式(1D)で表される構造単位を有することが好ましい。
 ArとAr1’が同じ構造となる場合の好ましい組合せとして、上記置換基を有してもよいビフェニル構造と上記置換基を有してもよいビフェニル構造の組合せ、上記置換基を有してもよいナフタレン環と上記置換基を有してもよいナフタレン環との組合せが挙げられる。また、ArとAr1’が異なる構造となる場合の好ましい組み合わせとして、上記置換基を有してもよいベンゼン環と上記置換基を有してもよいビフェニル構造との組合せ、上記置換基を有してもよいベンゼン環と上記置換基を有してもよいナフタレン環との組合せ、上記置換基を有してもよいビフェニル構造と上記置換基を有してもよいナフタレン環との組合せが挙げられる。
From the viewpoint of suitably obtaining the effects of the present invention, the polyamic acid (A) preferably has a structural unit represented by formula (1D a ) in which at least one of Y a is a divalent organic group derived from diamine (0) in which Ar 1 and Ar 1 ' have the same structure, and at least one of the other Y a is a divalent organic group derived from diamine (0) in which Ar 1 and Ar 1' have different structures.
As a preferred combination when Ar 1 and Ar 1' are the same structure, the combination of the biphenyl structure which may have the above-mentioned substituent and the biphenyl structure which may have the above-mentioned substituent, the combination of the naphthalene ring which may have the above-mentioned substituent and the naphthalene ring which may have the above-mentioned substituent can be mentioned.Also, as a preferred combination when Ar 1 and Ar 1' are different structures, the combination of the benzene ring which may have the above-mentioned substituent and the biphenyl structure which may have the above-mentioned substituent, the combination of the benzene ring which may have the above-mentioned substituent and the naphthalene ring which may have the above-mentioned substituent, the combination of the biphenyl structure which may have the above-mentioned substituent and the naphthalene ring which may have the above-mentioned substituent can be mentioned.

 上記構造単位(1D-1)は、本発明の効果を好適に得る観点から、下記式(h1-1)~(h1-22)のいずれかで表される2価の有機基、又は後述する式(dDa-1)で表されるジアミンから2つのアミノ基を除いた2価の有機基、後述する式(Am-1)~(Am-2)で表されるジアミンから2つのアミノ基を除いた2価の有機基を有することが好ましい。
 式(h1-1)~(h1-22)において、ベンゼン環の結合位置は1位及び4位であることが好ましく、ナフタレン環の結合位置は、2位及び6位であることが好ましい。
 式(h1-4)において、-CH-の合計数は10以下である。
 式(h1-7)、(h1-8)、(h1-14)において、-CH-の合計数は8以下であり、2つのmは互いに同一でも異なっても良い。
 なお、下記式(h1-1)~(h1-22)のベンゼン環上の水素原子は、メチル基、メトキシ基、フッ素原子で置換されてもよい。

Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
From the viewpoint of suitably achieving the effects of the present invention, the structural unit (1D-1) preferably has a divalent organic group represented by any one of the following formulas (h1-1) to (h1-22), a divalent organic group obtained by removing two amino groups from a diamine represented by the below-described formula (d Da -1), or a divalent organic group obtained by removing two amino groups from a diamine represented by the below-described formulas (Am-1) to (Am-2).
In formulae (h1-1) to (h1-22), the bonding positions of the benzene ring are preferably the 1- and 4-positions, and the bonding positions of the naphthalene ring are preferably the 2- and 6-positions.
In formula (h1-4), the total number of —CH 2 — groups is 10 or less.
In formulae (h1-7), (h1-8) and (h1-14), the total number of -CH 2 - is 8 or less, and two m's may be the same or different.
In addition, the hydrogen atoms on the benzene rings in the following formulas (h1-1) to (h1-22) may be substituted with a methyl group, a methoxy group, or a fluorine atom.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025

(ジアミン(Ph))
 Arは、ベンゼン環、ビフェニル構造、ナフタレン環、又は下記式(Im)で表される2価の有機基を表す。Arが有するベンゼン環、ビフェニル構造、又はナフタレン環上の任意の水素原子は、1価の基で置換されてもよく、該1価の基としては、ハロゲン原子;炭素数1~3のアルキル基;水素原子の少なくとも一部がハロゲン原子若しくはヒドロキシ基で置換された炭素数1~3のアルキル基;炭素数1~3のアルコキシ基、水素原子の少なくとも一部が上記ハロゲン原子及びヒドロキシ基の少なくともいずれかで置換された炭素数1~3のアルコキシ基;炭素数2~3のアルケニル基;炭素数2~3のアシル基;炭素数1~3のアルキルシリル基;炭素数1~3のアルコキシシリル基;ヒドロキシ基、ニトリル基などが挙げられる。

Figure JPOXMLDOC01-appb-C000026
(式(Im)中、Xは、非環式又は脂環式テトラカルボン酸二無水物から2つの無水基を除いた4価の有機基を表す。)
 上記式(Im)中のXは、上記式(x-1)、又は上記式(X5a-1)~(X5a-4)で表される4価の有機基、1,2,3,4-ブタンテトラカルボン酸二無水物から2つの無水基を除いた4価の有機基が好ましい。 (Diamine (Ph))
Ar represents a benzene ring, a biphenyl structure, a naphthalene ring, or a divalent organic group represented by the following formula (Im). Any hydrogen atom on the benzene ring, biphenyl structure, or naphthalene ring of Ar may be substituted with a monovalent group, and examples of the monovalent group include a halogen atom, an alkyl group having 1 to 3 carbon atoms, an alkyl group having 1 to 3 carbon atoms in which at least a portion of the hydrogen atoms is substituted with a halogen atom or a hydroxy group, an alkoxy group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms in which at least a portion of the hydrogen atoms is substituted with at least one of the halogen atoms and the hydroxy group, an alkenyl group having 2 to 3 carbon atoms, an acyl group having 2 to 3 carbon atoms, an alkylsilyl group having 1 to 3 carbon atoms, an alkoxysilyl group having 1 to 3 carbon atoms, a hydroxy group, and the like.
Figure JPOXMLDOC01-appb-C000026
(In formula (Im), X represents a tetravalent organic group obtained by removing two anhydride groups from an acyclic or alicyclic tetracarboxylic acid dianhydride.)
X in the above formula (Im) is preferably a tetravalent organic group represented by the above formula (x-1) or any of the above formulas (X 5a -1) to (X 5a -4), or a tetravalent organic group obtained by removing two anhydride groups from 1,2,3,4-butanetetracarboxylic dianhydride.

 上記式(Im)で表される2価の有機基は、下記式(Im-1)~(Im-6)で表される構造が好ましい。

Figure JPOXMLDOC01-appb-C000027
The divalent organic group represented by the above formula (Im) is preferably a structure represented by the following formulas (Im-1) to (Im-6).
Figure JPOXMLDOC01-appb-C000027

 ジアミン(Ph)の好ましい具体例として、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、1,4-ジアミノ-2,5-メトキシベンゼン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3-トリフルオロメチル-4,4’-ジアミノビフェニル、2-トリフルオロメチル-4,4’-ジアミノビフェニル、3-フルオロ-4,4’-ジアミノビフェニル、2-フルオロ-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、4,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、又は、上記式(Im)で表される2価の有機基の両端にアミノ基が結合したジアミン、が挙げられる。 Preferred specific examples of diamine (Ph) include p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 1,4-diamino-2,5-methoxybenzene, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3-trifluoromethyl-4,4'-diaminobiphenyl, 2-trifluoromethyl-4,4'-diaminobiphenyl, 3-fluoro-4,4'-diaminobiphenyl, 2 ... Examples of the diaminobiphenyl include fluoro-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,3'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 4,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 2,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene, and diamines in which amino groups are bonded to both ends of a divalent organic group represented by the above formula (Im).

(ジアミン(0)’)
 ジアミン(0)’は、「H-N(Z)-Ar-L-A-L2’-Ar2’-N(Z)-H」で表されるジアミンである。
 Ar及びAr2’は、それぞれ独立して、ベンゼン環、ビフェニル構造、ナフタレン環、又は芳香族複素環を表す。Ar及びAr2’の環上の任意の水素原子は、1価の基で置換されてもよい。Aは、アルキレン基を有する2価の有機基を表す。Aは、炭素数1~30の2価の有機基であることが好ましく、炭素数1~20の2価の有機基であることがより好ましく、炭素数1~18の2価の有機基であることがさらに好ましい。
 L、L2’は、それぞれ独立して、単結合、-O-、-S-、-C(=O)-、-O-C(=O)-、-NR-(Rは水素原子又は1価の有機基を表す。)、-C(=O)-NR-(Rは水素原子又は1価の有機基を表す。)、又は-NR-C(=O)-(Rは水素原子又は1価の有機基を表す。)を表す。
 但し、Ar及びAr2’及びAのいずれかは、複素環を有している。
 上記複素環としては、例えば、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環、インドール環、ベンゾイミダゾール環、プリン環、キノリン環、イソキノリン環、ナフチリジン環、キノキサリン環、フタラジン環、トリアジン環、カルバゾール環、アクリジン環、ピペリジン環、ピペラジン環、ピロリジン環、ヘキサメチレンイミン環等が挙げられる。なかでも、ピリジン環、ピリミジン環、ピラジン環、ベンゾイミダゾール環、ピペリジン環、ピペラジン環、キノリン環、カルバゾール環又はアクリジン環が好ましい。
 ジアミン(0)’のより好ましい具体例として、下記(dDa-8)で表されるジアミン、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-4-メチル-2-オキサゾリル]-ベンゼンアミン、4-[4-[(4-アミノフェノキシ)メチル]-4,5-ジヒドロ-2-オキサゾリル]-ベンゼンアミン、又は、以下の(dHt-1)~(dHt-8)で表されるジアミンが挙げられる。dHt-6、dHt-8は、好ましくは、1,4-ビス(p-アミノベンジル)ピペラジン、4,4’-[4,4’-プロパン-1,3-ジイルビス(ピペリジン-1,4-ジイル)]ジアニリンである。

Figure JPOXMLDOC01-appb-C000028
(Diamine (0)')
Diamine (0)' is a diamine represented by "HN(Z)-Ar 2 -L 2 -A 2 -L 2' -Ar 2' -N(Z)-H".
Ar 2 and Ar 2' each independently represent a benzene ring, a biphenyl structure, a naphthalene ring, or an aromatic heterocycle. Any hydrogen atom on the ring of Ar 2 and Ar 2' may be substituted with a monovalent group. A 2 represents a divalent organic group having an alkylene group. A 2 is preferably a divalent organic group having 1 to 30 carbon atoms, more preferably a divalent organic group having 1 to 20 carbon atoms, and even more preferably a divalent organic group having 1 to 18 carbon atoms.
L 2 and L 2' each independently represent a single bond, -O-, -S-, -C(=O)-, -O-C(=O)-, -NR- (R represents a hydrogen atom or a monovalent organic group), -C(=O)-NR- (R represents a hydrogen atom or a monovalent organic group), or -NR-C(=O)- (R represents a hydrogen atom or a monovalent organic group).
However, any one of Ar 2 , Ar 2′ and A 2 has a heterocycle.
Examples of the heterocyclic ring include a pyrrole ring, an imidazole ring, a pyrazole ring, a triazole ring, a pyridine ring, a pyrimidine ring, a pyridazine ring, a pyrazine ring, an indole ring, a benzimidazole ring, a purine ring, a quinoline ring, an isoquinoline ring, a naphthyridine ring, a quinoxaline ring, a phthalazine ring, a triazine ring, a carbazole ring, an acridine ring, a piperidine ring, a piperazine ring, a pyrrolidine ring, a hexamethyleneimine ring, etc. Among these, a pyridine ring, a pyrimidine ring, a pyrazine ring, a benzimidazole ring, a piperidine ring, a piperazine ring, a quinoline ring, a carbazole ring, or an acridine ring is preferred.
More preferred specific examples of diamine (0)' include diamines represented by the following (d Da -8), 4-[4-[(4-aminophenoxy)methyl]-4,5-dihydro-4-methyl-2-oxazolyl]-benzeneamine, 4-[4-[(4-aminophenoxy)methyl]-4,5-dihydro-2-oxazolyl]-benzeneamine, and diamines represented by the following (d Ht -1) to (d Ht -8). d Ht -6 and d Ht -8 are preferably 1,4-bis(p-aminobenzyl)piperazine and 4,4'-[4,4'-propane-1,3-diylbis(piperidine-1,4-diyl)]dianiline.
Figure JPOXMLDOC01-appb-C000028

 一つの態様において、ポリアミック酸(A)、及び/又は、ポリアミック酸(B)において、上記構造単位(1D-1)を、ポリアミック酸(A)、及び/又は、ポリアミック酸(B)が有するジアミン由来の全構造単位1モルに対して、5~100モル%含むことが好ましく、5~95モル%含むことがより好ましく、10~95モル%含むことが更に好ましく、20~80モル%含むことがより一層好ましい。 In one embodiment, the polyamic acid (A) and/or polyamic acid (B) preferably contains 5 to 100 mol % of the structural unit (1D-1) relative to 1 mole of all structural units derived from diamine contained in the polyamic acid (A) and/or polyamic acid (B), more preferably 5 to 95 mol %, even more preferably 10 to 95 mol %, and even more preferably 20 to 80 mol %.

 上記その他のジアミン由来の構造単位(1D-2)におけるその他のジアミンの例としては以下のものが挙げられる。
 4-アミノベンジルアミン、2-(4-アミノフェニル)エチルアミン、第二級アミノ基と第一級アミノ基を有する半芳香族ジアミン(好ましくは、4-(2-(メチルアミノ)エチル)アニリンである。)(ここで、半芳香族ジアミンとは、一方のアミノ基は芳香環に結合しており、もう一方のアミノ基は芳香環に結合していないジアミンのことを指す。)、4-(2-アミノエチル)アニリン、2-(6-アミノナフチル)エチルアミン、などの特定のジアミン(以下、これらを特定ジアミン(1)ともいう。);
Examples of the other diamine in the structural unit (1D-2) derived from the other diamine include the following.
4-aminobenzylamine, 2-(4-aminophenyl)ethylamine, semi-aromatic diamines having a secondary amino group and a primary amino group (preferably 4-(2-(methylamino)ethyl)aniline) (herein, the semi-aromatic diamine refers to a diamine in which one amino group is bonded to an aromatic ring and the other amino group is not bonded to an aromatic ring), 4-(2-aminoethyl)aniline, 2-(6-aminonaphthyl)ethylamine, and other specific diamines (hereinafter, these are also referred to as specific diamines (1));

 1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート;4,4’-ジアミノアゾベンゼン、ジアミノトラン、下記式(D-1)~(D-5)で表されるジアミン、4,4-ジアミノカルコン、又は[4-[(E)-3-[2-(2,4-ジアミノフェニル)エトキシ]-3-オキソ-プロパ-1-エニル]フェニル]4-(4,4,4-トリフルオロブトキシ)ベンゾエート、若しくは[4-[(E)-3-[[5-アミノ-2-[4-アミノ-2-[[(E)-3-[4-[4-(4,4,4-トリフルオロブトキシ)ベンゾイル]オキシフェニル]プロパ-2-エノイル]オキシメチル]フェニル]フェニル]メトキシ]-3-オキソ-プロパ-1-エニル]フェニル]4-(4,4,4-トリフルオロブトキシ)ベンゾエートに代表されるシンナメート構造を有する芳香族ジアミン等の光配向性基を有するジアミン;メタクリル酸2-(2,4-ジアミノフェノキシ)エチル又は2,4-ジアミノ-N,N-ジアリルアニリンなどの光重合性基を末端に有するジアミン;1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパノン、2-(4-(2-ヒドロキシ-2-メチルプロパノイル)フェノキシ)エチル-3,5-ジアミノベンゾエートなどのラジカル重合開始剤機能を有するジアミン;4,4’-ジアミノベンズアニリド、下記式(D-6)で表されるジアミン、下記式(Am-3)~(Am-6)で表されるジアミンなどのアミド結合を有するジアミン;1,3-ビス(4-アミノフェニル)ウレアなどのウレア結合を有するジアミン;HN-Y-NH(Yは、分子内に、-N(D)-(Dは、加熱によって脱離して水素原子に置き換わる保護基を表す。)を有する2価の有機基を表す。)などの熱脱離性基を有するジアミン; 1,4-phenylenebis(4-aminobenzoate), 1,4-phenylenebis(3-aminobenzoate), 1,3-phenylenebis(4-aminobenzoate), 1,3-phenylenebis(3-aminobenzoate), bis(4-aminophenyl)terephthalate, bis(3-aminophenyl)terephthalate, bis(4-aminophenyl)isophthalate, bis(3-aminophenyl)isophthalate; 4,4'-diaminoazobenzene, diaminotrans, Diamines represented by the formulae (D-1) to (D-5), 4,4-diaminochalcones, or [4-[(E)-3-[2-(2,4-diaminophenyl)ethoxy]-3-oxo-prop-1-enyl]phenyl]4-(4,4,4-trifluorobutoxy)benzoate, or [4-[(E)-3-[[5-amino-2-[4-amino-2-[[(E)-3-[4-[4-(4,4,4-trifluorobutoxy)benzoyl]oxyphenyl]prop-2-enoyl]o diamines having a photoalignment group, such as aromatic diamines having a cinnamate structure, typified by 4-(4,4,4-trifluorobutoxy)benzoate; diamines having a photopolymerizable group at the terminal, such as 2-(2,4-diaminophenoxy)ethyl methacrylate or 2,4-diamino-N,N-diallylaniline; 1-(4-(2-(2,4-diaminophenoxy)ethoxy)phenyl diamines having a radical polymerization initiator function, such as 2-(4-(2-hydroxy-2-methylpropanoyl)phenoxy)ethyl-3,5-diaminobenzoate; diamines having an amide bond, such as 4,4'-diaminobenzanilide, diamines represented by the following formula (D-6), and diamines represented by the following formulas (Am-3) to (Am-6); diamines having a urea bond, such as 1,3-bis(4-aminophenyl)urea; diamines having a thermally detachable group, such as H 2 N-Y D -NH 2 (Y D represents a divalent organic group having -N(D)- (D represents a protecting group which is detached by heating and replaced with a hydrogen atom) in the molecule);

 3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ジフェニルエーテル、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ]ベンゼン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、4,4’-ジアミノベンゾフェノン、1,4-ビス(4-アミノベンジル)ベンゼン;2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N-(3-(1H-イミダゾール-1-イル)プロピル-3,5-ジアミノベンズアミド、2,5-ビス(4-アミノフェニル)ピロール、4,4’-(1-メチル-1H-ピロール-2,5-ジイル)ビス[ベンゼンアミン]、1,4-ビス-(4-アミノフェニル)-ピペラジン、2-N-(4-アミノフェニル)ピリジン-2,5-ジアミン、2-N-(5-アミノピリジン-2-イル)ピリジン-2,5-ジアミン、2-(4-アミノフェニル)-5-アミノベンズイミダゾール、2-(4-アミノフェニル)-6-アミノベンズイミダゾール、5-(1H-ベンズイミダゾール-2-イル)ベンゼン-1,3-ジアミン、若しくは下記式(z-1)~式(z-22)で表されるジアミンなどの複素環含有ジアミン、又は、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニル-N-メチルアミン、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、若しくは、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチル-1,4-ベンゼンジアミンなどのジフェニルアミン構造を有するジアミンに代表される、窒素原子を含む複素環、第二級又は第三級のアミノ基よりなる群から選ばれる少なくとも一種の窒素原子含有構造(但し、-N(D)-(Dは加熱によって脱離し水素原子に置き換わる保護基を表す。)に由来するアミノ基を除く。以下、特定の窒素原子含有構造ともいう。ただし、特定の窒素原子含有構造は、重縮合反応に関与する2つのアミノ基以外の原子団である。)を有するジアミン;  3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 4,4'-bis(4-aminophenoxy)biphenyl, 4,4'-bis(4-aminophenoxy)diphenyl ether, 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 4,4'-sulfonyldianiline, 3,3'-sulfonyldianiline, bis(4-aminophenyl)silane, bis(3-aminophenyl)silane, dimethyl-bis(4-aminophenyl)silane, dimethyl-bis(3-aminophenyl)silane, 4,4'-thiodiazide dianiline, 3,3'-thiodianiline, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 2,2'-bis[4-(4-aminophenoxy)phenyl]propane, 2,2'-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2'-bis(4-aminophenyl)hexafluoropropane, 2,2'-bis(3-aminophenyl)hexafluoropropane, 2,2'-bis(3-amino-4-methylphenyl)hexafluoropropane, 2,2'-bis(4-aminophenyl)propane, 2,2'-bis(3-aminophenyl)propane, 2,2'-bis(3-amino-4-methylphenyl)propane, 4,4'-diaminobenzophenone, 1,4-bis(4-aminobenzyl)benzene; 2,6-diaminopyridine, 3,4-diaminopyridine azine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, N-methyl-3,6-diaminocarbazole, 1,4-bis-(4-aminophenyl)-piperazine, 3,6-diaminoacridine, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diaminocarbazole, N-(3-(1H-imidazol-1-yl)propyl-3,5-diaminobenzamide, 2,5-bis (4-aminophenyl)pyrrole, 4,4'-(1-methyl-1H-pyrrole-2,5-diyl)bis[benzenamine], 1,4-bis-(4-aminophenyl)-piperazine, 2-N-(4-aminophenyl)pyridine-2,5-diamine, 2-N-(5-aminopyridin-2-yl)pyridine-2,5-diamine, 2-(4-aminophenyl)-5-aminobenzimidazole, 2-(4-aminophenyl)-5-aminobenzimidazole, heterocycle-containing diamines such as N,N'-bis(4-phenyl)-6-aminobenzimidazole, 5-(1H-benzimidazol-2-yl)benzene-1,3-diamine, or diamines represented by the following formulae (z-1) to (z-22), or diamines having a diphenylamine structure such as 4,4'-diaminodiphenylamine, 4,4'-diaminodiphenyl-N-methylamine, N,N'-bis(4-aminophenyl)-benzidine, N,N'-bis(4-aminophenyl)-N,N'-dimethylbenzidine, or N,N'-bis(4-aminophenyl)-N,N'-dimethyl-1,4-benzenediamine, excluding amino groups derived from -N(D)- (D represents a protecting group which is eliminated by heating and replaced with a hydrogen atom). Hereinafter, this is also referred to as a specific nitrogen atom-containing structure. However, the specific nitrogen atom-containing structure is an atomic group other than the two amino groups involved in the polycondensation reaction.) Diamines having;

 2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル;2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、4,4’-ジアミノジフェニルエタン-3-カルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸などのカルボキシ基を有するジアミン;1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン;コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタンなどのステロイド骨格を有するジアミン;下記式(V-1)~(V-2)で表されるジアミン;1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサンなどのシロキサン結合を有するジアミン;メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミンなどの非環式脂肪族ジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)などの脂環式ジアミン、WO2018/117239号に記載の式(Y-1)~(Y-167)のいずれかで表される基に2つのアミノ基が結合したジアミンなど。  2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diamino-3,3'-dihydroxybiphenyl; 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, 4,4'-diaminobiphenyl-3-carboxylic acid, 4,4'-diaminodiphenylmethane-3-carboxylic acid, 4,4'-diaminodiphenylethane-3-carboxylic acid, 4,4'-diaminobiphenyl-3,3'-dica diamines having a carboxy group such as carboxylic acid, 4,4'-diaminobiphenyl-2,2'-dicarboxylic acid, 3,3'-diaminobiphenyl-4,4'-dicarboxylic acid, 3,3'-diaminobiphenyl-2,4'-dicarboxylic acid, 4,4'-diaminodiphenylmethane-3,3'-dicarboxylic acid, 4,4'-diaminodiphenylethane-3,3'-dicarboxylic acid, and 4,4'-diaminodiphenylether-3,3'-dicarboxylic acid; 1-(4-aminophenyl)-1,3,3-trimethyl-1H-indan-5-amine, ... )-2,3-dihydro-1,3,3-trimethyl-1H-inden-6-amine; diamines having a steroid skeleton such as cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-3,5-diaminobenzene, cholestanyloxy-2,4-diaminobenzene, cholestanyl 3,5-diaminobenzoate, cholestanyl 3,5-diaminobenzoate, lanostannyl 3,5-diaminobenzoate, and 3,6-bis(4-aminobenzoyloxy)cholestane; diamines represented by the following formulae (V-1) to (V-2); Diamines having a siloxane bond such as metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, and other acyclic aliphatic diamines; alicyclic diamines such as 1,3-bis(aminomethyl)cyclohexane, 1,4-diaminocyclohexane, and 4,4'-methylenebis(cyclohexylamine); and diamines in which two amino groups are bonded to a group represented by any one of formulas (Y-1) to (Y-167) described in WO2018/117239.

Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
((z-13)におけるX13は、メチル基、又はフェニル基を表す。)
Figure JPOXMLDOC01-appb-C000034
(式(z-19)中、X19は、-C(=O)-、-O-、又は-NH-を表す。R19、R19’は、それぞれ独立して、水素原子又はメチル基を表す。
式(z-22)中、X22は、-CH-、-(CH-、又は-NH-を表す。)
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
(X 13 in (z-13) represents a methyl group or a phenyl group.)
Figure JPOXMLDOC01-appb-C000034
In formula (z-19), X 19 represents —C(═O)—, —O—, or —NH—. R 19 and R 19′ each independently represent a hydrogen atom or a methyl group.
In formula (z-22), X 22 represents —CH 2 —, —(CH 2 ) 3 —, or —NH—.

Figure JPOXMLDOC01-appb-C000035
(式(V-1)中、m、nは0~3の整数(但し、1≦m+n≦4を満たす。)であり、jは0又は1の整数であり、Xは、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CO-N(CH)-、-NH-、-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表す。Rは、フッ素原子、炭素数1~10のフッ素原子含有アルキル基、炭素数1~10のフッ素原子含有アルコキシ基、炭素数3~10のアルキル基、炭素数3~10のアルコキシ基、又は炭素数3~10のアルコキシアルキル基を表す。式(V-2)中、Xは-O-、-CHO-、-CH-OCO-、-COO-、又は-OCO-を表す。式(z-2)、(V-1)、(V-2)において、m、n、X、Rが2つ存在する場合、それぞれ独立して、上記定義を有する。)
Figure JPOXMLDOC01-appb-C000035
In formula (V-1), m and n are integers of 0 to 3 (with the proviso that 1≦m+n≦4 is satisfied), j is an integer of 0 or 1, and X 1 represents -(CH 2 ) a - (a is an integer of 1 to 15), -CONH-, -NHCO-, -CO-N(CH 3 )-, -NH-, -O-, -CH 2 O-, -CH 2 -OCO-, -COO-, or -OCO-. R 1 represents a fluorine atom, a fluorine atom-containing alkyl group having 1 to 10 carbon atoms, a fluorine atom-containing alkoxy group having 1 to 10 carbon atoms, an alkyl group having 3 to 10 carbon atoms, an alkoxy group having 3 to 10 carbon atoms, or an alkoxyalkyl group having 3 to 10 carbon atoms. In formula (V-2), X 2 represents -O-, -CH 2 O-, -CH 2 In formulae (z-2), (V-1) and (V-2), when there are two m, n, X 1 and R 1 , each independently has the above definition.

 なお、上記したその他のジアミンが有する-N(D)-におけるDは、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、Boc基などに代表されるカルバメート系の有機基が好ましい。熱による脱離の効率が良く、比較的低い温度で脱離し、脱離した際に無害な気体として排出されるという観点では、Boc基が特に好ましい。 In addition, D in -N(D)- of the other diamines described above is preferably a carbamate-based organic group such as a benzyloxycarbonyl group, a 9-fluorenylmethyloxycarbonyl group, an allyloxycarbonyl group, or a Boc group. The Boc group is particularly preferred from the viewpoints that it is efficiently eliminated by heat, is eliminated at a relatively low temperature, and is discharged as a harmless gas upon elimination.

 上記その他のジアミンとして例示した熱脱離性基を有するジアミンの好ましい例として、下記式(dDa-1)~(dDa-10)から選ばれるジアミンが挙げられるが、なかでも下記式(dDa-2)~(dDa-7)、(dDa-9)~(dDa-10)から選ばれるジアミンがより好ましい。(但し、(dDa-3)~(dDa-5)における、ベンゼン環を連結する連結基が有する炭素数の合計は、11以上である。)

Figure JPOXMLDOC01-appb-C000036
(式(dDa-2)、(dDa-6)、(dDa-7)中、Rは水素原子又はBoc基を表す。)
Figure JPOXMLDOC01-appb-C000037
Preferred examples of the diamine having a thermally detachable group exemplified as the other diamines above include diamines selected from the following formulae (d Da -1) to (d Da -10), with diamines selected from the following formulae (d Da -2) to (d Da -7) and (d Da -9) to (d Da -10) being more preferred. (However, in (d Da -3) to (d Da -5), the total number of carbon atoms in the linking groups linking the benzene rings is 11 or more.)
Figure JPOXMLDOC01-appb-C000036
(In formulas (d Da -2), (d Da -6), and (d Da -7), R represents a hydrogen atom or a Boc group.)
Figure JPOXMLDOC01-appb-C000037

 一つの態様において、本発明に用いられるポリアミック酸(A)、及び/又は、ポリアミック酸(B)が、上記構造単位(1D-2)を有する場合、本発明の効果を好適に得る観点から、上記特定ジアミン(1)に由来する構造単位を含有することがより好ましい。
 上記特定ジアミン(1)に由来する構造単位は、ポリアミック酸(A)、及び/又は、ポリアミック酸(B)が含有するジアミン由来の全構造単位1モルに対して、好ましくは5~95モル%であり、より好ましくは5~90モル%であり、更に好ましくは20~80モル%である。
 また、ポリアミック酸(A)、及び/又は、ポリアミック酸(B)は、上記構造単位(1D-2)として、2種類の重合体間での二層分離性を高める観点から、上記熱脱離性基を有するジアミンに由来する構造単位を含有してもよい。上記熱脱離性基を有するジアミンに由来する構造単位は、ポリアミック酸(A)及び/又は、ポリアミック酸(B)が含有するジアミン由来の全構造単位1モルに対して、好ましくは5~40モル%であり、より好ましくは5~35モル%であり、更に好ましくは5~30モル%である。
 さらに、ポリアミック酸(A)及び/又は、ポリアミック酸(B)は、上記構造単位(1D-2)として、本発明の効果を好適に得る観点から、上記熱脱離性基を有するジアミンを除くその他のジアミンであって、該その他のジアミンが、炭素数3以上の側鎖基を有しないジアミンに由来する構造単位であることが好ましい。
 ここで、炭素数3以上の側鎖基を有するジアミンとは、例えば、炭素数3以上の側鎖基を有する上記光配向性基を有するジアミン、炭素数3以上の側鎖基を有する上記光重合性基を末端に有するジアミン、炭素数3以上の側鎖基を有する上記ラジカル重合開始剤機能を有するジアミン、炭素数3以上の側鎖基を有する上記特定の窒素原子含有構造を有するジアミン、上記ステロイド骨格を有するジアミン、炭素数3以上の側鎖基を有する上記式(V-1)~(V-2)で表されるジアミン等が挙げられる。
In one embodiment, when the polyamic acid (A) and/or the polyamic acid (B) used in the present invention has the above structural unit (1D-2), it is more preferable for it to contain a structural unit derived from the above specific diamine (1), from the viewpoint of suitably obtaining the effects of the present invention.
The content of the structural units derived from the specific diamine (1) is preferably 5 to 95 mol %, more preferably 5 to 90 mol %, and even more preferably 20 to 80 mol %, based on 1 mol of all the structural units derived from diamines contained in the polyamic acid (A) and/or the polyamic acid (B).
From the viewpoint of enhancing the two-layer separation between two types of polymers, the polyamic acid (A) and/or the polyamic acid (B) may contain, as the structural unit (1D-2), a structural unit derived from a diamine having a thermally detachable group. The structural unit derived from a diamine having a thermally detachable group is preferably 5 to 40 mol %, more preferably 5 to 35 mol %, and even more preferably 5 to 30 mol %, relative to 1 mol of all structural units derived from diamines contained in the polyamic acid (A) and/or the polyamic acid (B).
Furthermore, from the viewpoint of suitably obtaining the effects of the present invention, it is preferable that the polyamic acid (A) and/or the polyamic acid (B) is a structural unit derived from a diamine other than the diamine having the thermally detachable group as the structural unit (1D-2), the diamine having no side chain group having 3 or more carbon atoms.
Here, examples of diamines having a side chain group with 3 or more carbon atoms include diamines having the above-mentioned photoalignment group having a side chain group with 3 or more carbon atoms, diamines having the above-mentioned photopolymerizable group at an end and having a side chain group with 3 or more carbon atoms, diamines having the above-mentioned radical polymerization initiator function and having a side chain group with 3 or more carbon atoms, diamines having the above-mentioned specific nitrogen atom-containing structure and having a side chain group with 3 or more carbon atoms, diamines having the above-mentioned steroid skeleton, diamines represented by the above formulas (V-1) to (V-2) and the like having a side chain group with 3 or more carbon atoms, etc.

 ポリアミック酸(A)、及び/又は、ポリアミック酸(B)は、残留DC由来の残像が少ない観点において、上記Y、及び/又は、Yが、ウレア結合を有するジアミン(例えば、Aが2価の有機基(q2)であるジアミン(0)、又は上記その他のジアミンで例示したウレア結合を有するジアミンなど。)、上記アミド結合を有するジアミン、ジアミン(Ph)、上記ジアミン(0)’、上記特定の窒素原子含有構造を有するジアミン、上記カルボキシ基を有するジアミン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、p-フェニレンジアミン及びm-フェニレンジアミンからなる群から選ばれるジアミン、から2つのアミノ基を除いた2価の有機基(これらを総称して「特定の2価の有機基(b)」ともいう。)であることが好ましい。 In terms of reducing residual images derived from residual DC, it is preferable that the polyamic acid (A) and / or the polyamic acid ( B ) have a divalent organic group obtained by removing two amino groups from a diamine having a urea bond (for example, a diamine (0) in which A is a divalent organic group (q2), or a diamine having a urea bond exemplified in the above other diamines), the diamine having an amide bond, the diamine (Ph), the diamine (0)', the diamine having the specific nitrogen atom-containing structure, the diamine having a carboxy group, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, p-phenylenediamine, and m-phenylenediamine (these are also collectively referred to as "specific divalent organic group (b)").

 ポリアミック酸(A)、及び/又は、ポリアミック酸(B)は、残留DC由来の残像が少ない観点において、上記Y、及び/又は、Yが上記特定の2価の有機基(b)である式(1D)で表される構造単位(b-1Db)を、ポリアミック酸(A)、及び/又は、ポリアミック酸(B)が有するジアミン由来の全構造単位1モルに対して、5モル%以上含んでもよく、好ましくは10モル%以上含んでもよく、さらに好ましくは20モル%以上含んでもよい。
 また、ポリアミック酸(A)、及び/又は、ポリアミック酸(B)は上記構造単位(b-1Db)として、本発明の効果を好適に得る観点から、上記熱脱離性基を有するジアミンを除くその他のジアミンであって、該その他のジアミンが、炭素数3以上の側鎖基を有しないジアミンに由来する構造単位であることが好ましい。
From the viewpoint of reducing afterimages derived from residual DC, the polyamic acid (A) and/or the polyamic acid (B) may contain structural units (b-1Db) represented by formula (1D b ) in which the above Y a and/or Y b are the above specific divalent organic group (b), in an amount of 5 mol % or more, preferably 10 mol % or more, and more preferably 20 mol % or more, relative to 1 mol of the total structural units derived from diamine contained in the polyamic acid (A) and/or the polyamic acid (B).
In addition, from the viewpoint of suitably obtaining the effects of the present invention, it is preferable that the polyamic acid (A) and/or the polyamic acid (B) is a structural unit derived from a diamine other than the diamine having the thermally detachable group, and the other diamine is a structural unit derived from a diamine having no side chain group having 3 or more carbon atoms, as the structural unit (b-1Db).

 上記式(1D)におけるZの1価の有機基としては、上記式(1D)におけるZについて例示した構造が挙げられる。 Examples of the monovalent organic group for Z in the above formula (1D b ) include the structures exemplified for Z in the above formula (1D a ).

 本発明の液晶配向剤の一つの態様として、以下の態様(BL1)~(BL2)が挙げられるが、これらに限定されない。
 態様(BL1):上記ポリアミック酸(A)において、上記構造単位(1D-1)を、ポリアミック酸(A)が有するジアミン由来の全構造単位1モルに対して、5~95モル%含み、ポリアミック酸(B)において、上記特定の2価の有機基(b)を、ポリアミック酸(B)が有するジアミン由来の全構造単位1モルに対して、10モル%以上含む、態様。
 態様(BL2):本発明の液晶配向剤の一つの態様として、ポリアミック酸(A)において、上記構造単位(1D-1)を、ポリアミック酸(A)が有するジアミン由来の全構造単位1モルに対して、5~95モル%含み、
 ポリアミック酸(B)において、上記特定の2価の有機基(b)を、ポリアミック酸(B)が有するジアミン由来の全構造単位1モルに対して、10~95モル%含み、且つ、 上記特定の2価の有機基(b)を除く上記構造単位(1D-1)を、ポリアミック酸(B)が有するジアミン由来の全構造単位1モルに対して、5~90モル%含む、態様。
One embodiment of the liquid crystal aligning agent of the present invention includes the following embodiments (BL1) to (BL2), but is not limited thereto.
Aspect (BL1): An aspect in which the polyamic acid (A) contains the structural unit (1D-1) in an amount of 5 to 95 mol % relative to 1 mol of all structural units derived from diamine contained in the polyamic acid (A), and the polyamic acid (B) contains the specific divalent organic group (b) in an amount of 10 mol % or more relative to 1 mol of all structural units derived from diamine contained in the polyamic acid (B).
Aspect (BL2): In one aspect of the liquid crystal aligning agent of the present invention, the polyamic acid (A) contains the above structural unit (1D-1) in an amount of 5 to 95 mol % relative to 1 mol of all structural units derived from diamines contained in the polyamic acid (A),
The polyamic acid (B) contains the specific divalent organic group (b) in an amount of 10 to 95 mol % relative to 1 mol of all structural units derived from diamine contained in the polyamic acid (B), and contains the structural units (1D-1) excluding the specific divalent organic group (b) in an amount of 5 to 90 mol % relative to 1 mol of all structural units derived from diamine contained in the polyamic acid (B).

 本発明の液晶配向剤では、本発明の効果、なかでも、残留DC由来の残像が少ない観点において、ポリアミック酸(A)とポリアミック酸(B)の含有割合が、[ポリアミック酸(A)/ポリアミック酸(B)]の質量比で、10/90~90/10であってもよく、20/80~90/10であってもよく、20/80~80/20であってもよい。 In the liquid crystal aligning agent of the present invention, from the viewpoint of the effects of the present invention, particularly less residual image caused by residual DC, the content ratio of polyamic acid (A) and polyamic acid (B) in terms of the mass ratio of [polyamic acid (A)/polyamic acid (B)] may be 10/90 to 90/10, 20/80 to 90/10, or 20/80 to 80/20.

<ポリアミック酸の製造>
 本発明の液晶配向剤に含有されるポリアミック酸は、例えば、下記の方法で製造できる。
 テトラカルボン酸二無水物成分とジアミン成分と必要に応じて添加されるアミノ末端修飾剤を反応させることにより、アミック酸構造を有する重合体(ポリアミック酸)が得られる。ポリアミック酸が上記式(1D)で表される構造を有する場合には、例えば、ジアミン成分としては、-N(Z)-Y-N(Z)-の構造(Y、Zの定義は上記と同じである。)を有するジアミンが使用され、また、テトラカルボン酸誘導体成分としては、X(Xの定義は上記と同じである。)を有するテトラカルボン酸二無水物が使用される。
<Production of Polyamic Acid>
The polyamic acid contained in the liquid crystal aligning agent of the present invention can be produced, for example, by the following method.
A polymer having an amic acid structure (polyamic acid) is obtained by reacting a tetracarboxylic dianhydride component, a diamine component, and an amino terminal modifier added as necessary. When the polyamic acid has a structure represented by the above formula (1D a ), for example, a diamine having a structure of -N(Z)-Y a -N(Z)- (Y a and Z are defined as above) is used as the diamine component, and a tetracarboxylic dianhydride having X a (X a is defined as above) is used as the tetracarboxylic acid derivative component.

 ポリアミック酸の製造に供されるテトラカルボン酸二無水物とジアミンとの使用割合は、ジアミンのアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.5~2当量であるのが好ましく、さらに好ましくは0.8~1.2当量である。通常の重縮合反応と同様に、このテトラカルボン酸二無水物の酸無水物基の当量が1当量に近いほど、生成するポリアミック酸の分子量は大きくなる。
 ポリアミック酸の製造における反応温度は-20~150℃が好ましく、0~100℃がより好ましい。また、反応時間は0.1~24時間が好ましく、0.5~12時間がより好ましい。
 ポリアミック酸の製造は任意の濃度で行うことができるが、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することもできる。
The ratio of the tetracarboxylic dianhydride and diamine used in the production of polyamic acid is preferably 0.5 to 2 equivalents, more preferably 0.8 to 1.2 equivalents, of the acid anhydride group of the tetracarboxylic dianhydride relative to 1 equivalent of the amino group of the diamine. As in the case of a normal polycondensation reaction, the closer the equivalent of the acid anhydride group of the tetracarboxylic dianhydride is to 1 equivalent, the higher the molecular weight of the polyamic acid produced.
The reaction temperature in the production of the polyamic acid is preferably −20 to 150° C., more preferably 0 to 100° C. The reaction time is preferably 0.1 to 24 hours, more preferably 0.5 to 12 hours.
The polyamic acid can be produced at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The reaction can be carried out at a high concentration in the early stage of the reaction, and then a solvent can be added.

 上記ポリアミック酸(A)の少なくとも一部の末端は、上記非アミノ基を含む。上記ポリアミック酸(B)の少なくとも一部の末端は、該非アミノ基を含んでもよい。該非アミノ基は、例えば、アミノ末端修飾剤を用いて形成することが出来る。
 アミノ末端修飾剤の好ましい具体例として、上記非環式脂肪族ジカルボン酸無水物、化合物(e2-1)、化合物(e2-2)、又は、活性エステル化合物(e3)が挙げられる。
 上記ポリアミック酸(A)及び/又は、ポリアミック酸(B)は、例えば、以下の製法(a)、製法(b)、又はその両方を用いる方法により得ることが出来る。
 製法(a):テトラカルボン酸二無水物成分と、ジアミン成分と、アミノ末端修飾剤とを重合(重縮合)反応させる方法。
 製法(b):テトラカルボン酸二無水物成分とジアミン成分とを反応させて、未修飾のアミノ末端となるポリアミック酸を含む重合体溶液を得た後、該重合体溶液にアミノ末端修飾剤を添加して、重合体の末端を反応させる方法。
 上記製法(b)において、アミノ末端となるポリアミック酸を得るためには、ポリアミック酸の製造に供されるテトラカルボン酸二無水物とジアミンとの使用割合において、ジアミンの使用割合がテトラカルボン酸二無水物の使用割合以上であればよく、ジアミンのアミノ基1当量に対して、テトラカルボン酸二無水物の酸無水物基が0.5~1.0当量であるのが好ましく、さらに好ましくは0.8~1.0当量である。
 アミノ末端修飾剤の使用割合は、使用するジアミン成分の計100モル部に対して、40モル部以下とすることが好ましく、30モル部以下とすることがより好ましい。
 また、アミノ末端修飾剤の使用割合は、使用するジアミン成分の計100モル部に対して、0.1モル部以上とすることが好ましく、0.2モル部以上とすることがより好ましい。
 ポリアミック酸にアミノ末端修飾剤を反応させる際の温度は、ポリアミック酸の製造における反応温度と同様にしてもよく、加熱しながら反応させてもよい。加熱温度としては30~80℃が好ましく、30~60℃がより好ましい。また、反応時間は0.1~24時間が好ましく、1~24時間がより好ましい。
At least a part of the terminals of the polyamic acid (A) contains the non-amino group. At least a part of the terminals of the polyamic acid (B) may contain the non-amino group. The non-amino group can be formed, for example, by using an amino terminal modifier.
Preferred specific examples of the amino terminal modifier include the above-mentioned acyclic aliphatic dicarboxylic acid anhydrides, the compound (e2-1), the compound (e2-2), and the active ester compound (e3).
The polyamic acid (A) and/or polyamic acid (B) can be obtained, for example, by the following production method (a), production method (b), or a method using both of them.
Production method (a): A method of polymerizing (polycondensing) a tetracarboxylic dianhydride component, a diamine component, and an amino terminal modifier.
Production method (b): A method in which a tetracarboxylic dianhydride component is reacted with a diamine component to obtain a polymer solution containing a polyamic acid having unmodified amino terminals, and then an amino terminal modifier is added to the polymer solution to react the terminals of the polymer.
In the above-mentioned Production Method (b), in order to obtain a polyamic acid having an amino terminal, the ratio of the diamine to the tetracarboxylic dianhydride used in the production of the polyamic acid may be equal to or greater than the ratio of the tetracarboxylic dianhydride, and the amount of the acid anhydride group of the tetracarboxylic dianhydride is preferably 0.5 to 1.0 equivalent, more preferably 0.8 to 1.0 equivalent, per equivalent of the amino group of the diamine.
The proportion of the amino terminal modifier used is preferably 40 parts by mol or less, and more preferably 30 parts by mol or less, per 100 parts by mol of the total of the diamine components used.
The proportion of the amino terminal modifier used is preferably 0.1 part by mol or more, and more preferably 0.2 part by mol or more, per 100 parts by mol of the total of the diamine components used.
The temperature when reacting the polyamic acid with the amino terminal modifier may be the same as the reaction temperature in the production of the polyamic acid, or the reaction may be carried out while heating. The heating temperature is preferably 30 to 80° C., more preferably 30 to 60° C. The reaction time is preferably 0.1 to 24 hours, more preferably 1 to 24 hours.

 上記ポリアミック酸の製造に供される有機溶媒の具体例としては、シクロヘキサノン、シクロペンタノン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、製造されるポリアミック酸の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、又はジエチレングリコールモノエチルエーテルなどの溶媒を用いることができる。 Specific examples of organic solvents used in the production of the polyamic acid include cyclohexanone, cyclopentanone, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, and 1,3-dimethyl-2-imidazolidinone. In addition, when the polyamic acid to be produced has high solvent solubility, solvents such as methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether can be used.

<ポリアミック酸の溶液粘度・分子量>
 本発明に用いられるポリアミック酸は、これを濃度10~15質量%の溶液としたときに、例えば、10~1000mPa・sの溶液粘度を持つものが作業性の観点から好ましい。なお、上記重合体の溶液粘度(mPa・s)は、当該重合体の良溶媒(例えばγ-ブチロラクトン、N-メチル-2-ピロリドンなど)を用いて調製した濃度10~15質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。
 上記ポリアミック酸のゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。このような分子量範囲にあることで、液晶表示素子の良好な配向性及び安定性を確保することができる。
<Solution viscosity and molecular weight of polyamic acid>
The polyamic acid used in the present invention preferably has a solution viscosity of, for example, 10 to 1000 mPa·s when the polyamic acid is made into a solution having a concentration of 10 to 15% by mass from the viewpoint of workability. The solution viscosity (mPa·s) of the polymer is a value measured at 25° C. using an E-type rotational viscometer for a polymer solution having a concentration of 10 to 15% by mass prepared using a good solvent for the polymer (e.g., γ-butyrolactone, N-methyl-2-pyrrolidone, etc.).
The polyamic acid has a polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of preferably 1,000 to 500,000, more preferably 2,000 to 300,000. The molecular weight distribution (Mw/Mn), which is expressed as the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC, is preferably 15 or less, more preferably 10 or less. With the molecular weight in this range, good alignment and stability of the liquid crystal display element can be ensured.

 本発明の液晶配向剤は、重合体(A)及び重合体(B)以外のその他の重合体を含有してもよい。その他の重合体の具体例としては、重合体(A)及び重合体(B)以外のポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(Q)、ポリシロキサン、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-マレイン酸無水物)共重合体、ポリ(イソブチレン-マレイン酸無水物)共重合体、ポリ(ビニルエーテル-マレイン酸無水物)共重合体、ポリ(スチレン-フェニルマレイミド)誘導体、及びポリ(メタ)アクリレートからなる群から選ばれる重合体などが挙げられる。ポリ(スチレン-マレイン酸無水物)共重合体の具体例としては、SMA1000、SMA2000、SMA3000(Cray Valley社製)、GSM301(岐阜セラツク製造所社製)などが挙げられ、ポリ(イソブチレン-マレイン酸無水物)共重合体の具体例としては、イソバン-600(クラレ社製)が挙げられ、ポリ(ビニルエーテル-マレイン酸無水物)共重合体の具体例としては、Gantrez AN-139(メチルビニルエーテル無水マレイン酸樹脂、アシュランド社製)が挙げられる。
 その他の重合体は、一種を単独で使用してもよく、また二種以上を組み合わせて使用してもよい。その他の重合体の含有割合は、液晶配向剤中に含まれる重合体成分100質量部に対して、10~90質量部が好ましく、20~80質量部がより好ましい。
 なお、本明細書において重合体成分とは、液晶配向剤に含有される、重合体(A)、重合体(B)及びこれらの重合体以外のその他の重合体の総称である。液晶配向剤に含有される重合体が重合体(A)及び重合体(B)のみの場合、重合体成分は重合体(A)及び重合体(B)を指す。
The liquid crystal alignment agent of the present invention may contain other polymers other than the polymer (A) and the polymer (B). Specific examples of the other polymers include at least one polymer (Q) selected from the group consisting of polyimide precursors other than the polymer (A) and the polymer (B) and polyimides which are imidized products of the polyimide precursors, polysiloxanes, polyesters, polyamides, polyureas, polyorganosiloxanes, cellulose derivatives, polyacetals, polystyrene derivatives, poly(styrene-maleic anhydride) copolymers, poly(isobutylene-maleic anhydride) copolymers, poly(vinyl ether-maleic anhydride) copolymers, poly(styrene-phenylmaleimide) derivatives, and polymers selected from the group consisting of poly(meth)acrylates. Specific examples of poly(styrene-maleic anhydride) copolymers include SMA1000, SMA2000, SMA3000 (manufactured by Cray Valley Corporation) and GSM301 (manufactured by Gifu Ceramics Manufacturing Co., Ltd.). Specific examples of poly(isobutylene-maleic anhydride) copolymers include ISOBAM-600 (manufactured by Kuraray Co., Ltd.). Specific examples of poly(vinyl ether-maleic anhydride) copolymers include Gantrez AN-139 (methyl vinyl ether maleic anhydride resin, manufactured by Ashland Corporation).
The other polymers may be used alone or in combination of two or more. The content ratio of the other polymers is preferably 10 to 90 parts by mass, more preferably 20 to 80 parts by mass, based on 100 parts by mass of the polymer component contained in the liquid crystal alignment agent.
In this specification, the polymer component is a general term for the polymer (A), the polymer (B), and other polymers other than these polymers contained in the liquid crystal alignment agent. When the polymers contained in the liquid crystal alignment agent are only the polymer (A) and the polymer (B), the polymer component refers to the polymer (A) and the polymer (B).

 本発明の別の実施態様としては、下記の液晶配向剤が包含される。
  下記の重合体(A)及び重合体(B)を含有することを特徴とする液晶配向剤であって、下記式1で表される回転角度の変化量が0.2°より小さい液晶配向膜が得られる、前記液晶配向剤。
  重合体(A):テトラカルボン酸誘導体由来の構造単位と、ジアミン由来の構造単位と、を有するポリアミック酸(A)であって、
  テトラカルボン酸誘導体由来の構造単位として、下記式(1T)で表される構造単位(a-1Ta)を含み、
  ジアミン由来の構造単位として、下記式(1D)で表される構造単位(a-1Da)を含み、
  上記ポリアミック酸(A)の少なくとも一部の末端が、非アミノ基を含み、該非アミノ基が、下記の構造式(E)で表される官能基である、上記ポリアミック酸。
  重合体(B):テトラカルボン酸誘導体由来の構造単位と、ジアミン由来の構造単位と、を有するポリアミック酸(B)であって、
  テトラカルボン酸誘導体由来の構造単位として、下記式(1T)で表される構造単位(b-1Tb)を含み、
  ジアミン由来の構造単位として、下記式(1D)で表される構造単位(b-1Db)を含む、上記ポリアミック酸。

Figure JPOXMLDOC01-appb-C000038
(式中Xは、下記式(x-1)で表される4価の有機基を表す。式(1D)中、Yはジアミン由来の2価の有機基を表す。Zはそれぞれ独立して、水素原子又は1価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000039
(式(x-1)中、R~Rはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、炭素数1~6のアルコキシ基、炭素数2~6のアルコキシアルキル基、炭素数2~6のアルキルオキシカルボニル基、又はフェニル基を表し、R~Rの少なくとも一つは上記定義中の水素原子以外の基を表す。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000040
(式中Xは、芳香族テトラカルボン酸二無水物由来の4価の有機基、下記式(x-2)で表される4価の有機基、又は5員環以上の脂環構造を有する4価の有機基(T5a)を表す。式(1D)中、Yはジアミン由来の2価の有機基を表す。Zは上記式(1D)のZと同義である。)
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
(式(E)中、Qは、下記の基(e1)~(e3)のいずれかから選ばれる1価の有機基である。*は結合手を表す。)
 (e1)炭素数1~6の非環式炭化水素基
 (e2)カルボキシ基を1~2つ有し、且つ、炭素数が2~30の1価の有機基(但し、該1価の有機基は酸無水基を含まない。)
 (e3)Bocを2つ以上有し、且つ、Bocを除く炭素数が1~30の1価の有機基であって、上記1価の有機基は、*1-NH(Boc)、*1-N(Boc)、及び「*1-N(Boc)-*1」(*1は、炭素原子に結合する結合手を表す。)からなる群から選ばれる保護アミノ部位を有する。なお、保護アミノ部位が2つ以上である場合、各保護アミノ部位は同一であっても良く、異なっていても良い。
[式1]
 Δ=|Δb-Δa|
 Δ:室温48時間保管による回転角度の変化量
 Δa:液晶セルの回転角度
 Δb:室温で48時間放置した同液晶配向剤を使用した液晶セルの回転角度
(上記式1で、回転角度は、
 2枚の液晶配向膜付き基板を一組とし、1枚の基板上にシール剤を塗布し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させ、液晶を注入し、注入口を封止して得た液晶セルに対し、
 照度15000nitのバックライト点灯下、周波数60Hzで±7Vの交流電圧を120時間印加した後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、室温に一日放置し、
 該液晶セルに関して、電圧無印加状態における、画素の第1領域の液晶の配向方向と第2領域の液晶の配向方向とのずれを算出して得た値である。) Another embodiment of the present invention includes the following liquid crystal aligning agent.
A liquid crystal aligning agent comprising the following polymer (A) and polymer (B), which gives a liquid crystal alignment film having a change in rotation angle represented by the following formula 1 of less than 0.2°.
Polymer (A): A polyamic acid (A) having a structural unit derived from a tetracarboxylic acid derivative and a structural unit derived from a diamine,
The structural unit (a-1Ta) represented by the following formula (1T a ) is contained as a structural unit derived from a tetracarboxylic acid derivative,
The diamine-derived structural unit includes a structural unit (a-1Da) represented by the following formula (1D a ):
The polyamic acid (A), wherein at least a portion of the terminals of the polyamic acid (A) contain a non-amino group, and the non-amino group is a functional group represented by the following structural formula (E):
Polymer (B): A polyamic acid (B) having a structural unit derived from a tetracarboxylic acid derivative and a structural unit derived from a diamine,
The structural unit (b-1Tb) represented by the following formula (1T b ) is contained as a structural unit derived from a tetracarboxylic acid derivative,
The above polyamic acid, which contains a structural unit (b-1Db) represented by the following formula (1D b ) as a structural unit derived from a diamine:
Figure JPOXMLDOC01-appb-C000038
(In the formula, Xa represents a tetravalent organic group represented by the following formula (x-1). In formula ( 1Da ), Ya represents a divalent organic group derived from a diamine. Each Z independently represents a hydrogen atom or a monovalent organic group.)
Figure JPOXMLDOC01-appb-C000039
(In formula (x-1), R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, an alkoxy group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 6 carbon atoms, an alkyloxycarbonyl group having 2 to 6 carbon atoms, or a phenyl group, and at least one of R 1 to R 4 represents a group other than a hydrogen atom as defined above. * represents a bond.)
Figure JPOXMLDOC01-appb-C000040
(In the formula, Xb represents a tetravalent organic group derived from an aromatic tetracarboxylic dianhydride, a tetravalent organic group represented by the following formula (x-2), or a tetravalent organic group ( T5a ) having an alicyclic structure having five or more members. In formula ( 1Db ), Yb represents a divalent organic group derived from a diamine. Z has the same meaning as Z in formula ( 1Da ).)
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
(In formula (E), Q is a monovalent organic group selected from the following groups (e1) to (e3). * represents a bond.)
(e1) an acyclic hydrocarbon group having 1 to 6 carbon atoms; (e2) a monovalent organic group having 1 to 2 carboxy groups and 2 to 30 carbon atoms (however, the monovalent organic group does not include an acid anhydride group).
(e3) A monovalent organic group having two or more Boc groups and having 1 to 30 carbon atoms excluding Boc, the monovalent organic group having a protected amino moiety selected from the group consisting of *1-NH(Boc), *1-N(Boc) 2 and *1-N(Boc)-*1 (*1 represents a bond bonded to a carbon atom). When there are two or more protected amino moieties, the protected amino moieties may be the same or different.
[Formula 1]
Δ=|Δb−Δa|
Δ: change in rotation angle due to storage at room temperature for 48 hours Δa: rotation angle of liquid crystal cell Δb: rotation angle of liquid crystal cell using the same liquid crystal alignment agent left at room temperature for 48 hours (in the above formula 1, the rotation angle is
Two substrates with liquid crystal alignment films are used as a set. A sealant is applied onto one substrate, and the other substrate is attached so that the liquid crystal alignment film faces each other and the alignment direction is 0°. The sealant is then hardened, liquid crystal is injected, and the injection port is sealed to obtain a liquid crystal cell.
Under the illumination of a backlight of 15,000 nits, an AC voltage of ±7 V at a frequency of 60 Hz was applied for 120 hours, and then the pixel electrode and the counter electrode of the liquid crystal cell were shorted and left at room temperature for one day.
This is a value obtained by calculating the difference between the alignment direction of the liquid crystal in the first region of the pixel and the alignment direction of the liquid crystal in the second region of the pixel when no voltage is applied to the liquid crystal cell.

 上記式1で表される回転角度の変化量は、好ましくは、0.12°以下であり、より好ましくは、0.12°より小さい。
 本発明の別の実施態様に係る液晶配向剤を使用した液晶セルの回転角度の変化量は、いずれも0.2°より小さい値であり、室温放置による液晶配向性の劣化を抑制するものである。
 なお、本発明の別の実施態様に係る液晶配向剤における各記号の意味は、好ましい態様も含めて、上記の液晶配向剤の記号と同義である。
The amount of change in the rotation angle represented by the above formula 1 is preferably 0.12° or less, and more preferably less than 0.12°.
The change in the rotation angle of the liquid crystal cell using the liquid crystal alignment agent according to another embodiment of the present invention was less than 0.2°, and the deterioration of the liquid crystal alignment property due to being left at room temperature was suppressed.
The meanings of the symbols in the liquid crystal aligning agent according to another embodiment of the present invention are the same as those of the above-mentioned liquid crystal aligning agent, including preferred embodiments.

<液晶配向剤>
 本発明の液晶配向剤は、液晶配向膜を作製するために用いられるものであり、均一な薄膜を形成させるという観点から、塗布液の形態をとる。本発明の液晶配向剤においても上記した重合体成分と、溶媒とを含有する塗布液であることが好ましい。
 本発明の液晶配向剤に含有される重合体成分の含有量(濃度)は、形成させようとする塗膜の厚みの設定によっても適宜変更できるが、均一で欠陥のない塗膜を形成させるという点から、液晶配向剤の全体量に対して、1質量%以上が好ましく、溶液の保存安定性の点からは10質量%以下が好ましい。
 液晶配向剤中の重合体(A)及び重合体(B)の含有割合の合計は、本開示の効果を好適に得る観点から、液晶配向剤に含まれる重合体の合計100質量部に対して、好ましくは10質量部以上であり、より好ましくは20質量部以上であり、更に好ましくは50質量部以上である。液晶配向剤がその他の重合体を含む場合の重合体(A)及び重合体(B)の含有割合は、液晶配向剤中に含まれる重合体成分100質量部に対して、10~90質量部が好ましく、20~80質量部がより好ましい。
<Liquid crystal alignment agent>
The liquid crystal aligning agent of the present invention is used for preparing a liquid crystal alignment film, and takes the form of a coating liquid from the viewpoint of forming a uniform thin film. The liquid crystal aligning agent of the present invention is also preferably a coating liquid containing the above-mentioned polymer component and a solvent.
The content (concentration) of the polymer component contained in the liquid crystal alignment agent of the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed, but from the viewpoint of forming a uniform and defect-free coating film, it is preferably 1 mass % or more relative to the total amount of the liquid crystal alignment agent, and from the viewpoint of storage stability of the solution, it is preferably 10 mass % or less.
From the viewpoint of suitably obtaining the effects of the present disclosure, the total content ratio of the polymer (A) and the polymer (B) in the liquid crystal alignment agent is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, and even more preferably 50 parts by mass or more, relative to 100 parts by mass of the total of the polymers contained in the liquid crystal alignment agent. When the liquid crystal alignment agent contains other polymers, the content ratio of the polymer (A) and the polymer (B) is preferably 10 to 90 parts by mass, more preferably 20 to 80 parts by mass, relative to 100 parts by mass of the polymer components contained in the liquid crystal alignment agent.

 液晶配向剤に含有される溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルラクトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(tert-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-(3-メトキシプロピル)-2-ピロリドン、N-(2-エトキシエチル)-2-ピロリドン、N-(4-メトキシブチル)-2-ピロリドン、N-シクロヘキシル-2-ピロリドン(これらを総称して「良溶媒」ともいう)などを挙げられる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又はγ-ブチロラクトンが好ましい。良溶媒の含有量は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましく、20~90質量%がより好ましく、特に好ましいのは、30~80質量%である。 The solvent contained in the liquid crystal alignment agent is not particularly limited as long as it dissolves the polymer components uniformly. Specific examples include N,N-dimethylformamide, N,N-dimethylacetamide, N,N-dimethyllactamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylsulfoxide, γ-butyrolactone, γ-valerolactone, 1,3-dimethyl-2-imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone, 3-methoxy-N,N-dimethylpropanamide, and 3-butoxy-N,N-dimethylpropanamide. , N-(n-propyl)-2-pyrrolidone, N-isopropyl-2-pyrrolidone, N-(n-butyl)-2-pyrrolidone, N-(tert-butyl)-2-pyrrolidone, N-(n-pentyl)-2-pyrrolidone, N-(3-methoxypropyl)-2-pyrrolidone, N-(2-ethoxyethyl)-2-pyrrolidone, N-(4-methoxybutyl)-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone (collectively referred to as "good solvents"). Among these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, or γ-butyrolactone is preferred. The content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass, of the total solvent contained in the liquid crystal alignment agent.

 また、液晶配向剤に含有される溶媒は、上記溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒(貧溶媒ともいう。)を併用した混合溶媒の使用が好ましい。併用する貧溶媒の具体例を下記するが、これらに限定されない。 The solvent contained in the liquid crystal alignment agent is preferably a mixed solvent that uses, in addition to the above solvent, a solvent (also called a poor solvent) that improves the coatability when applying the liquid crystal alignment agent and the surface smoothness of the coating film. Specific examples of poor solvents to be used in combination are listed below, but are not limited to these.

 例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、プロピレングリコールジアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールジアセタート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチル、乳酸イソアミル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)などを挙げることができる。貧溶媒の含有量は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。貧溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。 For example, diisopropyl ether, diisobutyl ether, diisobutyl carbinol (2,6-dimethyl-4-heptanol), ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, propylene glycol monobutyl ether, 1-(2-butoxyethoxy)-2-propano Examples of the ethyl acetate include 2-(2-butoxyethoxy)-1-propanol, propylene glycol monomethyl ether acetate, propylene glycol diacetate, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2-(2-ethoxyethoxy)ethyl acetate, diethylene glycol diacetate, n-butyl acetate, propylene glycol monoethyl ether acetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, n-butyl lactate, isoamyl lactate, diethylene glycol monoethyl ether, and diisobutyl ketone (2,6-dimethyl-4-heptanone). The content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass, of the total solvent contained in the liquid crystal alignment agent. The type and content of the poor solvent are appropriately selected depending on the coating device, coating conditions, coating environment, etc. of the liquid crystal alignment agent.

 なかでも、ジイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセタート、又はジイソブチルケトンが好ましい。 Among these, diisobutyl carbinol, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, and diisobutyl ketone are preferred.

 良溶媒と貧溶媒との好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルカルビノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテルなどを挙げることができる。 Preferred solvent combinations of good and poor solvents include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone and propylene glycol monobutyl ether, N-ethyl-2-pyrrolidone and propylene glycol monobutyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone, 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, and N-methyl-2-pyrrolidone and γ Examples include N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether, and diisobutyl ketone, N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether, and diisopropyl ether, N-methyl-2-pyrrolidone, γ-butyrolactone, propylene glycol monobutyl ether, and diisobutyl carbinol, N-methyl-2-pyrrolidone, γ-butyrolactone, and dipropylene glycol dimethyl ether, and N-methyl-2-pyrrolidone, propylene glycol monobutyl ether, and dipropylene glycol dimethyl ether.

 本発明の液晶配向剤は、重合体成分及び溶媒以外の成分(以下、添加剤成分ともいう。)を追加的に含有してもよい。このような添加剤成分としては、液晶配向膜の強度を高めるための化合物(以下、架橋性化合物ともいう。)、液晶配向膜と基板との密着性や液晶配向膜とシール剤との密着性を高めるための密着助剤、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質、又はイミド化を促進するためのイミド化促進剤などが挙げられる。 The liquid crystal alignment agent of the present invention may additionally contain components other than the polymer component and the solvent (hereinafter also referred to as additive components). Such additive components include compounds for increasing the strength of the liquid crystal alignment film (hereinafter also referred to as cross-linking compounds), adhesion aids for increasing the adhesion between the liquid crystal alignment film and the substrate or between the liquid crystal alignment film and the sealant, dielectrics or conductive substances for adjusting the dielectric constant or electrical resistance of the liquid crystal alignment film, and imidization promoters for promoting imidization.

 上記架橋性化合物としては、例えば、エポキシ基、オキセタニル基、オキサゾリン構造、シクロカーボネート基、ブロックイソシアネート基、ヒドロキシ基及びアルコキシ基から選ばれる少なくとも1種の置換基を有する架橋性化合物(c-1)、並びに重合性不飽和基を有する架橋性化合物(c-2)からなる群から選ばれる少なくとも1種の架橋性化合物、が挙げられる。
 上記架橋性化合物(c-1)、(c-2)の好ましい具体例としては、以下の化合物が挙げられる。エポキシ基を有する化合物として、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、エピコート828(三菱ケミカル社製)などのビスフェノールA型エポキシ樹脂、エピコート807(三菱ケミカル社製)などのビスフェノールF型エポキシ樹脂、YX-8000(三菱ケミカル社製)などの水添ビスフェノールA型エポキシ樹脂、YX6954BH30(三菱ケミカル社製)などのビフェニル骨格含有エポキシ樹脂、EPPN-201(日本化薬社製)などのフェノールノボラック型エポキシ樹脂、EOCN-102S(日本化薬社製)などの(o,m,p-)クレゾールノボラック型エポキシ樹脂、テトラキス(グリシジルオキシメチル)メタン、N,N,N’,N’-テトラグリシジル-1,4-フェニレンジアミン、N,N,N’,N’-テトラグリシジル-2,2’-ジメチル-4.4’-ジアミノビフェニル、2,2-ビス[4-(N,N-ジグリシジル-4-アミノフェノキシ)フェニル]プロパン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタンなどの第三級窒素原子が芳香族炭素原子と結合する化合物;N,N,N’,N’-テトラグリシジル-1,2-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,3-ジアミノシクロヘキサン、N,N,N’,N’-テトラグリシジル-1,4-ジアミノシクロヘキサン、ビス(N,N-ジグリシジル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-2-メチル-4-アミノシクロヘキシル)メタン、ビス(N,N-ジグリシジル-3-メチル-4-アミノシクロヘキシル)メタン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,4-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,4-ビス(N,N-ジグリシジルアミノメチル)ベンゼン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,3,5-トリス(N,N-ジグリシジルアミノメチル)ベンゼンなどの第三級窒素原子が脂肪族炭素原子と結合する化合物、TEPIC(日産化学社製)などのトリグリシジルイソシアヌレートなどのイソシアヌレート化合物、日本特開平10-338880号公報の段落[0037]に記載の化合物や、WO2017/170483号公報に記載の化合物等;
 オキセタニル基を有する化合物として、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン(アロンオキセタンOXT-121(XDO))、ビス[2-(3-オキセタニル)ブチル]エーテル(アロンオキセタンOXT-221(DOX))、1,4-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(HQOX)、1,3-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(RSOX)、1,2-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(CTOX)、WO2011/132751号公報の段落[0170]~[0175]に記載の2個以上のオキセタニル基を有する化合物等;
 オキサゾリン構造を有する化合物として、2,2’-ビス(2-オキサゾリン)、2,2’-ビス(4-メチル-2-オキサゾリン)等の化合物、エポクロス(商品名、株式会社日本触媒製)のようなオキサゾリン基を有するポリマーやオリゴマー、日本特開2007-286597号公報の段落[0115]に記載の化合物等;
 シクロカーボネート基を有する化合物として、N,N,N’,N’-テトラ[(2-オキソ-1,3-ジオキソラン-4-イル)メチル]-4,4’-ジアミノジフェニルメタン、N,N’,-ジ[(2-オキソ-1,3-ジオキソラン-4-イル)メチル]-1,3-フェニレンジアミンや、WO2011/155577号公報の段落[0025]~[0030]、[0032]に記載の化合物等;
 ブロックイソシアネート基を有する化合物として、コロネートAPステーブルM、コロネート2503、2515、2507、2513、2555、ミリオネートMS-50(以上、東ソー社製)、タケネートB-830、B-815N、B-820NSU、B-842N、B-846N、B-870N、B-874N、B-882N(以上、三井化学社製)などの市販品の具体例の化合物、下記式(bL-1)~(bL-3)で表される化合物、日本特開2014-224978号公報の段落[0046]~[0047]に記載の2個以上の保護イソシアネート基を有する化合物、WO2015/141598号公報の段落[0119]~[0120]に記載の3個以上の保護イソシアネート基を有する化合物等;

Figure JPOXMLDOC01-appb-C000043
 ヒドロキシ基及び/又はアルコキシ基を有する化合物として、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)アジポアミド、下記式(pL-1)~(pL-4)で表される化合物、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメトキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、WO2015/072554号公報や、日本特開2016-118753号公報の段落[0058]に記載の化合物、日本特開2016-200798号公報に記載の化合物、WO2010/074269号公報に記載の化合物等;
Figure JPOXMLDOC01-appb-C000044
 重合性不飽和基を有する架橋性化合物として、グリセリンモノ(メタ)アクリレート、グリセリンジ(メタ)アクリレート(1,2-,1,3-体混合物)、グリセリントリス(メタ)アクリレート、グリセロール1,3-ジグリセロラートジ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ペンタエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート等。 Examples of the crosslinkable compound include at least one crosslinkable compound selected from the group consisting of a crosslinkable compound (c-1) having at least one substituent selected from an epoxy group, an oxetanyl group, an oxazoline structure, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group, and an alkoxy group, and a crosslinkable compound (c-2) having a polymerizable unsaturated group.
Specific preferred examples of the crosslinkable compounds (c-1) and (c-2) include the following compounds: Compounds having an epoxy group include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, bisphenol A type epoxy resins such as Epicoat 828 (manufactured by Mitsubishi Chemical Corporation), and bisphenol A type epoxy resins such as Epicoat 807 (manufactured by Mitsubishi Chemical Corporation). Phenol F type epoxy resins, hydrogenated bisphenol A type epoxy resins such as YX-8000 (manufactured by Mitsubishi Chemical Corporation), biphenyl skeleton-containing epoxy resins such as YX6954BH30 (manufactured by Mitsubishi Chemical Corporation), phenol novolac type epoxy resins such as EPPN-201 (manufactured by Nippon Kayaku Co., Ltd.), (o, m, p-)cresol novolac type epoxy resins such as EOCN-102S (manufactured by Nippon Kayaku Co., Ltd.), tetrakis(glycidyloxymethyl)methane, N,N,N',N'-tetraglycidyl-1,4-phenylenediamine, N,N,N',N'-tetraglycidyl-2,2'-dimethyl-4.4'-diaminobiphenyl, 2,2-bis[4-(N,N-diglycidyl-4-aminophenoxy) compounds in which a tertiary nitrogen atom is bonded to an aromatic carbon atom, such as N,N,N',N'-tetraglycidyl-1,2-diaminocyclohexane, N,N,N',N'-tetraglycidyl-1,3-diaminocyclohexane, N,N,N',N'-tetraglycidyl-1,4-diaminocyclohexane, bis(N,N-diglycidyl-4-aminocyclohexyl)methane, bis(N,N-diglycidyl-2-methyl-4-aminocyclohexyl)methane, bis(N,N-diglycidyl-3-methyl-4-aminocyclohexyl)methane, 1,3-bis(N,N-diglycidyl a compounds in which a tertiary nitrogen atom is bonded to an aliphatic carbon atom, such as 1,4-bis(N,N-diglycidylaminomethyl)cyclohexane, 1,4-bis(N,N-diglycidylaminomethyl)cyclohexane, 1,3-bis(N,N-diglycidylaminomethyl)benzene, 1,4-bis(N,N-diglycidylaminomethyl)benzene, 1,3,5-tris(N,N-diglycidylaminomethyl)cyclohexane, and 1,3,5-tris(N,N-diglycidylaminomethyl)benzene; isocyanurate compounds such as triglycidyl isocyanurate, such as TEPIC (manufactured by Nissan Chemical Industries, Ltd.); compounds described in paragraph [0037] of JP-A-10-338880; and compounds described in WO2017/170483;
Examples of compounds having an oxetanyl group include 1,4-bis{[(3-ethyl-3-oxetanyl)methoxy]methyl}benzene (ARON OXETANE OXT-121 (XDO)), bis[2-(3-oxetanyl)butyl]ether (ARON OXETANE OXT-221 (DOX)), 1,4-bis[(3-ethyloxetan-3-yl)methoxy]benzene (HQOX), 1,3-bis[(3-ethyloxetan-3-yl)methoxy]benzene (RSOX), 1,2-bis[(3-ethyloxetan-3-yl)methoxy]benzene (CTOX), and compounds having two or more oxetanyl groups described in paragraphs [0170] to [0175] of WO2011/132751;
Examples of compounds having an oxazoline structure include compounds such as 2,2'-bis(2-oxazoline) and 2,2'-bis(4-methyl-2-oxazoline), polymers and oligomers having an oxazoline group such as EPOCROS (trade name, manufactured by Nippon Shokubai Co., Ltd.), and compounds described in paragraph [0115] of JP 2007-286597 A;
Examples of compounds having a cyclocarbonate group include N,N,N',N'-tetra[(2-oxo-1,3-dioxolan-4-yl)methyl]-4,4'-diaminodiphenylmethane, N,N',-di[(2-oxo-1,3-dioxolan-4-yl)methyl]-1,3-phenylenediamine, and the compounds described in paragraphs [0025] to [0030] and [0032] of WO2011/155577;
Examples of compounds having a blocked isocyanate group include Coronate AP Stable M, Coronate 2503, 2515, 2507, 2513, 2555, and Millionate MS-50 (all manufactured by Tosoh Corporation), and Takenate B-830, B-815N, B-820NSU, B-842N, B-846N, B-870N, B-874N, and B-882N (all manufactured by Mitsui Chemicals, Inc.). specific examples of commercially available compounds such as those mentioned above, compounds represented by the following formulas (bL-1) to (bL-3), compounds having two or more protected isocyanate groups described in paragraphs [0046] to [0047] of JP 2014-224978 A, compounds having three or more protected isocyanate groups described in paragraphs [0119] to [0120] of WO 2015/141598 A, and the like;
Figure JPOXMLDOC01-appb-C000043
Examples of compounds having a hydroxy group and/or an alkoxy group include N,N,N',N'-tetrakis(2-hydroxyethyl)adipamide, compounds represented by the following formulas (pL-1) to (pL-4), 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethoxyphenyl)propane, 2,2-bis(4-hydroxy-3,5-dihydroxymethylphenyl)-1,1,1,3,3,3-hexafluoropropane, compounds described in WO2015/072554 and paragraph [0058] of JP2016-118753A, compounds described in JP2016-200798A, compounds described in WO2010/074269A, and the like;
Figure JPOXMLDOC01-appb-C000044
Examples of crosslinkable compounds having a polymerizable unsaturated group include glycerin mono(meth)acrylate, glycerin di(meth)acrylate (1,2-,1,3-mixture), glycerin tris(meth)acrylate, glycerol 1,3-diglycerolate di(meth)acrylate, pentaerythritol tri(meth)acrylate, diethylene glycol mono(meth)acrylate, triethylene glycol mono(meth)acrylate, tetraethylene glycol mono(meth)acrylate, pentaethylene glycol mono(meth)acrylate, and hexaethylene glycol mono(meth)acrylate.

 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。例えば、WO2015/060357号公報の53頁[0105]~55頁[0116]に開示されている上記以外の成分などが挙げられる。また、架橋性化合物は、2種類以上組み合わせてもよい。 The above compounds are examples of crosslinkable compounds, and are not limited to these. For example, other components than those mentioned above disclosed on pages 53 [0105] to 55 [0116] of WO2015/060357 may be used. Two or more types of crosslinkable compounds may be used in combination.

 架橋性化合物を使用する場合は、液晶配向剤における、架橋性化合物の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して、0.5~20質量部であることが好ましく、より好ましくは1~15質量部である。 When a crosslinkable compound is used, the content of the crosslinkable compound in the liquid crystal alignment agent is preferably 0.5 to 20 parts by mass, and more preferably 1 to 15 parts by mass, per 100 parts by mass of the polymer component contained in the liquid crystal alignment agent.

 上記密着助剤としては、例えば3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-3-トリエトキシシリルプロピルトリエチレンテトラミン、N-3-トリメトキシシリルプロピルトリエチレンテトラミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス[3-(トリメトキシシリル)プロピル]イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等のシランカップリング剤が挙げられる。
 密着助剤を使用する場合は、液晶配向剤における密着助剤の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。
 誘電体または導電物質としては、例えば3-ピコリルアミンなどの窒素含有芳香族複素環を有するモノアミンなどが挙げられる。
 誘電体または導電物質を使用する場合は、液晶配向剤における誘電体または導電物質の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。
Examples of the adhesion aid include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyl trimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-3-triethoxysilylpropyltriethylenetetramine, N-3-trimethoxysilylpropyltriethylenetetramine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxysilane, N- Benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxy Examples of silane coupling agents include silane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, tris[3-(trimethoxysilyl)propyl]isocyanurate, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, and 3-isocyanatopropyltriethoxysilane.
When an adhesion assistant is used, the content of the adhesion assistant in the liquid crystal alignment agent is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, per 100 parts by mass of the polymer component contained in the liquid crystal alignment agent.
Dielectric or conductive materials include, for example, monoamines having a nitrogen-containing aromatic heterocycle, such as 3-picolylamine.
When a dielectric or conductive substance is used, the content of the dielectric or conductive substance in the liquid crystal alignment agent is preferably 0.1 to 30 parts by mass, more preferably 0.1 to 20 parts by mass, per 100 parts by mass of the polymer component contained in the liquid crystal alignment agent.

(液晶配向膜)
 本発明の液晶配向膜は、上記本発明の液晶配向剤を用いて形成される。
 本発明の液晶配向膜の製造方法は、例えば、上記の液晶配向剤を基板に塗布し、焼成し、得られる膜に偏光された放射線を照射することを含む。
 本発明の液晶配向膜の製造方法の好ましい態様としては、例えば、上記の液晶配向剤を基板に塗布する工程(工程(1))、塗布した液晶配向剤を焼成する工程(工程(2))、場合により、工程(2)で得られた膜に配向処理する工程(工程(3))を含む液晶配向膜の製造方法が挙げられる。
(Liquid crystal alignment film)
The liquid crystal alignment film of the present invention is formed using the liquid crystal aligning agent of the present invention.
The method for producing a liquid crystal alignment film of the present invention includes, for example, applying the above-mentioned liquid crystal alignment agent to a substrate, baking the same, and irradiating the resulting film with polarized radiation.
A preferred embodiment of the method for producing a liquid crystal alignment film of the present invention includes, for example, a step of applying the above-mentioned liquid crystal alignment agent to a substrate (step (1)), a step of baking the applied liquid crystal alignment agent (step (2)), and, in some cases, a step of performing an alignment treatment on the film obtained in step (2) (step (3)).

<工程(1)>
 本発明に用いられる液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO(Indium Tin Oxide)電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。さらに、IPS駆動方式又はFFS駆動方式の液晶表示素子を製造する場合には、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いる。
<Step (1)>
The substrate to which the liquid crystal alignment agent used in the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a plastic substrate such as a polycarbonate substrate, etc. can also be used. In this case, it is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode for driving the liquid crystal is formed from the viewpoint of simplifying the process. In addition, in a reflective liquid crystal display element, an opaque material such as a silicon wafer can be used for only one substrate, and in this case, a material that reflects light such as aluminum can also be used for the electrode. Furthermore, when manufacturing a liquid crystal display element of an IPS driving system or an FFS driving system, a substrate on which an electrode made of a transparent conductive film or a metal film patterned into a comb tooth shape is provided and an opposing substrate on which no electrode is provided are used.

 液晶配向剤を基板に塗布し、成膜する方法としては、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法、又はスプレー法等が挙げられる。なかでも、インクジェット法による塗布、成膜法が好適に使用できる。 Methods for applying the liquid crystal alignment agent to a substrate and forming a film include screen printing, offset printing, flexographic printing, the inkjet method, and the spray method. Among these, the inkjet method is the most suitable for application and film formation.

 IPS方式(モード)において使用される櫛歯電極基板であるIPS基板は、基材と、基材上に形成され、櫛歯状に配置された複数の線状電極と、基材上に線状電極を覆うように形成された液晶配向膜とを有する。
 なお、FFS方式(モード)において使用される櫛歯電極基板であるFFS基板は、基材と、基材上に形成された面電極と、面電極上に形成された絶縁膜と、絶縁膜上に形成され、櫛歯状に配置された複数の線状電極と、絶縁膜上に線状電極を覆うように形成された液晶配向膜とを有する。
An IPS substrate, which is a comb-tooth electrode substrate used in the IPS system (mode), has a base material, a plurality of linear electrodes formed on the base material and arranged in a comb-tooth shape, and a liquid crystal alignment film formed on the base material so as to cover the linear electrodes.
The FFS substrate, which is a comb-tooth electrode substrate used in the FFS method (mode), has a base material, a surface electrode formed on the base material, an insulating film formed on the surface electrode, a plurality of linear electrodes formed on the insulating film and arranged in a comb-tooth shape, and a liquid crystal alignment film formed on the insulating film so as to cover the linear electrodes.

 図1は、本発明の液晶配向剤から得られる液晶配向膜を具備するIPSモードの横電界液晶表示素子の一例を示す概略断面図である。
 図1に例示する横電界液晶表示素子1においては、液晶配向膜2cを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2aと、基材2a上に形成され、櫛歯状に配置された複数の線状電極2bと、基材2a上に線状電極2bを覆うように形成された液晶配向膜2cとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2cは、本発明の液晶配向膜である。液晶配向膜4cも同様に本発明の液晶配向膜である。
 図1の横電界液晶表示素子1においては、線状電極2bに電圧が印加されると、電気力線Lで示すように線状電極2b間で電界が発生する。
FIG. 1 is a schematic cross-sectional view showing an example of an IPS mode in-plane switching liquid crystal display device having a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention.
In the in-plane switching liquid crystal display element 1 illustrated in Fig. 1, liquid crystal 3 is sandwiched between a comb-tooth electrode substrate 2 having a liquid crystal alignment film 2c and a counter substrate 4 having a liquid crystal alignment film 4a. The comb-tooth electrode substrate 2 has a base material 2a, a plurality of linear electrodes 2b formed on the base material 2a and arranged in a comb-tooth shape, and a liquid crystal alignment film 2c formed on the base material 2a so as to cover the linear electrodes 2b. The counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b. The liquid crystal alignment film 2c is the liquid crystal alignment film of the present invention. The liquid crystal alignment film 4c is also the liquid crystal alignment film of the present invention.
In the IPS LCD element 1 of FIG. 1, when a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as indicated by electric field lines L.

 図2は、本発明の液晶配向剤から得られる液晶配向膜を具備するFFSモードの横電界液晶表示素子の一例を示す概略断面図である。
 図2に例示する横電界液晶表示素子1においては、液晶配向膜2hを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2dと、基材2d上に形成された面電極2eと、面電極2e上に形成された絶縁膜2fと、絶縁膜2f上に形成され、櫛歯状に配置された複数の線状電極2gと、絶縁膜2f上に線状電極2gを覆うように形成された液晶配向膜2hとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2hは、本発明の液晶配向膜である。液晶配向膜4aも同様に本発明の液晶配向膜である。
 図2の横電界液晶表示素子1においては、面電極2e及び線状電極2gに電圧が印加されると、電気力線Lで示すように面電極2e及び線状電極2g間で電界が発生する。
FIG. 2 is a schematic cross-sectional view showing an example of an FFS mode in-plane switching liquid crystal display device having a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention.
In the lateral electric field liquid crystal display element 1 illustrated in Fig. 2, liquid crystal 3 is sandwiched between a comb-tooth electrode substrate 2 having a liquid crystal alignment film 2h and a counter substrate 4 having a liquid crystal alignment film 4a. The comb-tooth electrode substrate 2 has a base material 2d, a plane electrode 2e formed on the base material 2d, an insulating film 2f formed on the plane electrode 2e, a plurality of linear electrodes 2g formed on the insulating film 2f and arranged in a comb-tooth shape, and a liquid crystal alignment film 2h formed on the insulating film 2f so as to cover the linear electrodes 2g. The counter substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b. The liquid crystal alignment film 2h is the liquid crystal alignment film of the present invention. The liquid crystal alignment film 4a is also the liquid crystal alignment film of the present invention.
In the IPS LCD element 1 shown in FIG. 2, when a voltage is applied to the plane electrodes 2e and the linear electrodes 2g, an electric field is generated between the plane electrodes 2e and the linear electrodes 2g as indicated by electric field lines L.

<工程(2)>
 工程(2)は、基板上に塗布した液晶配向剤を焼成し、膜を形成する工程である。液晶配向剤を基板上に塗布した後、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、上記溶媒を蒸発させたり、重合体中のアミック酸又はアミック酸エステルの熱イミド化を行ったりすることができる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができ、複数回行ってもよい。液晶配向剤の溶媒を蒸発させる温度は、加熱手段の温度として、例えば40~180℃で行うことができるが、プロセスを短縮する観点で、40~150℃で行ってもよい。焼成時間としては特に限定されないが、例えば1~10分であり、好ましくは1~5分である。溶媒を蒸発させる工程に加えて、重合体中のアミック酸の熱イミド化の工程を行う場合には、上記溶媒を蒸発させる工程の後、加熱手段の温度として、例えば150~300℃、好ましくは150~250℃の温度範囲で更に焼成する工程ができる。熱イミド化の工程における焼成時間としては特に限定されないが、例えば5~40分であり、好ましくは5~30分である。
 焼成後の膜状物は、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。
<Step (2)>
Step (2) is a step of baking the liquid crystal alignment agent applied on the substrate to form a film. After the liquid crystal alignment agent is applied on the substrate, the solvent can be evaporated or the amic acid or amic acid ester in the polymer can be thermally imidized by a heating means such as a hot plate, a heat circulation oven, or an IR (infrared) oven. The drying and baking steps after the application of the liquid crystal alignment agent of the present invention can be performed at any temperature and time, and may be performed multiple times. The temperature at which the solvent of the liquid crystal alignment agent is evaporated can be, for example, 40 to 180°C as the temperature of the heating means, but may be 40 to 150°C from the viewpoint of shortening the process. The baking time is not particularly limited, but is, for example, 1 to 10 minutes, preferably 1 to 5 minutes. In addition to the step of evaporating the solvent, when a step of thermally imidizing the amic acid in the polymer is performed, after the step of evaporating the solvent, a further baking step can be performed at a temperature of, for example, 150 to 300°C, preferably 150 to 250°C as the temperature of the heating means. The baking time in the thermal imidization step is not particularly limited, but is, for example, 5 to 40 minutes, and preferably 5 to 30 minutes.
If the film-like material after firing is too thin, the reliability of the liquid crystal display device may decrease, so the thickness is preferably 5 to 300 nm, and more preferably 10 to 200 nm.

<工程(3)>
 工程(3)は、工程(2)で得られた膜に配向処理する工程である。液晶配向膜の配向処理方法としては、ラビング処理法、又は光配向処理法が挙げられるが、光配向処理法が好適である。光配向処理法としては、上記膜状物の表面に、一定方向に偏光された放射線を照射し、場合により、加熱処理を行い、液晶配向性(液晶配向能ともいう)を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。なかでも、好ましくは100~400nm、より好ましくは、200~400nmの波長を有する紫外線である。
<Step (3)>
Step (3) is a step of performing an alignment treatment on the film obtained in step (2). The alignment treatment method for the liquid crystal alignment film includes a rubbing treatment method and a photo-alignment treatment method, and the photo-alignment treatment method is preferable. The photo-alignment treatment method includes a method in which the surface of the film-like material is irradiated with polarized radiation in a certain direction, and optionally heated to impart liquid crystal alignment properties (also called liquid crystal alignment ability). As the radiation, ultraviolet rays or visible light having a wavelength of 100 to 800 nm can be used. Among them, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and more preferably, ultraviolet rays having a wavelength of 200 to 400 nm are preferable.

 上記放射線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmがより好ましい。
 照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、Deep UVランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、水銀キセノンランプ、エキシマレーザー(例えば、KrFエキシマレーザー)、蛍光ランプ、LEDランプ、ハロゲンランプ(例えば、ナトリウムランプ)、マイクロウェーブ励起無電極ランプなどを使用することができる。
 また、照射光として偏光状態の光を用いた場合、偏光光の消光比が高いほどより高い異方性を付与できることから、例えば、紫外線の場合には、偏光紫外線の消光比は10:1以上がより好ましく、20:1以上が更に好ましい。
 また、放射線を照射する場合、液晶配向性を改善するために、上記膜状物を有する基板を、50~250℃で加熱しながら照射してもよい。このようにして作製した上記液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 更に、上記の方法で、偏光された放射線を照射した液晶配向膜に、溶媒を用いて、これらと接触処理するか、放射線を照射した液晶配向膜を加熱処理することもできる。
The radiation dose is preferably 1 to 10,000 mJ/ cm2 , and more preferably 100 to 5,000 mJ/ cm2 .
Examples of light sources for the irradiation light include low-pressure mercury lamps, high-pressure mercury lamps, deep UV lamps, deuterium lamps, metal halide lamps, argon resonance lamps, xenon lamps, mercury-xenon lamps, excimer lasers (e.g., KrF excimer lasers), fluorescent lamps, LED lamps, halogen lamps (e.g., sodium lamps), and microwave-excited electrodeless lamps.
Furthermore, when polarized light is used as the irradiating light, the higher the extinction ratio of the polarized light, the higher the anisotropy that can be imparted. For example, in the case of ultraviolet light, the extinction ratio of the polarized ultraviolet light is more preferably 10:1 or greater, and even more preferably 20:1 or greater.
In addition, when irradiating with radiation, in order to improve the liquid crystal alignment, the substrate having the film-like material may be irradiated while being heated at 50 to 250° C. The liquid crystal alignment film thus produced can stably align liquid crystal molecules in a certain direction.
Furthermore, the liquid crystal alignment film irradiated with polarized radiation by the above-mentioned method can be contacted with a solvent or the liquid crystal alignment film irradiated with radiation can be heat-treated.

 上記接触処理に使用する溶媒としては、放射線の照射によって膜状物から生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシル等が挙げられる。なかでも、汎用性や溶媒の安全性の点から、水、2-プロパノール、1-メトキシ-2-プロパノール又は乳酸エチルが好ましい。より好ましいのは、水、1-メトキシ-2-プロパノール又は乳酸エチルである。溶媒は、1種類でも、2種類以上組み合わせてもよい。 The solvent used in the contact treatment is not particularly limited, so long as it dissolves the decomposition products generated from the film-like material by irradiation with radiation. Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate, and the like. Among these, water, 2-propanol, 1-methoxy-2-propanol, or ethyl lactate is preferred from the standpoint of versatility and solvent safety. Water, 1-methoxy-2-propanol, or ethyl lactate is more preferred. The solvent may be one type or a combination of two or more types.

 上記の接触処理としては、浸漬処理や噴霧処理(スプレー処理ともいう)が挙げられる。これらの処理における処理時間は、放射線の照射によって膜状物から生成した分解物を効率的に溶解させる点から、10秒~1時間であることが好ましい。なかでも、1分~30分間浸漬処理をすることがより好ましい。また、上記接触処理時の溶媒は、常温でも加温しても良いが、好ましくは、10~80℃であり、20~50℃がより好ましい。加えて、分解物の溶解性の点から、必要に応じて、超音波処理等を行っても良い。 The above-mentioned contact treatments include immersion treatment and spray treatment (also called spray treatment). The treatment time in these treatments is preferably 10 seconds to 1 hour in order to efficiently dissolve the decomposition products generated from the film-like material by irradiation with radiation. Of these, immersion treatment for 1 minute to 30 minutes is more preferable. The solvent during the above-mentioned contact treatment may be at room temperature or heated, but is preferably 10 to 80°C, and more preferably 20 to 50°C. In addition, ultrasonic treatment or the like may be performed as necessary in terms of the solubility of the decomposition products.

 上記接触処理の後に、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン等の低沸点溶媒によるすすぎ(リンスともいう)や焼成を行うことが好ましい。その際、リンスと焼成のどちらか一方を行っても、又は、両方を行っても良い。焼成の温度は、150~300℃であることが好ましく、180~250℃がより好ましく、更に好ましいのは、200~230℃である。また、焼成の時間は、10秒~30分が好ましく、1分~10分がより好ましい。
 上記の放射線を照射した塗膜に対する加熱処理は、50~300℃で1分~30分とすることが好ましく、120~250℃で1分~30分とすることがより好ましい。
After the contact treatment, it is preferable to perform rinsing (also called rinsing) with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, etc., and calcination. In this case, either rinsing or calcination may be performed, or both may be performed. The calcination temperature is preferably 150 to 300°C, more preferably 180 to 250°C, and even more preferably 200 to 230°C. The calcination time is preferably 10 seconds to 30 minutes, and more preferably 1 minute to 10 minutes.
The heat treatment of the coating film irradiated with the above radiation is preferably carried out at 50 to 300° C. for 1 to 30 minutes, and more preferably at 120 to 250° C. for 1 to 30 minutes.

(液晶表示素子)
 本発明の液晶表示素子は、本発明の液晶配向膜を有する。
 本発明の液晶配向膜は、高い液晶配向性が得られる観点から、IPS方式やFFS方式などの横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子の液晶配向膜として有用である。
 液晶表示素子は、本発明の液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セル内に液晶を配することにより、製造することができる。具体的には以下の2つの方法が挙げられる。
(Liquid crystal display element)
The liquid crystal display element of the present invention has the liquid crystal alignment film of the present invention.
The liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film for a liquid crystal display element of a horizontal electric field type such as an IPS type or an FFS type, from the viewpoint of obtaining high liquid crystal alignment properties, and is particularly useful as a liquid crystal alignment film for a liquid crystal display element of an FFS type.
A liquid crystal display element can be manufactured by obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention, preparing a liquid crystal cell by a known method, and disposing a liquid crystal in the liquid crystal cell. Specifically, the following two methods can be mentioned.

 第一の方法は、先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置する。次いで、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填して膜面に接触した後、注入孔を封止する。 In the first method, first, two substrates are placed facing each other with a gap (cell gap) between them so that their liquid crystal alignment films face each other. Next, the periphery of the two substrates is bonded together using a sealant, and the liquid crystal composition is injected and filled into the substrate surfaces and the cell gap defined by the sealant so that it comes into contact with the film surface, and then the injection hole is sealed.

 第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、更に液晶配向膜面上の所定の数箇所に液晶組成物を滴下する。その後、液晶配向膜が対向するように他方の基板を貼り合わせて液晶組成物を基板の全面に押し広げて膜面に接触させる。次いで、基板の全面に紫外光を照射してシール剤を硬化する。 The second method is called the ODF (One Drop Fill) method. For example, a UV-curable sealant is applied to a specified location on one of the two substrates on which a liquid crystal alignment film has been formed, and liquid crystal composition is then dropped onto several specified locations on the liquid crystal alignment film surface. The other substrate is then attached so that the liquid crystal alignment film faces the other substrate, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, the entire surface of the substrate is irradiated with UV light to cure the sealant.

 第一の方法及び第二の方法のいずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
 なお、塗膜に対してラビング処理を行った場合には、2枚の基板は、各塗膜におけるラビング方向が互いに所定の角度、例えば直交又は逆平行となるように対向配置される。光配向処理を行った場合も同様に、配向方向が互いに所定の角度、例えば直交又は逆平行となるように対向配置される。
 シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂等を用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましい。
In either the first method or the second method, it is further desirable to heat the liquid crystal composition used to a temperature at which it assumes an isotropic phase, and then slowly cool it to room temperature to remove flow alignment that occurs during liquid crystal filling.
When the coating films are subjected to a rubbing treatment, the two substrates are disposed opposite each other so that the rubbing directions of the coating films are at a predetermined angle, for example, perpendicular or anti-parallel to each other. Similarly, when a photo-alignment treatment is performed, the substrates are disposed opposite each other so that the alignment directions are at a predetermined angle, for example, perpendicular or anti-parallel to each other.
The sealing agent may be, for example, an epoxy resin containing a hardener and aluminum oxide spheres as spacers. The liquid crystal may be a nematic liquid crystal or a smectic liquid crystal, of which the nematic liquid crystal is preferred.

 液晶組成物は、特に制限はなく、少なくとも一種の液晶化合物(液晶分子)を含む組成物であって、誘電率異方性が正の液晶組成物(ポジ型液晶組成物、ポジ型液晶ともいう。)や誘電率異方性が負の液晶組成物(ネガ型液晶組成物、ネガ型液晶ともいう。)のいずれを用いてもよいが、好ましいのは、ネガ型液晶材料である。
 上記液晶組成物は、フッ素原子、ヒドロキシ基、アミノ基、フッ素原子含有基(例:トリフルオロメチル基)、シアノ基、アルキル基、アルコキシ基、アルケニル基、イソチオシアネート基、複素環、シクロアルカン、シクロアルケン、ステロイド骨格、ベンゼン環、又はナフタレン環を有する液晶化合物を含んでもよく、分子内に液晶性を発現する剛直な部位(メソゲン骨格)を2つ以上有する化合物(例えば、剛直な二つのビフェニル構造、又はターフェニル構造がアルキル基で連結されたバイメソゲン化合物など)を含んでもよい。液晶組成物は、ネマチック相を呈する液晶組成物、スメクチック相を呈する液晶組成物、又はコレステリック相を呈する液晶組成物であってもよい。
 また、上記液晶組成物は、液晶配向性を向上させる観点から、添加物をさらに添加してもよい。このような添加物は、下記する重合性基を有する化合物などの光重合性モノマー、光学活性な化合物(例:メルク社製のS-811など)、酸化防止剤、紫外線吸収剤、色素、消泡剤、重合開始剤又は重合禁止剤などが挙げられる。
 ポジ型液晶としては、メルク社製のZLI-2293、ZLI-4792、MLC-2003、MLC-2041、MLC-3019又はMLC-7081などが挙げられる。
 ネガ型液晶としては、例えばメルク社製のMLC-6608、MLC-6609、MLC-6610、MLC-6882、MLC-6886、MLC-7026、MLC-7026-000、MLC-7026-100、又はMLC-7029などが挙げられる。
 また、PSAモードでは、重合性基を有する化合物を含有する液晶として、メルク社製のMLC-3023が挙げられる。
 次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。
The liquid crystal composition is not particularly limited, and is a composition containing at least one type of liquid crystal compound (liquid crystal molecule), and may be either a liquid crystal composition having a positive dielectric anisotropy (also called a positive type liquid crystal composition or positive type liquid crystal) or a liquid crystal composition having a negative dielectric anisotropy (also called a negative type liquid crystal composition or negative type liquid crystal), although a negative type liquid crystal material is preferred.
The liquid crystal composition may contain a liquid crystal compound having a fluorine atom, a hydroxy group, an amino group, a fluorine atom-containing group (e.g., a trifluoromethyl group), a cyano group, an alkyl group, an alkoxy group, an alkenyl group, an isothiocyanate group, a heterocycle, a cycloalkane, a cycloalkene, a steroid skeleton, a benzene ring, or a naphthalene ring, or may contain a compound having two or more rigid portions (mesogenic skeletons) that exhibit liquid crystallinity in the molecule (e.g., a bimesogenic compound in which two rigid biphenyl structures or terphenyl structures are linked by an alkyl group). The liquid crystal composition may be a liquid crystal composition exhibiting a nematic phase, a liquid crystal composition exhibiting a smectic phase, or a liquid crystal composition exhibiting a cholesteric phase.
In order to improve the alignment of the liquid crystal, the liquid crystal composition may further contain additives, such as photopolymerizable monomers having a polymerizable group, optically active compounds (e.g., S-811 manufactured by Merck, etc.), antioxidants, ultraviolet absorbers, dyes, antifoaming agents, polymerization initiators, or polymerization inhibitors.
Examples of the positive type liquid crystal include ZLI-2293, ZLI-4792, MLC-2003, MLC-2041, MLC-3019, and MLC-7081 manufactured by Merck.
Examples of negative type liquid crystals include MLC-6608, MLC-6609, MLC-6610, MLC-6882, MLC-6886, MLC-7026, MLC-7026-000, MLC-7026-100, and MLC-7029 manufactured by Merck.
In the PSA mode, MLC-3023 manufactured by Merck is an example of a liquid crystal containing a compound having a polymerizable group.
Next, polarizing plates are installed. Specifically, a pair of polarizing plates are attached to the surfaces of the two substrates opposite to the liquid crystal layer. Examples of polarizing plates include a polarizing film called an "H film" in which polyvinyl alcohol is stretched and oriented while iodine is absorbed, sandwiched between cellulose acetate protective films, and a polarizing plate made of the H film itself.

 以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明は、これらに限定して解釈されるものではない。使用した化合物の略号及び各物性の測定方法は、以下の通りである。 The present invention will be described in more detail below with reference to examples, but the present invention should not be construed as being limited to these. The abbreviations of the compounds used and the methods for measuring the various physical properties are as follows:

(有機溶媒)
 NMP:N-メチル-2-ピロリドン
 NEP:N-エチル-2-ピロリドン
 GBL:γ-ブチロラクトン
 MDPA:3-メトキシ-N,N-ジメチルプロパンアミド
 BCS:ブチルセロソルブ(エチレングリコールモノブチルエーテル)
 DAA:ジアセトンアルコール
(Organic solvent)
NMP: N-methyl-2-pyrrolidone NEP: N-ethyl-2-pyrrolidone GBL: γ-butyrolactone MDPA: 3-methoxy-N,N-dimethylpropanamide BCS: Butyl cellosolve (ethylene glycol monobutyl ether)
DAA: Diacetone alcohol

(テトラカルボン酸二無水物)

Figure JPOXMLDOC01-appb-C000045
(Tetracarboxylic acid dianhydride)
Figure JPOXMLDOC01-appb-C000045

(ジアミン)

Figure JPOXMLDOC01-appb-C000046
(Diamine)
Figure JPOXMLDOC01-appb-C000046

(アミノ末端修飾剤)
 AcO:無水酢酸
 MA:無水マレイン酸
 PA:無水プロピオン酸
 SA:無水コハク酸
 TESPSA:3-トリエトキシシリルプロピルコハク酸無水物
 化合物(e):下記構造式の化合物

Figure JPOXMLDOC01-appb-C000047
(Amino-Terminal Modifier)
Ac 2 O: acetic anhydride MA: maleic anhydride PA: propionic anhydride SA: succinic anhydride TESPSA: 3-triethoxysilylpropylsuccinic anhydride Compound (e): a compound of the following structural formula
Figure JPOXMLDOC01-appb-C000047

(添加剤)
 AD-1:酢酸
 AD-2:3-グリシドキシプロピルトリエトキシシラン
 AD-3~AD-6:下記構造式の化合物

Figure JPOXMLDOC01-appb-C000048
(Additives)
AD-1: Acetic acid AD-2: 3-glycidoxypropyltriethoxysilane AD-3 to AD-6: Compounds of the following structural formula
Figure JPOXMLDOC01-appb-C000048

<粘度の測定>
 E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)を用いて、温度25℃で測定した。
<末端アミノ基の存在率の評価>
 ポリアミック酸溶液2.0gをイソプロピルアルコール10gに投入し、得られた沈殿物を濾別した。この沈殿物をイソプロピルアルコールで洗浄し、60℃で減圧乾燥してポリアミック酸粉末を得た後、H-NMRの分析により構造解析した。末端修飾をしていないポリアミック酸粉末の末端アミノ基のピーク強度を基準とし、各ポリアミック酸粉末の末端アミノ基のピーク強度との比率から、末端アミノ基の存在率を算出した(分析条件は下記の通り)。
 装置:BRUKER社製 ADVANCE III-500MHz
 測定溶媒:重水素化ジメチルスルホキシド(DMSO-d)又は重水素化クロロホルム(CDCl
 基準物質:テトラメチルシラン(TMS)(δ0.0 ppm for 1H)
<Measurement of Viscosity>
The measurement was performed at 25° C. using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) with a sample volume of 1.1 mL and a cone rotor TE-1 (1°34′, R24).
<Evaluation of the Presence of Terminal Amino Groups>
2.0 g of the polyamic acid solution was added to 10 g of isopropyl alcohol, and the resulting precipitate was filtered off. The precipitate was washed with isopropyl alcohol and dried under reduced pressure at 60°C to obtain a polyamic acid powder, which was then subjected to structural analysis by 1H -NMR analysis. The abundance rate of the terminal amino groups was calculated from the ratio of the peak intensity of the terminal amino groups of each polyamic acid powder to the peak intensity of the terminal amino groups of the polyamic acid powder that was not end-modified (analysis conditions are as follows).
Equipment: BRUKER ADVANCE III-500MHz
Measurement solvent: deuterated dimethyl sulfoxide (DMSO-d 6 ) or deuterated chloroform (CDCl 3 )
Reference substance: tetramethylsilane (TMS) (δ 0.0 ppm for 1H)

[アミノ末端修飾剤の合成]
 化合物(e)は文献等未公開の新規化合物であり、以下に合成法を詳述する。
[Synthesis of Amino Terminal Modifiers]
Compound (e) is a novel compound that has not been disclosed in any literature, and the synthesis method thereof will be described in detail below.

 化合物(e)はH-NMR分析により同定した(分析条件は下記の通り)。
 装置:BRUKER社製 ADVANCE III-500MHz
 測定溶媒:重水素化ジメチルスルホキシド(DMSO-d)又は重水素化クロロホルム(CDCl
 基準物質:テトラメチルシラン(TMS)(δ0.0 ppm for H)
Compound (e) was identified by 1 H-NMR analysis (analysis conditions are as follows).
Equipment: BRUKER ADVANCE III-500MHz
Measurement solvent: deuterated dimethyl sulfoxide (DMSO-d 6 ) or deuterated chloroform (CDCl 3 )
Reference substance: tetramethylsilane (TMS) (δ 0.0 ppm for 1 H)

 本発明における略号はそれぞれ以下の意味を示す。
 BOP試薬:ベンゾトリアゾリル-N-ヒドロキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロリン化物塩
The abbreviations used in the present invention have the following meanings.
BOP Reagent: Benzotriazolyl-N-hydroxytris(dimethylamino)phosphonium hexafluorophosphate salt

<化合物(e)の合成>

Figure JPOXMLDOC01-appb-C000049
 フラスコ内に、N,N’-ジ-tert-ブトキシカルボニル-ヒスチジン(17.7g、49.8mmol)、トリエチルアミン(EtN、6.28g,62.1mmol)及びジクロロメタン(CHCl、247g)を加え、得られた溶液を2℃に冷却した。さらに、BOP試薬(22.1g、50.0mmol)を上記フラスコ内に加えて、10℃で1時間撹拌し、反応させた。反応後、析出した結晶を濾別し、2-プロパノール(70.0g)で2回、アセトニトリル(70.0g)で2回固体を洗浄し、得られた湿品を40℃で真空乾燥させることで化合物(e)を得た(収量:8.31g,17.6mmol,性状:白色固体,収率:35%)。以下に示すH-NMRの結果から、この固体が化合物(e)であることを確認した。
H-NMR(500MHz) in CDCl:δ(ppm)=8.09(d,1H,J=1.0Hz),8.03(d,1H,J=8.4Hz),7.61(d,1H,J=8.3Hz),7.52(t,1H,J=7.2Hz),7.41(t,1H,J=8.0Hz),7.38(s,1H),6.18(d,1H,J=7.0Hz),4.99(q,1H,J=6.7Hz),3.39-3.25(m,2H),1.63(s,9H),1.48(s,9H). <Synthesis of compound (e)>
Figure JPOXMLDOC01-appb-C000049
Into the flask, N,N'-di-tert-butoxycarbonyl-histidine (17.7 g, 49.8 mmol), triethylamine (Et 3 N, 6.28 g, 62.1 mmol) and dichloromethane (CH 2 Cl 2 , 247 g) were added, and the resulting solution was cooled to 2°C. Furthermore, BOP reagent (22.1 g, 50.0 mmol) was added to the flask, and the mixture was stirred at 10°C for 1 hour to react. After the reaction, the precipitated crystals were filtered off, and the solid was washed twice with 2-propanol (70.0 g) and twice with acetonitrile (70.0 g), and the resulting wet product was vacuum-dried at 40°C to obtain compound (e) (yield: 8.31 g, 17.6 mmol, properties: white solid, yield: 35%). From the results of 1 H-NMR shown below, it was confirmed that this solid was compound (e).
1 H-NMR (500 MHz) in CDCl 3 : δ (ppm) = 8.09 (d, 1 H, J = 1.0 Hz), 8.03 (d, 1 H, J = 8.4 Hz), 7.61 (d, 1 H, J = 8.3 Hz), 7.52 (t, 1 H, J = 7.2 Hz), 7. 41 (t, 1H, J = 8.0Hz), 7.38 (s, 1H), 6.18 (d, 1H, J = 7.0Hz), 4.99 (q, 1H, J = 6.7Hz), 3.39-3.25 (m, 2H), 1.63 (s, 9H), 1.48 (s, 9H).

[重合体の合成]
<合成例1>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1を0.54g(5.0mmol)、DA-2を1.83g(7.5mmol)、DA-3を2.40g(7.5mmol)、DA-4を1.99g(5.0mmol)を量り取り、NMPを77.8g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を5.32g(24.0mmol)添加し、さらにNMPを10.8g加え、窒素雰囲気下、40℃で20時間撹拌し、ポリマー溶液A-1を得た。
<合成例2>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-5を5.26g(26.4mmol)、DA-6を1.00g(6.6mmol)を量り取り、NMPを45.9g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2を9.03g(30.7mmol)添加し、さらにNMPを66.2g加え、窒素雰囲気下、70℃で10時間撹拌し、ポリマー溶液B-1を得た。
[Synthesis of polymer]
<Synthesis Example 1>
0.54 g (5.0 mmol) of DA-1, 1.83 g (7.5 mmol) of DA-2, 2.40 g (7.5 mmol) of DA-3, and 1.99 g (5.0 mmol) of DA-4 were weighed out into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, 77.8 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 5.32 g (24.0 mmol) of CA-1 was added, and further 10.8 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 40° C. for 20 hours to obtain a polymer solution A-1.
<Synthesis Example 2>
5.26 g (26.4 mmol) of DA-5 and 1.00 g (6.6 mmol) of DA-6 were weighed out into a 100 mL recovery flask equipped with a stirrer and a nitrogen inlet tube, 45.9 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 9.03 g (30.7 mmol) of CA-2 was added, and further 66.2 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 70° C. for 10 hours to obtain a polymer solution B-1.

<合成例3>
 上記ポリマー溶液A-1(30g)に対し、AcOを0.05g(0.5mmol)添加し、室温で24時間攪拌して、非アミノ末端構造を含むポリマー溶液C-1を得た。
<合成例4>
 上記ポリマー溶液B-1(30g)に対し、AcOを0.06g(0.6mmol)添加し、室温で24時間攪拌して、非アミノ末端構造を含むポリマー溶液D-1を得た。
<合成例5~16>
 下記の表1に示すポリマー溶液とアミノ末端修飾剤にて、上記合成例3、4と同様の操作を行い、ポリマー溶液C-2~11、D-2~3を得た。
<合成例17>
 上記ポリマー溶液A-1が30gに対し、AD-1を0.18g(3.0mmol)添加し、室温で24時間攪拌して、非アミノ末端構造を含まないポリマー溶液E-1を得た。
<Synthesis Example 3>
To the above polymer solution A-1 (30 g), 0.05 g (0.5 mmol) of Ac 2 O was added and stirred at room temperature for 24 hours to obtain a polymer solution C-1 containing a non-amino terminal structure.
<Synthesis Example 4>
To the above polymer solution B-1 (30 g), 0.06 g (0.6 mmol) of Ac 2 O was added and stirred at room temperature for 24 hours to obtain a polymer solution D-1 containing a non-amino terminal structure.
<Synthesis Examples 5 to 16>
The same operations as in Synthesis Examples 3 and 4 were carried out using the polymer solutions and amino terminal modifiers shown in Table 1 below, to obtain polymer solutions C-2 to 11 and D-2 to 3.
<Synthesis Example 17>
To 30 g of the above polymer solution A-1, 0.18 g (3.0 mmol) of AD-1 was added, and the mixture was stirred at room temperature for 24 hours to obtain a polymer solution E-1 not containing a non-amino terminal structure.

Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050

[重合体の合成]
<合成例18>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1を5.41g(50.0mmol)量り取り、NMPを39.7g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を10.54g(47.0mmol)添加し、さらにNMPを77.3g加え、窒素雰囲気下、40℃で20時間撹拌し、ポリマー溶液A-2を得た。
<合成例19>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-2を12.21g(50.0mmol)量り取り、NMPを89.6g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を10.54g(47.0mmol)添加し、さらにNMPを77.3g加え、窒素雰囲気下、40℃で20時間撹拌し、ポリマー溶液A-3を得た。
<合成例20>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-4を19.93g(50.0mmol)量り取り、NMPを146.1g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を10.54g(47.0mmol)添加し、さらにNMPを77.3g加え、窒素雰囲気下、40℃で20時間撹拌し、ポリマー溶液A-4を得た。
<合成例21>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-7を10.61g(50.0mmol)量り取り、NMPを77.8g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を10.54g(47.0mmol)添加し、さらにNMPを77.3g加え、窒素雰囲気下、40℃で20時間撹拌し、ポリマー溶液A-5を得た。
<合成例22>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-8を10.61g(50.0mmol)量り取り、NMPを77.8g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を10.54g(47.0mmol)添加し、さらにNMPを77.3g加え、窒素雰囲気下、40℃で20時間撹拌し、ポリマー溶液A-6を得た。
<合成例23>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-9を20.22g(50.0mmol)量り取り、NMPを148.3g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を10.54g(47.0mmol)添加し、さらにNMPを77.3g加え、窒素雰囲気下、40℃で20時間撹拌し、ポリマー溶液A-7を得た。
<合成例24>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-7を1.06g(5.0mmol)、DA-2を1.83g(7.5mmol)、DA-3を2.40g(7.5mmol)、DA-4を1.99g(5.0mmol)を量り取り、NMPを53.5g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を5.32g(24.0mmol)添加し、さらにNMPを39.0g加え、窒素雰囲気下、40℃で20時間撹拌し、ポリマー溶液A-8を得た。
<合成例25>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1を0.54g(5.0mmol)、DA-8を1.59g(7.5mmol)、DA-3を2.40g(7.5mmol)、DA-4を1.99g(5.0mmol)を量り取り、NMPを47.9g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を5.32g(24.0mmol)添加し、さらにNMPを39.0g加え、窒素雰囲気下、40℃で20時間撹拌し、ポリマー溶液A-9を得た。
<合成例26>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1を0.54g(5.0mmol)、DA-2を1.83g(7.5mmol)、DA-3を2.40g(7.5mmol)、DA-9を2.02g(5.0mmol)を量り取り、NMPを49.9g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を5.32g(24.0mmol)添加し、さらにNMPを39.0g加え、窒素雰囲気下、40℃で20時間撹拌し、ポリマー溶液A-10を得た。
<合成例27>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1を1.08g(10.0mmol)、DA-2を1.83g(7.5mmol)、DA-3を2.40g(7.5mmol)を量り取り、NMPを39.0g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を5.32g(24.0mmol)添加し、さらにNMPを39.0g加え、窒素雰囲気下、40℃で20時間撹拌し、ポリマー溶液A-11を得た。
<合成例28>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1を0.54g(5.0mmol)、DA-2を1.83g(7.5mmol)、DA-3を2.40g(7.5mmol)、DA-10を1.19g(5.0mmol)を量り取り、NMPを43.7g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を5.32g(24.0mmol)添加し、さらにNMPを39.0g加え、窒素雰囲気下、40℃で20時間撹拌し、ポリマー溶液A-12を得た。
<合成例29>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1を0.54g(5.0mmol)、DA-2を1.83g(7.5mmol)、DA-3を2.40g(7.5mmol)、DA-11を1.71g(5.0mmol)を量り取り、NMPを47.5g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を5.32g(24.0mmol)添加し、さらにNMPを39.0g加え、窒素雰囲気下、40℃で20時間撹拌し、ポリマー溶液A-13を得た。
<合成例30>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1を0.54g(5.0mmol)、DA-2を1.83g(7.5mmol)、DA-3を2.40g(7.5mmol)、DA-12を1.98g(5.0mmol)を量り取り、NMPを49.6g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を5.32g(24.0mmol)添加し、さらにNMPを39.0g加え、窒素雰囲気下、40℃で20時間撹拌し、ポリマー溶液A-14を得た。
<合成例31>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1を0.54g(5.0mmol)、DA-2を1.83g(7.5mmol)、DA-3を2.40g(7.5mmol)、DA-13を2.78g(5.0mmol)を量り取り、NMPを55.4g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を5.32g(24.0mmol)添加し、さらにNMPを39.0g加え、窒素雰囲気下、40℃で20時間撹拌し、ポリマー溶液A-15を得た。
<合成例32>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1を0.54g(5.0mmol)、DA-2を1.83g(7.5mmol)、DA-3を2.40g(7.5mmol)、DA-14を1.94g(5.0mmol)を量り取り、NMPを49.2g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を5.32g(24.0mmol)添加し、さらにNMPを39.0g加え、窒素雰囲気下、40℃で20時間撹拌し、ポリマー溶液A-16を得た。
<合成例33>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-15を4.48g(15.0mmol)、DA-2を2.44g(10.0mmol)を量り取り、NMPを50.7g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2を6.99g(24.0mmol)添加し、さらにNMPを51.2g加え、窒素雰囲気下、70℃で10時間撹拌し、ポリマー溶液B-2を得た。
<合成例34>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-5を3.99g(20.0mmol)、DA-2を1.22g(5.0mmol)を量り取り、NMPを49.3g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を4.41g(22.5mmol)添加し、さらにNMPを21.2g加え、窒素雰囲気下、40℃で10時間撹拌し、ポリマー溶液B-3を得た。
<合成例35>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-1を2.16g(20.0mmol)、DA-16を0.54g(5.0mmol)量り取り、NMPを40.9g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-4を1.56g(6.3mmol)添加し、さらにNMPを5.0g加え、窒素雰囲気下50℃で3時間撹拌した。その後、この溶液を水冷下で撹拌しながら、CA-3を3.53g(18.0mmol)添加し、さらにNMPを11.2g加え、窒素雰囲気下、25℃で12時間撹拌してポリマー溶液B-4を得た。
<合成例36>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-5を2.99g(15.0mmol)、DA-17を2.11g(5.0mmol)、DA-15を1.49g(5.0mmol)を量り取り、NMPを48.3g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2を6.99g(24.0mmol)添加し、さらにNMPを51.2g加え、窒素雰囲気下、70℃で10時間撹拌し、ポリマー溶液B-5を得た。
<合成例37>
 撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-18を1.87g(7.5mmol)、DA-5を2.49g(12.5mmol)、DA-19を0.99g(5.0mmol)量り取り、NMPを39.2g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を1.72g(8.8mmol)添加し、さらにNMPを42.0g加え、窒素雰囲気下25℃で1時間撹拌した。その後、この溶液を水冷下で撹拌しながら、CA-2を4.41g(15.0mmol)添加し、さらにNMPを2.9g加え、窒素雰囲気下、25℃で5時間撹拌してポリマー溶液B-6を得た。
[Synthesis of polymer]
<Synthesis Example 18>
5.41 g (50.0 mmol) of DA-1 was weighed out into a 100 mL recovery flask equipped with a stirrer and a nitrogen inlet tube, 39.7 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 10.54 g (47.0 mmol) of CA-1 was added, and further 77.3 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 40° C. for 20 hours to obtain a polymer solution A-2.
<Synthesis Example 19>
12.21 g (50.0 mmol) of DA-2 was weighed out into a 100 mL recovery flask equipped with a stirrer and a nitrogen inlet tube, 89.6 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 10.54 g (47.0 mmol) of CA-1 was added, and further 77.3 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 40° C. for 20 hours to obtain a polymer solution A-3.
<Synthesis Example 20>
19.93 g (50.0 mmol) of DA-4 was weighed out into a 100 mL recovery flask equipped with a stirrer and a nitrogen inlet tube, 146.1 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 10.54 g (47.0 mmol) of CA-1 was added, and further 77.3 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 40° C. for 20 hours to obtain a polymer solution A-4.
<Synthesis Example 21>
10.61 g (50.0 mmol) of DA-7 was weighed out into a 100 mL recovery flask equipped with a stirrer and a nitrogen inlet tube, 77.8 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 10.54 g (47.0 mmol) of CA-1 was added, and further 77.3 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 40° C. for 20 hours to obtain a polymer solution A-5.
<Synthesis Example 22>
10.61 g (50.0 mmol) of DA-8 was weighed out into a 100 mL recovery flask equipped with a stirrer and a nitrogen inlet tube, 77.8 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 10.54 g (47.0 mmol) of CA-1 was added, and further 77.3 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 40° C. for 20 hours to obtain a polymer solution A-6.
<Synthesis Example 23>
20.22 g (50.0 mmol) of DA-9 was weighed out into a 100 mL recovery flask equipped with a stirrer and a nitrogen inlet tube, 148.3 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 10.54 g (47.0 mmol) of CA-1 was added, and further 77.3 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 40° C. for 20 hours to obtain a polymer solution A-7.
<Synthesis Example 24>
In a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, 1.06 g (5.0 mmol) of DA-7, 1.83 g (7.5 mmol) of DA-2, 2.40 g (7.5 mmol) of DA-3, and 1.99 g (5.0 mmol) of DA-4 were weighed out, 53.5 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 5.32 g (24.0 mmol) of CA-1 was added, and further 39.0 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 40° C. for 20 hours to obtain a polymer solution A-8.
<Synthesis Example 25>
0.54 g (5.0 mmol) of DA-1, 1.59 g (7.5 mmol) of DA-8, 2.40 g (7.5 mmol) of DA-3, and 1.99 g (5.0 mmol) of DA-4 were weighed out into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, 47.9 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 5.32 g (24.0 mmol) of CA-1 was added, and further 39.0 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 40° C. for 20 hours to obtain a polymer solution A-9.
<Synthesis Example 26>
0.54 g (5.0 mmol) of DA-1, 1.83 g (7.5 mmol) of DA-2, 2.40 g (7.5 mmol) of DA-3, and 2.02 g (5.0 mmol) of DA-9 were weighed out into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, 49.9 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 5.32 g (24.0 mmol) of CA-1 was added, and further 39.0 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 40° C. for 20 hours to obtain a polymer solution A-10.
<Synthesis Example 27>
In a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, 1.08 g (10.0 mmol) of DA-1, 1.83 g (7.5 mmol) of DA-2, and 2.40 g (7.5 mmol) of DA-3 were weighed out, 39.0 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 5.32 g (24.0 mmol) of CA-1 was added, and further 39.0 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 40° C. for 20 hours to obtain a polymer solution A-11.
<Synthesis Example 28>
0.54 g (5.0 mmol) of DA-1, 1.83 g (7.5 mmol) of DA-2, 2.40 g (7.5 mmol) of DA-3, and 1.19 g (5.0 mmol) of DA-10 were weighed out into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, 43.7 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 5.32 g (24.0 mmol) of CA-1 was added, and further 39.0 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 40° C. for 20 hours to obtain a polymer solution A-12.
<Synthesis Example 29>
0.54 g (5.0 mmol) of DA-1, 1.83 g (7.5 mmol) of DA-2, 2.40 g (7.5 mmol) of DA-3, and 1.71 g (5.0 mmol) of DA-11 were weighed out into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, 47.5 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 5.32 g (24.0 mmol) of CA-1 was added, and further 39.0 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 40° C. for 20 hours to obtain a polymer solution A-13.
<Synthesis Example 30>
0.54 g (5.0 mmol) of DA-1, 1.83 g (7.5 mmol) of DA-2, 2.40 g (7.5 mmol) of DA-3, and 1.98 g (5.0 mmol) of DA-12 were weighed out into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, 49.6 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 5.32 g (24.0 mmol) of CA-1 was added, and further 39.0 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 40° C. for 20 hours to obtain a polymer solution A-14.
<Synthesis Example 31>
0.54 g (5.0 mmol) of DA-1, 1.83 g (7.5 mmol) of DA-2, 2.40 g (7.5 mmol) of DA-3, and 2.78 g (5.0 mmol) of DA-13 were weighed out into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, 55.4 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 5.32 g (24.0 mmol) of CA-1 was added, and further 39.0 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 40° C. for 20 hours to obtain a polymer solution A-15.
<Synthesis Example 32>
0.54 g (5.0 mmol) of DA-1, 1.83 g (7.5 mmol) of DA-2, 2.40 g (7.5 mmol) of DA-3, and 1.94 g (5.0 mmol) of DA-14 were weighed out into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, 49.2 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 5.32 g (24.0 mmol) of CA-1 was added, and further 39.0 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 40° C. for 20 hours to obtain a polymer solution A-16.
<Synthesis Example 33>
4.48 g (15.0 mmol) of DA-15 and 2.44 g (10.0 mmol) of DA-2 were weighed out into a 100 mL recovery flask equipped with a stirrer and a nitrogen inlet tube, 50.7 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 6.99 g (24.0 mmol) of CA-2 was added, and further 51.2 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 70° C. for 10 hours to obtain polymer solution B-2.
<Synthesis Example 34>
3.99 g (20.0 mmol) of DA-5 and 1.22 g (5.0 mmol) of DA-2 were weighed out into a 100 mL recovery flask equipped with a stirrer and a nitrogen inlet tube, 49.3 g of NMP was added, and the mixture was dissolved by stirring while feeding nitrogen. While stirring this diamine solution under water cooling, 4.41 g (22.5 mmol) of CA-3 was added, and further 21.2 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 40° C. for 10 hours to obtain polymer solution B-3.
<Synthesis Example 35>
2.16 g (20.0 mmol) of DA-1 and 0.54 g (5.0 mmol) of DA-16 were weighed out into a 100 mL eggplant flask equipped with a stirring device and a nitrogen inlet tube, 40.9 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 1.56 g (6.3 mmol) of CA-4 was added, and further 5.0 g of NMP was added, and the mixture was stirred at 50°C under a nitrogen atmosphere for 3 hours. Thereafter, while stirring this solution under water cooling, 3.53 g (18.0 mmol) of CA-3 was added, and further 11.2 g of NMP was added, and the mixture was stirred at 25°C under a nitrogen atmosphere for 12 hours to obtain a polymer solution B-4.
<Synthesis Example 36>
2.99 g (15.0 mmol) of DA-5, 2.11 g (5.0 mmol) of DA-17, and 1.49 g (5.0 mmol) of DA-15 were weighed out into a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, 48.3 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 6.99 g (24.0 mmol) of CA-2 was added, and further 51.2 g of NMP was added, and the mixture was stirred under a nitrogen atmosphere at 70° C. for 10 hours to obtain a polymer solution B-5.
<Synthesis Example 37>
In a 100 mL eggplant flask equipped with a stirrer and a nitrogen inlet tube, 1.87 g (7.5 mmol) of DA-18, 2.49 g (12.5 mmol) of DA-5, and 0.99 g (5.0 mmol) of DA-19 were weighed out, 39.2 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution under water cooling, 1.72 g (8.8 mmol) of CA-3 was added, and 42.0 g of NMP was further added, and the mixture was stirred at 25 ° C. under a nitrogen atmosphere for 1 hour. Thereafter, while stirring this solution under water cooling, 4.41 g (15.0 mmol) of CA-2 was added, and 2.9 g of NMP was further added, and the mixture was stirred at 25 ° C. under a nitrogen atmosphere for 5 hours to obtain a polymer solution B-6.

<合成例38~53>
 下記の表2に示すポリマー溶液とアミノ末端修飾剤にて、上記合成例3、4と同様の操作を行い、ポリマー溶液C-12~C-27を得た。
<Synthesis Examples 38 to 53>
The same operations as in Synthesis Examples 3 and 4 were carried out using the polymer solutions and amino terminal modifiers shown in Table 2 below, to obtain polymer solutions C-12 to C-27.

Figure JPOXMLDOC01-appb-T000051
 ここで、上記ポリマー溶液(A-1)~(A-16)、(B-1)~(B-6)について、合成するのに用いたテトラカルボン酸二無水物成分及びジアミン成分を下記の表3に記載する。
Figure JPOXMLDOC01-appb-T000051
The tetracarboxylic dianhydride components and diamine components used in synthesizing the above polymer solutions (A-1) to (A-16) and (B-1) to (B-6) are shown in Table 3 below.

Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052



Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053

[液晶配向剤の調製]
<実施例1>
 上記ポリマー溶液B-1及び前記ポリマー溶液C-1を用い、2種類の重合体の質量比が50:50になるように、ポリマー溶液C-1(2.3g)とポリマー溶液B-1(2.3g)を混合した。この混合液に対して、NMP(9.6g)、BCS(5.0g)、AD-2を1質量%含むNMP溶液(0.5g)、及びAD-3を10重量%含むNMP溶液(0.3g)を、撹拌しながら加え、更に室温で2時間撹拌し、本発明の液晶配向剤(AL-1)を得た。また液晶配向性の劣化抑制効果評価用に、室温で48時間放置した液晶配向剤(AL-1-48h)も得た。
[Preparation of liquid crystal alignment agent]
Example 1
Using the above polymer solution B-1 and the above polymer solution C-1, the polymer solution C-1 (2.3 g) and the polymer solution B-1 (2.3 g) were mixed so that the mass ratio of the two types of polymers was 50:50. To this mixture, NMP (9.6 g), BCS (5.0 g), an NMP solution containing 1 mass% AD-2 (0.5 g), and an NMP solution containing 10 wt% AD-3 (0.3 g) were added with stirring, and further stirred at room temperature for 2 hours to obtain the liquid crystal alignment agent (AL-1) of the present invention. In addition, a liquid crystal alignment agent (AL-1-48h) was also obtained by leaving it at room temperature for 48 hours to evaluate the deterioration suppression effect of liquid crystal alignment.

<実施例2~14、及び比較例1~3>
 下記の表4に示す組成にて、上記実施例1と同様の操作を行い、本発明の実施例2~14の液晶配向剤(AL-2)~(AL-14)、(AL-2-48h)~(AL-14-48h)及び比較例1~3の(AL-R1)~(AL-R3)、(AL-R1-48h)~(AL-R3-48h)液晶配向剤を得た。
<Examples 2 to 14 and Comparative Examples 1 to 3>
The same operation as in Example 1 was carried out with the composition shown in Table 4 below, and the liquid crystal alignment agents (AL-2) to (AL-14), (AL-2-48h) to (AL-14-48h) of Examples 2 to 14 of the present invention and (AL-R1) to (AL-R3), (AL-R1-48h) to (AL-R3-48h) of Comparative Examples 1 to 3 were obtained.

Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054

<実施例15~41、及び比較例4~30>
 下記の表5に示す組成にて、上記実施例1と同様の操作を行い、本発明の実施例15~41の液晶配向剤(AL-15)~(AL-41)、(AL-15-48h)~(AL-41-48h)及び比較例4~30の液晶配向剤(AL-R4)~(AL-R30)、(AL-R4-48h)~(AL-R30-48h)を得た。

<Examples 15 to 41 and Comparative Examples 4 to 30>
With the composition shown in Table 5 below, the same operation as in Example 1 was carried out to obtain the liquid crystal alignment agents (AL-15) to (AL-41), (AL-15-48h) to (AL-41-48h) of Examples 15 to 41 of the present invention and the liquid crystal alignment agents (AL-R4) to (AL-R30), (AL-R4-48h) to (AL-R30-48h) of Comparative Examples 4 to 30.

Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055



Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056

Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057

Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058

[液晶セルの作製]
 前記で得られた液晶配向剤を用いて以下に示すFFS駆動液晶セルを作製した。
(FFS駆動液晶セルの構成)
 FFSモード用の液晶セルは、面形状の共通電極-絶縁層-櫛歯形状の画素電極からなるFOP(Finger on Plate)電極層が表面に形成されている第1のガラス基板と、表面に高さ4μmの柱状スペーサーを有し裏面に帯電防止の為のITO膜が形成されている第2のガラス基板とを、一組とした。上記の画素電極は、中央部分が内角160°で屈曲した幅3μmの電極要素が6μmの間隔を開けて平行になるように複数配列された櫛歯形状を有しており、1つの画素は、複数の電極要素の屈曲を結ぶ線を境に第1領域と第2領域を有していた。なお、第1のガラス基板に形成する液晶配向膜は、画素屈曲部の内角を等分する方向と液晶の配向方向とが直交するように配向処理し、第2のガラス基板に形成する液晶配向膜は、液晶セルを作製した時に第1の基板上の液晶の配向方向と第2の基板上の液晶の配向方向とが一致するように配向処理した。
[Preparation of liquid crystal cells]
The liquid crystal alignment agent obtained above was used to prepare the following FFS drive liquid crystal cell.
(Configuration of FFS driving liquid crystal cell)
The liquid crystal cell for the FFS mode was a set of a first glass substrate on which an FOP (Finger on Plate) electrode layer consisting of a planar common electrode, an insulating layer, and a comb-shaped pixel electrode was formed on the surface, and a second glass substrate on which a columnar spacer with a height of 4 μm was formed on the surface and an ITO film for preventing static electricity was formed on the back surface. The pixel electrode had a comb-like shape in which a plurality of electrode elements with a width of 3 μm, which were bent at an inner angle of 160° at the center, were arranged in parallel at intervals of 6 μm, and one pixel had a first region and a second region with a line connecting the bends of the plurality of electrode elements as a boundary. The liquid crystal alignment film formed on the first glass substrate was oriented so that the direction dividing the inner angle of the pixel bend was orthogonal to the alignment direction of the liquid crystal, and the liquid crystal alignment film formed on the second glass substrate was oriented so that the alignment direction of the liquid crystal on the first substrate coincided with the alignment direction of the liquid crystal on the second substrate when the liquid crystal cell was produced.

(FFS駆動液晶セルの作製(光配向処理))
 次に、上記実施例1~14及び比較例1~3で得られた液晶配向剤を孔径1.0μmのフィルターで濾過した後、上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板それぞれの表面に、スピンコート塗布にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成させた。
 この塗膜面に偏光板を介して消光比26:1に直線偏光した波長254nmの紫外線を0.3J/cm照射した。この基板を、230℃の熱風循環式オーブンで30分間焼成し、液晶配向膜付き基板を得た。
(Fabrication of FFS Drive Liquid Crystal Cell (Photo-Alignment Treatment))
Next, the liquid crystal alignment agents obtained in the above Examples 1 to 14 and Comparative Examples 1 to 3 were filtered through a filter with a pore size of 1.0 μm, and then applied by spin coating to the surfaces of the above electrode-attached substrate and a glass substrate having a columnar spacer with a height of 4 μm and an ITO film formed on the back surface. After drying for 2 minutes on a hot plate at 80° C., the substrate was baked for 30 minutes in a hot air circulation oven at 230° C. to form a coating film with a thickness of 100 nm.
The coating surface was irradiated with 0.3 J/ cm2 of ultraviolet light having a wavelength of 254 nm and linearly polarized with an extinction ratio of 26:1 through a polarizing plate. The substrate was baked in a hot air circulating oven at 230°C for 30 minutes to obtain a substrate with a liquid crystal alignment film.

(ラビング配向処理)
 次に、上記実施例41及び比較例30で得られた液晶配向剤を用いて、上記と同様の手順で膜厚100nmの塗膜を形成させた。次に、上記光配向処理を以下に記載のラビング配向処理に変更して、配向処理を行った。
 具体的には、塗膜が形成された基板を、レーヨン布でラビング(ローラー直径:140mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.4mm)した。その後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した後、80℃で10分間乾燥して液晶配向膜付き基板を得た。
 得られた上記2枚の基板を一組とし、1枚の基板上にシール剤を塗布し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルとした。得られたFFS駆動液晶セルを120℃で1時間加熱し、23℃で一晩放置してから下記する評価に用いた。
(Rubbing Alignment Treatment)
Next, a coating film having a thickness of 100 nm was formed in the same manner as above using the liquid crystal alignment agents obtained in the above Example 41 and Comparative Example 30. Next, an alignment treatment was performed by changing the above photo-alignment treatment to the following rubbing alignment treatment.
Specifically, the substrate on which the coating film was formed was rubbed with a rayon cloth (roller diameter: 140 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm/sec, indentation length: 0.4 mm), then ultrasonically cleaned in pure water for 1 minute, water droplets were removed by air blowing, and the substrate was dried at 80° C. for 10 minutes to obtain a substrate with a liquid crystal alignment film.
The two substrates thus obtained were combined into a set, a sealant was applied onto one substrate, and the other substrate was attached so that the liquid crystal alignment film faces each other and the alignment direction was 0°, after which the sealant was cured to prepare an empty cell. Liquid crystal MLC-3019 (Merck) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to prepare an FFS drive liquid crystal cell. The obtained FFS drive liquid crystal cell was heated at 120°C for 1 hour, left at 23°C overnight, and then used for the evaluation described below.

[液晶セルの特性評価]
 上記で作製した液晶セルの特性を以下のようにして評価した。
(長期交流駆動による残像特性)
 上記で作製したFFS駆動液晶セルに対し、照度15000nitのバックライト点灯下、周波数60Hzで±7Vの交流電圧を120時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。上記の処理を行った液晶セルに関して、電圧無印加状態における、画素の第1領域の液晶の配向方向と第2領域の液晶の配向方向とのずれを角度として算出した。
 具体的には、偏光軸が直交するように配置された2枚の偏光板の間に液晶セルを設置し、バックライトを点灯させ、画素の第1領域の透過光強度が最も小さくなるように液晶セルの配置角度を調整し、次に画素の第2領域の透過光強度が最も小さくなるように液晶セルを回転させたときに要する回転角度を求めた。長期交流駆動による残像特性は、この回転角度の値が小さいほど良好であると言える。
[Characteristics evaluation of liquid crystal cells]
The characteristics of the liquid crystal cell prepared above were evaluated as follows.
(Image retention characteristics due to long-term AC driving)
An AC voltage of ±7V at a frequency of 60Hz was applied to the FFS driving liquid crystal cell prepared above for 120 hours under the illumination of a backlight with an illuminance of 15000nit. After that, the pixel electrode and the counter electrode of the liquid crystal cell were shorted, and the liquid crystal cell was left at room temperature for one day. For the liquid crystal cell that had undergone the above treatment, the deviation between the alignment direction of the liquid crystal in the first region of the pixel and the alignment direction of the liquid crystal in the second region in the no voltage application state was calculated as an angle.
Specifically, a liquid crystal cell was placed between two polarizing plates arranged so that the polarization axes were perpendicular to each other, a backlight was turned on, the arrangement angle of the liquid crystal cell was adjusted so that the transmitted light intensity of the first region of the pixel was minimized, and then the rotation angle required when the liquid crystal cell was rotated so that the transmitted light intensity of the second region of the pixel was minimized was obtained. It can be said that the smaller the value of this rotation angle, the better the afterimage characteristics due to long-term AC driving.

[評価結果]
 本発明の目的である液晶配向性の劣化抑制の効果を確認するため、以下の評価を行った。具体的には、まず上記実施例1~14及び比較例1~3で得た液晶配向剤(AL-1)~(AL-14)、(AL-R1)~(AL-R3)を使用した液晶セルの回転角度Δa、室温で48時間放置した液晶配向剤(AL-1-48h)~(AL-14-48h)、(AL-R1-48h)~(AL-R3-48h)を使用した液晶セルの回転角度Δbを算出した。
 次に、各液晶配向剤の室温保管による回転角度の変化量Δ(|Δb-Δa|)を液晶配向性の劣化度合を表す指標とし、この値が0.2°より低い場合は「〇」、0.2°以上の場合は「×」と定義した。
 評価結果を表6に示す。表中、テトラカルボン酸成分の括弧内の数値は、重合に使用したテトラカルボン酸成分の総量100モル部に対して、使用した各テトラカルボン酸二無水物の量(モル部)を表す。
[Evaluation Results]
In order to confirm the effect of suppressing the deterioration of the liquid crystal alignment property, which is the object of the present invention, the following evaluation was performed. Specifically, first, the rotation angle Δa of the liquid crystal cell using the liquid crystal alignment agents (AL-1) to (AL-14), (AL-R1) to (AL-R3) obtained in the above Examples 1 to 14 and Comparative Examples 1 to 3, and the rotation angle Δb of the liquid crystal cell using the liquid crystal alignment agents (AL-1-48h) to (AL-14-48h), (AL-R1-48h) to (AL-R3-48h) left at room temperature for 48 hours were calculated.
Next, the change in rotation angle Δ(|Δb-Δa|) of each liquid crystal alignment agent due to storage at room temperature was used as an index representing the degree of deterioration of the liquid crystal alignment property, and a value lower than 0.2° was defined as "O" and a value equal to or greater than 0.2° was defined as "X".
The evaluation results are shown in Table 6. In the table, the numerical values in parentheses for the tetracarboxylic acid components indicate the amount (parts by mole) of each tetracarboxylic dianhydride used per 100 parts by mole of the total amount of the tetracarboxylic acid components used in the polymerization.

Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059


 本発明の液晶配向剤を使用した液晶セルは液晶配向性が良好、つまり室温放置による液晶配向性の劣化が抑制できていることを確認した。詳細な比較は以下の通りである。
 実施例1~2と比較例1の比較から、末端アミノ基の存在率が低くなるほど、液晶配向性が良好であることがわかった。また実施例2、10と比較例1、2の比較から、末端アミノ基存在率の液晶配向性への寄与が、ポリアミック酸種によって大きく異なることがわかった。また比較例3より、添加剤として酢酸を加えた場合(すなわち、末端アミノ基が式(E)の非アミノ基を有するように修飾されていない場合)、液晶配向性の劣化は抑制できていないことを確認した。
 また、本発明の液晶配向剤を使用した液晶セルの回転角度の変化量は、いずれも0.2°より小さく、室温放置による液晶配向性の劣化が抑制できていることを確認した。
It was confirmed that the liquid crystal cell using the liquid crystal aligning agent of the present invention has good liquid crystal alignment, that is, the deterioration of the liquid crystal alignment when left at room temperature is suppressed. A detailed comparison is as follows.
A comparison of Examples 1 and 2 with Comparative Example 1 shows that the lower the abundance rate of the terminal amino group, the better the liquid crystal alignment property. A comparison of Examples 2 and 10 with Comparative Examples 1 and 2 shows that the contribution of the abundance rate of the terminal amino group to the liquid crystal alignment property varies greatly depending on the type of polyamic acid. Comparative Example 3 also shows that when acetic acid is added as an additive (i.e., when the terminal amino group is not modified to have a non-amino group of formula (E)), the deterioration of the liquid crystal alignment property cannot be suppressed.
Moreover, the change in the rotation angle of the liquid crystal cell using the liquid crystal aligning agent of the present invention was all less than 0.2°, and it was confirmed that the deterioration of the liquid crystal alignment property due to being left at room temperature was suppressed.

 また上記実施例15~41及び比較例4~30で得た液晶配向剤(AL-15)~(AL-41)、(AL-15-48h)~(AL-41-48h)、(AL-R4)~(AL-R30)、(AL-R4-48h)~(AL-R30-48h)に関しても、同様の手順で回転角度Δa、Δbを算出した。次に、各液晶配向剤の室温保管による回転角度の変化量Δ(|Δb-Δa|)を液晶配向性の劣化度合を表す指標とし、この値が0.2°より低い場合は「〇」、0.2°以上の場合は「×」と定義した。評価結果を表7に示す。

In addition, the rotation angles Δa and Δb were calculated in the same manner for the liquid crystal alignment agents (AL-15) to (AL-41), (AL-15-48h) to (AL-41-48h), (AL-R4) to (AL-R30), (AL-R4-48h) to (AL-R30-48h) obtained in the above Examples 15 to 41 and Comparative Examples 4 to 30. Next, the change in rotation angle Δ(|Δb-Δa|) due to storage at room temperature for each liquid crystal alignment agent was used as an index representing the degree of deterioration of the liquid crystal alignment property, and if this value is lower than 0.2°, it was defined as "◯", and if it is 0.2° or more, it was defined as "×". The evaluation results are shown in Table 7.

Figure JPOXMLDOC01-appb-T000060



Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063

 実施例15~41と比較例4~30の比較から、ジアミン種、溶媒種、添加剤種、配向方式を変更しても液晶配向性の劣化抑制の効果があり、本発明の適用可能範囲は非常に広いことを確認した。
Figure JPOXMLDOC01-appb-T000060



Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063

From a comparison between Examples 15 to 41 and Comparative Examples 4 to 30, it was confirmed that the effect of suppressing deterioration of liquid crystal alignment was achieved even when the diamine type, solvent type, additive type, and alignment method were changed, and the range of applicability of the present invention is extremely wide.

 なお、2023年4月17日に出願された日本特許出願2023-067329号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。 The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2023-067329, filed on April 17, 2023, are hereby incorporated by reference as the disclosure of the specification of the present invention.

Claims (15)

 下記の重合体(A)及び重合体(B)を含有することを特徴とする液晶配向剤。
  重合体(A):テトラカルボン酸誘導体由来の構造単位と、ジアミン由来の構造単位と、を有するポリアミック酸(A)であって、
  テトラカルボン酸誘導体由来の構造単位として、下記式(1T)で表される構造単位(a-1Ta)を含み、
  ジアミン由来の構造単位として、下記式(1D)で表される構造単位(a-1Da)を含み、
  上記ポリアミック酸(A)の少なくとも一部の末端が、非アミノ基を含み、該非アミノ基が、下記の構造式(E)で表される官能基であって、
  ポリアミック酸(A)の末端アミノ基の存在率が、ポリアミック酸(A)の全ての末端を基準として、60%以下である、上記ポリアミック酸。
  重合体(B):テトラカルボン酸誘導体由来の構造単位と、ジアミン由来の構造単位と、を有するポリアミック酸(B)であって、
  テトラカルボン酸誘導体由来の構造単位として、下記式(1T)で表される構造単位(b-1Tb)を含み、
  ジアミン由来の構造単位として、下記式(1D)で表される構造単位(b-1Db)を含む、上記ポリアミック酸。
Figure JPOXMLDOC01-appb-C000001
(式中Xは、下記式(x-1)で表される4価の有機基を表す。式(1D)中、Yはジアミン由来の2価の有機基を表す。Zはそれぞれ独立して、水素原子又は1価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000002
(式(x-1)中、R~Rはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、炭素数1~6のアルコキシ基、炭素数2~6のアルコキシアルキル基、炭素数2~6のアルキルオキシカルボニル基、又はフェニル基を表し、R~Rの少なくとも一つは上記定義中の水素原子以外の基を表す。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000003
(式中Xは、芳香族テトラカルボン酸二無水物由来の4価の有機基、下記式(x-2)で表される4価の有機基、又は5員環以上の脂環構造を有する4価の有機基(T5a)を表す。式(1D)中、Yはジアミン由来の2価の有機基を表す。Zは上記式(1D)のZと同義である。)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
(式(E)中、Qは、下記の基(e1)~(e3)のいずれかから選ばれる1価の有機基である。*は結合手を表す。)
 (e1)炭素数1~6の非環式炭化水素基
 (e2)カルボキシ基を1~2つ有し、且つ、炭素数が2~30の1価の有機基(但し、該1価の有機基は酸無水基を含まない。)
 (e3)Bocを2つ以上有し、且つ、Bocを除く炭素数が1~30の1価の有機基であって、上記1価の有機基は、*1-NH(Boc)、*1-N(Boc)、及び「*1-N(Boc)-*1」(*1は、炭素原子に結合する結合手を表す。)からなる群から選ばれる保護アミノ部位を有する。なお、保護アミノ部位が2つ以上である場合、各保護アミノ部位は同一であっても良く、異なっていても良い。
A liquid crystal aligning agent comprising the following polymer (A) and polymer (B):
Polymer (A): A polyamic acid (A) having a structural unit derived from a tetracarboxylic acid derivative and a structural unit derived from a diamine,
The structural unit (a-1Ta) represented by the following formula (1T a ) is contained as a structural unit derived from a tetracarboxylic acid derivative,
The diamine-derived structural unit includes a structural unit (a-1Da) represented by the following formula (1D a ):
At least a part of the terminals of the polyamic acid (A) contains a non-amino group, and the non-amino group is a functional group represented by the following structural formula (E):
The polyamic acid (A), wherein the proportion of terminal amino groups present in the polyamic acid (A) is 60% or less based on all terminals of the polyamic acid (A).
Polymer (B): A polyamic acid (B) having a structural unit derived from a tetracarboxylic acid derivative and a structural unit derived from a diamine,
The structural unit (b-1Tb) represented by the following formula (1T b ) is contained as a structural unit derived from a tetracarboxylic acid derivative,
The above polyamic acid, which contains a structural unit (b-1Db) represented by the following formula (1D b ) as a structural unit derived from a diamine:
Figure JPOXMLDOC01-appb-C000001
(In the formula, Xa represents a tetravalent organic group represented by the following formula (x-1). In formula ( 1Da ), Ya represents a divalent organic group derived from a diamine. Each Z independently represents a hydrogen atom or a monovalent organic group.)
Figure JPOXMLDOC01-appb-C000002
(In formula (x-1), R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, an alkoxy group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 6 carbon atoms, an alkyloxycarbonyl group having 2 to 6 carbon atoms, or a phenyl group, and at least one of R 1 to R 4 represents a group other than a hydrogen atom as defined above. * represents a bond.)
Figure JPOXMLDOC01-appb-C000003
(In the formula, Xb represents a tetravalent organic group derived from an aromatic tetracarboxylic dianhydride, a tetravalent organic group represented by the following formula (x-2), or a tetravalent organic group ( T5a ) having an alicyclic structure having five or more members. In formula ( 1Db ), Yb represents a divalent organic group derived from a diamine. Z has the same meaning as Z in formula ( 1Da ).)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
(In formula (E), Q is a monovalent organic group selected from the following groups (e1) to (e3). * represents a bond.)
(e1) an acyclic hydrocarbon group having 1 to 6 carbon atoms; (e2) a monovalent organic group having 1 to 2 carboxy groups and 2 to 30 carbon atoms (however, the monovalent organic group does not include an acid anhydride group).
(e3) A monovalent organic group having two or more Boc groups and having 1 to 30 carbon atoms excluding Boc, the monovalent organic group having a protected amino moiety selected from the group consisting of *1-NH(Boc), *1-N(Boc) 2 and *1-N(Boc)-*1 (*1 represents a bond bonded to a carbon atom). When there are two or more protected amino moieties, the protected amino moieties may be the same or different.
 前記(e1)が、非環式脂肪族ジカルボン酸無水物に由来する残基である、請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein (e1) is a residue derived from an acyclic aliphatic dicarboxylic acid anhydride.  前記(e2)が、ジカルボン酸無水物に由来する残基を有し、且つ、カルボキシ基を1~2つ有する1価の有機基(但し、該1価の有機基は酸無水基を含まない。)であって、該ジカルボン酸無水物が、アルコキシシラン構造を有しない化合物(e2-1)及びアルコキシシラン構造を有する化合物(e2-2)から選ばれる、請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein (e2) is a monovalent organic group having a residue derived from a dicarboxylic anhydride and having one or two carboxy groups (however, the monovalent organic group does not include an acid anhydride group), and the dicarboxylic anhydride is selected from a compound (e2-1) that does not have an alkoxysilane structure and a compound (e2-2) that has an alkoxysilane structure.  前記化合物(e2-1)が、芳香族、又は脂肪族環式ジカルボン酸無水物である、請求項3に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 3, wherein the compound (e2-1) is an aromatic or aliphatic cyclic dicarboxylic acid anhydride.  前記化合物(e2-2)が、4-(3-トリメトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物、4-(3-トリエトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物、4-(3-トリメトキシシリルプロピル)フタル酸無水物、4-(3-トリエトキシシリルプロピル)フタル酸無水物、(炭素数1~6)アルコキシジメチルシリル(炭素数2~8)アルキル無水コハク酸;ジ(炭素数1~6)アルコキシメチルシリル(炭素数2~8)アルキル無水コハク酸;トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸;4-(3-ジメチルメトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物、4-(3-ジメチルエトキシシリルプロピル)シクロヘキサン-1,2-ジカルボン酸無水物、4-(3-ジメチルメトキシシリルプロピル)フタル酸無水物若しくは4-(3-ジメチルエトキシシリルプロピル)フタル酸無水物から選ばれる、請求項3に記載の液晶配向剤。 The compound (e2-2) is 4-(3-trimethoxysilylpropyl)cyclohexane-1,2-dicarboxylic anhydride, 4-(3-triethoxysilylpropyl)cyclohexane-1,2-dicarboxylic anhydride, 4-(3-trimethoxysilylpropyl)phthalic anhydride, 4-(3-triethoxysilylpropyl)phthalic anhydride, (carbon number 1-6)alkoxydimethylsilyl(carbon number 2-8)alkylsuccinic anhydride; di(carbon number 1-6)alkoxymethylsilyl(carbon number 2-8) ) alkyl succinic anhydride; tri(C1-6) alkoxysilyl(C2-8) alkyl succinic anhydride; 4-(3-dimethylmethoxysilylpropyl) cyclohexane-1,2-dicarboxylic anhydride, 4-(3-dimethylethoxysilylpropyl) cyclohexane-1,2-dicarboxylic anhydride, 4-(3-dimethylmethoxysilylpropyl) phthalic anhydride, or 4-(3-dimethylethoxysilylpropyl) phthalic anhydride, according to claim 3, which is selected from the group consisting of phthalic anhydride, phthalic anhydride, and phthalic anhydride.  前記(e3)が、R-O-C(=O)-E3(E3は、上記(e3)を表す。Rは、活性エステル形成基を表す。)で表される活性エステル化合物(e)を用いて得られる、請求項1に記載の液晶配向剤。 The liquid crystal aligning agent according to claim 1, wherein (e3) is obtained using an active ester compound (e) represented by R-O-C(=O)-E3 (E3 represents the above (e3). R represents an active ester forming group).  前記E3が、「W-COOH」(Wは、式(e3)と同義である。)で表されるカルボン酸(W)からカルボキシ基を除いた基であって、
 前記カルボン酸(W)が、2つ以上のアミノ基を有するカルボキシ基含有ポリアミン(pA)が有するアミノ基を保護することにより得られる、請求項6に記載の液晶配向剤。
E3 is a group obtained by removing a carboxy group from a carboxylic acid (W) represented by "W-COOH" (W has the same meaning as in formula (e3)),
The liquid crystal aligning agent according to claim 6, wherein the carboxylic acid (W) is obtained by protecting an amino group of a carboxyl group-containing polyamine (pA) having two or more amino groups.
 前記式(x-1)が、下記式(x1-1)~(x1-5)からなる群から選ばれる請求項1に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000006
(*は結合手を表す。)
The liquid crystal aligning agent according to claim 1, wherein the formula (x-1) is selected from the group consisting of the following formulas (x1-1) to (x1-5):
Figure JPOXMLDOC01-appb-C000006
(* represents a bond.)
 前記構造単位(a-1Da)及び/又は前記構造単位(b-1Db)が、ジアミン(0)「H-N(Z)-Ar-L-A-L1’-Ar1’-N(Z)-H」、ジアミン(Ph)「H-N(Z)-Ar-N(Z)-H」及び、ジアミン(0)’「H-N(Z)-Ar-L-A-L2’-Ar2’-N(Z)-H」で表されるジアミンからなる群から選ばれるジアミン由来の構造単位(1D-1)である、請求項1に記載の液晶配向剤。
(上記式中、Ar、Ar1’は、それぞれ独立して、ベンゼン環、ビフェニル構造、又はナフタレン環を表す。Ar、Ar1’の環上の任意の水素原子は、1価の基で置換されてもよい。Aは、アルキレン構造を有する炭素数1~10の2価の有機基を表す。
 L、L1’は、それぞれ独立して、単結合、-O-、-S-、-C(=O)-、-O-C(=O)-、-NR-(Rは水素原子又は1価の有機基を表す。)、-C(=O)-NR-(Rは水素原子又は1価の有機基を表す。)、又は-NR-C(=O)-(Rは水素原子又は1価の有機基を表す。)を表す。
 Arは、ベンゼン環、ビフェニル構造、ナフタレン環、又は下記式(Im)で表される2価の有機基を表す。Arが有するベンゼン環、ビフェニル構造、又はナフタレン環上の任意の水素原子は、1価の基で置換されてもよい。
 Zは上記式(1D)のZと同義である。
 Ar及びAr2’は、それぞれ独立して、ベンゼン環、ビフェニル構造、ナフタレン環、又は芳香族複素環を表す。Ar及びAr2’の環上の任意の水素原子は、1価の基で置換されてもよい。Aは、アルキレン基を有する2価の有機基を表す。
 L、L2’は、それぞれ独立して、単結合、-O-、-S-、-C(=O)-、-O-C(=O)-、-NR-(Rは水素原子又は1価の有機基を表す。)、-C(=O)-NR-(Rは水素原子又は1価の有機基を表す。)、又は-NR-C(=O)-(Rは水素原子又は1価の有機基を表す。)を表す。
 但し、Ar及びAr2’及びAのいずれかは、複素環を有している。)
Figure JPOXMLDOC01-appb-C000007
(式(Im)中、Xは、非環式又は脂環式テトラカルボン酸二無水物から2つの無水基を除いた4価の有機基を表す。)
The liquid crystal aligning agent according to claim 1, wherein the structural unit (a-1Da) and/or the structural unit (b-1Db) is a structural unit (1D-1) derived from a diamine selected from the group consisting of diamines represented by diamine (0) "H-N(Z)-Ar 1 -L 1 -A-L 1 ' -Ar 1' -N(Z)-H", diamine (Ph) "H-N(Z)-Ar-N(Z)-H" and diamine (0)'"H-N(Z)-Ar 2 -L 2 -A 2 -L 2' -Ar 2'-N(Z)-H".
(In the above formula, Ar 1 and Ar 1' each independently represent a benzene ring, a biphenyl structure, or a naphthalene ring. Any hydrogen atom on the ring of Ar 1 or Ar 1' may be substituted with a monovalent group. A represents a divalent organic group having an alkylene structure and having 1 to 10 carbon atoms.
L 1 and L 1' each independently represent a single bond, -O-, -S-, -C(=O)-, -O-C(=O)-, -NR- (R represents a hydrogen atom or a monovalent organic group), -C(=O)-NR- (R represents a hydrogen atom or a monovalent organic group), or -NR-C(=O)- (R represents a hydrogen atom or a monovalent organic group).
Ar represents a benzene ring, a biphenyl structure, a naphthalene ring, or a divalent organic group represented by the following formula (Im): Any hydrogen atom on the benzene ring, biphenyl structure, or naphthalene ring of Ar may be substituted with a monovalent group.
Z has the same meaning as Z in the above formula (1D a ).
Ar2 and Ar2 ' each independently represent a benzene ring, a biphenyl structure, a naphthalene ring, or an aromatic heterocycle. Any hydrogen atom on the ring of Ar2 and Ar2 ' may be substituted with a monovalent group. A2 represents a divalent organic group having an alkylene group.
L 2 and L 2' each independently represent a single bond, -O-, -S-, -C(=O)-, -O-C(=O)-, -NR- (R represents a hydrogen atom or a monovalent organic group), -C(=O)-NR- (R represents a hydrogen atom or a monovalent organic group), or -NR-C(=O)- (R represents a hydrogen atom or a monovalent organic group).
However, any one of Ar2 , Ar2 ', and A2 has a heterocycle.
Figure JPOXMLDOC01-appb-C000007
(In formula (Im), X represents a tetravalent organic group obtained by removing two anhydride groups from an acyclic or alicyclic tetracarboxylic acid dianhydride.)
 下記の重合体(A)及び重合体(B)を含有することを特徴とする液晶配向剤であって、下記式1で表される回転角度の変化量が0.2°より小さい液晶配向膜が得られる、液晶配向剤。
  重合体(A):テトラカルボン酸誘導体由来の構造単位と、ジアミン由来の構造単位と、を有するポリアミック酸(A)であって、
  テトラカルボン酸誘導体由来の構造単位として、下記式(1T)で表される構造単位(a-1Ta)を含み、
  ジアミン由来の構造単位として、下記式(1D)で表される構造単位(a-1Da)を含み、
  上記ポリアミック酸(A)の少なくとも一部の末端が、非アミノ基を含み、該非アミノ基が、下記の構造式(E)で表される官能基である、上記ポリアミック酸。
  重合体(B):テトラカルボン酸誘導体由来の構造単位と、ジアミン由来の構造単位と、を有するポリアミック酸(B)であって、
  テトラカルボン酸誘導体由来の構造単位として、下記式(1T)で表される構造単位(b-1Tb)を含み、
  ジアミン由来の構造単位として、下記式(1D)で表される構造単位(b-1Db)を含む、上記ポリアミック酸。
Figure JPOXMLDOC01-appb-C000008
(式中Xは、下記式(x-1)で表される4価の有機基を表す。式(1D)中、Yはジアミン由来の2価の有機基を表す。Zはそれぞれ独立して、水素原子又は1価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000009
(式(x-1)中、R~Rはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、炭素数1~6のアルコキシ基、炭素数2~6のアルコキシアルキル基、炭素数2~6のアルキルオキシカルボニル基、又はフェニル基を表し、R~Rの少なくとも一つは上記定義中の水素原子以外の基を表す。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000010
(式中Xは、芳香族テトラカルボン酸二無水物由来の4価の有機基、下記式(x-2)で表される4価の有機基、又は5員環以上の脂環構造を有する4価の有機基(T5a)を表す。式(1D)中、Yはジアミン由来の2価の有機基を表す。Zは上記式(1D)のZと同義である。)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(式(E)中、Qは、下記の基(e1)~(e3)のいずれかから選ばれる1価の有機基である。*は結合手を表す。)
 (e1)炭素数1~6の非環式炭化水素基
 (e2)カルボキシ基を1~2つ有し、且つ、炭素数が2~30の1価の有機基(但し、該1価の有機基は酸無水基を含まない。)
 (e3)Bocを2つ以上有し、且つ、Bocを除く炭素数が1~30の1価の有機基であって、上記1価の有機基は、*1-NH(Boc)、*1-N(Boc)、及び「*1-N(Boc)-*1」(*1は、炭素原子に結合する結合手を表す。)からなる群から選ばれる保護アミノ部位を有する。なお、保護アミノ部位が2つ以上である場合、各保護アミノ部位は同一であっても良く、異なっていても良い。
[式1]
 Δ=|Δb-Δa|
 Δ:室温48時間保管による回転角度の変化量
 Δa:液晶セルの回転角度
 Δb:室温で48時間放置した同液晶配向剤を使用した液晶セルの回転角度
(前記式1で、回転角度は、
 2枚の液晶配向膜付き基板を一組とし、1枚の基板上にシール剤を塗布し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させ、液晶を注入し、注入口を封止して得た液晶セルに対し、
 照度15000nitのバックライト点灯下、周波数60Hzで±7Vの交流電圧を120時間印加した後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、室温に一日放置し、
 該液晶セルに関して、電圧無印加状態における、画素の第1領域の液晶の配向方向と第2領域の液晶の配向方向とのずれを算出して得た値である。)
A liquid crystal aligning agent comprising the following polymer (A) and polymer (B), which gives a liquid crystal alignment film having a change in rotation angle represented by the following formula 1 of less than 0.2°.
Polymer (A): A polyamic acid (A) having a structural unit derived from a tetracarboxylic acid derivative and a structural unit derived from a diamine,
The structural unit (a-1Ta) represented by the following formula (1T a ) is contained as a structural unit derived from a tetracarboxylic acid derivative,
The diamine-derived structural unit includes a structural unit (a-1Da) represented by the following formula (1D a ):
The polyamic acid (A), wherein at least a portion of the terminals of the polyamic acid (A) contain a non-amino group, and the non-amino group is a functional group represented by the following structural formula (E):
Polymer (B): A polyamic acid (B) having a structural unit derived from a tetracarboxylic acid derivative and a structural unit derived from a diamine,
The structural unit (b-1Tb) represented by the following formula (1T b ) is contained as a structural unit derived from a tetracarboxylic acid derivative,
The above polyamic acid, which contains a structural unit (b-1Db) represented by the following formula (1D b ) as a structural unit derived from a diamine:
Figure JPOXMLDOC01-appb-C000008
(In the formula, Xa represents a tetravalent organic group represented by the following formula (x-1). In formula ( 1Da ), Ya represents a divalent organic group derived from a diamine. Each Z independently represents a hydrogen atom or a monovalent organic group.)
Figure JPOXMLDOC01-appb-C000009
(In formula (x-1), R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, an alkoxy group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 6 carbon atoms, an alkyloxycarbonyl group having 2 to 6 carbon atoms, or a phenyl group, and at least one of R 1 to R 4 represents a group other than a hydrogen atom as defined above. * represents a bond.)
Figure JPOXMLDOC01-appb-C000010
(In the formula, Xb represents a tetravalent organic group derived from an aromatic tetracarboxylic dianhydride, a tetravalent organic group represented by the following formula (x-2), or a tetravalent organic group ( T5a ) having an alicyclic structure having five or more members. In formula ( 1Db ), Yb represents a divalent organic group derived from a diamine. Z has the same meaning as Z in formula ( 1Da ).)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(In formula (E), Q is a monovalent organic group selected from the following groups (e1) to (e3). * represents a bond.)
(e1) an acyclic hydrocarbon group having 1 to 6 carbon atoms; (e2) a monovalent organic group having 1 to 2 carboxy groups and 2 to 30 carbon atoms (however, the monovalent organic group does not include an acid anhydride group).
(e3) A monovalent organic group having two or more Boc groups and having 1 to 30 carbon atoms excluding Boc, the monovalent organic group having a protected amino moiety selected from the group consisting of *1-NH(Boc), *1-N(Boc) 2 and *1-N(Boc)-*1 (*1 represents a bond bonded to a carbon atom). When there are two or more protected amino moieties, the protected amino moieties may be the same or different.
[Formula 1]
Δ=|Δb−Δa|
Δ: change in rotation angle due to storage at room temperature for 48 hours Δa: rotation angle of liquid crystal cell Δb: rotation angle of liquid crystal cell using the same liquid crystal alignment agent left at room temperature for 48 hours (in the above formula 1, the rotation angle is
Two substrates with liquid crystal alignment films are used as a set. A sealant is applied onto one substrate, and the other substrate is attached so that the liquid crystal alignment film faces each other and the alignment direction is 0°. The sealant is then hardened, liquid crystal is injected, and the injection port is sealed to obtain a liquid crystal cell.
Under the illumination of a backlight of 15,000 nits, an AC voltage of ±7 V at a frequency of 60 Hz was applied for 120 hours, and then the pixel electrode and the counter electrode of the liquid crystal cell were shorted and left at room temperature for one day.
This is a value obtained by calculating the difference between the alignment direction of the liquid crystal in the first region of the pixel and the alignment direction of the liquid crystal in the second region of the pixel when no voltage is applied to the liquid crystal cell.
 請求項1~10のいずれか1項に記載の液晶配向剤を基板に塗布し、焼成し、得られる膜に偏光された放射線を照射すること、を含む、液晶配向膜の製造方法。 A method for producing a liquid crystal alignment film, comprising applying the liquid crystal alignment agent according to any one of claims 1 to 10 to a substrate, baking the applied liquid crystal alignment agent, and irradiating the resulting film with polarized radiation.  前記焼成における焼成温度が150~250℃である、請求項11に記載の液晶配向膜の製造方法。 The method for producing a liquid crystal alignment film according to claim 11, wherein the baking temperature is 150 to 250°C.  請求項1~10のいずれか1項に記載の液晶配向剤から形成されてなる液晶配向膜。 A liquid crystal alignment film formed from the liquid crystal alignment agent according to any one of claims 1 to 10.  請求項13に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 13.  IPS駆動方式又はFFS駆動方式である請求項14に記載の液晶表示素子。 The liquid crystal display element according to claim 14, which is an IPS driving system or an FFS driving system.
PCT/JP2024/015170 2023-04-17 2024-04-16 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element WO2024219400A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023067329 2023-04-17
JP2023-067329 2023-04-17

Publications (1)

Publication Number Publication Date
WO2024219400A1 true WO2024219400A1 (en) 2024-10-24

Family

ID=93152511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/015170 WO2024219400A1 (en) 2023-04-17 2024-04-16 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element

Country Status (1)

Country Link
WO (1) WO2024219400A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090781A (en) * 2015-11-13 2017-05-25 株式会社ジャパンディスプレイ Varnish for photo-alignment film and liquid crystal display device
JP2018013532A (en) * 2016-07-19 2018-01-25 株式会社ジャパンディスプレイ Varnish for photo-alignment film and liquid crystal display device
WO2020100918A1 (en) * 2018-11-14 2020-05-22 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
WO2020184628A1 (en) * 2019-03-12 2020-09-17 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090781A (en) * 2015-11-13 2017-05-25 株式会社ジャパンディスプレイ Varnish for photo-alignment film and liquid crystal display device
JP2018013532A (en) * 2016-07-19 2018-01-25 株式会社ジャパンディスプレイ Varnish for photo-alignment film and liquid crystal display device
WO2020100918A1 (en) * 2018-11-14 2020-05-22 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
WO2020184628A1 (en) * 2019-03-12 2020-09-17 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same

Similar Documents

Publication Publication Date Title
JPWO2020158818A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
TW202045698A (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using same
WO2022176680A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI848062B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
WO2022270287A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023286735A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element production method, and liquid crystal display element
CN119212979A (en) Novel diamine compound, polymer obtained by using the diamine, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2023286733A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, method for producing liquid crystal display element, and liquid crystal display element
WO2023068085A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, and compound
JP7623635B2 (en) Liquid crystal alignment agent for photoalignment method, liquid crystal alignment film, and liquid crystal display element
JP7494852B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
WO2022234820A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2024219400A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2024219401A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
TW202037716A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2022190896A1 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN113168053B (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI870426B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using the same
TW202506970A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element
TW202506969A (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element
WO2023068084A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element, compound and polymer
WO2024122359A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2024007369A (en) Manufacturing method of liquid crystal orientation film, manufacturing method of liquid crystal display element, liquid crystal orientation film and liquid crystal display element
CN119604810A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2024166693A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, compound and polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24792674

Country of ref document: EP

Kind code of ref document: A1