[go: up one dir, main page]

WO2024219123A1 - Hot-dip plated steel material - Google Patents

Hot-dip plated steel material Download PDF

Info

Publication number
WO2024219123A1
WO2024219123A1 PCT/JP2024/010040 JP2024010040W WO2024219123A1 WO 2024219123 A1 WO2024219123 A1 WO 2024219123A1 JP 2024010040 W JP2024010040 W JP 2024010040W WO 2024219123 A1 WO2024219123 A1 WO 2024219123A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
plating layer
caz
plating
phase
Prior art date
Application number
PCT/JP2024/010040
Other languages
French (fr)
Japanese (ja)
Inventor
伸也 古川
公平 ▲徳▼田
靖人 後藤
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2024219123A1 publication Critical patent/WO2024219123A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel

Definitions

  • the present invention relates to a hot-dip galvanized steel material.
  • This application claims priority based on Japanese Patent Application No. 2023-067061, filed on April 17, 2023, the contents of which are incorporated herein by reference.
  • Hot-dip galvanized plating is used as an inexpensive method of rust-proofing steel in a variety of fields where rust prevention is required, such as civil engineering, construction, and automotive.
  • barrier-type coatings plating layers containing elements with a higher ionization tendency than Fe, such as Sn, Ni, and Cr, are called barrier-type coatings, and since they do not have a sacrificial corrosion protection effect against Fe, any scratches or other damage can easily become fatal material defects.
  • barrier-type coatings can maintain their metallic luster for a long period of time, and because this metallic luster is maintained even for a certain period after manufacture, they can maintain an appearance quality that gives little sign of use. Therefore, it is believed that by adjusting the ionization tendency of Zn-based plating layers to bring them closer to the potential of Fe, it is possible to reduce the amount of white rust that occurs and improve the appearance of corrosion.
  • Patent Documents 1 and 2 describe Zn-Al-Mg-based plating layers that have been used in recent years as highly corrosion-resistant plating. These Zn-Al-Mg-based plating layers improve their design and corrosion resistance through structural control, and also disclose techniques for improving corrosion resistance by adding elements to the plating layer or actively forming corrosion products.
  • the problem that one embodiment of the present invention aims to solve is to provide a hot-dip galvanized steel material that can suppress the white rust that occurs in the early stages of corrosion.
  • a hot-dip plated steel material is a hot-dip plated steel material having a steel material and a plating layer disposed on a surface of the steel material,
  • the plating layer comprises, in mass %, Al: more than 10.0% and less than 45.0%; Mg: 4.0% or more, 15.0% or less, Si: 0.01% or more, 2.0% or less, At least one of Cu of 0.03% or more and 5.0% or less and Ag of 0.03% or more and 6.0% or less; and further comprising Sn: 0% or more, 0.7% or less, Bi: 0% or more, 0.3% or less, In: 0% or more, 0.3% or less, Ca: 0% or more, 0.6% or less, Y: 0% or more, 0.3% or less, La: 0% or more, 0.3% or less, Ce: 0% or more, 0.3% or less, Sr: 0% or more, 0.3% or less, Li
  • the hot-dip plated steel material according to the above [1] or [2] may contain, as intermetallic compound particles, 10 or more (Zn+Al)-(Cu+Ag) compounds having an average grain size of 1 ⁇ m or more within an area of 10,000 ⁇ m2 in a cross section along the thickness direction of the plating layer .
  • FIG. 2 is a graph showing an example of an element distribution profile, showing the results of a GDS analysis performed on a coating layer of a hot-dip coated steel material according to an embodiment of the present invention.
  • % designation for the content of each element in the chemical composition of the plating layer means “mass %” unless otherwise specified.
  • a numerical range expressed using “to” means a range that includes the numerical values before and after “to” as the lower and upper limits. When the numerical values before and after “to” are followed by “more than” or “less than,” the numerical range does not include these numerical values as the lower or upper limit.
  • corrosion resistance refers to the property of the plating layer itself being resistant to corrosion.
  • a Zn-based plating layer has a sacrificial corrosion protection effect on steel material. Therefore, in the process of corrosion of a plated steel sheet, first, the plating layer corrodes and turns into white rust before the steel material corrodes, the white-rusted plating layer disappears, and then the steel material corrodes and red rust appears.
  • sacrificial corrosion protection as used in this specification refers to the property of suppressing corrosion of steel at exposed portions of the steel (for example, cut end surfaces of plated steel or portions where the steel is exposed due to cracking of the hot-dip plating layer during processing).
  • the corrosion morphology of the Zn-Al-Mg plating layer was investigated. As a result, it was found that corrosion of the Zn-Al-Mg plating layer progresses from the Zn-Al ( ⁇ ) phase. Furthermore, it was found that the reason for this is that this Zn-Al ( ⁇ ) phase shows the electrochemically most base corrosion potential in the plating layer (-1.3 V vs. Ag/AgCl in a 1M NaCl aqueous solution).
  • the MgZn 2 phase corrodes after the Zn-Al ( ⁇ ) phase.
  • the corrosion potential of the MgZn 2 phase was (-1.1 V vs. Ag/AgCl in a 1M NaCl aqueous solution).
  • the ⁇ phase is distributed throughout the plating layer, and increasing the potential of the Zn-Al ( ⁇ ) phase, which is a site susceptible to corrosion, is effective in improving the appearance and corrosion resistance.
  • an electrochemically noble element in order to increase the potential of the ⁇ phase, it is preferable for an electrochemically noble element to be contained in the Zn-Al ( ⁇ ) phase.
  • Elements that are effective in increasing the potential of the ⁇ phase include Cu and Ag. This is because Cu and Ag have atomic radii close to those of Al and Zn, respectively, and exhibit substitutional solid solutions, making them easily mixed with each other.
  • the following two-stage plating method is an example of a suitable method for incorporating Cu or Ag into the Zn-Al ( ⁇ ) phase in the plating layer.
  • the base plate is first electroplated with Zn, and then electroplated with Cu or Ag.
  • the Cu or Ag may be an alloy of these.
  • the base plate plated with Zn, Cu or Ag is then heated to diffuse the Cu and/or Ag into the Zn plating layer to form a base plate.
  • the base plate is then immersed in a Zn-Al-Mg hot-dip plating bath (which may contain Cu and Ag) to form a hot-dip plating layer.
  • a Zn-Al-Mg hot-dip plating bath which may contain Cu and Ag
  • the Zn-Al ( ⁇ ) phase is formed and grows in a specific temperature range. Therefore, in such a temperature range, by reducing the cooling rate, the Zn-Al ( ⁇ ) phase can be sufficiently formed, and the Zn-Cu phase that has formed on the plating substrate surface can be dissolved and incorporated into the Zn-Al ( ⁇ ) phase.
  • the Zn atom positions are almost in the same positions as the Cu and Ag atoms, and these atoms are different from the Al component distribution in the plating layer.
  • the plating layer according to this embodiment Cu and Ag, which efficiently exhibit a noble potential, are contained in the Zn-Al ( ⁇ ) phase, which is the most susceptible portion to corrosion, and therefore the corrosion potential of the ⁇ phase is increased.
  • the potential difference in a specific portion is reduced, and the amount of white rust generated in the early stages of corrosion in the plated steel material is reduced.
  • white rust even if white rust is generated, it is generated uniformly, making it possible to make the generation of white rust itself less noticeable.
  • the hot-dip plated steel material according to this embodiment will be described in detail below.
  • the hot-dip plated steel material of the present embodiment is a hot-dip plated steel material having a steel material and a plating layer disposed on the surface of the steel material.
  • the average chemical composition of the plating layer is, in mass%, Al: more than 10.0% and less than 45.0%; Mg: 4.0% or more, 15.0% or less, Si: 0.01% or more, 2.0% or less, At least one of Cu of 0.03% or more and 5.0% or less and Ag of 0.03% or more and 6.0% or less; and further comprising Sn: 0% or more, 0.7% or less, Bi: 0% or more, 0.3% or less, In: 0% or more, 0.3% or less, Ca: 0% or more, 0.6% or less, Y: 0% or more, 0.3% or less, La: 0% or more, 0.3% or less, Ce: 0% or more, 0.3% or less, Sr: 0% or more, 0.3% or less, Li: 0% or more, 0.3% or less, Ni: 0% or more, 1.0% or less, Cr: 0% or more, 0.5% or less, Mo: 0% or more, 0.3% or less, Sb: 0% or more, 0.25% or less, Pb: 0%
  • the steel material is, for example, mainly a steel plate, but the size is not particularly limited.
  • the steel plate may be any steel plate that can be applied to a normal hot-dip galvanizing process. Specifically, this applies to steel plates that can be applied to a process in which the steel plate is immersed in molten metal and solidified, such as a continuous hot-dip galvanizing line (CGL).
  • the size of the steel plate may be, for example, a plate thickness of 10 mm or less and a plate width of 2000 mm or less, but the size of the steel plate is not limited to this.
  • the quality of the steel material is not particularly limited.
  • applicable steel materials include general steel, pre-plated steel thinly plated with various metals, Al-killed steel, ultra-low carbon steel, high carbon steel, various high tensile steels, some high alloy steels (steels containing corrosion-resistant strengthening elements such as Ni and Cr), steel for bolts, and steel wire for bridge cables.
  • the steel material may be, for example, a hot-rolled steel plate defined in JIS G 3131 (2016), a cold-rolled steel plate defined in JIS G 3141 (2017), a general structural rolled steel material corresponding to the so-called SS material, a so-called general steel included in the hot-rolled steel plate shown in JIS G 3193 (2019), JIS H 8641 (2021), JIS G 3302 (2019), 3303 (2017), 3313 (2017), 3314 (2019), 3315 (2017), 3316 (2016), 3317 (2017), 3318 (2017), 3319 (2017), 3320 (2017), 3321 (2017), 3322 (2017), 3323 (2017), 3324 (2017), 3325 (2017), 3326 (2017), 3327 (2017), 3328 (2017), 3329 (2017), 3330 (2017), 3331 (2017), 3332 (2017), 3333 (2017), 3334 (2017), 3335 (2017), 3336 (2017), 3337 (2017), 3338 (2017), 3339 (2017), 334 ...
  • the manufacturing process for steel materials includes common processes such as iron and steel making using blast furnaces or electric furnaces, hot rolling, pickling, cold rolling, and heat treatment.
  • the plating layer according to the present embodiment includes a Zn-Al-Mg alloy layer.
  • alloy elements such as Al and Mg are contained in the Zn phase, the corrosion resistance is improved. Therefore, in the case of a plating layer including such a Zn phase, even if it is a thin film (for example, about half the thickness of a normal Zn plating layer), it can exhibit the same corrosion resistance as a normal Zn plating layer. Similarly, even if the plating layer according to the present embodiment is a thin film, it can ensure the same or higher corrosion resistance as a conventional Zn plating layer.
  • the Zn-Al-Mg alloy layer is made of a Zn-Al-Mg alloy.
  • a Zn-Al-Mg alloy refers to a ternary alloy containing Zn, Al, and Mg.
  • the plating layer may also include an Al-Fe interfacial alloy layer (however, the thickness is less than 5 ⁇ m).
  • the Al-Fe interfacial alloy layer is an interfacial alloy layer between the steel material and the Zn-Al-Mg alloy layer, and is in contact with the surface of the steel material.
  • the plating layer of this embodiment may have a single-layer structure composed of a Zn-Al-Mg alloy layer, or may have a laminated structure including a Zn-Al-Mg alloy layer and an Al-Fe interfacial alloy layer.
  • the Zn-Al-Mg alloy layer is a layer that constitutes the surface of the plating layer.
  • the Al-Fe interface alloy layer does not have a significant effect on corrosion resistance, but it does affect the adhesion of the plating layer during processing of hot-dip plated steel and the workability (presence or absence of cracks).
  • the Al-Fe interface alloy layer may affect powdering resistance, which indicates the degree of peeling of the plating layer during processing.
  • the thinner the Al-Fe interface alloy layer the fewer the starting points for crack generation in the plating layer during processing, and the better the powdering resistance. For this reason, in hot-dip plated steel that may be subjected to high processing when used as a component, etc., it is preferable that the thickness of the Al-Fe interface alloy layer is as thin as possible.
  • the thickness of the intermetallic compound that constitutes the Al-Fe interface alloy layer is less than 5 ⁇ m. This thickness is preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 0.5 ⁇ m or less. It may be 0.3 ⁇ m or less. This makes it possible to suppress the generation of cracks during processing and further improve powdering resistance. Furthermore, the ratio of the thickness of the Al-Fe interfacial alloy layer to the thickness of the plating layer is, on average, less than 10%, and more preferably, less than 5%.
  • the Al-Fe-based interface alloy layer is formed on the surface of the steel material, specifically, between the steel material and the Zn-Al-Mg-based alloy layer.
  • the Al-Fe-based interface alloy layer is a layer in which the Al 5 Fe 2 phase is the main phase in the structure.
  • the Al-Fe-based interface alloy layer is formed by mutual atomic diffusion between the base steel (steel sheet) and the plating bath. When a continuous hot-dip plating method is used as the manufacturing method, the Al-Fe-based interface alloy layer is likely to be formed in the plating layer containing the Al element. In this embodiment, since the plating bath contains Al at a certain concentration or more, the Al 5 Fe 2 phase is formed most frequently in the Al-Fe-based interface alloy layer.
  • the Al-Fe-based interface alloy layer may partially contain small amounts of the AlFe phase, the Al 3 Fe phase, the Al 5 Fe 2 phase, etc.
  • the plating bath contains a certain concentration of Zn
  • the Al-Fe-based interface alloy layer may also contain a small amount of Zn.
  • the Al-Fe-based interface alloy layer may also contain a small amount of Si, which tends to accumulate at the interface.
  • the plating layer contains Si.
  • a portion of the Si is incorporated into the Al-Fe-based interface alloy layer to form an Al-Fe-Si intermetallic compound phase.
  • the intermetallic compound phase identified is the AlFeSi phase.
  • Isomers of the AlFeSi phase include the ⁇ phase, ⁇ phase, q1 phase, q2 phase, and the like. Therefore, these AlFeSi phases and the like may be detected in the Al-Fe-based interface alloy layer.
  • An Al-Fe-based interface alloy layer that contains these AlFeSi phases and the like is also referred to as an Al-Fe-Si alloy layer.
  • the upper and lower limits of the thickness of the entire plating layer are not particularly limited.
  • the thickness is also affected by the withdrawal speed of the steel from the plating bath and the wiping conditions. That is, in the case of continuous hot-dip plating, the thickness of the entire plating layer is affected by the viscosity and specific gravity of the plating bath.
  • the maximum thickness of the plating layer formed by the continuous hot-dip plating method is often 100 ⁇ m or less. Therefore, the plating thickness of the hot-dip plated steel of this embodiment may be, for example, 100 ⁇ m or less.
  • the average chemical composition of the plating layer is the average chemical composition of the Zn-Al-Mg alloy layer.
  • the average chemical composition of the entire plating layer is the average chemical composition of the Al-Fe interface alloy layer and the Zn-Al-Mg alloy layer combined.
  • the thickness of the Al-Fe interfacial alloy layer is preferably 10% or less of the total thickness of the plating layer.
  • the Fe concentration of the plating layer is often within 5%. Therefore, the average chemical composition of the plating layer is generally approximately the same as the components of the Zn-Al-Mg alloy layer. Furthermore, traces of the original plating material are unlikely to remain as chemical components of the plating layer. Therefore, the average chemical composition of the plating layer is approximately the same as the components of the plating bath used in production.
  • Al more than 10.0% and less than 45.0%; Al is an element that mainly constitutes the plating layer. If the Al content is 10% or less, a sufficient amount of Zn-Al phase may not be secured. Therefore, the Al content is more than 10%. On the other hand, if the Al content is 45.0% or more, the plating layer will be mainly composed of Al-Zn ( ⁇ ) phase, and Al-Zn ( ⁇ ) phase will not be formed. Therefore, the upper limit of the Al content is less than 45%.
  • Mg 4.0% or more, 15.0% or less
  • Mg is an element constituting the main part of the plating layer.
  • Mg is an important element for improving the sacrificial corrosion protection in the plated steel sheet according to the present embodiment. If the Mg content in the plating layer is less than 4.0%, the effect of improving the sacrificial corrosion protection is not clear compared to the case where Mg is not contained. Therefore, the Mg content is set to 4.0% or more. On the other hand, if Mg is added excessively to a Zn-Al-Mg plating bath, a rapid oxidation reaction occurs on the bath surface of the plating bath, and plating cannot be performed stably. Therefore, in order to perform stable plating and ensure good manufacturability, the Mg content in the plating layer is set to 15% or less.
  • Si 0.01% or more, 2.0% or less Si suppresses the Al-Fe reaction, thereby suppressing the formation of an Al-Fe-based interface alloy layer.
  • Si is incorporated into a part of the Al-Fe-based interface alloy layer to form an Al-Fe-Si compound. If Si is not contained, the Al-Fe reaction becomes active, the thickness of the Al-Fe alloy layer becomes thick, powdering occurs during processing, and corrosion resistance is significantly impaired. On the other hand, if the Si content is 0.01% or more, the growth rate of the thickness of the interface alloy layer becomes slow.
  • the Si content is 2.0% or more, a large amount of intermetallic compound having a composition of Mg2Si is formed by bonding with Mg, and the viscosity of the plating bath becomes extremely high, so that the amount of molten metal attached to the steel material is reduced when the steel material is pulled out of the plating bath, and the thickness of the plating layer becomes extremely thin. In addition, the plating appearance is significantly deteriorated.
  • the upper limit of the Si content is set to 2.0% or less. The preferred range is 0.10 to 0.40%, and more preferably 0.20 to 0.30%. If the Si content is 2.0% or less, almost no Mg2Si is formed.
  • Cu and Ag have atomic radii close to those of Zn and Al, so they are easily substituted and mixed with these elements in the plating layer.
  • the potential of the Zn-Al ( ⁇ ) phase increases, improving corrosion resistance.
  • Cu and Ag have almost the same effect.
  • it is effective to contain at least one of Cu and Ag in the plating layer at 0.03% or more.
  • the total concentration of Cu and Ag in the plating layer is 0.4% or more.
  • electrically noble parts may be generated by Cu and Ag that cannot be contained in the ⁇ phase, which may promote corrosion.
  • the upper limit of the Cu content is 5.0% or less, and the upper limit of the Ag content is 6.0% or less.
  • the upper limit of the total content of Cu and Ag is 6%.
  • the total Cu and Ag content reaches 6.0%, the Cu and Ag that cannot be contained in the ⁇ phase generate electrically noble parts, promoting corrosion.
  • Sn, Bi, and In are elements that promote the softening of the plating layer by being contained in the plating layer. Since Sn, Bi, and In are elements that can be contained arbitrarily, the content of each is 0% or more. When Sn is contained, Mg 9 Sn 5 tends to be formed in the plating layer. Bi forms Mg 3 Bi 2 , and In forms Mg 3 In, etc. These elements are softer than the MgZn 2 phase, have good workability, and are elements that can clearly confirm the improvement of workability by being contained in the plating layer. In addition, these elements have a very base electrochemical property, so they have a high sacrificial anticorrosion effect. By containing at least one of Sn, Bi, and In, the effect of improving the corrosion resistance of the processed part can be obtained.
  • Ca 0% or more, 0.6% or less Y: 0% or more, 0.3% or less La: 0% or more, 0.3% or less Ce: 0% or more, 0.3% or less Sr: 0% or more, 0.3% or less Li: 0% or more, 0.3% or less Ni: 0% or more, 1.0% or less Cr: 0% or more, 0.5% or less Mo: 0% or more, 0.3% or less Sb : 0% or more, 0.25% or less Pb: 0% or more, 0.25% or less B: 0% or more, 0.5% or less P: 0% or more, 0.5% or less Ti: 0% or more, 0 .25% or less Co: 0% or more, 0.25% or less Nb: 0% or more, 0.25% or less Mn: 0% or more, 0.25% or less Zr: 0% or more, 0.25% or lessW 0% or more, 0.25% or less Ca, Y, La, Ce, Sr, Li, Ni, Cr, Mo, Sb, Pb, B,
  • the hot-dip plated steel material of this embodiment is manufactured by a continuous hot-dip plating method, Fe may diffuse from the plated base material to the plated layer during manufacturing.
  • the Al concentration of the plated layer is high, and an Al-Fe-based interface alloy layer may be formed, but its thickness is thin.
  • the plated layer may contain Fe up to a maximum of 5.0%, but as long as the Fe concentration is limited to 5.0% or less, there is no effect on the frequency of cracks in the plated layer. Therefore, the Fe content is set to 0 to 5.0%.
  • the Fe content may be more than 0%.
  • the balance preferably contains Zn. Since the hot-dip plated steel material of the present embodiment is a highly versatile Zn-based plated steel material, the element constituting the main phase of the plated layer is Zn.
  • Impurities refer to components contained in raw materials or components mixed in during the manufacturing process, but not intentionally included. For example, trace amounts of components other than Fe may be mixed into the plating layer as impurities due to atomic diffusion between the steel (base steel) and the plating bath. Also, since metals with a purity of 3N are usually used to manufacture plating alloys, the concentration of impurities may be approximately 0.03% or less in total.
  • the plating layer is stripped and dissolved using an acid containing an inhibitor that suppresses corrosion of the base steel (steel material) to obtain an acid solution.
  • the resulting acid solution is then measured using ICP emission spectroscopy or ICP-MS to obtain the chemical composition.
  • ICP emission spectroscopy ICP-MS
  • the type of acid so long as it is an acid that can dissolve the plating layer. If the area and weight are measured before and after stripping, the plating coverage (g/ m2 ) can also be obtained at the same time.
  • GDS Glow discharge optical emission spectrometry
  • the surface of the plating layer is set as the starting point (zero point), and the interface position of the plating layer is defined as the position where the Fe concentration shows a quantitative analysis value of 5 mass% according to the Fe concentration distribution. Details of the GDS analysis conditions, etc. will be described later.
  • FeAl-based compounds may occur in the interface alloy layer, but in this case the interface is located on the interface alloy layer.
  • the above definition allows us to understand the components focusing only on the plating layer portion of the Zn-Al-Mg alloy layer, excluding the interface alloy layer.
  • the center of the plating layer can be considered to be 1/3t to 2/3t of the plating layer thickness t. In other words, the range of 1/3t to 2/3t is the main part of the plating layer.
  • the Cu and Ag elements mostly bond with or replace Zn in the depth direction, so they have a similar distribution.
  • the distribution of Cu and Ag elements will be close to that of Al, and there may be cases where no correlation with Zn is observed.
  • the corrosion potential of the plating layer increases when electrochemically noble Cu or Ag occupies the electrochemically less noble Zn site.
  • the inventors have found that when Cu or Ag occupies the same site as Zn, it can be considered that Cu or Ag is contained in the Zn-Al ( ⁇ ) phase or is substituting for Zn in the Zn-Al ( ⁇ ) phase, and that the more constant the proportion (degree) of inclusion or substitution, the higher the potential of the entire plating layer.
  • the degree of substitution of Zn with Cu and/or Ag can be expressed by the following formula (5) in the GDS component analysis.
  • CAZ is the ratio of the total concentration of Cu and Ag to the Zn concentration in the internal region between the 1/3t position and the 2/3t position on the surface of the plating layer. The larger this CAZ value is, the more substitution has progressed.
  • CAZ max /CAZ min is preferably 1.1 or less.
  • CAZ max needs to satisfy the following formula (3). More preferably, 0.01 ⁇ CAZ min , CAZ max ⁇ 0.08. This allows the corrosion potential to be approximately the same as that of the MgZn 2 phase present in large amounts in the plating layer, reducing the occurrence of white rust due to corrosion and improving the appearance.
  • ⁇ phase Increasing the potential of the Zn-Al phase ( ⁇ phase) is effective in preventing deterioration of appearance due to the formation of white rust in the plating layer.
  • increasing the potential to reduce the potential difference with the surrounding intermetallic compounds and metal phases, as well as increasing the electrical resistance of the ⁇ phase itself slows the progression of corrosion and improves corrosion resistance. This tendency can be evaluated by the corrosion current density, and can be achieved by keeping the replacement of Al and Zn in the ⁇ phase constant.
  • the ⁇ phase has a size of approximately 5 ⁇ m or more in the plating layer, its presence can be easily confirmed with SEM. Quantitative analysis values for that area can also be obtained using EDS, EPMA, etc.
  • the ratio of Zn to Al in the ⁇ phase (Zn:Al) is approximately 1:1, and within this range, the ⁇ phase can exist with excellent corrosion resistance.
  • the corrosion current density depends on the area fraction of the ⁇ phase. Therefore, in any SEM cross section of the plating layer, the area fraction of the ⁇ phase is preferably 3% or more.
  • the area fraction of the ⁇ phase in the plating layer can be controlled by the manufacturing method.
  • the area fraction of the ⁇ phase is more preferably 5% or more, and further preferably, the Cu+Ag concentration in the plating layer is 0.4% or more and the area fraction of the ⁇ phase is 10% or more.
  • the " ⁇ phase" referred to in this specification can also be said to be an intermetallic compound region composed of at least one of an Al-Zn-Cu compound, an Al-Zn-Ag compound, and an Al-Zn-Cu-Ag compound.
  • the Zn, Cu, and Ag in the pre-plating layer are thermally diffused during pre-annealing to form a Cu-Ag-Zn diffusion plating layer (an aggregate of Cu, Ag-Zn intermetallic compounds).
  • this Cu-Ag-Zn diffusion plating layer disappears during hot-dip plating.
  • the potential of the plating layer can be increased.
  • the (Zn+Al)-(Cu+Ag) compound is a compound in which small amounts of Cu, Ag, and Al are dissolved in Zn, and has a potential of -1.2V (vs. Ag/AgCl 1M NaCl). Therefore, by leaving the (Zn+Al)-(Cu+Ag) compound in the final plating layer, the potential of the plating layer can be further increased.
  • the (Zn+Al)-(Cu+Ag) compound can be confirmed within the plating layer using SEM, and quantitative analysis values can be confirmed using point analysis in the same manner as above.
  • the (Zn+Al)-(Cu+Ag) compound has an equivalent circular diameter of 1 ⁇ m or more in any cross section along the thickness direction of the plating layer, and the number of (Zn+Al)-(Cu+Ag) compounds is preferably 10 or more, more preferably 20 or more per 10,000 ⁇ m2.
  • the number of (Zn+Al)-(Cu+Ag) compounds tends to depend on the amount of Cu, Ag, and Zn attached to the original sheet, i.e., the amount of the pre-plating layer attached.
  • a glow discharge optical emission spectrometer is preferably used for the component analysis method in the depth direction inside the plating layer.
  • the inventors use a LECO Japan 850A as a glow discharge optical emission spectrometer, but the measurement device is not limited to this.
  • the analysis conditions are argon pressure: 0.27 MPa, output power: 30 W, output voltage: 1000 V, and discharge area: within a circular area with a diameter of 4 mm. The measurement is performed from the surface of the plating layer toward the depth direction until the Fe concentration reaches 100% (reaching the base steel).
  • the analysis range of the depth direction analysis by GDS is the range from the plating surface to the Zn-Al-Mg plating layer, the interface alloy layer (Al-Fe alloy layer), and a part of the steel material.
  • the sputter depth of the cross section is measured using a Surfcom 130A manufactured by Tokyo Seimitsu Co., Ltd.
  • GDS analysis provides an element distribution profile in the depth direction of the plating layer. The element distribution profile shows the distribution of the content of each element in the depth direction, assuming that the total amount of detected elements is 100%.
  • the cross-section observation using an SEM may be carried out in the following procedure. First, a sample for observation measuring approximately 20 x 20 mm square is cut out from the plated steel sheet so that the cross section of the plating layer is exposed, and this sample is embedded in resin. Next, the observation surface is mirror-polished to observe the cross section of the plating layer. It is advisable to vapor-deposit Au on the cross section of the plating layer before performing the cross-sectional observation. In order to eliminate bias in the selection of the field of view of the plating layer, at least three observation samples are taken from one plated steel sheet, and at least 30 locations are observed randomly so that the field of view is approximately 500 to 2000 times larger, and each phase is identified and the area fraction is measured.
  • the field of view is first specified, and then the field of view is specified to include the region where the component range of the ⁇ phase is close to 0.85 ⁇ [Al]/([Zn]+[Cu]+[Ag]) ⁇ 1.15 by point analysis using EDS. If the ⁇ phase is found, a quantitative analysis element mapping image of the entire plating layer is taken. The same component range is identified from the Zn and Al in the mapping image taken using the image analysis software "ImageJ" and binarization is performed. The area fraction of the ⁇ phase in the plating layer is measured from the obtained binarized area.
  • Zn-Cu compounds Zn, Cu and equivalent circle diameter are measured.
  • the distribution of the number of (Zn+Al)-(Cu+Ag) compounds can be obtained using functions attached to known image analysis software such as ImageJ. After observing each field of view, the number distribution is confirmed for each sample until the total area (equivalent to the number of pixels) of the plating layer reaches 10,000 ⁇ m2 . It is preferable to confirm the number of (Zn+Al)-(Cu+Ag) compounds from at least three samples.
  • a base plate such as a cold-rolled steel sheet or a hot-rolled steel sheet is electroplated with Zn to form a pre-Zn plating layer (hereinafter simply referred to as a Zn plating layer or a Zn layer).
  • the amount of adhesion of the Zn plating layer is preferably equal to or greater than the amount of Cu in the final plating layer.
  • the pre-plating method may be electroplating, displacement plating, vapor deposition, etc.
  • Zn plating on Fe there are no particular restrictions on Zn plating on Fe, as long as it is performed under conditions that normally produce zinc plating, such as a cyanide bath, zincate bath, zinc chloride bath, or zinc sulfate bath.
  • Cu is plated on the Zn layer to form a pre-Cu plating layer.
  • it is effective to form a pre-Cu plating layer on the pre-Zn plating layer after forming the pre-Cu plating layer.
  • the pre-Cu plating layer and the pre-Zn plating layer are formed in this order, the Cu in the pre-Cu plating layer may diffuse to the original sheet side, and the desired plating layer may not be obtained. For this reason, it is preferable to form the pre-Zn plating layer and the pre-Cu plating layer in this order.
  • copper sulfate, copper cyanide, copper pyrophosphate, alkanol baths, etc. can be used, and there are no particular restrictions on the plating bath.
  • Ag can be silver cyanide, and Cu can also be electrolessly plated.
  • the deposition weight of the pre-Cu plating layer exceeds 1/1000 of the final plating deposition weight.
  • the plated original sheet is heated to 450-600°C.
  • This heating may also serve as annealing of the original sheet (hereinafter, this heating may be referred to as pre-annealing).
  • This heating causes Zn to melt and react with Cu to form an alloy, forming a Zn-Cu plated diffusion layer. If the heating temperature is less than 450°C, Cu may not be efficiently diffused into the plated layer. On the other hand, if the heating temperature exceeds 600°C, this is not preferred as it may cause the pre-Zn plated layer to evaporate and form a reaction layer of Fe and Zn.
  • the pre-annealing temperature range is preferably 450-600°C.
  • the original sheet on which the Zn-Cu plating diffusion layer is formed is immersed in a Zn-Al-Mg plating bath and then pulled up.
  • the bath temperature of the Zn-Al-Mg plating bath is preferably 450 to 600°C.
  • the bath temperature is preferably 450°C or higher.
  • the bath temperature is preferably 600°C or lower. More preferably, it is 580°C or lower.
  • the Zn-Al ( ⁇ ) phase is formed after the Al ( ⁇ ) phase precipitates and grows from the molten plating state. After the Al ( ⁇ ) phase has grown sufficiently, the Zn-Al ( ⁇ ) phase precipitates and grows to surround it. Since the Zn-Cu fine compounds taken in from the original plate do not dissolve in the solid Al ( ⁇ ) phase, many of the Zn-Cu fine compounds can be left intact.
  • the temperature range of 550 to 450 ° C is a temperature range in which only the ⁇ phase is formed, and the ⁇ phase is not formed. If the average cooling rate in this temperature range is more than 10 ° C, the growth of the ⁇ phase may be inhibited. If the ⁇ phase does not grow sufficiently in the temperature range of 550 to 450 ° C, the subsequent formation of the ⁇ phase may be insufficient. In addition, if the average cooling rate in the temperature range of 550 to 450 ° C is too large, the amount of ⁇ phase cannot be sufficiently secured, and therefore Zn-Cu cannot be sufficiently incorporated into the ⁇ phase, and as a result, CAZ max /CAZ min may increase. Therefore, the average cooling rate in the temperature range of 550 to 450 ° C is set to 10 ° C / sec or less.
  • the average cooling rate in the temperature range of 450 to 350°C is not particularly limited. However, a lower average cooling rate between 450°C and 350°C can increase the amount of ⁇ phase. Therefore, the average cooling rate between 450°C and 350°C is preferably 8°C/sec or less.
  • the average cooling rate in the temperature range below 350°C does not affect the formation of the ⁇ phase.
  • the cooling conditions in the temperature range below 350°C are not particularly limited, as they do not affect the potential or corrosion current density.
  • the corrosion potential of the plating layer can be measured using a general device configuration including an electrochemical cell, a reference electrode, a salt bridge, a potentiostat (a constant potential electric field device), and the like.
  • One example of the evaluation method is a method using an Ag/AgCl type reference electrode, a 1M NaCl aqueous solution as the measurement solution, and further performing the evaluation under conditions such as degassing and constant room temperature.
  • the corrosion potential approaches -1.1 V, there is less variation in the potential of the plating layer, which is preferable, and the amount of white rust generated in the early stages of corrosion can be minimized.
  • the early stages of corrosion refer to the tendency of the white rust area ratio 24 hours after the salt spray test (SST) specified in JIS Z 2371 (2015).
  • E The corrosion potential is -1.3V or less, and the white rust area ratio of the surface to be evaluated in the corrosion test is 25% or more.
  • D The corrosion potential is -1.3 to -1.25 V, and the white rust area ratio of the surface to be evaluated in the corrosion test is 20 to 25% or more.
  • C The corrosion potential is -1.25 to -1.2 V, and the white rust area ratio on the evaluation surface of the corrosion test is 15 to 20% or more.
  • B The corrosion potential is -1.25 to -1.2 V, and the white rust area ratio on the evaluation surface of the corrosion test is 10 to 15% or more.
  • A The corrosion potential is -1.2 to -1.1 V, and the white rust area rate on the evaluation surface of the corrosion test is less than 10%.
  • a polarization curve is drawn by changing the potential in the positive and negative directions, and the corrosion potential is obtained by Tafel extrapolation.
  • the corrosion current density depends on the corrosion rate. This can also be estimated from the corrosion weight loss in a salt spray test. That is, since only the ⁇ phase corrodes in the early stage, the corrosion weight loss after 120 hours of SST is measured. The corrosion weight loss can be measured by immersing the steel sheet before and after the corrosion test in 30% chromic acid for 5 minutes, and the amount of corrosion of the ⁇ phase can be estimated.
  • E The obtained corrosion current density log
  • D The obtained corrosion current density log
  • C The obtained corrosion current density log
  • B The obtained corrosion current density log
  • A The obtained corrosion current density log
  • S The obtained corrosion current density log
  • a coating may be formed on the plating layer.
  • the coating may be formed in one layer or in two or more layers.
  • Types of coatings that may be formed directly on the plating layer include, for example, chromate coatings, phosphate coatings, and chromate-free coatings. These coatings may be formed by known methods such as chromate treatment, phosphate treatment, and chromate-free treatment.
  • electrolytic chromate treatment which forms a chromate film by electrolysis
  • reactive chromate treatment which uses a reaction with the material to form a film and then washes away excess treatment liquid
  • paint-type chromate treatment which applies the treatment liquid to the substrate and dries it without rinsing to form a film. Any of these treatments may be used.
  • electrolytic chromate treatments include those using chromic acid, silica sol, resin (phosphoric acid, acrylic resin, vinyl ester resin, vinyl acetate acrylic emulsion, carboxylated styrene butadiene latex, diisopropanolamine modified epoxy resin, etc.), and hard silica.
  • phosphate treatments include zinc phosphate treatment, zinc calcium phosphate treatment, and manganese phosphate treatment.
  • Chromate-free treatments are particularly suitable as they place no burden on the environment. There are electrolytic chromate-free treatments that form a chromate-free film by electrolysis, reactive chromate-free treatments that form a film by utilizing a reaction with the material and then wash away excess treatment liquid, and coating-type chromate-free treatments that apply a treatment liquid to the substrate and dry it without rinsing to form a film. Any of these treatments may be used.
  • an organic resin film may be provided on the film directly on the plating layer.
  • the organic resin is not limited to a specific type, and examples include polyester resin, polyurethane resin, epoxy resin, acrylic resin, polyolefin resin, and modified products of these resins.
  • the modified product refers to a resin in which a reactive functional group contained in the structure of these resins has been reacted with another compound (monomer, crosslinking agent, etc.) that contains a functional group in its structure that can react with the functional group.
  • organic resins one or more organic resins (unmodified) may be used in combination, or one or more organic resins obtained by modifying at least one other organic resin in the presence of at least one organic resin may be used in combination.
  • the organic resin film may also contain any coloring pigment or rust-preventive pigment. Water-based resins that have been dissolved or dispersed in water may also be used.
  • the conditions in the embodiment are merely an example of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is not limited to this example of conditions.
  • Various conditions may be adopted in the present invention as long as they do not deviate from the gist of the present invention and achieve the object of the present invention.
  • a cold-rolled steel sheet (corresponding to SPCC as defined in JIS G 3141 (2017)) measuring 100 mm x 200 mm and having a thickness of 0.8 mm was prepared as the base sheet for plating.
  • a Zn plating layer was formed by attaching a specified amount of Zn to the surface of this cold-rolled steel sheet using the zinc plating bath shown below.
  • a Cu plating layer, an Ag plating layer, or a plating layer containing Cu and Ag was formed on the plated original sheet on which the Zn plating layer was formed, using the following copper plating bath and the following silver plating bath.
  • the plated original sheet was immersed in the copper plating bath and then the silver plating bath.
  • the copper plating bath was agitated with air.
  • the pH of the silver plating bath was adjusted with H 4 P 2 O 7 and KOH.
  • Copper plating conditions copper pyrophosphate: 80 g/L, potassium pyrophosphate: 290 g/L, ammonia water: 3 mg/L, potassium nitrate: 10 g/L, anode: oxygen-free high-purity copper, current density: 3 A/dm 2 .
  • the original plate After forming a Cu plating layer or an Ag plating layer, or a plating layer containing Cu and Ag on the original plate, the original plate was heated for 0.5 to 3 minutes at the pre-annealing temperature shown in Tables 1A to 1C to form a plating diffusion layer and obtain a plating substrate.
  • the composition of the plating diffusion layer is shown in Tables 1A to 1C.
  • the obtained plated substrate was subjected to hot-dip plating in a hot-dip plating simulator.
  • alloys having the plating bath components shown in Tables 1A to 1C were prepared by a vacuum melting method, and plating baths were prepared in a completely oxygen-free, nitrogen-substituted atmosphere ( O2 concentration less than 5 ppm).
  • one point of the plated original sheet (the back side of the center of the evaluation surface) was attached to a K thermocouple by spot welding, and the temperature history until the completion of plating solidification was grasped.
  • the plated steel sheet was heated to a predetermined temperature in a H 2 (25%)-N 2 atmosphere.
  • the plating bath temperature was set to 550-600°C, and the plated substrate was immersed at a dipping speed of 600 mm/sec. After stopping in the bath for 3 seconds, the plated substrate was lifted up at a speed of 600 mm/sec. Immediately after pulling up, the deposition amount was adjusted to 135 to 140 g/ m2 using N2 wiping gas, and then air-cooled at the average cooling rates shown in Tables 1A to 1C by blowing N2 gas with a controlled flow rate in an oxygen-free, nitrogen-substituted atmosphere. Through the above steps, a plated steel sheet was obtained.
  • the cut samples were evaluated by electrochemical tests and corrosion tests (SST).
  • the composition of Fe in the plating layer is not shown in the table, but it was in the range of 0 to 5%.
  • the evaluation results, the composition of the plating layer, the GDS analysis results, and each component in the ⁇ -phase region are shown in Tables 2A to 2C. Note that underlines in each table indicate that the results are outside the scope of the present invention, that the manufacturing conditions are not preferable, or that the characteristic values are unfavorable. Also, (*) in Tables 2A to 2C indicates the number of (Zn+Al)-(Cu+Ag) compounds with an equivalent circle diameter of 1 ⁇ m or more per 10,000 ⁇ m2 in any cross section along the thickness direction of the plating layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

This hot-dip plated steel material comprises a plating layer having the chemical composition of more than 10.0% and less than 45.0% of Al, 4.0 to 15.0% of Mg, 0.01 to 2.0% of Si, and at least one of 0.03 to 5.0% of Cu and 0.03 to 6.0% of Ag with the balance of Zn and impurities. In the element distribution profile in GDS analysis from the plating layer toward the steel material, CAZmax, the maximum value of CAZ, and CAZmin, the minimum value of CAZ, satisfy the following formulas (1) to (3), when the ratio of the total concentration of the Cu concentration and the Ag concentration to the Zn concentration in the internal region of the plating layer is defined as CAZ. (1): CAZmax/CAZmin≤1.20; (2): 0.0005≤CAZmin; (3): CAZmax≤0.1000

Description

溶融めっき鋼材Hot-dip galvanized steel

 本発明は、溶融めっき鋼材に関する。
 本願は、2023年4月17日に、日本に出願された特願2023-067061号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a hot-dip galvanized steel material.
This application claims priority based on Japanese Patent Application No. 2023-067061, filed on April 17, 2023, the contents of which are incorporated herein by reference.

 鋼材を長期に使用する場合、鋼材には腐食に耐える何らかの防錆処理を適用することが好ましい。溶融Znめっき法は、鋼材を安価に防錆する手段として、土木・建築・自動車分野など、鋼材防錆が求められる様々な分野で使用されている。 When using steel for a long period of time, it is preferable to apply some kind of rust-proofing treatment to the steel to make it resistant to corrosion. Hot-dip galvanized plating is used as an inexpensive method of rust-proofing steel in a variety of fields where rust prevention is required, such as civil engineering, construction, and automotive.

 めっき層の防食の観点から重要な課題として、白錆発生量の抑制が挙げられる。Zn系めっき層が腐食すると大気中の酸素と反応して腐食生成物がつくられる。めっき層中の白錆は、外観の劣化に繋がりやすいため、極力発生させないほうが好ましい。また、一度腐食した箇所は、腐食の表面積が増大し、また当該腐食箇所はさらなる腐食の起点となってその後の腐食進行も大きくなる。一般的にZn系めっき層には犠牲防食作用が備わるため、素地鉄などに到達する疵やめっき層の腐食がある程度発生しても素材として大きな問題は発生しないが、上記のように白錆による外観の劣化という課題が確認される。 In terms of corrosion protection of the plating layer, one important issue is the suppression of the amount of white rust that occurs. When a Zn-based plating layer corrodes, it reacts with oxygen in the air to produce corrosion products. Since white rust in the plating layer can easily lead to deterioration of the appearance, it is preferable to prevent it from occurring as much as possible. Furthermore, once a corroded area increases in surface area, the corroded area becomes the starting point for further corrosion, and the corrosion progresses rapidly thereafter. In general, Zn-based plating layers have a sacrificial corrosion protection effect, so even if scratches that reach the base steel and corrosion of the plating layer occur to a certain extent, this does not cause any major problems for the material. However, as mentioned above, the issue of deterioration of appearance due to white rust has been confirmed.

 一方で、このようなZn系めっき層に対し、Sn、Ni、Crなど、Feよりもイオン化傾向の高い元素を含むめっき層はバリア型の被膜と呼ばれ、Feに対する犠牲防食作用を持たないため、疵など生じると致命的な材料欠陥となりやすい。しかし、このようなバリア型の被膜においては、外観上は長期に渡り金属光沢を保つことができ、さらに製造後一定期間でも、この金属光沢が保たれるため、使用感の少ない外観品位を保つことができる。したがって、Zn系めっき層においてもイオン化傾向の調整などによってFeの電位に近づけることで、白錆発生量を少なくし、腐食外観を改善させることが可能になると考えられる。 On the other hand, in contrast to such Zn-based plating layers, plating layers containing elements with a higher ionization tendency than Fe, such as Sn, Ni, and Cr, are called barrier-type coatings, and since they do not have a sacrificial corrosion protection effect against Fe, any scratches or other damage can easily become fatal material defects. However, such barrier-type coatings can maintain their metallic luster for a long period of time, and because this metallic luster is maintained even for a certain period after manufacture, they can maintain an appearance quality that gives little sign of use. Therefore, it is believed that by adjusting the ionization tendency of Zn-based plating layers to bring them closer to the potential of Fe, it is possible to reduce the amount of white rust that occurs and improve the appearance of corrosion.

 例えば、特許文献1、2には、近年、高耐食性めっきとして使用されているZn-Al-Mg系めっき層が記載されている。これらのZn-Al-Mg系めっき層は、組織制御によって意匠性および耐食性を向上させ、さらには、めっき層への元素添加、もしくは積極的に腐食生成物を形成させることで耐食性を向上させる技術が開示されている。 For example, Patent Documents 1 and 2 describe Zn-Al-Mg-based plating layers that have been used in recent years as highly corrosion-resistant plating. These Zn-Al-Mg-based plating layers improve their design and corrosion resistance through structural control, and also disclose techniques for improving corrosion resistance by adding elements to the plating layer or actively forming corrosion products.

国際公開第2019/230894号International Publication No. 2019/230894 国際公開第2018/139619号International Publication No. 2018/139619

 しかしながら、特許文献1、2に記載のような従来のZn-Al-Mg系めっき層においては、最終的に製造されるめっき層への元素添加方法や、そのイオン化傾向の制御の仕方については十分に検討されておらず、腐食初期に発生する白錆の抑制による、外観改善および腐食起点の抑制という観点では不十分であった。 However, in the case of conventional Zn-Al-Mg-based plating layers as described in Patent Documents 1 and 2, the method of adding elements to the final plating layer and the method of controlling its ionization tendency have not been fully considered, and the suppression of white rust that occurs in the early stages of corrosion has been insufficient in terms of improving appearance and suppressing the initiation of corrosion.

 本発明の一実施形態が解決しようとする課題は、腐食初期に発生する白錆を抑制することが可能な溶融めっき鋼材を提供することである。 The problem that one embodiment of the present invention aims to solve is to provide a hot-dip galvanized steel material that can suppress the white rust that occurs in the early stages of corrosion.

 上記課題を解決するため、本発明の各態様は以下の構成を採用する。
[1]本発明の一態様に係る溶融めっき鋼材は、鋼材と、前記鋼材の表面に配置されためっき層と、を有する溶融めっき鋼材であり、
 前記めっき層が、質量%で、
Al:10.0%超、45.0%未満、
Mg:4.0%以上、15.0%以下、
Si:0.01%以上、2.0%以下、
0.03%以上、5.0%以下のCuおよび0.03%以上、6.0%以下のAgの少なくとも一方、
を含有し、更に、
Sn:0%以上、0.7%以下、
Bi:0%以上、0.3%以下、
In:0%以上、0.3%以下、
Ca:0%以上、0.6%以下、
Y :0%以上、0.3%以下、
La:0%以上、0.3%以下、
Ce:0%以上、0.3%以下、
Sr:0%以上、0.3%以下、
Li:0%以上、0.3%以下、
Ni:0%以上、1.0%以下、
Cr:0%以上、0.5%以下、
Mo:0%以上、0.3%以下、
Sb:0%以上、0.25%以下、
Pb:0%以上、0.25%以下、
B :0%以上、0.5%以下、
P :0%以上、0.5%以下、
Ti:0%以上、0.25%以下、
Co:0%以上、0.25%以下、
V :0%以上、0.25%以下、
Nb:0%以上、0.25%以下、
Mn:0%以上、0.25%以下、
Zr:0%以上、0.25%以下、
W :0%以上、0.25%以下、
Fe:0%以上、5.0%以下、
残部Zn及び不純物を含むとともに、
CuおよびAgの合計含有量が0.03%以上、6.0%以下を満たす化学組成を有し、
 前記めっき層の表面から前記鋼材に向かって、グロー放電発光分析法によって定量分析した場合の元素分布プロファイルにおいて、前記めっき層の厚みをtとし、前記めっき層の表面に対して1/3t位置から2/3t位置までの間の内部領域における、Zn濃度に対する、Cu濃度とAg濃度の合計濃度の比をCAZとする場合、前記CAZの最大値CAZmaxおよび前記CAZの最小値CAZminが、下記式(1)~(3)を満たす。
 CAZmax/CAZmin≦1.20 …(1)
 0.0005≦CAZmin …(2)
 CAZmax≦0.1000 …(3)
[2]上記[1]に記載の溶融めっき鋼材は、前記めっき層の厚み方向に沿った断面において、β相の面積率が3%以上であり、前記β相内におけるAl、Zn、CuおよびAgの各濃度が、下記式(4)を満足してもよい。
 0.85≦[Al]/([Zn]+[Cu]+[Ag])≦1.15 …(4)
 ここで、式(4)中の[Al]、[Zn]、[Cu]および[Ag]はそれぞれ、前記β相内におけるエネルギー分散方X線分析による定量分析値(at%)である。
[3]上記[1]または[2]に記載の溶融めっき鋼材は、前記めっき層の厚み方向に沿った断面における10000μmの範囲内において、金属間化合物粒子として、平均結晶粒径が1μm以上の(Zn+Al)-(Cu+Ag)化合物が10個以上含有されてもよい。
In order to solve the above problems, each aspect of the present invention employs the following configuration.
[1] A hot-dip plated steel material according to one aspect of the present invention is a hot-dip plated steel material having a steel material and a plating layer disposed on a surface of the steel material,
The plating layer comprises, in mass %,
Al: more than 10.0% and less than 45.0%;
Mg: 4.0% or more, 15.0% or less,
Si: 0.01% or more, 2.0% or less,
At least one of Cu of 0.03% or more and 5.0% or less and Ag of 0.03% or more and 6.0% or less;
and further comprising
Sn: 0% or more, 0.7% or less,
Bi: 0% or more, 0.3% or less,
In: 0% or more, 0.3% or less,
Ca: 0% or more, 0.6% or less,
Y: 0% or more, 0.3% or less,
La: 0% or more, 0.3% or less,
Ce: 0% or more, 0.3% or less,
Sr: 0% or more, 0.3% or less,
Li: 0% or more, 0.3% or less,
Ni: 0% or more, 1.0% or less,
Cr: 0% or more, 0.5% or less,
Mo: 0% or more, 0.3% or less,
Sb: 0% or more, 0.25% or less,
Pb: 0% or more, 0.25% or less,
B: 0% or more, 0.5% or less,
P: 0% or more, 0.5% or less,
Ti: 0% or more, 0.25% or less,
Co: 0% or more, 0.25% or less,
V: 0% or more, 0.25% or less,
Nb: 0% or more, 0.25% or less,
Mn: 0% or more, 0.25% or less,
Zr: 0% or more, 0.25% or less,
W: 0% or more, 0.25% or less,
Fe: 0% or more, 5.0% or less,
The balance includes Zn and impurities,
The total content of Cu and Ag is 0.03% or more and 6.0% or less.
In an element distribution profile obtained by quantitatively analyzing the plating layer from the surface toward the steel material by glow discharge optical emission spectrometry, when the thickness of the plating layer is t and the ratio of the total concentration of Cu concentration and Ag concentration to the Zn concentration in an internal region between a 1/3t position and a 2/3t position with respect to the surface of the plating layer is CAZ, a maximum value CAZ max of the CAZ and a minimum value CAZ min of the CAZ satisfy the following formulas (1) to (3):
CAZ max /CAZ min ≦1.20…(1)
0.0005≦CAZ min …(2)
CAZ max ≦0.1000…(3)
[2] In the hot-dip plated steel material described in [1] above, in a cross section along a thickness direction of the plating layer, an area ratio of a β phase is 3% or more, and each concentration of Al, Zn, Cu and Ag in the β phase may satisfy the following formula (4).
0.85≦[Al]/([Zn]+[Cu]+[Ag])≦1.15…(4)
Here, [Al], [Zn], [Cu] and [Ag] in formula (4) are quantitative analysis values (at %) in the β phase by energy dispersive X-ray analysis.
[3] The hot-dip plated steel material according to the above [1] or [2] may contain, as intermetallic compound particles, 10 or more (Zn+Al)-(Cu+Ag) compounds having an average grain size of 1 μm or more within an area of 10,000 μm2 in a cross section along the thickness direction of the plating layer .

 本発明の一実施形態によれば、腐食初期に発生する白錆を抑制することが可能なめっき鋼材を提供できる。 According to one embodiment of the present invention, it is possible to provide a plated steel material that can suppress the white rust that occurs in the early stages of corrosion.

本発明の実施形態に係る溶融めっき鋼材のめっき層に対して実施したGDS分析の結果を示す図であって、元素分布プロファイルの一例を示すグラフである。FIG. 2 is a graph showing an example of an element distribution profile, showing the results of a GDS analysis performed on a coating layer of a hot-dip coated steel material according to an embodiment of the present invention.

 以下、本発明の一実施形態に係る溶融めっき鋼材について説明する。
 なお、本明細書において、めっき層の化学組成の各元素の含有量の「%」表示は、特に断りのない限り「質量%」を意味する。
 また、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。なお、「~」の前後に記載される数値に「超」または「未満」が付されている場合の数値範囲は、これら数値を下限値または上限値として含まない範囲を意味する。
Hereinafter, a hot-dip plated steel material according to one embodiment of the present invention will be described.
In this specification, the "%" designation for the content of each element in the chemical composition of the plating layer means "mass %" unless otherwise specified.
Furthermore, a numerical range expressed using "to" means a range that includes the numerical values before and after "to" as the lower and upper limits. When the numerical values before and after "to" are followed by "more than" or "less than," the numerical range does not include these numerical values as the lower or upper limit.

 なお、本明細書でいう「耐食性」とは、めっき層自体の腐食し難い性質を示す。Zn系のめっき層は、鋼材に対して犠牲防食作用を有する。そのため、めっき鋼板の腐食の進行過程においては、まず、鋼材が腐食する前にめっき層が腐食して白錆化し、白錆化しためっき層が消滅し、その後、鋼材が腐食して赤錆が発生する。
 また、本明細書でいう「犠牲防食性」とは、鋼材の露出部(例えばめっき鋼材の切断端面部や加工時の溶融めっき層割れによって鋼材が露出された箇所)での鋼材の腐食を抑制する性質を示す。
In this specification, "corrosion resistance" refers to the property of the plating layer itself being resistant to corrosion. A Zn-based plating layer has a sacrificial corrosion protection effect on steel material. Therefore, in the process of corrosion of a plated steel sheet, first, the plating layer corrodes and turns into white rust before the steel material corrodes, the white-rusted plating layer disappears, and then the steel material corrodes and red rust appears.
In addition, "sacrificial corrosion protection" as used in this specification refers to the property of suppressing corrosion of steel at exposed portions of the steel (for example, cut end surfaces of plated steel or portions where the steel is exposed due to cracking of the hot-dip plating layer during processing).

 まず、本発明者らの白錆発生の抑制手段の検討結果について説明する。具体的に本発明者らは、Zn-Al-Mg系めっき鋼材における腐食初期の白錆の発生を抑制する手段を鋭意検討した。 First, the results of the inventors' research into means for suppressing the occurrence of white rust will be explained. Specifically, the inventors have intensively researched means for suppressing the occurrence of white rust in the early stages of corrosion on Zn-Al-Mg-plated steel materials.

 最初に、Zn-Al-Mg系めっき層の腐食形態を調査した。その結果、Zn-Al-Mg系めっき層の腐食は、Zn-Al(β)相から腐食が進行していることを把握した。さらにその理由として、このZn-Al(β)相がめっき層中で電気化学的に最も卑な腐食電位(-1.3V vs. Ag/AgCl 1M NaCl水溶液中)を示すためであることをつきとめた。 First, the corrosion morphology of the Zn-Al-Mg plating layer was investigated. As a result, it was found that corrosion of the Zn-Al-Mg plating layer progresses from the Zn-Al (β) phase. Furthermore, it was found that the reason for this is that this Zn-Al (β) phase shows the electrochemically most base corrosion potential in the plating layer (-1.3 V vs. Ag/AgCl in a 1M NaCl aqueous solution).

 さらに、Zn-Al-Mg系めっき層において腐食が進行すると、Zn-Al(β)相の次にMgZn相が腐食することを確認した。MgZn相の腐食電位は(-1.1V vs. Ag/AgCl 1M NaCl水溶液中)であった。β相はめっき層全体に分布しており、この腐食しやすい部位であるZn-Al(β)相の電位を上げることが、外観や耐食性の向上に有効である。 Furthermore, it was confirmed that when corrosion progresses in the Zn-Al-Mg-based plating layer, the MgZn 2 phase corrodes after the Zn-Al (β) phase. The corrosion potential of the MgZn 2 phase was (-1.1 V vs. Ag/AgCl in a 1M NaCl aqueous solution). The β phase is distributed throughout the plating layer, and increasing the potential of the Zn-Al (β) phase, which is a site susceptible to corrosion, is effective in improving the appearance and corrosion resistance.

 β相の電位を上げるためには、電気化学的に貴な元素がZn-Al(β)相に含有されることが好ましい。β相の電位増大に効果的な元素としては、CuおよびAgが挙げられる。CuおよびAgはそれぞれ、AlおよびZnと原子半径が近く、置換型固溶体を示し、互いに混合しやすいためである。 In order to increase the potential of the β phase, it is preferable for an electrochemically noble element to be contained in the Zn-Al (β) phase. Elements that are effective in increasing the potential of the β phase include Cu and Ag. This is because Cu and Ag have atomic radii close to those of Al and Zn, respectively, and exhibit substitutional solid solutions, making them easily mixed with each other.

 めっき層中においてCuまたはAgをZn-Al(β)相に含有させる好適な方法の一例として、以下の2段めっき法が挙げられる。 The following two-stage plating method is an example of a suitable method for incorporating Cu or Ag into the Zn-Al (β) phase in the plating layer.

 めっき原板に対し、まずZnを電気めっきし、次いでCuまたはAgを電気めっきする。CuまたはAgはこれらの合金であってもよい。次いで、Zn、およびCuまたはAgがめっきされためっき原板を加熱して、Znめっき層中にCuおよび/またはAgを拡散させてめっき基材とする。その後、めっき基材をZn-Al-Mg系溶融めっき浴(Cu、Agを含んでもよい)に浸漬して溶融めっき層を形成する。本明細書では、このように、めっき原板に対して、予め所定のプレめっき層を形成してからZn-Al-Mg系溶融めっきを順に施す方法を「2段めっき法」と称する。 The base plate is first electroplated with Zn, and then electroplated with Cu or Ag. The Cu or Ag may be an alloy of these. The base plate plated with Zn, Cu or Ag is then heated to diffuse the Cu and/or Ag into the Zn plating layer to form a base plate. The base plate is then immersed in a Zn-Al-Mg hot-dip plating bath (which may contain Cu and Ag) to form a hot-dip plating layer. In this specification, this method of forming a predetermined pre-plating layer on the base plate and then applying Zn-Al-Mg hot-dip plating in this order is referred to as the "two-stage plating method."

 また、めっき凝固中においては、Zn-Al(β)相は特定の温度領域で形成され、成長する。そのため、このような温度領域では、冷却速度を小さくすることで、十分にZn-Al(β)相を形成させ、かつ、めっき基材表面に形成していたZn-Cu相を溶かして、Zn-Al(β)相中に含有させることができる。 In addition, during plating solidification, the Zn-Al (β) phase is formed and grows in a specific temperature range. Therefore, in such a temperature range, by reducing the cooling rate, the Zn-Al (β) phase can be sufficiently formed, and the Zn-Cu phase that has formed on the plating substrate surface can be dissolved and incorporated into the Zn-Al (β) phase.

 このようにして、形成されたCu、Agを含むめっき層においては、Zn原子位置と、CuおよびAg原子位置とがほぼ同位置にあり、これら原子は、めっき層中のAlの成分分布とは異なる。 In this way, in the plating layer containing Cu and Ag formed, the Zn atom positions are almost in the same positions as the Cu and Ag atoms, and these atoms are different from the Al component distribution in the plating layer.

 また、本実施形態に係るめっき層においては、最も腐食しやすい部位であるZn-Al(β)相に、効率的に貴な電位を示すCu、Agが含有されるため、β相の腐食電位が上昇する。これにより、めっき層全体の電位分布がMgZn相とほぼ一様になる。その結果、特定の部位における電位差が小さくなるため、めっき鋼材における腐食初期の白錆の発生量が減少する。また、白錆が発生したとしても一様に生じるため、白錆発生自体を目立たなくすることが可能である。 In addition, in the plating layer according to this embodiment, Cu and Ag, which efficiently exhibit a noble potential, are contained in the Zn-Al (β) phase, which is the most susceptible portion to corrosion, and therefore the corrosion potential of the β phase is increased. This makes the potential distribution of the entire plating layer almost uniform with the MgZn 2 phase. As a result, the potential difference in a specific portion is reduced, and the amount of white rust generated in the early stages of corrosion in the plated steel material is reduced. Furthermore, even if white rust is generated, it is generated uniformly, making it possible to make the generation of white rust itself less noticeable.

[溶融めっき鋼材]
 以下、本実施形態に係る溶融めっき鋼材について詳細に説明する。
 本実施形態の溶融めっき鋼材は、鋼材と、鋼材の表面に配置されためっき層と、を有する溶融めっき鋼材である。めっき層の平均化学組成は、質量%で、
Al:10.0%超、45.0%未満、
Mg:4.0%以上、15.0%以下、
Si:0.01%以上、2.0%以下、
0.03%以上、5.0%以下のCuおよび0.03%以上、6.0%以下のAgの少なくとも一方、
を含有し、更に、
Sn:0%以上、0.7%以下、
Bi:0%以上、0.3%以下、
In:0%以上、0.3%以下、
Ca:0%以上、0.6%以下、
Y :0%以上、0.3%以下、
La:0%以上、0.3%以下、
Ce:0%以上、0.3%以下、
Sr:0%以上、0.3%以下、
Li:0%以上、0.3%以下、
Ni:0%以上、1.0%以下、
Cr:0%以上、0.5%以下、
Mo:0%以上、0.3%以下、
Sb:0%以上、0.25%以下、
Pb:0%以上、0.25%以下、
B :0%以上、0.5%以下、
P :0%以上、0.5%以下、
Ti:0%以上、0.25%以下、
Co:0%以上、0.25%以下、
V :0%以上、0.25%以下、
Nb:0%以上、0.25%以下、
Mn:0%以上、0.25%以下、
Zr:0%以上、0.25%以下、
W :0%以上、0.25%以下、
Fe:0%以上、5.0%以下、
残部Zn及び不純物を含むとともに、
CuおよびAgの合計含有量が0.03%以上、6.0%以下を満たす。
[Hot-dip plated steel]
The hot-dip plated steel material according to this embodiment will be described in detail below.
The hot-dip plated steel material of the present embodiment is a hot-dip plated steel material having a steel material and a plating layer disposed on the surface of the steel material. The average chemical composition of the plating layer is, in mass%,
Al: more than 10.0% and less than 45.0%;
Mg: 4.0% or more, 15.0% or less,
Si: 0.01% or more, 2.0% or less,
At least one of Cu of 0.03% or more and 5.0% or less and Ag of 0.03% or more and 6.0% or less;
and further comprising
Sn: 0% or more, 0.7% or less,
Bi: 0% or more, 0.3% or less,
In: 0% or more, 0.3% or less,
Ca: 0% or more, 0.6% or less,
Y: 0% or more, 0.3% or less,
La: 0% or more, 0.3% or less,
Ce: 0% or more, 0.3% or less,
Sr: 0% or more, 0.3% or less,
Li: 0% or more, 0.3% or less,
Ni: 0% or more, 1.0% or less,
Cr: 0% or more, 0.5% or less,
Mo: 0% or more, 0.3% or less,
Sb: 0% or more, 0.25% or less,
Pb: 0% or more, 0.25% or less,
B: 0% or more, 0.5% or less,
P: 0% or more, 0.5% or less,
Ti: 0% or more, 0.25% or less,
Co: 0% or more, 0.25% or less,
V: 0% or more, 0.25% or less,
Nb: 0% or more, 0.25% or less,
Mn: 0% or more, 0.25% or less,
Zr: 0% or more, 0.25% or less,
W: 0% or more, 0.25% or less,
Fe: 0% or more, 5.0% or less,
The balance includes Zn and impurities,
The total content of Cu and Ag satisfies 0.03% or more and 6.0% or less.

(鋼材)
 まず、めっきの対象となる鋼材(原板)について説明する。
 鋼材は、例えば主に鋼板であるが、そのサイズは特に制限されない。鋼板は、通常の溶融亜鉛めっき工程に適用可能なものであればよい。具体的には、連続溶融亜鉛めっきライン(CGL)など、溶融金属に浸漬して凝固させる工程で適用可能な鋼板がこれに当てはまる。鋼板のサイズとしては、例えば、板厚10mm以下、板幅2000mm以下のものを適用できるが、鋼板のサイズはこれに限定されるものではない。
(Steel)
First, the steel material (original sheet) to be plated will be described.
The steel material is, for example, mainly a steel plate, but the size is not particularly limited. The steel plate may be any steel plate that can be applied to a normal hot-dip galvanizing process. Specifically, this applies to steel plates that can be applied to a process in which the steel plate is immersed in molten metal and solidified, such as a continuous hot-dip galvanizing line (CGL). The size of the steel plate may be, for example, a plate thickness of 10 mm or less and a plate width of 2000 mm or less, but the size of the steel plate is not limited to this.

 鋼材の材質は、特に制限されない。鋼材は、例えば、一般鋼、各種金属が薄くめっきされたプレめっき鋼、Alキルド鋼、極低炭素鋼、高炭素鋼、各種高張力鋼、一部の高合金鋼(Ni、Cr等の耐食性強化元素含有鋼等)、ボルト用鋼、橋梁ケーブル用鋼線材などの各種の鋼板が適用可能である。より具体的には、鋼材は、例えばJIS G 3131(2018)に定められる熱延鋼板、JIS G 3141(2017)に定められる冷延鋼板、いわゆるSS材に対応する一般構造用圧延鋼材に含まれるもの、JIS G 3193(2019)に示される熱延鋼板に含まれるいわゆる一般鋼、JIS H 8641(2021)、JIS G 3302(2019),3303(2017),3313(2017),3314(2019),3315(2017),3317(2019),および3321(2019)などに記載される、各種金属が薄くめっきされたプレめっき鋼、JIS G 3136(2012)に記載される建築構造用圧延鋼材、JIS G 3126(2015)に記載されるAlキルド鋼、極低炭素鋼、高炭素鋼、JIS G 3113(2018),3134(2018),および3135(2018)に記載される各種高張力鋼、一部の高合金鋼(Ni、Cr等の耐食性強化元素含有鋼等)が適用可能である。 The quality of the steel material is not particularly limited. Examples of applicable steel materials include general steel, pre-plated steel thinly plated with various metals, Al-killed steel, ultra-low carbon steel, high carbon steel, various high tensile steels, some high alloy steels (steels containing corrosion-resistant strengthening elements such as Ni and Cr), steel for bolts, and steel wire for bridge cables. More specifically, the steel material may be, for example, a hot-rolled steel plate defined in JIS G 3131 (2018), a cold-rolled steel plate defined in JIS G 3141 (2017), a general structural rolled steel material corresponding to the so-called SS material, a so-called general steel included in the hot-rolled steel plate shown in JIS G 3193 (2019), JIS H 8641 (2021), JIS G 3302 (2019), 3303 (2017), 3313 (2017), 3314 (2019), 3315 (2017), 3316 (2016), 3317 (2017), 3318 (2017), 3319 (2017), 3320 (2017), 3321 (2017), 3322 (2017), 3323 (2017), 3324 (2017), 3325 (2017), 3326 (2017), 3327 (2017), 3328 (2017), 3329 (2017), 3330 (2017), 3331 (2017), 3332 (2017), 3333 (2017), 3334 (2017), 3335 (2017), 3336 (2017), 3337 (2017), 3338 (2017), 3339 (2017), 334 ... Pre-plated steels thinly plated with various metals as described in JIS G 317 (2019) and 3321 (2019), rolled steel materials for building structures as described in JIS G 3136 (2012), Al-killed steels, extra-low carbon steels, high carbon steels as described in JIS G 3126 (2015), various high tensile steels as described in JIS G 3113 (2018), 3134 (2018), and 3135 (2018), and some high alloy steels (steels containing corrosion-resistant strengthening elements such as Ni and Cr, etc.) are applicable.

 また、鋼材の製造工程としては、高炉または電炉による製銑・製鋼工程、熱間圧延工程、酸洗工程、冷間圧延工程、熱処理工程などの一般的な工程が挙げられる。 Furthermore, the manufacturing process for steel materials includes common processes such as iron and steel making using blast furnaces or electric furnaces, hot rolling, pickling, cold rolling, and heat treatment.

(めっき層)
 次に、鋼材上に設けられるめっき層について説明する。
 本実施形態に係るめっき層は、Zn-Al-Mg系合金層を含む。Zn相中にAl、Mgなどの合金元素が含有されると耐食性が改善する。そのため、このようなZn相を含むめっき層の場合、薄膜(例えば、通常のZnめっき層の半分程度の厚み)であっても通常のZnめっき層と同等の耐食性を発揮できる。本実施形態のめっき層も同じように、薄膜とした場合であっても、従来のZnめっき層と同等もしくはそれ以上の耐食性が確保される。
(Plating layer)
Next, the plating layer provided on the steel material will be described.
The plating layer according to the present embodiment includes a Zn-Al-Mg alloy layer. When alloy elements such as Al and Mg are contained in the Zn phase, the corrosion resistance is improved. Therefore, in the case of a plating layer including such a Zn phase, even if it is a thin film (for example, about half the thickness of a normal Zn plating layer), it can exhibit the same corrosion resistance as a normal Zn plating layer. Similarly, even if the plating layer according to the present embodiment is a thin film, it can ensure the same or higher corrosion resistance as a conventional Zn plating layer.

 Zn-Al-Mg系合金層は、Zn-Al-Mg系合金よりなる。Zn-Al-Mg系合金とは、Zn、Al及びMgを含む三元系合金を意味する。 The Zn-Al-Mg alloy layer is made of a Zn-Al-Mg alloy. A Zn-Al-Mg alloy refers to a ternary alloy containing Zn, Al, and Mg.

 また、めっき層には、Al-Fe系界面合金層(ただし厚みは5μm未満)を含んでもよい。Al-Fe系界面合金層は、鋼材とZn-Al-Mg系合金層との間にある界面合金層であり、鋼材の表面に接している。つまり、本実施形態のめっき層は、Zn-Al-Mg系合金層から構成される単層構造であってもよく、Zn-Al-Mg系合金層とAl-Fe系界面合金層とを含む積層構造であってもよい。積層構造の場合、Zn-Al-Mg系合金層は、めっき層の表面を構成する層とすることがよい。 The plating layer may also include an Al-Fe interfacial alloy layer (however, the thickness is less than 5 μm). The Al-Fe interfacial alloy layer is an interfacial alloy layer between the steel material and the Zn-Al-Mg alloy layer, and is in contact with the surface of the steel material. In other words, the plating layer of this embodiment may have a single-layer structure composed of a Zn-Al-Mg alloy layer, or may have a laminated structure including a Zn-Al-Mg alloy layer and an Al-Fe interfacial alloy layer. In the case of a laminated structure, it is preferable that the Zn-Al-Mg alloy layer is a layer that constitutes the surface of the plating layer.

 Al-Fe系界面合金層は、耐食性に対して大きな影響は及ぼさないが、溶融めっき鋼材の加工時におけるめっき層の密着性と、加工性(亀裂の有無)に影響を及ぼす。特に、Al-Fe系界面合金層は、加工時のめっき層の剥落の度合いを示す耐パウダリング性に影響する場合がある。通常、Al-Fe系界面合金層の厚みが薄い方が、加工時のめっき層の亀裂発生起点を少なくして耐パウダリング性をより改善できる。このため、部材等として使用する際に高い加工が付与される可能性のある溶融めっき鋼材においては、Al-Fe系界面合金層の厚みは極力薄いことが好ましい。具体的には、Al-Fe系界面合金層を構成する金属間化合物の厚みは5μm未満とする。この厚みは、2μm以下とすることが好ましく、より好ましくは1μm以下、さらに好ましくは0.5μm以下である。0.3μm以下であってもよい。これにより、加工時における亀裂の発生を抑制して耐パウダリング性をより改善できる。さらには、めっき層の厚みに対するAl-Fe界面合金層の厚みの割合は、平均で10%未満、より好ましくは、5%未満である。 The Al-Fe interface alloy layer does not have a significant effect on corrosion resistance, but it does affect the adhesion of the plating layer during processing of hot-dip plated steel and the workability (presence or absence of cracks). In particular, the Al-Fe interface alloy layer may affect powdering resistance, which indicates the degree of peeling of the plating layer during processing. Usually, the thinner the Al-Fe interface alloy layer, the fewer the starting points for crack generation in the plating layer during processing, and the better the powdering resistance. For this reason, in hot-dip plated steel that may be subjected to high processing when used as a component, etc., it is preferable that the thickness of the Al-Fe interface alloy layer is as thin as possible. Specifically, the thickness of the intermetallic compound that constitutes the Al-Fe interface alloy layer is less than 5 μm. This thickness is preferably 2 μm or less, more preferably 1 μm or less, and even more preferably 0.5 μm or less. It may be 0.3 μm or less. This makes it possible to suppress the generation of cracks during processing and further improve powdering resistance. Furthermore, the ratio of the thickness of the Al-Fe interfacial alloy layer to the thickness of the plating layer is, on average, less than 10%, and more preferably, less than 5%.

 Al-Fe系界面合金層は、鋼材の表面、具体的には、鋼材とZn-Al-Mg系合金層との間に形成される。Al-Fe系界面合金層は、組織としてAlFe相が主相である層である。Al-Fe系界面合金層は、地鉄(鋼板)及びめっき浴の相互の原子拡散によって形成される。製法として連続式の溶融めっき法を用いた場合、Al元素を含有するめっき層では、Al-Fe系界面合金層が形成され易い。本実施形態ではめっき浴中に一定濃度以上のAlが含有されることから、Al-Fe系界面合金層にはAlFe相が最も多く形成される。しかし、原子拡散には時間を要するため、Al-Fe系界面合金層におけるFe濃度は均一ではなく、地鉄に近い部分ではFe濃度が高くなる場合もある。そのため、Al-Fe系界面合金層は、部分的には、AlFe相、AlFe相、AlFe相などが少量含まれる場合もある。また、めっき浴中にZnも一定濃度含まれることから、Al-Fe系界面合金層には、Znも少量含有される場合がある。またAl-Fe系界面合金層には、界面に集積しやすいSiも少量含有される場合がある。 The Al-Fe-based interface alloy layer is formed on the surface of the steel material, specifically, between the steel material and the Zn-Al-Mg-based alloy layer. The Al-Fe-based interface alloy layer is a layer in which the Al 5 Fe 2 phase is the main phase in the structure. The Al-Fe-based interface alloy layer is formed by mutual atomic diffusion between the base steel (steel sheet) and the plating bath. When a continuous hot-dip plating method is used as the manufacturing method, the Al-Fe-based interface alloy layer is likely to be formed in the plating layer containing the Al element. In this embodiment, since the plating bath contains Al at a certain concentration or more, the Al 5 Fe 2 phase is formed most frequently in the Al-Fe-based interface alloy layer. However, since atomic diffusion takes time, the Fe concentration in the Al-Fe-based interface alloy layer is not uniform, and the Fe concentration may be high in the part close to the base steel. Therefore, the Al-Fe-based interface alloy layer may partially contain small amounts of the AlFe phase, the Al 3 Fe phase, the Al 5 Fe 2 phase, etc. In addition, since the plating bath contains a certain concentration of Zn, the Al-Fe-based interface alloy layer may also contain a small amount of Zn. In addition, the Al-Fe-based interface alloy layer may also contain a small amount of Si, which tends to accumulate at the interface.

 本実施形態では、めっき層中にSiが含有される。Siの一部は、Al-Fe系界面合金層中に取り込まれて、Al-Fe-Si金属間化合物相となる。同定される金属間化合物相としては、AlFeSi相がある。AlFeSi相の異性体として、α相、β相、q1相,q2相等が存在する。そのため、Al-Fe系界面合金層では、これらAlFeSi相等が検出されることがある。これらAlFeSi相等を含むAl-Fe系界面合金層をAl-Fe-Si合金層とも称する。 In this embodiment, the plating layer contains Si. A portion of the Si is incorporated into the Al-Fe-based interface alloy layer to form an Al-Fe-Si intermetallic compound phase. The intermetallic compound phase identified is the AlFeSi phase. Isomers of the AlFeSi phase include the α phase, β phase, q1 phase, q2 phase, and the like. Therefore, these AlFeSi phases and the like may be detected in the Al-Fe-based interface alloy layer. An Al-Fe-based interface alloy layer that contains these AlFeSi phases and the like is also referred to as an Al-Fe-Si alloy layer.

 めっき層全体の厚みの上限及び下限については特に限定されるものではない。また、厚みは、めっき浴からの鋼材の引抜速度及びワイピング条件の影響を受ける。すなわち、めっき層全体の厚みは、連続式溶融めっき法の場合ではめっき浴の粘性及び比重の影響を受ける。連続式溶融めっき法で形成されるめっき層の厚みの最大値は、100μm以下であることが多い。よって、本実施形態の溶融めっき鋼材のめっき厚は例えば100μm以下でもよい。 The upper and lower limits of the thickness of the entire plating layer are not particularly limited. The thickness is also affected by the withdrawal speed of the steel from the plating bath and the wiping conditions. That is, in the case of continuous hot-dip plating, the thickness of the entire plating layer is affected by the viscosity and specific gravity of the plating bath. The maximum thickness of the plating layer formed by the continuous hot-dip plating method is often 100 μm or less. Therefore, the plating thickness of the hot-dip plated steel of this embodiment may be, for example, 100 μm or less.

 次に、めっき層の平均化学組成について説明する。めっき層全体の平均化学組成は、めっき層がZn-Al-Mg系合金層の単層構造の場合は、Zn-Al-Mg系合金層の平均化学組成である。また、めっき層がAl-Fe系界面合金層及びZn-Al-Mg系合金層から構成される積層構造の場合は、Al-Fe系界面合金層及びZn-Al-Mg系合金層の合計の平均化学組成である。 Next, the average chemical composition of the plating layer will be explained. When the plating layer has a single-layer structure of a Zn-Al-Mg alloy layer, the average chemical composition of the entire plating layer is the average chemical composition of the Zn-Al-Mg alloy layer. When the plating layer has a layered structure consisting of an Al-Fe interface alloy layer and a Zn-Al-Mg alloy layer, the average chemical composition of the entire plating layer is the average chemical composition of the Al-Fe interface alloy layer and the Zn-Al-Mg alloy layer combined.

 本実施形態のめっき層においては、Al-Fe系界面合金層の厚みは、めっき層の全体厚みに対して10%以下であることが好ましい。このようにAl-Fe系界面合金層の厚みがめっき層全体に対して十分に小さい場合は、めっき層のFe濃度は5%以内であることが多い。従って、めっき層の平均化学組成は、おおむね、Zn-Al-Mg系合金層の成分とほぼ同じである。さらには、めっき原材の痕跡も、めっき層の化学成分として残存しにくい。従って、めっき層の平均化学組成と、製造に使用しためっき浴の成分とは、ほぼ同等である。 In the plating layer of this embodiment, the thickness of the Al-Fe interfacial alloy layer is preferably 10% or less of the total thickness of the plating layer. In this way, when the thickness of the Al-Fe interfacial alloy layer is sufficiently small compared to the total thickness of the plating layer, the Fe concentration of the plating layer is often within 5%. Therefore, the average chemical composition of the plating layer is generally approximately the same as the components of the Zn-Al-Mg alloy layer. Furthermore, traces of the original plating material are unlikely to remain as chemical components of the plating layer. Therefore, the average chemical composition of the plating layer is approximately the same as the components of the plating bath used in production.

Al:10.0%超、45.0%未満、
 Alは、めっき層の主体を構成する元素である。Al含有量が10%以下では、十分なZn-Al相量を確保できない場合がある。そのためAl含有量は10%超である。一方、Al含有量が45.0%以上になると、めっき層においてがAl-Zn(α)相が主体となって、Al-Zn(β)相が形成されなくなる。そのため、Al含有量の上限は45%未満である。
Al: more than 10.0% and less than 45.0%;
Al is an element that mainly constitutes the plating layer. If the Al content is 10% or less, a sufficient amount of Zn-Al phase may not be secured. Therefore, the Al content is more than 10%. On the other hand, if the Al content is 45.0% or more, the plating layer will be mainly composed of Al-Zn (α) phase, and Al-Zn (β) phase will not be formed. Therefore, the upper limit of the Al content is less than 45%.

Mg:4.0%以上、15.0%以下
 Mgは、Znと同様に、めっき層の主体を構成する元素である。Mgは、本実施形態に係るめっき鋼板において、犠牲防食性を向上させる重要な元素である。めっき層中のMg含有量が4.0%未満では、Mgを含有していない場合と比較して犠牲防食性の向上効果が明らかでない。したがってMg含有量は4.0%以上とする。一方、Zn-Al-Mg系めっき浴において、Mgが過剰に添加されるとめっき浴の浴面で急激な酸化反応が生じ、めっきを安定して行うことができない。そのため安定してめっきを行い、良好な製造性を確保するためには、めっき層中のMg含有量は、15%以下とする。
Mg: 4.0% or more, 15.0% or less Like Zn, Mg is an element constituting the main part of the plating layer. Mg is an important element for improving the sacrificial corrosion protection in the plated steel sheet according to the present embodiment. If the Mg content in the plating layer is less than 4.0%, the effect of improving the sacrificial corrosion protection is not clear compared to the case where Mg is not contained. Therefore, the Mg content is set to 4.0% or more. On the other hand, if Mg is added excessively to a Zn-Al-Mg plating bath, a rapid oxidation reaction occurs on the bath surface of the plating bath, and plating cannot be performed stably. Therefore, in order to perform stable plating and ensure good manufacturability, the Mg content in the plating layer is set to 15% or less.

Si:0.01%以上、2.0%以下
 Siは、Al-Fe反応を抑制し、これにより、Al-Fe系界面合金層の形成を抑制する。また、Siは、Al-Fe系界面合金層の一部に取り込まれて、Al-Fe-Si化合物を形成する。Siが含有されない場合は、Al-Fe反応が活発となり、Al-Fe合金層の厚みが厚くなって加工時にパウダリングが発生し、耐食性を著しく損なう。一方、Si含有量が0.01%以上であると、界面合金層の厚みの成長速度が遅くなる。ただし、Si含有量が2.0%以上であると、Mgと結合してMg2Siなる組成の金属間化合物が多量に形成し、めっき浴の粘性が極めて高くなって鋼材のめっき浴からの引き上げ時に鋼材に溶融金属の付着量が低減し、めっき層の厚みが極端に薄くなる。また、めっき外観が大幅に悪化する。このため、Si含有量の上限を2.0%以下とする。好ましい範囲は、0.10~0.40%、さらに好ましくは0.20~0.30%である。Si含有量が2.0%以下であれば、ほとんどMg2Siが形成しない。
Si: 0.01% or more, 2.0% or less Si suppresses the Al-Fe reaction, thereby suppressing the formation of an Al-Fe-based interface alloy layer. In addition, Si is incorporated into a part of the Al-Fe-based interface alloy layer to form an Al-Fe-Si compound. If Si is not contained, the Al-Fe reaction becomes active, the thickness of the Al-Fe alloy layer becomes thick, powdering occurs during processing, and corrosion resistance is significantly impaired. On the other hand, if the Si content is 0.01% or more, the growth rate of the thickness of the interface alloy layer becomes slow. However, if the Si content is 2.0% or more, a large amount of intermetallic compound having a composition of Mg2Si is formed by bonding with Mg, and the viscosity of the plating bath becomes extremely high, so that the amount of molten metal attached to the steel material is reduced when the steel material is pulled out of the plating bath, and the thickness of the plating layer becomes extremely thin. In addition, the plating appearance is significantly deteriorated. For this reason, the upper limit of the Si content is set to 2.0% or less. The preferred range is 0.10 to 0.40%, and more preferably 0.20 to 0.30%. If the Si content is 2.0% or less, almost no Mg2Si is formed.

 Cu、Agは、Zn、Alと原子半径が近いため,めっき層中においてこれらの元素と置換し混ざりやすい。CuやAgがめっき層中に含有されることとで、Zn-Al(β)相の電位が高くなり、耐食性が向上する。CuとAgはほぼ同じ作用をする。電位を変化させ,初期白錆の発生挙動を変化させるためには、めっき層に、CuおよびAgの少なくとも一方を0.03%以上含有することが有効である。好ましくは、めっき層中のCuとAgの合計の濃度を0.4%以上とする。一方、CuおよびAgの各含有量が過剰となると、β相に含有できないCu、Agによって電気的に貴な部分が発生して腐食が促進される場合がある。そのため、Cu含有量の上限を5.0%以下、Ag含有量の上限を6.0%以下とする。また、CuおよびAgをともに含有する場合は、CuおよびAgの合計含有量の上限を6%とする。CuおよびAgの合計含有量が6.0%となると、β相に含有できないCu、Agにより電気的に貴な部分が発生して腐食を促進するためである。 Cu and Ag have atomic radii close to those of Zn and Al, so they are easily substituted and mixed with these elements in the plating layer. When Cu or Ag is contained in the plating layer, the potential of the Zn-Al (β) phase increases, improving corrosion resistance. Cu and Ag have almost the same effect. In order to change the potential and change the behavior of the initial white rust generation, it is effective to contain at least one of Cu and Ag in the plating layer at 0.03% or more. Preferably, the total concentration of Cu and Ag in the plating layer is 0.4% or more. On the other hand, if the content of each of Cu and Ag is excessive, electrically noble parts may be generated by Cu and Ag that cannot be contained in the β phase, which may promote corrosion. Therefore, the upper limit of the Cu content is 5.0% or less, and the upper limit of the Ag content is 6.0% or less. In addition, when both Cu and Ag are contained, the upper limit of the total content of Cu and Ag is 6%. When the total Cu and Ag content reaches 6.0%, the Cu and Ag that cannot be contained in the β phase generate electrically noble parts, promoting corrosion.

Sn:0%以上、0.7%以下
Bi:0%以上、0.3%以下
In:0%以上、0.3%以下
 Sn、Bi、Inはそれぞれ、めっき層に含有されることによってめっき層の軟化を促す元素である。Sn、Bi、Inは、任意に含有できる元素であるので、それぞれの含有量は0%以上である。Snを含有させると、めっき層中にMgSnが形成する傾向にある。Biは、MgBi、InはMgInなども形成する。これらの元素はMgZn相より軟質で、加工性もよく、めっき層中に含まれることで加工性の向上が明瞭に確認できる元素である。また、これら元素は非常に卑な電気化学的性質を示すため、高い犠牲防食効果を有する。Sn、Bi、Inの少なくとも1種以上を含有させることで、加工部耐食性向上効果が得られる。
Sn: 0% or more, 0.7% or less Bi: 0% or more, 0.3% or less In: 0% or more, 0.3% or less Sn, Bi, and In are elements that promote the softening of the plating layer by being contained in the plating layer. Since Sn, Bi, and In are elements that can be contained arbitrarily, the content of each is 0% or more. When Sn is contained, Mg 9 Sn 5 tends to be formed in the plating layer. Bi forms Mg 3 Bi 2 , and In forms Mg 3 In, etc. These elements are softer than the MgZn 2 phase, have good workability, and are elements that can clearly confirm the improvement of workability by being contained in the plating layer. In addition, these elements have a very base electrochemical property, so they have a high sacrificial anticorrosion effect. By containing at least one of Sn, Bi, and In, the effect of improving the corrosion resistance of the processed part can be obtained.

Ca:0%以上、0.6%以下
Y :0%以上、0.3%以下
La:0%以上、0.3%以下
Ce:0%以上、0.3%以下
Sr:0%以上、0.3%以下
Li:0%以上、0.3%以下
Ni:0%以上、1.0%以下
Cr:0%以上、0.5%以下
Mo:0%以上、0.3%以下
Sb:0%以上、0.25%以下
Pb:0%以上、0.25%以下
B :0%以上、0.5%以下
P :0%以上、0.5%以下
Ti:0%以上、0.25%以下
Co:0%以上、0.25%以下
V :0%以上、0.25%以下
Nb:0%以上、0.25%以下
Mn:0%以上、0.25%以下
Zr:0%以上、0.25%以下
W :0%以上、0.25%以下
 Ca、Y、La、Ce、Sr、Li、Ni、Cr、Mo、Sb、Pb、B、P、Ti、Co、V、Nb、Mn、Zr、Wはいずれも、Si、Zn、Alなどと金属間化合物を形成する。ただし、これらの元素の含有量が上記範囲内の場合には、めっき層の初期腐食に影響することはない。一方で、これら元素を過剰に含有すると、めっき層に電位差が生じ、初期白錆が多く発生する場合があるため、含有する場合には、上記範囲内とするとよい。
Ca: 0% or more, 0.6% or less Y: 0% or more, 0.3% or less La: 0% or more, 0.3% or less Ce: 0% or more, 0.3% or less Sr: 0% or more, 0.3% or less Li: 0% or more, 0.3% or less Ni: 0% or more, 1.0% or less Cr: 0% or more, 0.5% or less Mo: 0% or more, 0.3% or less Sb : 0% or more, 0.25% or less Pb: 0% or more, 0.25% or less B: 0% or more, 0.5% or less P: 0% or more, 0.5% or less Ti: 0% or more, 0 .25% or less Co: 0% or more, 0.25% or less Nb: 0% or more, 0.25% or less Mn: 0% or more, 0.25% or less Zr: 0% or more, 0.25% or lessW 0% or more, 0.25% or less Ca, Y, La, Ce, Sr, Li, Ni, Cr, Mo, Sb, Pb, B, P, Ti, Co, V, Nb, Mn, Zr, W All of these elements form intermetallic compounds with Si, Zn, Al, etc. However, when the contents of these elements are within the above ranges, they do not affect the initial corrosion of the plating layer. If an element is contained in excess, a potential difference occurs in the plating layer, which may result in a large amount of initial white rust. Therefore, if an element is contained, it is preferable that the amount is within the above range.

Fe:0%以上、5.0%以下
 本実施形態の溶融めっき鋼材は、連続式の溶融めっき法により製造されるため、製造時にめっき原材からめっき層にFeが拡散する場合がある。前述の通り、本実施形態では、めっき層のAl濃度が高く、Al-Fe系界面合金層が形成される場合があるが、その厚みは薄い。その結果として、めっき層中にFeが最大5.0%まで含有することがあるが、Fe濃度が5.0%以下に制限されていれば、めっき層中の亀裂の発生頻度等に影響はない。よって、Fe含有量は0~5.0%とする。Fe含有量は0%超でもよい。
Fe: 0% or more, 5.0% or less Since the hot-dip plated steel material of this embodiment is manufactured by a continuous hot-dip plating method, Fe may diffuse from the plated base material to the plated layer during manufacturing. As described above, in this embodiment, the Al concentration of the plated layer is high, and an Al-Fe-based interface alloy layer may be formed, but its thickness is thin. As a result, the plated layer may contain Fe up to a maximum of 5.0%, but as long as the Fe concentration is limited to 5.0% or less, there is no effect on the frequency of cracks in the plated layer. Therefore, the Fe content is set to 0 to 5.0%. The Fe content may be more than 0%.

残部:Zn及び不純物
 残部にはZnを含有することが好ましい。本実施形態の溶融めっき鋼材は、汎用性の高いZn系めっき鋼材であるため、めっき層の主相を構成する元素はZnである。
Balance: Zn and impurities The balance preferably contains Zn. Since the hot-dip plated steel material of the present embodiment is a highly versatile Zn-based plated steel material, the element constituting the main phase of the plated layer is Zn.

 不純物は、原材料に含まれる成分、または、製造の工程で混入する成分であって、意図的に含有させたものではない成分を指す。例えば、めっき層には、鋼材(地鉄)とめっき浴との相互の原子拡散によって、不純物として、Fe以外の成分も微量混入することがある。まためっき合金を製造するために通常3N純度の金属を使用するため、不純物の濃度はおよそ、その合計で0.03%以下としてもよい。 Impurities refer to components contained in raw materials or components mixed in during the manufacturing process, but not intentionally included. For example, trace amounts of components other than Fe may be mixed into the plating layer as impurities due to atomic diffusion between the steel (base steel) and the plating bath. Also, since metals with a purity of 3N are usually used to manufacture plating alloys, the concentration of impurities may be approximately 0.03% or less in total.

 めっき層の平均化学組成の同定には、地鉄(鋼材)の腐食を抑制するインヒビターを含有した酸でめっき層を剥離溶解した酸液を得る。次に、得られた酸液をICP発光分光分析法またはICP-MS法で測定することで化学組成を得ることができる。酸種は、めっき層を溶解できる酸であれば、特に制限はない。剥離前後の面積と重量を測定しておけば、めっき付着量(g/m)も同時に得ることができる。 To identify the average chemical composition of the plating layer, the plating layer is stripped and dissolved using an acid containing an inhibitor that suppresses corrosion of the base steel (steel material) to obtain an acid solution. The resulting acid solution is then measured using ICP emission spectroscopy or ICP-MS to obtain the chemical composition. There are no particular limitations on the type of acid, so long as it is an acid that can dissolve the plating layer. If the area and weight are measured before and after stripping, the plating coverage (g/ m2 ) can also be obtained at the same time.

 次に、めっき層の成分の深さ方法の分布を説明する。
 めっき層の深さ方向の成分分布の把握は、グロー放電発光分析法(GDS)を使用する。一方、GDSはφ数mm以上の比較的広範囲の成分把握で有効であり、スパッタ速度などによっても界面位置は定義によって変わる。本実施形態においては、めっき層の表面を始点(ゼロ点)とし、めっき層の界面位置は、Feの濃度分布に従い、Fe濃度が定量分析値5質量%を示す位置と定義する。GDSの分析条件等の詳細は後に説明する。
Next, the distribution of components of the plating layer with respect to the depth will be described.
Glow discharge optical emission spectrometry (GDS) is used to grasp the component distribution in the depth direction of the plating layer. On the other hand, GDS is effective for grasping the components in a relatively wide range of diameter of several mm or more, and the interface position varies by definition depending on the sputtering speed, etc. In this embodiment, the surface of the plating layer is set as the starting point (zero point), and the interface position of the plating layer is defined as the position where the Fe concentration shows a quantitative analysis value of 5 mass% according to the Fe concentration distribution. Details of the GDS analysis conditions, etc. will be described later.

 界面合金層においてFeAl系の化合物が生じる場合もあるが、この場合の界面位置は界面合金層上となる。上記定義により、界面合金層を除く、Zn-Al-Mg合金層のめっき層部分のみに着目された成分が把握できる。また、めっき層の厚さtとすると、めっき層の厚さtに対してめっき層の中心部は1/3t~2/3tとみなすことができる。つまり、1/3t~2/3tの範囲がめっき層の主体部分となる。図1に概要を示す。 In some cases, FeAl-based compounds may occur in the interface alloy layer, but in this case the interface is located on the interface alloy layer. The above definition allows us to understand the components focusing only on the plating layer portion of the Zn-Al-Mg alloy layer, excluding the interface alloy layer. Furthermore, if the thickness of the plating layer is t, the center of the plating layer can be considered to be 1/3t to 2/3t of the plating layer thickness t. In other words, the range of 1/3t to 2/3t is the main part of the plating layer. An overview is shown in Figure 1.

 本実施形態のめっき層において、深さ方向において、Cu、Ag元素は、多くはZnと結合、もしくは置換するため似た分布を取ることとなる。他方、例えば、Cu、Ag元素をめっき浴中に添加することによって形成するめっき層の場合、Cu、Ag元素はAlと分布が近くなり、Znとの相関性がみられない場合がある。 In the plating layer of this embodiment, the Cu and Ag elements mostly bond with or replace Zn in the depth direction, so they have a similar distribution. On the other hand, for example, in the case of a plating layer formed by adding Cu and Ag elements to a plating bath, the distribution of Cu and Ag elements will be close to that of Al, and there may be cases where no correlation with Zn is observed.

 電気化学的に卑なZn位置に電気化学的に貴なCu、またはAgが入ることでめっき層の腐食電位が上昇する。すなわち本発明者らは、CuまたはAgがZnと同じ位置を取ることは、CuまたはAgが、Zn-Al(β)相中へ含有している、もしくはZn-Al(β)相中のZnと置換しているとみなすことができ、含有もしくは置換の割合(度合い)が一定であるほど、めっき層全体の電位が上昇することを意味していることを見出した。 The corrosion potential of the plating layer increases when electrochemically noble Cu or Ag occupies the electrochemically less noble Zn site. In other words, the inventors have found that when Cu or Ag occupies the same site as Zn, it can be considered that Cu or Ag is contained in the Zn-Al (β) phase or is substituting for Zn in the Zn-Al (β) phase, and that the more constant the proportion (degree) of inclusion or substitution, the higher the potential of the entire plating layer.

 Znと、Cuおよび/またはAgの置換の度合い(CAZ)は、GDSの成分分析において下記式(5)で表すことができる。 The degree of substitution of Zn with Cu and/or Ag (CAZ) can be expressed by the following formula (5) in the GDS component analysis.

 CAZ=[Cu+Ag]/[Zn]・・・(5)
 ただし式(5)中の、[Cu]、[Ag]及び[Zn]は、GDSにおける深さ方向の定量成分分析値(質量%)である。
CAZ=[Cu+Ag]/[Zn]...(5)
In the formula (5), [Cu], [Ag], and [Zn] are quantitative component analysis values (mass%) in the depth direction in GDS.

 「CAZ」は、めっき層の表面に対して1/3t位置から2/3t位置までの間の内部領域における、Zn濃度に対する、Cu濃度とAg濃度の合計濃度の比である。このCAZ値が大きいほど、置換が進むことを意味している。 "CAZ" is the ratio of the total concentration of Cu and Ag to the Zn concentration in the internal region between the 1/3t position and the 2/3t position on the surface of the plating layer. The larger this CAZ value is, the more substitution has progressed.

 また、めっき層において、CAZの最大値CAZmaxおよびCAZの最小値CAZminが下記式(1)を満たす場合、めっき層における腐食電位の上昇がめっき層全体で起こり、めっき鋼板に白錆発生量が少なくなる傾向にある。これは、Cuおよび/またはAgがめっき層に均一に分布しているためである。CAZmax/CAZminは好ましくは1.1以下である。 In addition, in a plating layer, when the maximum CAZ value CAZ max and the minimum CAZ value CAZ min satisfy the following formula (1), an increase in the corrosion potential of the plating layer occurs throughout the plating layer, and the amount of white rust generated on the plated steel sheet tends to be reduced. This is because Cu and/or Ag are uniformly distributed in the plating layer. CAZ max /CAZ min is preferably 1.1 or less.

 CAZmax/CAZmin≦1.20 …(1) CAZ max /CAZ min ≦1.20…(1)

 また電位の上昇を十分に引き起こすためには、下記式(2)を満足することが必要である。一方で、過度な腐食電位の上昇は、腐食の促進になる。そのためCAZmaxは下記(3)式を満足する必要がある。より好ましくは0.01≦CAZmin、CAZmax≦0.08とする。これにより、腐食電位がめっき層中に多く存在するMgZn相とほぼ同位の電位とすることができ、腐食による白錆発生が少なくなり外観がより良好となる。 In order to sufficiently increase the potential, it is necessary to satisfy the following formula (2). On the other hand, an excessive increase in corrosion potential will promote corrosion. Therefore, CAZ max needs to satisfy the following formula (3). More preferably, 0.01≦CAZ min , CAZ max ≦0.08. This allows the corrosion potential to be approximately the same as that of the MgZn 2 phase present in large amounts in the plating layer, reducing the occurrence of white rust due to corrosion and improving the appearance.

 0.0005≦CAZmin …(2)
 CAZmax≦0.1000 …(3)
0.0005≦CAZ min …(2)
CAZ max ≦0.1000…(3)

 めっき層の白錆発生による外観劣化に対しては、Zn-Al相(β相)の電位を高くすることが効果的である。また、電位を高くして周囲の金属間化合物や金属相との電位差を小さくすると共に、さらに、β相自体の電気抵抗を高めると、腐食進行が小さくなって耐食性を上げることができる。この傾向は、腐食電流密度によって評価することができ、β相のAl,Znの置換を一定とすることで達成できる。β相はめっき層中で5μm程度以上のサイズを有するため、SEMで容易に存在を確認することができる。またEDS、EPMAなどでその部位の定量分析値を得ることができる。 Increasing the potential of the Zn-Al phase (β phase) is effective in preventing deterioration of appearance due to the formation of white rust in the plating layer. In addition, increasing the potential to reduce the potential difference with the surrounding intermetallic compounds and metal phases, as well as increasing the electrical resistance of the β phase itself, slows the progression of corrosion and improves corrosion resistance. This tendency can be evaluated by the corrosion current density, and can be achieved by keeping the replacement of Al and Zn in the β phase constant. As the β phase has a size of approximately 5 μm or more in the plating layer, its presence can be easily confirmed with SEM. Quantitative analysis values for that area can also be obtained using EDS, EPMA, etc.

 β相におけるZnとAlとの比率(Zn:Al)はおよそ1:1であり、この範囲の場合に耐食性の優れるβ相として存在できる。また、β相内の任意の点、もしくは任意の領域において、下記式(4)を満たすことが好ましい。下記式(4)を満たすことで、β相の電気抵抗が高まり、耐食性をより向上できる。 The ratio of Zn to Al in the β phase (Zn:Al) is approximately 1:1, and within this range, the β phase can exist with excellent corrosion resistance. In addition, it is preferable that the following formula (4) is satisfied at any point or in any region within the β phase. By satisfying the following formula (4), the electrical resistance of the β phase increases, and corrosion resistance can be further improved.

0.85≦[Al]/([Zn]+[Cu]+[Ag])≦1.15 ・・・(4)
 ここで、式(4)中の[Al]、[Zn]、[Cu]および[Ag]はそれぞれ、前記β相内におけるエネルギー分散方X線分析による定量分析値(at%)である。
0.85≦[Al]/([Zn]+[Cu]+[Ag])≦1.15 (4)
Here, [Al], [Zn], [Cu] and [Ag] in formula (4) are quantitative analysis values (at %) in the β phase by energy dispersive X-ray analysis.

 さらに、β相の面積分率によって腐食電流密度が依存する。そのため、めっき層の任意のSEM断面において、β相の面積分率が3%以上であるとよい。めっき層中のβ相の面積率は製造方法によって制御することができる。β相の面積分率は、より好ましくは5%以上であり、さらに好ましくはめっき層中のCu+Ag濃度を0.4%以上として、β相の面積分率を10%以上とすることが好ましい。
 ここで、本明細書でいう「β相」とは、Al-Zn-Cu化合物、Al-Zn-Ag化合物、およびAl-Zn-Cu-Ag化合物の少なくとも一種以上から構成される金属間化合物領域ともいえる。
Furthermore, the corrosion current density depends on the area fraction of the β phase. Therefore, in any SEM cross section of the plating layer, the area fraction of the β phase is preferably 3% or more. The area fraction of the β phase in the plating layer can be controlled by the manufacturing method. The area fraction of the β phase is more preferably 5% or more, and further preferably, the Cu+Ag concentration in the plating layer is 0.4% or more and the area fraction of the β phase is 10% or more.
Here, the "β phase" referred to in this specification can also be said to be an intermetallic compound region composed of at least one of an Al-Zn-Cu compound, an Al-Zn-Ag compound, and an Al-Zn-Cu-Ag compound.

 めっき層中のβ相にCu及び/又はAgを適切に供給するには、後述する方法によって、めっき原板上に形成されたプレめっき層から提供する方法が好ましい。プレめっき層中のZn、Cu、Agが事前焼鈍の際に熱拡散してCu-Ag-Zn系拡散めっき層(Cu,Ag-Zn金属間化合物の集合体)となる。ただし、溶融めっき時、このCu-Ag-Zn系拡散めっき層は消滅する。ただし、(Zn+Al)-(Cu+Ag)化合物が、最終的にめっき層に若干量存在していると、めっき層の電位を高めることができる。 In order to properly supply Cu and/or Ag to the β phase in the plating layer, it is preferable to provide them from a pre-plating layer formed on the original plate by the method described below. The Zn, Cu, and Ag in the pre-plating layer are thermally diffused during pre-annealing to form a Cu-Ag-Zn diffusion plating layer (an aggregate of Cu, Ag-Zn intermetallic compounds). However, this Cu-Ag-Zn diffusion plating layer disappears during hot-dip plating. However, if a small amount of (Zn+Al)-(Cu+Ag) compounds are ultimately present in the plating layer, the potential of the plating layer can be increased.

 (Zn+Al)-(Cu+Ag)化合物は、ZnにわずかにCu,Ag,Alが溶解した化合物であり、電位は-1.2V(vs. Ag/AgCl 1M NaCl)を示す。したがって、(Zn+Al)-(Cu+Ag)化合物を最終的なめっき層に残存させることによって、さらにめっき層の電位を上げることができる。(Zn+Al)-(Cu+Ag)化合物は、SEMでめっき層内に確認することができ、前記同様に点分析による定量分析値を確認することができる。 The (Zn+Al)-(Cu+Ag) compound is a compound in which small amounts of Cu, Ag, and Al are dissolved in Zn, and has a potential of -1.2V (vs. Ag/AgCl 1M NaCl). Therefore, by leaving the (Zn+Al)-(Cu+Ag) compound in the final plating layer, the potential of the plating layer can be further increased. The (Zn+Al)-(Cu+Ag) compound can be confirmed within the plating layer using SEM, and quantitative analysis values can be confirmed using point analysis in the same manner as above.

 適切な電位を示す(Zn+Al)-(Cu+Ag)化合物を得るためには、成分比をZn+Al:Cu+Ag=4:1~9:1とすることが好ましい。また、(Zn+Al)-(Cu+Ag)化合物は、めっき層の厚み方向に沿った断面のうち任意の断面において相当円直径で1μm以上であり、さらに、その個数は、10000μmあたり、10個以上、より好ましくは、20個以上とすることがよい。(Zn+Al)-(Cu+Ag)化合物の個数は、原板におけるCu,AgとZnの付着量、すなわちプレめっき層の付着量に依存する傾向がある。 In order to obtain a (Zn+Al)-(Cu+Ag) compound exhibiting an appropriate potential, it is preferable that the component ratio is Zn+Al:Cu+Ag=4:1 to 9:1. The (Zn+Al)-(Cu+Ag) compound has an equivalent circular diameter of 1 μm or more in any cross section along the thickness direction of the plating layer, and the number of (Zn+Al)-(Cu+Ag) compounds is preferably 10 or more, more preferably 20 or more per 10,000 μm2. The number of (Zn+Al)-(Cu+Ag) compounds tends to depend on the amount of Cu, Ag, and Zn attached to the original sheet, i.e., the amount of the pre-plating layer attached.

 次に、めっき層の解析方法の一例を示す。 Next, we will show an example of how to analyze a plating layer.

 めっき層の内部の深さ方向の成分分析方法には、グロー放電発光分光分析装置(GDS)を使用するとよい。本発明者らは、グロー放電発光分光分析装置としてLECOジャパン850Aを使用するが、測定装置はこれに限定されるものではない。深さ方向の分析を行う場合は、Arスパッタを行いつつ分析することが好ましく、その分析条件は、アルゴン圧:0.27MPa、出力電力:30W、出力電圧:1000V、放電領域:直径4mmの円形の領域内、とする。測定は、めっき層の表面から深さ方向に向けて、Fe濃度が100%(地鉄に到達する)になるまで実施する。したがって、GDSによる深さ方向分析の分析範囲は、めっき表面から、Zn-Al-Mgめっき層、界面合金層(Al-Fe合金層)及び鋼材の一部まで達する範囲となる。GDS分析後は、東京精密株式会社製のsurfcom130Aを使用して断面のスパッタ深さを測定する。GDS分析によって、めっき層の深さ方向の元素分布プロファイルが得られる。元素分布プロファイルでは、検出された元素の全量を100%とした場合に、各元素の深さ方向の含有量の分布が示される。 A glow discharge optical emission spectrometer (GDS) is preferably used for the component analysis method in the depth direction inside the plating layer. The inventors use a LECO Japan 850A as a glow discharge optical emission spectrometer, but the measurement device is not limited to this. When performing a depth direction analysis, it is preferable to perform the analysis while performing Ar sputtering, and the analysis conditions are argon pressure: 0.27 MPa, output power: 30 W, output voltage: 1000 V, and discharge area: within a circular area with a diameter of 4 mm. The measurement is performed from the surface of the plating layer toward the depth direction until the Fe concentration reaches 100% (reaching the base steel). Therefore, the analysis range of the depth direction analysis by GDS is the range from the plating surface to the Zn-Al-Mg plating layer, the interface alloy layer (Al-Fe alloy layer), and a part of the steel material. After the GDS analysis, the sputter depth of the cross section is measured using a Surfcom 130A manufactured by Tokyo Seimitsu Co., Ltd. GDS analysis provides an element distribution profile in the depth direction of the plating layer. The element distribution profile shows the distribution of the content of each element in the depth direction, assuming that the total amount of detected elements is 100%.

 SEMによる断面観察は、以下の手順で行うとよい。
 まず、めっき鋼板からめっき層の断面が露出するように20×20mm角程度の観察用サンプルを切り出し、このサンプルを樹脂中に埋め込む。次いで、観察面を鏡面研磨して、めっき層の断面観察を実施する。なお、めっき層の断面にAu蒸着した上で断面観察を行うとよい。めっき層の視野選定は、偏りを無くすため、1つのめっき鋼板から少なくとも3つの観察用サンプルを採取し、さらに500~2000倍程度の視野になるようにランダムで最低30か所を観察して各相の同定、面積分率の測定を行う。
The cross-section observation using an SEM may be carried out in the following procedure.
First, a sample for observation measuring approximately 20 x 20 mm square is cut out from the plated steel sheet so that the cross section of the plating layer is exposed, and this sample is embedded in resin. Next, the observation surface is mirror-polished to observe the cross section of the plating layer. It is advisable to vapor-deposit Au on the cross section of the plating layer before performing the cross-sectional observation. In order to eliminate bias in the selection of the field of view of the plating layer, at least three observation samples are taken from one plated steel sheet, and at least 30 locations are observed randomly so that the field of view is approximately 500 to 2000 times larger, and each phase is identified and the area fraction is measured.

 β相の面積分率を求める際は、視野を特定した後、さらにEDSによる点分析でβ相の成分範囲が0.85≦[Al]/([Zn]+[Cu]+[Ag])≦1.15に近い領域を含むよう視野として特定する。β相が見つかった場合は、めっき層の全体の定量分析元素マッピング像を撮影する。撮影されたマッピング像のZn,Alから画像解析ソフト「ImageJ」を用いて同一成分範囲を特定し、2値化などを実行する。得られた2値化面積より、めっき層におけるβ相の面積分率を測定する。 When determining the area fraction of the β phase, the field of view is first specified, and then the field of view is specified to include the region where the component range of the β phase is close to 0.85≦[Al]/([Zn]+[Cu]+[Ag])≦1.15 by point analysis using EDS. If the β phase is found, a quantitative analysis element mapping image of the entire plating layer is taken. The same component range is identified from the Zn and Al in the mapping image taken using the image analysis software "ImageJ" and binarization is performed. The area fraction of the β phase in the plating layer is measured from the obtained binarized area.

 Zn-Cu化合物についても同じように、Zn、Cuや相当円直径を測定する。(Zn+Al)-(Cu+Ag)化合物の個数の分布においては、ImageJなどの公知の画像解析ソフトに付属の機能により求めることができる。各々の視野を観察した後、めっき層の面積(ピクセル数相当)の合計が10000μmに到達するまで各サンプルで個数分布を確認する。(Zn+Al)-(Cu+Ag)化合物の個数については、少なくとも3サンプルからは確認することが好ましい。 Similarly, for Zn-Cu compounds, Zn, Cu and equivalent circle diameter are measured. The distribution of the number of (Zn+Al)-(Cu+Ag) compounds can be obtained using functions attached to known image analysis software such as ImageJ. After observing each field of view, the number distribution is confirmed for each sample until the total area (equivalent to the number of pixels) of the plating layer reaches 10,000 μm2 . It is preferable to confirm the number of (Zn+Al)-(Cu+Ag) compounds from at least three samples.

[溶融めっき鋼材の製造方法]
 次に、本実施形態の溶融めっき鋼材の好ましい製造方法について説明する。なお、本実施形態に係る製造方法では、CuとAgはほぼ同様の挙動を示すことから、以降これらを区別せずCuで代表して説明する。つまり、以下で説明するCuに関する記載は、「Ag」と読み替えてもよく、「CuおよびAg」と読み替えてもよい。
[Method of manufacturing hot-dip plated steel material]
Next, a preferred method for producing the hot-dip plated steel material of this embodiment will be described. In the production method according to this embodiment, Cu and Ag behave almost similarly, so that hereinafter, they will not be distinguished from each other and Cu will be used as a representative. In other words, the description of Cu in the following description may be read as "Ag" or "Cu and Ag".

 上述したようなめっき層を形成する方法としては、単純には、Zn-Al-Mg系めっき浴に直接Cuを添加してめっきすることが考えられる。しかし、この方法では、CuAlなどの金属間化合物の形成や、基材である素地鉄とCuとの反応が生じることにより、β相に効率的にCuが含有されにくいことが懸念される。そのため、本実施形態の溶融めっき鋼材を製造するための好適な製法の一例として、めっき原板上に設けたプレめっき層からCuをめっき層に供給する方法を例に挙げて、以下説明する。 As a method for forming the above-mentioned plating layer, it is possible to simply add Cu directly to a Zn-Al-Mg plating bath and plate it. However, with this method, there is a concern that Cu is not efficiently contained in the β phase due to the formation of intermetallic compounds such as CuAl2 and the reaction between the base iron, which is the base material, and Cu. Therefore, as an example of a suitable manufacturing method for producing the hot-dip plated steel material of this embodiment, a method of supplying Cu to the plating layer from a pre-plating layer provided on a plated original sheet will be described below.

 まず、冷延鋼板もしくは熱延鋼板などのめっき原板に、あらかじめ電気めっきでZnをめっきしプレZnめっき層(以下、単にZnめっき層、Zn層とも称する)を形成する。Znめっき層の付着量は、最終的に得られるめっき層中のCu量以上が好ましい。プレめっき手段は電気めっき、置換めっきでもよく、蒸着等であってもよい。 First, a base plate such as a cold-rolled steel sheet or a hot-rolled steel sheet is electroplated with Zn to form a pre-Zn plating layer (hereinafter simply referred to as a Zn plating layer or a Zn layer). The amount of adhesion of the Zn plating layer is preferably equal to or greater than the amount of Cu in the final plating layer. The pre-plating method may be electroplating, displacement plating, vapor deposition, etc.

 なお、Fe上へのZnめっきは、シアン化物浴,ジンケート浴,塩化亜鉛浴,硫酸亜鉛浴など通常の亜鉛めっきを形成する条件で実行すれば特に制約はない。 There are no particular restrictions on Zn plating on Fe, as long as it is performed under conditions that normally produce zinc plating, such as a cyanide bath, zincate bath, zinc chloride bath, or zinc sulfate bath.

 その後、さらにZn層上にCuをめっきしてプレCuめっき層を形成する。本実施形態では、プレZnめっき層を形成した後、プレZnめっき層上にプレCuめっき層を形成することが効果的である。プレCuめっき層、プレZnめっき層の順に形成した場合には、プレCuめっき層中のCuが原板側に拡散してしまい、所望のめっき層が得られない場合がある。そのため、プレZnめっき層、プレCuめっき層の順に形成することが好ましい。Cuめっきは、硫酸銅,シアン化銅,ピロリン酸銅,アルカノール浴などが適用可能であり、めっき浴に特に制約はない。Agはシアン化銀があり、さらに,Cuは無電解めっきすることも可能である。 Then, Cu is plated on the Zn layer to form a pre-Cu plating layer. In this embodiment, it is effective to form a pre-Cu plating layer on the pre-Zn plating layer after forming the pre-Cu plating layer. If the pre-Cu plating layer and the pre-Zn plating layer are formed in this order, the Cu in the pre-Cu plating layer may diffuse to the original sheet side, and the desired plating layer may not be obtained. For this reason, it is preferable to form the pre-Zn plating layer and the pre-Cu plating layer in this order. For Cu plating, copper sulfate, copper cyanide, copper pyrophosphate, alkanol baths, etc. can be used, and there are no particular restrictions on the plating bath. Ag can be silver cyanide, and Cu can also be electrolessly plated.

 (Zn+Al)-(Cu+Ag)化合物の個数を増大させるためには、プレCuめっき層の付着量は、最終的なめっき付着量の1/1000を超えることが好ましい。 To increase the number of (Zn+Al)-(Cu+Ag) compounds, it is preferable that the deposition weight of the pre-Cu plating layer exceeds 1/1000 of the final plating deposition weight.

 ついで、めっき原板を450~600℃に加熱する。この加熱は原板の焼きなましを兼ねてもよい(以降、この加熱を事前焼鈍と称する場合がある)。この加熱によって、Znが溶解し、Cuと反応して合金化するため、Zn-Cuのめっき拡散層を形成することができる。加熱温度が450℃未満ではCuを効率的にめっき層に拡散させることができない場合がある。一方、加熱温度が600℃を超える場合は、プレZnめっき層の蒸発やFeとZnの反応層が形成するため好ましくない。事前焼鈍の温度範囲は450~600℃とすることが好ましい。 Then, the plated original sheet is heated to 450-600°C. This heating may also serve as annealing of the original sheet (hereinafter, this heating may be referred to as pre-annealing). This heating causes Zn to melt and react with Cu to form an alloy, forming a Zn-Cu plated diffusion layer. If the heating temperature is less than 450°C, Cu may not be efficiently diffused into the plated layer. On the other hand, if the heating temperature exceeds 600°C, this is not preferred as it may cause the pre-Zn plated layer to evaporate and form a reaction layer of Fe and Zn. The pre-annealing temperature range is preferably 450-600°C.

 次に、Zn―Cuめっき拡散層が形成された原板をZn-Al-Mg系めっき浴に浸漬し、その後、引き上げる。このときZn-Al-Mg系めっき浴の浴温は450~600℃とするのが好ましい。Zn-Cuめっき拡散層が形成された原板をZn-Al-Mgめっき系浴に浸漬し、引き上げた際に、浴温が高い方がZn-Cuめっき層が溶解し易く、Cuがめっき層に微細分散しやすくなる。そのため、浴温は450℃以上が好ましい。より好ましくは470℃以上、さらに好ましくは500℃以上、よりさらに好ましくは550℃以上である。一方、浴温が過度に高くなるとめっき浴中のZnが蒸発し浴バランスが崩れ易くなる。そのため、浴温は600℃以下が好ましい。より好ましくは580℃以下である。
 本実施形態では、めっき原板を引き上げる際に温度制御することが好ましい。つまり、浸漬後に適切な温度制御および冷却制御を行うことで、Cuがめっき浴中に微細分散し、めっき層の凝固過程でZn-Al(β)相中にCuが含有される。
Next, the original sheet on which the Zn-Cu plating diffusion layer is formed is immersed in a Zn-Al-Mg plating bath and then pulled up. At this time, the bath temperature of the Zn-Al-Mg plating bath is preferably 450 to 600°C. When the original sheet on which the Zn-Cu plating diffusion layer is formed is immersed in a Zn-Al-Mg plating bath and pulled up, the higher the bath temperature, the easier it is for the Zn-Cu plating layer to dissolve and for Cu to be finely dispersed in the plating layer. Therefore, the bath temperature is preferably 450°C or higher. More preferably, it is 470°C or higher, even more preferably 500°C or higher, and even more preferably 550°C or higher. On the other hand, if the bath temperature is excessively high, Zn in the plating bath evaporates and the bath balance is easily lost. Therefore, the bath temperature is preferably 600°C or lower. More preferably, it is 580°C or lower.
In this embodiment, it is preferable to control the temperature when the plated original sheet is pulled up. In other words, by performing appropriate temperature control and cooling control after immersion, Cu is finely dispersed in the plating bath, and Cu is contained in the Zn-Al(β) phase during the solidification process of the plating layer.

 Zn-Al(β)相はめっき溶融状態から、Al(α)相が析出、成長した後に形成する相である。Al(α)相を十分に成長させた後にそれを取り囲むようにZn-Al(β相)が析出成長する。固体のAl(α)相にはめっき原板から取り込まれたZn-Cu微細化合物は溶けないため、多くのZn-Cu微細化合物を残すことができる。 The Zn-Al (β) phase is formed after the Al (α) phase precipitates and grows from the molten plating state. After the Al (α) phase has grown sufficiently, the Zn-Al (β) phase precipitates and grows to surround it. Since the Zn-Cu fine compounds taken in from the original plate do not dissolve in the solid Al (α) phase, many of the Zn-Cu fine compounds can be left intact.

 550~450℃の温度域は、α相のみが形成され、β相は形成されない温度域である。この温度域の平均冷却速度を10℃超とすると、α相の成長が阻害されるおそれがある。550~450℃の温度域においてα相が十分に成長されなかった場合、その後のβ相の形成が不十分となるおそれがある。また、550~450℃の温度域の平均冷却速度が大きすぎると、β相量を十分に確保できないことから、Zn-Cuを十分にβ相に取り込むことができず、結果、CAZmax/CAZminが増大する場合がある。そのため、550~450℃の温度範囲の平均冷却速度を10℃/秒以下とする。 The temperature range of 550 to 450 ° C is a temperature range in which only the α phase is formed, and the β phase is not formed. If the average cooling rate in this temperature range is more than 10 ° C, the growth of the α phase may be inhibited. If the α phase does not grow sufficiently in the temperature range of 550 to 450 ° C, the subsequent formation of the β phase may be insufficient. In addition, if the average cooling rate in the temperature range of 550 to 450 ° C is too large, the amount of β phase cannot be sufficiently secured, and therefore Zn-Cu cannot be sufficiently incorporated into the β phase, and as a result, CAZ max /CAZ min may increase. Therefore, the average cooling rate in the temperature range of 550 to 450 ° C is set to 10 ° C / sec or less.

 450~350℃の温度域の平均冷却速度は、特に限定されない。ただし450℃~350℃の間の平均冷却速度が低い方が、β相量を多くすることができる。そのため、450~350℃間の平均冷却速度は、好ましくは8℃/秒以下である。 The average cooling rate in the temperature range of 450 to 350°C is not particularly limited. However, a lower average cooling rate between 450°C and 350°C can increase the amount of β phase. Therefore, the average cooling rate between 450°C and 350°C is preferably 8°C/sec or less.

 350℃未満の温度域における平均冷却速度はβ相の形成に影響を与えない。また、350℃未満の温度域における冷却条件は、電位や腐食電流密度などにも影響を与えないので、特に限定されない。 The average cooling rate in the temperature range below 350°C does not affect the formation of the β phase. In addition, the cooling conditions in the temperature range below 350°C are not particularly limited, as they do not affect the potential or corrosion current density.

 次に、溶融めっき鋼材の性能評価方法について述べる。 Next, we will explain how to evaluate the performance of hot-dip galvanized steel.

(腐食電位)
 めっき層の腐食電位などは電気化学セル、参照電極、塩橋、ポテンショスタット(定電位電界装置)などの装置を使用して一般的な装置構成にて測定することができる。
 評価方法の一例として、参照電極としてAg/AgClタイプを使用し、測定溶液として1MのNaCl水溶液を用い、さらに脱気・室温一定などの条件にて実施する方法が挙げられる。なお、めっき鋼板表面を十分に洗浄した後、鋼板を測定溶液に浸漬させると、浸漬直後における腐食電位が大きく負側に触れる場合があるが、1800秒程度溶液内に浸漬すると、電位が安定する。この電位がめっき層表面の腐食電位である。
(Corrosion Potential)
The corrosion potential of the plating layer can be measured using a general device configuration including an electrochemical cell, a reference electrode, a salt bridge, a potentiostat (a constant potential electric field device), and the like.
One example of the evaluation method is a method using an Ag/AgCl type reference electrode, a 1M NaCl aqueous solution as the measurement solution, and further performing the evaluation under conditions such as degassing and constant room temperature. When the surface of a plated steel sheet is thoroughly washed and then immersed in the measurement solution, the corrosion potential immediately after immersion may be significantly negative, but the potential stabilizes after immersion in the solution for about 1800 seconds. This potential is the corrosion potential of the plating layer surface.

 腐食電位が-1.1Vと近づくと、めっき層の電位のバラつきが少なくなり好ましく、腐食初期における白錆発生量を最も少なくすることができる。なお、腐食初期とは、JIS Z 2371(2015)に規定の塩水噴霧試験(SST)24時間後の白錆面積率の傾向である。 When the corrosion potential approaches -1.1 V, there is less variation in the potential of the plating layer, which is preferable, and the amount of white rust generated in the early stages of corrosion can be minimized. Note that the early stages of corrosion refer to the tendency of the white rust area ratio 24 hours after the salt spray test (SST) specified in JIS Z 2371 (2015).

<判定基準>
E:腐食電位が-1.3V以下,かつ腐食試験の評価面の白錆面積率「25%以上」
D:腐食電位が-1.3~-1.25V,かつ腐食試験の評価面の白錆面積率「20~25%以上」
C:腐食電位が-1.25~-1.2V,かつ腐食試験の評価面の白錆面積率「15~20%以上」
B:腐食電位が-1.25~-1.2V,かつ腐食試験の評価面の白錆面積率「10~15%以上」
A:腐食電位が-1.2~-1.1V,かつ腐食試験の評価面の白錆面積率「10%未満」
<Criteria>
E: The corrosion potential is -1.3V or less, and the white rust area ratio of the surface to be evaluated in the corrosion test is 25% or more.
D: The corrosion potential is -1.3 to -1.25 V, and the white rust area ratio of the surface to be evaluated in the corrosion test is 20 to 25% or more.
C: The corrosion potential is -1.25 to -1.2 V, and the white rust area ratio on the evaluation surface of the corrosion test is 15 to 20% or more.
B: The corrosion potential is -1.25 to -1.2 V, and the white rust area ratio on the evaluation surface of the corrosion test is 10 to 15% or more.
A: The corrosion potential is -1.2 to -1.1 V, and the white rust area rate on the evaluation surface of the corrosion test is less than 10%.

(腐食電流密度)
 電位を正方向及び負方向に電位を変化させて分極曲線を描き、ターフェル外挿法によって腐食電位を求める。腐食電流密度は、腐食速度に依存する。これは塩水噴霧試験における腐食減量からも推測できる。すなわち、初期にはβ相のみが腐食するため、SST120時間における腐食減量を測定する。腐食減量の測定方法は、腐食試験前後の鋼板を30%クロム酸に5分浸漬することで、β相の腐食量を見積もることができる。
(Corrosion Current Density)
A polarization curve is drawn by changing the potential in the positive and negative directions, and the corrosion potential is obtained by Tafel extrapolation. The corrosion current density depends on the corrosion rate. This can also be estimated from the corrosion weight loss in a salt spray test. That is, since only the β phase corrodes in the early stage, the corrosion weight loss after 120 hours of SST is measured. The corrosion weight loss can be measured by immersing the steel sheet before and after the corrosion test in 30% chromic acid for 5 minutes, and the amount of corrosion of the β phase can be estimated.

<判定基準>
E:腐食電流密度log|i|(A/cm)を取得した際の値が-4以上,腐食減量が25g/m以上である場合。
D:腐食電流密度log|i|(A/cm)を取得した際の値が-4.5~-4,腐食減量が20g/m以上である場合。
C:腐食電流密度log|i|(A/cm)を取得した際の値が-5~-4.5,腐食減量が15g/m以上である場合。
B:腐食電流密度log|i|(A/cm)を取得した際の値が-5.5~-5,腐食減量が10g/m以上である場合。
A:腐食電流密度log|i|(A/cm)を取得した際の値が-6~-5.5,腐食減量が5g/m以上である場合。
S:腐食電流密度log|i|(A/cm)を取得した際の値が-6未満,腐食減量が5g/m未満である場合。
<Criteria>
E: The obtained corrosion current density log|i| (A/cm 2 ) is −4 or more, and the corrosion weight loss is 25 g/m 2 or more.
D: The obtained corrosion current density log|i| (A/cm 2 ) is −4.5 to −4, and the corrosion weight loss is 20 g/m 2 or more.
C: The obtained corrosion current density log|i| (A/cm 2 ) is −5 to −4.5, and the corrosion weight loss is 15 g/m 2 or more.
B: The obtained corrosion current density log|i| (A/cm 2 ) is −5.5 to −5, and the corrosion weight loss is 10 g/m 2 or more.
A: The obtained corrosion current density log|i| (A/cm 2 ) is −6 to −5.5, and the corrosion weight loss is 5 g/m 2 or more.
S: The obtained corrosion current density log|i| (A/cm 2 ) is less than −6, and the corrosion weight loss is less than 5 g/m 2 .

 めっき層の形成後は、各種化成処理や塗装処理を行ってもよい。 After the plating layer is formed, various chemical treatments and painting processes may be performed.

 本実施形態の溶融めっき鋼材には、めっき層上に皮膜を形成してもよい。皮膜は、1層または2層以上を形成することができる。めっき層直上の皮膜の種類としては、例えば、クロメート皮膜、りん酸塩皮膜、クロメートフリー皮膜が挙げられる。これら皮膜の形成は、クロメート処理、りん酸塩処理、クロメートフリー処理などの既知の方法で行うことができる。 In the hot-dip plated steel material of this embodiment, a coating may be formed on the plating layer. The coating may be formed in one layer or in two or more layers. Types of coatings that may be formed directly on the plating layer include, for example, chromate coatings, phosphate coatings, and chromate-free coatings. These coatings may be formed by known methods such as chromate treatment, phosphate treatment, and chromate-free treatment.

 クロメート処理には、電解によってクロメート皮膜を形成する電解クロメート処理、素材との反応を利用して皮膜を形成させ、その後余分な処理液を洗い流す反応型クロメート処理、処理液を被塗物に塗布し水洗することなく乾燥して皮膜を形成させる塗布型クロメート処理がある。いずれの処理を採用してもよい。 There are three types of chromate treatment: electrolytic chromate treatment, which forms a chromate film by electrolysis; reactive chromate treatment, which uses a reaction with the material to form a film and then washes away excess treatment liquid; and paint-type chromate treatment, which applies the treatment liquid to the substrate and dries it without rinsing to form a film. Any of these treatments may be used.

 電解クロメート処理としては、クロム酸、シリカゾル、樹脂(りん酸、アクリル樹脂、ビニルエステル樹脂、酢酸ビニルアクリルエマルション、カルボキシル化スチレンブタジエンラテックス、ジイソプロパノールアミン変性エポキシ樹脂等)、及び硬質シリカを使用する電解クロメート処理を例示することができる。 Examples of electrolytic chromate treatments include those using chromic acid, silica sol, resin (phosphoric acid, acrylic resin, vinyl ester resin, vinyl acetate acrylic emulsion, carboxylated styrene butadiene latex, diisopropanolamine modified epoxy resin, etc.), and hard silica.

 りん酸塩処理としては、例えば、りん酸亜鉛処理、りん酸亜鉛カルシウム処理、りん酸マンガン処理を例示することができる。 Examples of phosphate treatments include zinc phosphate treatment, zinc calcium phosphate treatment, and manganese phosphate treatment.

 クロメートフリー処理は、特に、環境に負荷なく好適である。クロメートフリー処理には、電解によってクロメートフリー皮膜を形成する電解型クロメートフリー処理、素材との反応を利用して皮膜を形成させ、その後、余分な処理液を洗い流す反応型クロメートフリー処理、処理液を被塗物に塗布し水洗することなく乾燥して皮膜を形成させる塗布型クロメートフリー処理がある。いずれの処理を採用してもよい。 Chromate-free treatments are particularly suitable as they place no burden on the environment. There are electrolytic chromate-free treatments that form a chromate-free film by electrolysis, reactive chromate-free treatments that form a film by utilizing a reaction with the material and then wash away excess treatment liquid, and coating-type chromate-free treatments that apply a treatment liquid to the substrate and dry it without rinsing to form a film. Any of these treatments may be used.

 さらに、めっき層直上の皮膜の上に、有機樹脂皮膜を1層もしくは2層以上有してもよい。有機樹脂としては、特定の種類に限定されず、例えば、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アクリル樹脂、ポリオレフィン樹脂、又はこれらの樹脂の変性体等を挙げられる。ここで変性体とは、これらの樹脂の構造中に含まれる反応性官能基に、その官能基と反応し得る官能基を構造中に含む他の化合物(モノマーや架橋剤など)を反応させた樹脂のことを指す。 Furthermore, one or more layers of an organic resin film may be provided on the film directly on the plating layer. The organic resin is not limited to a specific type, and examples include polyester resin, polyurethane resin, epoxy resin, acrylic resin, polyolefin resin, and modified products of these resins. Here, the modified product refers to a resin in which a reactive functional group contained in the structure of these resins has been reacted with another compound (monomer, crosslinking agent, etc.) that contains a functional group in its structure that can react with the functional group.

 このような有機樹脂としては、1種又は2種以上の有機樹脂(変性していないもの)を混合して用いてもよいし、少なくとも1種の有機樹脂の存在下で、少なくとも1種のその他の有機樹脂を変性することによって得られる有機樹脂を1種又は2種以上混合して用いてもよい。また有機樹脂皮膜中には任意の着色顔料や防錆顔料を含んでもよい。水に溶解又は分散することで水系化したものも使用することができる。 As such organic resins, one or more organic resins (unmodified) may be used in combination, or one or more organic resins obtained by modifying at least one other organic resin in the presence of at least one organic resin may be used in combination. The organic resin film may also contain any coloring pigment or rust-preventive pigment. Water-based resins that have been dissolved or dispersed in water may also be used.

 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an embodiment of the present invention will be described. However, the conditions in the embodiment are merely an example of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is not limited to this example of conditions. Various conditions may be adopted in the present invention as long as they do not deviate from the gist of the present invention and achieve the object of the present invention.

 まず、めっき原板として、100mm×200mm、板厚0.8mmの冷延鋼板(JIS G 3141(2017)に規定されるSPCCに相当)を用意した。この冷延鋼板に対し、まず、下記に示す亜鉛めっき浴を用いて所定量のZnを鋼板表面に付着させてZnめっき層を形成した。 First, a cold-rolled steel sheet (corresponding to SPCC as defined in JIS G 3141 (2017)) measuring 100 mm x 200 mm and having a thickness of 0.8 mm was prepared as the base sheet for plating. A Zn plating layer was formed by attaching a specified amount of Zn to the surface of this cold-rolled steel sheet using the zinc plating bath shown below.

 亜鉛めっき条件:塩化亜鉛:50g/L,塩化アンモニウム:200g/L,pH=5.5,浴温度:30℃,電流密度:2A/dm Zinc plating conditions: zinc chloride: 50 g/L, ammonium chloride: 200 g/L, pH=5.5, bath temperature: 30° C., current density: 2 A/dm 2 .

 次に、Znめっき層を形成しためっき原板に、下記銅めっき浴、下記銀めっき浴を用いて、Cuめっき層またはAgめっき層、もしくはCuおよびAgを含むめっき層を形成した。CuおよびAgを含むめっき層を形成する場合には、銅めっき浴、銀めっき浴の順にめっき原板を浸漬した。なお、下記銅めっき浴は空気攪拌を施した。また、下記銀めっき浴のpHは、H,KOHによって調整した。 Next, a Cu plating layer, an Ag plating layer, or a plating layer containing Cu and Ag was formed on the plated original sheet on which the Zn plating layer was formed, using the following copper plating bath and the following silver plating bath. When forming a plating layer containing Cu and Ag, the plated original sheet was immersed in the copper plating bath and then the silver plating bath. The copper plating bath was agitated with air. The pH of the silver plating bath was adjusted with H 4 P 2 O 7 and KOH.

 銅めっき条件:ピロリン酸銅:80g/L,ピロリン酸カリウム:290g/L,アンモニア水:3mg/L,硝酸カリウム:10g/L,陽極:無酸素高純度銅,電流密度:3A/dm Copper plating conditions: copper pyrophosphate: 80 g/L, potassium pyrophosphate: 290 g/L, ammonia water: 3 mg/L, potassium nitrate: 10 g/L, anode: oxygen-free high-purity copper, current density: 3 A/dm 2 .

 銀めっき条件:KAg(CN)2:40g/L(Ag換算),K:150g/L,EDTA(4カリウム塩):5g/L,平滑材HS II(※セレン,メルカブト化合物):0.5mL/L,pH=8~9,電流密度:40A/dm,浴温度:40℃,陽極:Pt/Ti電極。 Silver plating conditions: KAg(CN)2: 40 g/L (Ag equivalent), K 4 P 2 O 7 : 150 g/L, EDTA (tetrapotassium salt): 5 g/L, smoothing material HS II (selenium, mercapto compound): 0.5 mL/L, pH = 8-9, current density: 40 A/dm 2 , bath temperature: 40°C, anode: Pt/Ti electrode.

 めっき原板にCuめっき層またはAgめっき層、もしくはCuおよびAgを含むめっき層を形成した後、表1A~1Cに示す事前焼鈍温度にて、めっき原板を0.5~3分加熱してめっき拡散層を形成してめっき基材を得た。めっき拡散層の組成を表1A~1Cに示す。 After forming a Cu plating layer or an Ag plating layer, or a plating layer containing Cu and Ag on the original plate, the original plate was heated for 0.5 to 3 minutes at the pre-annealing temperature shown in Tables 1A to 1C to form a plating diffusion layer and obtain a plating substrate. The composition of the plating diffusion layer is shown in Tables 1A to 1C.

 得られためっき基材を溶融めっきシミュレーターにて、溶融めっきを実施した。
 まず、表1A~1Cに示すめっき浴成分を有する合金を真空溶解法にて調合し、完全無酸素・窒素置換雰囲気(O濃度5ppm未満)の状態で、めっき浴を建浴した。
 次に、めっき原板の一点(評価面中央裏面)をスポット溶接でK熱電対に接着し、めっき凝固完了までの温度履歴を把握した。めっき鋼板をH(25%)-N雰囲気で所定温度まで加熱する。めっき浴温は550~600℃とし、浸漬速度600mm/秒の速度でめっき基材を浸漬させ、3秒間浴内で停止させたのち、600mm/秒でめっき基材を引き上げた。
 引き上げ直後、Nワイピングガスにて135~140g/mになるように付着量を調整し、その後、無酸素・窒素置換雰囲気で流量制御したNガスを吹き付けて表1A~1Cに示す平均冷却速度で空冷した。
 以上の工程により、めっき鋼板を得た。
The obtained plated substrate was subjected to hot-dip plating in a hot-dip plating simulator.
First, alloys having the plating bath components shown in Tables 1A to 1C were prepared by a vacuum melting method, and plating baths were prepared in a completely oxygen-free, nitrogen-substituted atmosphere ( O2 concentration less than 5 ppm).
Next, one point of the plated original sheet (the back side of the center of the evaluation surface) was attached to a K thermocouple by spot welding, and the temperature history until the completion of plating solidification was grasped. The plated steel sheet was heated to a predetermined temperature in a H 2 (25%)-N 2 atmosphere. The plating bath temperature was set to 550-600°C, and the plated substrate was immersed at a dipping speed of 600 mm/sec. After stopping in the bath for 3 seconds, the plated substrate was lifted up at a speed of 600 mm/sec.
Immediately after pulling up, the deposition amount was adjusted to 135 to 140 g/ m2 using N2 wiping gas, and then air-cooled at the average cooling rates shown in Tables 1A to 1C by blowing N2 gas with a controlled flow rate in an oxygen-free, nitrogen-substituted atmosphere.
Through the above steps, a plated steel sheet was obtained.

 次に、各種めっき鋼板から、評価用サンプルを切り出した。GDS分析およびSEM観察用のサンプルは熱電対の位置の反対側において30mm角位置を切り出した。腐食用サンプルは、100×50mmをめっき鋼板中央部より採取した。 Next, evaluation samples were cut out from each type of plated steel sheet. Samples for GDS analysis and SEM observation were cut out at 30 mm square positions on the opposite side of the thermocouple position. Corrosion samples were taken from the center of the plated steel sheets, measuring 100 x 50 mm.

 切り出した各種サンプルの評価として、電気化学試験、及び腐食試験SSTを実施した。なお、めっき層の組成のうち、Feの組成は表には記載しないが、いずれも0~5%の範囲内であった。
 評価結果、めっき層の組成、GDS分析結果、およびβ相領域における各構成について、表2A~2Cに示す。なお、各表中の下線は、本発明の範囲外であること、好ましい製造条件を外れること又は特性値が好ましくないことを示す。また、表2A~表2Cにおける(*)は、めっき層の厚み方向に沿った任意の断面における、相当円直径で1μm以上である(Zn+Al)-(Cu+Ag)化合物の10000μmあたりの個数を示している。
The cut samples were evaluated by electrochemical tests and corrosion tests (SST). The composition of Fe in the plating layer is not shown in the table, but it was in the range of 0 to 5%.
The evaluation results, the composition of the plating layer, the GDS analysis results, and each component in the β-phase region are shown in Tables 2A to 2C. Note that underlines in each table indicate that the results are outside the scope of the present invention, that the manufacturing conditions are not preferable, or that the characteristic values are unfavorable. Also, (*) in Tables 2A to 2C indicates the number of (Zn+Al)-(Cu+Ag) compounds with an equivalent circle diameter of 1 μm or more per 10,000 μm2 in any cross section along the thickness direction of the plating layer.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

 本発明に係る上記態様によれば、腐食初期に発生する白錆を抑制することが可能な溶融めっき鋼材を提供することができる。 The above-mentioned aspects of the present invention make it possible to provide hot-dip plated steel material that can suppress the occurrence of white rust in the early stages of corrosion.

Claims (3)

 鋼材と、
 前記鋼材の表面に配置されためっき層と、
を有する溶融めっき鋼材であり、
 前記めっき層が、質量%で、
Al:10.0%超、45.0%未満、
Mg:4.0%以上、15.0%以下、
Si:0.01%以上、2.0%以下、
0.03%以上、5.0%以下のCuおよび0.03%以上、6.0%以下のAgの少なくとも一方、
を含有し、更に、
Sn:0%以上、0.7%以下、
Bi:0%以上、0.3%以下、
In:0%以上、0.3%以下、
Ca:0%以上、0.6%以下、
Y :0%以上、0.3%以下、
La:0%以上、0.3%以下、
Ce:0%以上、0.3%以下、
Sr:0%以上、0.3%以下、
Li:0%以上、0.3%以下、
Ni:0%以上、1.0%以下、
Cr:0%以上、0.5%以下、
Mo:0%以上、0.3%以下、
Sb:0%以上、0.25%以下、
Pb:0%以上、0.25%以下、
B :0%以上、0.5%以下、
P :0%以上、0.5%以下、
Ti:0%以上、0.25%以下、
Co:0%以上、0.25%以下、
V :0%以上、0.25%以下、
Nb:0%以上、0.25%以下、
Mn:0%以上、0.25%以下、
Zr:0%以上、0.25%以下、
W :0%以上、0.25%以下、
Fe:0%以上、5.0%以下、
残部Zn及び不純物を含むとともに、
CuおよびAgの合計含有量が0.03%以上、6.0%以下を満たす化学組成を有し、
 前記めっき層の表面から前記鋼材に向かって、グロー放電発光分析法によって定量分析した場合の元素分布プロファイルにおいて、前記めっき層の厚みをtとし、前記めっき層の表面に対して1/3t位置から2/3t位置までの間の内部領域における、Zn濃度に対する、Cu濃度とAg濃度の合計濃度の比をCAZとする場合、前記CAZの最大値CAZmaxおよび前記CAZの最小値CAZminが、下記式(1)~(3)を満たすことを特徴とする溶融めっき鋼材。
 CAZmax/CAZmin≦1.20 …(1)
 0.0005≦CAZmin …(2)
 CAZmax≦0.1000 …(3)
Steel and
A plating layer disposed on a surface of the steel material;
A hot-dip galvanized steel material having the following properties:
The plating layer comprises, in mass %,
Al: more than 10.0% and less than 45.0%;
Mg: 4.0% or more, 15.0% or less,
Si: 0.01% or more, 2.0% or less,
At least one of Cu of 0.03% or more and 5.0% or less and Ag of 0.03% or more and 6.0% or less;
and further comprising
Sn: 0% or more, 0.7% or less,
Bi: 0% or more, 0.3% or less,
In: 0% or more, 0.3% or less,
Ca: 0% or more, 0.6% or less,
Y: 0% or more, 0.3% or less,
La: 0% or more, 0.3% or less,
Ce: 0% or more, 0.3% or less,
Sr: 0% or more, 0.3% or less,
Li: 0% or more, 0.3% or less,
Ni: 0% or more, 1.0% or less,
Cr: 0% or more, 0.5% or less,
Mo: 0% or more, 0.3% or less,
Sb: 0% or more, 0.25% or less,
Pb: 0% or more, 0.25% or less,
B: 0% or more, 0.5% or less,
P: 0% or more, 0.5% or less,
Ti: 0% or more, 0.25% or less,
Co: 0% or more, 0.25% or less,
V: 0% or more, 0.25% or less,
Nb: 0% or more, 0.25% or less,
Mn: 0% or more, 0.25% or less,
Zr: 0% or more, 0.25% or less,
W: 0% or more, 0.25% or less,
Fe: 0% or more, 5.0% or less,
The balance includes Zn and impurities,
The total content of Cu and Ag is 0.03% or more and 6.0% or less.
In an element distribution profile obtained by quantitatively analyzing a region from a surface of the plating layer toward the steel material by glow discharge optical emission spectrometry, a maximum value CAZ max of the CAZ and a minimum value CAZ min of the CAZ satisfy the following formulas (1) to (3):
CAZ max /CAZ min ≦1.20…(1)
0.0005≦CAZ min …(2)
CAZ max ≦0.1000…(3)
 前記めっき層の厚み方向に沿った断面において、β相の面積率が3%以上であり、
 前記β相内におけるAl、Zn、CuおよびAlの各濃度が、下記式(4)を満足することを特徴とする請求項1に記載の溶融めっき鋼材。
 0.85≦[Al]/([Zn]+[Cu]+[Ag])≦1.15 …(4)
 ここで、式(4)中の[Al]、[Zn]、[Cu]および[Ag]はそれぞれ、前記β相内におけるエネルギー分散方X線分析による定量分析値(at%)である。
In a cross section along the thickness direction of the plating layer, the area ratio of the β phase is 3% or more,
The hot-dip plated steel material according to claim 1, characterized in that the concentrations of Al, Zn, Cu and Al in the β phase satisfy the following formula (4):
0.85≦[Al]/([Zn]+[Cu]+[Ag])≦1.15…(4)
Here, [Al], [Zn], [Cu] and [Ag] in formula (4) are quantitative analysis values (at %) in the β phase by energy dispersive X-ray analysis.
 前記めっき層の厚み方向に沿った断面における10000μmの範囲内において、金属間化合物粒子として、平均結晶粒径が1μm以上の(Zn+Al)-(Cu+Ag)化合物が10個以上含有されることを特徴とする請求項1または2に記載の溶融めっき鋼材。 The hot-dip plated steel material according to claim 1 or 2 , characterized in that 10 or more (Zn+Al)-(Cu+Ag) compounds having an average crystal grain size of 1 μm or more are contained as intermetallic compound particles within an area of 10,000 μm2 in a cross section along a thickness direction of the plating layer.
PCT/JP2024/010040 2023-04-17 2024-03-14 Hot-dip plated steel material WO2024219123A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023067061 2023-04-17
JP2023-067061 2023-04-17

Publications (1)

Publication Number Publication Date
WO2024219123A1 true WO2024219123A1 (en) 2024-10-24

Family

ID=93152328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/010040 WO2024219123A1 (en) 2023-04-17 2024-03-14 Hot-dip plated steel material

Country Status (2)

Country Link
TW (1) TW202442889A (en)
WO (1) WO2024219123A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199999A (en) * 1998-01-16 1999-07-27 Nippon Steel Corp Manufacturing method of high-strength hot-dip galvanized steel sheet
JP2008169478A (en) * 2006-12-11 2008-07-24 Nippon Steel Corp Hot-dip galvanized steel and its manufacturing method
JP6365807B1 (en) * 2017-01-27 2018-08-01 新日鐵住金株式会社 Plated steel
JP2021172878A (en) * 2020-04-30 2021-11-01 日本製鉄株式会社 HOT-DIP Zn-Al-Mg BASED PLATED STEEL MATERIAL EXCELLENT IN WORKABILITY AND CORROSION RESISTANCE
JP2021195600A (en) * 2020-06-16 2021-12-27 日本製鉄株式会社 Plated steel
JP7052942B1 (en) * 2021-07-09 2022-04-12 日本製鉄株式会社 Plated steel
JP7056811B1 (en) * 2021-09-07 2022-04-19 日本製鉄株式会社 Hot-dip plated steel
JP7156573B1 (en) * 2021-01-18 2022-10-19 日本製鉄株式会社 plated steel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199999A (en) * 1998-01-16 1999-07-27 Nippon Steel Corp Manufacturing method of high-strength hot-dip galvanized steel sheet
JP2008169478A (en) * 2006-12-11 2008-07-24 Nippon Steel Corp Hot-dip galvanized steel and its manufacturing method
JP6365807B1 (en) * 2017-01-27 2018-08-01 新日鐵住金株式会社 Plated steel
JP2021172878A (en) * 2020-04-30 2021-11-01 日本製鉄株式会社 HOT-DIP Zn-Al-Mg BASED PLATED STEEL MATERIAL EXCELLENT IN WORKABILITY AND CORROSION RESISTANCE
JP2021195600A (en) * 2020-06-16 2021-12-27 日本製鉄株式会社 Plated steel
JP7156573B1 (en) * 2021-01-18 2022-10-19 日本製鉄株式会社 plated steel
JP7052942B1 (en) * 2021-07-09 2022-04-12 日本製鉄株式会社 Plated steel
JP7056811B1 (en) * 2021-09-07 2022-04-19 日本製鉄株式会社 Hot-dip plated steel

Also Published As

Publication number Publication date
TW202442889A (en) 2024-11-01

Similar Documents

Publication Publication Date Title
CN113557318B (en) coated steel plate
JP5101249B2 (en) Hot-dip Zn-Al alloy-plated steel sheet and method for producing the same
TWI658149B (en) Coated steel sheet
JPWO2020179148A1 (en) Fused Al-Zn-Mg-Si-Sr plated steel sheet and its manufacturing method
WO2010082678A1 (en) HOT-DIP Zn-Al-Mg-Si-Cr ALLOY COATED STEEL MATERIAL WITH EXCELLENT CORROSION RESISTANCE
JP6350780B1 (en) Hot-dip Zn-plated steel sheet with excellent corrosion resistance after painting
JP6645273B2 (en) Hot-dip Al-Zn-Mg-Si plated steel sheet and method for producing the same
TW202033790A (en) Hot-dip Al-Zn-Mg-Si-Sr plated steel sheet and production method therefor
WO2020213687A1 (en) Plated steel sheet
TWI654338B (en) Fused Zn-based plated steel sheet with excellent corrosion resistance after painting
JP3566261B2 (en) Painted hot-dip Al-Zn alloy plated steel sheet excellent in workability and corrosion resistance and method for producing the same
WO2024219123A1 (en) Hot-dip plated steel material
JP5661699B2 (en) Manufacturing method of resin-coated steel sheet
JP3599716B2 (en) Hot-dip Al-Zn-based alloy-coated steel sheet excellent in surface appearance and bending workability and method for producing the same
JP5101250B2 (en) Resin coated steel sheet
TWI787119B (en) Molten Al-Zn system coated steel sheet and its manufacturing method
JP7653049B1 (en) Hot-dip galvanized steel
TWI876928B (en) Melt-plated steel
TWI787118B (en) Molten Al-Zn system coated steel sheet and its manufacturing method
JP7356076B1 (en) Hot-dipped steel
JP7590687B1 (en) Hot-dip galvanized steel
TWI841151B (en) Coated steel material and method of producing coated steel material
WO2024219122A1 (en) Hot-dip galvanized steel material
WO2025028604A1 (en) Hot-dip plated steel material
TW202507025A (en) Melt-plated steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24792399

Country of ref document: EP

Kind code of ref document: A1