[go: up one dir, main page]

WO2024218872A1 - Air conditioner and program - Google Patents

Air conditioner and program Download PDF

Info

Publication number
WO2024218872A1
WO2024218872A1 PCT/JP2023/015503 JP2023015503W WO2024218872A1 WO 2024218872 A1 WO2024218872 A1 WO 2024218872A1 JP 2023015503 W JP2023015503 W JP 2023015503W WO 2024218872 A1 WO2024218872 A1 WO 2024218872A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
floor area
refrigerant
outdoor unit
electrical circuit
Prior art date
Application number
PCT/JP2023/015503
Other languages
French (fr)
Japanese (ja)
Inventor
正典 佐藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2023/015503 priority Critical patent/WO2024218872A1/en
Publication of WO2024218872A1 publication Critical patent/WO2024218872A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks

Definitions

  • This disclosure relates to an air conditioner that includes an indoor unit having a heat exchanger that uses a combustible refrigerant.
  • An air conditioner includes an indoor unit and an outdoor unit.
  • the outdoor unit is connected to the indoor unit via refrigerant piping.
  • the refrigerant piping is filled with refrigerant.
  • the refrigerant circulates between the indoor unit and the outdoor unit.
  • flammable substances such as propane are used as refrigerants.
  • Safety is especially important for air conditioners that use such substances as refrigerants.
  • Patent Document 1 discloses an air conditioner equipped with a sensor for detecting leakage of flammable refrigerant.
  • Patent Document 2 discloses an air conditioner that instructs the user to open a door or the like to increase the floor area when the actual area value of the room in which the indoor unit is used is smaller than the designed floor area value.
  • Patent Document 2 if the user forgets to input the actual area value, the above-mentioned instruction is not given even if the actual area value is smaller than the design floor area value. For this reason, there is a demand for technology to more reliably ensure safety in air conditioners that use flammable refrigerants, including the above-mentioned flammable refrigerants.
  • This invention was conceived in light of this situation, and its purpose is to provide technology to ensure safety in air conditioners that use flammable refrigerants.
  • an air conditioner that includes an indoor unit, an outdoor unit, a refrigerant circuit that circulates a combustible refrigerant between the indoor unit and the outdoor unit, an electrical circuit that controls the operation of the indoor unit, the outdoor unit, and the refrigerant circuit, and an interface that receives operation commands, and when the electrical circuit is energized for the first time or when the installation position of the air conditioner has changed since the electrical circuit was previously energized, the electrical circuit requests input of the floor area of the space to be air-conditioned, and then controls the operation in accordance with the command.
  • the air conditioner includes an indoor unit, an outdoor unit, a refrigerant circuit that circulates a combustible refrigerant between the indoor unit and the outdoor unit, and an interface that receives commands to operate the indoor unit, the outdoor unit, and the refrigerant circuit.
  • the program when executed by the electric circuit, causes the air conditioner to perform the following steps: determining whether or not the air conditioner is in a state in which it has been energized for the first time; determining whether or not the installation position of the air conditioner has changed since the electric circuit was previously energized, if it is determined that the electric circuit is not in a state in which it has been energized for the first time; and setting the operation of the electric circuit so as not to control the operation according to the command, if the electric circuit is in a state in which it has been energized for the first time or if the installation position of the air conditioner has changed since the electric circuit was previously energized.
  • the air conditioner when the electric circuit is energized for the first time, or if the installation location of the air conditioner has changed since the electric circuit was previously energized, the air conditioner requests input of the floor area of the space to be air-conditioned, and then controls operation in accordance with the commands received from the interface. This allows the floor area of the space to be air-conditioned to be more reliably input to the air conditioner.
  • a technology is provided for ensuring safety in air conditioners that use flammable refrigerants.
  • FIG. 1 is a diagram showing the configuration of an embodiment of an air conditioner.
  • FIG. FIG. 2 is a diagram showing the external appearance of the outdoor unit 1001. 1A and 1B are diagrams showing the appearance of a display member 190.
  • FIG. 1 is a perspective view of an indoor unit 1002.
  • FIG. 2 is an enlarged view of the operation area 290.
  • FIG. 1 is an external view of a remote controller 1003.
  • FIG. 13 is a diagram showing an example of a method for calculating a minimum installation floor area.
  • FIG. 13 is a diagram showing another example of a method for calculating the minimum installation floor area.
  • FIG. 13 is a diagram illustrating an example of a method for calculating a required agitation air volume.
  • 4 is a flowchart of a process executed in the air conditioner 1000.
  • FIG. 4 is a flowchart of a process executed in the air conditioner 1000.
  • FIG. 13 is a diagram showing an example of a display of "remove driving command.”
  • FIG. 11 is a diagram showing the configuration of another embodiment of the air conditioner.
  • FIG. 12 is a diagram showing a modified example of the part shown in FIG. 10 among the processes described with reference to FIGS. 10 and 11.
  • FIG. 1 is a diagram showing the configuration of an embodiment of an air conditioner.
  • the air conditioner 1000 includes a refrigerant circuit 500, an outdoor unit 1001, an indoor unit 1002, and a remote controller 1003.
  • the refrigerant circuit 500 includes a compressor 200, an outdoor heat exchanger 211, a fan 220, an expansion valve 230, a four-way valve 240, an indoor heat exchanger 110, and a fan 120.
  • the fan 220 constitutes an outdoor blower.
  • the fan 120 constitutes an indoor blower.
  • the four-way valve 240 has ports P1 to P4.
  • an electronic expansion valve (LEV: Linear Expansion Valve) can be used as the expansion valve 230.
  • the refrigerant circuit 500 is arranged separately for an outdoor unit 1001 and an indoor unit 1002.
  • the outdoor unit 1001 includes a compressor 200, a four-way valve 240, an outdoor heat exchanger 211, a fan 220, and an expansion valve 230.
  • the indoor unit 1002 includes an indoor heat exchanger 110 and a fan 120.
  • the outdoor unit 1001 and the indoor unit 1002 are connected by piping 310 and piping 320.
  • a flammable refrigerant may be used as the refrigerant.
  • the flammable refrigerant may be a flammable refrigerant (A3 refrigerant) such as propane, a low flammable refrigerant (A2 refrigerant), or a slightly flammable refrigerant (A2L refrigerant).
  • A3 refrigerant such as propane
  • A2 refrigerant low flammable refrigerant
  • A2L refrigerant slightly flammable refrigerant
  • the outdoor unit 1001 includes a control device 100.
  • the indoor unit 1002 includes a control device 700.
  • the control devices 100 and 700 are configured to be able to communicate with each other via wire or wirelessly.
  • Compressor 200 is configured to change its operating frequency according to a control signal received from control device 100.
  • compressor 200 has a built-in drive motor with a variable rotation speed that is inverter-controlled, and when the operating frequency is changed, the rotation speed of the drive motor changes.
  • the output of compressor 200 is adjusted by changing the operating frequency of compressor 200.
  • the four-way valve 240 is controlled to be in either a cooling operation state or a heating operation state by a control signal received from the control device 100.
  • port P1 and port P4 are in communication, and port P2 and port P3 are in communication.
  • refrigerant circulates through the refrigerant circuit in the direction shown by the solid arrows.
  • port P1 and port P3 are in communication, and port P2 and port P4 are in communication.
  • refrigerant circulates through the refrigerant circuit in the direction shown by the dashed arrows.
  • the air conditioner 1000 further includes temperature sensors 261-267.
  • the temperature sensor 261 is disposed in the indoor unit 1002, and detects the room temperature T261 of a room (the room in which the indoor unit 1002 is installed), which is an example of a target space for air conditioning.
  • the temperature sensor 262 is disposed on the side connected to the pipe 320 (liquid pipe) of the indoor heat exchanger 110, and measures a refrigerant temperature T262.
  • the temperature sensor 263 is disposed on the side connected to the pipe 310 (gas pipe) of the indoor heat exchanger 110, and measures a refrigerant temperature T263.
  • the temperature sensor 264 measures a refrigerant temperature T264, which is the temperature of the refrigerant in the indoor heat exchanger 110.
  • Temperature sensor 265 is arranged on the side connected to port P4 of four-way valve 240 of outdoor heat exchanger 211, and measures refrigerant temperature T265.
  • Temperature sensor 266 is arranged on the side connected to expansion valve 230 of outdoor heat exchanger 211, and measures refrigerant temperature T266.
  • Temperature sensor 267 measures refrigerant temperature T267, which is the temperature of the refrigerant in outdoor heat exchanger 211.
  • the control device 100 controls the opening of the expansion valve 230 and the operation of the fans 220, 120 according to the temperatures measured by each of the temperature sensors 261-267 and the output settings in the air conditioner 1000.
  • the SH (superheat) of the refrigerant at the evaporator outlet is adjusted.
  • the control of the operation of the fan 120 may be realized via the control device 700. That is, the control device 100 may determine the rotation speed of the fan 120 and notify the control device 700 of the rotation speed.
  • the control device 700 may control the operation of the fan 120 according to the rotation speed notified by the control device 100.
  • the control device 100 includes a CPU (Central Processing Unit) 101 and a memory 102.
  • the CPU 101 is an example of a control circuit.
  • the memory 102 includes a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the control device 100 may further include other elements (such as an input/output buffer) that are not shown.
  • the CPU 101 expands a program that is non-temporarily stored in the ROM into the RAM and executes it.
  • the program stored in the ROM is a program that describes the processing procedures of the control device 100.
  • the control device 100 executes control of each device in the air conditioner 1000 in accordance with these programs.
  • the control device 700 includes a CPU 701, a memory 702, and a communication unit 703.
  • the CPU 701 is an example of a control circuit.
  • the communication unit 703 is an interface for wireless or wired communication with the remote controller 1003.
  • the control device 700 and the remote controller 1003 may be configured to communicate with each other via a network.
  • the memory 702 includes a ROM and a RAM.
  • the control device 700 may further include other elements (such as an input/output buffer) that are not shown.
  • the CPU 701 expands a program that is non-temporarily stored in the ROM into the RAM and executes it.
  • the program stored in the ROM is a program in which the processing procedures of the control device 700 are written.
  • the control device 700 executes control of each device in the air conditioner 1000 according to these programs.
  • control by the control device 100 and the control device 700 is not limited to processing by software, but can also be processed by dedicated hardware (electronic circuitry).
  • the air conditioner 1000 further includes a GPS (Global Positioning System) receiver 150, 750.
  • GPS Global Positioning System
  • Each of the GPS receivers 150, 750 receives signals from multiple GPS satellites.
  • the CPU 101 identifies the position of the outdoor unit 1001 by analyzing the signal received by the GPS receiver 150.
  • the CPU 101 may transmit the position of the outdoor unit 1001 to the control device 700.
  • the CPU 701 identifies the position of the indoor unit 1002 by analyzing the signal received by the GPS receiver 750.
  • the CPU 701 may transmit the position of the indoor unit 1002 to the control device 100.
  • the indoor unit 1002 includes a leakage sensor 720.
  • the leakage sensor 720 detects the concentration of the leaked refrigerant.
  • One example of the leakage sensor 720 is a semiconductor gas sensor that is sensitive to reducing gases in general.
  • the indoor unit 1002 includes an emergency operation switch 291 for causing the air conditioner 1000 to perform emergency operation.
  • the CPU 701 controls the air conditioner 1000 according to the number of times the emergency operation switch 291 is operated within a given period (e.g., one second). More specifically, the CPU 701 causes the air conditioner 1000 to perform cooling operation in a predetermined manner with one operation. Cooling operation in a predetermined manner is an example of emergency operation.
  • the CPU 701 causes the air conditioner 1000 to perform heating operation in a predetermined manner with two operations. Heating operation in a predetermined manner is an example of emergency operation.
  • the CPU 701 causes the air conditioner 1000 to stop emergency operation (cooling operation or heating operation) with three operations.
  • the remote controller 1003 includes a communication unit 301, a display unit 302, an operation unit 303, and a battery 304.
  • the battery 304 supplies power to each element in the remote controller 1003.
  • the communication unit 301 is an interface for wireless or wired communication with the communication unit 703 of the control device 700.
  • the display unit 302 includes a display and an element (control circuit) that controls the display of the display.
  • the operation unit 303 includes one or more operation buttons and an element (control circuit) that outputs a signal corresponding to each of the one or more operation buttons.
  • the display unit 302 controls what is displayed on the display according to a signal received by the communication unit 301 from the communication unit 703, or according to the type of button that is operated among one or more operation buttons of the operation unit 303.
  • the display unit 302 displays the operating state of the air conditioner 1000 (cooling/heating, set temperature, etc.).
  • the display unit 302 also displays various messages.
  • the operation unit 303 When any of the one or more operation buttons is operated, the operation unit 303 outputs a signal corresponding to the operated button to the communication unit 703 and the display unit 302.
  • the communication unit 703 transmits the signal output from the operation unit 303 to the control device 700.
  • FIG. 1 illustrates an example of a configuration of the air conditioner 1000 that includes a four-way valve 240, but a configuration dedicated to cooling that does not have a four-way valve 240 may also be used.
  • FIG. 2 is a diagram showing the external appearance of the outdoor unit 1001.
  • a display member 190 is attached to the outdoor unit 1001.
  • Fig. 3 is a diagram showing the external appearance of the display member 190.
  • the display member 190 displays the message "*Caution* To operate in accordance with the operation command, it is necessary to press the emergency operation switch and set the installation floor area.” In other words, the display member 190 notifies that control in accordance with the operation command will be carried out after the installation floor area is input to the air conditioner 1000.
  • the display member 190 may be detachable from the outdoor unit 1001. After checking the information written on the display member 190, the user or installer may remove the display member 190 from the body of the outdoor unit 1001.
  • the display member 190 may be a sticker or a plate that is detachable using a tool. The worker or user may write the installation floor area A on the display member 190 removed from the outdoor unit 1001, and send the display member 190 to the manufacturer of the air conditioner 1000.
  • the display member 190 may be attached to the indoor unit 1002 instead of or in addition to being attached to the outdoor unit 1001.
  • FIG. 4 is a perspective view of indoor unit 1002.
  • indoor unit 1002 includes housing 270 and cover 280.
  • Cover 280 covers the front surface of housing 270 in an openable and closable manner.
  • Housing 270 includes operation area 290.
  • Operation area 290 is covered by cover 280.
  • FIG. 5 is an enlarged view of the operation area 290.
  • the operation area includes an emergency operation switch 291.
  • FIG. 6 is an external view of the remote controller 1003. As shown in Fig. 6, in the remote controller 1003, the display unit 302 and the operation unit 303 are provided on the outer surface.
  • the air conditioner 1000 calculates the area (minimum installation floor area) required as the floor area of the space to be air-conditioned.
  • the method for calculating the minimum installation floor area complies with the international standard (IEC 60335-2-40 Edition 7).
  • FIG. 7 is a diagram showing an example of a method for calculating the minimum installation floor area.
  • FIG. 8 is a diagram showing another example of a method for calculating the minimum installation floor area.
  • the method for calculating the minimum installation floor area differs depending on whether the air conditioner 1000 is equipped with a sensor (leak sensor 720) that detects refrigerant leakage.
  • the air conditioner when a refrigerant leak is detected by the leak sensor, the fan will agitate the air in the space to be air-conditioned. If the air conditioner does not have such a configuration, the minimum installation floor area is calculated as Amin shown in formula (1) of Figure 7. On the other hand, if the air conditioner is equipped with a leak sensor, that is, if it has a configuration that agitates the air in response to the detection of a leak by the leak sensor, the minimum installation floor area is calculated as Amin shown in formula (2) of Figure 8.
  • mc represents the refrigerant charge amount [kg]
  • LFL represents the lower flammability limit [kg/m 3 ] of the refrigerant.
  • h 0 represents the installation height [m] of the indoor unit 1002.
  • CF Concentration factor, a coefficient less than or equal to 0.5.
  • the value 2.2 is used as an example of the installation height [m].
  • the minimum installation floor area depends on the LFL of the refrigerant.
  • the LFL of the refrigerant depends on the type of refrigerant. Therefore, the value of the minimum installation floor area varies based on the type of refrigerant. The value of the minimum installation floor area also varies depending on whether or not the air conditioner is equipped with a leak sensor.
  • the air volume (required stirring air volume) that needs to be provided to the air conditioning control target when a refrigerant leak is detected by the leak sensor 720 is calculated for the air conditioner 1000.
  • the required stirring air volume is calculated in accordance with the international standard IEC 60335-2-40 edition 7.
  • Fig. 9 is a diagram showing an example of a method for calculating the required agitation air volume. According to the international standard IEC60335-2-40 edition 7, the required agitation air volume is calculated as the required agitation air volume Qmin [m 3 /min] according to formula (3) in Fig. 9.
  • Y represents a coefficient having a value of 1 or 1.5.
  • A0 represents the area of the air outlet of the indoor unit [ m2 ].
  • mc represents the refrigerant charge [kg], as in formula (1).
  • LFL represents the lower flammability limit concentration of the refrigerant [kg/ m3 ], as described above for formulas (1) and (2).
  • CF represents the same value as used in formula (2).
  • the required agitation airflow depends on the LFL of the refrigerant.
  • the LFL of the refrigerant depends on the type of refrigerant. Therefore, the value of the required agitation airflow varies based on the type of refrigerant.
  • Figures 10 and 11 are flowcharts of the processing executed in the air conditioner 1000.
  • the processing shown in Figures 10 and 11 is carried out by the CPU 701 in the indoor unit 1002 executing a given program, by the CPU 101 in the outdoor unit 1001 executing a given program, or by the CPU 701 and CPU 101 working together.
  • step S21 the air conditioner 1000 determines whether the current power-on is the first power-on since the product was shipped.
  • Power-on means that the air conditioner 1000 is connected to a power source, for example, that the power cord of the air conditioner 1000 is plugged into a power outlet.
  • the air conditioner 1000 may determine whether or not this is the first time it has been energized based on whether or not the "installation floor area A" associated with the air conditioner 1000 is stored in a given memory. In this case, if the "installation floor area A" associated with the air conditioner 1000 is not stored in the given memory, the air conditioner 1000 determines that this current energization is the first time it has been energized since the product was shipped. "Installation floor area A" will be described later in step S27.
  • the given memory is memory 702, memory 102, and/or an external memory accessible from the air conditioner 1000 (e.g., a memory in a cloud server). In one implementation example, which memory is the given memory is appropriately set in the air conditioner 1000.
  • data related to the air conditioner 1000 such as "installation floor area A,” is stored in association with the air conditioner 1000.
  • memory 102 and/or memory 702 when memory 102 and/or memory 702 are employed as the given memory, memory 102 and memory 702 constitute air conditioner 1000, and therefore data stored in memory 102 or memory 702 is substantially associated with air conditioner 1000.
  • data related to the air conditioner 1000 such as the "installation floor area A”
  • the air conditioner 1000 is associated with the air conditioner 1000 by being stored in the external memory together with information identifying the air conditioner 1000 (for example, the serial number of the air conditioner 1000).
  • step S21 If the air conditioner 1000 determines that this is the first time the power has been turned on since the product was shipped (YES in step S21), control proceeds to step S24; if not (NO in step S21), control proceeds to step S22.
  • step S22 the air conditioner 1000 determines whether or not a change has occurred in the location information of the air conditioner 1000.
  • the location information of the air conditioner 1000 may be the location information of the outdoor unit 1001 or the location information of the indoor unit 1002.
  • position information of the outdoor unit 1001 is acquired in step S22.
  • position information of the indoor unit 1002 is acquired in step S22.
  • position information of the outdoor unit 1001 and the indoor unit 1002 is acquired in step S22.
  • the position information acquired in step S22 of the past processing is stored in the given memory as past position information.
  • step S22 the air conditioner 1000 compares the location information acquired as described above (current location information) with the past location information described above to determine whether or not there has been a change in the location information of the air conditioner 1000.
  • step S22 when the position information of the outdoor unit 1001 and the indoor unit 1002 is acquired, the current position information of each of the outdoor unit 1001 and the indoor unit 1002 is compared with the past position information of each of them. Then, if the current position information of either unit differs from the corresponding past position information, it is determined that a change has occurred in the position information of the air conditioner 1000.
  • the air conditioner 1000 may determine that no change has occurred in the location information of the air conditioner 1000.
  • step S22 If the air conditioner 1000 determines that a change has occurred in the location information of the air conditioner 1000 (YES in step S22), control proceeds to step S23; if not (NO in step S22), control proceeds to step S36 ( Figure 11).
  • step S23 the air conditioner 1000 deletes the "installation floor area A" written in the given memory and proceeds to step S24.
  • step S24 the air conditioner 1000 sets and displays the exclusion of operation commands in the air conditioner 1000.
  • "Exclusion of operation commands” means that operation commands from the remote controller 1003 input via the communication unit 703 are excluded in the air conditioner 1000. More specifically, even if the air conditioner 1000 appears to accept a command input by the user to the remote controller 1003, it does not carry out control in accordance with that command. As a result, the command input to the indoor unit 1002 via the remote controller 1003 is excluded from the control of the operation of the air conditioner 1000.
  • the setting for "remove operation command” is registered in memory 702.
  • the CPU 701 receives a command from the remote controller 1003, if the setting for "remove operation command” is not registered in memory 702, the CPU 701 controls the operation (cooling operation or heating operation) of the air conditioner 1000 in accordance with the command, and if the setting is registered, the CPU 701 removes the command from the operation control.
  • FIG. 12 is a diagram showing an example of the display of "remove operation command”.
  • the display unit 302 of the remote controller 1003 displays the message "Operation commands cannot be accepted. Press the emergency operation switch and set the installation floor area.” as an example of a display for "rejecting operation commands.”
  • step S25 the air conditioner 1000 waits until the emergency operation switch 291 is operated (NO in step S25), and if it determines that the emergency operation switch 291 has been operated (YES in step S25), the control proceeds to step S26.
  • step S26 the air conditioner 1000 performs emergency operation. Whether the emergency operation is cooling operation or heating operation is determined according to the number of times the emergency operation switch 291 is operated, as described above for the emergency operation switch 291.
  • step S27 the air conditioner 1000 instructs (requests) the user to input the installation floor area A of the space to be air-conditioned by the air conditioner 1000.
  • the instruction may be realized in any manner, and may be a display or a voice.
  • the message "Please set the installation floor area" in FIG. 6 may be displayed on the display unit 302 of the remote controller 1003.
  • step S28 the air conditioner 1000 waits until the installation floor area A is input (NO in step S28), and if it determines that it has been input (YES in step S28), the control proceeds to step S29.
  • step S29 the air conditioner 1000 determines whether or not the air conditioner 1000 is equipped with a leak sensor.
  • the leak sensor 720 may be omitted in the air conditioner 1000. If the air conditioner 1000 is equipped with the leak sensor 720 (YES in step S29), the air conditioner 1000 advances control to step S30, and if not (NO in step S29), the air conditioner 1000 advances control to step S34.
  • step S30 the air conditioner 1000 determines whether the installation floor area A is equal to or greater than the minimum installation floor area Amin calculated according to the above formula (2), and if it is determined that it is (YES in step S30), the control proceeds to step S32, and if it is not (NO in step S30), the control proceeds to step S31.
  • the value of LFL may be stored in a memory (memory 102 and/or memory 702) within the air conditioner 1000, or may be stored in an external memory accessible to the CPU 101 and/or CPU 701.
  • step S31 the air conditioner 1000 displays information about danger, etc. If control proceeds to step S31, it is highly likely that the installation standards for floor area have not been met. For this reason, information to warn users to avoid placing sources of ignition indoors as much as possible is displayed, for example, on the display unit 302 of the remote controller 1003.
  • step S31 the air conditioner 1000 may inform the user and/or the installer that the installation standards are highly likely not being met in a manner other than a display (for example, audio). Control then proceeds to step S32.
  • step S32 the air conditioner 1000 determines whether the set value Q of the air volume of the fan 120 when the leak was detected by the leak sensor 720 is equal to or greater than the required stirring air volume Qmin in the air conditioner 1000. If it is determined that this is the case (YES in step S32), control proceeds to step S36; if not (NO in step S32), control proceeds to step S33.
  • step S33 the air conditioner 1000 changes the setting value Q (for example, stored in memory 702) in the air conditioner 1000 to the required stirring air volume Qmin. Control then proceeds to step S36. As a result, the setting of the operation (rotation speed) for the fan 120 to achieve the required stirring air volume Qmin is stored in the air conditioner 1000.
  • step S34 the air conditioner 1000 determines whether the installation floor area A is equal to or greater than the minimum installation floor area Amin calculated according to the above formula (1), and if it determines that it is (YES in step S34), the control proceeds to step S36, and if it is not (NO in step S34), the control proceeds to step S35.
  • step S35 the air conditioner 1000 displays information about danger, etc., in the same way as in step S31. More specifically, if control proceeds to step S35, there is a high possibility that the installation standards for floor area have not been met. Therefore, the air conditioner 1000 performs control (display, etc.) for the announcement described above. Thereafter, control proceeds to step S36.
  • step S36 the air conditioner 1000 cancels the "rejection of operation commands" that was set in step S24. This causes the air conditioner 1000 to transition to a state in which it can control cooling and heating operations according to commands from the remote controller 1003.
  • step S36 the air conditioner 1000 further notifies that the "rejection of operation commands" has been canceled. The notification may be realized by displaying the message "Operation commands can now be accepted” on the display unit 302, or by outputting the message as audio.
  • step S37 the air conditioner 1000 stores the installation floor area A input in response to the instruction in step S27 in the given memory.
  • step S38 the air conditioner 1000 stores the "current location information" detected in step S22 in the given memory.
  • the "current location information” stored in this manner is referred to as "past location information” in subsequent processing. Thereafter, the air conditioner 1000 ends the processing shown in Figures 10 and 11.
  • step S24 "removal of operation commands" for the air conditioner 1000 is set and displayed.
  • step S24 If the above process is performed when the air conditioner 1000 is turned on for the first time, the control of step S24 is performed.
  • step S21 determines in step S21 that this is the first time that power has been applied to only one of the outdoor unit 1001 and the indoor unit 1002
  • the control may proceed to step S24. This allows the control to proceed to step S24 even if only one of the outdoor unit 1001 and the indoor unit 1002 has been replaced. For example, if only one of the outdoor unit 1001 and the indoor unit 1002 has been replaced, which changes the type of refrigerant used, the control proceeds to step S24.
  • the above process is performed even if it is not the first time the air conditioner 1000 is powered on, but will be performed if there is a change in the location information of the air conditioner 1000.
  • control proceeds to step S24 even when only the outdoor unit has been replaced. More specifically, consider a case where an outdoor unit that has been used in a first location is replaced and used in a second location. In this case, the first time that electricity is applied to the outdoor unit in the second location does not constitute a "first time that electricity is applied" for that outdoor unit, because the outdoor unit has already been powered in the first location. However, the location information of the outdoor unit (second location) is different from the location information at the time of the first power application (first location). Due to this change in location information, control proceeds to step S24.
  • control proceeds to step S24 even when only the installation location of the indoor unit has been changed. More specifically, consider a case where an indoor unit used in a first room has been moved to a second room. In this case, even if power is applied to the indoor unit for the first time in the second room, this does not constitute a "first time power is applied" for that indoor unit, since the indoor unit has already been powered in the first room. However, the position information of the outdoor unit (second location) is different from the position information at the time of the first power application (first location). Due to this change in position information, control proceeds to step S24.
  • the air conditioner 1000 may forcibly end emergency operation if the installation floor area A is not input for a certain period of time (for example, one day) after power is turned on. In other words, the air conditioner 1000 may limit the execution of emergency operation without the installation floor area A being input to a certain period of time after power is turned on. This prevents emergency operation from being continuously performed without the installation floor area A being input.
  • the air conditioner 1000 may receive input of the installation floor area A from the remote controller 1003, or from a terminal such as a smartphone carried by an operator.
  • a given code may be used to input the installation floor area A.
  • the air conditioner 1000 may only treat information that uses the given code as the installation floor area A. In other words, the air conditioner 1000 may process information that is input as the installation floor area A as the installation floor area A, provided that the given code is used.
  • the air conditioner 1000 may be configured to process only the installation floor area A input by the worker. This prevents a false area input by the user from being treated as the installation floor area A in the air conditioner 1000. More specifically, when installing the outdoor unit 1001 and the indoor unit 1002, the worker is in a more objective position than the user of the outdoor unit 1001 and the indoor unit 1002, and is assumed to be less likely to input a false area (for example, an area larger than the actual area). The air conditioner 1000 may accept input of the installation floor area A only from a worker who is in an objective position regarding the outdoor unit 1001 and the indoor unit 1002.
  • the given code may be realized by adding a specific character string to the floor area information, by operating one or more buttons on the operation unit 303 in a special manner (switching the remote controller 1003 to a special mode), or by using the worker's terminal to input the floor area.
  • the air conditioner 1000 makes an announcement in step S31.
  • the announcement in step S31 is an example of a "warning."
  • the minimum installation floor area Amin depends on the type of refrigerant.
  • the minimum installation floor area Amin further varies depending on whether the air conditioner 1000 is equipped with a leak sensor, as explained with reference to equations (1) and (2) above.
  • the air conditioner 1000 may be configured not to cancel the "rejection of operation commands" when the installation floor area A is smaller than the minimum installation floor area Amin. More specifically, the air conditioner 1000 may be configured not to implement control according to an operation command unless a value equal to or greater than the minimum installation floor area Amin is input as the installation floor area A.
  • the air conditioner 1000 may set information for achieving the required agitation air volume as the operation setting for the fan 120 when a refrigerant leak is detected by the leak sensor 720.
  • the rotation speed of the fan 120 is set to the rotation speed that achieves the required agitation air volume.
  • FIG. 13 is a diagram showing the configuration of an air conditioner according to another embodiment of the present invention.
  • An air conditioner 1100 shown in FIG 13 further includes a camera 730 compared to the air conditioner 1000 of FIG 1 .
  • the camera 730 is an example of a condition sensor that detects the condition of the target space for air conditioning. More specifically, the camera 730 captures an image of the room in which the indoor unit 1002 is installed.
  • the air conditioner 1100 may calculate the installation floor area A by analyzing the image captured by the camera 730 to identify a portion of the image that corresponds to the floor and converting that portion into the actual floor area.
  • the installation height of the indoor unit 1002 may be used for the conversion.
  • a default value (for example, 1.8 m) may be used as the installation height.
  • the air conditioner 1100 calculates the installation floor area A using the detection output of the sensor.
  • FIG. 14 is a diagram showing a modified example of the part of the process described with reference to FIGS. 10 and 11 shown in FIG. 10. Compared to FIG. 10, FIG. 14 includes steps S27A, S28A, and S28B instead of steps S27 and S28.
  • step S27A the air conditioner 1100 requests an image from the camera 730.
  • step S28A the air conditioner 1100 waits until an image is acquired from the camera 730 (NO in step S28A), and if it determines that an image has been acquired (YES in step S28A), control proceeds to step S28B.
  • step S28B the air conditioner 1100 calculates the installation floor area A by analyzing the image acquired from the camera 730. Control then proceeds to step S29.
  • the sensor whose detection output is used to calculate the installation floor area A may be a temperature sensor that detects the temperature of the room (the space to be air-conditioned).
  • the air conditioner 1100 may calculate the installation floor area A by identifying a portion corresponding to the floor of the room from the temperature distribution in the detection output of the temperature sensor and converting the identified portion into the actual floor area.
  • the installation height of the indoor unit 1002 may be used for the conversion.
  • a default value (e.g., 1.8 m) may be used as the installation height.
  • the air conditioner 1100 may calculate the installation floor area A from the change in temperature distribution (airflow arrival time) in the detection output of the temperature sensor. More specifically, the sensor may be attached to the indoor unit 1002.
  • the air conditioner 1100 may calculate the distance from the indoor unit 1002 (sensor) to the front wall, the distance from the indoor unit 1002 (sensor) to the left wall, and the distance from the indoor unit 1002 (sensor) to the right wall based on the timing at which the temperature begins to change on the wall located in front of the indoor unit 1002, the wall located to the left of the indoor unit 1002, and the wall located to the right of the indoor unit 1002 after the indoor unit 1002 starts blowing out hot or cold air.
  • the air conditioner 1100 may then use these distances to calculate the installation floor area A.
  • the air conditioner 1100 calculates the installation floor area A using the detection output of the sensor, the user or worker is not required to carry out the cumbersome task of inputting the installation floor area A. Furthermore, the installation floor area A calculated using the detection output of the sensor is expected to be a more objective value than the installation floor area A input by the worker or user.
  • 100,700 Control device 110 Indoor heat exchanger, 120,220 Fan, 150,750 GPS receiver, 190 Display member, 200 Compressor, 211 Outdoor heat exchanger, 261-267 Temperature sensor, 270 Housing, 280 Cover, 290 Operation area, 291 Emergency operation switch, 310,320 Pipes, 500 Refrigerant circuit, 1000,1100 Air conditioner, 1001 Outdoor unit, 1002 Indoor unit, 1003 Remote controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioner (1000, 1100) comprises: an indoor unit (1002); an outdoor unit (1001); a refrigerant circuit (500) for circulating a combustible refrigerant between the indoor unit (1002) and the outdoor unit (1001); electric circuits (101, 701) for controlling the operation of the indoor unit (1002), the outdoor unit (1001) and the refrigerant circuit (500); and an interface (303) for receiving operation commands. If the installation position of the air conditioner (1000, 1100) has changed during initial energization to the electric circuits (101, 701), or since past energization to the electric circuits (101, 701), the electric circuits (101, 701) request the input of the floor area of a space to be air-conditioned, and then perform operation control in response to commands.

Description

空気調和機およびプログラムAir conditioner and program

 本開示は、燃焼性冷媒を使用する熱交換器を有する室内機を含む、空気調和機に関する。 This disclosure relates to an air conditioner that includes an indoor unit having a heat exchanger that uses a combustible refrigerant.

 空気調和機は、室内機と、室外機とを含む。室外機は、冷媒配管を介して室内機に接続される。冷媒配管内には冷媒が充填される。冷媒は室内機と室外機の間を循環する。 An air conditioner includes an indoor unit and an outdoor unit. The outdoor unit is connected to the indoor unit via refrigerant piping. The refrigerant piping is filled with refrigerant. The refrigerant circulates between the indoor unit and the outdoor unit.

 冷媒として、プロパンなどの可燃性物質が利用される場合がある。このような物質を冷媒として使用する空気調和機では、特に安全性が求められている。 In some cases, flammable substances such as propane are used as refrigerants. Safety is especially important for air conditioners that use such substances as refrigerants.

 この点、たとえば特開2022-124311号公報(特許文献1)は、可燃性冷媒の漏洩を検出するためのセンサを備える空気調和機を開示している。また、特開2002-372317号公報(特許文献2)は、室内機を使用する部屋の実際の面積値が設計床面積値より小さい場合に使用者にドアなどを開放して床面積の増加を図るように指示する、空気調和機を開示している。 In this regard, for example, Japanese Patent Application Laid-Open No. 2022-124311 (Patent Document 1) discloses an air conditioner equipped with a sensor for detecting leakage of flammable refrigerant. Also, Japanese Patent Application Laid-Open No. 2002-372317 (Patent Document 2) discloses an air conditioner that instructs the user to open a door or the like to increase the floor area when the actual area value of the room in which the indoor unit is used is smaller than the designed floor area value.

特開2022-124311号公報JP 2022-124311 A 特開2002-372317号公報JP 2002-372317 A

 しかしながら、特許文献2では、使用者が実際の面積値の入力を失念すれば、実際の面積値が設計床面積値よりも小さい場合でも上記のような指示がなされない。このことから、上述のような可燃性冷媒を含む燃焼性冷媒を使用する空気調和機において、より確実に安全性を確保するための技術が求められている。 However, in Patent Document 2, if the user forgets to input the actual area value, the above-mentioned instruction is not given even if the actual area value is smaller than the design floor area value. For this reason, there is a demand for technology to more reliably ensure safety in air conditioners that use flammable refrigerants, including the above-mentioned flammable refrigerants.

 この発明は、かかる実情に鑑み考え出されたものであり、その目的は、燃焼性冷媒を使用する空気調和機における安全性を確保するための技術を提供することである。 This invention was conceived in light of this situation, and its purpose is to provide technology to ensure safety in air conditioners that use flammable refrigerants.

 本開示のある局面に従うと、室内機と、室外機と、室内機と室外機との間で燃焼性冷媒を循環させる冷媒回路と、室内機、室外機、および冷媒回路の運転を制御する電気回路と、運転の司令を受けるインターフェイスと、を備えた空気調和機であって、電気回路は、電気回路に初めて通電された場合、または、電気回路への過去の通電時から空気調和機の設置位置が変化した場合に、空気調和の対象空間の床面積の入力を要求した後、司令に従った前記運転の制御を実施する、空気調和機が提供される。 In accordance with one aspect of the present disclosure, there is provided an air conditioner that includes an indoor unit, an outdoor unit, a refrigerant circuit that circulates a combustible refrigerant between the indoor unit and the outdoor unit, an electrical circuit that controls the operation of the indoor unit, the outdoor unit, and the refrigerant circuit, and an interface that receives operation commands, and when the electrical circuit is energized for the first time or when the installation position of the air conditioner has changed since the electrical circuit was previously energized, the electrical circuit requests input of the floor area of the space to be air-conditioned, and then controls the operation in accordance with the command.

 本開示の他の局面に従うと、電気回路によって実行されるプログラムが提供される。空気調和機は、室内機と、室外機と、室内機と室外機との間で燃焼性冷媒を循環させる冷媒回路と、室内機、室外機、および冷媒回路の運転の司令を受けるインターフェイスと、を含む。プログラムは、電気回路によって実行されることにより、空気調和機に、初めて通電されている状態にあるか否かを判断するステップと、電気回路が初めて通電されている状態ではないと判断した場合に、電気回路への過去の通電時から空気調和機の設置位置が変化しているか否かを判断するステップと、電気回路が初めて通電されている状態にある場合、または、電気回路への過去の通電時から空気調和機の設置位置が変化した場合に、司令に従った運転の制御を実施しないように電気回路の動作を設定するステップと、を実施させる。 According to another aspect of the present disclosure, a program executed by an electric circuit is provided. The air conditioner includes an indoor unit, an outdoor unit, a refrigerant circuit that circulates a combustible refrigerant between the indoor unit and the outdoor unit, and an interface that receives commands to operate the indoor unit, the outdoor unit, and the refrigerant circuit. The program, when executed by the electric circuit, causes the air conditioner to perform the following steps: determining whether or not the air conditioner is in a state in which it has been energized for the first time; determining whether or not the installation position of the air conditioner has changed since the electric circuit was previously energized, if it is determined that the electric circuit is not in a state in which it has been energized for the first time; and setting the operation of the electric circuit so as not to control the operation according to the command, if the electric circuit is in a state in which it has been energized for the first time or if the installation position of the air conditioner has changed since the electric circuit was previously energized.

 本開示によれば、電気回路への初回通電時、または、電気回路への過去の通電時から空気調和機の設置位置が変化した場合に、空気調和機は、空気調和の対象空間の床面積の入力を要求した後、インターフェイスから受ける司令に従った運転の制御を実施する。これにより、空気調和機に、空気調和の対象空間の床面積がより確実に入力される。したがって、燃焼性冷媒を使用する空気調和機における安全性を確保するための技術が提供される。 According to the present disclosure, when the electric circuit is energized for the first time, or if the installation location of the air conditioner has changed since the electric circuit was previously energized, the air conditioner requests input of the floor area of the space to be air-conditioned, and then controls operation in accordance with the commands received from the interface. This allows the floor area of the space to be air-conditioned to be more reliably input to the air conditioner. Thus, a technology is provided for ensuring safety in air conditioners that use flammable refrigerants.

空気調和機一実施形態の構成を示す図である。1 is a diagram showing the configuration of an embodiment of an air conditioner. FIG. 室外機1001の外観を示す図である。FIG. 2 is a diagram showing the external appearance of the outdoor unit 1001. 表示部材190の外観を示す図である。1A and 1B are diagrams showing the appearance of a display member 190. 室内機1002の斜視図である。FIG. 1 is a perspective view of an indoor unit 1002. 操作領域290の拡大図である。FIG. 2 is an enlarged view of the operation area 290. リモートコントローラ1003の外観図である。FIG. 1 is an external view of a remote controller 1003. 最小設置床面積の計算方法の一例を示す図である。FIG. 13 is a diagram showing an example of a method for calculating a minimum installation floor area. 最小設置床面積の計算方法の他の例を示す図である。FIG. 13 is a diagram showing another example of a method for calculating the minimum installation floor area. 必要撹拌風量の計算方法の一例を示す図である。FIG. 13 is a diagram illustrating an example of a method for calculating a required agitation air volume. 空気調和機1000において実行される処理のフローチャートである。4 is a flowchart of a process executed in the air conditioner 1000. 空気調和機1000において実行される処理のフローチャートである。4 is a flowchart of a process executed in the air conditioner 1000. 「運転司令の排除」の表示の一例を示す図である。FIG. 13 is a diagram showing an example of a display of "remove driving command." 空気調和機の他の実施形態の構成を示す図である。FIG. 11 is a diagram showing the configuration of another embodiment of the air conditioner. 図10および図11を参照して説明された処理のうち、図10に示された部分の変形例を示す図である。FIG. 12 is a diagram showing a modified example of the part shown in FIG. 10 among the processes described with reference to FIGS. 10 and 11.

 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。図中同一または相当部分には同一符号を付してその説明は繰り返さない。以下の図は各構成部材の大きさの関係が実際のものとは異なる場合がある。 Below, the embodiments of the present disclosure will be described in detail with reference to the drawings. Several embodiments will be described below, but it is planned from the beginning of the application that the configurations described in each embodiment will be appropriately combined. The same or equivalent parts in the drawings will be given the same reference numerals and their description will not be repeated. The size relationships of the components in the following drawings may differ from the actual ones.

 [空気調和機の構成]
 図1は、空気調和機一実施形態の構成を示す図である。図1において、空気調和機1000は、冷媒回路500と、室外機1001と、室内機1002と、リモートコントローラ1003とを含む。
[Configuration of Air Conditioner]
1 is a diagram showing the configuration of an embodiment of an air conditioner. In FIG. 1, the air conditioner 1000 includes a refrigerant circuit 500, an outdoor unit 1001, an indoor unit 1002, and a remote controller 1003.

 冷媒回路500は、圧縮機200と、室外熱交換器211と、ファン220と、膨張弁230と、四方弁240と、室内熱交換器110と、ファン120とを含む。ファン220は、室外送風機を構成する。ファン120は、室内送風機を構成する。四方弁240は、ポートP1~P4を有する。膨張弁230としては、例えば電子膨張弁(LEV:Linear Expansion Valve)を用いることができる。 The refrigerant circuit 500 includes a compressor 200, an outdoor heat exchanger 211, a fan 220, an expansion valve 230, a four-way valve 240, an indoor heat exchanger 110, and a fan 120. The fan 220 constitutes an outdoor blower. The fan 120 constitutes an indoor blower. The four-way valve 240 has ports P1 to P4. For example, an electronic expansion valve (LEV: Linear Expansion Valve) can be used as the expansion valve 230.

 冷媒回路500は、室外機1001と室内機1002に分かれて配置される。室外機1001は、圧縮機200と、四方弁240と、室外熱交換器211と、ファン220と、膨張弁230とを含む。室内機1002は、室内熱交換器110と、ファン120とを含む。室外機1001と室内機1002とは、配管310および配管320によって接続される。 The refrigerant circuit 500 is arranged separately for an outdoor unit 1001 and an indoor unit 1002. The outdoor unit 1001 includes a compressor 200, a four-way valve 240, an outdoor heat exchanger 211, a fan 220, and an expansion valve 230. The indoor unit 1002 includes an indoor heat exchanger 110 and a fan 120. The outdoor unit 1001 and the indoor unit 1002 are connected by piping 310 and piping 320.

 空気調和機1000では、冷媒として、燃焼性冷媒が採用されていてもよい。燃焼性冷媒は、プロパンなどの可燃性冷媒(A3冷媒)であってもよいし、低可燃性冷媒(A2冷媒)であってもよいし、微燃性冷媒(A2L冷媒)であってもよい。 In the air conditioner 1000, a flammable refrigerant may be used as the refrigerant. The flammable refrigerant may be a flammable refrigerant (A3 refrigerant) such as propane, a low flammable refrigerant (A2 refrigerant), or a slightly flammable refrigerant (A2L refrigerant).

 室外機1001は、制御装置100を含む。室内機1002は、制御装置700を含む。制御装置100と制御装置700とは、有線または無線で互いに通信可能に構成されている。 The outdoor unit 1001 includes a control device 100. The indoor unit 1002 includes a control device 700. The control devices 100 and 700 are configured to be able to communicate with each other via wire or wirelessly.

 圧縮機200は、制御装置100から受ける制御信号によって運転周波数を変更するように構成される。具体的には、圧縮機200は、インバータ制御された回転速度が可変の駆動モータを内蔵しており、運転周波数が変更されると駆動モータの回転速度が変化する。圧縮機200の運転周波数を変更することにより圧縮機200の出力が調整される。 Compressor 200 is configured to change its operating frequency according to a control signal received from control device 100. Specifically, compressor 200 has a built-in drive motor with a variable rotation speed that is inverter-controlled, and when the operating frequency is changed, the rotation speed of the drive motor changes. The output of compressor 200 is adjusted by changing the operating frequency of compressor 200.

 四方弁240は、制御装置100から受ける制御信号によって冷房運転状態および暖房運転状態のいずれかになるように制御される。 The four-way valve 240 is controlled to be in either a cooling operation state or a heating operation state by a control signal received from the control device 100.

 冷房運転状態は、図1に実線の矢印で示すように、ポートP1とポートP4とが連通し、ポートP2とポートP3とが連通する状態である。冷房運転状態で圧縮機200を運転することによって、実線矢印に示す向きに冷媒が冷媒回路中を循環する。 In the cooling operation state, as shown by the solid arrows in FIG. 1, port P1 and port P4 are in communication, and port P2 and port P3 are in communication. By operating compressor 200 in the cooling operation state, refrigerant circulates through the refrigerant circuit in the direction shown by the solid arrows.

 暖房運転状態は、図1に破線の矢印で示すように、ポートP1とポートP3とが連通し、ポートP2とポートP4とが連通する状態である。暖房運転状態で圧縮機200を運転することによって、破線矢印に示す向きに冷媒が冷媒回路中を循環する。 In the heating operation state, as shown by the dashed arrows in FIG. 1, port P1 and port P3 are in communication, and port P2 and port P4 are in communication. By operating compressor 200 in the heating operation state, refrigerant circulates through the refrigerant circuit in the direction shown by the dashed arrows.

 空気調和機1000は、温度センサ261~267をさらに含む。
 温度センサ261は、室内機1002に配置され、空気調和の対象空間の一例である部屋(室内機1002が設置される部屋)の室温T261を検出する。温度センサ262は、室内熱交換器110の配管320(液管)に接続される側に配置され冷媒温度T262を計測する。温度センサ263は、室内熱交換器110の配管310(ガス管)に接続される側に配置され冷媒温度T263を計測する。温度センサ264は、室内熱交換器110内の冷媒の温度である冷媒温度T264を計測する。
The air conditioner 1000 further includes temperature sensors 261-267.
The temperature sensor 261 is disposed in the indoor unit 1002, and detects the room temperature T261 of a room (the room in which the indoor unit 1002 is installed), which is an example of a target space for air conditioning. The temperature sensor 262 is disposed on the side connected to the pipe 320 (liquid pipe) of the indoor heat exchanger 110, and measures a refrigerant temperature T262. The temperature sensor 263 is disposed on the side connected to the pipe 310 (gas pipe) of the indoor heat exchanger 110, and measures a refrigerant temperature T263. The temperature sensor 264 measures a refrigerant temperature T264, which is the temperature of the refrigerant in the indoor heat exchanger 110.

 温度センサ265は、室外熱交換器211の四方弁240のポートP4に接続される側に配置され、冷媒温度T265を計測する。温度センサ266は、室外熱交換器211の膨張弁230に接続される側に配置され、冷媒温度T266を計測する。温度センサ267は、室外熱交換器211内の冷媒の温度である冷媒温度T267を計測する。 Temperature sensor 265 is arranged on the side connected to port P4 of four-way valve 240 of outdoor heat exchanger 211, and measures refrigerant temperature T265. Temperature sensor 266 is arranged on the side connected to expansion valve 230 of outdoor heat exchanger 211, and measures refrigerant temperature T266. Temperature sensor 267 measures refrigerant temperature T267, which is the temperature of the refrigerant in outdoor heat exchanger 211.

 制御装置100は、温度センサ261~267のそれぞれによって計測された温度および空気調和機1000における出力設定に従って、膨張弁230の開度およびファン220,120の駆動を制御する。膨張弁230の開度の制御において、蒸発器出口部の冷媒のSH(スーパーヒート:過熱度)が調整される。ファン120の駆動の制御は、制御装置700を介して実現されてもよい。すなわち、制御装置100は、ファン120の回転数を決定し、当該回転数を制御装置700に通知してもよい。制御装置700は、制御装置100から通知された回転数に従ってファン120の駆動を制御してもよい。 The control device 100 controls the opening of the expansion valve 230 and the operation of the fans 220, 120 according to the temperatures measured by each of the temperature sensors 261-267 and the output settings in the air conditioner 1000. In controlling the opening of the expansion valve 230, the SH (superheat) of the refrigerant at the evaporator outlet is adjusted. The control of the operation of the fan 120 may be realized via the control device 700. That is, the control device 100 may determine the rotation speed of the fan 120 and notify the control device 700 of the rotation speed. The control device 700 may control the operation of the fan 120 according to the rotation speed notified by the control device 100.

 制御装置100は、CPU(Central Processing Unit)101と、メモリ102とを含む。CPU101は、制御回路の一例である。メモリ102は、ROM(Read Only Memory)およびRAM(Random Access Memory)を含む。制御装置100は、さらに、図示を省略された他の要素(入出力バッファ等)を含んでいてもよい。CPU101は、ROMに非一時的に格納されているプログラムをRAMに展開して実行する。ROMに格納されるプログラムは、制御装置100の処理手順が記されたプログラムである。制御装置100は、これらのプログラムに従って、空気調和機1000における各機器の制御を実行する。 The control device 100 includes a CPU (Central Processing Unit) 101 and a memory 102. The CPU 101 is an example of a control circuit. The memory 102 includes a ROM (Read Only Memory) and a RAM (Random Access Memory). The control device 100 may further include other elements (such as an input/output buffer) that are not shown. The CPU 101 expands a program that is non-temporarily stored in the ROM into the RAM and executes it. The program stored in the ROM is a program that describes the processing procedures of the control device 100. The control device 100 executes control of each device in the air conditioner 1000 in accordance with these programs.

 制御装置700は、CPU701と、メモリ702と、通信部703とを含む。CPU701は、制御回路の一例である。通信部703は、リモートコントローラ1003との無線または有線の通信のためのインターフェイスである。なお、制御装置700とリモートコントローラ1003とは、ネットワークを介して互いに通信するように構成されていてもよい。メモリ702は、ROMおよびRAMを含む。制御装置700は、さらに、図示を省略された他の要素(入出力バッファ等)を含んでいてもよい。CPU701は、ROMに非一時的に格納されているプログラムをRAMに展開して実行する。ROMに格納されるプログラムは、制御装置700の処理手順が記されたプログラムである。制御装置700は、これらのプログラムに従って、空気調和機1000における各機器の制御を実行する。 The control device 700 includes a CPU 701, a memory 702, and a communication unit 703. The CPU 701 is an example of a control circuit. The communication unit 703 is an interface for wireless or wired communication with the remote controller 1003. The control device 700 and the remote controller 1003 may be configured to communicate with each other via a network. The memory 702 includes a ROM and a RAM. The control device 700 may further include other elements (such as an input/output buffer) that are not shown. The CPU 701 expands a program that is non-temporarily stored in the ROM into the RAM and executes it. The program stored in the ROM is a program in which the processing procedures of the control device 700 are written. The control device 700 executes control of each device in the air conditioner 1000 according to these programs.

 制御装置100および制御装置700による制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control by the control device 100 and the control device 700 is not limited to processing by software, but can also be processed by dedicated hardware (electronic circuitry).

 空気調和機1000は、GPS(Global Positioning System)レシーバ150,750をさらに含む。GPSレシーバ150,750の各々は、複数のGPS衛星からの信号を受信する。 The air conditioner 1000 further includes a GPS (Global Positioning System) receiver 150, 750. Each of the GPS receivers 150, 750 receives signals from multiple GPS satellites.

 CPU101は、GPSレシーバ150が受信した信号を解析することにより、室外機1001の位置を特定する。CPU101は、室外機1001の位置を制御装置700に送信してもよい。 The CPU 101 identifies the position of the outdoor unit 1001 by analyzing the signal received by the GPS receiver 150. The CPU 101 may transmit the position of the outdoor unit 1001 to the control device 700.

 CPU701は、GPSレシーバ750が受信した信号を解析することにより、室内機1002の位置を特定する。CPU701は、室内機1002の位置を制御装置100に送信してもよい。 The CPU 701 identifies the position of the indoor unit 1002 by analyzing the signal received by the GPS receiver 750. The CPU 701 may transmit the position of the indoor unit 1002 to the control device 100.

 室内機1002は、漏洩センサ720を含む。漏洩センサ720は、漏洩した冷媒の濃度を検出する。漏洩センサ720の一例は、還元性ガス全般について感度を有する、半導体式のガスセンサである。 The indoor unit 1002 includes a leakage sensor 720. The leakage sensor 720 detects the concentration of the leaked refrigerant. One example of the leakage sensor 720 is a semiconductor gas sensor that is sensitive to reducing gases in general.

 室内機1002は、空気調和機1000に応急運転を実施させるための、応急運転スイッチ291を含む。CPU701は、応急運転スイッチ291の所与の期間内(たとえば、1秒間)の操作回数に応じて空気調和機1000を制御する。より具体的には、CPU701は、1回の操作で、空気調和機1000に、予め定められた態様で冷房運転を実施させる。予め定められた態様での冷房運転は、応急運転の一例である。CPU701は、2回の操作で、空気調和機1000に、予め定められた態様で暖房運転を実施させる。予め定められた態様での暖房運転は、応急運転の一例である。CPU701は、3回の操作で、空気調和機1000に、応急運転(冷房運転または暖房運転)を停止させる。 The indoor unit 1002 includes an emergency operation switch 291 for causing the air conditioner 1000 to perform emergency operation. The CPU 701 controls the air conditioner 1000 according to the number of times the emergency operation switch 291 is operated within a given period (e.g., one second). More specifically, the CPU 701 causes the air conditioner 1000 to perform cooling operation in a predetermined manner with one operation. Cooling operation in a predetermined manner is an example of emergency operation. The CPU 701 causes the air conditioner 1000 to perform heating operation in a predetermined manner with two operations. Heating operation in a predetermined manner is an example of emergency operation. The CPU 701 causes the air conditioner 1000 to stop emergency operation (cooling operation or heating operation) with three operations.

 リモートコントローラ1003は、通信部301と、表示ユニット302と、操作ユニット303と、バッテリ304とを含む。バッテリ304は、リモートコントローラ1003内の各要素に電力を供給する。 The remote controller 1003 includes a communication unit 301, a display unit 302, an operation unit 303, and a battery 304. The battery 304 supplies power to each element in the remote controller 1003.

 通信部301は、制御装置700の通信部703との間の無線または有線の通信のインターフェイスである。表示ユニット302は、ディスプレイと、当該ディスプレイの表示を制御する要素(制御回路)とを含む。操作ユニット303は、1以上の操作ボタンと、1以上の操作ボタンのそれぞれに応じた信号を出力する要素(制御回路)とを含む。 The communication unit 301 is an interface for wireless or wired communication with the communication unit 703 of the control device 700. The display unit 302 includes a display and an element (control circuit) that controls the display of the display. The operation unit 303 includes one or more operation buttons and an element (control circuit) that outputs a signal corresponding to each of the one or more operation buttons.

 表示ユニット302は、通信部301が通信部703から受信した信号に従って、または、操作ユニット303の1以上の操作ボタンのうち操作されたボタンの種類に従って、ディスプレイの表示を制御する。表示ユニット302は、空気調和機1000の運転状態(冷房/暖房、設定温度、など)を表示する。表示ユニット302は、また、各種のメッセージを表示する。 The display unit 302 controls what is displayed on the display according to a signal received by the communication unit 301 from the communication unit 703, or according to the type of button that is operated among one or more operation buttons of the operation unit 303. The display unit 302 displays the operating state of the air conditioner 1000 (cooling/heating, set temperature, etc.). The display unit 302 also displays various messages.

 操作ユニット303は、1以上の操作ボタンのいずれかが操作されると、操作されたボタンに対応する信号を、通信部703および表示ユニット302へ出力する。通信部703は、操作ユニット303から出力された信号を、制御装置700へ向けて送信する。 When any of the one or more operation buttons is operated, the operation unit 303 outputs a signal corresponding to the operated button to the communication unit 703 and the display unit 302. The communication unit 703 transmits the signal output from the operation unit 303 to the control device 700.

 図1において、冷房運転中の冷媒の流れが実線の矢印で示され、暖房運転中の冷媒の流れが破線の矢印で示される。制御装置100は、室内温度が目標(設定)温度になるように圧縮機200の周波数を変更する。なお、図1には、空気調和機1000の構成として、四方弁240を含む構成が例示されているが、四方弁240がない冷房専用の構成が採用されてもよい。 In FIG. 1, the flow of refrigerant during cooling operation is indicated by solid arrows, and the flow of refrigerant during heating operation is indicated by dashed arrows. The control device 100 changes the frequency of the compressor 200 so that the indoor temperature becomes a target (set) temperature. Note that FIG. 1 illustrates an example of a configuration of the air conditioner 1000 that includes a four-way valve 240, but a configuration dedicated to cooling that does not have a four-way valve 240 may also be used.

 [室外機]
 図2は、室外機1001の外観を示す図である。室外機1001には、表示部材190が貼り付けられている。図3は、表示部材190の外観を示す図である。表示部材190は、メッセージ「※注意※運転指令に従った運転には、応急運転スイッチを押し、設置床面積の設定が必要です。」を表示する。すなわち、表示部材190は、運転司令に従った制御が、空気調和機1000に設置床面積が入力された後で実施されることを報知する。
[Outdoor unit]
Fig. 2 is a diagram showing the external appearance of the outdoor unit 1001. A display member 190 is attached to the outdoor unit 1001. Fig. 3 is a diagram showing the external appearance of the display member 190. The display member 190 displays the message "*Caution* To operate in accordance with the operation command, it is necessary to press the emergency operation switch and set the installation floor area." In other words, the display member 190 notifies that control in accordance with the operation command will be carried out after the installation floor area is input to the air conditioner 1000.

 表示部材190は、室外機1001に対して着脱可能であってもよい。ユーザまたは設置業者は、表示部材190に記載された事項を確認した後、表示部材190を室外機1001の本体から取り外してもよい。表示部材190は、シールであってもよいし、工具を利用して脱着されるプレートであってもよい。作業員またはユーザは、室外機1001から取り外された表示部材190に設置床面積Aを記載し、空気調和機1000のメーカに当該表示部材190を送付してもよい。 The display member 190 may be detachable from the outdoor unit 1001. After checking the information written on the display member 190, the user or installer may remove the display member 190 from the body of the outdoor unit 1001. The display member 190 may be a sticker or a plate that is detachable using a tool. The worker or user may write the installation floor area A on the display member 190 removed from the outdoor unit 1001, and send the display member 190 to the manufacturer of the air conditioner 1000.

 なお、表示部材190は、室外機1001に取り付けられる代わりに、または、室外機1001に取り付けられるのに加えて、室内機1002に取り付けられていても良い。 In addition, the display member 190 may be attached to the indoor unit 1002 instead of or in addition to being attached to the outdoor unit 1001.

 [室内機]
 図4は、室内機1002の斜視図である。図4に示されるように、室内機1002は、筐体270と、カバー280とを含む。カバー280は、筐体270の前面を開閉可能に覆う。筐体270は、操作領域290を含む。操作領域290は、カバー280に覆われている。
[Indoor unit]
Fig. 4 is a perspective view of indoor unit 1002. As shown in Fig. 4, indoor unit 1002 includes housing 270 and cover 280. Cover 280 covers the front surface of housing 270 in an openable and closable manner. Housing 270 includes operation area 290. Operation area 290 is covered by cover 280.

 図5は、操作領域290の拡大図である。操作領域には、応急運転スイッチ291を含む。 FIG. 5 is an enlarged view of the operation area 290. The operation area includes an emergency operation switch 291.

 [リモートコントローラ]
 図6は、リモートコントローラ1003の外観図である。図6に示されるように、リモートコントローラ1003において、表示ユニット302および操作ユニット303は、外表面に設けられている。
[Remote Controller]
Fig. 6 is an external view of the remote controller 1003. As shown in Fig. 6, in the remote controller 1003, the display unit 302 and the operation unit 303 are provided on the outer surface.

 [最小設置床面積]
 空気調和機1000では、空気調和の対象空間の床面積として必要とされる面積(最小設置床面積)が計算される。一実現例では、最小設置床面積の計算方法は、国際規格(IEC60335-2-40 Edition7)に従う。
[Minimum installation floor space]
The air conditioner 1000 calculates the area (minimum installation floor area) required as the floor area of the space to be air-conditioned. In one implementation example, the method for calculating the minimum installation floor area complies with the international standard (IEC 60335-2-40 Edition 7).

 図7は、最小設置床面積の計算方法の一例を示す図である。図8は、最小設置床面積の計算方法の他の例を示す図である。空気調和機1000では、最小設置床面積の計算方法は、空気調和機1000が冷媒の漏洩を検出するセンサ(漏洩センサ720)を搭載しているか否かによって異なる。 FIG. 7 is a diagram showing an example of a method for calculating the minimum installation floor area. FIG. 8 is a diagram showing another example of a method for calculating the minimum installation floor area. In the air conditioner 1000, the method for calculating the minimum installation floor area differs depending on whether the air conditioner 1000 is equipped with a sensor (leak sensor 720) that detects refrigerant leakage.

 より具体的には、空気調和機は、漏洩センサを搭載している場合、漏洩センサによって冷媒の漏洩が検出されると、ファンにより空気調和の対象空間内の空気を撹拌する。空気調和機がこのような構成を有していない場合、最小設置床面積は、図7の式(1)で示されるAminとして計算される。一方、空気調和機が漏洩センサを搭載している場合、すなわち、漏洩センサによる漏洩の検出に従って空気を撹拌する構成を有している場合、最小設置床面積は、図8の式(2)で示されるAminとして計算される。 More specifically, if the air conditioner is equipped with a leak sensor, when a refrigerant leak is detected by the leak sensor, the fan will agitate the air in the space to be air-conditioned. If the air conditioner does not have such a configuration, the minimum installation floor area is calculated as Amin shown in formula (1) of Figure 7. On the other hand, if the air conditioner is equipped with a leak sensor, that is, if it has a configuration that agitates the air in response to the detection of a leak by the leak sensor, the minimum installation floor area is calculated as Amin shown in formula (2) of Figure 8.

 式(1)および式(2)において、mは、冷媒充填量[kg]を表す。LFLは、冷媒の燃焼下限界濃度(Lower Flammability Limit)[kg/m]を表す。 In formula (1) and formula (2), mc represents the refrigerant charge amount [kg], and LFL represents the lower flammability limit [kg/m 3 ] of the refrigerant.

 式(1)において、0.35という値は、CF(Concentration factor)の値の一例として利用されている。hは、室内機1002の据付高さ[m]を表す。 In formula (1), the value of 0.35 is used as an example of the value of CF (Concentration factor). h 0 represents the installation height [m] of the indoor unit 1002.

 式(2)において、CFは、Concentration factorを表し、0.5以下の係数である。2.2という値は、据付高さ[m]の一例として利用されている。 In formula (2), CF stands for Concentration factor, a coefficient less than or equal to 0.5. The value 2.2 is used as an example of the installation height [m].

 図7および図8に示されるように、最小設置床面積は、冷媒のLFLに依拠する。冷媒のLFLは、冷媒の種類によって依拠する。したがって、最小設置床面積の値は、冷媒の種類に基づいて変化する。最小設置床面積の値は、さらに、空気調和機に漏洩センサが搭載されているか否かによって変化する。 As shown in Figures 7 and 8, the minimum installation floor area depends on the LFL of the refrigerant. The LFL of the refrigerant depends on the type of refrigerant. Therefore, the value of the minimum installation floor area varies based on the type of refrigerant. The value of the minimum installation floor area also varies depending on whether or not the air conditioner is equipped with a leak sensor.

 [必要撹拌風量]
 空気調和機1000に対して、漏洩センサ720によって冷媒の漏洩が検出された際に空調制御対象に提供することを必要とされる風量(必要撹拌風量)が計算される。一実現例では、必要撹拌風量は、国際規格IEC60335-2-40_edition7に従って計算される。
[Required mixing air volume]
The air volume (required stirring air volume) that needs to be provided to the air conditioning control target when a refrigerant leak is detected by the leak sensor 720 is calculated for the air conditioner 1000. In one implementation example, the required stirring air volume is calculated in accordance with the international standard IEC 60335-2-40 edition 7.

 図9は、必要撹拌風量の計算方法の一例を示す図である。国際規格IEC60335-2-40_edition7に従うと、必要撹拌風量は、図9の式(3)に従って、必要撹拌風量Qmin[m/min]として計算される。 Fig. 9 is a diagram showing an example of a method for calculating the required agitation air volume. According to the international standard IEC60335-2-40 edition 7, the required agitation air volume is calculated as the required agitation air volume Qmin [m 3 /min] according to formula (3) in Fig. 9.

 式(3)において、Yは、1または1.5の値を有する係数を表す。Aは、室内機の吹出口の面積[m]を表す。mは、式(1)と同様に、冷媒充填量[kg]を表す。LFLは、式(1)および式(2)について上述したように、冷媒の燃焼下限界濃度[kg/m]を表す。CFは、式(2)にて使用されたのと同じ値を表す。 In formula (3), Y represents a coefficient having a value of 1 or 1.5. A0 represents the area of the air outlet of the indoor unit [ m2 ]. mc represents the refrigerant charge [kg], as in formula (1). LFL represents the lower flammability limit concentration of the refrigerant [kg/ m3 ], as described above for formulas (1) and (2). CF represents the same value as used in formula (2).

 図9に示されるように、必要撹拌風量は、冷媒のLFLに依拠する。冷媒のLFLは、冷媒の種類に依拠する。したがって、必要撹拌風量の値は、冷媒の種類に基づいて変化する。 As shown in Figure 9, the required agitation airflow depends on the LFL of the refrigerant. The LFL of the refrigerant depends on the type of refrigerant. Therefore, the value of the required agitation airflow varies based on the type of refrigerant.

 [処理の流れ]
 次に、空気調和機1000における通電開始時の動作について説明する。図10および図11は、空気調和機1000において実行される処理のフローチャートである。一実現例では、空気調和機1000において、室内機1002においてCPU701が所与のプログラムを実行することによって、室外機1001においてCPU101が所与のプログラムを実行することによって、または、CPU701およびCPU101が協働して、図10および図11に示された処理が実施される。
[Process flow]
Next, an operation at the start of energization of the air conditioner 1000 will be described. Figures 10 and 11 are flowcharts of the processing executed in the air conditioner 1000. In one implementation example, in the air conditioner 1000, the processing shown in Figures 10 and 11 is carried out by the CPU 701 in the indoor unit 1002 executing a given program, by the CPU 101 in the outdoor unit 1001 executing a given program, or by the CPU 701 and CPU 101 working together.

 まず、図10を参照して、ステップS21にて、空気調和機1000は、今回の通電が、製品出荷後の初回の通電であるか否かを判断する。通電とは、空気調和機1000が電源と接続されたことを意味し、たとえば、空気調和機1000の電源コードが電源コンセントに差し込まれることを意味する。 First, referring to FIG. 10, in step S21, the air conditioner 1000 determines whether the current power-on is the first power-on since the product was shipped. Power-on means that the air conditioner 1000 is connected to a power source, for example, that the power cord of the air conditioner 1000 is plugged into a power outlet.

 空気調和機1000は、初回の通電であるか否かを、空気調和機1000に関連付けられた「設置床面積A」が所与のメモリに格納されているか否かに基づいて判断してもよい。この場合、上記所与のメモリに、空気調和機1000に関連付けられた「設置床面積A」が格納されていなければ、空気調和機1000は、今回の通電が、製品出荷後の初回の通電であると判断する。「設置床面積A」は、ステップS27について後述される。 The air conditioner 1000 may determine whether or not this is the first time it has been energized based on whether or not the "installation floor area A" associated with the air conditioner 1000 is stored in a given memory. In this case, if the "installation floor area A" associated with the air conditioner 1000 is not stored in the given memory, the air conditioner 1000 determines that this current energization is the first time it has been energized since the product was shipped. "Installation floor area A" will be described later in step S27.

 所与のメモリは、メモリ702、メモリ102、および/または、空気調和機1000からアクセス可能な外部のメモリ(たとえば、クラウドサーバ内のメモリ)である。一実現例において、上記所与のメモリがどのメモリであるかは、空気調和機1000において適宜設定されている。 The given memory is memory 702, memory 102, and/or an external memory accessible from the air conditioner 1000 (e.g., a memory in a cloud server). In one implementation example, which memory is the given memory is appropriately set in the air conditioner 1000.

 所与のメモリにおいて、「設置床面積A」などの空気調和機1000に関連したデータは、空気調和機1000に関連付けられている状態で格納されている。 In a given memory, data related to the air conditioner 1000, such as "installation floor area A," is stored in association with the air conditioner 1000.

 たとえば、所与のメモリとしてメモリ102および/またはメモリ702が採用される場合、メモリ102およびメモリ702は空気調和機1000を構成しているため、メモリ102またはメモリ702に格納されるデータは実質的に空気調和機1000に関連付けられている。 For example, when memory 102 and/or memory 702 are employed as the given memory, memory 102 and memory 702 constitute air conditioner 1000, and therefore data stored in memory 102 or memory 702 is substantially associated with air conditioner 1000.

 所与のメモリとして外部のメモリが採用される場合、「設置床面積A」などの空気調和機1000に関連したデータは、空気調和機1000を特定する情報(たとえば、空気調和機1000の製造番号)とともに上記外部のメモリに格納されることにより、空気調和機1000に関連付けられる。 When an external memory is used as the given memory, data related to the air conditioner 1000, such as the "installation floor area A," is associated with the air conditioner 1000 by being stored in the external memory together with information identifying the air conditioner 1000 (for example, the serial number of the air conditioner 1000).

 空気調和機1000は、今回の通電が製品出荷後の初回の通電であると判断すると(ステップS21にてYES)、ステップS24へ制御を進め、そうでなければ(ステップS21にてNO)、ステップS22へ制御を進める。 If the air conditioner 1000 determines that this is the first time the power has been turned on since the product was shipped (YES in step S21), control proceeds to step S24; if not (NO in step S21), control proceeds to step S22.

 ステップS22にて、空気調和機1000は、空気調和機1000の位置情報に変化が生じているか否かを判断する。空気調和機1000の位置情報は、室外機1001の位置情報であってもよいし、室内機1002の位置情報であってもよい。 In step S22, the air conditioner 1000 determines whether or not a change has occurred in the location information of the air conditioner 1000. The location information of the air conditioner 1000 may be the location information of the outdoor unit 1001 or the location information of the indoor unit 1002.

 一実現例では、ステップS22にて、室外機1001の位置情報が取得される。他の実現例では、ステップS22にて、室内機1002の位置情報が取得される。さらに他の実現例では、ステップS22にて、室外機1001および室内機1002の位置情報が取得される。ステップS38について後述されるように、過去の処理のステップS22において取得された位置情報は、過去の位置情報として、上記所与のメモリに格納されている。 In one implementation example, position information of the outdoor unit 1001 is acquired in step S22. In another implementation example, position information of the indoor unit 1002 is acquired in step S22. In yet another implementation example, position information of the outdoor unit 1001 and the indoor unit 1002 is acquired in step S22. As described later with respect to step S38, the position information acquired in step S22 of the past processing is stored in the given memory as past position information.

 そして、空気調和機1000は、ステップS22にて、上記のように取得された位置情報(現在の位置情報)を、上記過去の位置情報と比較することにより、空気調和機1000の位置情報に変化が生じているか否かを判断する。 Then, in step S22, the air conditioner 1000 compares the location information acquired as described above (current location information) with the past location information described above to determine whether or not there has been a change in the location information of the air conditioner 1000.

 ステップS22にて、室外機1001および室内機1002の位置情報が取得された場合、室外機1001および室内機1002のそれぞれの現在の位置情報が、それぞれの過去の位置情報と比較される。そして、いずれか一方の現在の位置情報が対応する過去の位置情報と異なる場合、空気調和機1000の位置情報に変化が生じていると判断される。 In step S22, when the position information of the outdoor unit 1001 and the indoor unit 1002 is acquired, the current position information of each of the outdoor unit 1001 and the indoor unit 1002 is compared with the past position information of each of them. Then, if the current position information of either unit differs from the corresponding past position information, it is determined that a change has occurred in the position information of the air conditioner 1000.

 空気調和機1000は、上記所与のメモリに上記過去の位置情報が格納されていなければ、空気調和機1000の位置情報に変化が生じていないと判断してもよい。 If the past location information is not stored in the given memory, the air conditioner 1000 may determine that no change has occurred in the location information of the air conditioner 1000.

 空気調和機1000は、空気調和機1000の位置情報に変化が生じていると判断すると(ステップS22にてYES)、ステップS23へ制御を進め、そうでなければ(ステップS22にてNO)、ステップS36(図11)へ制御を進める。 If the air conditioner 1000 determines that a change has occurred in the location information of the air conditioner 1000 (YES in step S22), control proceeds to step S23; if not (NO in step S22), control proceeds to step S36 (Figure 11).

 ステップS23にて、空気調和機1000は、上記所与のメモリに書き込まれている「設置床面積A」を削除して、ステップS24へ制御を進める。 In step S23, the air conditioner 1000 deletes the "installation floor area A" written in the given memory and proceeds to step S24.

 ステップS24にて、空気調和機1000は、空気調和機1000における運転司令の排除を、設定および表示する。「運転司令の排除」とは、通信部703を介して入力されるリモートコントローラ1003からの運転司令が、空気調和機1000において排除されることを意味する。より具体的には、空気調和機1000は、見かけ上、ユーザがリモートコントローラ1003に入力した司令を受け入れても、当該司令に従った制御を実施しない。結果的に、リモートコントローラ1003を介して室内機1002に入力された司令が、空気調和機1000における動作の制御から排除される。 In step S24, the air conditioner 1000 sets and displays the exclusion of operation commands in the air conditioner 1000. "Exclusion of operation commands" means that operation commands from the remote controller 1003 input via the communication unit 703 are excluded in the air conditioner 1000. More specifically, even if the air conditioner 1000 appears to accept a command input by the user to the remote controller 1003, it does not carry out control in accordance with that command. As a result, the command input to the indoor unit 1002 via the remote controller 1003 is excluded from the control of the operation of the air conditioner 1000.

 一実現例では、「運転司令の排除」の設定は、メモリ702に登録される。CPU701は、リモートコントローラ1003からの司令を受信したときに、メモリ702に「運転司令の排除」の設定が登録されていなければ、当該司令に従って空気調和機1000の動作(冷房運転または暖房運転)を制御し、登録されていれば、当該司令を動作の制御から排除する。 In one implementation example, the setting for "remove operation command" is registered in memory 702. When the CPU 701 receives a command from the remote controller 1003, if the setting for "remove operation command" is not registered in memory 702, the CPU 701 controls the operation (cooling operation or heating operation) of the air conditioner 1000 in accordance with the command, and if the setting is registered, the CPU 701 removes the command from the operation control.

 空気調和機1000は、「運転司令の排除」の表示は、リモートコントローラ1003における表示によって実現される。図12は、「運転司令の排除」の表示の一例を示す図である。 In the air conditioner 1000, the display of "remove operation command" is realized by a display on the remote controller 1003. Figure 12 is a diagram showing an example of the display of "remove operation command".

 図12の例では、リモートコントローラ1003の表示ユニット302は、「運転司令の排除」の表示の一例として、メッセージ「運転司令を受け付けることはできません。応急運転スイッチを押し、設置床面積の設定が必要です。」を表示する。 In the example of FIG. 12, the display unit 302 of the remote controller 1003 displays the message "Operation commands cannot be accepted. Press the emergency operation switch and set the installation floor area." as an example of a display for "rejecting operation commands."

 図10に戻って、ステップS25にて、空気調和機1000は、応急運転スイッチ291が操作されるまで待機し(ステップS25にてNO)、応急運転スイッチ291が操作されたと判断すると(ステップS25にてYES)、ステップS26へ制御を進める。 Returning to FIG. 10, in step S25, the air conditioner 1000 waits until the emergency operation switch 291 is operated (NO in step S25), and if it determines that the emergency operation switch 291 has been operated (YES in step S25), the control proceeds to step S26.

 ステップS26にて、空気調和機1000は、応急運転を実施する。応急運転として、冷房運転および暖房運転のいずれが実施されるかについては、応急運転スイッチ291について上述されたように、応急運転スイッチ291の操作回数に従って決定される。 In step S26, the air conditioner 1000 performs emergency operation. Whether the emergency operation is cooling operation or heating operation is determined according to the number of times the emergency operation switch 291 is operated, as described above for the emergency operation switch 291.

 ステップS27にて、空気調和機1000は、ユーザに対して、空気調和機1000の空気調和の対象空間の設置床面積Aの入力を指示(要求)する。指示は、いかなる態様で実現されてもよく、表示であってもよいし、音声であってもよい。表示による指示の一例として、図6のメッセージ「設置床面積の設定をしてください。」がリモートコントローラ1003の表示ユニット302に表示されてもよい。 In step S27, the air conditioner 1000 instructs (requests) the user to input the installation floor area A of the space to be air-conditioned by the air conditioner 1000. The instruction may be realized in any manner, and may be a display or a voice. As an example of an instruction by display, the message "Please set the installation floor area" in FIG. 6 may be displayed on the display unit 302 of the remote controller 1003.

 ステップS28にて、空気調和機1000は、設置床面積Aが入力されるまで待機し(ステップS28にてNO)、入力されたと判断すると(ステップS28にてYES)、ステップS29へ制御を進める。 In step S28, the air conditioner 1000 waits until the installation floor area A is input (NO in step S28), and if it determines that it has been input (YES in step S28), the control proceeds to step S29.

 図11を参照して、ステップS29にて、空気調和機1000は、当該空気調和機1000に漏洩センサが搭載されているか否かを判断する。空気調和機1000において漏洩センサ720は省略され得る。空気調和機1000は、漏洩センサ720が搭載されていれば(ステップS29にてYES)、ステップS30へ制御を進め、そうでなければ(ステップS29にてNO)、ステップS34へ制御を進める。 Referring to FIG. 11, in step S29, the air conditioner 1000 determines whether or not the air conditioner 1000 is equipped with a leak sensor. The leak sensor 720 may be omitted in the air conditioner 1000. If the air conditioner 1000 is equipped with the leak sensor 720 (YES in step S29), the air conditioner 1000 advances control to step S30, and if not (NO in step S29), the air conditioner 1000 advances control to step S34.

 ステップS30にて、空気調和機1000は、設置床面積Aが上記式(2)に従って算出される最小設置床面積Amin以上であるか否かを判断し、そうであると判断すると(ステップS30にてYES)、ステップS32へ制御を進め、そうでなければ(ステップS30にてNO)、ステップS31へ制御を進める。なお、LFLの値は、空気調和機1000内のメモリ(メモリ102および/またはメモリ702)に格納されていてもよいし、CPU101および/またはCPU701がアクセス可能な外部のメモリに格納されていてもよい。 In step S30, the air conditioner 1000 determines whether the installation floor area A is equal to or greater than the minimum installation floor area Amin calculated according to the above formula (2), and if it is determined that it is (YES in step S30), the control proceeds to step S32, and if it is not (NO in step S30), the control proceeds to step S31. The value of LFL may be stored in a memory (memory 102 and/or memory 702) within the air conditioner 1000, or may be stored in an external memory accessible to the CPU 101 and/or CPU 701.

 ステップS31にて、空気調和機1000は、危険等の情報を表示する。ステップS31へ制御が進められた場合、床面積についての設置基準が満たされていない可能性が高い。そのため、室内に着火元となるものを極力置かないようにアナウンスするための情報を、たとえばリモートコントローラ1003の表示ユニット302に表示する。ステップS31では、空気調和機1000は、表示以外の態様(たとえば、音声)で、設置基準が満たされていない可能性が高いことを、ユーザおよび/またはに設置業者に知らせてもよい。その後、制御はステップS32へ進められる。 In step S31, the air conditioner 1000 displays information about danger, etc. If control proceeds to step S31, it is highly likely that the installation standards for floor area have not been met. For this reason, information to warn users to avoid placing sources of ignition indoors as much as possible is displayed, for example, on the display unit 302 of the remote controller 1003. In step S31, the air conditioner 1000 may inform the user and/or the installer that the installation standards are highly likely not being met in a manner other than a display (for example, audio). Control then proceeds to step S32.

 ステップS32にて、空気調和機1000は、漏洩センサ720によって漏洩が検出された際のファン120の風量の設定値Qが、空気調和機1000における必要撹拌風量Qmin以上であるか否かを判断し、そうであると判断すると(ステップS32にてYES)、ステップS36へ制御を進め、そうでなければ(ステップS32にてNO)、ステップS33へ制御を進める。 In step S32, the air conditioner 1000 determines whether the set value Q of the air volume of the fan 120 when the leak was detected by the leak sensor 720 is equal to or greater than the required stirring air volume Qmin in the air conditioner 1000. If it is determined that this is the case (YES in step S32), control proceeds to step S36; if not (NO in step S32), control proceeds to step S33.

 ステップS33にて、空気調和機1000は、空気調和機1000内の設定値Q(たとえば、メモリ702に格納されている)を必要撹拌風量Qminに変更する。その後、制御はステップS36へ進められる。これにより、空気調和機1000において、ファン120が必要撹拌風量Qminを実現するための動作(回転数)の設定が格納される。 In step S33, the air conditioner 1000 changes the setting value Q (for example, stored in memory 702) in the air conditioner 1000 to the required stirring air volume Qmin. Control then proceeds to step S36. As a result, the setting of the operation (rotation speed) for the fan 120 to achieve the required stirring air volume Qmin is stored in the air conditioner 1000.

 一方、ステップS34にて、空気調和機1000は、設置床面積Aが上記式(1)に従って算出される最小設置床面積Amin以上であるか否かを判断し、そうであると判断すると(ステップS34にてYES)、ステップS36へ制御を進め、そうでなければ(ステップS34にてNO)、ステップS35へ制御を進める。 On the other hand, in step S34, the air conditioner 1000 determines whether the installation floor area A is equal to or greater than the minimum installation floor area Amin calculated according to the above formula (1), and if it determines that it is (YES in step S34), the control proceeds to step S36, and if it is not (NO in step S34), the control proceeds to step S35.

 ステップS35にて、空気調和機1000は、ステップS31と同様に、危険等の情報を表示する。より具体的には、ステップS35へ制御が進められた場合、床面積についての設置基準が満たされていない可能性が高い。そのため、空気調和機1000は、上述のアナウンスのための制御(表示など)を実施する。その後、制御はステップS36へ進められる。 In step S35, the air conditioner 1000 displays information about danger, etc., in the same way as in step S31. More specifically, if control proceeds to step S35, there is a high possibility that the installation standards for floor area have not been met. Therefore, the air conditioner 1000 performs control (display, etc.) for the announcement described above. Thereafter, control proceeds to step S36.

 ステップS36にて、空気調和機1000は、ステップS24において設定した「運転司令の排除」を解除する。これにより、空気調和機1000は、リモートコントローラ1003からの司令に従って冷房運転および暖房運転の制御を実施できる状態に移行する。ステップS36にて、空気調和機1000は、さらに、「運転司令の排除」を解除したことを報知する。報知は、メッセージ「運転司令の受け付けが可能になりました。」が表示ユニット302に表示されることによって実現されてもよいし、当該メッセージが音声として出力されることによって実現されてもよい。 In step S36, the air conditioner 1000 cancels the "rejection of operation commands" that was set in step S24. This causes the air conditioner 1000 to transition to a state in which it can control cooling and heating operations according to commands from the remote controller 1003. In step S36, the air conditioner 1000 further notifies that the "rejection of operation commands" has been canceled. The notification may be realized by displaying the message "Operation commands can now be accepted" on the display unit 302, or by outputting the message as audio.

 ステップS37にて、空気調和機1000は、ステップS27の指示に応じて入力された設置床面積Aを上記所与のメモリに格納する。 In step S37, the air conditioner 1000 stores the installation floor area A input in response to the instruction in step S27 in the given memory.

 ステップS38にて、空気調和機1000は、ステップS22において検出された「現在の位置情報」を上記所与のメモリに格納する。このように格納された「現在の位置情報」は、以降の処理において「過去の位置情報」として参照される。その後、空気調和機1000は、図10および図11に示された処理を終了させる。 In step S38, the air conditioner 1000 stores the "current location information" detected in step S22 in the given memory. The "current location information" stored in this manner is referred to as "past location information" in subsequent processing. Thereafter, the air conditioner 1000 ends the processing shown in Figures 10 and 11.

 上記処理では、ステップS24において、空気調和機1000における「運転司令の排除」が、設定され、表示される。 In the above process, in step S24, "removal of operation commands" for the air conditioner 1000 is set and displayed.

 上記処理が実施されるタイミングが空気調和機1000の初回の通電時であれば、ステップS24の制御が実施される。 If the above process is performed when the air conditioner 1000 is turned on for the first time, the control of step S24 is performed.

 なお、空気調和機1000は、ステップS21にて、室外機1001と室内機1002のいずれか一方のみへの通電が初めてであると判断すれば、ステップS24へ制御を進めても良い。これにより、室外機1001および室内機1002のいずれか一方のみが交換された場合であっても、ステップS24へ制御を進めることができる。たとえば、室外機1001および室内機1002のいずれか一方のみが交換され、これにより、使用される冷媒の種類が変更された場合に、ステップS24へ制御が進められる。 If the air conditioner 1000 determines in step S21 that this is the first time that power has been applied to only one of the outdoor unit 1001 and the indoor unit 1002, the control may proceed to step S24. This allows the control to proceed to step S24 even if only one of the outdoor unit 1001 and the indoor unit 1002 has been replaced. For example, if only one of the outdoor unit 1001 and the indoor unit 1002 has been replaced, which changes the type of refrigerant used, the control proceeds to step S24.

 上記処理が実施されるタイミングが空気調和機1000の「初回の通電」でなくても、空気調和機1000の位置情報に変化があれば実施される。 The above process is performed even if it is not the first time the air conditioner 1000 is powered on, but will be performed if there is a change in the location information of the air conditioner 1000.

 たとえば、空気調和機1000の位置情報の変化が室外機1001の位置情報に基づいて判断される場合、室外機のみのリプレイスが実施されたときにも、ステップS24へ制御が進められる。より具体的には、第1の場所で使用されていた室外機が、リプレイスにより第2の場所で使用される場合を想定する。この場合、第2の場所での初めて室外機への通電は、当該室外機には第1の場所で既に通電されているため、当該室外機にとって「初回の通電」にはならない。しかしながら、室外機の位置情報(第2の場所)が初回通電時の位置情報(第1の場所)とは異なっている。この位置情報の変化により、制御は、ステップS24へ進められる。 For example, if a change in the location information of the air conditioner 1000 is determined based on the location information of the outdoor unit 1001, control proceeds to step S24 even when only the outdoor unit has been replaced. More specifically, consider a case where an outdoor unit that has been used in a first location is replaced and used in a second location. In this case, the first time that electricity is applied to the outdoor unit in the second location does not constitute a "first time that electricity is applied" for that outdoor unit, because the outdoor unit has already been powered in the first location. However, the location information of the outdoor unit (second location) is different from the location information at the time of the first power application (first location). Due to this change in location information, control proceeds to step S24.

 また、空気調和機1000において、空気調和機1000の位置情報の変化が室内機1002の位置情報に基づいて判断される場合、室内機の設置位置のみが変更されたときにも、ステップS24へ制御が進められる。より具体的には、第1の部屋で使用されていた室内機が、第2の部屋に移動された場合を想定する。この場合、第2の部屋で初めて室内機に通電されても、当該室内機には第1の部屋で既に通電されているため、当該室内機にとって「初回の通電」にはならない。しかしながら、室外機の位置情報(第2の場所)が初回通電時の位置情報(第1の場所)とは異なっている。この位置情報の変化により、制御は、ステップS24へ制御が進められる。 In addition, in the air conditioner 1000, when a change in the position information of the air conditioner 1000 is determined based on the position information of the indoor unit 1002, control proceeds to step S24 even when only the installation location of the indoor unit has been changed. More specifically, consider a case where an indoor unit used in a first room has been moved to a second room. In this case, even if power is applied to the indoor unit for the first time in the second room, this does not constitute a "first time power is applied" for that indoor unit, since the indoor unit has already been powered in the first room. However, the position information of the outdoor unit (second location) is different from the position information at the time of the first power application (first location). Due to this change in position information, control proceeds to step S24.

 上記処理では、応急運転の実施中に、設置床面積Aの入力が要求される。これにより、初回の通電時に応急運転による空気調和機1000の動作の確認と、空気調和機1000への設置床面積Aの入力とが、並行して実施される。なお、空気調和機1000は、応急運転の実施を指示されていない状態で、設置床面積Aの入力の要求および設置床面積Aの入力の受け付けを実施しても良い。 In the above process, input of the installation floor area A is requested while emergency operation is being performed. As a result, when power is first turned on, confirmation of the operation of the air conditioner 1000 through emergency operation and input of the installation floor area A into the air conditioner 1000 are performed in parallel. Note that the air conditioner 1000 may request input of the installation floor area A and accept input of the installation floor area A even when no command has been given to perform emergency operation.

 上記処理において、空気調和機1000は、通電を開始された後、一定時間(たとえば、1日)、設置床面積Aが入力されなければ、応急運転を強制的に終了してもよい。すなわち、空気調和機1000が、設置床面積Aを入力されない状態での応急運転の実施を、通電開始後一定時間に制限してもよい。これにより、設置床面積Aが入力されない状態で継続的に応急運転が実施されることが回避される。 In the above process, the air conditioner 1000 may forcibly end emergency operation if the installation floor area A is not input for a certain period of time (for example, one day) after power is turned on. In other words, the air conditioner 1000 may limit the execution of emergency operation without the installation floor area A being input to a certain period of time after power is turned on. This prevents emergency operation from being continuously performed without the installation floor area A being input.

 上記処理において、空気調和機1000は、設置床面積Aの入力を、リモートコントローラ1003から受けても良いし、作業員が所持するスマートフォンなどの端末から受けても良い。 In the above process, the air conditioner 1000 may receive input of the installation floor area A from the remote controller 1003, or from a terminal such as a smartphone carried by an operator.

 空気調和機1000において、設置床面積Aの入力には、所与のコードが利用されてもよい。空気調和機1000は、上記所与のコードを利用された情報のみを設置床面積Aとして扱っても良い。すなわち、空気調和機1000は、所与のコードが利用されていることを条件として、設置床面積Aとして入力された情報を設置床面積Aとして処理してもよい。 In the air conditioner 1000, a given code may be used to input the installation floor area A. The air conditioner 1000 may only treat information that uses the given code as the installation floor area A. In other words, the air conditioner 1000 may process information that is input as the installation floor area A as the installation floor area A, provided that the given code is used.

 上記所与のコードが、ユーザには知らされず、作業員のみに知らされている場合、空気調和機1000は、作業員から入力された設置床面積Aのみを処理するように構成され得る。これにより、ユーザによって入力された虚偽の面積が空気調和機1000において設置床面積Aとして取り扱われることが回避される。より具体的には、室外機1001および室内機1002の据付に際し、作業員は、室外機1001および室内機1002のユーザよりも客観的な立場にあり、虚偽の面積(たとえば、実際の面積より広い面積)を入力する可能性が低いと想定される。空気調和機1000は、室外機1001および室内機1002について客観的な立場にある作業員からのみ、設置床面積Aの入力を受け付けても良い。所与のコードは、床面積の情報に所定の文字列を付することによって実現されてもよいし、操作ユニット303の1以上のボタンが特殊な態様で操作されること(リモートコントローラ1003を特殊なモードに移行させること)によって実現されてもよいし、作業員の端末が床面積の入力に用いられることによって実現されてもよい。 If the above given code is not known to the user but only to the worker, the air conditioner 1000 may be configured to process only the installation floor area A input by the worker. This prevents a false area input by the user from being treated as the installation floor area A in the air conditioner 1000. More specifically, when installing the outdoor unit 1001 and the indoor unit 1002, the worker is in a more objective position than the user of the outdoor unit 1001 and the indoor unit 1002, and is assumed to be less likely to input a false area (for example, an area larger than the actual area). The air conditioner 1000 may accept input of the installation floor area A only from a worker who is in an objective position regarding the outdoor unit 1001 and the indoor unit 1002. The given code may be realized by adding a specific character string to the floor area information, by operating one or more buttons on the operation unit 303 in a special manner (switching the remote controller 1003 to a special mode), or by using the worker's terminal to input the floor area.

 上記処理において、空気調和機1000は、設置床面積Aが最小設置床面積Aminより小さい場合には、ステップS31においてアナウンスを実施する。ステップS31におけるアナウンスは、「警告」の一例である。最小設置床面積Aminは、冷媒の種類に依拠する。最小設置床面積Aminは、さらに、上記の式(1)および式(2)を参照して説明されたように、空気調和機1000が漏洩センサを備えているか否かに応じて変化する。 In the above process, if the installation floor area A is smaller than the minimum installation floor area Amin, the air conditioner 1000 makes an announcement in step S31. The announcement in step S31 is an example of a "warning." The minimum installation floor area Amin depends on the type of refrigerant. The minimum installation floor area Amin further varies depending on whether the air conditioner 1000 is equipped with a leak sensor, as explained with reference to equations (1) and (2) above.

 空気調和機1000は、設置床面積Aが最小設置床面積Aminより小さい場合、「運転司令の排除」を解除しないように構成されていてもよい。より具体的には、空気調和機1000は、設置床面積Aとして最小設置床面積Amin以上の値が入力されない限り、運転司令に従った制御を実施しないように構成されていてもよい。 The air conditioner 1000 may be configured not to cancel the "rejection of operation commands" when the installation floor area A is smaller than the minimum installation floor area Amin. More specifically, the air conditioner 1000 may be configured not to implement control according to an operation command unless a value equal to or greater than the minimum installation floor area Amin is input as the installation floor area A.

 上記処理において、空気調和機1000は、漏洩センサ720によって冷媒の漏洩が検出されたときのファン120の動作の設定として、必要撹拌風量を実現する情報を設定してもよい。一実現例では、ファン120の回転数として、必要撹拌風量を実現する回転数が設定される。 In the above process, the air conditioner 1000 may set information for achieving the required agitation air volume as the operation setting for the fan 120 when a refrigerant leak is detected by the leak sensor 720. In one implementation example, the rotation speed of the fan 120 is set to the rotation speed that achieves the required agitation air volume.

 [設置床面積Aの取得方法の変形例]
 図13は、空気調和機の他の実施形態の構成を示す図である。図13に示された空気調和機1100は、図1の空気調和機1000と比較して、カメラ730をさらに含む。
[Modification of the method for obtaining the installation floor area A]
13 is a diagram showing the configuration of an air conditioner according to another embodiment of the present invention. An air conditioner 1100 shown in FIG 13 further includes a camera 730 compared to the air conditioner 1000 of FIG 1 .

 カメラ730は、空気調和の対象空間の状態を検出する状態センサの一例である。より具体的には、カメラ730は、室内機1002が設置される部屋の画像を撮影する。一実現例では、空気調和機1100は、カメラ730によって撮影された画像を解析することにより画像の中の床に対応する部分を特定し、当該部分を実際の床の面積に変換することにより、設置床面積Aを算出してもよい。変換には、室内機1002の据付高さが利用されてもよい。据付高さとして、デフォルトの値(たとえば、1.8m)が利用されてもよい。この変形例では、空気調和機1100は、センサの検出出力を利用して、設置床面積Aを算出する。 The camera 730 is an example of a condition sensor that detects the condition of the target space for air conditioning. More specifically, the camera 730 captures an image of the room in which the indoor unit 1002 is installed. In one implementation example, the air conditioner 1100 may calculate the installation floor area A by analyzing the image captured by the camera 730 to identify a portion of the image that corresponds to the floor and converting that portion into the actual floor area. The installation height of the indoor unit 1002 may be used for the conversion. A default value (for example, 1.8 m) may be used as the installation height. In this modified example, the air conditioner 1100 calculates the installation floor area A using the detection output of the sensor.

 図14は、図10および図11を参照して説明された処理のうち、図10に示された部分の変形例を示す図である。図14には、図10と比較して、ステップS27およびステップS28の代わりに、ステップS27A、ステップS28A、およびステップS28Bが含まれる。 FIG. 14 is a diagram showing a modified example of the part of the process described with reference to FIGS. 10 and 11 shown in FIG. 10. Compared to FIG. 10, FIG. 14 includes steps S27A, S28A, and S28B instead of steps S27 and S28.

 図14を参照して、空気調和機1100は、ステップS26の後、ステップS27Aにて、カメラ730に画像を要求する。 Referring to FIG. 14, after step S26, in step S27A, the air conditioner 1100 requests an image from the camera 730.

 ステップS28Aにて、空気調和機1100は、カメラ730から画像を取得するまで待機し(ステップS28AにてNO)、画像を取得したと判断すると(ステップS28AにてYES)、ステップS28Bへ制御を進める。 In step S28A, the air conditioner 1100 waits until an image is acquired from the camera 730 (NO in step S28A), and if it determines that an image has been acquired (YES in step S28A), control proceeds to step S28B.

 ステップS28Bにて、空気調和機1100は、カメラ730から取得した画像を解析することにより、設置床面積Aを算出する。その後、制御はステップS29へ進められる。 In step S28B, the air conditioner 1100 calculates the installation floor area A by analyzing the image acquired from the camera 730. Control then proceeds to step S29.

 設置床面積Aの算出に検出出力を利用されるセンサは、部屋(空気調和の対象空間)の温度を検出する温度センサであってもよい。 The sensor whose detection output is used to calculate the installation floor area A may be a temperature sensor that detects the temperature of the room (the space to be air-conditioned).

 一実現例では、空気調和機1100は、温度センサの検出出力における温度分布から、部屋の床に対応する部分を特定し、特定された部分を実際の床の面積に変換することにより、設置床面積Aを算出してもよい。変換には、室内機1002の据付高さが利用されてもよい。据付高さとして、デフォルトの値(たとえば、1.8m)が利用されてもよい。 In one implementation example, the air conditioner 1100 may calculate the installation floor area A by identifying a portion corresponding to the floor of the room from the temperature distribution in the detection output of the temperature sensor and converting the identified portion into the actual floor area. The installation height of the indoor unit 1002 may be used for the conversion. A default value (e.g., 1.8 m) may be used as the installation height.

 一実現例では、空気調和機1100は、温度センサの検出出力における温度分布の変化(気流の到達時間)から、設置床面積Aを算出してもよい。より具体的には、センサは室内機1002に取り付けられていても良い。空気調和機1100は、室内機1002からの温風または冷風の吹き出しの開始後、室内機1002の正面に位置する壁面、室内機1002に対して左側に位置する壁面、および、室内機1002に対して右側に位置する壁面のそれぞれにおいて温度が変化し始めたタイミングに基づいて、室内機1002(センサ)から正面の壁面までの距離、室内機1002(センサ)から左側の壁面までの距離、および、室内機1002(センサ)から右側の壁面までの距離を算出してもよい。そして、空気調和機1100は、これらの距離を用いて、設置床面積Aを算出してもよい。 In one implementation example, the air conditioner 1100 may calculate the installation floor area A from the change in temperature distribution (airflow arrival time) in the detection output of the temperature sensor. More specifically, the sensor may be attached to the indoor unit 1002. The air conditioner 1100 may calculate the distance from the indoor unit 1002 (sensor) to the front wall, the distance from the indoor unit 1002 (sensor) to the left wall, and the distance from the indoor unit 1002 (sensor) to the right wall based on the timing at which the temperature begins to change on the wall located in front of the indoor unit 1002, the wall located to the left of the indoor unit 1002, and the wall located to the right of the indoor unit 1002 after the indoor unit 1002 starts blowing out hot or cold air. The air conditioner 1100 may then use these distances to calculate the installation floor area A.

 空気調和機1100がセンサの検出出力を利用して設置床面積Aを算出することにより、ユーザまたは作業員は、設置床面積Aを入力するという煩雑な作業を必要とされない。また、センサの検出出力を利用して算出される設置床面積Aは、作業員またはユーザから入力される設置床面積Aと比較して、客観的な値であることが期待される。 By having the air conditioner 1100 calculate the installation floor area A using the detection output of the sensor, the user or worker is not required to carry out the cumbersome task of inputting the installation floor area A. Furthermore, the installation floor area A calculated using the detection output of the sensor is expected to be a more objective value than the installation floor area A input by the worker or user.

 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed herein should be considered in all respects as illustrative and not restrictive. The scope of the present disclosure is indicated by the claims, not by the description of the embodiments above, and is intended to include all modifications within the meaning and scope of the claims.

 100,700 制御装置、110 室内熱交換器、120,220 ファン、150,750 GPSレシーバ、190 表示部材、200 圧縮機、211 室外熱交換器、261~267 温度センサ、270 筐体、280 カバー、290 操作領域、291 応急運転スイッチ、310,320 配管、500 冷媒回路、1000,1100 空気調和機、1001 室外機、1002 室内機、1003 リモートコントローラ。 100,700 Control device, 110 Indoor heat exchanger, 120,220 Fan, 150,750 GPS receiver, 190 Display member, 200 Compressor, 211 Outdoor heat exchanger, 261-267 Temperature sensor, 270 Housing, 280 Cover, 290 Operation area, 291 Emergency operation switch, 310,320 Pipes, 500 Refrigerant circuit, 1000,1100 Air conditioner, 1001 Outdoor unit, 1002 Indoor unit, 1003 Remote controller.

Claims (15)

 室内機と、
 室外機と、
 前記室内機と前記室外機との間で燃焼性冷媒を循環させる冷媒回路と、
 前記室内機、前記室外機、および前記冷媒回路の運転を制御する電気回路と、
 前記運転の司令を受けるインターフェイスと、を備えた空気調和機であって、
 前記電気回路は、前記電気回路に初めて通電された場合、または、前記電気回路への過去の通電時から前記空気調和機の設置位置が変化した場合に、空気調和の対象空間の床面積の入力を要求した後、前記司令に従った前記運転の制御を実施する、空気調和機。
An indoor unit;
The outdoor unit,
a refrigerant circuit that circulates a combustible refrigerant between the indoor unit and the outdoor unit;
an electric circuit that controls the operation of the indoor unit, the outdoor unit, and the refrigerant circuit;
An air conditioner comprising: an interface for receiving the operation command,
The air conditioner wherein, when the electrical circuit is energized for the first time or when the installation location of the air conditioner has changed since the electrical circuit was last energized, the electrical circuit requests input of the floor area of the space to be air-conditioned, and then controls the operation in accordance with the command.
 前記電気回路は、
  前記室外機の現在の位置情報を取得し、
  前記現在の位置情報が、所与のメモリに格納されている前記室外機の過去の位置情報と異なる場合に、前記空気調和機の設置位置が変化したと判断する、請求項1に記載の空気調和機。
The electrical circuit includes:
Acquire current location information of the outdoor unit;
The air conditioner according to claim 1 , wherein when the current location information differs from past location information of the outdoor unit stored in a given memory, it is determined that the installation location of the air conditioner has changed.
 前記床面積が入力された場合に、前記電気回路は、前記司令に従った前記運転の制御を実施することを報知する、請求項1または請求項2に記載の空気調和機。 An air conditioner according to claim 1 or claim 2, in which, when the floor area is input, the electrical circuit issues a notification that the operation will be controlled in accordance with the command.  前記電気回路は、前記司令に従った前記運転の制御が前記床面積が入力された後で実施されることを表示する、表示部材をさらに備え、
 前記表示部材は、前記室外機に着脱可能に設けられている、請求項1~請求項3のいずれか1項に記載の空気調和機。
The electric circuit further includes a display member that displays that the control of the operation according to the command is performed after the floor area is input,
The air conditioner according to any one of claims 1 to 3, wherein the indication member is detachably provided on the outdoor unit.
 応急運転スイッチをさらに備え、
 前記電気回路は、前記床面積が入力される前に、前記応急運転スイッチに対する操作に従って、前記応急運転スイッチに対応する態様で前記運転を実施する、請求項1~請求項4のいずれか1項に記載の空気調和機。
It also has an emergency operation switch,
An air conditioner as described in any one of claims 1 to 4, wherein the electrical circuit performs the operation in a manner corresponding to the emergency operation switch in accordance with operation of the emergency operation switch before the floor area is input.
 前記床面積が入力される前、前記応急運転スイッチに対する操作に従った前記運転は、前記電気回路への通電後の一定時間のみ実施される、請求項5に記載の空気調和機。 The air conditioner according to claim 5, wherein the operation according to the operation of the emergency operation switch is performed only for a certain period of time after the electrical circuit is energized before the floor area is input.  前記電気回路は、前記応急運転スイッチに対する操作に従った前記運転の間に前記床面積の入力を要求する、請求項5または請求項6に記載の空気調和機。 The air conditioner according to claim 5 or claim 6, wherein the electrical circuit requests input of the floor area during the operation according to the operation of the emergency operation switch.  前記床面積は、前記室内機および前記室外機以外のデバイスから入力される、請求項1~請求項7のいずれか1項に記載の空気調和機。 An air conditioner according to any one of claims 1 to 7, wherein the floor area is input from a device other than the indoor unit and the outdoor unit.  前記電気回路は、前記デバイスからの入力において特殊コードが利用されていることを条件として、前記デバイスからの前記床面積の入力を処理する、請求項8に記載の空気調和機。 The air conditioner according to claim 8, wherein the electrical circuit processes the floor area input from the device on the condition that a special code is used in the input from the device.  前記対象空間の状態を検出する状態センサをさらに備え、
 前記電気回路は、
  前記床面積の入力として、前記状態センサの検出出力を取得し、
  前記検出出力を利用して前記床面積を計算する、請求項1~請求項9のいずれか1項に記載の空気調和機。
Further comprising a state sensor for detecting a state of the target space,
The electrical circuit includes:
The floor area is input by acquiring a detection output of the status sensor;
The air conditioner according to any one of claims 1 to 9, wherein the floor area is calculated by utilizing the detection output.
 前記電気回路は、前記床面積が前記冷媒回路に利用されている燃焼性冷媒の種類に基づく最小設置床面積未満であるとき、警告を報知する、請求項7~請求項10のいずれか1項に記載の空気調和機。 An air conditioner according to any one of claims 7 to 10, wherein the electrical circuit issues a warning when the floor area is less than the minimum installation floor area based on the type of flammable refrigerant used in the refrigerant circuit.  前記電気回路は、前記床面積が前記冷媒回路に利用されている燃焼性冷媒の種類に基づく最小設置床面積以上であることを条件として、前記司令に従った前記運転の制御を実施する、請求項7~請求項11のいずれか1項に記載の空気調和機。 An air conditioner according to any one of claims 7 to 11, wherein the electric circuit controls the operation in accordance with the command, on the condition that the floor area is equal to or greater than the minimum installation floor area based on the type of combustible refrigerant used in the refrigerant circuit.  前記最小設置床面積は、前記空気調和機が冷媒の漏洩を検出する漏洩センサを備えるか否かに応じて変化する、請求項11または請求項12に記載の空気調和機。 The air conditioner according to claim 11 or 12, wherein the minimum installation floor area varies depending on whether the air conditioner is equipped with a leakage sensor that detects refrigerant leakage.  冷媒の漏洩を検出する漏洩センサと、
 前記漏洩センサが冷媒の漏洩を検出したときに前記対象空間に空気を送るファンと、をさらに備え、
 前記電気回路は、前記冷媒回路に利用されている燃焼性冷媒の種類に基づく必要撹拌風量を実現するように前記ファンの動作を設定する、請求項1~請求項13のいずれか1項に記載の空気調和機。
a leakage sensor for detecting leakage of the refrigerant;
and a fan that sends air to the target space when the leakage sensor detects a refrigerant leakage.
The air conditioner according to any one of claims 1 to 13, wherein the electric circuit sets the operation of the fan so as to achieve a required stirring air volume based on the type of combustible refrigerant used in the refrigerant circuit.
 空気調和機を制御する電気回路によって実行されるプログラムであって、
 前記空気調和機は、室内機と、室外機と、前記室内機と前記室外機との間で燃焼性冷媒を循環させる冷媒回路と、前記室内機、前記室外機、および前記冷媒回路の運転の司令を受けるインターフェイスと、を含み、
 前記プログラムは、前記電気回路によって実行されることにより、前記空気調和機に、
  前記電気回路が、初めて通電されている状態にあるか否かを判断するステップと、
  前記電気回路が初めて通電されている状態ではないと判断した場合に、前記電気回路への過去の通電時から前記空気調和機の設置位置が変化しているか否かを判断するステップと、
  前記電気回路が初めて通電されている状態にある場合、または、前記電気回路への過去の通電時から前記空気調和機の設置位置が変化した場合に、前記司令に従った前記運転の制御を実施しないように前記電気回路の動作を設定するステップと、を実施させる、プログラム。
A program executed by an electrical circuit that controls an air conditioner,
The air conditioner includes an indoor unit, an outdoor unit, a refrigerant circuit that circulates a combustible refrigerant between the indoor unit and the outdoor unit, and an interface that receives commands to operate the indoor unit, the outdoor unit, and the refrigerant circuit;
The program is executed by the electric circuit to cause the air conditioner to:
determining whether the electrical circuit is in an energized state for the first time;
a step of determining, when it is determined that the electric circuit is not in an initial energized state, whether or not an installation position of the air conditioner has changed since the electric circuit was energized in the past;
The program executes a step of setting the operation of the electrical circuit so as not to control the operation in accordance with the command when the electrical circuit is energized for the first time or when the installation location of the air conditioner has changed since the electrical circuit was previously energized.
PCT/JP2023/015503 2023-04-18 2023-04-18 Air conditioner and program WO2024218872A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/015503 WO2024218872A1 (en) 2023-04-18 2023-04-18 Air conditioner and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/015503 WO2024218872A1 (en) 2023-04-18 2023-04-18 Air conditioner and program

Publications (1)

Publication Number Publication Date
WO2024218872A1 true WO2024218872A1 (en) 2024-10-24

Family

ID=93152125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015503 WO2024218872A1 (en) 2023-04-18 2023-04-18 Air conditioner and program

Country Status (1)

Country Link
WO (1) WO2024218872A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372317A (en) * 2001-06-19 2002-12-26 Toshiba Kyaria Kk Split type air conditioner
JP2005069551A (en) * 2003-08-22 2005-03-17 Toshiba Kyaria Kk Air conditioner using flammable refrigerant
JP2009110034A (en) * 2007-10-26 2009-05-21 Sharp Corp Electric equipment
WO2017175300A1 (en) * 2016-04-05 2017-10-12 三菱電機株式会社 Air conditioner
JP2020139727A (en) * 2019-02-27 2020-09-03 ダイキン工業株式会社 Air conditioning unit management method, management device, management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002372317A (en) * 2001-06-19 2002-12-26 Toshiba Kyaria Kk Split type air conditioner
JP2005069551A (en) * 2003-08-22 2005-03-17 Toshiba Kyaria Kk Air conditioner using flammable refrigerant
JP2009110034A (en) * 2007-10-26 2009-05-21 Sharp Corp Electric equipment
WO2017175300A1 (en) * 2016-04-05 2017-10-12 三菱電機株式会社 Air conditioner
JP2020139727A (en) * 2019-02-27 2020-09-03 ダイキン工業株式会社 Air conditioning unit management method, management device, management system

Similar Documents

Publication Publication Date Title
JP6168113B2 (en) Air conditioning indoor unit
EP3633282B1 (en) Air conditioning device
KR20060103466A (en) Service and diagnostic tools for HPAC systems
CN112955699A (en) Leak detection device and leak detection system
JP6498289B2 (en) Refrigeration cycle system
CN116981896B (en) Installation support system, installation support device, and installation support method for air conditioner
JP2016070594A (en) Air conditioner
WO2009099020A1 (en) Mediation device for controlling air conditioning, air conditioning control system, air conditioning control method, and air conditioning control program
CN114144622A (en) Refrigerant leakage notification device and refrigeration cycle system including refrigerant leakage notification device
JP6866906B2 (en) Refrigeration cycle system
WO2024218872A1 (en) Air conditioner and program
KR20040067980A (en) Air conditioning apparatus and control method thereof
JP4721952B2 (en) Air conditioner
JP6746253B1 (en) Air conditioner
JP7518329B2 (en) Air Conditioning System
JPWO2020054055A1 (en) Air conditioning system
EP3232132B1 (en) Air conditioning system
WO2024218873A1 (en) Air conditioner, program, and air conditioning system
JP7490956B2 (en) Air Conditioning System
WO2021251301A1 (en) Air conditioning device
JP7518403B2 (en) Remote control device, heat stroke prevention control method, and air conditioning system
JP7576641B2 (en) Air conditioning equipment management system and air conditioning equipment management method
JP2020139719A (en) Air conditioner system, controller, construction support method, and construction support program
JP7518328B2 (en) Air Conditioning System
JP6740491B1 (en) Outdoor units, air conditioning systems and programs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23934018

Country of ref document: EP

Kind code of ref document: A1