[go: up one dir, main page]

WO2024218842A1 - Control device and computer-readable storage medium - Google Patents

Control device and computer-readable storage medium Download PDF

Info

Publication number
WO2024218842A1
WO2024218842A1 PCT/JP2023/015391 JP2023015391W WO2024218842A1 WO 2024218842 A1 WO2024218842 A1 WO 2024218842A1 JP 2023015391 W JP2023015391 W JP 2023015391W WO 2024218842 A1 WO2024218842 A1 WO 2024218842A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
output
candidate
machining head
control period
Prior art date
Application number
PCT/JP2023/015391
Other languages
French (fr)
Japanese (ja)
Inventor
拓 山本
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2023/015391 priority Critical patent/WO2024218842A1/en
Publication of WO2024218842A1 publication Critical patent/WO2024218842A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia

Definitions

  • the present disclosure relates to a control device and a computer-readable storage medium.
  • machine tools such as laser processing machines, water jet processing machines, and plasma processing machines that perform non-contact processing by applying energy such as light or water pressure to the surface of the workpiece.
  • One of the factors that affects the machining accuracy of non-contact machining is the discrepancy between the control cycle of the machine tool and the command cycle of the control device. If the control cycle of the machine tool is larger than the command cycle of the control device, a delay may occur between when the control device outputs a command and when the command is actually executed. This delay affects the machining accuracy.
  • the control device includes a program analysis unit that analyzes a machining program, an interpolation unit that calculates a command value for each command cycle of the output of the machining head of the machine tool based on the analysis results of the machining program, and a command correction unit that identifies the control cycle of the machine tool in which command switching occurs, calculates the energy to be commanded during the control cycle, and calculates a correction value for the command value so that the calculated energy is equal to the energy output from the machining head during the control cycle.
  • FIG. 2 is a block diagram of a control device.
  • 11 is a graph showing changes in output of a conventional machining head.
  • FIG. 13 is a schematic diagram illustrating excessive cutting.
  • 11 is a graph illustrating the relationship between the amount of change in output of the machining head and the response time.
  • 11 is a graph illustrating the output of the machining head at the start of a first candidate control period and a change in the output.
  • 11 is a graph illustrating a method of correcting a command.
  • 11 is a graph illustrating a method of correcting a command.
  • 11 is a graph illustrating an example in which the amount of change in output of the machining head is large.
  • 11 is a graph illustrating an example of adjusting the output of a machining head in stages over a plurality of control periods.
  • FIG. 4 is a flowchart illustrating the operation of the control device.
  • 13 is a graph showing a change in output of the machining head when a command value is set to "0".
  • 11 is a graph showing a change in output of a machining head when a command value is set to a minimum value of an effective output.
  • FIG. 2 is a hardware configuration diagram of a control device.
  • This embodiment can be applied to a control device 100 that controls a machine tool that processes the surface of a workpiece in a non-contact manner, such as a laser processing machine, a water jet processing machine, or a plasma processing machine.
  • a control device 100 controls the laser output of a laser processing machine.
  • FIG. 1 is a block diagram showing the configuration of the control device 100.
  • the control device 100 includes a program analysis unit 11, an interpolation unit 12, a command correction unit 13, and a command output unit 14.
  • the program analysis unit 11 analyzes the machining program and calculates the path of the machining head, the speed of the machining head, the timing of turning the laser on and off relative to the position of the machining head, etc.
  • the program analysis unit 11 may also calculate the path of the table and the speed of the table.
  • the interpolation unit 12 calculates a command value per command cycle. This includes turning the laser on and off for each command cycle. In position control, the path of the machining head is divided into movement amounts in minute time units, and the movement amounts are calculated as command values. The interpolation unit 12 calculates a command value for the output of the machining head for each command cycle, based on the position of the machining head determined by position control.
  • the command correction unit 13 corrects the difference between the time when the control device 100 issues a command and the time when the change in the output ends.
  • the graph in Figure 2 shows the relationship between the command and output of a conventional control device.
  • the horizontal axis of the graph shows time.
  • the scale with short time intervals shows the command period of the control device 100
  • the scale with long time intervals shows the control period of the output of the machining head.
  • the command period of the control device 100 is shorter than the control period of the machining head. Therefore, a discrepancy occurs between the command period of the control device 100 and the control period of the machining head. For example, when the control device 100 issues a command to set the command value to "v" at the position indicated by the arrow in Figure 2 (hereinafter referred to as command "A"), the machine tool starts executing the command in the next control period.
  • command "A" a command to set the command value to "v" at the position indicated by the arrow in Figure 2
  • Misalignment can cause excessive cutting, as shown in Figure 3, and affect machining accuracy.
  • the cutting head moves at high speed and the cutting area is controlled by turning the output on and off.
  • the cutting head moves at high speed, excessive cutting increases and the effects of misalignment become greater.
  • the command correction unit 13 detects the change point of the command value and corrects the command timing and command value at the change point so that the output of the machining head approaches the command value.
  • a response function is used to correct the command.
  • the response function formula is shown below.
  • the response function is a function of the amount of change in output and time.
  • W is the amount of change in output
  • T is the response time.
  • the response function is known based on the specifications of the processing head, etc. It is assumed that the response time depends on the amount of change in the command. In other words, the larger the amount of change, the longer the response time. In the upper graph of Figure 4, the response time is large in response to the amount of change in the command, and in the lower graph, the response time is small in response to the amount of change in the command.
  • the command value changes with command "A”.
  • the command value of command "A” is "v"
  • the time when the control device 100 outputs command "A" is "T”.
  • the control period including the change point is referred to as the "first candidate” control period
  • the control period immediately preceding the first control period is referred to as the "second candidate” control period.
  • the control periods immediately preceding the first control period are successively referred to as the "third candidate” control period, the "fourth candidate” control period, and so on.
  • the control period following the change point is referred to as the "pre-correction" control period.
  • the command correction unit 13 calculates the time from the start of the first candidate control period to the command "A". This time is called the first response time "T 1 ".
  • the command correction unit 13 uses a response function to determine the amount by which the output of the machining head changes during the first response time (the first amount of change "Q 1 ").
  • the machine tool executes command "A" at the start of the first candidate control period.
  • the output of the machining head at the start of the first candidate control period will be (1), (2), and (3).
  • the time "T" at which the control device 100 plans to issue the command "A” coincides with the time at which the output of the machining head reaches the command value "v".
  • the output of the first candidate control period is greater than the sum "v+ Q1 " of the command value "v” of the command "A” and the first change amount " Q1 ".
  • the output of the machining head reaches the command value "v” after time "T”.
  • the output of the first candidate control period is smaller than the sum "v+ Q1 " of the command value "v” of the command "A” and the first change amount " Q1 ". In this case, the output of the machining head reaches the command value "v" before the time "T".
  • the command correction unit 13 combines a plurality of commands to more accurately bring the time at which the output of the machining head reaches the command value "v" closer to the time "T".
  • the command correction unit 13 corrects the command "A” using multiple commands. Specifically, the output of the machining head is adjusted stepwise over multiple control periods so that the output of the machining head at the start of the control period of the first candidate becomes "v+ Q1 .”
  • the command correction unit 13 corrects the command "A” based on the machining program to a combination of command “D” and command “E", as shown in Figure 6.
  • the timing for issuing the command “D” is during the control period of the third candidate, and the command value is "v+ Q1 .”
  • the timing for issuing the command "E” is during the control period of the second candidate, and the command value is "v.”
  • the machine tool reduces the output of the machining head to the command value "v+ Q1 ".
  • the machine tool obtains command “E” in the second candidate control period.
  • the machine tool starts executing command "E” at the start of the first candidate control period.
  • the machine tool reduces the output of the machining head in accordance with command "E”.
  • the output of the machining head reaches command value "v" at time "T”.
  • the command correction unit 13 corrects the command "A” based on the machining program to a combination of command “F” and command “G", as shown in Figure 7.
  • the timing for issuing the command “F” is during the control period of the third candidate, and the command value is “v+ Q1 .”
  • the timing for issuing the command “G” is during the control period of the second candidate, and the command value is "v.”
  • the machine tool increases the output of the machining head to the command value "v+ Q1 ".
  • the machine tool obtains command "G” in the second candidate control period.
  • the machine tool starts executing command "G” at the start of the second candidate control period.
  • the machine tool reduces the output of the machining head in accordance with command "G”.
  • the output of the machining head reaches command value "v" at time "T”.
  • the command correction unit 13 can also correct the command by combining three or more control cycles. For example, as shown in Fig. 8, when the change amount of the command is large and the output of the machining head does not reach "v+ Q1 " during the second candidate control cycle, the command correction unit 13 corrects the command "A" to a combination of commands of three or more control cycles.
  • the command correction unit 13 adjusts the output of the machining head in stages over multiple control periods.
  • Fig. 9 shows an example of adjusting the output of the machining head in two stages, the control period of the second candidate and the control period of the third candidate.
  • the command correction unit 13 issues a command "H" to the machine tool in the control period of the fourth candidate and a command "D" in the control period of the third candidate.
  • the command value of the command "H” is not particularly limited. It is sufficient that the output of the machining head reaches "v+ Q1 " by the start of the control period of the first candidate.
  • the program analysis unit 11 analyzes the machining program (step S1).
  • the analysis results of the program analysis unit 11 include the path of the machining head, the speed of the machining head, and the command value for the output of the machining head.
  • the interpolation unit 12 divides the path of the machining head into minute movement amounts and calculates command values for the output of the machining head at the divided coordinates (step S2).
  • the command correction unit 13 detects a change point of the command value (step S3).
  • the command correction unit 13 selects a command correction method (step S4).
  • the command correction method includes a method of advancing the command by one control cycle, and a method of adjusting the output of the machining head using multiple control cycles.
  • step S5 If the method of advancing the command by one control period is selected (step S5; Yes), the command correction unit 13 moves the timing of the command "A" to the second candidate control period (step S6).
  • the output of the machining head changes according to the response characteristics as shown in (1), (2), and (3) of Figure 5, and reaches the command value "v".
  • step S5 When the method of adjusting the output of the machining head using multiple control periods is selected (step S5; No), the command correction unit 13 corrects the command "A" across multiple control periods so that the output of the machining head in the second candidate control period becomes "v+ Q1 " and the output of the machining head in the first candidate control period becomes "v” (step S7).
  • the command output unit 14 outputs the command corrected by the command correction unit 13 to the machine tool.
  • the control device 100 detects a change point of a command that changes the output of the machining head, and moves the timing of the command "A" to one control cycle before the first candidate control cycle (the control cycle of the first candidate) so that the command is executed in the control cycle before the change point (the control cycle of the first candidate). Furthermore, the command correction unit 13 calculates a first response time from the control cycle of the first candidate and the time "T" of the command "A", and calculates a first change amount "Q 1 " based on the first response time.
  • the command correction unit 13 corrects the command value of the second candidate control cycle or a plurality of commands including the control cycle of the second candidate so that the output of the machining head at the start of the control cycle of the first candidate becomes the sum "v + Q 1 " of the command value "v" of the command "A” and the first change amount "Q 1 ". This allows the timing at which the control device 100 issues a command to coincide with the timing at which execution of the command is completed, eliminating any discrepancy between the two timings, thereby improving machining accuracy.
  • the difference between the two timings does not necessarily have to be perfectly matched. It is sufficient to simply correct the command and reduce the amount of difference. Reducing the amount of difference will improve machining accuracy.
  • a command "A” before correction based on the machining program is a command to turn off the output of the machining head.
  • the command "A” before correction commands a command value of "0" at time “T”.
  • the command correction unit 13 corrects this command "A” into two commands, command “D” and command “E”.
  • the timing for issuing command “D” is the control cycle of the third candidate, and the command value is " Q1 ".
  • the machine tool executes command “D” at the start of the control cycle of the second candidate, and the output of the machining head becomes “ Q1 " during the control cycle of the second candidate.
  • the timing for issuing command “E” is the control cycle of the second candidate, and the command value is "0".
  • the machine tool executes command “E” at the start of the control cycle of the first candidate.
  • the output of the machining head decreases in accordance with the response characteristics, and reaches the command value "0" at time "T".
  • the output of the machining head can be turned off using the effective output. If the minimum value of the effective output is “min”, cutting will be turned off below the minimum value "min” even if the output of the machining head has not reached "0". In order to reach "min" at time "T", the output at the start of the control period of the first candidate should be "min+ Q1 ".
  • the command correction unit 13 corrects the command "A" into two commands, a command “H” and a command “I".
  • the timing for issuing the command “H” is during the control period of the third candidate, and the command value is "min+ Q1 ".
  • the machine tool acquires the command "H” in the control period of the third candidate.
  • the machine tool starts executing the command "H” at the point in time of the control period of the second candidate.
  • the machine tool reduces the output of the machining head to the command value "min+ Q1 " in accordance with the command "H”.
  • the timing for issuing command “I” is the command value "0" during the second candidate command cycle.
  • the machine tool acquires command "I” in the second candidate control cycle.
  • the machine tool starts executing command "I” at the start of the first candidate control cycle.
  • the machine tool reduces the output of the machining head in accordance with command "I".
  • the output of the machining head decreases by a first change amount "Q 1 " in a first response time.
  • the output of the machining head reaches the minimum effective output value "min” at time “T”. Even after time “T” has passed, the output of the machining head continues to decrease until the command value becomes "0". If the output is less than the minimum effective output value "min", no machining is performed.
  • the command correction unit 13 regards the portion below the minimum value as the end of output and performs correction.
  • FIG. 13 is a hardware configuration diagram of the control device 100.
  • the control device 100 comprises a CPU 111 that controls the entire control device 100, a ROM 112 that records programs and data, and a RAM 113 for temporarily expanding data, and the CPU 111 reads out a system program recorded in the ROM 112 via a bus and executes a workaround in accordance with the system program.
  • the non-volatile memory 114 retains its stored state even when the control device 100 is powered off, for example by being backed up by a battery (not shown).
  • the non-volatile memory 114 stores various data such as programs read from the external device 120 via the interfaces 115, 118, and 119 and operation inputs entered via the input unit 30.
  • the non-volatile memory 114 may store programs and data for executing the control device 100 of this embodiment.
  • the interface 115 is an interface for connecting the control device 100 to an external device 120 such as an adapter. Programs, various parameters, and the like are read from the external device 120.
  • the interface 118 is an interface for connecting the control device 100 to a display unit 70 such as a liquid crystal display. The display unit 70 displays various data loaded into the memory, data obtained as a result of executing a program, and the like.
  • the interface 119 is an interface for connecting the control device 100 to an input unit 30 such as a keyboard, a pointing device, etc. The input unit 30 passes instructions, data, etc. based on operations by an operator to the CPU 111 via the interface 119.
  • the control device (100) comprises a program analysis unit (11) that analyzes a machining program, an interpolation unit (12) that calculates a command value for each command period of the output of the machining head of the machine tool based on the analysis results of the machining program, and a command correction unit (13) that detects a change point at which a change in the command value of the control device occurs in the control period of the machine tool, and corrects the command so as to change the output of the machining head in a control period including the change point, which is a control period earlier than a first candidate control period.
  • the command correction unit (13) calculates a first response time between the start point of the first candidate control period and the time when the command value changes, calculates a first amount of change by which the output of the machining head changes during the first response time, and corrects the command to be executed in the second candidate control period so that the output of the machining head in a second candidate control period that is one period before the first candidate control period becomes the sum of the first amount of change and a predetermined value.
  • the predetermined value is a changed command value of the first candidate control period.
  • the predetermined value is the minimum value of the effective output of the processing head.
  • the command correction unit (13) adjusts the output of the machining head in a plurality of control cycles including the second candidate, and corrects the command so that the output of the machining head in the control cycle of the second candidate becomes the sum of the first change amount and the specified value.
  • the storage medium (112, 113, 114) stores instructions to cause one or more processors (111) to execute the following process: analyzing a machining program, calculating a command value for each command period of the output of the machining head of the machine tool based on the analysis results of the machining program, detecting a change point at which a change occurs in the command value of the control device in the control period of the machine tool, and correcting the command to change the output of the machining head in a control period that is earlier than a first candidate control period that includes the change point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

This control device stores instructions for executing a process to: analyze a machining program; on the basis of an analysis result of the machining program, calculate a command value for each output command-period of a machining head of a machine tool; detect a change point at which a change in the command value of the control device occurs in a control period of the machine tool; and corrects a command so as to change the output of the machining head in a control period before the control period of a first candidate that includes the change point.

Description

制御装置、及びコンピュータが読み取り可能な記憶媒体Control device and computer readable storage medium

 本開示は、制御装置、及びコンピュータが読み取り可能な記憶媒体に関する。 The present disclosure relates to a control device and a computer-readable storage medium.

 従来、レーザ加工機、ウォータジェット加工機、プラズマ加工機など、被加工物の表面に光や水圧などのエネルギーを投入し非接触で加工する工作機械が存在する。  Conventionally, there are machine tools such as laser processing machines, water jet processing machines, and plasma processing machines that perform non-contact processing by applying energy such as light or water pressure to the surface of the workpiece.

 レーザ加工機やウォータジェット加工機は、切断面の仕上がりが美しく、加工精度が高いというメリットがある。しかしながら、一般に加工速度を大きくすると加工精度が低下する。制御装置には、レーザ加工機の精度と速度を向上させる技術もある。例えば、特許文献1。 Laser and water jet machines have the advantage of producing beautifully finished cut surfaces and high processing accuracy. However, generally speaking, increasing the processing speed reduces processing accuracy. There are also control device technologies that can improve the accuracy and speed of laser processing machines. For example, see Patent Document 1.

特開2004-167549号公報JP 2004-167549 A

 非接触加工の加工精度に影響を及ぼす要因として、工作機械の制御周期と制御装置の指令周期のずれがある。工作機械の制御周期が制御装置の指令周期よりも大きい場合、制御装置が指令を出力してから、実際に指令が実行されるまで遅延が発生することがある。この遅延が加工の精度に影響する。 One of the factors that affects the machining accuracy of non-contact machining is the discrepancy between the control cycle of the machine tool and the command cycle of the control device. If the control cycle of the machine tool is larger than the command cycle of the control device, a delay may occur between when the control device outputs a command and when the command is actually executed. This delay affects the machining accuracy.

 制御装置の分野では、非接触加工機の速度と精度の向上が望まれている。 In the field of control devices, there is a demand for improved speed and accuracy in non-contact processing machines.

 本開示の一態様である制御装置は、加工プログラムを解析するプログラム解析部と、加工プログラムの解析結果を基に、工作機械の加工ヘッドの出力の指令周期ごとの指令値を算出する補間部と、指令の切り替えが発生する工作機械の制御周期を特定し、制御周期の期間に指令するエネルギーを算出し、算出した前記エネルギーが、制御周期の期間に加工ヘッドから出力するエネルギーと等しくなるように、指令値の補正値を算出する指令補正部と、を備える。 The control device according to one aspect of the present disclosure includes a program analysis unit that analyzes a machining program, an interpolation unit that calculates a command value for each command cycle of the output of the machining head of the machine tool based on the analysis results of the machining program, and a command correction unit that identifies the control cycle of the machine tool in which command switching occurs, calculates the energy to be commanded during the control cycle, and calculates a correction value for the command value so that the calculated energy is equal to the energy output from the machining head during the control cycle.

制御装置のブロック図である。FIG. 2 is a block diagram of a control device. 従来の加工ヘッドの出力の変化を示すグラフである。11 is a graph showing changes in output of a conventional machining head. 過剰な切削を説明する模式図である。FIG. 13 is a schematic diagram illustrating excessive cutting. 加工ヘッドの出力の変化量と応答時間の関係を説明するグラフである。11 is a graph illustrating the relationship between the amount of change in output of the machining head and the response time. 第1候補の制御周期の開始時点の加工ヘッドの出力と、出力の変化を説明するグラフである。11 is a graph illustrating the output of the machining head at the start of a first candidate control period and a change in the output. 指令の補正方法を説明するグラフである。11 is a graph illustrating a method of correcting a command. 指令の補正方法を説明するグラフである。11 is a graph illustrating a method of correcting a command. 加工ヘッドの出力の変化量が大きい例を説明するグラフである。11 is a graph illustrating an example in which the amount of change in output of the machining head is large. 複数の制御周期で段階的に加工ヘッドの出力を調整する例を説明するグラフである。11 is a graph illustrating an example of adjusting the output of a machining head in stages over a plurality of control periods. 制御装置の動作を説明するフローチャートである。4 is a flowchart illustrating the operation of the control device. 指令値を「0」にするときの加工ヘッドの出力の変化を示すグラフである。13 is a graph showing a change in output of the machining head when a command value is set to "0". 指令値を有効出力の最低値にするときの加工ヘッドの出力の変化を示すグラフである。11 is a graph showing a change in output of a machining head when a command value is set to a minimum value of an effective output. 制御装置のハードウェア構成図である。FIG. 2 is a hardware configuration diagram of a control device.

 本実施形態は、レーザ加工機、ウォータジェット加工機、プラズマ加工機など、被加工物の表面を非接触で加工する工作機械を制御する制御装置100に適用できる。本実施形態では、一例として、制御装置100がレーザ加工機のレーザ出力を制御する例を説明する。 This embodiment can be applied to a control device 100 that controls a machine tool that processes the surface of a workpiece in a non-contact manner, such as a laser processing machine, a water jet processing machine, or a plasma processing machine. In this embodiment, as an example, an example will be described in which the control device 100 controls the laser output of a laser processing machine.

 図1は、制御装置100の構成を示すブロック図である。制御装置100は、プログラム解析部11、補間部12、指令補正部13、指令出力部14を備える。 FIG. 1 is a block diagram showing the configuration of the control device 100. The control device 100 includes a program analysis unit 11, an interpolation unit 12, a command correction unit 13, and a command output unit 14.

 プログラム解析部11は、加工プログラムを解析し、加工ヘッドの経路、加工ヘッドの速度、加工ヘッドの位置に対するレーザのON/OFFのタイミングなどを算出する。プログラム解析部11は、テーブルの経路、テーブルの速度を算出してもよい。 The program analysis unit 11 analyzes the machining program and calculates the path of the machining head, the speed of the machining head, the timing of turning the laser on and off relative to the position of the machining head, etc. The program analysis unit 11 may also calculate the path of the table and the speed of the table.

 補間部12は、指令周期あたりの指令値を算出する。指令周期ごとのレーザのON/OFFなどがある。位置制御では、加工ヘッドの経路を、微細な時間単位の移動量に分割し、移動量を指令値として算出する。補間部12は、位置制御による加工ヘッドの位置に対し、指令周期ごとの加工ヘッドの出力の指令値を算出する。 The interpolation unit 12 calculates a command value per command cycle. This includes turning the laser on and off for each command cycle. In position control, the path of the machining head is divided into movement amounts in minute time units, and the movement amounts are calculated as command values. The interpolation unit 12 calculates a command value for the output of the machining head for each command cycle, based on the position of the machining head determined by position control.

 指令補正部13は、制御装置100が指令する時点と、出力の変化が終了する時点のずれを補正する。
 図2のグラフは従来の制御装置の指令と出力の関係を示す。グラフの横軸は時間を示す。横軸において、時間間隔の短い目盛りは制御装置100の指令周期を示し、時間間隔の長い目盛りは加工ヘッドの出力の制御周期を示す。
The command correction unit 13 corrects the difference between the time when the control device 100 issues a command and the time when the change in the output ends.
The graph in Figure 2 shows the relationship between the command and output of a conventional control device. The horizontal axis of the graph shows time. On the horizontal axis, the scale with short time intervals shows the command period of the control device 100, and the scale with long time intervals shows the control period of the output of the machining head.

 制御装置100の指令周期は、加工ヘッドの制御周期よりも短い。そのため、制御装置100の指令周期と加工ヘッドの制御周期との間にずれが生じる。例えば、制御装置100が図2の矢印が示す位置で指令値を「v」にする指令(以下、指令「A」とよぶ)をすると、工作機械は次の制御周期で指令の実行を開始する。 The command period of the control device 100 is shorter than the control period of the machining head. Therefore, a discrepancy occurs between the command period of the control device 100 and the control period of the machining head. For example, when the control device 100 issues a command to set the command value to "v" at the position indicated by the arrow in Figure 2 (hereinafter referred to as command "A"), the machine tool starts executing the command in the next control period.

 指令に従い加工ヘッドの出力を変化させるには、指令値に到達するまで、変化量に応じた応答時間がかかる。図2の場合、出力が指令値に到達するのは、矢印Bが示す位置である。指令「A」の時刻「T」と、出力が指令値に変化する時刻「B」には、ずれが生じる。 To change the output of the machining head according to a command, it takes a response time according to the amount of change until the command value is reached. In the case of Figure 2, the output reaches the command value at the position indicated by arrow B. There is a discrepancy between the time "T" of command "A" and the time "B" when the output changes to the command value.

 ずれは、図3に示すような、過剰な切削の要因となり、加工精度に影響する。例えば、フライカット加工では、加工ヘッドを高速で動かし出力のON/OFFで切削部分の制御を行う。加工ヘッドを高速で動かすと、過剰な切削が増加し、ずれの影響が大きくなる。 Misalignment can cause excessive cutting, as shown in Figure 3, and affect machining accuracy. For example, in fly-cutting, the cutting head moves at high speed and the cutting area is controlled by turning the output on and off. When the cutting head moves at high speed, excessive cutting increases and the effects of misalignment become greater.

 指令補正部13は、指令値の変化点を検出し、変化点における、加工ヘッドの出力が指令値に近づく、指令のタイミング及び指令値を補正する。 The command correction unit 13 detects the change point of the command value and corrects the command timing and command value at the change point so that the output of the machining head approaches the command value.

 指令の補正には、応答関数を用いる。以下に応答関数の式を示す。 A response function is used to correct the command. The response function formula is shown below.

Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

 応答関数は、出力の変化量と時間の関数である。応答関数において、Wは出力の変化量、Tは応答時間である。応答関数は、加工ヘッドの仕様などにより既知とする。
 前提として、応答時間は、指令の変化量に依存するものとする。すなわち、変化量が大きいほど応答時間が長い。図4の上のグラフでは指令の変化量に対応して応答時間が大きく、下のグラフでは指令の変化量に対応して応答時間が小さい。
The response function is a function of the amount of change in output and time. In the response function, W is the amount of change in output, and T is the response time. The response function is known based on the specifications of the processing head, etc.
It is assumed that the response time depends on the amount of change in the command. In other words, the larger the amount of change, the longer the response time. In the upper graph of Figure 4, the response time is large in response to the amount of change in the command, and in the lower graph, the response time is small in response to the amount of change in the command.

 図5を参照して、第1候補の制御周期の開始時点の加工ヘッドの出力と、第1の応答時間「T」後の加工ヘッドの出力の関係を説明する。指令「A」で指令値が変化する。指令「A」の指令値は「v」、制御装置100が指令「A」を出力した時刻を「T」とする。
 なお、以下の説明では、変化点を含む制御周期を「第1候補」の制御周期とよび、第1の制御周期よりも1つ手前の制御周期を「第2候補」の制御周期とよぶ。さらに手前の制御周期を順に「第3候補」の制御周期、「第4候補」の制御周期、・・・とよぶ。また、変化点の次の制御周期を「補正前」制御周期とよぶ。
The relationship between the output of the machining head at the start of the first candidate control period and the output of the machining head after the first response time "T 1 " will be described with reference to Fig. 5. The command value changes with command "A". The command value of command "A" is "v", and the time when the control device 100 outputs command "A" is "T".
In the following description, the control period including the change point is referred to as the "first candidate" control period, and the control period immediately preceding the first control period is referred to as the "second candidate" control period. The control periods immediately preceding the first control period are successively referred to as the "third candidate" control period, the "fourth candidate" control period, and so on. The control period following the change point is referred to as the "pre-correction" control period.

 指令補正部13は、第1候補の制御周期の開始時点から指令「A」までの時間を算出する。この時間を第1の応答時間「T」とよぶ。指令補正部13は、応答関数を用いて、第1の応答時間に加工ヘッドの出力が変化する量(第1の変化量「Q」)を求める。 The command correction unit 13 calculates the time from the start of the first candidate control period to the command "A". This time is called the first response time "T 1 ". The command correction unit 13 uses a response function to determine the amount by which the output of the machining head changes during the first response time (the first amount of change "Q 1 ").

 指令「A」の指令周期を第2候補の制御周期に補正した場合、工作機械は、第1候補の制御周期の開始時点に指令「A」を実行する。第1候補の制御周期の開始時点における加工ヘッドの出力は(1)、(2)、(3)のようになる。 If the command period of command "A" is corrected to the second candidate control period, the machine tool executes command "A" at the start of the first candidate control period. The output of the machining head at the start of the first candidate control period will be (1), (2), and (3).

 指令「A」の指令周期を第1候補の第2候補の制御周期(第1候補の制御周期の1つ前の制御周期)に補正すると、第1候補の制御周期の開始時点で指令「A」の実行を開始する。第1候補の制御周期の開始時点で指令「A」の実行を開始すると、(1)、(2)、(3)のそれぞれの場合で指令値「v」に到達する時刻が異なる。
 (1)の場合、第1候補の制御周期の開始時点の出力が、指令「A」の指令値「v」と第1の変化量「Q」の和「v+Q」と等しい。この場合、制御装置100が指令「A」の指令を予定する時刻「T」と、加工ヘッドの出力が指令値「v」に到達する時刻が一致する。
 (2)の場合、第1候補の制御周期の出力が、指令「A」の指令値「v」と第1の変化量「Q」の和「v+Q」よりも大きい。この場合、加工ヘッドの出力が指令値「v」に到達するのは時刻「T」以降となる。
 (3)の場合、第1候補の制御周期の出力が、指令「A」の指令値「v」と第1の変化量「Q」の和「v+Q」よりも小さい。この場合、加工ヘッドの出力が指令値「v」に到達するのは時刻「T」より手前になる。
When the command period of command "A" is corrected to the second candidate control period of the first candidate (the control period immediately preceding the control period of the first candidate), execution of command "A" starts at the start of the control period of the first candidate. When execution of command "A" starts at the start of the control period of the first candidate, the time at which command value "v" is reached differs in each of the cases (1), (2), and (3).
In the case of (1), the output at the start of the control period of the first candidate is equal to the sum "v+ Q1 " of the command value "v" of the command " A " and the first change amount "Q1". In this case, the time "T" at which the control device 100 plans to issue the command "A" coincides with the time at which the output of the machining head reaches the command value "v".
In the case of (2), the output of the first candidate control period is greater than the sum "v+ Q1 " of the command value "v" of the command "A" and the first change amount " Q1 ". In this case, the output of the machining head reaches the command value "v" after time "T".
In the case of (3), the output of the first candidate control period is smaller than the sum "v+ Q1 " of the command value "v" of the command "A" and the first change amount " Q1 ". In this case, the output of the machining head reaches the command value "v" before the time "T".

 従来のように、指令「A」の次の制御周期で実行を開始すると、矢印Bの時刻で加工ヘッドの出力が指令値「v」に到達する。指令「A」のタイミングを1制御周期だけ早める補正をすることにより、加工ヘッドの出力が指令値「v」に到達する時刻を、指令「A」の指令を予定する時刻「T」に近づけることができる。これにより、過剰な切削の距離を縮めることができる。  As with conventional methods, when execution begins in the next control cycle of command "A", the output of the machining head reaches command value "v" at the time indicated by arrow B. By correcting the timing of command "A" to be earlier by one control cycle, the time at which the output of the machining head reaches command value "v" can be brought closer to the time "T" at which command "A" is scheduled to be issued. This makes it possible to reduce the distance of excessive cutting.

 指令補正部13は、複数の指令を組み合わせて、さらに精度よく、加工ヘッドの出力が指令値「v」に到達する時刻を、時刻「T」に近づけることができる。
 指令補正部13は、第1候補の制御周期の開始時点での加工ヘッドの出力が(2)又は(3)の場合、複数の指令を用いて指令「A」を補正する。具体的には、複数の制御周期で加工ヘッドの出力を段階的に調整して、第1候補の制御周期の開始時点での加工ヘッドの出力が「v+Q」となるように調整する。
The command correction unit 13 combines a plurality of commands to more accurately bring the time at which the output of the machining head reaches the command value "v" closer to the time "T".
When the output of the machining head at the start of the control period of the first candidate is (2) or (3), the command correction unit 13 corrects the command "A" using multiple commands. Specifically, the output of the machining head is adjusted stepwise over multiple control periods so that the output of the machining head at the start of the control period of the first candidate becomes "v+ Q1 ."

 図6及び図7を参照して、指令の補正方法を説明する。
 第1候補の制御周期の開始時点の加工ヘッドの出力が(2)の場合、指令補正部13は、図6に示すように、加工プログラムに基づく指令「A」を、指令「D」と、指令「E」の組み合わせに補正する。
 指令「D」を指令するタイミングは第3候補の制御周期の期間、指令値は「v+Q」である。指令「E」を指令するタイミングは第2候補の制御期間、指令値は「v」である。
 このように指令を補正すると、工作機械は、第3候補の制御周期で指令「D」を取得する。工作機械は、第2候補の制御周期の開始時点に指令「D」の実行を開始する。工作機械は、指令「D」に従い加工ヘッドの出力を指令値「v+Q」まで減少させる。
 工作機械は、第2候補の制御周期で指令「E」を取得する。工作機械は、第1候補の制御周期の開始時点に指令「E」の実行を開始する。工作機械は、指令「E」に従い加工ヘッドの出力を減少させる。加工ヘッドの出力は、時刻「T」に指令値「v」に到達する。
A method of correcting the command will be described with reference to FIGS.
When the output of the machining head at the start of the first candidate control cycle is (2), the command correction unit 13 corrects the command "A" based on the machining program to a combination of command "D" and command "E", as shown in Figure 6.
The timing for issuing the command "D" is during the control period of the third candidate, and the command value is "v+ Q1 ."The timing for issuing the command "E" is during the control period of the second candidate, and the command value is "v."
By correcting the command in this way, the machine tool obtains command "D" in the third candidate control period. The machine tool starts executing command "D" at the start of the second candidate control period. In accordance with command "D", the machine tool reduces the output of the machining head to the command value "v+ Q1 ".
The machine tool obtains command "E" in the second candidate control period. The machine tool starts executing command "E" at the start of the first candidate control period. The machine tool reduces the output of the machining head in accordance with command "E". The output of the machining head reaches command value "v" at time "T".

 第1候補の制御周期の開始時点の加工ヘッドの出力が(3)の場合、指令補正部13は、図7に示すように、加工プログラムに基づく指令「A」を、指令「F」と、指令「G」の組み合わせに補正する。
 指令「F」を指令するタイミングは第3候補の制御周期の期間、指令値は「v+Q」である。指令「G」を指令するタイミングは第2候補の制御期間、指令値は「v」である。
 このように指令を補正すると、工作機械は、第3候補の制御周期で指令「F」を取得する。工作機械は、第2候補の制御周期の開始時点に指令「F」の実行を開始する。工作機械は、指令「F」に従い加工ヘッドの出力を指令値「v+Q」まで増加させる。
 工作機械は、第2候補の制御周期で指令「G」を取得する。工作機械は、第2候補の制御周期の開始時点に指令「G」の実行を開始する。工作機械は、指令「G」に従い加工ヘッドの出力を減少させる。加工ヘッドの出力は、時刻「T」に指令値「v」に到達する。
When the output of the machining head at the start of the first candidate control cycle is (3), the command correction unit 13 corrects the command "A" based on the machining program to a combination of command "F" and command "G", as shown in Figure 7.
The timing for issuing the command "F" is during the control period of the third candidate, and the command value is "v+ Q1 ."The timing for issuing the command "G" is during the control period of the second candidate, and the command value is "v."
By correcting the command in this way, the machine tool obtains command "F" in the third candidate control period. The machine tool starts executing command "F" at the start of the second candidate control period. In accordance with command "F", the machine tool increases the output of the machining head to the command value "v+ Q1 ".
The machine tool obtains command "G" in the second candidate control period. The machine tool starts executing command "G" at the start of the second candidate control period. The machine tool reduces the output of the machining head in accordance with command "G". The output of the machining head reaches command value "v" at time "T".

 指令補正部13は、さらに、3つ以上の制御周期を組み合わせて指令を補正することもできる。例えば、図8に示すように、指令の変化量が大きく、第2候補の制御周期の期間に加工ヘッドの出力が「v+Q」に到達しない場合には、指令補正部13は、指令「A」を3制御周期以上の指令の組み合わせに補正する。 The command correction unit 13 can also correct the command by combining three or more control cycles. For example, as shown in Fig. 8, when the change amount of the command is large and the output of the machining head does not reach "v+ Q1 " during the second candidate control cycle, the command correction unit 13 corrects the command "A" to a combination of commands of three or more control cycles.

 指令補正部13は、出力の変化量が大きい場合には、複数の制御周期で段階的に加工ヘッドの出力を調整する。図9は、第2候補の制御周期及び第3候補の制御周期の2段階で加工ヘッドの出力を調整する例である。指令補正部13は、出力を段階的に制御するために、第4候補の制御周期で指令「H」、第3候補の制御周期で指令「D」を工作機械に指令する。指令「H」の指令値は特に限定しない。第1候補の制御周期の開始までに加工ヘッドの出力が「v+Q」に到達していればよい。 When the change in output is large, the command correction unit 13 adjusts the output of the machining head in stages over multiple control periods. Fig. 9 shows an example of adjusting the output of the machining head in two stages, the control period of the second candidate and the control period of the third candidate. In order to control the output in stages, the command correction unit 13 issues a command "H" to the machine tool in the control period of the fourth candidate and a command "D" in the control period of the third candidate. The command value of the command "H" is not particularly limited. It is sufficient that the output of the machining head reaches "v+ Q1 " by the start of the control period of the first candidate.

 図10のフローチャートを参照して、制御装置100の動作について説明する。プログラム解析部11が加工プログラムを解析する(ステップS1)。プログラム解析部11の解析結果には、加工ヘッドの経路、加工ヘッドの速度、加工ヘッドの出力の指令値などが含まれる。 The operation of the control device 100 will be described with reference to the flowchart in FIG. 10. The program analysis unit 11 analyzes the machining program (step S1). The analysis results of the program analysis unit 11 include the path of the machining head, the speed of the machining head, and the command value for the output of the machining head.

 補間部12は、加工ヘッドの経路を微細な移動量に分割するとともに、分割した座標における加工ヘッドの出力の指令値を算出する(ステップS2)。 The interpolation unit 12 divides the path of the machining head into minute movement amounts and calculates command values for the output of the machining head at the divided coordinates (step S2).

 指令補正部13は、指令値の変化点を検出する(ステップS3)。指令補正部13は、指令の補正の方法を選択する(ステップS4)。指令の補正の方法には、1制御周期だけ指令を早める方法と、複数の制御周期を用いて加工ヘッドの出力を調整する方法がある。 The command correction unit 13 detects a change point of the command value (step S3). The command correction unit 13 selects a command correction method (step S4). The command correction method includes a method of advancing the command by one control cycle, and a method of adjusting the output of the machining head using multiple control cycles.

 1制御周期だけ指令を早める方法を選択した場合(ステップS5;Yes)、指令補正部13は、指令「A」のタイミングを、第2候補の制御周期に移動させる(ステップS6)。加工ヘッドの出力は、図5の(1)、(2)、(3)のように、応答特性に従い変化し、指令値「v」に到達する。 If the method of advancing the command by one control period is selected (step S5; Yes), the command correction unit 13 moves the timing of the command "A" to the second candidate control period (step S6). The output of the machining head changes according to the response characteristics as shown in (1), (2), and (3) of Figure 5, and reaches the command value "v".

 複数の制御周期を用いて加工ヘッドの出力を調整する方法を選択した場合(ステップS5;No)、指令補正部13は、第2候補の制御周期の加工ヘッドの出力が「v+Q」、第1候補の制御周期の加工ヘッドの出力が「v」となるように、複数の制御周期をまたいで、指令「A」を補正する(ステップS7)。指令出力部14は、指令補正部13が補正した指令を工作機械に出力する。 When the method of adjusting the output of the machining head using multiple control periods is selected (step S5; No), the command correction unit 13 corrects the command "A" across multiple control periods so that the output of the machining head in the second candidate control period becomes "v+ Q1 " and the output of the machining head in the first candidate control period becomes "v" (step S7). The command output unit 14 outputs the command corrected by the command correction unit 13 to the machine tool.

 以上説明したように、制御装置100は、加工ヘッドの出力を変化させる指令の変化点を検出し、変化点の手前の制御周期(第1候補の制御周期)で指令を実行するように、指令「A」のタイミングを第1候補の制御周期のさらに1制御周期前(第2候補の制御周期)に移動させる。さらに、指令補正部13は、第1候補の制御周期と指令「A」の時刻「T」から第1の応答時間を算出し、第1の応答時間を基に第1の変化量「Q」を算出する。指令補正部13は、第1候補の制御周期の開始時点での加工ヘッドの出力が、指令「A」の指令値「v」と、第1の変化量「Q」の和「v+Q」となるように、第2候補の制御周期、又は、第2候補の制御周期を含む複数の指令の指令値を補正する。
 これにより、制御装置100が指令するタイミングと、指令の実行が完了するタイミングが一致し、2つのタイミングのずれを解消することができ、加工精度が向上する。
As described above, the control device 100 detects a change point of a command that changes the output of the machining head, and moves the timing of the command "A" to one control cycle before the first candidate control cycle (the control cycle of the first candidate) so that the command is executed in the control cycle before the change point (the control cycle of the first candidate). Furthermore, the command correction unit 13 calculates a first response time from the control cycle of the first candidate and the time "T" of the command "A", and calculates a first change amount "Q 1 " based on the first response time. The command correction unit 13 corrects the command value of the second candidate control cycle or a plurality of commands including the control cycle of the second candidate so that the output of the machining head at the start of the control cycle of the first candidate becomes the sum "v + Q 1 " of the command value "v" of the command "A" and the first change amount "Q 1 ".
This allows the timing at which the control device 100 issues a command to coincide with the timing at which execution of the command is completed, eliminating any discrepancy between the two timings, thereby improving machining accuracy.

 なお、留意すべき点として、2つのタイミングのずれは必ずしも完全に一致させる必要はない。指令を補正して、ずれの幅を縮めるだけでもよい。ずれの幅が縮まれば加工精度は向上する。 It should be noted that the difference between the two timings does not necessarily have to be perfectly matched. It is sufficient to simply correct the command and reduce the amount of difference. Reducing the amount of difference will improve machining accuracy.

 次いで、指令値「v」の具体例を例示する。
 図11は、指令値を「0」にするときの加工ヘッドの出力の変化を示す。前提として、加工プログラムに基づく補正前の指令「A」は、加工ヘッドの出力をOFFにする指令である。補正前の指令「A」は、時刻「T」に指令値「0」を指令する。
 指令補正部13は、この指令「A」を、2つの指令、指令「D」と指令「E」に補正する。指令「D」を指令するタイミングは第3候補の制御周期であり、指令値は「Q」である。工作機械は、第2候補の制御周期の開始とともに指令「D」を実行し、第2候補の制御周期の期間に、加工ヘッドの出力は「Q」となる。指令「E」を指令するタイミングは第2候補の制御周期であり、指令値は「0」である。工作機械は、第1候補の制御周期の開始とともに、指令「E」を実行する。加工ヘッドの出力は、応答特性に従い減少し、時刻「T」で指令値「0」に到達する。
Next, a specific example of the command value "v" will be given.
11 shows the change in output of the machining head when the command value is set to "0". As a premise, a command "A" before correction based on the machining program is a command to turn off the output of the machining head. The command "A" before correction commands a command value of "0" at time "T".
The command correction unit 13 corrects this command "A" into two commands, command "D" and command "E". The timing for issuing command "D" is the control cycle of the third candidate, and the command value is " Q1 ". The machine tool executes command "D" at the start of the control cycle of the second candidate, and the output of the machining head becomes " Q1 " during the control cycle of the second candidate. The timing for issuing command "E" is the control cycle of the second candidate, and the command value is "0". The machine tool executes command "E" at the start of the control cycle of the first candidate. The output of the machining head decreases in accordance with the response characteristics, and reaches the command value "0" at time "T".

 その他、有効出力を用いて加工ヘッドの出力をOFFにすることもできる。有効出力の最低値「min」とすると、最低値「min」未満では、加工ヘッドの出力が「0」に到達していなかったとしても切削はOFFになる。時刻「T」で「min」に到達させるには、第1候補の制御周期の開始時点の出力が「min+Q」であればよい。 Alternatively, the output of the machining head can be turned off using the effective output. If the minimum value of the effective output is "min", cutting will be turned off below the minimum value "min" even if the output of the machining head has not reached "0". In order to reach "min" at time "T", the output at the start of the control period of the first candidate should be "min+ Q1 ".

 図12を参照して、指令の補正方法について説明する。指令補正部13は、指令「A」を、2つの指令、指令「H」と、指令「I」に補正する。指令「H」を指令するタイミングは第3候補の制御周期の期間、指令値は「min+Q」である。工作機械は、第3候補の制御周期で指令「H」を取得する。工作機械は、第2候補の制御周期の時点に指令「H」の実行を開始する。工作機械は、指令「H」に従い加工ヘッドの出力を指令値「min+Q」まで減少させる。
 指令「I」を指令するタイミングは第2候補の指令周期の期間、指令値は「0」である。工作機械は、第2候補の制御周期で指令「I」を取得する。工作機械は、第1候補の制御周期の開始時点に指令「I」の実行を開始する。工作機械は、指令「I」に従い加工ヘッドの出力を減少させる。加工ヘッドの出力は、第1の応答時間に第1の変化量「Q」減少する。加工ヘッドの出力は、時刻「T」において有効出力の最低値「min」に到達する。時刻「T」を経過した後も、指令値「0」になるまで、加工ヘッドの出力は減少する。
 有効出力の最低値「min」未満の出力では、加工は実行されない。指令補正部13は、最低値を下回る部分を出力終了とみなし補正を行う。
A method of correcting a command will be described with reference to Fig. 12. The command correction unit 13 corrects the command "A" into two commands, a command "H" and a command "I". The timing for issuing the command "H" is during the control period of the third candidate, and the command value is "min+ Q1 ". The machine tool acquires the command "H" in the control period of the third candidate. The machine tool starts executing the command "H" at the point in time of the control period of the second candidate. The machine tool reduces the output of the machining head to the command value "min+ Q1 " in accordance with the command "H".
The timing for issuing command "I" is the command value "0" during the second candidate command cycle. The machine tool acquires command "I" in the second candidate control cycle. The machine tool starts executing command "I" at the start of the first candidate control cycle. The machine tool reduces the output of the machining head in accordance with command "I". The output of the machining head decreases by a first change amount "Q 1 " in a first response time. The output of the machining head reaches the minimum effective output value "min" at time "T". Even after time "T" has passed, the output of the machining head continues to decrease until the command value becomes "0".
If the output is less than the minimum effective output value "min", no machining is performed. The command correction unit 13 regards the portion below the minimum value as the end of output and performs correction.

 以下、本開示を適用し制御装置100のハードウェア構成について説明する。図13は、制御装置100のハードウェア構成図である。制御装置100は、図13に示すように、制御装置100を全体的に制御するCPU111、プログラムやデータを記録するROM112、一時的にデータを展開するためのRAM113を備え、CPU111はバスを介してROM112に記録されたシステムプログラムを読み出し、システムプログラムに従って回避を実行する。 Below, the hardware configuration of the control device 100 to which this disclosure is applied will be described. FIG. 13 is a hardware configuration diagram of the control device 100. As shown in FIG. 13, the control device 100 comprises a CPU 111 that controls the entire control device 100, a ROM 112 that records programs and data, and a RAM 113 for temporarily expanding data, and the CPU 111 reads out a system program recorded in the ROM 112 via a bus and executes a workaround in accordance with the system program.

 不揮発性メモリ114は、例えば、図示しないバッテリでバックアップされるなどして、制御装置100の電源がオフされても記憶状態が保持される。不揮発性メモリ114には、インタフェース115、118、119を介して外部装置120から読み込まれたプログラムや入力部30を介して入力された操作入力などの各種データが記憶される。不揮発性メモリ114に、本実施形態の制御装置100を実行するためのプログラムおよびデータを記憶してもよい。 The non-volatile memory 114 retains its stored state even when the control device 100 is powered off, for example by being backed up by a battery (not shown). The non-volatile memory 114 stores various data such as programs read from the external device 120 via the interfaces 115, 118, and 119 and operation inputs entered via the input unit 30. The non-volatile memory 114 may store programs and data for executing the control device 100 of this embodiment.

 インタフェース115は、制御装置100とアダプタ等の外部装置120と接続するためのインタフェースである。外部装置120側からはプログラムや各種パラメータ等が読み込まれる。
 インタフェース118は、制御装置100と液晶ディスプレイ等の表示部70とを接続するためのインタフェースである。表示部70には、メモリ上に読み込まれた各データ、プログラム等が実行された結果として得られたデータ等が表示される。
 インタフェース119は、制御装置100とキーボード、ポインティングデバイス等の入力部30とを接続するためのインタフェースである。入力部30は、オペレータによる操作に基づく指令、データ等を、インタフェース119を介してCPU111に渡す。
The interface 115 is an interface for connecting the control device 100 to an external device 120 such as an adapter. Programs, various parameters, and the like are read from the external device 120.
The interface 118 is an interface for connecting the control device 100 to a display unit 70 such as a liquid crystal display. The display unit 70 displays various data loaded into the memory, data obtained as a result of executing a program, and the like.
The interface 119 is an interface for connecting the control device 100 to an input unit 30 such as a keyboard, a pointing device, etc. The input unit 30 passes instructions, data, etc. based on operations by an operator to the CPU 111 via the interface 119.

 本開示について詳述したが、本開示は上述した個々の実施形態に限定されるものではない。これらの実施形態は、本開示の要旨を逸脱しない範囲で、又は、請求の範囲に記載された内容とその均等物から導き出される本開示の主旨を逸脱しない範囲で種々の追加、置き換え、変更、部分的削除等が可能である。また、これらの実施形態は、組合せて実施することもできる。例えば、上述した実施形態において、各動作の順序や各処理の順序は、一例として示したものであり、これらに限定されるものではない。 Although the present disclosure has been described in detail, the present disclosure is not limited to the individual embodiments described above. Various additions, substitutions, modifications, partial deletions, etc. are possible to these embodiments without departing from the gist of the present disclosure, or without departing from the gist of the present disclosure derived from the contents described in the claims and their equivalents. These embodiments can also be implemented in combination. For example, in the above-mentioned embodiments, the order of each operation and the order of each process are shown as examples, and are not limited to these.

 上記実施形態及び変形例に関し、更に以下の付記を開示する。
(付記1)
 制御装置(100)は、加工プログラムを解析するプログラム解析部(11)と、前記加工プログラムの解析結果を基に、工作機械の加工ヘッドの出力の指令周期ごとの指令値を算出する補間部(12)と、工作機械の制御周期において制御装置の指令値の変化が発生する変化点を検出し、前記変化点を含む制御周期を第1候補の制御周期よりも手前の制御周期で前記加工ヘッドの出力を変化させるように指令を補正する指令補正部(13)と、を備える。
(付記2)
 前記指令補正部(13)は、前記第1候補の制御周期の開始時点と前記指令値の変化する時刻の間の第1の応答時間を求め、第1の応答時間に前記加工ヘッドの出力が変化する第1の変化量を求め、前記第1候補の制御周期より1つ手前の第2候補の制御周期における加工ヘッドの出力が、前記第1の変化量と所定の値の和となるように、前記第2候補の制御周期で実行する指令を補正する。
(付記3)
 前記所定の値は、前記第1候補の制御周期の変化した指令値である。
(付記4)
 前記所定の値は、前記加工ヘッドの有効出力の最低値である。
(付記5)
 前記指令補正部(13)は、前記第2候補を含む複数の制御周期における加工ヘッドの出力を調整し、前記第2候補の制御周期における加工ヘッドの出力が、前記第1の変化量と前記所定の値の和となるように、指令を補正する。
(付記6)
 記憶媒体(112、113、114)は、加工プログラムを解析し、前記加工プログラムの解析結果を基に、工作機械の加工ヘッドの出力の指令周期ごとの指令値を算出し、工作機械の制御周期において制御装置の指令値の変化が発生する変化点を検出し、前記変化点を含む第1候補の制御周期よりも手前の制御周期で前記加工ヘッドの出力を変化させるよう指令を補正する、処理を、1つ又は複数のプロセッサ(111)に、実行させる命令を記憶する。
The following supplementary notes are further disclosed regarding the above-described embodiment and modified examples.
(Appendix 1)
The control device (100) comprises a program analysis unit (11) that analyzes a machining program, an interpolation unit (12) that calculates a command value for each command period of the output of the machining head of the machine tool based on the analysis results of the machining program, and a command correction unit (13) that detects a change point at which a change in the command value of the control device occurs in the control period of the machine tool, and corrects the command so as to change the output of the machining head in a control period including the change point, which is a control period earlier than a first candidate control period.
(Appendix 2)
The command correction unit (13) calculates a first response time between the start point of the first candidate control period and the time when the command value changes, calculates a first amount of change by which the output of the machining head changes during the first response time, and corrects the command to be executed in the second candidate control period so that the output of the machining head in a second candidate control period that is one period before the first candidate control period becomes the sum of the first amount of change and a predetermined value.
(Appendix 3)
The predetermined value is a changed command value of the first candidate control period.
(Appendix 4)
The predetermined value is the minimum value of the effective output of the processing head.
(Appendix 5)
The command correction unit (13) adjusts the output of the machining head in a plurality of control cycles including the second candidate, and corrects the command so that the output of the machining head in the control cycle of the second candidate becomes the sum of the first change amount and the specified value.
(Appendix 6)
The storage medium (112, 113, 114) stores instructions to cause one or more processors (111) to execute the following process: analyzing a machining program, calculating a command value for each command period of the output of the machining head of the machine tool based on the analysis results of the machining program, detecting a change point at which a change occurs in the command value of the control device in the control period of the machine tool, and correcting the command to change the output of the machining head in a control period that is earlier than a first candidate control period that includes the change point.

  100 制御装置
  11  プログラム解析部
  12  補間部
  13  指令補正部
  14  指令出力部
  111 CPU
  112 ROM
  113 RAM
  114 不揮発性メモリ
Reference Signs List 100 Control device 11 Program analysis unit 12 Interpolation unit 13 Command correction unit 14 Command output unit 111 CPU
112 ROM
113 RAM
114 Non-volatile memory

Claims (6)

 加工プログラムを解析するプログラム解析部と、
 前記加工プログラムの解析結果を基に、工作機械の加工ヘッドの出力の指令周期ごとの指令値を算出する補間部と、
 工作機械の制御周期において制御装置の指令値の変化が発生する変化点を検出し、前記変化点を含む制御周期を第1候補の制御周期よりも手前の制御周期で前記加工ヘッドの出力を変化させるように指令を補正する指令補正部と、
 を備える制御装置。
A program analysis unit that analyzes a machining program;
an interpolation unit that calculates a command value for each command period of an output of a machining head of a machine tool based on an analysis result of the machining program;
a command correction unit that detects a change point at which a change occurs in a command value of the control device in a control period of the machine tool, and corrects a command to change an output of the machining head in a control period including the change point that is earlier than a first candidate control period;
A control device comprising:
 前記指令補正部は、前記第1候補の制御周期の開始時点と前記指令値の変化する時刻の間の第1の応答時間を求め、第1の応答時間に前記加工ヘッドの出力が変化する第1の変化量を求め、前記第1候補の制御周期より1つ手前の第2候補の制御周期における加工ヘッドの出力が、前記第1の変化量と所定の値の和となるように、前記第2候補の制御周期で実行する指令を補正する、請求項1記載の制御装置。 The control device according to claim 1, wherein the command correction unit determines a first response time between the start of the control period of the first candidate and the time at which the command value changes, determines a first amount of change in the output of the machining head during the first response time, and corrects the command to be executed in the control period of the second candidate so that the output of the machining head in the control period of a second candidate that is one period before the control period of the first candidate is the sum of the first amount of change and a predetermined value.  前記所定の値は、前記第1候補の制御周期の変化した指令値である、請求項2記載の制御装置。 The control device according to claim 2, wherein the predetermined value is a changed command value of the first candidate control period.  前記所定の値は、前記加工ヘッドの有効出力の最低値である、請求項2記載の制御装置。 The control device according to claim 2, wherein the predetermined value is the minimum effective output of the machining head.  前記指令補正部は、前記第2候補を含む複数の制御周期における加工ヘッドの出力を調整し、前記第2候補の制御周期における加工ヘッドの出力が、前記第1の変化量と前記所定の値の和となるように、指令を補正する、請求項2記載の制御装置。 The control device according to claim 2, wherein the command correction unit adjusts the output of the machining head in a plurality of control periods including the second candidate, and corrects the command so that the output of the machining head in the control period of the second candidate becomes the sum of the first change amount and the predetermined value.  1つ又は複数のプロセッサに、
 加工プログラムを解析し、
 前記加工プログラムの解析結果を基に、工作機械の加工ヘッドの出力の指令周期ごとの指令値を算出し、
 工作機械の制御周期において制御装置の指令値の変化が発生する変化点を検出し、前記変化点を含む第1候補の制御周期よりも手前の制御周期で前記加工ヘッドの出力を変化させるよう指令を補正する、
 処理を実行させる命令を記憶するコンピュータが読み取り可能な記憶媒体。
One or more processors,
Analyze the machining program,
Calculating a command value for each command cycle of the output of the machining head of the machine tool based on the analysis result of the machining program;
detecting a change point at which a change occurs in a command value of a control device in a control period of a machine tool, and correcting the command so as to change the output of the machining head in a control period that is earlier than a first candidate control period that includes the change point;
A computer-readable storage medium that stores instructions for executing a process.
PCT/JP2023/015391 2023-04-17 2023-04-17 Control device and computer-readable storage medium WO2024218842A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/015391 WO2024218842A1 (en) 2023-04-17 2023-04-17 Control device and computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/015391 WO2024218842A1 (en) 2023-04-17 2023-04-17 Control device and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2024218842A1 true WO2024218842A1 (en) 2024-10-24

Family

ID=93152404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015391 WO2024218842A1 (en) 2023-04-17 2023-04-17 Control device and computer-readable storage medium

Country Status (1)

Country Link
WO (1) WO2024218842A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167549A (en) * 2002-11-20 2004-06-17 Fanuc Ltd Laser beam machining apparatus
JP2006247745A (en) * 2005-02-09 2006-09-21 Fanuc Ltd Laser machining system
JP2007237202A (en) * 2006-03-06 2007-09-20 Nissan Motor Co Ltd Laser beam welding method and equipment
JP2016099720A (en) * 2014-11-19 2016-05-30 ファナック株式会社 Numerical controller with high-speed response control
JP2021018613A (en) * 2019-07-19 2021-02-15 ファナック株式会社 Control device and control system for machine tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004167549A (en) * 2002-11-20 2004-06-17 Fanuc Ltd Laser beam machining apparatus
JP2006247745A (en) * 2005-02-09 2006-09-21 Fanuc Ltd Laser machining system
JP2007237202A (en) * 2006-03-06 2007-09-20 Nissan Motor Co Ltd Laser beam welding method and equipment
JP2016099720A (en) * 2014-11-19 2016-05-30 ファナック株式会社 Numerical controller with high-speed response control
JP2021018613A (en) * 2019-07-19 2021-02-15 ファナック株式会社 Control device and control system for machine tool

Similar Documents

Publication Publication Date Title
US8374718B2 (en) Numerical control method and apparatus therefor
US10114363B2 (en) Numerical controller capable of partial correction of machining cycle
US9342061B2 (en) Wire electric discharge machine controller for correcting machining route using program commands
US9715225B2 (en) Numerical controller for smoothing tool path in operation based on table format data
CN109643102B (en) Instruction value generating device
JP2001125613A (en) Numerical control simulation device
US11048233B2 (en) Program correction device
US9983568B2 (en) Numerical controller
JP5077483B2 (en) Numerical controller
WO2024218842A1 (en) Control device and computer-readable storage medium
JP4945191B2 (en) Numerical control device for machine tools
JP6705847B2 (en) Robot system for performing learning control based on processing result and control method thereof
JP2008040542A (en) Numerical value control device
CN113874798A (en) CNC device
US10908581B2 (en) Numerical control apparatus and numerical control method
WO2024218841A1 (en) Control device and computer-readable storage medium
JP6254965B2 (en) Numerical control device with tool compensation function in skiving
US20200103852A1 (en) Numerical controller
TWI599438B (en) Handwheel test method and device for five axis CNC machine tool RTCP activation
US10569358B2 (en) Laser processing system capable of adjusting timing to switch output command
GB2224586A (en) Numerical control of machine tools
JP2006007363A (en) NC program correcting device and NC program generating device having the same
US20170146972A1 (en) Numerical controller
WO2024127673A1 (en) Numerical control device and computer-readable storage medium
JP6172845B2 (en) Control device for arc welding robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23933989

Country of ref document: EP

Kind code of ref document: A1