WO2024216988A1 - 燃料电池系统的自适应功率调节方法、装置、车辆及介质 - Google Patents
燃料电池系统的自适应功率调节方法、装置、车辆及介质 Download PDFInfo
- Publication number
- WO2024216988A1 WO2024216988A1 PCT/CN2023/135712 CN2023135712W WO2024216988A1 WO 2024216988 A1 WO2024216988 A1 WO 2024216988A1 CN 2023135712 W CN2023135712 W CN 2023135712W WO 2024216988 A1 WO2024216988 A1 WO 2024216988A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- current
- preset
- fuel cell
- hydrogen inlet
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
- H01M8/04925—Power, energy, capacity or load
- H01M8/0494—Power, energy, capacity or load of fuel cell stacks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/70—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04388—Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present application relates to the field of fuel cell technology, and in particular to an adaptive power regulation method, device, vehicle and medium for a fuel cell system.
- Hydrogen energy is a high-quality, carbon-free, clean energy carrier with advantages such as high calorific value, green and environmentally friendly production, and various forms of utilization. It can be directly burned in the air to release energy, or a fuel cell energy conversion device can be built to convert its own chemical energy into electrical energy. Fuel cell vehicles are an important research direction in the application and development of hydrogen energy.
- the working principle of the entire hydrogen circulation system is to receive the instruction of the fuel cell controller to open the solenoid valve of the hydrogen valve, and transfer the hydrogen stored in the hydrogen storage system to the pressure reducing valve through the high-pressure pipeline.
- the pressure reducing valve reduces the high-pressure hydrogen to a pressure suitable for the operation of the fuel cell, and uses a hydrogen ejector or injector to supply hydrogen to the fuel cell system.
- the pressure of hydrogen entering the stack is generally stabilized at 1.6 ⁇ 0.25MPa to ensure the normal operation of the fuel cell system.
- the fuel cell controller directly requests the vehicle controller to issue a shutdown command.
- the hydrogen inlet pressure value is temporarily in a relatively low or high state, reporting a third-level fault, resulting in the fuel cell unable to start normally, which needs to be solved urgently.
- the present application provides an adaptive power regulation method, device, vehicle and medium for a fuel cell system, which solves the problems of emergency shutdown of the fuel cell and failure to start the fuel cell system normally due to accidental low or high stack pressure caused by non-leakage reasons during vehicle driving, reduces the failure rate of the fuel cell system, reduces vehicle safety hazards, and increases the vehicle's cruising range.
- the first aspect of the present application provides an adaptive power regulation method for a fuel cell system, comprising the following steps: obtaining a current hydrogen input pressure of the fuel cell system; determining whether the current hydrogen input pressure is greater than a first preset pressure and whether the current hydrogen input pressure is less than a second preset pressure; if the current hydrogen input pressure is greater than the first preset pressure and the current hydrogen input pressure is less than the second preset pressure, adjusting the target power output by the fuel cell stack according to a preset energy management strategy, otherwise determining the current pressure range of the current hydrogen input pressure, matching an optimal power regulation strategy according to the current pressure range, and performing corresponding actions according to the optimal power regulation strategy.
- determining the current pressure range of the current hydrogen input pressure and matching the optimal power regulation strategy according to the current pressure range includes: if the current hydrogen input pressure is less than or equal to the first preset pressure, and the current hydrogen input pressure is greater than or equal to a third preset pressure, then the optimal power regulation strategy is to adaptively adjust the first output power of the fuel cell stack according to the current hydrogen input pressure, while increasing the second output power of the power battery, so that the first output power and the second output power reach the target power; if the current hydrogen input pressure is greater than or equal to the second preset pressure, and the current hydrogen input pressure is less than or equal to the fourth preset pressure, then the optimal power regulation strategy is to discharge part of the hydrogen based on a preset exhaust strategy; if the current hydrogen input pressure is less than the third preset pressure, or the current hydrogen input pressure is greater than the fourth preset pressure, then the optimal power regulation strategy is to feedback a third-level fault and stop the operation of the fuel cell system.
- the second output power of the power battery after increasing the second output power of the power battery while adaptively adjusting the first output power of the fuel cell stack according to the current hydrogen input pressure, it also includes: obtaining the duration during which the current hydrogen input pressure is less than or equal to the first preset pressure and the current hydrogen input pressure is greater than or equal to the third preset pressure; if the duration is greater than the preset duration, sending a preset first-level fault reminder to a preset mobile terminal to remind the driver to check the hydrogen supply pipeline.
- the method before obtaining the current hydrogen inlet pressure of the fuel cell system, the method further includes: detecting the current state of the hydrogen supply system; and if the current state is a preset leakage state, processing according to a preset fault level.
- detecting the current state of the hydrogen supply system after detecting the current state of the hydrogen supply system, it also includes: if the current state is not the preset leakage state, detecting the current pressure of the hydrogen bottle, and determining whether the current pressure is less than or equal to the fifth preset pressure; if the current pressure is less than or equal to the fifth preset pressure, processing according to the preset fault level, otherwise, obtaining the current hydrogen inlet pressure of the fuel cell system.
- a second aspect of the present application provides an adaptive power regulation device for a fuel cell system, comprising: obtaining a model A block is used to obtain the current hydrogen input pressure of the fuel cell system; a judgment module is used to judge whether the current hydrogen input pressure is greater than a first preset pressure and whether the current hydrogen input pressure is less than a second preset pressure; an adjustment module is used to adjust the fuel cell stack output target power according to a preset energy management strategy if the current hydrogen input pressure is greater than the first preset pressure and the current hydrogen input pressure is less than the second preset pressure, otherwise determine the current pressure range of the current hydrogen input pressure, match the optimal power adjustment strategy according to the current pressure range, and perform corresponding actions according to the optimal power adjustment strategy.
- the regulation module is also used for: if the current hydrogen input pressure is less than or equal to the first preset pressure, and the current hydrogen input pressure is greater than or equal to the third preset pressure, then the optimal power regulation strategy is to adaptively adjust the first output power of the fuel cell stack according to the current hydrogen input pressure, while increasing the second output power of the power battery, so that the first output power and the second output power reach the target power; if the current hydrogen input pressure is greater than or equal to the second preset pressure, and the current hydrogen input pressure is less than or equal to the fourth preset pressure, then the optimal power regulation strategy is to discharge part of the hydrogen based on the preset exhaust strategy; if the current hydrogen input pressure is less than the third preset pressure, or the current hydrogen input pressure is greater than the fourth preset pressure, then the optimal power regulation strategy is to feedback a third-level fault and stop the operation of the fuel cell system.
- the regulating module is also used to: obtain the duration during which the current hydrogen input pressure is less than or equal to the first preset pressure and the current hydrogen input pressure is greater than or equal to the third preset pressure; if the duration is greater than the preset duration, a preset first-level fault reminder is sent to a preset mobile terminal to remind the driver to check the hydrogen supply pipeline.
- the acquisition module is further used to: detect the current state of the hydrogen supply system; if the current state is a preset leakage state, process it according to a preset fault level.
- the acquisition module is also used to: if the current state is not the preset leakage state, detect the current pressure of the hydrogen cylinder, and determine whether the current pressure is less than or equal to the fifth preset pressure; if the current pressure is less than or equal to the fifth preset pressure, process according to the preset fault level, otherwise, obtain the current hydrogen inlet pressure of the fuel cell system.
- a third aspect of the present application provides a vehicle, comprising: a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor executes the program to implement the adaptive power regulation method of the fuel cell system as described in the above embodiment.
- a fourth aspect of the present application provides a computer-readable storage medium having a computer program stored thereon.
- the program is executed by the processor to implement the adaptive power regulation method of the fuel cell system as described in the above embodiment.
- the present application obtains the current hydrogen inlet pressure of the fuel cell system. If the current hydrogen inlet pressure is greater than the first preset pressure and the current hydrogen inlet pressure is less than the second preset pressure, the target power output of the fuel cell stack is adjusted according to the preset energy management strategy. Otherwise, the current pressure range of the current hydrogen inlet pressure is determined, and the optimal power adjustment strategy is matched according to the current pressure range, and the corresponding action is performed according to the optimal power adjustment strategy.
- FIG1 is a schematic diagram of a hydrogen system working technical solution in the related art
- FIG2 is a flow chart of an adaptive power regulation method for a fuel cell system according to an embodiment of the present application
- FIG3 is a flow chart of an adaptive power regulation method for a fuel cell system according to an embodiment of the present application
- FIG4 is a block diagram of an adaptive power regulation device for a fuel cell system according to an embodiment of the present application.
- FIG. 5 is a block diagram of a vehicle according to an embodiment of the present application.
- the present application provides an adaptive power regulation method for a fuel cell system.
- the current hydrogen stack pressure of the fuel cell system is obtained. If the current hydrogen stack pressure is greater than the first preset pressure and the current hydrogen stack pressure is less than the second preset pressure, the fuel cell stack output target power is adjusted according to the preset energy management strategy.
- the current pressure range of the current hydrogen stack pressure is determined, and the optimal power regulation strategy is matched according to the current pressure range, and the corresponding action is performed according to the optimal power regulation strategy.
- the low or high stack pressure can cause emergency shutdown of the fuel cell and failure of the fuel cell system to start normally, thereby reducing the failure rate of the fuel cell system, reducing vehicle safety hazards, and increasing the vehicle's cruising range.
- FIG2 is a flow chart of an adaptive power regulation method for a fuel cell system provided in an embodiment of the present application.
- the adaptive power regulation method of the fuel cell system includes the following steps:
- step S201 the current hydrogen inlet pressure of the fuel cell system is obtained.
- the embodiment of the present application can obtain the current hydrogen inlet pressure of the fuel cell system through a pressure sensor and feed back the pressure signal to the fuel cell system controller, and can also obtain the current hydrogen inlet pressure of the fuel cell system through other methods. To avoid redundancy, it will not be described in detail here.
- the method before obtaining the current hydrogen inlet pressure of the fuel cell system, the method further includes: detecting the current state of the hydrogen supply system; and if the current state is a preset leakage state, processing is performed according to a preset fault level.
- the preset mobile terminal refers to an electronic terminal device with an independent operating system (such as a mobile phone, tablet computer, etc.), on which passengers can install software and games by themselves through programs provided by third-party service providers.
- Such programs can continuously expand the functions of the electronic terminal devices, and it is a general term for a type of device that can exchange data with other smart devices through communication modules.
- the entire vehicle is first stopped and powered on.
- the fuel cell controller receives the start-up command from the vehicle controller, it starts to detect whether the hydrogen supply system is leaking. If the current concentration value of hydrogen in the hydrogen supply system is greater than the preset concentration threshold, the current state is determined to be a preset leakage state. At this time, a preset first-level fault reminder is sent to the preset mobile terminal to remind the driver that the hydrogen is in a leakage state, or a third-level fault is fed back, and the fuel cell and the bottle valve are shut down.
- detecting the current state of the hydrogen supply system after detecting the current state of the hydrogen supply system, it also includes: if the current state is not a preset leakage state, detecting the current pressure of the hydrogen cylinder, and determining whether the current pressure is less than or equal to a fifth preset pressure; if the current pressure is less than or equal to the fifth preset pressure, processing is performed according to a preset fault level, otherwise, obtaining the current hydrogen inlet pressure of the fuel cell system.
- the fifth preset pressure may be a threshold value preset by a user, a threshold value obtained through a limited number of experiments, or a threshold value obtained through a limited number of computer simulations.
- the fifth preset pressure is 3.00 MPa.
- step S202 it is determined whether the current hydrogen inlet pressure is greater than the first preset pressure and whether the current hydrogen inlet pressure is less than at a second preset pressure.
- step S203 if the current hydrogen input pressure is greater than the first preset pressure and the current hydrogen input pressure is less than the second preset pressure, the target power output of the fuel cell stack is adjusted according to the preset energy management strategy; otherwise, the current pressure range of the current hydrogen input pressure is determined, and the optimal power regulation strategy is matched according to the current pressure range, and corresponding actions are performed according to the optimal power regulation strategy.
- the first preset pressure and the second preset pressure can be thresholds set in advance by the user, can be thresholds obtained through a limited number of experiments, or can be thresholds obtained through a limited number of computer simulations.
- the first preset pressure is set to 1.35MPa and the second preset pressure is set to 1.85MPa.
- the target power output of the fuel cell stack is adjusted according to the preset energy management strategy to prevent the power battery from being overcharged. Otherwise, the optimal power adjustment strategy is matched according to the detected hydrogen inlet pressure range and corresponding actions are performed.
- the current pressure range of the current hydrogen input pressure is determined, and the optimal power regulation strategy is matched according to the current pressure range, including: if the current hydrogen input pressure is less than or equal to the first preset pressure, and the current hydrogen input pressure is greater than or equal to the third preset pressure, then the optimal power regulation strategy is to adaptively adjust the first output power of the fuel cell stack according to the current hydrogen input pressure, while increasing the second output power of the power battery, so that the first output power and the second output power reach the target power; if the current hydrogen input pressure is greater than or equal to the second preset pressure, and the current hydrogen input pressure is less than or equal to the fourth preset pressure, then the optimal power regulation strategy is to discharge part of the hydrogen based on the preset exhaust strategy; if the current hydrogen input pressure is less than the third preset pressure, or the current hydrogen input pressure is greater than the fourth preset pressure, then the optimal power regulation strategy is to feedback a third-level fault and stop the operation of the fuel cell system.
- the third preset pressure and the fourth preset pressure can be thresholds set in advance by the user, can be thresholds obtained through a limited number of experiments, or can be thresholds obtained through a limited number of computer simulations.
- the third preset pressure is set to 1MPa and the fourth preset pressure is set to 2MPa.
- the matching optimal power regulation strategy is to adaptively adjust the first output power of the fuel cell stack according to the current hydrogen input pressure, output energy to the whole vehicle, and at the same time increase the second output power of the power battery, so that the first output power and the second output power reach the target power, provide the target power for the whole vehicle, and ensure the normal operation of the whole vehicle.
- the matched optimal power regulation strategy is to discharge part of the hydrogen based on the preset exhaust strategy to reduce the hydrogen inlet pressure.
- the fuel cell uses the preset energy management strategy to charge the power battery or operate other accessories to maximize the rational use of hydrogen.
- the optimal power regulation strategy is: if the fuel cell is in the on state, Send a shutdown request command and feedback the third-level fault at the same time; if the fuel cell is in the shutdown state, stop the operation of the fuel cell system.
- the second output power of the power battery while adaptively adjusting the first output power of the fuel cell stack according to the current hydrogen input pressure it also includes: obtaining the duration during which the current hydrogen input pressure is less than or equal to the first preset pressure and the current hydrogen input pressure is greater than or equal to the third preset pressure; if the duration is greater than the preset duration, sending a preset first-level fault reminder to a preset mobile terminal to remind the driver to check the hydrogen supply pipeline.
- the preset time length may be a threshold value pre-set by a user, a threshold value obtained through a limited number of experiments, or a threshold value obtained through a limited number of computer simulations.
- the preset time length is set to 1 hour.
- the duration of this state is obtained. If the duration is greater than 1h, a preset first-level fault reminder is sent to the preset mobile terminal to remind the driver to go to the after-sales service outlet to test the hydrogen supply system to avoid the risk of hydrogen leakage. If it is in this state for a long time, a third-level vehicle fault is sent to the preset mobile terminal, and the power-on command to the fuel cell is stopped.
- the strategy for adaptively adjusting the output power of the fuel cell stack is as follows: when the hydrogen inlet pressure is less than or equal to 1.35MPa, or when the hydrogen inlet pressure is greater than or equal to 1.85MPa, the fuel cell will generate a low or high hydrogen inlet pressure fault, and report to the vehicle controller, requesting the fuel cell system to shut down. To avoid frequent reporting of this fault, the fuel cell controller adaptively adjusts the system's output power to the vehicle in real time according to the inlet pressure, to avoid shutdown caused by accidental low or high inlet pressure due to non-leakage, where the hydrogen inlet pressure and the fuel cell system output power are shown in Table 1:
- the preset exhaust strategy is as follows: During the operation of the fuel cell, the hydrogen that does not participate in the reaction will be separated by steam and water. The device separates water and hydrogen to avoid flooding and maximizes the utilization rate of hydrogen to 100%. Therefore, the sources of hydrogen entering the stack pressure are two-fold: one is the hydrogen supply from the hydrogen cylinder, and the other is the remaining hydrogen that does not participate in the reaction.
- an adaptive adjustment control valve can be used to directly discharge part of the hydrogen to reduce the circulation volume and achieve the purpose of reducing the hydrogen entering the stack pressure, but this will increase hydrogen consumption and reduce energy utilization. Therefore, in order to avoid safety issues caused by hydrogen leakage, it is necessary to keep the hydrogen concentration emission less than 4.0%.
- the preset energy management strategy is as follows: the fuel cell calculates the target power required by the vehicle according to the actual working conditions, adjusts the intake flow of hydrogen and air, and adjusts the power of the fuel cell according to the polarization curve of the fuel cell system to achieve the corresponding target output power.
- the power point of the fuel cell is adjusted according to the target power requirement and control strategy; when the SOC of the power battery is at 90% or the actual output power of the fuel cell is greater than the charging power of the power battery, in order to avoid overcharging of the power battery, directly request the vehicle controller to send a shutdown command or reduce the power of the fuel cell to idle power, and use all the energy generated by the fuel cell for its own accessories (such as air compressors, hydrogen injection, hydrogen circulation pumps, cooling fans and other accessories), and do not output any energy to the vehicle to avoid the danger of overcharging the power battery.
- the idle power of different fuel cell systems is different, and this power point needs to be calibrated and tested in advance.
- step S301 the vehicle is stopped and powered on, and the fuel cell controller receives a start-up instruction from the vehicle controller.
- step S302 the current state is determined. If the hydrogen is in a leaking state, step S303 is executed; if the hydrogen is not in a leaking state, step S304 is executed.
- step S303 the fault strategy is executed, a preset first-level fault reminder is sent to a preset mobile terminal, or a third-level fault is fed back, and the fuel cell and the bottle valve are turned off.
- step S304 it is determined whether the pressure in the hydrogen cylinder is greater than 3 MPa. If it is greater than 3 MPa, step S305 is executed, otherwise, step S303 is executed.
- step S305 if the current hydrogen input pressure is greater than 1.35MPa and less than 1.85MPa, the target power output of the fuel cell stack is adjusted according to the preset energy management strategy; if the current hydrogen input pressure is less than or equal to 1.35MPa and greater than or equal to 1MPa, the optimal power regulation strategy matched is to adaptively adjust the power according to the hydrogen pressure to provide power for the whole vehicle; when the detected current hydrogen input pressure is greater than or equal to 1.85MPa, and the current hydrogen input pressure is less than or equal to 2MPa, the optimal power regulation strategy matched is to discharge part of the hydrogen based on the preset exhaust strategy; when the current hydrogen input pressure is less than 1MPa, or when the current hydrogen input pressure is greater than 2MPa, the optimal power regulation strategy matched is the feedback level three Failure occurs and the fuel cell system stops operating.
- the embodiment of the present application adds a power adjustment strategy of the fuel cell system based on the self-adaptation of the hydrogen inlet pressure on the basis of the technical solutions in the related art.
- the fuel cell can continue to work and can provide power for battery charging or meet the basic needs of the whole vehicle, so that the hydrogen inlet pressure can be restored to the normal range, thereby increasing the cruising range.
- the stack can also respond as quickly as possible at the low inlet pressure when it is restarted, and output power for the whole vehicle.
- the embodiment of the present application adds a time cycle detection function to the adaptive adjustment of the fuel cell power strategy, which can effectively check whether there are quality problems in the valves and pipelines of the hydrogen supply system, resulting in insufficient hydrogen supply pressure or a failure of the pressure reducing valve, resulting in an increase in hydrogen pressure, and timely feedback to the whole vehicle to remind the driver to go to the after-sales service point to investigate the cause, thereby preventing the vehicle from having hydrogen safety hazards during driving and parking.
- the current hydrogen inlet pressure of the fuel cell system is obtained. If the current hydrogen inlet pressure is greater than the first preset pressure and the current hydrogen inlet pressure is less than the second preset pressure, the target power output of the fuel cell stack is adjusted according to the preset energy management strategy. Otherwise, the current pressure range of the current hydrogen inlet pressure is determined, and the optimal power regulation strategy is matched according to the current pressure range, and the corresponding action is performed according to the optimal power regulation strategy.
- FIG. 4 is a block diagram of an adaptive power regulation device for a fuel cell system according to an embodiment of the present application.
- the adaptive power regulation device 10 of the fuel cell system includes: an acquisition module 100 , a determination module 200 and an adjustment module 300 .
- the acquisition module 100 is used to obtain the current hydrogen input pressure of the fuel cell system; the judgment module 200 is used to judge whether the current hydrogen input pressure is greater than the first preset pressure and whether the current hydrogen input pressure is less than the second preset pressure; the adjustment module 300 is used to adjust the fuel cell stack output target power according to the preset energy management strategy if the current hydrogen input pressure is greater than the first preset pressure and the current hydrogen input pressure is less than the second preset pressure, otherwise determine the current pressure range of the current hydrogen input pressure, match the optimal power adjustment strategy according to the current pressure range, and perform corresponding actions according to the optimal power adjustment strategy.
- the regulating module 300 is further used to: if the current hydrogen inlet pressure is less than or equal to the first preset pressure, and the current hydrogen inlet pressure is greater than or equal to the third preset pressure, then the optimal power regulation strategy is to adaptively adjust the first output power of the fuel cell stack according to the current hydrogen inlet pressure, while increasing the second output power of the power battery, so that the first output power and the second output power reach the target power; if the current hydrogen inlet pressure is greater than or equal to the second preset pressure, and the current hydrogen inlet pressure is less than or equal to the fourth preset pressure, then the optimal power regulation strategy is based on the preset pressure.
- the exhaust strategy is set to discharge part of the hydrogen; if the current hydrogen inlet pressure is less than the third preset pressure, or the current hydrogen inlet pressure is greater than the fourth preset pressure, the optimal power regulation strategy is to feedback the third level fault and stop the operation of the fuel cell system.
- the adjustment module 300 is also used to: obtain the duration during which the current hydrogen input pressure is less than or equal to the first preset pressure and the current hydrogen input pressure is greater than or equal to the third preset pressure; if the duration is greater than the preset duration, a preset first-level fault reminder is sent to a preset mobile terminal to remind the driver to check the hydrogen supply pipeline.
- the acquisition module 100 before obtaining the current hydrogen inlet pressure of the fuel cell system, is further used to: detect the current state of the hydrogen supply system; if the current state is a preset leakage state, process it according to a preset fault level.
- the acquisition module 100 is also used to: if the current state is not a preset leakage state, detect the current pressure of the hydrogen cylinder, and determine whether the current pressure is less than or equal to the fifth preset pressure; if the current pressure is less than or equal to the fifth preset pressure, process it according to the preset fault level, otherwise, obtain the current hydrogen inlet pressure of the fuel cell system.
- the current hydrogen inlet pressure of the fuel cell system is obtained. If the current hydrogen inlet pressure is greater than the first preset pressure and the current hydrogen inlet pressure is less than the second preset pressure, the target power output of the fuel cell stack is adjusted according to the preset energy management strategy. Otherwise, the current pressure range of the current hydrogen inlet pressure is determined, and the optimal power regulation strategy is matched according to the current pressure range, and the corresponding action is performed according to the optimal power regulation strategy.
- FIG5 is a schematic diagram of the structure of a vehicle provided in an embodiment of the present application.
- the vehicle may include:
- a memory 501 A memory 501 , a processor 502 , and a computer program stored in the memory 501 and executable on the processor 502 .
- the processor 502 executes the program, the adaptive power regulation method of the fuel cell system provided in the above embodiment is implemented.
- the vehicle also includes:
- the communication interface 503 is used for communication between the memory 501 and the processor 502 .
- the memory 501 is used to store computer programs that can be executed on the processor 502 .
- the memory 501 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory.
- the bus can be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
- ISA Industry Standard Architecture
- PCI Peripheral Component
- EISA Extended Industry Standard Architecture
- the bus can be divided into an address bus, a data bus, a control bus, etc. For ease of representation, only one thick line is used in FIG5, but it does not mean that there is only one bus or one type of bus.
- the memory 501, the processor 502 and the communication interface 503 are integrated on a chip, the memory 501, the processor 502 and the communication interface 503 can communicate with each other through an internal interface.
- Processor 502 may be a central processing unit (CPU), an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present application.
- CPU central processing unit
- ASIC application specific integrated circuit
- An embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
- the program is executed by a processor, the adaptive power regulation method of the fuel cell system as described above is implemented.
- first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, a feature defined as “first” or “second” may explicitly or implicitly include at least one of the features.
- N means at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
- Any process or method description in a flowchart or otherwise described herein may be understood to represent a module, fragment or portion of code comprising one or more executable instructions for implementing the steps of a custom logical function or process, and the scope of the preferred embodiments of the present application includes alternative implementations in which functions may not be performed in the order shown or discussed, including performing functions in a substantially simultaneous manner or in reverse order depending on the functions involved, which should be understood by technicians in the technical field to which the embodiments of the present application belong.
- the logic and/or steps represented in the flowchart or otherwise described herein, for example, can be considered as an ordered list of executable instructions for implementing logical functions, and can be embodied in any computer-readable medium for use by an instruction execution system, device or apparatus (such as a computer-based system, a system including a processor, or other system that can fetch instructions from an instruction execution system, device or apparatus and execute instructions), or in combination with these instruction execution systems, devices or apparatuses.
- "computer-readable medium” can be any device that can contain, store, communicate, propagate or transmit a program for use by an instruction execution system, device or apparatus, or in combination with these instruction execution systems, devices or apparatuses.
- computer-readable media include the following: an electrical connection with one or N wirings (electronic devices), a portable computer disk box (magnetic device), a random access memory (RAM), a read-only memory (ROM), an erasable and programmable read-only memory (EPROM or flash memory), a fiber optic device, and a portable compact disk read-only memory (CDROM).
- the computer-readable medium may even be paper or other suitable medium on which the program is printed, since the program may be obtained electronically, for example, by optically scanning the paper or other medium and then editing, interpreting or processing in other suitable ways if necessary, and then stored in a computer memory.
- the various parts of the present application can be implemented by hardware, software, firmware or a combination thereof.
- the N steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
- a suitable instruction execution system For example, if implemented by hardware, as in another embodiment, it can be implemented by any one of the following technologies known in the art or their combination: a discrete logic circuit having a logic gate circuit for implementing a logic function for a data signal, a dedicated integrated circuit having a suitable combination of logic gate circuits, a programmable gate array (PGA), a field programmable gate array (FPGA), etc.
- each functional unit in each embodiment of the present application may be integrated into a processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
- the above-mentioned integrated module may be implemented in the form of hardware or in the form of a software functional module. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
- the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Fuel Cell (AREA)
Abstract
本申请涉及燃料电池技术领域,特别涉及一种燃料电池系统的自适应功率调节方法、装置、车辆及介质,其中,方法包括:获取燃料电池系统的当前氢入堆压力;若当前氢入堆压力大于第一预设压力且当前氢入堆压力小于第二预设压力,则根据预设的能量管理策略调节燃料电池电堆输出目标功率,否则确定当前氢入堆压力的当前所处压力区间,并根据当前所处压力区间匹配最优功率调节策略,根据最优功率调节策略执行相应的动作。由此,解决了由于车辆行驶过程中的非泄露原因造成偶然性入堆压力低或高,从而导致燃料电池紧急停机以及燃料电池系统无法正常启动等问题,减少燃料电池系统的故障率,降低车辆安全隐患,增加整车续航里程。
Description
相关申请的交叉引用
本申请基于申请号为202310437536.9,申请日为2023年04月21日申请的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本申请涉及燃料电池技术领域,特别涉及一种燃料电池系统的自适应功率调节方法、装置、车辆及介质。
氢能是一种优质的无碳排放的清洁能源载体,具备热值高、可通过绿色环保方式制取、利用形式多样等优势,既可以在空气中直接燃烧释放能量,也可以构建一种燃料电池能量转换装置将自身的化学能转化为电能释放出来。燃料电池汽车则是氢能应用及发展道路上的重要的研究方向。
现阶段,氢燃料电池汽车正处于高速发展阶段,但整套系统关键零部件主要依靠国外采购且成本高,标准法规还在持续改进优化,工况验证不足,燃料电池和氢系统在控制配合上依旧存在不少的问题,尤其是氢气进堆压力的变化导致的车辆安全问题,属于关键问题。
相关技术中,氢系统技术方案如图1所示,整个氢气循环系统的工作原理为接收燃料电池控制器的指令将氢阀的电磁阀打开,将储氢系统中储存的氢气通过高压管路传递至减压阀,减压阀将高压氢气减压到适应燃料电池工作的压力,利用氢气引射器或喷射器将氢气供应到燃料电池系统,氢入堆压力的压力一般会稳定在1.6±0.25MPa,保证燃料电池系统的正常运行。
然而,在车辆行驶过程中可能存在非泄露问题导致的氢入堆压力降低或升高,当压力值低于1.35MPa或者大于1.85MPa时,燃料电池控制器直接请求整车控制器下达关机指令,同时还会因长时间停放,导致氢气入口压力值暂时处于相对较低或较高状态,报出三级故障,导致燃料电池无法正常启动,亟待解决。
发明内容
本申请提供一种燃料电池系统的自适应功率调节方法、装置、车辆及介质,解决了由于车辆行驶过程中的非泄露原因造成偶然性入堆压力低或高,从而导致燃料电池紧急停机以及燃料电池系统无法正常启动等问题,减少燃料电池系统的故障率,降低车辆安全隐患,增加整车续航里程。
本申请第一方面实施例提供一种燃料电池系统的自适应功率调节方法,包括以下步骤:获取燃料电池系统的当前氢入堆压力;判断所述当前氢入堆压力是否大于第一预设压力且所述当前氢入堆压力是否小于第二预设压力;若所述当前氢入堆压力大于所述第一预设压力且所述当前氢入堆压力小于所述第二预设压力,则根据预设的能量管理策略调节燃料电池电堆输出目标功率,否则确定所述当前氢入堆压力的当前所处压力区间,并根据所述当前所处压力区间匹配最优功率调节策略,且根据所述最优功率调节策略执行相应的动作。
可选地,所述确定所述当前氢入堆压力的当前所处压力区间,并根据所述当前所处压力区间匹配最优功率调节策略,包括:若所述当前氢入堆压力小于或等于所述第一预设压力,且所述当前氢入堆压力大于或等于第三预设压力,则所述最优功率调节策略为根据所述当前氢入堆压力自适应调节所述燃料电池电堆的第一输出功率的同时,增大动力电池的第二输出功率,使得所述第一输出功率和所述第二输出功率达到所述目标功率;若所述当前氢入堆压力大于或等于所述第二预设压力,且所述当前氢入堆压力小于或等于所述第四预设压力,则所述最优功率调节策略为基于预设的排气策略排出部分氢气;若所述当前氢入堆压力小于所述第三预设压力,或者所述当前氢入堆压力大于所述第四预设压力,则所述最优功率调节策略为反馈三级故障,并停止所述燃料电池系统的运行。
可选地,在根据所述当前氢入堆压力自适应调节所述燃料电池电堆的第一输出功率的同时,增大所述动力电池的第二输出功率之后,还包括:获取所述当前氢入堆压力小于或等于所述第一预设压力,且所述当前氢入堆压力大于或等于所述第三预设压力的持续时长;若所述持续时长大于预设时长,则发送预设的一级故障提醒至预设移动终端,以提醒驾驶员检测供氢管路。
可选地,在获取所述燃料电池系统的当前氢入堆压力之前,还包括:检测氢气供应系统的当前状态;若所述当前状态为预设泄露状态,则根据预设的故障等级进行处理。
可选地,在检测所述氢气供应系统的当前状态之后,还包括:若所述当前状态不为所述预设泄露状态,则检测氢气瓶的当前压力,并判断所述当前压力是否小于或等于第五预设压力;若所述当前压力小于或等于所述第五预设压力,则根据所述预设的故障等级进行处理,否则,获取所述燃料电池系统的当前氢入堆压力。
本申请第二方面实施例提供一种燃料电池系统的自适应功率调节装置,包括:获取模
块,用于获取燃料电池系统的当前氢入堆压力;判断模块,用于判断所述当前氢入堆压力是否大于第一预设压力且所述当前氢入堆压力是否小于第二预设压力;调节模块,用于若所述当前氢入堆压力大于所述第一预设压力且所述当前氢入堆压力小于所述第二预设压力,则根据预设的能量管理策略调节燃料电池电堆输出目标功率,否则确定所述当前氢入堆压力的当前所处压力区间,并根据所述当前所处压力区间匹配最优功率调节策略,且根据所述最优功率调节策略执行相应的动作。
可选地,所述调节模块,还用于:若所述当前氢入堆压力小于或等于所述第一预设压力,且所述当前氢入堆压力大于或等于第三预设压力,则所述最优功率调节策略为根据所述当前氢入堆压力自适应调节所述燃料电池电堆的第一输出功率的同时,增大动力电池的第二输出功率,使得所述第一输出功率和所述第二输出功率达到所述目标功率;若所述当前氢入堆压力大于或等于所述第二预设压力,且所述当前氢入堆压力小于或等于所述第四预设压力,则所述最优功率调节策略为基于预设的排气策略排出部分氢气;若所述当前氢入堆压力小于所述第三预设压力,或者所述当前氢入堆压力大于所述第四预设压力,则所述最优功率调节策略为反馈三级故障,并停止所述燃料电池系统的运行。
可选地,在根据所述当前氢入堆压力自适应调节所述燃料电池电堆的第一输出功率的同时,增大所述动力电池的第二输出功率之后,所述调节模块,还用于:获取所述当前氢入堆压力小于或等于所述第一预设压力,且所述当前氢入堆压力大于或等于所述第三预设压力的持续时长;若所述持续时长大于预设时长,则发送预设的一级故障提醒至预设移动终端,以提醒驾驶员检测供氢管路。
可选地,在获取所述燃料电池系统的当前氢入堆压力之前,所述获取模块,还用于:检测氢气供应系统的当前状态;若所述当前状态为预设泄露状态,则根据预设的故障等级进行处理。
可选地,在检测所述氢气供应系统的当前状态之后,所述获取模块,还用于:若所述当前状态不为所述预设泄露状态,则检测氢气瓶的当前压力,并判断所述当前压力是否小于或等于第五预设压力;若所述当前压力小于或等于所述第五预设压力,则根据所述预设的故障等级进行处理,否则,获取所述燃料电池系统的当前氢入堆压力。
本申请第三方面实施例提供一种车辆,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序,以实现如上述实施例所述的燃料电池系统的自适应功率调节方法。
本申请第四方面实施例提供一种计算机可读存储介质,其上存储有计算机程序,该程
序被处理器执行,以用于实现如上述实施例所述的燃料电池系统的自适应功率调节方法。
由此,本申请通过获取燃料电池系统的当前氢入堆压力,若当前氢入堆压力大于第一预设压力且当前氢入堆压力小于第二预设压力,则根据预设的能量管理策略调节燃料电池电堆输出目标功率,否则确定当前氢入堆压力的当前所处压力区间,并根据当前所处压力区间匹配最优功率调节策略,且根据最优功率调节策略执行相应的动作。由此,解决了由于车辆行驶过程中的非泄露原因造成偶然性入堆压力低或高,从而导致燃料电池紧急停机以及燃料电池系统无法正常启动等问题,减少燃料电池系统的故障率,降低车辆安全隐患,增加整车续航里程。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为相关技术中的氢系统工作技术方案的示意图;
图2为根据本申请实施例提供的一种燃料电池系统的自适应功率调节方法的流程图;
图3为根据本申请一个实施例的燃料电池系统的自适应功率调节方法的流程图;
图4为根据本申请实施例的燃料电池系统的自适应功率调节装置的方框示意图;
图5为根据本申请实施例的车辆的方框示意图。
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的燃料电池系统的自适应功率调节方法、装置、车辆及介质。针对上述背景技术中心提到的由于车辆行驶过程中的非泄露原因造成偶然性入堆压力低或高,从而导致燃料电池紧急停机以及燃料电池系统无法正常启动的问题,本申请提供了一种燃料电池系统的自适应功率调节方法,在该方法中,获取燃料电池系统的当前氢入堆压力,若当前氢入堆压力大于所述第一预设压力且当前氢入堆压力小于第二预设压力,则根据预设的能量管理策略调节燃料电池电堆输出目标功率,否则确定当前氢入堆压力的当前所处压力区间,并根据当前所处压力区间匹配最优功率调节策略,且根据最优功率调节策略执行相应的动作。由此,解决了由于车辆行驶过程中的非泄露原因造成偶然
性入堆压力低或高,从而导致燃料电池紧急停机以及燃料电池系统无法正常启动等问题,减少燃料电池系统的故障率,降低车辆安全隐患,增加整车续航里程。
具体而言,图2为本申请实施例所提供的一种燃料电池系统的自适应功率调节方法的流程示意图。
如图2所示,该燃料电池系统的自适应功率调节方法包括以下步骤:
在步骤S201中,获取燃料电池系统的当前氢入堆压力。
可以理解的是,本申请实施例可以通过压力传感器获取燃料电池系统的当前氢入堆压力,并将压力信号反馈到燃料电池系统控制器,也可以通过其他方式获取燃料电池系统的当前氢入堆压力,为避免冗余,在此不做详细赘述。
可选地,在一些实施例中,在获取燃料电池系统的当前氢入堆压力之前,还包括:检测氢气供应系统的当前状态;若当前状态为预设泄露状态,则根据预设的故障等级进行处理。
其中,预设移动终端是指具有独立操作系统的电子终端设备(如手机、平板电脑等),可以由乘客自行安装软件、游戏的第三方服务商提供的程序,通过此类程序来不断对电子终端设备的功能进行扩充,并可以通过通信模块和其他智能设备进行数据交互的一类设备的总称。
具体地,在获取燃料电池系统的当前氢入堆压力之前,首先对整车进行停车上电,燃料电池控制器接收到整车控制器的启动指令后,开始对氢气供应系统进行氢气是否泄露检测,若检测氢气供应系统的中氢气的当前浓度值大于预设浓度阈值,则判定当前状态为预设泄露状态,此时,发送预设的一级故障提醒至预设移动终端,提醒驾驶员氢气处于泄露状态,或反馈三级故障,并关闭燃料电池及瓶阀。
进一步地,在一些实施例中,在检测氢气供应系统的当前状态之后,还包括:若当前状态不为预设泄露状态,则检测氢气瓶的当前压力,并判断当前压力是否小于或等于第五预设压力;若当前压力小于或等于第五预设压力,则根据预设的故障等级进行处理,否则,获取燃料电池系统的当前氢入堆压力。
其中,第五预设压力可以是用户预先设定的阈值,可以是通过有限次实验获取的阈值,也可以是通过有限次计算机仿真得到的阈值,优选地,第五预设压力为3.00Mpa。
具体地,若当前状态不为预设泄露状态,则本申请实施例可以检测氢气瓶的当前压力,并在氢气瓶的当前压力小于或等于3.00Mpa时,发送预设的一级故障提醒至预设移动终端,若氢气瓶的当前压力长期处于小于或等于3.00Mpa,则反馈三级故障,并关闭燃料电池及瓶阀,否则,继续获取燃料电池系统的当前氢入堆压力。
在步骤S202中,判断当前氢入堆压力是否大于第一预设压力且当前氢入堆压力是否小
于第二预设压力。
在步骤S203中,若当前氢入堆压力大于第一预设压力且当前氢入堆压力小于第二预设压力,则根据预设的能量管理策略调节燃料电池电堆输出目标功率,否则确定当前氢入堆压力的当前所处压力区间,并根据当前所处压力区间匹配最优功率调节策略,且根据最优功率调节策略执行相应的动作。
其中,第一预设压力和第二预设压力可以是用户预先设定的阈值,可以是通过有限次实验获取的阈值,也可以是通过有限次计算机仿真得到的阈值,优选地,第一预设压力设置为1.35MPa,第二预设压力设置为1.85MPa。
可以理解的是,若检测当前氢入堆压力大于1.35MPa且小于1.85MPa,则根据预设的能量管理策略调节燃料电池电堆输出目标功率,从而防止动力电池遭受过充危险,否则,根据检测的氢入堆压力区间匹配最优功率调节策略,并执行相应的动作。
可选地,在一些实施例中,确定当前氢入堆压力的当前所处压力区间,并根据当前所处压力区间匹配最优功率调节策略,包括:若当前氢入堆压力小于或等于第一预设压力,且当前氢入堆压力大于或等于第三预设压力,则最优功率调节策略为根据当前氢入堆压力自适应调节燃料电池电堆的第一输出功率的同时,增大动力电池的第二输出功率,使得第一输出功率和第二输出功率达到目标功率;若当前氢入堆压力大于或等于第二预设压力,且当前氢入堆压力小于或等于第四预设压力,则最优功率调节策略为基于预设的排气策略排出部分氢气;若当前氢入堆压力小于第三预设压力,或者当前氢入堆压力大于第四预设压力,则最优功率调节策略为反馈三级故障,并停止燃料电池系统的运行。
其中,第三预设压力和第四预设压力可以是用户预先设定的阈值,可以是通过有限次实验获取的阈值,也可以是通过有限次计算机仿真得到的阈值,优选地,第三预设压力设置为1MPa,第四预设压力设置为2MPa。
具体地,当检测的当前氢入堆压力小于或等于1.35MPa,且大于或等于1MPa时,匹配的最优功率调节策略为根据当前氢入堆压力自适应调节燃料电池电堆的第一输出功率,对整车进行能量输出,同时增大动力电池的第二输出功率,使得第一输出功率和第二输出功率达到目标功率,为整车提供目标功率,保证整车的正常运行。
进一步地,当检测的当前氢入堆压力大于或等于1.85MPa,且当前氢入堆压力小于或等于2MPa,则匹配的最优功率调节策略为基于预设的排气策略排出部分氢气,降低氢气入堆压力,同时燃料电池利用预设的能量管理策略对动力电池进行充电或对其他附件进行功能,最大限度合理利用氢气。
进一步地,当前氢入堆压力小于1MPa时,或者当前氢入堆压力大于2MPa时,可能会对氢气喷射器造成永久性损害,则匹配的最优功率调节策略为:若燃料电池处于开机状态,
发送请求关机指令,并同时反馈三级故障;若燃料电池处于停机状态,则停止燃料电池系统的运行。
可选地,在一些实施例中,在根据当前氢入堆压力自适应调节燃料电池电堆的第一输出功率的同时,增大动力电池的第二输出功率之后,还包括:获取当前氢入堆压力小于或等于第一预设压力,且当前氢入堆压力大于或等于第三预设压力的持续时长;若持续时长大于预设时长,则发送预设的一级故障提醒至预设移动终端,以提醒驾驶员检测供氢管路。
其中,预设时长可以是用户预先设定的阈值,可以是通过有限次实验获取的阈值,也可以是通过有限次计算机仿真得到的阈值,优选地,预设时长设置为1h。
可以理解的是,当当前氢气入堆压力小于或等于1.35MPa,且大于或等于1MPa时,获取此状态的持续时长,若持续时长大于1h,则发送预设的一级故障提醒至预设移动终端,提醒驾驶员去售后服务网点对氢气供应系统进行检测,以免出现氢气泄露的危险。若长期处于此状态,发送整车三级故障至预设移动终端,并停止对燃料电池发送开机指令。
需要说明的是,自适应调节燃料电池电堆的输出功率策略具体为:当氢气入堆压力小于或等于1.35MPa,或当氢气入堆压力大于或等于1.85MPa时,燃料电池将会产生氢气入堆压力低或高故障,并上报整车控制器,请求对燃料电池系统进行关机。为避免此故障的频繁报出,燃料电池控制器根据入堆压力实时自适应调整系统对整车的输出功率,避免因非泄露导致的偶然性入堆压力低或者高而引发故障关机,其中,氢气入堆压力及燃料电池系统输出功率如表1所示:
表1
需要注意的是,不同燃料电池系统对氢入堆压力要求会有偏差,以至于功率和压力对应关系会有所不同,以燃料电池系统的额定功率为PE为例,表中提出的燃料电池系统功率与氢气入堆压力需求仅供参考。
预设的排气策略具体为:在燃料电池运行过程中,未参与反应的氢气会利用汽水分离
器将水和氢气进行分离,避免出现水淹的问题,同时使得氢气的利用率最大限度的接近100%。因此,氢气入堆压力的来源有两部分:一是氢气瓶的供氢、二是由于未参与反应而剩余的氢气,当因偶然因素导致的氢气入堆压力过高超过1.85MPa且不超过2.00MPa时,可采用自适应调整控制阀将部分氢气直接排出,减少循环量,达到降低氢气入堆压力的目的,但这会增加氢耗,降低能量利用,因此,为避免引起氢气泄露的安全问题,需要保持氢浓度排放量小于4.0%。
预设的能量管理策略具体为:燃料电池根据实际工况计算整车需要的目标功率,调节氢气、空气的进气流量,并根据燃料电池系统的极化曲线对燃料电池的功率进行调整,达到相应目标输出功率的目的。
当动力电池的SOC处于相对较低的状态时,根据目标功率要求以及控制策略对燃料电池的功率点进行调整;当动力的电池的SOC处于90%或者燃料电池实际输出功率大于动力电池充电功率时,为避免动力电池的出现过充现象,直接请求整车控制器发送停机指令或将燃料电池的功率降低到怠速功率,将燃料电池产生的能量全部用于自身附件(例如空压机、氢喷、氢气循环泵和散热风扇等其他附件),不对整车输出任何能量,避免出现动力电池过充危险。需要注意的是,不同的燃料电池系统的怠速功率存在差异,需要提前对此功率点进行标定测试。
为使得本领域技术人员进一步理解本申请实施例的燃料电池系统的自适应功率调节方法,下面结合具体实施例进行详细阐述,如图3所示。
步骤S301中,整车停车上电,燃料电池控制器接收整车控制器启动指令。
步骤S302中,判断当前状态。若氢气处于泄露状态,则执行步骤S303,若氢气未处于泄露状态,则执行步骤S304。
步骤S303中,执行故障策略,发送预设的一级故障提醒至预设移动终端,或反馈三级故障,并关闭燃料电池及瓶阀。
步骤S304中,判断氢气瓶中压力是否大于3MPa。若大于3MPa,则执行步骤S305,否则,执行步骤S303。
步骤S305中,若当前氢入堆压力大于1.35MPa且小于1.85MPa,则根据预设的能量管理策略调节燃料电池电堆输出目标功率;若当前氢入堆压力小于或等于1.35MPa,且大于或等于1MPa时,则匹配的最优功率调节策略为根据氢气压力自适应调整功率,为整车提供功率;当检测的当前氢入堆压力大于或等于1.85MPa,且当前氢入堆压力小于或等于2MPa,则匹配的最优功率调节策略为基于预设的排气策略排出部分氢气;当前氢入堆压力小于1MPa时,或者当前氢入堆压力大于2MPa时,匹配的最优功率调节策略为反馈三级
故障,并停止燃料电池系统的运行。
综上,本申请实施例在相关技术中的技术方案基础上增加燃料电池系统基于氢气入口压力自适应的功率调整策略,当氢气入堆压力低于燃料电池原设定入堆压力下限时,燃料电池仍可继续工作,可提供功率供电池充电或满足整车基本需求,以便氢气入堆压力恢复到正常范围,进而增加续航里程。整车报故障停机后,恢复启动时电堆也可在低入堆压力下尽快响应,输出功率以供整车使用。并且,本申请实施例在自适应调整燃料电池功率策略中加入时间循环检测功能,可有效排查供氢系统各阀件、管路是否存在质量问题导致供氢压力不足或减压阀出现故障问题导致的氢气压力升高,并及时反馈整车提醒驾驶员去售后服务点排查原因,进而防止车辆在行驶以及停放过程中存在氢安全隐患。
根据本申请实施例提出的燃料电池系统的自适应功率调节方法,获取燃料电池系统的当前氢入堆压力,若当前氢入堆压力大于第一预设压力且当前氢入堆压力小于第二预设压力,则根据预设的能量管理策略调节燃料电池电堆输出目标功率,否则确定当前氢入堆压力的当前所处压力区间,并根据当前所处压力区间匹配最优功率调节策略,且根据最优功率调节策略执行相应的动作。由此,解决了由于车辆行驶过程中的非泄露原因造成偶然性入堆压力低或高,从而导致燃料电池紧急停机以及燃料电池系统无法正常启动等问题,减少燃料电池系统的故障率,降低车辆安全隐患,增加整车续航里程。
其次参照附图描述根据本申请实施例提出的燃料电池系统的自适应功率调节装置。
图4是本申请实施例的燃料电池系统的自适应功率调节装置的方框示意图。
如图4所示,该燃料电池系统的自适应功率调节装置10包括:获取模块100、判断模块200和调节模块300。
其中,获取模块100,用于获取燃料电池系统的当前氢入堆压力;判断模块200,用于判断当前氢入堆压力是否大于第一预设压力且当前氢入堆压力是否小于第二预设压力;调节模块300,用于若当前氢入堆压力大于第一预设压力且当前氢入堆压力小于第二预设压力,则根据预设的能量管理策略调节燃料电池电堆输出目标功率,否则确定当前氢入堆压力的当前所处压力区间,并根据当前所处压力区间匹配最优功率调节策略,且根据最优功率调节策略执行相应的动作。
可选地,在一些实施例中,调节模块300,还用于:若当前氢入堆压力小于或等于第一预设压力,且当前氢入堆压力大于或等于第三预设压力,则最优功率调节策略为根据当前氢入堆压力自适应调节燃料电池电堆的第一输出功率的同时,增大动力电池的第二输出功率,使得第一输出功率和第二输出功率达到目标功率;若当前氢入堆压力大于或等于第二预设压力,且当前氢入堆压力小于或等于第四预设压力,则最优功率调节策略为基于预
设的排气策略排出部分氢气;若当前氢入堆压力小于第三预设压力,或者当前氢入堆压力大于第四预设压力,则最优功率调节策略为反馈三级故障,并停止燃料电池系统的运行。
可选地,在一些实施例中,在根据当前氢入堆压力自适应调节燃料电池电堆的第一输出功率的同时,增大动力电池的第二输出功率之后,调节模块300,还用于:获取当前氢入堆压力小于或等于第一预设压力,且当前氢入堆压力大于或等于第三预设压力的持续时长;若持续时长大于预设时长,则发送预设的一级故障提醒至预设移动终端,以提醒驾驶员检测供氢管路。
可选地,在一些实施例中,在获取燃料电池系统的当前氢入堆压力之前,获取模块100,还用于:检测氢气供应系统的当前状态;若当前状态为预设泄露状态,则根据预设的故障等级进行处理。
可选地,在一些实施例中,在检测氢气供应系统的当前状态之后,获取模块100,还用于:若当前状态不为预设泄露状态,则检测氢气瓶的当前压力,并判断当前压力是否小于或等于第五预设压力;若当前压力小于或等于第五预设压力,则根据预设的故障等级进行处理,否则,获取燃料电池系统的当前氢入堆压力。
需要说明的是,前述对燃料电池系统的自适应功率调节方法实施例的解释说明也适用于该实施例的燃料电池系统的自适应功率调节装置,此处不再赘述。
根据本申请实施例提出的燃料电池系统的自适应功率调节装置,获取燃料电池系统的当前氢入堆压力,若当前氢入堆压力大于第一预设压力且当前氢入堆压力小于第二预设压力,则根据预设的能量管理策略调节燃料电池电堆输出目标功率,否则确定当前氢入堆压力的当前所处压力区间,并根据当前所处压力区间匹配最优功率调节策略,且根据最优功率调节策略执行相应的动作。由此,解决了由于车辆行驶过程中的非泄露原因造成偶然性入堆压力低或高,从而导致燃料电池紧急停机以及燃料电池系统无法正常启动等问题,减少燃料电池系统的故障率,降低车辆安全隐患,增加整车续航里程。
图5为本申请实施例提供的车辆的结构示意图。该车辆可以包括:
存储器501、处理器502及存储在存储器501上并可在处理器502上运行的计算机程序。
处理器502执行程序时实现上述实施例中提供的燃料电池系统的自适应功率调节方法。
进一步地,车辆还包括:
通信接口503,用于存储器501和处理器502之间的通信。
存储器501,用于存放可在处理器502上运行的计算机程序。
存储器501可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
如果存储器501、处理器502和通信接口503独立实现,则通信接口503、存储器501和处理器502可以通过总线相互连接并完成相互间的通信。总线可以是工业标准体系结构(Industry Standard Architecture,简称为ISA)总线、外部设备互连(Peripheral Component,简称为PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,简称为EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
可选的,在具体实现上,如果存储器501、处理器502及通信接口503,集成在一块芯片上实现,则存储器501、处理器502及通信接口503可以通过内部接口完成相互间的通信。
处理器502可能是一个中央处理器(Central Processing Unit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上的燃料电池系统的自适应功率调节方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或N个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“N个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更N个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或N个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,N个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (10)
- 一种燃料电池系统的自适应功率调节方法,其特征在于,包括以下步骤:获取燃料电池系统的当前氢入堆压力;判断所述当前氢入堆压力是否大于第一预设压力且所述当前氢入堆压力是否小于第二预设压力;以及若所述当前氢入堆压力大于所述第一预设压力且所述当前氢入堆压力小于所述第二预设压力,则根据预设的能量管理策略调节燃料电池电堆输出目标功率,否则确定所述当前氢入堆压力的当前所处压力区间,并根据所述当前所处压力区间匹配最优功率调节策略,且根据所述最优功率调节策略执行相应的动作。
- 根据权利要求1所述的方法,其特征在于,所述确定所述当前氢入堆压力的当前所处压力区间,并根据所述当前所处压力区间匹配最优功率调节策略,包括:若所述当前氢入堆压力小于或等于所述第一预设压力,且所述当前氢入堆压力大于或等于第三预设压力,则所述最优功率调节策略为根据所述当前氢入堆压力自适应调节所述燃料电池电堆的第一输出功率的同时,增大动力电池的第二输出功率,使得所述第一输出功率和所述第二输出功率达到所述目标功率;若所述当前氢入堆压力大于或等于所述第二预设压力,且所述当前氢入堆压力小于或等于第四预设压力,则所述最优功率调节策略为基于预设的排气策略排出部分氢气;若所述当前氢入堆压力小于所述第三预设压力,或者所述当前氢入堆压力大于所述第四预设压力,则所述最优功率调节策略为反馈三级故障,并停止所述燃料电池系统的运行。
- 根据权利要求2所述的方法,其特征在于,在根据所述当前氢入堆压力自适应调节所述燃料电池电堆的第一输出功率的同时,增大所述动力电池的第二输出功率之后,还包括:获取所述当前氢入堆压力小于或等于所述第一预设压力,且所述当前氢入堆压力大于或等于所述第三预设压力的持续时长;若所述持续时长大于预设时长,则发送预设的一级故障提醒至预设移动终端,以提醒驾驶员检测供氢管路。
- 根据权利要求1所述的方法,其特征在于,在获取所述燃料电池系统的当前氢入堆压力之前,还包括:检测氢气供应系统的当前状态;若所述当前状态为预设泄露状态,则根据预设的故障等级进行处理。
- 根据权利要求4所述的方法,其特征在于,在检测所述氢气供应系统的当前状态之后,还包括:若所述当前状态不为所述预设泄露状态,则检测氢气瓶的当前压力,并判断所述当前压力是否小于或等于第五预设压力;若所述当前压力小于或等于所述第五预设压力,则根据所述预设的故障等级进行处理,否则,获取所述燃料电池系统的当前氢入堆压力。
- 一种燃料电池系统的自适应功率调节装置,其特征在于,包括:获取模块,用于获取燃料电池系统的当前氢入堆压力;判断模块,用于判断所述当前氢入堆压力是否大于第一预设压力且所述当前氢入堆压力是否小于第二预设压力;以及调节模块,用于若所述当前氢入堆压力大于所述第一预设压力且所述当前氢入堆压力小于所述第二预设压力,则根据预设的能量管理策略调节燃料电池电堆输出目标功率,否则确定所述当前氢入堆压力的当前所处压力区间,并根据所述当前所处压力区间匹配最优功率调节策略,且根据所述最优功率调节策略执行相应的动作。
- 根据权利要求6所述的装置,其特征在于,所述调节模块,还用于:若所述当前氢入堆压力小于或等于所述第一预设压力,且所述当前氢入堆压力大于或等于第三预设压力,则所述最优功率调节策略为根据所述当前氢入堆压力自适应调节所述燃料电池电堆的第一输出功率的同时,增大动力电池的第二输出功率,使得所述第一输出功率和所述第二输出功率达到所述目标功率;若所述当前氢入堆压力大于或等于所述第二预设压力,且所述当前氢入堆压力小于或等于第四预设压力,则所述最优功率调节策略为基于预设的排气策略排出部分氢气;若所述当前氢入堆压力小于所述第三预设压力,或者所述当前氢入堆压力大于所述第四预设压力,则所述最优功率调节策略为反馈三级故障,并停止所述燃料电池系统的运行。
- 根据权利要求7所述的装置,其特征在于,在根据所述当前氢入堆压力自适应调节所述燃料电池电堆的第一输出功率的同时,增大所述动力电池的第二输出功率之后,所述调节模块,还用于:获取所述当前氢入堆压力小于或等于所述第一预设压力,且所述当前氢入堆压力大于或等于所述第三预设压力的持续时长;若所述持续时长大于预设时长,则发送预设的一级故障提醒至预设移动终端,以提醒驾驶员检测供氢管路。
- 一种车辆,其特征在于,包括存储器、处理器;其中,所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于实现如权利要求1-5中任一所述的燃料电池系统的自适应功率调节方法。
- 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-5中任一所述的燃料电池系统的自适应功率调节方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310437536.9 | 2023-04-21 | ||
CN202310437536.9A CN116613356A (zh) | 2023-04-21 | 2023-04-21 | 燃料电池系统的自适应功率调节方法、装置、车辆及介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024216988A1 true WO2024216988A1 (zh) | 2024-10-24 |
Family
ID=87673693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/135712 WO2024216988A1 (zh) | 2023-04-21 | 2023-11-30 | 燃料电池系统的自适应功率调节方法、装置、车辆及介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116613356A (zh) |
WO (1) | WO2024216988A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116613356A (zh) * | 2023-04-21 | 2023-08-18 | 北汽福田汽车股份有限公司 | 燃料电池系统的自适应功率调节方法、装置、车辆及介质 |
CN118899478A (zh) * | 2024-08-02 | 2024-11-05 | 广州汽车集团股份有限公司 | 燃料电池的电流控制方法、装置、车辆、存储介质及产品 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200198495A1 (en) * | 2017-05-12 | 2020-06-25 | Ohio State Innovation Foundation | Real-time energy management strategy for hybrid electric vehicles with reduced battery aging |
CN112026524A (zh) * | 2020-09-16 | 2020-12-04 | 浙江吉利控股集团有限公司 | 一种用于燃料电池汽车的故障诊断及处理方法和系统 |
CN112231830A (zh) * | 2020-09-30 | 2021-01-15 | 浙江大学 | 基于自适应等效因子的混合动力车辆多目标优化控制方法 |
CN112373352A (zh) * | 2020-11-12 | 2021-02-19 | 吉林大学 | 一种燃料电池系统故障诊断及容错控制方法 |
CN112993327A (zh) * | 2021-05-10 | 2021-06-18 | 北京亿华通科技股份有限公司 | 一种燃料电池系统的控制方法和装置 |
CN114889498A (zh) * | 2022-05-07 | 2022-08-12 | 苏州市华昌能源科技有限公司 | 一种氢电混合动力系统的功率优化分配方法 |
CN115602880A (zh) * | 2022-09-02 | 2023-01-13 | 海卓动力(青岛)能源科技有限公司(Cn) | 一种氢氧燃料电池发动机氢气入堆压力自适应控制方法 |
CN116613356A (zh) * | 2023-04-21 | 2023-08-18 | 北汽福田汽车股份有限公司 | 燃料电池系统的自适应功率调节方法、装置、车辆及介质 |
-
2023
- 2023-04-21 CN CN202310437536.9A patent/CN116613356A/zh active Pending
- 2023-11-30 WO PCT/CN2023/135712 patent/WO2024216988A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200198495A1 (en) * | 2017-05-12 | 2020-06-25 | Ohio State Innovation Foundation | Real-time energy management strategy for hybrid electric vehicles with reduced battery aging |
CN112026524A (zh) * | 2020-09-16 | 2020-12-04 | 浙江吉利控股集团有限公司 | 一种用于燃料电池汽车的故障诊断及处理方法和系统 |
CN112231830A (zh) * | 2020-09-30 | 2021-01-15 | 浙江大学 | 基于自适应等效因子的混合动力车辆多目标优化控制方法 |
CN112373352A (zh) * | 2020-11-12 | 2021-02-19 | 吉林大学 | 一种燃料电池系统故障诊断及容错控制方法 |
CN112993327A (zh) * | 2021-05-10 | 2021-06-18 | 北京亿华通科技股份有限公司 | 一种燃料电池系统的控制方法和装置 |
CN114889498A (zh) * | 2022-05-07 | 2022-08-12 | 苏州市华昌能源科技有限公司 | 一种氢电混合动力系统的功率优化分配方法 |
CN115602880A (zh) * | 2022-09-02 | 2023-01-13 | 海卓动力(青岛)能源科技有限公司(Cn) | 一种氢氧燃料电池发动机氢气入堆压力自适应控制方法 |
CN116613356A (zh) * | 2023-04-21 | 2023-08-18 | 北汽福田汽车股份有限公司 | 燃料电池系统的自适应功率调节方法、装置、车辆及介质 |
Also Published As
Publication number | Publication date |
---|---|
CN116613356A (zh) | 2023-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024216988A1 (zh) | 燃料电池系统的自适应功率调节方法、装置、车辆及介质 | |
US11329302B2 (en) | Control method and system of fuel cell system | |
US10062916B2 (en) | Control method and system of fuel cell system | |
CN108284751B (zh) | 一种用于增程式车辆的控制方法、控制系统及车辆 | |
CN110400948A (zh) | 一种燃料电池电堆活化方法及装置 | |
US10056628B2 (en) | Method for controlling startup of fuel cell vehicle | |
CN111952641A (zh) | 燃料电池汽车吹扫控制方法及燃料电池控制器 | |
CN103247831B (zh) | 电池放电方法 | |
CN111384418B (zh) | 燃料电池系统 | |
CN108223231A (zh) | 一种48v微混系统的发动机起动控制方法 | |
CN209312921U (zh) | 一种燃料电池系统 | |
CN115649016A (zh) | 一种氢燃料车辆低温冷启动方法、装置、设备及存储介质 | |
CN114914486A (zh) | 燃料电池的关机吹扫的控制方法以及其控制装置 | |
JP2009266534A (ja) | 燃料電池システム | |
CN112046338A (zh) | 燃料电池车辆的高压下电方法及电池系统 | |
CN215771232U (zh) | 一种燃料电池电压控制系统及燃料电池系统 | |
CN110970972A (zh) | 一种dcdc变换器的控制方法、装置、存储介质及电源 | |
CN114597453B (zh) | 一种燃料电池系统的热待机运行控制方法、燃料电池系统、存储介质以及电子装置 | |
US20180159157A1 (en) | Fuel cell system and method of operating fuel cell system | |
TW201541803A (zh) | 可攜式電子裝置及其充電控制方法 | |
CN117927398A (zh) | 一种尾气再循环控制系统、方法、电子设备及介质 | |
WO2024104221A1 (zh) | 一种氢燃料混合动力机车的启动控制方法及相关设备 | |
CN118124388A (zh) | 一种氢泄露监测方法、系统、设备及可读存储介质 | |
CN115036531A (zh) | 一种燃料电池散热控制方法、系统、设备及计算机 | |
CN117013017B (zh) | 燃料电池的放电方法、装置、可读介质及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23933854 Country of ref document: EP Kind code of ref document: A1 |