WO2024214297A1 - Topography measurement device, topography measurement system, work machine, topography measurement method, reference point setting registration method, and program - Google Patents
Topography measurement device, topography measurement system, work machine, topography measurement method, reference point setting registration method, and program Download PDFInfo
- Publication number
- WO2024214297A1 WO2024214297A1 PCT/JP2023/015210 JP2023015210W WO2024214297A1 WO 2024214297 A1 WO2024214297 A1 WO 2024214297A1 JP 2023015210 W JP2023015210 W JP 2023015210W WO 2024214297 A1 WO2024214297 A1 WO 2024214297A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reference point
- distance
- point
- measuring device
- topographical
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 110
- 238000012876 topography Methods 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims description 38
- 238000000691 measurement method Methods 0.000 title claims description 4
- 238000010276 construction Methods 0.000 claims abstract description 34
- 238000012937 correction Methods 0.000 claims abstract description 30
- 238000001514 detection method Methods 0.000 claims abstract description 27
- 239000000284 extract Substances 0.000 claims abstract description 4
- 238000009412 basement excavation Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 238000003384 imaging method Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 9
- 239000003550 marker Substances 0.000 description 8
- 230000001133 acceleration Effects 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C15/00—Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
Definitions
- the present invention relates to a topography measurement device, a topography measurement system, a work machine, a topography measurement method, a reference point setting and registration method, and a program.
- the terrain in front of the hydraulic excavator can be detected by LiDAR, and by providing a reference height, any unevenness relative to the reference height can be displayed in color on the screen.
- the operator can look at the color-coded unevenness on the screen and operate the hydraulic excavator's bucket or blade to excavate the ground until the colors on the screen become the same, i.e., the unevenness disappears.
- the terrain measurement device detects reference points from markers and performs terrain measurements based on the reference points.
- the hydraulic excavator moves away from the reference point by turning and traveling, but the terrain measurement device estimates the position and tilt of the device (camera) from the built-in gyro sensor, acceleration sensor, and changes in feature points in the image (Visual Inertial Odometry, or SLAM: Simultaneous Localization and Mapping), making it possible to continue to determine accurate terrain coordinates even when it moves away from the reference point.
- SLAM Simultaneous Localization and Mapping
- Patent Document 1 discloses a method of photographing markers installed in locations where height information is required with a camera mounted on construction machinery while the machinery is traveling, acquiring the position coordinates of the markers in the image and the position coordinates of the camera, acquiring the relative positional relationship between multiple markers using VisualSLAM technology to create Triangulated Irregular Network (TIN) data, and identifying planes to create 3D design data.
- Patent Document 2 discloses a method of linking the position coordinates of markers read from markers placed along a travel path with the position coordinates of markers detected by a stereo camera to create virtual marker information for the travel path, and using the virtual marker information as corrected travel information to drive a moving vehicle autonomously.
- the present invention was made in consideration of the above-mentioned circumstances, and aims to reduce the load on the CPU when detecting terrain in real time by eliminating the need to provide markers and perform the process of recognizing the markers, thereby speeding up the process of detecting terrain in real time.
- a topographical measuring device comprises: A topographical measurement device that is mounted on a moving body and measures the shape of the ground at a construction site, a reference point registration unit in which position information of at least one reference point within the construction site is registered; a position detection unit that detects a position of the point cloud in a global coordinate system based on point cloud data acquired from a distance measurement device that measures a distance to the ground; a display unit that displays a distance measurement image of an area scanned by the distance measurement device; a reference point detection unit that detects a reference point that exists within the area among the at least one reference point; a correction unit that extracts, from the point cloud present within the area, a scanning point that has a minimum horizontal distance from the reference point detected by the reference point detection unit and is within a predetermined distance, and corrects the height coordinate of the point cloud based on a correction value calculated from a height coordinate error from the reference point.
- the present invention by correcting the height coordinate position of the point cloud according to the height coordinate position of the reference point, it is possible to reduce the load on the CPU and speed up the process of detecting the terrain in real time by eliminating the need to provide markers and to process the markers.
- FIG. 1 is a diagram showing a configuration of a work machine according to a first embodiment of the present invention.
- 1 is a block diagram of a topographical measurement system according to a first embodiment of the present invention.
- FIG. FIG. 2 is a block diagram of a controller according to the first embodiment of the present invention.
- FIG. 13 is a diagram showing a display image in which a distance measurement image is superimposed on a captured image.
- FIG. 13 is a diagram showing how a reference point is set at a construction site and measurements are taken.
- FIG. 13 is a diagram showing a state in which a reference point set at a construction site is registered.
- 5 is a flowchart showing a reference point registration process according to the first embodiment of the present invention.
- FIG. 1 is a diagram showing point cloud positions and reference point positions detected by a distance measuring device during topography measurement; 5 is a flowchart showing a Z position correction process according to the first embodiment of the present invention.
- FIG. 13 shows the movement of a work machine when setting and registering a reference point in a second embodiment of the present invention, with the first reference point k1 entering the screen of the display unit and the work machine stopped.
- FIG. 2 is a diagram showing a state in which the rotating body of the work machine has been rotated rearward.
- FIG. 13 is a diagram showing a state in which the rotating bed has been returned to its original position and the work machine has been moved rearward.
- FIG. 2 is a diagram showing a state in which the rotating body has rotated rearward.
- 10 is a flowchart showing a reference point setting and registration process according to a second embodiment of the present invention.
- the configuration of a work machine according to a first embodiment of the present invention is shown in FIG. 1.
- the work machine is a mobile body that moves around a construction site to perform work, and here, as an example of a work machine, a hydraulic excavator equipped with a work implement that operates hydraulically is shown.
- the work machine 1 comprises a vehicle body that comprises a running body 2 and a rotating body 3 supported by the running body 2, and a work implement 4 supported by the rotating body 3.
- the running body 2 has tracks on both the left and right sides, and moves by rotating the tracks. Note that the running body 2 may also be configured to move by having tires instead of tracks.
- the rotating body 3 is supported on the running body 2 so that it can rotate around a rotation axis.
- the work machine 4 includes a boom 41 connected to the rotating body 3 so as to be rotatable up and down, an arm 42 connected to the boom 41 so as to be rotatable up and down, and a bucket 43 connected to the arm 42 so as to be rotatable up and down.
- the base end of the boom 41 is attached to the rotating body 3 via a boom pin 44, and the boom 41 rotates around the boom pin 44 as the boom cylinder 45 extends and retracts.
- the base end of the arm 42 is attached to the tip of the boom 41 via an arm pin 46, and the arm 42 rotates around the arm pin 46 as the arm cylinder 47 extends and retracts.
- the base end of the bucket 43 is attached to the tip of the arm 42 via a bucket pin 48, and the bucket 43 rotates around the bucket pin 48 as the bucket cylinder 49 extends and retracts.
- the boom cylinder 45 is a hydraulic cylinder that can be extended and retracted by hydraulic pressure.
- the base end of the boom cylinder 45 is connected to the rotating body 3, and the tip end is connected to the boom 41.
- the arm cylinder 47 is a hydraulic cylinder that can be extended and retracted by hydraulic pressure.
- the base end of the arm cylinder 47 is connected to the boom 41, and the tip end is connected to the arm 42.
- the bucket cylinder 49 is a hydraulic cylinder that can be extended and retracted by hydraulic pressure.
- the base end of the bucket cylinder 49 is connected to the arm 42, and the tip end is connected to the bucket 43.
- the bucket 43 is equipped with a cutting edge at the tip for excavating soil and sand, and a storage section for storing the excavated soil.
- a blade 50 is disposed in front of the traveling body 2 as a working machine 4.
- the blade 50 rotates up and down as shown by the arrow by the extension and contraction of a lift cylinder (not shown).
- a cab 31 where the operator drives is provided on top of the rotating body 3.
- the cab 31 is equipped with an operating device 32 for operating the work machine 4 and a topography measuring device 5.
- the operating device 32 is equipped with an operating lever, and in addition to operating the travelling body 2, the operating lever is used to operate the boom 41, the arm 42, the bucket 43, the blade 50, and to rotate the rotating body 3.
- the boom cylinder 45, the arm cylinder 47, the bucket cylinder 49, and the lift cylinder are extended or retracted, and the work machine 4 is driven.
- a distance measuring device 6 that detects the distance to the work machine 4 and the work target, and an imaging device 7 that captures images of the work machine 4 and the work target are provided inside the cab 31, and the imaging device 7 is attached integrally to the distance measuring device 6.
- the distance measuring device 6 is arranged so that its detection surface faces diagonally downward so that it can detect the direction of the ground in front of the cab 31, which is the direction in which the work machine 4 of the rotating body 3 is connected.
- the imaging device 7 is arranged so that its imaging surface faces diagonally downward so that it can detect the direction of the ground in front of the cab 31, which is the direction in which the work machine 4 of the rotating body 3 is connected, and captures images in the same direction as the distance measuring device 6.
- the distance measuring device 6 is, for example, a LiDAR, and is a sensor that irradiates a pulsed laser light while scanning sequentially in multiple measurement directions, and measures the distance and direction to a measurement object within a certain measurement range based on the time it takes for the reflected scattered light to return and the irradiation direction.
- the distance measuring device 6 outputs point cloud data that indicates the distance and direction to a measurement point on the measurement object.
- the imaging device 7 is a camera equipped with an image sensor such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor) whose light receiving surface, including the imaging surface, is composed of multiple light receiving elements arranged two-dimensionally.
- an image sensor such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor) whose light receiving surface, including the imaging surface, is composed of multiple light receiving elements arranged two-dimensionally.
- the distance measurement device 6 is provided with an IMU 8.
- the IMU 8 measures the acceleration and angular velocity of the distance measurement device 6 using a three-directional acceleration sensor 81 and a three-axis gyro sensor 82.
- the IMU 8 detects the inclination of the distance measurement device 6 based on the measurement results. In other words, it measures the tilt angle in the roll direction, which represents rotation about the xG axis of the global coordinate system, the pitch direction, which represents rotation about the yG axis of the global coordinate system, and the angular displacement in the yaw direction, which represents rotation about the zG axis of the global coordinate system.
- the topography measurement device 5, distance measurement device 6, imaging device 7, and IMU 8 constitute a topography measurement system 10.
- Figure 2 shows a block diagram of the topography measurement system 10.
- the terrain measuring device 5 is mounted in the cab 31 of the work machine 1.
- the terrain measuring device 5 has a distance measuring device 6, an IMU 8 provided in the distance measuring device 6, an imaging device 7, a controller 51, a display unit 52, and an input unit 53.
- the controller 51, display unit 52, and input unit 53 of the terrain measuring device 5 are configured, for example, by a tablet-type personal computer.
- the controller 51 executes various functions of the topographical measuring device 5.
- the controller 51 has a processing unit 54 and a memory unit 55.
- the memory unit 55 has a RAM (Random Access Memory) and a ROM (Read Only Memory).
- the memory unit 55 stores data on the reference height.
- the reference height is the height of the target excavation surface when leveling unevenness in the ground.
- the work machine 1 levels the ground in accordance with the reference height.
- the reference height is stored in the memory unit 55 by the operator inputting it from the input unit.
- the memory unit 55 also stores a control program executed by the processing unit 54.
- the processing unit 54 includes a CPU and other components, and reads and executes the programs and data stored in the memory unit 55.
- the controller 51 acquires distance measurement data of the current topography of the construction site from the distance measurement device 6.
- the controller 51 displays a distance measurement image of the current topography on the display unit based on the distance measurement data.
- the controller 51 also acquires from the IMU 8 tilt angle data in the roll and pitch directions of the distance measuring device 6 and angular displacement data in the yaw direction as attitude information of the distance measuring device 6.
- the controller 51 performs attitude correction of the distance measuring device 6 based on the acquired tilt angle data and angular displacement data.
- the controller 51 also acquires captured image data of the current topography of the construction site from the imaging device 7.
- the controller 51 superimposes the distance measurement image on the captured image and displays it on the display unit 52.
- the display unit 52 is equipped with a display device such as an LCD (Liquid Crystal Display) panel or an organic EL (Electro-Luminescence) panel.
- the display unit 52 displays screens showing the results of various processes, operation screens, etc.
- the input unit 53 is a device for inputting various instructions to the controller 51, and is configured with a touch panel that is operated by directly touching the screen of the display unit 52.
- the input unit 53 may also be a button, a keyboard, etc.
- FIG. 3 shows a functional block diagram of the controller 51.
- the controller 51 has a distance measurement data acquisition unit 511, an attitude information acquisition unit 512, a captured image acquisition unit 513, a setting unit 514, a distance measurement image generation unit 515, a display control unit 516, a position detection unit 517, a reference point registration unit 518, a reference point detection unit 519, and a correction unit 520.
- the distance measurement data acquisition unit 511 acquires point cloud data, which is distance measurement data of the area in front of the cab 31 of the work machine 1 measured by the distance measurement device 6.
- the attitude information acquisition unit 512 acquires tilt angle data in the roll direction and pitch direction of the distance measurement device 6 measured by the IMU 8, and angular displacement data in the yaw direction, as attitude information of the distance measurement device 6.
- the captured image acquisition unit 513 acquires an image of the area in front of the cab 31 captured by the imaging device 7.
- the setting unit 514 sets a reference height, which is the height of the target excavation surface.
- the ranging image generating unit 515 generates a ranging image showing the terrain height of the current terrain based on the position information output from the position detecting unit 517 and the reference height set by the setting unit 514.
- the generated ranging image is an image in which the unevenness of the terrain relative to the set reference height is color-coded according to the difference from the reference height.
- the display control unit 516 superimposes the distance measurement image of the unevenness of the terrain in front of the cab 31, generated by the distance measurement image generation unit 515, onto the captured image of the area in front of the cab 31, acquired by the captured image acquisition unit 513, and displays the superimposed image on the display unit 52.
- the display image displayed on the display unit 52 by the display control unit 516 by superimposing the distance measurement image on the captured image is shown in FIG. 4.
- the distance measurement image displays the unevenness of the terrain in different colors according to the difference from the reference height.
- Area A indicates an area lower in altitude than the reference height, and is displayed in light blue, for example.
- Area B indicates an appropriate area having the same height as the reference height, and is displayed in green, for example.
- Area C indicates an area higher in altitude than the reference height, and is displayed in yellow, for example.
- Area A, which is lower in altitude than the reference height requires filling to reach the reference height.
- Area C which is higher in altitude than the reference height, requires cutting to reach the reference height. Therefore, while checking this display image, the operator can perform leveling work by operating the bucket 43 and blade 50 of the work machine 1 to cut earth from area C and fill earth in area A to eliminate unevenness.
- the position detection unit 517 generates three-dimensional coordinates in a local coordinate system, which is the coordinate system of the topographical measurement device 5, based on the point cloud data acquired by the distance measurement data acquisition unit 511.
- the position detection unit 517 performs attitude correction on the three-dimensional coordinates in the generated local coordinate system based on the attitude information acquired by the attitude information acquisition unit 512, and converts them into three-dimensional coordinates in a global coordinate system based on a reference point set at the construction site.
- the converted position information is output to the correction unit 520 for correction, and is sent to the distance measurement image generation unit 515.
- the reference point registration unit 518 registers the position information of multiple reference points set at the construction site.
- the reference points are registered by converting local coordinates into global coordinates.
- information on the height of the ground, which has been measured in advance using a level or the like, is also registered for each reference point.
- the reference point detection unit 519 detects reference points present within an area when scanning the area within a range that can be scanned by the distance measurement device 6, for multiple reference points set by the reference point registration unit 518. When a reference point is detected, a detection signal is sent to the display control unit 516, which displays a mark at a position corresponding to the reference point on the topographical image displayed on the display unit 52. The output of the reference point detection unit 519 is also sent to the correction unit 520.
- the correction unit 520 extracts scanning points located near the detected reference point from the point cloud within the scanning area based on the detection signal sent from the reference point detection unit, calculates a correction value from the difference in height coordinate between the reference point and the scanning point, and corrects the height coordinate of the point cloud based on the calculated correction value.
- the correction unit 520 sends position information of the corrected point cloud to the ranging image generation unit 515.
- the ranging image generation unit 515 can generate a ranging image that is free of deviations in terms of unevenness relative to the reference height, which is the ground height of the excavation target displayed on the display unit 52. Furthermore, since correction can be performed without using markers, the burden on the CPU due to marker recognition, etc. can be reduced.
- the topography measuring device 5 mounted on the work machine 1 corrects measurement errors by detecting the reference points ki set within the construction site.
- the second reference point k2 to the nth reference point kn are provided at positions away from the first reference point k1 and are uniformly arranged within the construction site. For example, as shown in FIG. 5, they are arranged in a grid pattern so that adjacent reference points ki are equidistant from the first reference point k1.
- the reason for centering the first reference point k1 is to prevent the distance from the first reference point k1 to the furthest position within the construction site from becoming too long and to prevent the measurement error by the topographical measurement device 5 from accumulating and causing a large coordinate shift.
- the operator levels a certain area around each of the first reference point k1 to the nth reference point kn to be set, to a plane of the same height.
- the operator uses a level, total station, etc. to measure the heights at the positions of the first reference point k1 and the second reference point k2 to the nth reference point kn, and determines the difference in height between the first reference point k1 and the second reference point k2 to the nth reference point kn.
- a level 60 when using a level 60 to measure the positions of the first reference point k1 to the nth reference point kn (reference points k1 to k9 in the example of FIG. 5), first, the level 60 is set up on a tripod so that it is horizontal and rotatable around the vertical axis.
- a staff is set up at each position of the first reference point k1 to the nth reference point kn, the surroundings of which are leveled to a flat plane, and the level is rotated toward the staff to read the scales on the staff, thereby determining the difference in height between the first reference point k1 and the second reference point k2 to the nth reference point kn.
- the first reference point k1 is leveled in advance so that it is the same as the reference height. Alternatively, the difference from the reference height of the first reference point k1 may be measured.
- each reference point ki may be obtained in addition to the altitude difference.
- the three-dimensional coordinates of each reference point ki may be obtained by measurement, or if the distance and direction between each reference point ki are determined when each reference point ki is set, these may be used to obtain the three-dimensional coordinates.
- the operator operates the work machine 1 to move the work machine 1 to a position where the first reference point k1 is displayed on the screen of the display unit 52 of the topography measuring device 5 (step S102).
- the operator stops the work machine 1 and taps the position on the screen where the first reference point k1 is displayed to register the coordinate position of the first reference point k1 (step S103).
- the distance measuring device 6 measures the distance and direction to the position in the construction site corresponding to the tapped position.
- the three-dimensional coordinates (local coordinates) of the position of the first reference point k1 in the coordinate system of the topography measuring device 5 are obtained.
- the obtained position of the first reference point k1 in the coordinate system of the topography measuring device 5 is attitude-corrected based on the attitude information detected by the IMU 8 and is associated with the global coordinate position.
- the position of the reference point is registered as three-dimensional coordinates (global coordinates) XYZ coordinate values within the topographical measurement device and stored in the memory unit 55.
- the height difference ⁇ Hi between the first reference point k1 and the reference point ki which was measured in advance using a level or the like in the above-mentioned reference point setting, is registered and stored in the memory unit 55 (step S104).
- step S106 it is determined whether the new i reaches the number n of the set reference points ki. If the value of i has not reached the number n of the reference points ki (step S106: YES), the process returns to step S102, and the operator moves the work machine 1 to a position where the new reference point ki is included on the screen of the display unit 52.
- the process returns to step S102, and the operator moves the work machine 1 from the first reference point k1 to a position where the second reference point k2, which is the new reference point, is included on the screen of the display unit.
- the distance measurement device 6 When the work machine 1 starts moving from the first reference point k1 to the second reference point k2, the distance measurement device 6 resumes scanning and generates point cloud data within the detection range.
- the controller 51 matches the feature points of the point cloud data of the currently acquired frame with the point cloud data of the previously acquired frame, and detects the amount of movement and direction of movement of the distance measurement device 6 based on the matching results.
- the self-position of the topography measurement device 5 is updated by accumulating the detected amount of movement and direction of movement. Note that the amount of movement and direction of movement may be obtained based on the detection signals of the acceleration sensor 81 and the gyro sensor 82, and the self-position may be updated.
- the operator stops the work machine 1 and taps the position on the screen where the second reference point k2 is displayed, thereby registering the coordinate position of the second reference point k2 (step S103).
- the distance measurement device 6 measures the distance and direction to the position in the construction site corresponding to the tapped position. Based on the measured distance and direction information, the self-position of the topographical measurement device 5, the coordinate position of the first reference point k1, and the attitude information, the three-dimensional coordinate values (global coordinates) XYZ of the second reference point k2 are calculated and registered by storing them in the memory unit 55. Furthermore, the controller 51 registers the height difference ⁇ Hi between the first reference point k1 and the second reference point k2, which was measured in advance using a level or the like when setting the reference points, by storing it in the memory unit 55 (step S104).
- step S105 increments the value of i by 1 (step S105) and determines whether i has reached the number n of reference points ki (step S106). If the value of i has not reached the number n of reference points (step S105: YES), the process returns to step S102 and repeats the processes from step S102 onwards. If the value of i has reached the number n of reference points (step S105: NO), the reference point registration process ends.
- topography Once the registration of the reference points ki in the topography measuring device 5 is completed, preparations for topography measurement during ground excavation work are completed, and while the ground excavation work is actually being performed, the topography measuring device 5 executes topography measurement and displays a distance measurement image on the display unit 52.
- the excavation work is started after the work machine 1 is moved and the topography measuring device 5 detects the first reference point k1.
- the topography measuring device 5 generates a distance measurement image showing the topography height of the current topography based on the distance measurement data whose attitude is corrected based on the position of the first reference point k1.
- the work machine 1 moves to the excavation work site and moves away from the first reference point k1, but the coordinates of the topography are continuously obtained by obtaining changes in the characteristic points of the point cloud data obtained from the distance measuring device 6 and integrating them with the position coordinates of the first reference point k1.
- FIG. 8 shows the point cloud positions and the position of the reference point ki detected by the distance measuring device 6 during topography measurement
- FIG. 9 is a flow chart showing the process of correcting the Z position, which is the coordinate position of the point cloud in the height direction, during topography measurement.
- the distance measuring device 6 of the topography measuring device 5 scans a detectable area to obtain point cloud data and create the coordinates (Xj, Yj, Zj) of the point cloud (step S201).
- the positions of each scanning point of the point cloud at this time are shown by black squares in FIG. 8, and the reference point ki exists within the scanning area.
- the controller 51 determines whether or not the reference point ki exists within the area, i.e., whether or not the reference point ki is within the screen of the display unit 52 of the topography measuring device 5 (step S202). If the reference point ki is present within the area (step S202: YES), the controller 51 displays a three-dimensional mark, such as a cone, on the screen of the display unit 52 using AR (Augmented Reality) (step S203) to enable the operator to determine the position of the reference point ki. If the reference point ki is not present within the area (step S202: NO), the process returns to step S201, and the distance measurement device 6 continues to scan the area that can be irradiated.
- AR Augmented Reality
- the distance Lij between the XY coordinates of the point cloud and the XY coordinates of the reference point ki that exists within the detection range of the distance measurement device 6 is calculated, and the combination of the scanning point j and the reference point ki that minimizes the distance Lij is determined (step S204).
- the distance Lij is calculated from the coordinates (Xj, Yj, Zj) of the point cloud scanned by the distance measurement device and the XY coordinates of the coordinates (Xi, Yi, Zi) of the reference point ki that was previously registered, using the following formula (1).
- the minimum distance Lij between the obtained scanning point j and the reference point ki is compared with a predetermined distance value Lmax to determine whether the scanning point j is in the vicinity of the reference point ki (step S205).
- the distance Lmax is the maximum value of the range in which the deviation of the XY coordinates of the point cloud is tolerable, and is set within a certain distance range from the reference point ki that has been leveled to the same height as the reference point when measuring the reference point using a level or the like.
- the distance Lmax is about several centimeters. In Figure 8, the range of the distance Lmax from the reference point ki is shown by a dotted line.
- the deviation amount ⁇ Z of the Z-axis coordinate of the scanning point j is calculated from the Z-axis coordinate Zj of the scanning point j detected by the topographical measurement device 5 and the altitude difference ⁇ Hi of the reference point ki measured and registered in advance relative to the first reference point k1 (step S206).
- Zj is a deviation in the coordinate due to accumulated errors caused by the movement of the work machine 1. This deviation amount ⁇ Z is calculated using the following formula (2).
- Z1 is the Z-axis coordinate of the first reference point k1. Once ⁇ Z is found, it is used as the correction amount for the Z coordinate of the point cloud. Therefore, for all scanning points of the point cloud scanned by the distance measurement device 6, the Z coordinate is corrected to (Zj + ⁇ Z) (step S207).
- step S203 if the minimum distance Lij between scanning point j and reference point ki does not exist within the range of Lmax from reference point ki, that is, if no scanning point is found in the vicinity of reference point ki (step S203: NO), the correction amount is not updated, and the most recently calculated correction amount ⁇ Z is continued to be used to correct the Z coordinate to (Zj + ⁇ Z) (step S207).
- the operator since the exact XY coordinates of the point cloud are not obtained, no markers are required, and instead of the marker recognition process, a process is performed to determine whether the scanning point j is in the vicinity of the reference point ki, which reduces the CPU load compared to the marker recognition process and has little effect on the topography measurement process.
- the operator when performing Z correction, the operator only needs to operate the position and orientation of the work machine 1 so that the three-dimensional mark representing the reference point ki appears on the screen, and the coordinates are automatically corrected, so there is no need to instruct the topography measurement device 5 to specify the reference point ki or to execute correction.
- the above topography measurement process is performed until the excavation work at the construction site is completed. Then, if the reference point within the construction site is also constructed and the height is adjusted, the registration of the reference point is canceled before construction. Note that, although multiple reference points ki are used in the above embodiment, there may be only one reference point ki.
- the topography measuring device 5 before the topography measuring device 5 registers the reference points ki, the reference points ki are measured using a level, etc.
- the topography measuring device 5 measures the reference points ki and registers the reference points ki without measuring the reference points ki using a level, etc.
- FIG. 10 shows the movement of the work machine 1 when setting and registering the reference point ki.
- FIG. 11 is a flowchart showing the process of setting and registering the reference point.
- the operator stops the work machine 1.
- FIG. 10A shows a state where the first reference point k1 is on the screen of the display unit 52 and the work machine 1 is stopped.
- the operator taps the position on the screen where the first reference point k1 is displayed to register the coordinate position of the first reference point k1 (step S303).
- the surroundings of the first reference point k1 are leveled in advance to the same height as the reference height.
- the distance measurement device 6 measures the distance and direction to the position of the construction site corresponding to the tapped position. Based on the measured distance and direction information, the three-dimensional coordinates (local coordinates) of the position of the first reference point k1 in the coordinate system of the topography measuring device 5 are obtained.
- the position of the first reference point k1 in the coordinate system of the topography measuring device 5 is attitude-corrected based on the attitude information detected by the IMU 8 and associated with a global coordinate position.
- the position of the reference point k1 is registered as three-dimensional coordinates (global coordinates) XYZ coordinate values within the topography measuring device 5.
- step S306 the work machine 1 rotates the rotating body 3 rearward while remaining at the position where the first reference point k1 was registered (step S308).
- the value of i is changed from 1 to 2, and since the value of i has not reached the number n of reference points ki, the rotating body 3 is rotated rearward.
- Figure 10B shows the state in which the rotating body 3 of the work machine 1 has been rotated rearward.
- the part shown in dashed lines is the rotating body 3 and the work machine 4, and shows the state before the rotating body 3 is rotated.
- the rotating body 3 and the work machine 4 that have been rotated rearward are shown in solid lines, and the work machine 4 is heading toward the position that will be the second reference point k2.
- the work machine 4 is operated to excavate a certain range around the position to be the second reference point k2 with the bucket 43, and the ground is leveled to the same height as the first reference point k1 (step S309).
- the distance measurement device 6 can measure the difference in height with the first reference point k1, and excavation is performed to eliminate this difference in height.
- the certain range is the same width as in the first embodiment, and is the range in which the deviation of the XY coordinates of the scanning point relative to the second reference point k2 during topography measurement is acceptable.
- the excavation position displayed on the screen is tapped to register the coordinate position of the second reference point k2 (step S303).
- the coordinates of the self-position of the topography measurement device 5 remain at the origin.
- the distance measurement device 6 measures the distance and direction to the position of the construction site corresponding to the tapped position. Based on the measured distance and direction information, the self-position of the distance measurement device 6, the coordinate position of the first reference point k1, and the attitude information, the three-dimensional coordinates (global coordinates) XYZ of the second reference point k2 are calculated and registered by being stored in the memory unit 55.
- i is set to i+1 (step S304).
- the value of i is incremented by 1, it is determined whether the new i has reached the number n of reference points ki (step S305).
- step S306 it is then determined whether the rotating body 3 of the work machine 1 is in a state where it has been rotated backward (step S306).
- step S306 is determined as YES, and the rotating body 3 that has been rotated backward is returned to its original position, and the work machine 1 is moved backward (step S307).
- the work machine 1 is stopped when it passes the position of the second reference point k2 and reaches a position where the second reference point k2 appears on the screen of the display unit 52 of the topography measuring device 5.
- 10C shows a state where the rotating body 3 has been returned to its original position and the work machine 1 has been moved backward.
- the part indicated by the dashed line shows the work machine 1 in a state where the rotating body 3 has been returned to its original position
- the part indicated by the solid line shows the work machine 1 in a state where it has been moved backward.
- the distance measuring device 6 of the topography measuring device 5 measures the distance from the stopped position to the second reference point k2 and identifies the coordinates of its own position.
- the work machine is rotated backward (step S308).
- the value of i is changed from 2 to 3, and the value of i does not reach the n number of the reference point ki, so the rotating body 3 is rotated backward, and then, a certain range around the position to be the third reference point k3 is excavated to the same height as the first reference point k1 by the bucket 43 to level the ground (step S309).
- Figure 10D shows the state in which the rotating body 3 of the work machine has been rotated backward.
- the part shown in dashed lines is the rotating body 3 and the work machine 4, and shows the state before the rotating body 3 is rotated.
- the rotating body 3 and the work machine 4 that have been rotated backward are shown in solid lines, and the work machine 4 is heading toward the position to be the third reference point k3.
- the height of the second reference point k2 is the same as the height of the first reference point k1. Therefore, the distance measuring device 6 can measure the difference in height with the second reference point k2, and excavation is performed to eliminate this difference in height, so that the ground is leveled to the same height as the first reference point k1.
- the excavation position displayed on the screen is tapped to register the coordinate position of the third reference point k3 (step S303).
- the distance measuring device 6 measures the distance and direction to the position of the construction site corresponding to the tapped position. Based on the measured distance and direction information, the self-position of the distance measuring device 6, the coordinate position of the first reference point k1, and the attitude information, the three-dimensional coordinates (global coordinates) XYZ coordinate values of the third reference point k3 are calculated and registered by storing them in the memory unit 55.
- step S306 determines whether the rotating body 3 is located backward in step S306 (step S306: NO). If the rotating body 3 is not located backward in step S306 (step S306: NO), the process proceeds to step S308. When the ground around the reference point ki is leveled in step S308, the process returns to step S303 and the process from step S303 onwards is repeated. Then, in step S305, if the value of i reaches the number n of reference points ki (step S305: NO), the reference point setting and registration process ends.
- multiple other reference points ki are set in the column direction from the first reference point k1.
- the work machine 1 is moved in the row direction to set the reference point ki in the second column, and the reference points ki in the third column and onward are set in the same manner, thereby allowing multiple reference points ki to be set on the XY plane.
- the rotating body 3 may first be rotated to a position where the first reference point k1 is within the screen of the display unit 52, the self-position of the work machine 1 is confirmed, and then the rotating body 3 may be rotated in the opposite direction to set the first reference point ki in the second column.
- the rotating body 3 may be rotated to a position where the reference point ki in the previous column is within the screen of the display unit 52, the self-position of the work machine 1 is confirmed, and then the rotating body 3 may be rotated in the opposite direction to set the reference point ki in the own column.
- the travel angle of the work machine 1 may be changed around the first reference point k1, and multiple reference points ki may be set by repeatedly rotating the rotating body 3 backward and moving the work machine 1 backward for each travel angle, as in the above example.
- the revolving body 3 is rotated 180 degrees backward to register a new reference point ki, but the angle of rotation is not limited to this.
- the revolving body 3 may be rotated 90 degrees to the right or 90 degrees to the left, and then the area in front of the work implement 4 may be excavated and leveled, and then a new reference point ki may be registered.
- the work machine 1 When a new reference point ki is registered to the right, the work machine 1 returns the revolving body 3 to its original position, rotates 90 degrees to the left to change the travel angle, starts moving backward, and stops when it passes the newly registered reference point ki and reaches a position where the reference point ki appears on the screen of the display unit 52.
- the topography measuring device 5 measures the distance to the reference point ki in a stopped state and identifies its own position
- the revolving body 3 is rotated 180 degrees backward, and the surrounding area is excavated and leveled to set a new reference point ki further to the right of the reference point ki, and then the new reference point ki is registered.
- the work machine 1 returns the rotating unit 3 to its original position, rotates 90 degrees to the right to change the travel angle, then starts moving backward, passing the newly registered reference point ki and stopping when it reaches a position where the reference point appears on the screen of the display unit 52.
- the topography measuring device 5 measures the distance to the reference point ki and identifies its own position, the rotating unit 3 rotates 180 degrees backward, excavates and levels the surrounding area to set a new reference point ki further to the left of the reference point ki, and then registers the new reference point ki.
- LiDAR is used as the distance measurement device 6, but this is not limited to this and may be, for example, a stereo camera, a TOF camera, etc.
- the program executed by the processing unit 54 can be stored in a non-transitory computer-readable recording medium, distributed, and the program can be installed on a computer to configure a device that executes the above-mentioned processing.
- Examples of such recording media include CD-ROMs (Compact Disc Read-Only Memory) and DVDs (Digital Versatile Discs).
- the program may also be stored on a disk device in a server device on a communication network such as the Internet, and then downloaded to a computer, for example by superimposing it on a carrier wave.
- the above process can also be achieved by launching and executing a program while transferring it via a communications network.
- processing can also be achieved by executing all or part of the program on a server device and having a computer execute the program while sending and receiving information related to the processing via a communications network.
- the means for realizing the above-mentioned functions are not limited to software, but may be realized in part or in whole by dedicated hardware including circuits.
- the present invention can be widely applied to topographical measurement devices installed on work machines.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
Description
本発明は、地形計測装置、地形計測システム、作業機械、地形計測方法、基準点設定登録方法及びプログラムに関する。 The present invention relates to a topography measurement device, a topography measurement system, a work machine, a topography measurement method, a reference point setting and registration method, and a program.
油圧ショベルでの運転室にLiDAR(Light Detection And Ranging)とIMU(Inertial Measurement Unit:慣性計測装置)付きの地形計測装置を設置することで、油圧ショベル前方の地形をLiDARで検出して、基準高さを与えることで、基準高さに対する凹凸を画面に色分けして表示することができる。運転者は、画面の色分けされた凹凸を見て、画面上の色が同一の色となる、すなわち凹凸がなくなるように、油圧ショベルのバケットやブレードを操作して地面を掘削できる。 By installing a terrain measurement device equipped with LiDAR (Light Detection And Ranging) and an IMU (Inertial Measurement Unit) in the driver's cab of a hydraulic excavator, the terrain in front of the hydraulic excavator can be detected by LiDAR, and by providing a reference height, any unevenness relative to the reference height can be displayed in color on the screen. The operator can look at the color-coded unevenness on the screen and operate the hydraulic excavator's bucket or blade to excavate the ground until the colors on the screen become the same, i.e., the unevenness disappears.
地形計測装置は、マーカーなどから基準点を検出し、基準点に基づいて地形計測を行う。油圧ショベルは旋回や走行することで基準点から離れるが、地形計測装置が、内蔵しているジャイロセンサ、加速度センサ、画像内の特徴点の変化から装置(カメラ)の位置や傾きを推定(Visual Inertial Odometry又はSLAM:Simultaneous Localization and Mapping)して、基準点から離れても継続して正確な地形の座標を求めることができる。ただし、移動距離が大きくなる場合には推定する誤差が蓄積されて座標ずれが大きくなることが知られている。対策として、基準点から離れた位置に基準点との位置関係が既知のマーカーなどを設置して、マーカーを認識することにより位置の誤差を補正する方法がある。 The terrain measurement device detects reference points from markers and performs terrain measurements based on the reference points. The hydraulic excavator moves away from the reference point by turning and traveling, but the terrain measurement device estimates the position and tilt of the device (camera) from the built-in gyro sensor, acceleration sensor, and changes in feature points in the image (Visual Inertial Odometry, or SLAM: Simultaneous Localization and Mapping), making it possible to continue to determine accurate terrain coordinates even when it moves away from the reference point. However, it is known that if the travel distance is large, estimation errors accumulate and the coordinate deviation becomes large. As a countermeasure, a method is available in which a marker whose positional relationship with the reference point is known is installed at a position away from the reference point, and the position error is corrected by recognizing the marker.
例えば、特許文献1では、建設機械を走行させながら、建設機械に搭載されたカメラで高さ情報が必要な箇所に設置されたマーカーを撮影し、画像内のマーカーの位置座標及びカメラの位置座標を取得し、VisualSLAM技術を用いて複数のマーカー間の相対的な位置関係を取得してTIN(Triangulated Irregular Network)データを作成し、平面を特定することで3D設計データを作成することが開示されている。また、特許文献2では、走行路に沿って配置されたマーカーから読み出したマーカーの位置座標とステレオカメラで検出されたマーカーの位置座標とを紐付けて走行路の仮想マーカー情報を作成し、仮想マーカー情報を修正走行情報として、移動車両を自律走行させることが開示されている。 For example, Patent Document 1 discloses a method of photographing markers installed in locations where height information is required with a camera mounted on construction machinery while the machinery is traveling, acquiring the position coordinates of the markers in the image and the position coordinates of the camera, acquiring the relative positional relationship between multiple markers using VisualSLAM technology to create Triangulated Irregular Network (TIN) data, and identifying planes to create 3D design data. Patent Document 2 discloses a method of linking the position coordinates of markers read from markers placed along a travel path with the position coordinates of markers detected by a stereo camera to create virtual marker information for the travel path, and using the virtual marker information as corrected travel information to drive a moving vehicle autonomously.
しかしながら、この方法ではマーカーという機材を準備する必要があり、またマーカーを認識する処理が追加されるためCPU(Central Processing Unit)の負荷が多くなり、地形をリアルタイムで検出する処理に遅延が発生する問題がある。 However, this method requires the preparation of equipment called markers, and the additional process of recognizing the markers puts a heavy load on the CPU (Central Processing Unit), resulting in delays in the process of detecting the terrain in real time.
本発明は、上述の事情に鑑みてなされたものであり、地形をリアルタイムで検出する際において、マーカーを設けること及びマーカーを認識する処理を不要としてCPUの負荷を軽減して、地形をリアルタイムで検出する処理を迅速に行うことを目的とする。 The present invention was made in consideration of the above-mentioned circumstances, and aims to reduce the load on the CPU when detecting terrain in real time by eliminating the need to provide markers and perform the process of recognizing the markers, thereby speeding up the process of detecting terrain in real time.
上記目的を達成するために、本発明に係る地形計測装置は、
移動体に搭載され、施工現場内の地面の形状を計測する地形計測装置であって、
前記施工現場内の少なくとも1以上の基準点の位置情報が登録された基準点登録部と、
地面までの距離を計測する距離計測装置から取得された点群データに基づいて点群のグローバル座標系の位置を検出する位置検出部と、
前記距離計測装置が走査するエリアの測距画像を画面に表示する表示部と、
前記少なくとも1以上の基準点のうち前記エリア内に存在する基準点を検出する基準点検出部と、
前記エリア内に存在する点群の中から、前記基準点検出部により検出された前記基準点との水平距離が最小かつ所定の距離内にある走査点を抽出し、前記基準点との高さ方向の座標誤差から算出された補正値に基づいて点群の高さ方向の座標を補正する補正部と、を備える。
In order to achieve the above object, a topographical measuring device according to the present invention comprises:
A topographical measurement device that is mounted on a moving body and measures the shape of the ground at a construction site,
a reference point registration unit in which position information of at least one reference point within the construction site is registered;
a position detection unit that detects a position of the point cloud in a global coordinate system based on point cloud data acquired from a distance measurement device that measures a distance to the ground;
a display unit that displays a distance measurement image of an area scanned by the distance measurement device;
a reference point detection unit that detects a reference point that exists within the area among the at least one reference point;
a correction unit that extracts, from the point cloud present within the area, a scanning point that has a minimum horizontal distance from the reference point detected by the reference point detection unit and is within a predetermined distance, and corrects the height coordinate of the point cloud based on a correction value calculated from a height coordinate error from the reference point.
本発明によれば、点群の高さ方向の座標位置を基準点の高さ方向の座標位置に応じて補正することにより、地形をリアルタイムで検出する際において、マーカーを設けること及びマーカーを認識する処理を不要としてCPUの負荷を軽減して、地形をリアルタイムで検出する処理を迅速に行うことができる。 According to the present invention, by correcting the height coordinate position of the point cloud according to the height coordinate position of the reference point, it is possible to reduce the load on the CPU and speed up the process of detecting the terrain in real time by eliminating the need to provide markers and to process the markers.
(第1の実施の形態)
以下、本発明の第1の実施の形態に係る地形計測装置について図面を参照して詳細に説明する。
(First embodiment)
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A topographical measuring device according to a first embodiment of the present invention will now be described in detail with reference to the drawings.
本発明の第1の実施の形態に係る作業機械の構成を図1に示す。作業機械は、施工現場を移動して作業を行う移動体であり、ここでは、作業機械の例として油圧により作動する作業機を備える油圧ショベルを示す。作業機械1は、走行体2と走行体2に支持される旋回体3とを備える車両本体と、旋回体3に支持される作業機4とを備える。 The configuration of a work machine according to a first embodiment of the present invention is shown in FIG. 1. The work machine is a mobile body that moves around a construction site to perform work, and here, as an example of a work machine, a hydraulic excavator equipped with a work implement that operates hydraulically is shown. The work machine 1 comprises a vehicle body that comprises a running body 2 and a rotating body 3 supported by the running body 2, and a work implement 4 supported by the rotating body 3.
走行体2は、左右にそれぞれ履帯を備え、履帯の回転により走行する。なお、走行体2は、履帯に代えてタイヤを備えることにより走行する構成とされてもよい。旋回体3は、旋回軸を中心に走行体2上を旋回可能に支持される。 The running body 2 has tracks on both the left and right sides, and moves by rotating the tracks. Note that the running body 2 may also be configured to move by having tires instead of tracks. The rotating body 3 is supported on the running body 2 so that it can rotate around a rotation axis.
作業機4は、旋回体3に上下に回動可能に連結されたブーム41と、ブーム41に上下に回動可能に連結されたアーム42と、アーム42に上下に回動可能に連結されたバケット43とを備える。 The work machine 4 includes a boom 41 connected to the rotating body 3 so as to be rotatable up and down, an arm 42 connected to the boom 41 so as to be rotatable up and down, and a bucket 43 connected to the arm 42 so as to be rotatable up and down.
ブーム41の基端部は、旋回体3にブームピン44を介して取り付けられ、ブームシリンダ45が伸縮することによりブームピン44を中心にブーム41は回動する。アーム42の基端部は、ブーム41の先端部にアームピン46を介して取り付けられ、アームシリンダ47が伸縮することによりアームピン46を中心にアーム42は回動する。バケット43の基端部は、アーム42の先端部にバケットピン48を介して取り付けられ、バケットシリンダ49が伸縮することによりバケットピン48を中心にバケット43は回動する。 The base end of the boom 41 is attached to the rotating body 3 via a boom pin 44, and the boom 41 rotates around the boom pin 44 as the boom cylinder 45 extends and retracts. The base end of the arm 42 is attached to the tip of the boom 41 via an arm pin 46, and the arm 42 rotates around the arm pin 46 as the arm cylinder 47 extends and retracts. The base end of the bucket 43 is attached to the tip of the arm 42 via a bucket pin 48, and the bucket 43 rotates around the bucket pin 48 as the bucket cylinder 49 extends and retracts.
ブームシリンダ45は、油圧により伸縮可能な油圧シリンダである。ブームシリンダ45は、基端部が旋回体3に連結されるとともに、先端部がブーム41に連結される。アームシリンダ47は、油圧により伸縮可能な油圧シリンダである。アームシリンダ47は、基端部がブーム41に連結されるとともに、先端部がアーム42に連結される。バケットシリンダ49は、油圧により伸縮可能な油圧シリンダである。バケットシリンダ49は、基端部がアーム42に連結されるとともに、先端部がバケット43に連結される。バケット43は、先端に土砂などを掘削するための刃先と掘削した土砂を収容するための収容部とを備える。 The boom cylinder 45 is a hydraulic cylinder that can be extended and retracted by hydraulic pressure. The base end of the boom cylinder 45 is connected to the rotating body 3, and the tip end is connected to the boom 41. The arm cylinder 47 is a hydraulic cylinder that can be extended and retracted by hydraulic pressure. The base end of the arm cylinder 47 is connected to the boom 41, and the tip end is connected to the arm 42. The bucket cylinder 49 is a hydraulic cylinder that can be extended and retracted by hydraulic pressure. The base end of the bucket cylinder 49 is connected to the arm 42, and the tip end is connected to the bucket 43. The bucket 43 is equipped with a cutting edge at the tip for excavating soil and sand, and a storage section for storing the excavated soil.
また、走行体2の前方にも作業機4としてブレード50が配置されている。ブレード50は、リフトシリンダ(図示せず)が伸縮することによって、矢印に示すように、上下に回動する。 In addition, a blade 50 is disposed in front of the traveling body 2 as a working machine 4. The blade 50 rotates up and down as shown by the arrow by the extension and contraction of a lift cylinder (not shown).
旋回体3の上部には、オペレータが運転する運転室31が設けられる。運転室31には、作業機4を操作するための操作装置32、地形計測装置5が設けられる。 A cab 31 where the operator drives is provided on top of the rotating body 3. The cab 31 is equipped with an operating device 32 for operating the work machine 4 and a topography measuring device 5.
操作装置32は、操作レバーを備え、走行体2の移動操作の他、操作レバーによってブーム41の操作、アーム42の操作、バケット43の操作、ブレード50の操作、及び旋回体3の旋回操作が行われ、操作に応じて、ブームシリンダ45、アームシリンダ47、バケットシリンダ49、及びリフトシリンダが伸縮され、作業機4が駆動する。 The operating device 32 is equipped with an operating lever, and in addition to operating the travelling body 2, the operating lever is used to operate the boom 41, the arm 42, the bucket 43, the blade 50, and to rotate the rotating body 3. Depending on the operation, the boom cylinder 45, the arm cylinder 47, the bucket cylinder 49, and the lift cylinder are extended or retracted, and the work machine 4 is driven.
また、運転室31内には、作業機4及び作業対象までの距離を検出する距離計測装置6と、作業機4及び作業対象を撮像する撮像装置7が設けられ、撮像装置7は距離計測装置6に一体的に取り付けられている。 In addition, a distance measuring device 6 that detects the distance to the work machine 4 and the work target, and an imaging device 7 that captures images of the work machine 4 and the work target are provided inside the cab 31, and the imaging device 7 is attached integrally to the distance measuring device 6.
距離計測装置6は、検出面が、旋回体3の作業機4が連結された方向である運転室31の前方であって地面方向を検出できるように斜め下向きに配置されている。また、撮像装置7は、撮像面が、距離計測装置6と同様に、旋回体3の作業機4が連結された方向である運転室31の前方であって地面方向を検出できるように斜め下向きに配置されており、距離計測装置6と同じ方向を撮像する。 The distance measuring device 6 is arranged so that its detection surface faces diagonally downward so that it can detect the direction of the ground in front of the cab 31, which is the direction in which the work machine 4 of the rotating body 3 is connected. Similarly to the distance measuring device 6, the imaging device 7 is arranged so that its imaging surface faces diagonally downward so that it can detect the direction of the ground in front of the cab 31, which is the direction in which the work machine 4 of the rotating body 3 is connected, and captures images in the same direction as the distance measuring device 6.
距離計測装置6は、例えばLiDARであり、複数の測定方向に対して、順次走査させながらパルス状に発光するレーザ光を照射し、反射した散乱光が戻ってくるまでの時間と照射方向に基づき一定の計測範囲における計測対象物までの距離及び向きを計測するセンサである。距離計測装置6は、計測対象物の測定点までの距離及び向きを示す点群データを出力する。 The distance measuring device 6 is, for example, a LiDAR, and is a sensor that irradiates a pulsed laser light while scanning sequentially in multiple measurement directions, and measures the distance and direction to a measurement object within a certain measurement range based on the time it takes for the reflected scattered light to return and the irradiation direction. The distance measuring device 6 outputs point cloud data that indicates the distance and direction to a measurement point on the measurement object.
撮像装置7は、二次元配列された複数の受光素子により、撮像面を含む受光面が構成されるCCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)等のイメージセンサを備えたカメラである。 The imaging device 7 is a camera equipped with an image sensor such as a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor) whose light receiving surface, including the imaging surface, is composed of multiple light receiving elements arranged two-dimensionally.
距離計測装置6には、IMU8が設けられている。IMU8は、3方向の加速度センサ81と3軸のジャイロセンサ82とによって、距離計測装置6の加速度および角速度を計測する。IMU8は、計測結果に基づいて距離計測装置6の傾きを検出する。すなわち、グローバル座標のxG軸に対する回転を表すロール方向、グローバル座標のyG軸に対する回転を表すピッチ方向の傾斜角と、グローバル座標のzG軸に対する回転を表すヨー方向の角度変位を計測する。 The distance measurement device 6 is provided with an IMU 8. The IMU 8 measures the acceleration and angular velocity of the distance measurement device 6 using a three-directional acceleration sensor 81 and a three-axis gyro sensor 82. The IMU 8 detects the inclination of the distance measurement device 6 based on the measurement results. In other words, it measures the tilt angle in the roll direction, which represents rotation about the xG axis of the global coordinate system, the pitch direction, which represents rotation about the yG axis of the global coordinate system, and the angular displacement in the yaw direction, which represents rotation about the zG axis of the global coordinate system.
地形計測装置5、距離計測装置6、撮像装置7、IMU8は、地形計測システム10を構成する。図2は、地形計測システム10のブロック図を示す。 The topography measurement device 5, distance measurement device 6, imaging device 7, and IMU 8 constitute a topography measurement system 10. Figure 2 shows a block diagram of the topography measurement system 10.
地形計測装置5は、作業機械1の運転室31に搭載される。地形計測装置5は、距離計測装置6と、距離計測装置6に設けられたIMU8と、撮像装置7と、コントローラ51と、表示部52と、入力部53とを有する。地形計測装置5のコントローラ51、表示部52及び入力部53は、例えばタブレット型のパーソナルコンピュータで構成される。 The terrain measuring device 5 is mounted in the cab 31 of the work machine 1. The terrain measuring device 5 has a distance measuring device 6, an IMU 8 provided in the distance measuring device 6, an imaging device 7, a controller 51, a display unit 52, and an input unit 53. The controller 51, display unit 52, and input unit 53 of the terrain measuring device 5 are configured, for example, by a tablet-type personal computer.
コントローラ51は、地形計測装置5の各種の機能を実行する。コントローラ51は、処理部54と、記憶部55とを有する。記憶部55は、RAM(Random Access Memory)及びROM(Read Only Memory)を備える。 The controller 51 executes various functions of the topographical measuring device 5. The controller 51 has a processing unit 54 and a memory unit 55. The memory unit 55 has a RAM (Random Access Memory) and a ROM (Read Only Memory).
記憶部55は、基準高さのデータを記憶している。基準高さは、地面の凹凸を均す際の目標掘削面の高さである。作業機械1は、基準高さに合わせて地面を均す。基準高さは、オペレータが入力部から入力することにより記憶部55に記憶される。また記憶部55には、処理部54が実行する制御プログラムが記憶されている。 The memory unit 55 stores data on the reference height. The reference height is the height of the target excavation surface when leveling unevenness in the ground. The work machine 1 levels the ground in accordance with the reference height. The reference height is stored in the memory unit 55 by the operator inputting it from the input unit. The memory unit 55 also stores a control program executed by the processing unit 54.
処理部54は、CPUなどを含み、記憶部55に記憶されたプログラム及びデータを読み出して実行する。 The processing unit 54 includes a CPU and other components, and reads and executes the programs and data stored in the memory unit 55.
コントローラ51は、距離計測装置6から施工現場の現況地形の測距データを取得する。コントローラ51は、測距データに基づいて現況地形の測距画像を表示部に表示させる。 The controller 51 acquires distance measurement data of the current topography of the construction site from the distance measurement device 6. The controller 51 displays a distance measurement image of the current topography on the display unit based on the distance measurement data.
また、コントローラ51は、IMU8から、距離計測装置6の姿勢情報として、距離計測装置6のロール方向及びピッチ方向の傾斜角データ、ヨー方向の角度変位データを取得する。コントローラ51は、取得した傾斜角データ及び角度変位データに基づいて距離計測装置6の姿勢補正を行う。 The controller 51 also acquires from the IMU 8 tilt angle data in the roll and pitch directions of the distance measuring device 6 and angular displacement data in the yaw direction as attitude information of the distance measuring device 6. The controller 51 performs attitude correction of the distance measuring device 6 based on the acquired tilt angle data and angular displacement data.
また、コントローラ51は、撮像装置7から施工現場の現況地形の撮像画像データを取得する。コントローラ51は、撮像画像に測距画像を重畳して表示部52に表示させる。 The controller 51 also acquires captured image data of the current topography of the construction site from the imaging device 7. The controller 51 superimposes the distance measurement image on the captured image and displays it on the display unit 52.
表示部52は、LCD(Liquid Crystal Display)パネル、有機EL(Electro-Luminescence)等の表示デバイスを備える。表示部52は、各種処理の実行結果の画面、操作画面等を表示する。 The display unit 52 is equipped with a display device such as an LCD (Liquid Crystal Display) panel or an organic EL (Electro-Luminescence) panel. The display unit 52 displays screens showing the results of various processes, operation screens, etc.
入力部53は、コントローラ51に種々の指示等を入力する装置であり、表示部52の画面に直接触れて操作するタッチパネルにより構成される。なお入力部53は、ボタン、キーボード等であってもよい。 The input unit 53 is a device for inputting various instructions to the controller 51, and is configured with a touch panel that is operated by directly touching the screen of the display unit 52. The input unit 53 may also be a button, a keyboard, etc.
図3は、コントローラ51の機能ブロック図を示す。コントローラ51は、測距データ取得部511と、姿勢情報取得部512と、撮像画像取得部513と、設定部514と、測距画像生成部515と、表示制御部516と、位置検出部517と、基準点登録部518と、基準点検出部519と、補正部520とを有する。 FIG. 3 shows a functional block diagram of the controller 51. The controller 51 has a distance measurement data acquisition unit 511, an attitude information acquisition unit 512, a captured image acquisition unit 513, a setting unit 514, a distance measurement image generation unit 515, a display control unit 516, a position detection unit 517, a reference point registration unit 518, a reference point detection unit 519, and a correction unit 520.
測距データ取得部511は、距離計測装置6により計測された作業機械1の運転室31の前方の測距データである点群データを取得する。姿勢情報取得部512は、距離計測装置6の姿勢情報として、IMU8により計測された距離計測装置6のロール方向及びピッチ方向の傾斜角データ、ヨー方向の角度変位データを取得する。撮像画像取得部513は、撮像装置7により撮像された運転室31の前方の撮像画像を取得する。 The distance measurement data acquisition unit 511 acquires point cloud data, which is distance measurement data of the area in front of the cab 31 of the work machine 1 measured by the distance measurement device 6. The attitude information acquisition unit 512 acquires tilt angle data in the roll direction and pitch direction of the distance measurement device 6 measured by the IMU 8, and angular displacement data in the yaw direction, as attitude information of the distance measurement device 6. The captured image acquisition unit 513 acquires an image of the area in front of the cab 31 captured by the imaging device 7.
設定部514は、目標掘削面の高さである基準高さを設定する。測距画像生成部515は、位置検出部517から出力される位置情報と設定部514で設定された基準高さに基づき、現況地形の地形高さを示す測距画像を生成する。生成される測距画像は、設定された基準高さに対する地形の凹凸を基準高さからの差により色分けされた画像である。 The setting unit 514 sets a reference height, which is the height of the target excavation surface. The ranging image generating unit 515 generates a ranging image showing the terrain height of the current terrain based on the position information output from the position detecting unit 517 and the reference height set by the setting unit 514. The generated ranging image is an image in which the unevenness of the terrain relative to the set reference height is color-coded according to the difference from the reference height.
表示制御部516は、撮像画像取得部513により取得された運転室31の前方の撮像画像に、測距画像生成部515により生成された運転室31の前方の地形の凹凸の測距画像を重畳させて、表示部52に表示させる。 The display control unit 516 superimposes the distance measurement image of the unevenness of the terrain in front of the cab 31, generated by the distance measurement image generation unit 515, onto the captured image of the area in front of the cab 31, acquired by the captured image acquisition unit 513, and displays the superimposed image on the display unit 52.
表示制御部516が、撮像画像に測距画像を重畳させて表示部52に表示した表示画像を図4に示す。測距画像は、地形の凹凸を基準高さからの差により色分けして表示する。領域Aは、基準高さよりも標高が低い領域を示しており、例えば水色で表示される。領域Bは、基準高さと同じ高さを有する適正領域を示しており、例えば緑色で表示される。領域Cは、基準高さよりも標高が高い領域を示しており、例えば黄色で表示される。基準高さよりも標高が低い領域Aは、基準高さとするために盛土を必要とする。基準高さよりも標高が高い領域Cは、基準高さとするために切土を必要とする。したがって、オペレータは、この表示画像を確認しながら、領域Cから切土を行い、領域Aに盛土を行って、凹凸をなくすように、作業機械1のバケット43やブレード50を操作して均し作業を行うことができる。 The display image displayed on the display unit 52 by the display control unit 516 by superimposing the distance measurement image on the captured image is shown in FIG. 4. The distance measurement image displays the unevenness of the terrain in different colors according to the difference from the reference height. Area A indicates an area lower in altitude than the reference height, and is displayed in light blue, for example. Area B indicates an appropriate area having the same height as the reference height, and is displayed in green, for example. Area C indicates an area higher in altitude than the reference height, and is displayed in yellow, for example. Area A, which is lower in altitude than the reference height, requires filling to reach the reference height. Area C, which is higher in altitude than the reference height, requires cutting to reach the reference height. Therefore, while checking this display image, the operator can perform leveling work by operating the bucket 43 and blade 50 of the work machine 1 to cut earth from area C and fill earth in area A to eliminate unevenness.
位置検出部517は、測距データ取得部511により取得された点群データに基づいて地形計測装置5の座標系であるローカル座標系の三次元座標を生成する。位置検出部517は、生成されたローカル座標系の三次元座標について、姿勢情報取得部512により取得された姿勢情報に基づき、姿勢補正を行い、施工現場に設定された基準点に基づいてグローバル座標系の三次元座標に変換する。変換された位置情報は、補正部520に出力されて補正がなされ、測距画像生成部515に送られる。 The position detection unit 517 generates three-dimensional coordinates in a local coordinate system, which is the coordinate system of the topographical measurement device 5, based on the point cloud data acquired by the distance measurement data acquisition unit 511. The position detection unit 517 performs attitude correction on the three-dimensional coordinates in the generated local coordinate system based on the attitude information acquired by the attitude information acquisition unit 512, and converts them into three-dimensional coordinates in a global coordinate system based on a reference point set at the construction site. The converted position information is output to the correction unit 520 for correction, and is sent to the distance measurement image generation unit 515.
基準点登録部518は、施工現場に設定された複数の基準点の位置情報を登録する。基準点は、ローカル座標をグローバル座標に変換して登録される。また各基準点には、予めレベル等により測量された地面の高さの情報があわせて登録される。 The reference point registration unit 518 registers the position information of multiple reference points set at the construction site. The reference points are registered by converting local coordinates into global coordinates. In addition, information on the height of the ground, which has been measured in advance using a level or the like, is also registered for each reference point.
基準点検出部519は、基準点登録部518で設定された複数の基準点について、距離計測装置6により走査可能な範囲であるエリア内を走査した際に、エリア内に存在する基準点を検出する。基準点が検出されると、検出信号が表示制御部516に送られ、表示部52に表示されている地形画像上の基準点に対応する位置にマークを表示する。また、基準点検出部519の出力は、補正部520に送られる。 The reference point detection unit 519 detects reference points present within an area when scanning the area within a range that can be scanned by the distance measurement device 6, for multiple reference points set by the reference point registration unit 518. When a reference point is detected, a detection signal is sent to the display control unit 516, which displays a mark at a position corresponding to the reference point on the topographical image displayed on the display unit 52. The output of the reference point detection unit 519 is also sent to the correction unit 520.
補正部520は、基準点検出部から送られてくる検出信号に基づいて、走査エリア内の点群のうち、検出された基準点の近傍に位置する走査点を抽出し、当該基準点と走査点の高さ方向の座標差より補正値を算出し、算出された補正値に基づき点群の高さ方向の座標を補正する。補正部520は補正された点群の位置情報を測距画像生成部515に送る。高さ方向の座標値が補正されることにより、測距画像生成部515は、表示部52に表示される掘削目標の地面の高さである基準高さに対する凹凸についてずれのない測距画像を生成することができる。さらにマーカーを用いることなく補正できるので、マーカーの認識等によるCPUの負担を軽減することができる。 The correction unit 520 extracts scanning points located near the detected reference point from the point cloud within the scanning area based on the detection signal sent from the reference point detection unit, calculates a correction value from the difference in height coordinate between the reference point and the scanning point, and corrects the height coordinate of the point cloud based on the calculated correction value. The correction unit 520 sends position information of the corrected point cloud to the ranging image generation unit 515. By correcting the height coordinate value, the ranging image generation unit 515 can generate a ranging image that is free of deviations in terms of unevenness relative to the reference height, which is the ground height of the excavation target displayed on the display unit 52. Furthermore, since correction can be performed without using markers, the burden on the CPU due to marker recognition, etc. can be reduced.
続いて、地形計測装置5による地形計測について、以下に具体的に説明する。
(基準点設定)
地形計測装置5による地形測定に先立ち、施工現場内に第1の基準点k1と追加の複数の基準点である第2の基準点k2~第nの基準点knを設定し、各基準点ki(i=1~n)の高さを測定して記憶しておく。作業機械1が移動しながら地形計測を行う時、作業機械1に搭載された地形計測装置5は、施工現場に設定された基準点kiを検出することにより、測定誤差を補正する。
Next, the topography measurement by the topography measuring device 5 will be specifically described below.
(Setting the reference point)
Prior to topography measurement by the topography measuring device 5, a first reference point k1 and a plurality of additional reference points, a second reference point k2 through an nth reference point kn, are set within the construction site, and the heights of each reference point ki (i = 1 to n) are measured and stored. When the work machine 1 performs topography measurement while moving, the topography measuring device 5 mounted on the work machine 1 corrects measurement errors by detecting the reference points ki set within the construction site.
第2の基準点k2~第nの基準点knは、第1の基準点k1から離れた位置に設けられ、施工現場内において一様に配置される。例えば、図5に示すように、第1の基準点k1を中心として隣接する基準点kiが等距離に存在するように、格子状に配置される。第1の基準点k1を中心としたのは、第1の基準点k1から最も離れた施工現場内の位置までの距離が長くならないようにし、地形計測装置5による測定誤差が蓄積して座標ずれが大きくなることを防ぐためである。また、複数の基準点kiを施工現場内に一様に配置することにより、作業機械1が基準点kiから所定距離の範囲を越えて移動する毎に、距離計測装置6の走査エリア内に新たな基準点kiが少なくとも1つ現れ、その度に測定誤差が補正される。 The second reference point k2 to the nth reference point kn are provided at positions away from the first reference point k1 and are uniformly arranged within the construction site. For example, as shown in FIG. 5, they are arranged in a grid pattern so that adjacent reference points ki are equidistant from the first reference point k1. The reason for centering the first reference point k1 is to prevent the distance from the first reference point k1 to the furthest position within the construction site from becoming too long and to prevent the measurement error by the topographical measurement device 5 from accumulating and causing a large coordinate shift. In addition, by uniformly arranging multiple reference points ki within the construction site, at least one new reference point ki appears within the scanning area of the distance measurement device 6 each time the work machine 1 moves beyond a predetermined distance range from the reference point ki, and the measurement error is corrected each time.
ここで、オペレータは、設定する第1の基準点k1~第nの基準点knについて、それぞれの周囲の一定範囲を同一高さの平面に整地しておく。第1の基準点k1~第nの基準点knのそれぞれの周囲を同じ高さの平面に整地することにより、現況地形の測距画像を生成する際に、距離計測装置6により検出されるXY方向の位置座標に多少の誤差が生じても、整地された平面の範囲内であれば、同じ高さを検出することができるため、Z方向の位置座標に変化は生じない。したがって、Z方向の位置座標に誤差は生じない。 Here, the operator levels a certain area around each of the first reference point k1 to the nth reference point kn to be set, to a plane of the same height. By leveling the areas around each of the first reference point k1 to the nth reference point kn to a plane of the same height, even if there is some error in the XY direction position coordinates detected by the distance measurement device 6 when generating a distance measurement image of the current topography, the same height can be detected as long as it is within the leveled plane, so there is no change in the Z direction position coordinate. Therefore, no error occurs in the Z direction position coordinate.
オペレータは、レベル、トータルステーション等を用いて、第1の基準点k1と第2の基準点k2~第nの基準点knの位置における高さを測定して、第1の基準点k1と第2の基準点k2~第nの基準点knの高さの差を求める。例えば、図5に示すように、レベル60を用いて第1の基準点k1~第nの基準点kn(図5の例では、基準点k1~k9)の位置を計測する場合、まず、レベル60を三脚に水平であって鉛直軸を中心に回転可能に設置する。次に、周囲を平面に整地された第1の基準点k1~第nの基準点knの各位置にスタッフを立設して、スタッフに向けてレベルを回転してスタッフに設けられた目盛りを読み取ることによって、第1の基準点k1と第2の基準点k2~第nの基準点knとの高度差を求める。第1の基準点k1は、基準高さと同じになるように、予め整地しておく。あるいは、第1の基準点k1について基準高さとの差を計測してもよい。なお、ここでは、第2の基準点k2~第nの基準点knは、第1の基準点k1との高度差のみが求められているが、高度差以外に各基準点kiの三次元座標を求めてもよい。また、各基準点kiの三次元座標を計測により求めてよいし、各基準点kiの設定の際に各基準点ki間の距離及び方位を定めていれば、これらを用いて三次元座標を求めてもよい。 The operator uses a level, total station, etc. to measure the heights at the positions of the first reference point k1 and the second reference point k2 to the nth reference point kn, and determines the difference in height between the first reference point k1 and the second reference point k2 to the nth reference point kn. For example, as shown in FIG. 5, when using a level 60 to measure the positions of the first reference point k1 to the nth reference point kn (reference points k1 to k9 in the example of FIG. 5), first, the level 60 is set up on a tripod so that it is horizontal and rotatable around the vertical axis. Next, a staff is set up at each position of the first reference point k1 to the nth reference point kn, the surroundings of which are leveled to a flat plane, and the level is rotated toward the staff to read the scales on the staff, thereby determining the difference in height between the first reference point k1 and the second reference point k2 to the nth reference point kn. The first reference point k1 is leveled in advance so that it is the same as the reference height. Alternatively, the difference from the reference height of the first reference point k1 may be measured. Note that here, for the second reference point k2 to the nth reference point kn, only the altitude difference from the first reference point k1 is obtained, but the three-dimensional coordinates of each reference point ki may be obtained in addition to the altitude difference. The three-dimensional coordinates of each reference point ki may be obtained by measurement, or if the distance and direction between each reference point ki are determined when each reference point ki is set, these may be used to obtain the three-dimensional coordinates.
(基準点登録)
基準点kiの設定が終了すると、作業機械1は施工現場内を移動し、作業機械1に搭載された地形計測装置5は施工現場内を走査して、基準点kiを順次登録する。図6は、基準点kiを登録する際の作業機械1の移動を示し、図7は、基準点kiを登録する処理を示すフローチャートである。
(Registering reference points)
When the setting of the reference points ki is completed, the work machine 1 moves within the construction site, and the topographical measurement device 5 mounted on the work machine 1 scans the construction site and sequentially registers the reference points ki. Fig. 6 shows the movement of the work machine 1 when registering the reference points ki, and Fig. 7 is a flowchart showing the process of registering the reference points ki.
図7に示すように、基準点登録処理に際して、最初に、i=1に設定する(ステップS101)。これにより、第1の基準点k1の登録準備が行われる。オペレータは作業機械1を操作して、第1の基準点k1が地形計測装置5の表示部52の画面上に表示される位置に作業機械1を移動する(ステップS102)。第1の基準点k1が表示部52の画面内に入ると、オペレータは、作業機械1を停止して、第1の基準点k1が表示されている画面上の位置をタップして第1の基準点k1の座標位置を登録する(ステップS103)。距離計測装置6は、タップされた位置に対応する施工現場内の位置までの距離及び向きを計測する。計測された距離及び向きの情報に基づいて、地形計測装置5の座標系における第1の基準点k1の位置の三次元座標(ローカル座標)が求められる。求められた地形計測装置5の座標系における第1の基準点k1の位置は、IMU8により検出された姿勢情報に基づいて姿勢補正され、グローバル座標位置に対応付けされる。基準点の位置は地形計測装置内の三次元座標(グローバル座標)XYZの座標値として登録され、記憶部55に記憶される。 As shown in FIG. 7, in the reference point registration process, i=1 is set first (step S101). This prepares for the registration of the first reference point k1. The operator operates the work machine 1 to move the work machine 1 to a position where the first reference point k1 is displayed on the screen of the display unit 52 of the topography measuring device 5 (step S102). When the first reference point k1 enters the screen of the display unit 52, the operator stops the work machine 1 and taps the position on the screen where the first reference point k1 is displayed to register the coordinate position of the first reference point k1 (step S103). The distance measuring device 6 measures the distance and direction to the position in the construction site corresponding to the tapped position. Based on the measured distance and direction information, the three-dimensional coordinates (local coordinates) of the position of the first reference point k1 in the coordinate system of the topography measuring device 5 are obtained. The obtained position of the first reference point k1 in the coordinate system of the topography measuring device 5 is attitude-corrected based on the attitude information detected by the IMU 8 and is associated with the global coordinate position. The position of the reference point is registered as three-dimensional coordinates (global coordinates) XYZ coordinate values within the topographical measurement device and stored in the memory unit 55.
次に、前述した基準点設定においてレベル等により事前に測定された第1の基準点k1と基準点kiの高さの差ΔHiを登録し、記憶部55に記憶する(ステップS104)。ここでは、i=1であるので、ΔHi=0である。 Next, the height difference ΔHi between the first reference point k1 and the reference point ki, which was measured in advance using a level or the like in the above-mentioned reference point setting, is registered and stored in the memory unit 55 (step S104). Here, since i=1, ΔHi=0.
第1の基準点k1の登録が終了すると、地形計測装置5のコントローラ51は、基準点kiの値をi=i+1とする(ステップS105)。ここでは、i=0+1=1とする。次に、iの値が1だけ増加されると、新たなiが設定された基準点kiの数nに達したか否か判断される(ステップS106)。iの値が基準点kiの数nに達していない場合(ステップS106:YES)、ステップS102に戻り、オペレータは、新たな基準点kiが表示部52の画面に入る位置へ作業機械1を移動する。ここでは、iの値が0から1に変更され、iの値は基準点の数nに達していないので、ステップS102に戻り、オペレータは、第1の基準点k1から新たな基準点である第2の基準点k2が表示部の画面に入る位置へ作業機械1を移動する。 When the registration of the first reference point k1 is completed, the controller 51 of the topography measuring device 5 sets the value of the reference point ki to i = i + 1 (step S105). Here, i = 0 + 1 = 1. Next, when the value of i is incremented by 1, it is determined whether the new i reaches the number n of the set reference points ki (step S106). If the value of i has not reached the number n of the reference points ki (step S106: YES), the process returns to step S102, and the operator moves the work machine 1 to a position where the new reference point ki is included on the screen of the display unit 52. Here, the value of i is changed from 0 to 1, and the value of i has not reached the number n of the reference points, so the process returns to step S102, and the operator moves the work machine 1 from the first reference point k1 to a position where the second reference point k2, which is the new reference point, is included on the screen of the display unit.
作業機械1が第1の基準点k1から第2の基準点k2へ移動を開始すると、距離計測装置6は、走査を再開し、検出範囲内において点群データを生成する。コントローラ51は、今回取得されたフレームの点群データとその前に取得されたフレームの点群データの特徴点についてマッチングを行い、マッチングの結果に基づいて距離計測装置6の移動量及び移動方向を検出する。検出された移動量及び移動方向を積算することにより地形計測装置5の自己位置が更新される。なお、加速度センサ81とジャイロセンサ82の検出信号に基づいて移動量及び移動方向を求めて自己位置を更新してもよい。 When the work machine 1 starts moving from the first reference point k1 to the second reference point k2, the distance measurement device 6 resumes scanning and generates point cloud data within the detection range. The controller 51 matches the feature points of the point cloud data of the currently acquired frame with the point cloud data of the previously acquired frame, and detects the amount of movement and direction of movement of the distance measurement device 6 based on the matching results. The self-position of the topography measurement device 5 is updated by accumulating the detected amount of movement and direction of movement. Note that the amount of movement and direction of movement may be obtained based on the detection signals of the acceleration sensor 81 and the gyro sensor 82, and the self-position may be updated.
第2の基準点k2が表示部52の画面内に入ると、オペレータは、作業機械1を停止して、第2の基準点k2が表示されている画面上の位置をタップすることにより、第2の基準点k2の座標位置を登録する(ステップS103)。距離計測装置6は、タップされた位置に対応する施工現場内の位置までの距離及び向きを計測する。計測された距離及び向きの情報、地形計測装置5の自己位置、第1の基準点k1の座標位置、姿勢情報に基づいて、第2の基準点k2の三次元座標(グローバル座標)XYZの座標値が求められ、記憶部55に記憶されることによって登録される。さらに、コントローラ51は、基準点設定においてレベル等により事前に測定された第1の基準点k1と第2の基準点k2の高さの差ΔHiを記憶部55に記憶することによって登録する(ステップS104)。 When the second reference point k2 enters the screen of the display unit 52, the operator stops the work machine 1 and taps the position on the screen where the second reference point k2 is displayed, thereby registering the coordinate position of the second reference point k2 (step S103). The distance measurement device 6 measures the distance and direction to the position in the construction site corresponding to the tapped position. Based on the measured distance and direction information, the self-position of the topographical measurement device 5, the coordinate position of the first reference point k1, and the attitude information, the three-dimensional coordinate values (global coordinates) XYZ of the second reference point k2 are calculated and registered by storing them in the memory unit 55. Furthermore, the controller 51 registers the height difference ΔHi between the first reference point k1 and the second reference point k2, which was measured in advance using a level or the like when setting the reference points, by storing it in the memory unit 55 (step S104).
第2の基準点k2の登録が終了すると、コントローラ51は、iの値を1増加して(ステップS105)、iが基準点kiの数nに達したか否か判断する(ステップS106)。iの値が基準点の数nに達していない場合(ステップS105:YES)、ステップS102に戻り、ステップ102以降の処理を繰り返す。iの値が基準点の数nに達した場合(ステップS105:NO)、基準点登録処理を終了する。 When the registration of the second reference point k2 is completed, the controller 51 increments the value of i by 1 (step S105) and determines whether i has reached the number n of reference points ki (step S106). If the value of i has not reached the number n of reference points (step S105: YES), the process returns to step S102 and repeats the processes from step S102 onwards. If the value of i has reached the number n of reference points (step S105: NO), the reference point registration process ends.
(地形計測)
地形計測装置5への基準点kiの登録が終了すると、地面掘削作業時における地形計測の準備が完了し、実際に地面掘削作業が行われる間、地形計測装置5は地形計測を実行し、表示部52に測距画像を表示する。
(topography)
Once the registration of the reference points ki in the topography measuring device 5 is completed, preparations for topography measurement during ground excavation work are completed, and while the ground excavation work is actually being performed, the topography measuring device 5 executes topography measurement and displays a distance measurement image on the display unit 52.
掘削作業は、作業機械1を移動して地形計測装置5が第1の基準点k1を検出してから開始される。地形計測装置5は、第1の基準点k1の位置を基準として姿勢補正された測距データに基づき、現況地形の地形高さを示す測距画像を生成する。作業機械1は、掘削作業箇所に移動することにより第1の基準点k1から離れるが、距離計測装置6から得られる点群データの特徴点の変化を求めて第1の基準点k1の位置座標に積算することにより継続して地形の座標が求められる。ここで、移動距離が大きくなる場合に誤差が蓄積されて座標ずれが大きくなることを防止するために、第1の基準点k1から離れた位置に基準点kiとの位置関係が既知のマーカーなどを設置して、マーカーを認識して、認識されたマーカーに基づき位置の誤差を補正することが考えられる。ただし、実際の施工で、地形計測装置5に求められるのは地形の高さの精度であり、水平面上(XY)の精度は高さほど重要ではない。そこで本実施の形態における地形計測では、XYの位置ずれは無視して高さのみ補正する。これにより、マーカーを認識するためのCPUの負荷を削減することができる。 The excavation work is started after the work machine 1 is moved and the topography measuring device 5 detects the first reference point k1. The topography measuring device 5 generates a distance measurement image showing the topography height of the current topography based on the distance measurement data whose attitude is corrected based on the position of the first reference point k1. The work machine 1 moves to the excavation work site and moves away from the first reference point k1, but the coordinates of the topography are continuously obtained by obtaining changes in the characteristic points of the point cloud data obtained from the distance measuring device 6 and integrating them with the position coordinates of the first reference point k1. Here, in order to prevent errors from accumulating and the coordinate shift from increasing when the moving distance is large, it is possible to install a marker whose positional relationship with the reference point ki is known at a position away from the first reference point k1, recognize the marker, and correct the position error based on the recognized marker. However, in actual construction, what is required of the topography measuring device 5 is the accuracy of the topography height, and the accuracy on the horizontal plane (XY) is not as important as the height. Therefore, in the topography measurement in this embodiment, the XY position shift is ignored and only the height is corrected. This reduces the CPU load required to recognize markers.
図8は、地形計測時に距離計測装置6が検出する点群位置と基準点kiの位置を示し、図9は、地形計測時において点群の高さ方向の座標位置であるZ位置を補正する処理を示すフローチャートである。図9に示すように、地形計測装置5の距離計測装置6が、検出可能なエリアを走査して点群データを取得して点群の座標(Xj,Yj,Zj)を作成する(ステップS201)。このときの点群のそれぞれの走査点の位置が図8に黒の四角で示されており、走査エリア内には基準点kiが存在している。距離計測装置6が照射可能なエリアを走査すると、コントローラ51は、当該エリア内に基準点kiが存在するか否か、すなわち地形計測装置5の表示部52の画面内に基準点kiが入っているか否かが判断される(ステップS202)。当該エリア内に基準点kiが存在している場合(ステップS202:YES)、コントローラ51は、表示部52の画面上にAR(Augmented Reality:拡張現実)で例えば円錐等の立体のマークを表示して(ステップS203)、オペレータに基準点kiの位置がわかるようにする。当該エリア内に基準点kiが存在していない場合(ステップS202:NO)、ステップS201に戻り、距離計測装置6は引き続き照射可能なエリアを走査する。 8 shows the point cloud positions and the position of the reference point ki detected by the distance measuring device 6 during topography measurement, and FIG. 9 is a flow chart showing the process of correcting the Z position, which is the coordinate position of the point cloud in the height direction, during topography measurement. As shown in FIG. 9, the distance measuring device 6 of the topography measuring device 5 scans a detectable area to obtain point cloud data and create the coordinates (Xj, Yj, Zj) of the point cloud (step S201). The positions of each scanning point of the point cloud at this time are shown by black squares in FIG. 8, and the reference point ki exists within the scanning area. When the distance measuring device 6 scans an area that can be irradiated, the controller 51 determines whether or not the reference point ki exists within the area, i.e., whether or not the reference point ki is within the screen of the display unit 52 of the topography measuring device 5 (step S202). If the reference point ki is present within the area (step S202: YES), the controller 51 displays a three-dimensional mark, such as a cone, on the screen of the display unit 52 using AR (Augmented Reality) (step S203) to enable the operator to determine the position of the reference point ki. If the reference point ki is not present within the area (step S202: NO), the process returns to step S201, and the distance measurement device 6 continues to scan the area that can be irradiated.
次に、点群のXY座標と距離計測装置6の検出範囲内に存在する基準点kiのXY座標との距離Lijを算出し、距離Lijが最小となる走査点jと基準点kiの組み合わせを求める(ステップS204)。距離Lijは、距離計測装置で走査した点群の座標(Xj,Yj,Zj)と先に登録した基準点kiの座標(Xi,Yi,Zi)のXY座標から以下の式(1)により計算される。 Next, the distance Lij between the XY coordinates of the point cloud and the XY coordinates of the reference point ki that exists within the detection range of the distance measurement device 6 is calculated, and the combination of the scanning point j and the reference point ki that minimizes the distance Lij is determined (step S204). The distance Lij is calculated from the coordinates (Xj, Yj, Zj) of the point cloud scanned by the distance measurement device and the XY coordinates of the coordinates (Xi, Yi, Zi) of the reference point ki that was previously registered, using the following formula (1).
求められた走査点jと基準点kiの間の最小距離Lijは、予め定められた距離の値Lmaxと比較され、走査点jが基準点kiの近傍に存在するか否かが判断される(ステップS205)。ここで、距離Lmaxは、点群のXY座標のずれを許容可能な範囲の最大値であり、少なくともレベル等による基準点測定の際に基準点の高さと同一の高さに整地した基準点kiから一定距離の範囲内に設定される。好ましくは、距離Lmaxは、数cm程度である。図8において、基準点kiから距離Lmaxの範囲が点線で示されている。走査点jと基準点kiの間の最小の距離Lijが基準点kiからLmaxの範囲内であるとき(ステップS205:YES)、地形計測装置5で検出した走査点jのZ軸の座標Zjと予め測定して登録された基準点kiの第1の基準点k1に対する高度差ΔHiから走査点jのZ軸の座標のずれ量であるΔZを計算する(ステップS206)。Zjは、作業機械1の移動により、誤差が蓄積されて座標にずれが生じている。このずれ量ΔZは以下の式(2)によって求められる。 The minimum distance Lij between the obtained scanning point j and the reference point ki is compared with a predetermined distance value Lmax to determine whether the scanning point j is in the vicinity of the reference point ki (step S205). Here, the distance Lmax is the maximum value of the range in which the deviation of the XY coordinates of the point cloud is tolerable, and is set within a certain distance range from the reference point ki that has been leveled to the same height as the reference point when measuring the reference point using a level or the like. Preferably, the distance Lmax is about several centimeters. In Figure 8, the range of the distance Lmax from the reference point ki is shown by a dotted line. When the minimum distance Lij between the scanning point j and the reference point ki is within the range of Lmax from the reference point ki (step S205: YES), the deviation amount ΔZ of the Z-axis coordinate of the scanning point j is calculated from the Z-axis coordinate Zj of the scanning point j detected by the topographical measurement device 5 and the altitude difference ΔHi of the reference point ki measured and registered in advance relative to the first reference point k1 (step S206). Zj is a deviation in the coordinate due to accumulated errors caused by the movement of the work machine 1. This deviation amount ΔZ is calculated using the following formula (2).
ΔZ=ΔHi-(Zj-Z1) …(2) ΔZ=ΔHi-(Zj-Z1)...(2)
ここで、Z1は、第1の基準点k1のZ軸の座標である。ΔZが求められると、これを点群のZ座標の補正量とする。したがって、距離計測装置6で走査した点群のすべての走査点について、Z座標を(Zj+ΔZ)に補正する(ステップS207)。これに対して、ステップS203において、走査点jと基準点kiの間の最小の距離Lijが基準点kiからLmaxの範囲内に存在しない、すなわち基準点kiの近傍に走査点が見つからない場合(ステップS203:NO)、補正量を更新せず、直近に算出された補正量ΔZを継続して用いて、Z座標を(Zj+ΔZ)に補正する(ステップS207)。 Here, Z1 is the Z-axis coordinate of the first reference point k1. Once ΔZ is found, it is used as the correction amount for the Z coordinate of the point cloud. Therefore, for all scanning points of the point cloud scanned by the distance measurement device 6, the Z coordinate is corrected to (Zj + ΔZ) (step S207). On the other hand, in step S203, if the minimum distance Lij between scanning point j and reference point ki does not exist within the range of Lmax from reference point ki, that is, if no scanning point is found in the vicinity of reference point ki (step S203: NO), the correction amount is not updated, and the most recently calculated correction amount ΔZ is continued to be used to correct the Z coordinate to (Zj + ΔZ) (step S207).
上記実施の形態では、点群の正確なXY座標を求めないためマーカーは不要であり、マーカーの認識処理に代えて走査点jが基準点kiの近傍にあるか否かを判定する処理を行うことにより、マーカーの認識処理に比べCPUの負荷が軽く、地形計測処理に影響は少ない。また、Z補正する場合において、オペレータは画面に基準点kiを表す立体マークが入るように作業機械1の位置や向きを操作するだけで座標は自動的に補正されるので、基準点kiの指示や補正の実行を地形計測装置5に指示する必要がない。以上のように、施工現場の掘削作業が完了するまで、上記の地形計測処理が行われる。そして、最終的に施工現場内の基準点も施工して高さを調整する場合は、施工前に当該基準点の登録をキャンセルする。なお、上記実施の形態では、基準点kiを複数としたが、基準点kiは1つであってもよい。 In the above embodiment, since the exact XY coordinates of the point cloud are not obtained, no markers are required, and instead of the marker recognition process, a process is performed to determine whether the scanning point j is in the vicinity of the reference point ki, which reduces the CPU load compared to the marker recognition process and has little effect on the topography measurement process. In addition, when performing Z correction, the operator only needs to operate the position and orientation of the work machine 1 so that the three-dimensional mark representing the reference point ki appears on the screen, and the coordinates are automatically corrected, so there is no need to instruct the topography measurement device 5 to specify the reference point ki or to execute correction. As described above, the above topography measurement process is performed until the excavation work at the construction site is completed. Then, if the reference point within the construction site is also constructed and the height is adjusted, the registration of the reference point is canceled before construction. Note that, although multiple reference points ki are used in the above embodiment, there may be only one reference point ki.
(第2の実施の形態)
上記の実施の形態では、地形計測装置5が基準点kiを登録する前に、レベル等を用いて基準点kiの測定を行った。第2の実施形態では、レベル等を用いて基準点kiの測定を行うことなく、地形計測装置5を用いて基準点kiを測定するとともに、基準点kiを登録する。
Second Embodiment
In the above embodiment, before the topography measuring device 5 registers the reference points ki, the reference points ki are measured using a level, etc. In the second embodiment, the topography measuring device 5 measures the reference points ki and registers the reference points ki without measuring the reference points ki using a level, etc.
図10は、基準点kiを設定及び登録する際の作業機械1の移動を示している。また、図11は、基準点を設定及び登録する処理を示すフローチャートである。まず、i=1に設定し(ステップS301)、第1の基準点k1が表示部52の画面に入る位置、すなわち、距離計測装置6の走査エリアに存在する位置に作業機械1を移動する(ステップS302)。第1の基準点k1が表示部52の画面内に入ると、オペレータは、作業機械1を停止する。図10Aは、第1の基準点k1が表示部52の画面内に入り、作業機械1が停止された状態を示している。この状態で、オペレータは、第1の基準点k1が表示されている画面上の位置をタップして第1の基準点k1の座標位置を登録する(ステップS303)。ここで、第1の基準点k1の周囲は予め基準高さと同じ高さに整地しておく。距離計測装置6は、タップされた位置に対応する施工現場の位置までの距離及び向きを計測する。計測された距離及び向きの情報に基づいて、地形計測装置5の座標系における第1の基準点k1の位置の三次元座標(ローカル座標)が求められる。求められた地形計測装置5の座標系における第1の基準点k1の位置は、IMU8により検出された姿勢情報に基づいて姿勢補正され、グローバル座標位置に対応付けされる。基準点k1の位置は地形計測装置5内の三次元座標(グローバル座標)XYZの座標値として登録される。 FIG. 10 shows the movement of the work machine 1 when setting and registering the reference point ki. Also, FIG. 11 is a flowchart showing the process of setting and registering the reference point. First, set i=1 (step S301), and move the work machine 1 to a position where the first reference point k1 is on the screen of the display unit 52, that is, a position that exists in the scanning area of the distance measurement device 6 (step S302). When the first reference point k1 is on the screen of the display unit 52, the operator stops the work machine 1. FIG. 10A shows a state where the first reference point k1 is on the screen of the display unit 52 and the work machine 1 is stopped. In this state, the operator taps the position on the screen where the first reference point k1 is displayed to register the coordinate position of the first reference point k1 (step S303). Here, the surroundings of the first reference point k1 are leveled in advance to the same height as the reference height. The distance measurement device 6 measures the distance and direction to the position of the construction site corresponding to the tapped position. Based on the measured distance and direction information, the three-dimensional coordinates (local coordinates) of the position of the first reference point k1 in the coordinate system of the topography measuring device 5 are obtained. The position of the first reference point k1 in the coordinate system of the topography measuring device 5 is attitude-corrected based on the attitude information detected by the IMU 8 and associated with a global coordinate position. The position of the reference point k1 is registered as three-dimensional coordinates (global coordinates) XYZ coordinate values within the topography measuring device 5.
第1の基準点k1の登録が終了すると、i=i+1とする(ステップS304)。ここでは、i=1+1=2とする。iの値が1増加されると、新たなiが基準点kiの数nに達したか否か判断される(ステップS305)。iの値が基準点kiの数nに達していない場合(ステップS305:YES)、続いて、作業機械1の旋回体3が後方に旋回した状態に位置しているか否か判断される(ステップS306)。後方に位置しているか否かの判断は、例えば、コントローラ51がIMU8の検出信号あるいは作業機械1から取得した旋回体3の旋回位置に関する情報に基づいて判断する。 When registration of the first reference point k1 is completed, i = i + 1 is set (step S304). Here, i = 1 + 1 = 2. When the value of i is incremented by 1, it is determined whether the new i has reached the number n of reference points ki (step S305). If the value of i has not reached the number n of reference points ki (step S305: YES), it is then determined whether the rotating body 3 of the work machine 1 is positioned in a state where it has been rotated backward (step S306). The determination of whether it is positioned backward is made, for example, based on the detection signal of the IMU 8 or information regarding the rotation position of the rotating body 3 obtained by the controller 51 from the work machine 1.
旋回体3が後方に位置していない場合(ステップS306:NO)、作業機械1は、第1の基準点k1を登録した位置に止まった状態のまま、旋回体3を後方に旋回する(ステップS308)。ここでは、iの値が1から2に変更され、iの値は基準点kiの数nに達していないので、旋回体3を後方に旋回する。図10Bは、作業機械1の旋回体3を後方に旋回した状態を示している。破線で示されている部分は、旋回体3及び作業機4であり、旋回体3が旋回される前の状態を示している。後方に旋回した旋回体3及び作業機4は実線で示されており、作業機4は、第2の基準点k2とする位置に向かっている。 If the rotating body 3 is not located rearward (step S306: NO), the work machine 1 rotates the rotating body 3 rearward while remaining at the position where the first reference point k1 was registered (step S308). Here, the value of i is changed from 1 to 2, and since the value of i has not reached the number n of reference points ki, the rotating body 3 is rotated rearward. Figure 10B shows the state in which the rotating body 3 of the work machine 1 has been rotated rearward. The part shown in dashed lines is the rotating body 3 and the work machine 4, and shows the state before the rotating body 3 is rotated. The rotating body 3 and the work machine 4 that have been rotated rearward are shown in solid lines, and the work machine 4 is heading toward the position that will be the second reference point k2.
続いて、作業機4を操作して第2の基準点k2としたい位置の周囲の一定の範囲をバケット43により掘削して第1の基準点k1と同じ高さに整地する(ステップS309)。ここで、作業機械1は停止した状態のままなので、地形計測装置5の自己位置及び姿勢は変わらない。したがって、距離計測装置6により第1の基準点k1との高さの差を計測可能であり、この高さの差をなくすように掘削が行われる。一定範囲とは、第1の実施の形態と同様の広さであり、地形計測の際に走査点の第2の基準点k2に対するXY座標のずれが許容可能な範囲である。掘削が完了すると、画面上に表示されている掘削位置をタップして第2の基準点k2の座標位置を登録する(ステップS303)。前述したように、作業機械1は停止した状態のままなので、地形計測装置5の自己位置の座標は原点のままとされる。距離計測装置6は、タップされた位置に対応する施工現場の位置までの距離及び向きを計測する。計測された距離及び向きの情報、距離計測装置6の自己位置、第1の基準点k1の座標位置、姿勢情報に基づいて、第2の基準点k2の三次元座標(グローバル座標)XYZの座標値が求められ、記憶部55に記憶されることによって登録される。 Then, the work machine 4 is operated to excavate a certain range around the position to be the second reference point k2 with the bucket 43, and the ground is leveled to the same height as the first reference point k1 (step S309). Here, since the work machine 1 remains stopped, the self-position and attitude of the topography measurement device 5 do not change. Therefore, the distance measurement device 6 can measure the difference in height with the first reference point k1, and excavation is performed to eliminate this difference in height. The certain range is the same width as in the first embodiment, and is the range in which the deviation of the XY coordinates of the scanning point relative to the second reference point k2 during topography measurement is acceptable. When excavation is completed, the excavation position displayed on the screen is tapped to register the coordinate position of the second reference point k2 (step S303). As described above, since the work machine 1 remains stopped, the coordinates of the self-position of the topography measurement device 5 remain at the origin. The distance measurement device 6 measures the distance and direction to the position of the construction site corresponding to the tapped position. Based on the measured distance and direction information, the self-position of the distance measurement device 6, the coordinate position of the first reference point k1, and the attitude information, the three-dimensional coordinates (global coordinates) XYZ of the second reference point k2 are calculated and registered by being stored in the memory unit 55.
第2の基準点k2の登録が終了すると、i=i+1とする(ステップS304)。ここでは、i=2+1=3とする。iの値が1増加されると、新たなiが基準点kiの数nに達したか否か判断される(ステップS305)。 When the registration of the second reference point k2 is completed, i is set to i+1 (step S304). Here, i=2+1=3. When the value of i is incremented by 1, it is determined whether the new i has reached the number n of reference points ki (step S305).
iの値が基準点の数に達していない場合(ステップS305:YES)、続いて、作業機械1の旋回体3が後方に旋回した状態に位置しているか否か判断される(ステップS306)。ここでは、旋回体3が後方に位置している状態であるので、ステップS306はYESと判断され、後方に旋回されていた旋回体3を元の位置に戻し、作業機械1を後方に移動させる(ステップS307)。作業機械1は、第2の基準点k2の位置を越えて、地形計測装置5の表示部52の画面に第2の基準点k2が入る位置に達すると停止される。図10Cは、旋回体3を元の位置に戻し、作業機械1を後方に移動した状態を示している。破線で示された部分は、旋回体3を元の位置に戻した状態の作業機械1を示しており、実線で示された部分は後方に移動した状態の作業機械1を示している。 If the value of i does not reach the number of reference points (step S305: YES), it is then determined whether the rotating body 3 of the work machine 1 is in a state where it has been rotated backward (step S306). Here, since the rotating body 3 is in a state where it is in a backward position, step S306 is determined as YES, and the rotating body 3 that has been rotated backward is returned to its original position, and the work machine 1 is moved backward (step S307). The work machine 1 is stopped when it passes the position of the second reference point k2 and reaches a position where the second reference point k2 appears on the screen of the display unit 52 of the topography measuring device 5. FIG. 10C shows a state where the rotating body 3 has been returned to its original position and the work machine 1 has been moved backward. The part indicated by the dashed line shows the work machine 1 in a state where the rotating body 3 has been returned to its original position, and the part indicated by the solid line shows the work machine 1 in a state where it has been moved backward.
地形計測装置5の距離計測装置6は、停止した位置から第2の基準点k2までの距離を計測し、自己位置の座標を特定する。次に、作業機を後方に旋回する(ステップS308)。ここでは、iの値が2から3に変更され、iの値は基準点kiのn数に達していないので、旋回体3を後方に旋回し、続いて、バケット43により第3の基準点k3としたい位置の周囲の一定範囲を第1の基準点k1と同じ高さに掘削して整地する(ステップS309)。図10Dは、作業機械の旋回体3を後方に旋回した状態を示している。破線で示されている部分は、旋回体3及び作業機4であり、旋回体3が旋回される前の状態を示している。後方に旋回した旋回体3及び作業機4は実線で示されており、作業機4は、第3の基準点k3とする位置に向かっている。ここで、作業機械1は停止した状態のままなので、地形計測装置5の自己位置及び姿勢は変わらない。また、第2の基準点k2の高さは、第1の基準点k1の高さと同じである。したがって、距離計測装置6により第2の基準点k2との高さの差を計測可能であり、この高さの差をなくすように掘削が行われることにより、第1の基準点k1と同じ高さに整地される。掘削が完了すると、画面上に表示されている掘削位置をタップして第3の基準点k3の座標位置を登録する(ステップS303)。距離計測装置6は、タップされた位置に対応する施工現場の位置までの距離及び向きを計測する。計測された距離及び向きの情報、距離計測装置6の自己位置、第1の基準点k1の座標位置、姿勢情報に基づいて、第3の基準点k3の三次元座標(グローバル座標)XYZの座標値が求められ、記憶部55に記憶されることによって登録される。 The distance measuring device 6 of the topography measuring device 5 measures the distance from the stopped position to the second reference point k2 and identifies the coordinates of its own position. Next, the work machine is rotated backward (step S308). Here, the value of i is changed from 2 to 3, and the value of i does not reach the n number of the reference point ki, so the rotating body 3 is rotated backward, and then, a certain range around the position to be the third reference point k3 is excavated to the same height as the first reference point k1 by the bucket 43 to level the ground (step S309). Figure 10D shows the state in which the rotating body 3 of the work machine has been rotated backward. The part shown in dashed lines is the rotating body 3 and the work machine 4, and shows the state before the rotating body 3 is rotated. The rotating body 3 and the work machine 4 that have been rotated backward are shown in solid lines, and the work machine 4 is heading toward the position to be the third reference point k3. Here, since the work machine 1 remains stopped, the self-position and attitude of the topography measuring device 5 do not change. The height of the second reference point k2 is the same as the height of the first reference point k1. Therefore, the distance measuring device 6 can measure the difference in height with the second reference point k2, and excavation is performed to eliminate this difference in height, so that the ground is leveled to the same height as the first reference point k1. When excavation is completed, the excavation position displayed on the screen is tapped to register the coordinate position of the third reference point k3 (step S303). The distance measuring device 6 measures the distance and direction to the position of the construction site corresponding to the tapped position. Based on the measured distance and direction information, the self-position of the distance measuring device 6, the coordinate position of the first reference point k1, and the attitude information, the three-dimensional coordinates (global coordinates) XYZ coordinate values of the third reference point k3 are calculated and registered by storing them in the memory unit 55.
第3の基準点k3の登録が終了すると、i=i+1とする(ステップS304)。iの値が1増加されると、新たなiが基準点kiの数nに達したか否か判断される(ステップS305)。iの値が基準点の数に達していない場合(ステップS305:YES)、続いて、作業機械1の旋回体3が後方に旋回した状態に位置しているか否か判断される(ステップS306)。後方に位置している場合には(ステップS306:YES)、後方に旋回されていた旋回体3を元の位置に戻し、作業機械1を後方に移動して(ステップS307)、ステップS308に移行する。また、ステップS306において、旋回体3が後方に位置していない場合には(ステップS306:NO)、ステップS308に移行する。ステップS308において、基準点kiの周囲の整地が行われると、ステップS303に戻り、ステップS303以降の処理を繰り返す。そして、ステップS305において、iの値が基準点kiの数nに達した場合(ステップS305:NO)、基準点設定及び登録処理を終了する。 When the registration of the third reference point k3 is completed, i = i + 1 is set (step S304). When the value of i is incremented by 1, it is determined whether the new i has reached the number n of reference points ki (step S305). If the value of i has not reached the number of reference points (step S305: YES), it is then determined whether the rotating body 3 of the work machine 1 is located in a state of being rotated backward (step S306). If it is located backward (step S306: YES), the rotating body 3 that has been rotated backward is returned to its original position, the work machine 1 is moved backward (step S307), and the process proceeds to step S308. Also, if the rotating body 3 is not located backward in step S306 (step S306: NO), the process proceeds to step S308. When the ground around the reference point ki is leveled in step S308, the process returns to step S303 and the process from step S303 onwards is repeated. Then, in step S305, if the value of i reaches the number n of reference points ki (step S305: NO), the reference point setting and registration process ends.
上述した例では、第1の基準点k1から列方向に複数の他の基準点kiを設定することを示したが、1列目の基準点kiが設定された後、作業機械1を行方向に移動させ、2列目の基準点kiの設定を行い、以後同様に3列目以降の基準点kiの設定を行うことにより、XY平面上に複数の基準点kiを設定することができる。ここで、2列目の基準点kiの設定に際して、最初に、第1の基準点k1が表示部52の画面内に入る位置に旋回体3を旋回して作業機械1の自己位置を確認後、旋回体3を逆方向に旋回して2列目の最初の基準点kiを設定するようにしてもよい。これにより、第1の基準点k1と同じ高さに整地することができる。3列目以降については、前列の基準点kiが表示部52の画面内に入る位置に旋回体3を旋回して作業機械1の自己位置を確認後、旋回体3を逆方向に旋回して自列の基準点kiを設定するようにしてもよい。 In the above example, multiple other reference points ki are set in the column direction from the first reference point k1. After the reference point ki in the first column is set, the work machine 1 is moved in the row direction to set the reference point ki in the second column, and the reference points ki in the third column and onward are set in the same manner, thereby allowing multiple reference points ki to be set on the XY plane. Here, when setting the reference point ki in the second column, the rotating body 3 may first be rotated to a position where the first reference point k1 is within the screen of the display unit 52, the self-position of the work machine 1 is confirmed, and then the rotating body 3 may be rotated in the opposite direction to set the first reference point ki in the second column. This allows the ground to be leveled to the same height as the first reference point k1. For the third column and onward, the rotating body 3 may be rotated to a position where the reference point ki in the previous column is within the screen of the display unit 52, the self-position of the work machine 1 is confirmed, and then the rotating body 3 may be rotated in the opposite direction to set the reference point ki in the own column.
また、第1の基準点k1を中心に作業機械1の進行角度を変えて、進行角度毎に上述した例のように旋回体3の後方への旋回、作業機械1の後方への移動を繰り返して複数の基準点kiを設定するようにしてもよい。 Furthermore, the travel angle of the work machine 1 may be changed around the first reference point k1, and multiple reference points ki may be set by repeatedly rotating the rotating body 3 backward and moving the work machine 1 backward for each travel angle, as in the above example.
なお、基準点kiを登録した後に、旋回体3を後方に180度旋回して新たな基準点kiを登録する例を挙げたが、旋回角度はこれに限られない。例えば、基準点kiを登録した後、旋回体3を右に90度、あるいは左に90度旋回した後、作業機4の前方を掘削して整地した後、新たな基準点kiを登録してもよい。右方向に新たな基準点kiを登録した場合、作業機械1は、旋回体3を元に戻して、左90度に旋回して進行角度を変えた後、後方に移動を開始し、新たに登録された基準点kiを越えて、表示部52の画面に当該基準点kiが入る位置に達したら、停止する。停止した状態で地形計測装置5が当該基準点kiまでの距離を計測して自己位置を特定したら、旋回体3を後方に180度旋回して、当該基準点kiのさらに右方向に新たな基準点kiを設定すべく、周囲を掘削して整地した後、新たな基準点kiを登録する。また、左方向に新たな基準点kiを登録した場合、作業機械1は、旋回体3を元に戻して、右90度に旋回して進行角度を変えた後、後方に移動を開始し、新たに登録された基準点kiを越えて、表示部52の画面に当該基準点が入る位置に達したら、停止する。停止した状態で地形計測装置5が当該基準点kiまでの距離を計測して自己位置を特定したら、旋回体3を後方に180度旋回して、当該基準点kiのさらに左方向に新たな基準点kiを設定すべく、周囲を掘削して整地した後、新たな基準点kiを登録する。 In the above example, after the reference point ki is registered, the revolving body 3 is rotated 180 degrees backward to register a new reference point ki, but the angle of rotation is not limited to this. For example, after the reference point ki is registered, the revolving body 3 may be rotated 90 degrees to the right or 90 degrees to the left, and then the area in front of the work implement 4 may be excavated and leveled, and then a new reference point ki may be registered. When a new reference point ki is registered to the right, the work machine 1 returns the revolving body 3 to its original position, rotates 90 degrees to the left to change the travel angle, starts moving backward, and stops when it passes the newly registered reference point ki and reaches a position where the reference point ki appears on the screen of the display unit 52. When the topography measuring device 5 measures the distance to the reference point ki in a stopped state and identifies its own position, the revolving body 3 is rotated 180 degrees backward, and the surrounding area is excavated and leveled to set a new reference point ki further to the right of the reference point ki, and then the new reference point ki is registered. Furthermore, if a new reference point ki is registered to the left, the work machine 1 returns the rotating unit 3 to its original position, rotates 90 degrees to the right to change the travel angle, then starts moving backward, passing the newly registered reference point ki and stopping when it reaches a position where the reference point appears on the screen of the display unit 52. When the work machine 1 is stopped, the topography measuring device 5 measures the distance to the reference point ki and identifies its own position, the rotating unit 3 rotates 180 degrees backward, excavates and levels the surrounding area to set a new reference point ki further to the left of the reference point ki, and then registers the new reference point ki.
上記の実施の形態では、距離計測装置6としてLiDARを用いたが、これに限らず、例えば、ステレオカメラ、TOFカメラ等であってもよい。 In the above embodiment, LiDAR is used as the distance measurement device 6, but this is not limited to this and may be, for example, a stereo camera, a TOF camera, etc.
コンピュータにより実現する場合、例えば、処理部54によって実行されるプログラムを、コンピュータ読み取り可能な非一時的な記録媒体に格納して配布し、そのプログラムをコンピュータにインストールすることにより、上述の処理を実行する装置を構成することができる。このような記録媒体としては、例えばCD-ROM(Compact Disc Read-Only Memory)、DVD(Digital Versatile Disc)等が考えられる。 When realizing this by a computer, for example, the program executed by the processing unit 54 can be stored in a non-transitory computer-readable recording medium, distributed, and the program can be installed on a computer to configure a device that executes the above-mentioned processing. Examples of such recording media include CD-ROMs (Compact Disc Read-Only Memory) and DVDs (Digital Versatile Discs).
また、プログラムをインターネットに代表される通信ネットワーク上のサーバ装置が有するディスク装置に格納しておき、例えば、搬送波に重畳させて、コンピュータにダウンロードしてもよい。 The program may also be stored on a disk device in a server device on a communication network such as the Internet, and then downloaded to a computer, for example by superimposing it on a carrier wave.
また、通信ネットワークを介してプログラムを転送しながら起動実行することによっても、上述の処理を達成することができる。 The above process can also be achieved by launching and executing a program while transferring it via a communications network.
さらに、プログラムの全部又は一部をサーバ装置上で実行させ、その処理に関する情報をコンピュータが通信ネットワークを介して送受信しながらプログラムを実行することによっても、上述の処理を達成することができる。 Furthermore, the above-mentioned processing can also be achieved by executing all or part of the program on a server device and having a computer execute the program while sending and receiving information related to the processing via a communications network.
なお、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合等には、OS以外の部分のみを媒体に格納して配布してもよく、また、コンピュータにダウンロードしてもよい。 In addition, when the above-mentioned functions are shared and realized by the OS (Operating System) or by the OS working together with an application, etc., only the parts other than the OS may be stored on a medium and distributed, or may be downloaded to a computer.
また、上述の機能を実現する手段は、ソフトウェアに限られず、その一部又は全部を、回路を含む専用のハードウェアによって実現してもよい。 In addition, the means for realizing the above-mentioned functions are not limited to software, but may be realized in part or in whole by dedicated hardware including circuits.
本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態および変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内およびそれと同等の開示の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention allows for various embodiments and modifications without departing from the broad spirit and scope of the present invention. Furthermore, the above-described embodiments are intended to explain the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is indicated by the claims, not the embodiments. Furthermore, various modifications made within the scope of the claims and within the meaning of the disclosure equivalent thereto are considered to be within the scope of the present invention.
本発明は、作業機械に設置する地形計測装置に広く適用することができる。 The present invention can be widely applied to topographical measurement devices installed on work machines.
1 作業機械、2 走行体、3 旋回体、4 作業機、5 地形計測装置、6 距離計測装置、7 撮像装置、8 IMU、9 地磁気センサ、10 地形計測システム、31 運転室、32 操作装置、41 ブーム、42 アーム、43 バケット、44 ブームピン、45 ブームシリンダ、46 アームピン、47 アームシリンダ、48 バケットピン、49 バケットシリンダ、50 ブレード、51 コントローラ、52 表示部、53 入力部、54 処理部、55 記憶部、81 加速度センサ、82 ジャイロセンサ、511 測距データ取得部、512 姿勢情報取得部、513 撮像画像取得部、514 設定部、515 測距画像生成部、516 表示制御部、517 位置検出部、518 基準点登録部、519 基準点検出部、520 補正部。 1. Work machine, 2. Traveling body, 3. Swinging body, 4. Work machine, 5. Terrain measurement device, 6. Distance measurement device, 7. Imaging device, 8. IMU, 9. Geomagnetic sensor, 10. Terrain measurement system, 31. Cab, 32. Operation device, 41. Boom, 42. Arm, 43. Bucket, 44. Boom pin, 45. Boom cylinder, 46. Arm pin, 47. Arm cylinder, 48. Bucket pin, 49. Bucket cylinder 50 Blade, 51 Controller, 52 Display unit, 53 Input unit, 54 Processing unit, 55 Memory unit, 81 Acceleration sensor, 82 Gyro sensor, 511 Distance measurement data acquisition unit, 512 Attitude information acquisition unit, 513 Captured image acquisition unit, 514 Setting unit, 515 Distance measurement image generation unit, 516 Display control unit, 517 Position detection unit, 518 Reference point registration unit, 519 Reference point detection unit, 520 Correction unit.
Claims (12)
前記施工現場内の少なくとも1以上の基準点の位置情報が登録された基準点登録部と、
地面までの距離を計測する距離計測装置から取得された点群データに基づいて点群のグローバル座標系の位置を検出する位置検出部と、
前記距離計測装置が走査するエリアの測距画像を画面に表示する表示部と、
前記少なくとも1以上の基準点のうち前記エリア内に存在する基準点を検出する基準点検出部と、
前記エリア内に存在する点群の中から、前記基準点検出部により検出された前記基準点との水平距離が最小かつ所定の距離内にある走査点を抽出し、前記基準点との高さ方向の座標差から算出された補正値に基づいて点群の高さ方向の座標を補正する補正部と、
を備える地形計測装置。 A topographical measurement device that is mounted on a moving body and measures the shape of the ground at a construction site,
a reference point registration unit in which position information of at least one reference point within the construction site is registered;
a position detection unit that detects a position of the point cloud in a global coordinate system based on point cloud data acquired from a distance measurement device that measures a distance to the ground;
a display unit that displays a distance measurement image of an area scanned by the distance measurement device;
a reference point detection unit that detects a reference point that exists within the area among the at least one reference point;
a correction unit that extracts, from the point cloud present within the area, a scanning point that has a minimum horizontal distance from the reference point detected by the reference point detection unit and is within a predetermined distance, and corrects the height coordinate of the point cloud based on a correction value calculated from a height coordinate difference from the reference point;
A topographical measuring device comprising:
請求項1に記載の地形計測装置。 the at least one reference point is a first reference point and second to n-th reference points that are in a predetermined positional relationship with the first reference point, and the global coordinate system is a coordinate system fixed to the first reference point;
2. The topographical measuring device according to claim 1.
請求項1に記載の地形計測装置。 the reference point registration unit, by designating positions of the at least one or more reference points on the screen of the display unit as the position information, converts the designated positions from a local coordinate system to a global coordinate system and registers the designated positions, and also registers a position in a height direction that has been measured in advance;
2. The topographical measuring device according to claim 1.
請求項2に記載の地形計測装置。 the reference point registration unit, by specifying a position of a first reference point among the at least one or more reference points on the screen of the display unit, converts the position of the first reference point from a local coordinate system to a global coordinate system and registers the position; and, by specifying positions of a second to an n-th reference point among the at least one or more reference points on the screen, converts the positions of the second to the n-th reference points from the local coordinate system to a global coordinate system and registers the positions; and registers coordinate differences in height direction from the first reference point that have been measured in advance for the second to the n-th reference points.
3. The topographical measuring device according to claim 2.
請求項1に記載の地形計測装置。 when the reference point is detected by the reference point detection unit, the display unit displays a mark at a position on the screen corresponding to the reference point.
2. The topographical measuring device according to claim 1.
請求項1に記載の地形計測装置。 When the correction value has not been calculated, the correction unit maintains the correction based on the most recently calculated correction value.
2. The topographical measuring device according to claim 1.
請求項1に記載の地形計測装置。 The predetermined distance is a distance within a range that is leveled to the same height and has each of the at least one or more reference points as a center.
2. The topographical measuring device according to claim 1.
距離計測装置と、
を備える地形計測システム。 A topographical measuring device according to claim 1;
A distance measuring device;
A topographical measurement system comprising:
前記旋回体に請求項8の地形計測システムが搭載される、
作業機械。 The vehicle includes a running body and a rotating body that can rotate on the running body,
The topographical measurement system according to claim 8 is mounted on the rotating body.
Working machinery.
前記地形計測装置が測距して第1の基準点を登録する第1のステップと、
前記地形計測装置を旋回して、前記地形計測装置が測距して前記第1の基準点と同じ高さに整地した後、整地された位置に第2の基準点を登録する第2のステップと、
前記第2の基準点を測距可能な位置に前記地形計測装置を移動する第3のステップと、を備え、
第3から第nの基準点について前記第2の基準点と同様に第2のステップ及び第3のステップを繰り返す、
基準点設定登録方法。 2. The method for setting and registering a reference point in a topographical measuring device according to claim 1, further comprising the steps of:
A first step in which the topographical measuring device measures distances and registers a first reference point;
a second step of rotating the topography measuring device, measuring the distance to the ground, leveling the ground to the same height as the first reference point, and then registering a second reference point at the leveled position;
a third step of moving the topographical measuring device to a position where the distance to the second reference point can be measured;
repeating the second and third steps for the third to n-th reference points in the same manner as for the second reference point;
How to register reference points.
地面までの距離を計測する距離計測装置から点群データを取得して、前記点群データに基づいて点群のグローバル座標系の位置を検出するステップと、
予め前記施工現場内における位置情報が登録された少なくとも1以上の基準点のうち前記距離計測装置が走査するエリア内に存在する基準点を検出するステップと、
前記エリア内に存在する点群の中から、検出された前記基準点との水平距離が最小かつ所定の距離内にある走査点を抽出し、前記基準点との高さ方向の座標差から算出された補正値に基づいて点群の高さ方向の座標を補正するステップと、
を備える地形計測方法。 A topographical measurement method for measuring the shape of the ground at a construction site using a topographical measurement device mounted on a moving body, comprising:
acquiring point cloud data from a distance measuring device that measures a distance to the ground, and detecting a position of the point cloud in a global coordinate system based on the point cloud data;
A step of detecting a reference point that exists within an area scanned by the distance measuring device from among at least one reference point whose position information is registered in advance within the construction site;
extracting a scanning point that has a minimum horizontal distance from the detected reference point and is within a predetermined distance from the point cloud present within the area, and correcting the height coordinate of the point cloud based on a correction value calculated from a height coordinate difference from the reference point;
A topographical measurement method comprising:
施工現場内の地面までの距離を計測する距離計測装置から点群データを取得して、前記点群データに基づいて点群のグローバル座標系の位置を検出するステップと、
予め前記施工現場内における位置情報が登録された少なくとも1以上の基準点のうち前記距離計測装置が走査するエリア内に存在する基準点を検出するステップと、
前記エリア内に存在する点群の中から、検出された前記基準点との水平距離が最小かつ所定の距離内にある走査点を抽出し、前記基準点との高さ方向の座標差から算出された補正値に基づいて点群の高さ方向の座標を補正するステップと、
を実行させるプログラム。 On the computer,
A step of acquiring point cloud data from a distance measuring device that measures a distance to the ground in a construction site, and detecting a position of the point cloud in a global coordinate system based on the point cloud data;
A step of detecting a reference point that exists within an area scanned by the distance measuring device from among at least one reference point whose position information is registered in advance within the construction site;
extracting a scanning point that has a minimum horizontal distance from the detected reference point and is within a predetermined distance from the point cloud present within the area, and correcting the height coordinate of the point cloud based on a correction value calculated from a height coordinate difference from the reference point;
A program that executes the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/015210 WO2024214297A1 (en) | 2023-04-14 | 2023-04-14 | Topography measurement device, topography measurement system, work machine, topography measurement method, reference point setting registration method, and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/015210 WO2024214297A1 (en) | 2023-04-14 | 2023-04-14 | Topography measurement device, topography measurement system, work machine, topography measurement method, reference point setting registration method, and program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024214297A1 true WO2024214297A1 (en) | 2024-10-17 |
Family
ID=93059243
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/015210 WO2024214297A1 (en) | 2023-04-14 | 2023-04-14 | Topography measurement device, topography measurement system, work machine, topography measurement method, reference point setting registration method, and program |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024214297A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019145953A (en) * | 2018-02-19 | 2019-08-29 | 国立大学法人 東京大学 | Work vehicle display system and generation method |
WO2020162428A1 (en) * | 2019-02-04 | 2020-08-13 | 住友重機械工業株式会社 | Excavator |
JP2023011454A (en) * | 2021-07-12 | 2023-01-24 | 東亜道路工業株式会社 | Three-dimensional design data creation method, construction work method, three-dimensional design data creation system, and three-dimensional design data creation program |
-
2023
- 2023-04-14 WO PCT/JP2023/015210 patent/WO2024214297A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019145953A (en) * | 2018-02-19 | 2019-08-29 | 国立大学法人 東京大学 | Work vehicle display system and generation method |
WO2020162428A1 (en) * | 2019-02-04 | 2020-08-13 | 住友重機械工業株式会社 | Excavator |
JP2023011454A (en) * | 2021-07-12 | 2023-01-24 | 東亜道路工業株式会社 | Three-dimensional design data creation method, construction work method, three-dimensional design data creation system, and three-dimensional design data creation program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6987186B2 (en) | Display system, construction machinery, and display method | |
AU2022209235B2 (en) | Display control device and display control method | |
KR102076631B1 (en) | Positioning Systems, Work Machines, and Positioning Methods | |
US12088968B2 (en) | Display control device, display control system, and display control method | |
JP5759798B2 (en) | Construction machine control system | |
JP6918716B2 (en) | Construction machinery | |
JP7023813B2 (en) | Work machine | |
AU2019292458B2 (en) | Display control system, display control device, and display control method | |
CN113874862A (en) | Construction machine | |
US20220316188A1 (en) | Display system, remote operation system, and display method | |
JP7386592B2 (en) | Construction machinery operation assistance system | |
CN115698434A (en) | Information acquisition system and information acquisition method | |
US12348851B2 (en) | Display control device and display method | |
WO2024214297A1 (en) | Topography measurement device, topography measurement system, work machine, topography measurement method, reference point setting registration method, and program | |
JP2022173478A (en) | Automatic control system for construction machine | |
CN115398066B (en) | Construction method and construction system | |
US20230267895A1 (en) | Display control device and display control method | |
WO2023282203A1 (en) | Working machine control system, working machine, and working machine control method | |
WO2023282204A1 (en) | Control system for work machine, work machine, and control method for work machine | |
JP2023068408A (en) | Position information setting system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23933073 Country of ref document: EP Kind code of ref document: A1 |