WO2024209565A1 - Terminal and base station - Google Patents
Terminal and base station Download PDFInfo
- Publication number
- WO2024209565A1 WO2024209565A1 PCT/JP2023/014004 JP2023014004W WO2024209565A1 WO 2024209565 A1 WO2024209565 A1 WO 2024209565A1 JP 2023014004 W JP2023014004 W JP 2023014004W WO 2024209565 A1 WO2024209565 A1 WO 2024209565A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- learning model
- information
- base station
- control unit
- unit
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 24
- 210000002569 neuron Anatomy 0.000 claims description 13
- 238000012549 training Methods 0.000 claims description 13
- 230000004044 response Effects 0.000 claims description 8
- 238000004891 communication Methods 0.000 description 70
- 238000010586 diagram Methods 0.000 description 15
- 230000006870 function Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 238000013473 artificial intelligence Methods 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 6
- 238000010801 machine learning Methods 0.000 description 6
- 230000011664 signaling Effects 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 5
- 238000007726 management method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 101150071746 Pbsn gene Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 208000037918 transfusion-transmitted disease Diseases 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
Definitions
- This disclosure relates to terminals and base stations that use learning models.
- the 3rd Generation Partnership Project (3GPP) is developing specifications for the 5th generation mobile communication system (5G, also known as New Radio (NR) or Next Generation (NG)) and is also developing specifications for the next generation of mobile communication systems, known as Beyond 5G, 5G Evolution or 6G.
- 5G also known as New Radio (NR) or Next Generation (NG)
- NG Next Generation
- Non-Patent Document 1 Artificial Intelligence (AI)/Machine Learning (ML).
- AI/ML models hereinafter also referred to as learning models
- CSI Channel State Information
- BM beam management
- UE User Equipment
- gNodeB gNodeB
- the learning models set by the network including the gNB vary widely in terms of size, complexity, number, etc. available to the UE. In such a case, if the UE notifies the network including the gNB in detail of parameters such as size, complexity, number, etc. of the learning models available to the UE, there is a risk that limited communication resources (not limited to frequency-direction resources, but also including time-direction resources, for example) will be strained.
- the present disclosure has been made in light of these circumstances, and aims to provide a terminal that can notify a learning model that the terminal can use, using limited communication resources, and a base station that can request such notification.
- One aspect of the disclosure is a terminal that includes a control unit (control unit 230) that uses learning models that are classified into multiple categories according to parameters related to the learning models, and a transmission unit (transmission/reception unit 210) that notifies a base station of the categories as information about learning models that the control unit can use.
- control unit 230 control unit 230
- transmission unit 210 transmission/reception unit 210
- One aspect of the disclosure is a base station that includes a control unit (control unit 130) that classifies learning models into a plurality of categories according to parameters related to the learning models, and a transmission unit (transmission/reception unit 110) that transmits a message to a terminal requesting categories of learning models that the terminal can use.
- control unit 130 control unit 130
- transmission unit 110 transmission/reception unit 110
- FIG. 1 is a diagram showing the overall configuration of a wireless communication system.
- FIG. 2 shows a diagram illustrating frequency ranges used in a wireless communication system.
- FIG. 3 is a diagram showing an example of the configuration of a radio frame, a subframe, a slot, and a symbol used in a radio communication system.
- FIG. 4 is a functional block diagram of the base station.
- FIG. 5 is a functional block diagram of the terminal.
- FIG. 6 is a sequence diagram relating to notification of the size of a learning model.
- FIG. 7 is a sequence diagram relating to notification of the size of a learning model.
- FIG. 8 is a sequence diagram relating to notification of the complexity of a learning model.
- FIG. 9 is a sequence diagram relating to notification of the complexity of a learning model.
- FIG. 1 is a diagram showing the overall configuration of a wireless communication system.
- FIG. 2 shows a diagram illustrating frequency ranges used in a wireless communication system.
- FIG. 3 is
- FIG. 10 is a sequence diagram relating to notification of the number of learning models.
- FIG. 11 is a sequence diagram relating to notification of the number of learning models.
- FIG. 12 is a diagram illustrating an example of a hardware configuration of a base station and a terminal.
- FIG. 13 is a diagram illustrating an example of the configuration of a vehicle.
- the wireless communication system 10 shown in Fig. 1 is a wireless communication system conforming to a method called 5G.
- the wireless communication system 10 may be a wireless communication system conforming to a method called Beyond 5G, 5G Evolution, or 6G.
- the wireless communication system 10 can support Massive Multiple-Input Multiple-Output (Massive MIMO), which generates more directional beams by controlling the wireless signals transmitted from multiple antenna elements, Carrier Aggregation (CA), which bundles together multiple component carriers (CC), and Dual Connectivity (DC), which communicates with two base stations simultaneously.
- Massive MIMO Massive Multiple-Input Multiple-Output
- CA Carrier Aggregation
- CC component carriers
- DC Dual Connectivity
- the wireless communication system 10 includes a base station (gNodeB, gNB) 100 connected to a Next Generation-Radio Access Network (NG-RAN) 20, and a terminal (User Equipment, UE) 200 that performs wireless communication with the gNB 100.
- the NG-RAN 20 is connected to a core network (CN) not shown.
- the CN is composed of a network function (NF) such as an Access and Mobility Management Function (AMF).
- NF network function
- AMF Access and Mobility Management Function
- the gNB100 may be a base station in a Centralized-Radio Access Network (C-RAN) configuration having a distributed unit (DU) that has the function of connecting to the UE200, and a central unit (CU) that has the function of connecting to the network.
- the gNB100 may be read as a DU or a CU.
- the gNB100 is a DU, it may be called a gNB-DU, an Integrated Access and Backhaul (IAB) node, a wireless communication node, etc.
- IAB Integrated Access and Backhaul
- the gNB100 is a CU, it may be called a gNB-CU, an IAB donor, etc.
- the wireless communication system 10 may also support a plurality of frequency ranges (FRs). That is, as shown in FIG. 2, the wireless communication system 10 may support the following FRs: ⁇ FR1: 410MHz to 7.125GHz ⁇ FR2-1: 24.25GHz to 52.6GHz ⁇ FR2-2: Over 52.6GHz to 71GHz
- a subcarrier spacing (SCS) of 15, 30 or 60 kHz and a bandwidth (BW) of 5 to 100 MHz may be used.
- SCS subcarrier spacing
- BW bandwidth
- an SCS of 60 or 120 kHz (which may include 240 kHz) and a BW of 50 to 400 MHz may be used.
- Cyclic Prefix-Orthogonal Frequency Division Multiplexing CP-OFDM
- DFT-S-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
- one slot in the wireless communication system 10 is composed of 14 symbols. If this configuration is maintained, the larger (wider) the SCS is, the shorter the symbol period (and slot period) will be.
- the SCS is not limited to the frequencies shown in FIG. 3, and may be, for example, frequencies such as 480 kHz and 960 kHz.
- the number of symbols constituting one slot does not necessarily have to be 14 symbols, and may be, for example, 28 or 56 symbols.
- the number of slots per subframe may differ depending on the SCS.
- the gNB 100 includes a transceiver unit 110, a generation unit 120, and a control unit 130.
- the transceiver 110 transmits and receives radio signals to and from the UE 200.
- the transceiver 110 may include a transmitter that transmits radio signals to the UE 200 or other gNBs 100, and a receiver that receives radio signals from the UE 200 or other gNBs 100.
- the radio signals include a message generated by the generator 120 and a learning model set by the controller 130.
- the generation unit 120 generates a message to be sent to the UE 200.
- the message may be a UE Capability Enquiry that requests the UE 200's capability information (UE Capability Information) from the UE 200, or it may be another message to be sent to the network side.
- UE Capability Information UE Capability Information
- the generation unit 120 may request information on a learning model available to the UE 200 as capability information of the UE 200.
- the information on the learning model available to the UE 200 may be a parameter (or a maximum value of the parameter) related to the learning model available to the UE 200, or a category classified according to a parameter related to the learning model available to the UE 200.
- the parameter (or the maximum value of the parameter) and the category are information indicating a learning model available to the UE 200.
- the control unit 130 controls the gNB 100.
- the control unit 130 controls the transmission and reception of radio signals by the transceiver unit 110 and the generation of messages by the generation unit 120.
- the control unit 130 classifies the learning models available to the UE 200 into a number of categories according to the parameters associated with the learning models.
- the categories may also be called classes.
- the parameters may be the size (capacity), complexity, number, etc. of learning models available to UE200.
- the complexity may be the number of layers, the number of neurons, the size of the training data set, the amount of information required to predict the learning model, etc.
- the categories are classifications of the above-mentioned parameters according to their numerical values. Details will be described later, but the learning models available to UE200 are classified into three categories (classes), A to C, for example, according to their size.
- the above-mentioned parameters and categories are merely examples.
- the parameters may be the version of the learning model available to UE 200, or the length of time until the validity period set for the learning model expires.
- the validity period may be understood to be a predetermined period of time after the learning model is trained using teacher data.
- the control unit 130 may retrain the learning model and reset the validity period.
- the control unit 130 sets the above-mentioned learning model for the UE 200. That is, the transceiver unit 110 transmits the learning model that the control unit 130 sets for the UE 200.
- control unit 130 sets the learning model based on the category notified by the UE 200. As will be described in the section on operation examples, if the category notified by the UE 200 is, for example, the above-mentioned category B, the control unit 130 may set the learning model for the UE 200 to category A, which is lower than category B.
- the control unit 130 may set the learning model for the UE 200 to category B.
- the UE 200 includes a transceiver unit 210, a generator unit 220, and a controller 230.
- the transceiver 210 transmits and receives wireless signals to and from the gNB100.
- the transceiver 210 may include a transmitter that transmits wireless signals to the gNB100, and a receiver that receives wireless signals from the gNB100.
- the wireless signals include a message generated by the generator 220.
- the generation unit 220 generates a message to be transmitted to the gNB 100.
- the message may be UE Capability Information of the UE 200, or may be another message to be transmitted to the gNB 100 or the network side.
- the transceiver 210 may notify information about a learning model available to the UE 200 by transmitting capability information about the UE 200 generated by the generator 220.
- the information about the learning model available to the UE 200 may be parameters (or maximum values of parameters) related to the learning model available to the UE 200, or may be a category classified according to parameters related to the learning model available to the UE 200.
- the parameters (or maximum values of parameters) and categories are information indicating the learning model available to the UE 200.
- the parameters and categories please refer to the explanation of the gNB 100 and the explanation of the operation example described below.
- the control unit 230 controls the UE 200.
- the control unit 230 controls the transmission and reception of radio signals by the transceiver unit 210 and the generation of messages by the generation unit 220.
- the control unit 230 uses a learning model.
- the control unit 230 installs a learning model that is set (transmitted) from the gNB 100.
- the UE 200 can optimize processing such as Channel State Information (CSI) feedback, beam management (BM), and positioning.
- CSI Channel State Information
- BM beam management
- UE200 can reduce overhead related to CSI feedback, for example, by using a learning model. Furthermore, UE200 can improve the accuracy of CSI feedback by using a learning model.
- UE200 can use a learning model to predict, for example, a BM, a beam of good quality for itself in the future.
- UE200 can predict its own future location using a learning model instead of actually performing positioning. Furthermore, UE200 can improve the accuracy of positioning using the learning model.
- the UE 200 needs to notify the gNB 100 of the complexity of the available learning model, but when communication resources (not limited to frequency direction resources, but including time direction resources, for example) are limited, there is a problem that it is difficult to notify the gNB 100 of the complexity of the available learning model in detail.
- the parameters related to the learning model for example, the number of learning models (available to the UE 200) are diverse.
- the UE 200 needs to notify the gNB 100 of the number of available learning models, but when communication resources (not limited to frequency-direction resources, including time-direction resources, for example) are limited, there is a problem that it is difficult to notify the gNB 100 of the number of available learning models in detail.
- the gNB 100 can request a UE Capability Enquiry from the UE 200. That is, the gNB 100 can request the capability information of the UE 200. Specifically, the gNB 100 can request the size of a learning model that the UE 200 can use.
- the sizes of the learning models available to UE 200 are classified into, for example, the following categories (classes). ⁇ Class A: 1Mbytes or less ⁇ Class B: 1Mbytes or more but less than 100Mbytes ⁇ Class C: 100Mbytes or more
- UE200 may notify the size of the learning model available to UE200 in response to a request from gNB100.
- the above-mentioned category may be notified. For example, if the size of the learning model available to UE200 is (maximum) 30 Mbytes, the Class B category may be notified.
- the gNB100 is notified that the size of the learning model available to the UE200 is in the Class B category, and is therefore able to set a learning model of a size corresponding to Class A for the UE200. As mentioned above, the gNB100 may also set a learning model corresponding to Class B for the UE200.
- UE200 may notify the maximum size in order to notify the size of the learning model available to UE200. For example, if the size of the learning model available to UE200 is (maximum) 30 Mbytes, the size may be notified as 30 Mbytes. Since gNB100 is notified that the size of the learning model available to UE200 is maximum 30 Mbytes, it can set a learning model of maximum 30 Mbytes for UE200.
- UE200 can notify gNB100 of the parameters (sizes) related to the learning model that UE200 can use as simple categories. This allows UE200 to notify of simple categories instead of complex parameters, reducing the risk of straining communication resources.
- the gNB 100 can request a UE Capability Enquiry from the UE 200. That is, the gNB 100 can request the capability information of the UE 200. Specifically, the gNB 100 can request the complexity of a learning model available to the UE 200.
- the complexity of the learning model available to UE 200 is classified into, for example, the following categories (classes). ⁇ Class A: Simple ⁇ Class B: Complex ⁇ Class C: Very complex
- the complexity of the learning model that UE200 can use depends, for example, on the number of layers of the learning model, the number of neurons, the size of the training dataset, and the amount of information required to predict the learning model. That is, if these parameters are less than a specified numerical range, the complexity is classified as Class A; if they are within a specified numerical range, the complexity is classified as Class B; and if they are greater than the specified numerical range, the complexity is classified as Class C.
- Complexity may be represented by any one of the number of layers of a learning model, the number of neurons, the size of a training dataset, and the amount of information required to predict a learning model.
- complexity may be classified by any one of these parameters (number of layers, number of neurons, size of a training dataset, and the amount of information required to predict a learning model).
- complexity may be classified by taking these parameters into consideration comprehensively.
- the layers of the learning model may be, for example, each layer in a neural network.
- Each layer is composed of an input layer, an intermediate layer, and an output layer, but the number of intermediate layers varies widely, which is related to the complexity.
- the neurons may be neurons in a neural network.
- the size of the training dataset may be the size of the teacher dataset for training the neural network.
- Information required for predicting the learning model may be, for example, when the learning model is a model related to the positioning of UE200, the Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal-to-Interference-plus-Noise Ratio (SINR) of reference signals (or synchronization signals) such as Positioning Reference Signal (PRS), Sounding Reference Signal (SRS), Channel State Information Reference Signal (CSI-RS), and SS/PBCH Block (SSB), or may be location information of the transmitting/receiving point (TRP), UE antenna boresight, Angle of Arrival (AoA), Angle of Departure (AoD), the position, moving speed, moving direction of UE200, and information related to the environment surrounding UE200.
- RSRP Reference Signal Received Power
- RSSQ Reference Signal Received Quality
- SINR Signal-to-Interference-plus-Noise Ratio
- PRS Positioning Reference Signal
- SRS Sounding Reference Signal
- CSI-RS Channel State Information Reference
- UE200 may notify the complexity of the learning model available to UE200 in response to a request from gNB100.
- the above-mentioned categories may be notified in order to notify the complexity of the learning model available to UE200. For example, if the complexity of the learning model available to UE200 is "complex", the category of Class B may be notified.
- the gNB100 is notified that the complexity of the learning model available to the UE200 is in the Class B category, and is therefore able to set a learning model of complexity corresponding to Class A for the UE200. As mentioned above, the gNB100 may also set a learning model corresponding to Class B for the UE200.
- UE200 may notify the maximum value of each of the above-mentioned parameters indicating complexity (number of layers, number of neurons, size of training data set, amount of information required for predicting the learning model) in order to notify the complexity of the learning model available to UE200. For example, if the number of layers of the learning model available to UE200 is (maximum) 100, the number of layers may be notified as 100. Since gNB100 is notified that the complexity of the learning model available to UE200 (here, the number of layers represents the complexity) is up to 100, it is possible to set a learning model with up to 100 layers for UE200.
- complexity number of layers, number of neurons, size of training data set, amount of information required for predicting the learning model
- the complexity is represented by one parameter, only the maximum value of that parameter may be notified. On the other hand, if the complexity is evaluated by comprehensively taking into account multiple parameters, the maximum values of each of the multiple parameters may be notified.
- UE200 can notify gNB100 of the parameters (complexity) related to the learning model that UE200 can use as a simple category. As a result, UE200 notifies of the simple category instead of the complex parameters, which can reduce the risk of straining communication resources.
- the gNB 100 can request a UE Capability Enquiry from the UE 200. That is, the gNB 100 can request the capability information of the UE 200. Specifically, the gNB 100 can request the number of learning models available to the UE 200.
- the number of learning models available to UE 200 is classified into, for example, the following categories (classes). ⁇ Class A: 1 only ⁇ Class B: 2 or more and less than 5 ⁇ Class C: 5 or more
- UE200 may notify the number of learning models available to UE200 in response to a request from gNB100.
- the above-mentioned categories may be notified. For example, if the size of the learning models available to UE200 is (maximum) 3, the Class B category may be notified.
- the gNB100 is notified that the size of the learning models available to the UE200 is in the Class B category, and can therefore set a number of learning models corresponding to Class A for the UE200. As mentioned above, the gNB100 may also set a learning model corresponding to Class B for the UE200.
- UE200 may notify the maximum number of learning models available to UE200 in order to notify the number of learning models available to UE200. For example, if the number of learning models available to UE200 is (maximum) 3, the number 3 may be notified. Since gNB100 is notified that the number of learning models available to UE200 is up to 3, it can set up to 3 learning models for UE200.
- UE200 can notify gNB100 of the parameters (number) related to the learning model that UE200 can use as simple categories. This allows UE200 to notify of simple categories instead of complex parameters, reducing the risk of straining communication resources.
- the learning model optimizes processes such as Channel State Information (CSI) feedback, beam management (BM), and positioning, but is not limited to this.
- the learning model may minimize call losses, radio link failures (RLF), and unnecessary handovers (HO) of UE200, in other words, optimize the mobility of UE200.
- CSI Channel State Information
- BM beam management
- HO unnecessary handovers
- the request and notification of the capability information of UE200 may be performed based on the validity period set in the above learning model. This allows for more efficient use of communication resources.
- learning model may be replaced with another term meaning a similar model, in addition to the AI/ML model.
- the learning model is set or transmitted by the gNB100, but this is not limited to this. It may be set or transmitted by other configurations on the network side.
- predictions made by a learning model may be referred to as AI predictions.
- “use” may be read as “download,” “install,” “process,” “predict,” or “control,” and “available” may be read as “support.” Additionally, “send” may be read as “request,” “configure,” “instruct,” or “notify.”
- configure, activate, update, indicate, enable, specify, and select may be read as interchangeable.
- link, associate, correspond, and map may be read as interchangeable, and allocate, assign, monitor, and map may also be read as interchangeable.
- each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and connected directly or indirectly (e.g., using wires, wirelessly, etc.) and these multiple devices.
- the functional blocks may be realized by combining the one device or the multiple devices with software.
- Functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, regard, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
- a functional block (component) that performs the transmission function is called a transmitting unit or transmitter.
- FIG. 12 is a diagram showing an example of the hardware configuration of the device.
- the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, and a bus 1007.
- apparatus can be interpreted as a circuit, device, unit, etc.
- the hardware configuration of the apparatus may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
- Each functional block of the device ( Figures 4 and 5) is realized by any hardware element of the computer device, or a combination of the hardware elements.
- each function of the device is realized by loading a specific software (program) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications by the communications device 1004, and control at least one of reading and writing data in the memory 1002 and storage 1003.
- a specific software program
- the processor 1001 for example, runs an operating system to control the entire computer.
- the processor 1001 may be configured as a central processing unit (CPU) that includes an interface with peripheral devices, a control unit, an arithmetic unit, registers, etc.
- CPU central processing unit
- the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
- the programs used are those that cause a computer to execute at least some of the operations described in the above-mentioned embodiments.
- the various processes described above may be executed by one processor 1001, or may be executed simultaneously or sequentially by two or more processors 1001.
- the processor 1001 may be implemented by one or more chips.
- the programs may be transmitted from a network via a telecommunications line.
- Memory 1002 is a computer-readable recording medium and may be composed of, for example, at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc.
- Memory 1002 may also be called a register, cache, main memory, etc.
- Memory 1002 can store a program (program code), software module, etc. capable of executing a method according to one embodiment of the present disclosure.
- Storage 1003 is a computer-readable recording medium, and may be, for example, at least one of an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disk), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc.
- Storage 1003 may also be referred to as an auxiliary storage device.
- the above-mentioned recording medium may be, for example, a database, a server, or other suitable medium including at least one of memory 1002 and storage 1003.
- the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc.
- the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize, for example, at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
- the output device 1006 is an output device (e.g., a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
- each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
- the device may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware.
- DSP digital signal processor
- ASIC application specific integrated circuit
- PLD programmable logic device
- FPGA field programmable gate array
- the processor 1001 may be implemented using at least one of these pieces of hardware.
- the notification of information is not limited to the aspects/embodiments described in the present disclosure and may be performed using other methods.
- the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling), broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination of these.
- RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- SUPER 3G IMT-Advanced
- 4G 5th generation mobile communication system
- 5G Future Radio Access
- FAA New Radio
- NR New Radio
- W-CDMA registered trademark
- GSM registered trademark
- UMB Ultra Mobile Broadband
- IEEE 802.11 Wi-Fi (registered trademark)
- IEEE 802.16 WiMAX (registered trademark)
- IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), or other suitable systems and next generation systems enhanced therefrom.
- Multiple systems may also be applied in combination (e.g., a combination of at least one of LTE and LTE-A with 5G).
- certain operations that are described as being performed by a base station may in some cases be performed by its upper node.
- various operations performed for communication with terminals may be performed by at least one of the base station and other network nodes other than the base station (such as, but not limited to, an MME or S-GW).
- the above example shows a case where there is one other network node other than the base station, it may also be a combination of multiple other network nodes (such as an MME and an S-GW).
- Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). They may be input and output via multiple network nodes.
- the input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table.
- the input and output information may be overwritten, updated, or appended.
- the output information may be deleted.
- the input information may be sent to another device.
- the determination may be based on a value represented by one bit (0 or 1), a Boolean value (true or false), or a numerical comparison (e.g., a comparison with a predetermined value).
- notification of specific information is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
- Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
- software, instructions, information, etc. may be transmitted and received over a transmission medium.
- a transmission medium For example, if software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
- wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
- wireless technologies such as infrared, microwave, etc.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
- the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
- the channel and the symbol may be a signal (signaling).
- the signal may be a message.
- the component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
- system and “network” are used interchangeably.
- a radio resource may be indicated by an index.
- the names used for the above-mentioned parameters are not limiting in any respect. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure.
- the various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
- Base station BS
- wireless base station fixed station
- NodeB NodeB
- eNodeB eNodeB
- gNodeB gNodeB
- a base station can accommodate one or more (e.g., three) cells (also called sectors). If a base station accommodates multiple cells, the overall coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small indoor base station (Remote Radio Head: RRH)).
- a base station subsystem e.g., a small indoor base station (Remote Radio Head: RRH)
- cell refers to part or all of the coverage area of a base station and/or a base station subsystem that provides communication services within that coverage.
- MS Mobile Station
- UE User Equipment
- a mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, etc.
- At least one of the base station and the mobile station may be a device mounted on a moving object, or the moving object itself, etc.
- the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
- At least one of the base station and the mobile station may include a device that does not necessarily move during communication operations.
- at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
- IoT Internet of Things
- the base station in the present disclosure may be interpreted as a mobile station (user terminal, the same applies below).
- each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a mobile station is replaced with communication between multiple mobile stations (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
- the mobile station may be configured to have the functions of a base station.
- terms such as "uplink” and "downlink” may be interpreted as terms corresponding to communication between terminals (for example, "side”).
- the uplink channel, downlink channel, etc. may be interpreted as a side channel.
- the mobile station in this disclosure may be interpreted as a base station.
- the base station may be configured to have the functions of the mobile station.
- a radio frame may be composed of one or more frames in the time domain. Each of the one or more frames in the time domain may be called a subframe.
- a subframe may further be composed of one or more slots in the time domain.
- a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
- Numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology may indicate, for example, at least one of the following: Subcarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame structure, a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
- SCS Subcarrier Spacing
- TTI Transmission Time Interval
- radio frame structure a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
- a slot may consist of one or more symbols in the time domain (e.g., Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
- OFDM Orthogonal Frequency Division Multiplexing
- SC-FDMA Single Carrier Frequency Division Multiple Access
- a slot may be a numerology-based unit of time.
- a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
- a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (or PUSCH) mapping type A.
- a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (or PUSCH) mapping type B.
- Radio frame, subframe, slot, minislot, and symbol all represent time units for transmitting signals. Radio frame, subframe, slot, minislot, and symbol may each be referred to by a different name that corresponds to the radio frame, subframe, slot, minislot, and symbol.
- one subframe may be called a transmission time interval (TTI)
- TTI transmission time interval
- multiple consecutive subframes may be called a TTI
- one slot or one minislot may be called a TTI.
- at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
- the unit expressing the TTI may be called a slot, minislot, etc., instead of a subframe.
- TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
- a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
- radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
- the TTI may be a transmission time unit for a channel-encoded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
- the time interval e.g., the number of symbols
- the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
- one slot or one minislot when called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling.
- the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
- a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
- TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
- a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
- a short TTI e.g., a shortened TTI, etc.
- a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
- the number of subcarriers included in an RB may be the same regardless of the numerology, and may be, for example, 12.
- the number of subcarriers included in an RB may be determined based on the numerology.
- the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length.
- One TTI, one subframe, etc. may each be composed of one or more resource blocks.
- one or more RBs may also be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
- PRB physical resource block
- SCG sub-carrier group
- REG resource element group
- PRB pair an RB pair, etc.
- a resource block may be composed of one or more resource elements (RE).
- RE resource elements
- one RE may be a radio resource area of one subcarrier and one symbol.
- a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- the BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
- UL BWP UL BWP
- DL BWP DL BWP
- One or more BWPs may be configured for a UE within one carrier.
- At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
- BWP bitmap
- radio frames, subframes, slots, minislots, and symbols are merely examples.
- the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
- connection refers to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
- the coupling or connection between elements may be physical, logical, or a combination thereof.
- “connected” may be read as "access.”
- two elements may be considered to be “connected” or “coupled” to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
- the reference signal may also be abbreviated as Reference Signal (RS) or referred to as a pilot depending on the applicable standard.
- RS Reference Signal
- the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
- any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient way of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed therein or that the first element must precede the second element in some way.
- determining may encompass a wide variety of actions.
- Determining and “determining” may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), ascertaining something that is deemed to be a “judging” or “determining,” and the like.
- Determining and “determining” may also include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and the like.
- judgment and “decision” can include considering resolving, selecting, choosing, establishing, comparing, etc., to have been “judged” or “decided.” In other words, “judgment” and “decision” can include considering some action to have been “judged” or “decided.” Additionally, “judgment” can be interpreted as “assuming,” “expecting,” “considering,” etc.
- a and B are different may mean “A and B are different from each other.”
- the term may also mean “A and B are each different from C.”
- Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
- FIG. 13 shows an example of the configuration of a vehicle 2001.
- the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021-2029, an information service unit 2012, and a communication module 2013.
- the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
- the steering unit 2003 includes at least a steering wheel (also called a handle) and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
- a steering wheel also called a handle
- the electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals are input to the electronic control unit 2010 from various sensors 2021 to 2027 provided in the vehicle.
- the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
- Signals from the various sensors 2021 to 2028 include a current signal from a current sensor 2021 that senses the current of the motor, a rotation speed signal of the front and rear wheels acquired by a rotation speed sensor 2022, an air pressure signal of the front and rear wheels acquired by an air pressure sensor 2023, a vehicle speed signal acquired by a vehicle speed sensor 2024, an acceleration signal acquired by an acceleration sensor 2025, an accelerator pedal depression amount signal acquired by an accelerator pedal sensor 2029, a brake pedal depression amount signal acquired by a brake pedal sensor 2026, a shift lever operation signal acquired by a shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 2028.
- the information service unit 2012 is composed of various devices, such as a car navigation system, an audio system, speakers, a television, and a radio, for providing various types of information such as driving information, traffic information, and entertainment information, and one or more ECUs for controlling these devices.
- the information service unit 2012 uses information acquired from external devices via the communication module 2013, etc., to provide various types of multimedia information and multimedia services to the occupants of the vehicle 1.
- the driving assistance system unit 2030 is composed of various devices that provide functions for preventing accidents and reducing the driving burden on the driver, such as a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (e.g., GNSS, etc.), map information (e.g., high definition (HD) map, autonomous vehicle (AV) map, etc.), a gyro system (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chip, and an AI processor, as well as one or more ECUs that control these devices.
- the driving assistance system unit 2030 also transmits and receives various information via the communication module 2013 to realize driving assistance functions or autonomous driving functions.
- the communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 1 via the communication port.
- the communication module 2013 transmits and receives data via the communication port 2033 between the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axle 2009, microprocessor 2031 and memory (ROM, RAM) 2032 in electronic control unit 2010, and sensors 2021 to 2028, which are provided on the vehicle 2001.
- the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
- the communication module 2013 may be located either inside or outside the electronic control unit 2010.
- the external device may be, for example, a base station, a mobile station, etc.
- the communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
- the communication module 2013 also transmits to an external device via wireless communication the following signals input to the electronic control unit 2010: front and rear wheel rotation speed signals acquired by the rotation speed sensor 2022, front and rear wheel air pressure signals acquired by the air pressure sensor 2023, vehicle speed signals acquired by the vehicle speed sensor 2024, acceleration signals acquired by the acceleration sensor 2025, accelerator pedal depression amount signals acquired by the accelerator pedal sensor 2029, brake pedal depression amount signals acquired by the brake pedal sensor 2026, shift lever operation signals acquired by the shift lever sensor 2027, and detection signals for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028.
- the communication module 2013 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device, and displays it on an information service unit 2012 provided in the vehicle.
- the communication module 2013 also stores the various information received from the external device in a memory 2032 that can be used by the microprocessor 2031.
- the microprocessor 2031 may control the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axles 2009, sensors 2021-2028, and the like provided in the vehicle 2001.
- the first feature is a terminal equipped with a control unit that uses learning models classified into multiple categories according to parameters related to the learning models, and a transmission unit that notifies a base station of the categories as information on learning models that the control unit can use.
- the second feature is that in the first feature, the parameter is at least one of the size, complexity, and number of the learning models.
- the third feature is that in the second feature, the terminal is characterized in that at least one of the number of layers of the learning model, the number of neurons, the size of the training dataset, and the amount of information required for prediction of the learning model.
- the fourth feature is the third feature, in which the transmission unit is a terminal that notifies the control unit of the maximum value available for at least one of the number of layers of the learning model, the number of neurons, the size of the training data set, and the amount of information required for prediction of the learning model.
- the fifth feature is that in any one of the first to fourth features, the transmitting unit is a terminal that notifies the category in response to a request from the base station.
- the sixth feature is a base station that includes a control unit that classifies learning models into a plurality of categories according to parameters related to the learning models, and a transmission unit that transmits a message to a terminal requesting categories of learning models that the terminal can use.
- Wireless Communication Systems 20 NG-RAN 100 gNB 110 Transmitter/receiver 120 Generator 130 Controller 200 UE 210 Transmitting/receiving unit 220 Generating unit 230 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus 2001 Vehicle 2002 Driving unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Left and right front wheels 2008 Left and right rear wheels 2009 Axle 2010 Electronic control unit 2012 Information service unit 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving assistance system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 communication port
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本開示は、学習モデルを利用する端末、基地局に関する。 This disclosure relates to terminals and base stations that use learning models.
3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる。)を仕様化し、さらに、Beyond 5G、5G Evolutionあるいは6Gと呼ばれる次世代の移動通信システムの仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) is developing specifications for the 5th generation mobile communication system (5G, also known as New Radio (NR) or Next Generation (NG)) and is also developing specifications for the next generation of mobile communication systems, known as Beyond 5G, 5G Evolution or 6G.
Release 18において、Artificial Intelligence(AI)/Machine Learning(ML)が議論されている。AI/MLモデル(以下、学習モデルともいう。)を導入することにより、Channel State Information(CSI)フィードバック、ビーム管理(BM)、測位(positioning)の向上が期待されている。このような学習モデルの処理能力を、端末(User Equipment、UE)または基地局(gNodeB、gNB)に対して、どのように設定または指示するかが検討されている(非特許文献1)。 Release 18 discusses Artificial Intelligence (AI)/Machine Learning (ML). The introduction of AI/ML models (hereinafter also referred to as learning models) is expected to improve Channel State Information (CSI) feedback, beam management (BM), and positioning. How to configure or instruct the processing capabilities of such learning models to terminals (User Equipment, UE) or base stations (gNodeB, gNB) is being considered (Non-Patent Document 1).
gNBを含むネットワークから設定される学習モデルは、UEが利用可能なサイズ、複雑性、数などの点において、多岐にわたる。このような場合に、UEからgNBを含むネットワークに対して、UEが利用可能な学習モデルについて、そのサイズ、複雑性、数などのパラメータを詳細に通知することは、限られた通信リソース(周波数方向のリソースに限らず、例えば時間方向のリソースも含む)を逼迫するおそれがあった。 The learning models set by the network including the gNB vary widely in terms of size, complexity, number, etc. available to the UE. In such a case, if the UE notifies the network including the gNB in detail of parameters such as size, complexity, number, etc. of the learning models available to the UE, there is a risk that limited communication resources (not limited to frequency-direction resources, but also including time-direction resources, for example) will be strained.
そこで、本開示は、このような状況に鑑みてなされたものであり、限られた通信リソースを用いて、端末が利用可能な学習モデルを通知することが出来る端末、このような通知を要求することが出来る基地局の提供を目的とする。 The present disclosure has been made in light of these circumstances, and aims to provide a terminal that can notify a learning model that the terminal can use, using limited communication resources, and a base station that can request such notification.
開示の一態様は、学習モデルに係るパラメータに応じて、複数のカテゴリに分類される前記学習モデルを利用する制御部(制御部230)と、基地局に対して、前記制御部が利用可能な学習モデルの情報として、前記カテゴリを通知する送信部(送受信部210)と、を備える端末である。 One aspect of the disclosure is a terminal that includes a control unit (control unit 230) that uses learning models that are classified into multiple categories according to parameters related to the learning models, and a transmission unit (transmission/reception unit 210) that notifies a base station of the categories as information about learning models that the control unit can use.
開示の一態様は、学習モデルに係るパラメータに応じて、前記学習モデルを複数のカテゴリに分類する制御部(制御部130)と、端末に対して、前記端末が利用可能な学習モデルのカテゴリを要求するメッセージを送信する送信部(送受信部110)と、を備える基地局である。 One aspect of the disclosure is a base station that includes a control unit (control unit 130) that classifies learning models into a plurality of categories according to parameters related to the learning models, and a transmission unit (transmission/reception unit 110) that transmits a message to a terminal requesting categories of learning models that the terminal can use.
以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 The following describes the embodiments with reference to the drawings. Note that identical or similar symbols are used for identical functions and configurations, and descriptions thereof will be omitted as appropriate.
(1)無線通信システムの全体概略構成
図1に示す無線通信システム10は、5Gと呼ばれる方式に従った無線通信システムである。一方で、無線通信システム10は、Beyond 5G、5G Evolutionあるいは6Gと呼ばれる方式に従った無線通信システムであってもよい。
(1) Overall Schematic Configuration of Wireless Communication System The
無線通信システム10は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive Multiple-Input Multiple-Output(Massive MIMO)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、2つの基地局と同時通信を行うデュアルコネクティビティ(DC)などをサポートすることができる。
The
図1に示すように、無線通信システム10は、Next Generation-Radio Access Network(NG-RAN)20に接続される基地局(gNodeB、gNB)100と、gNB100と無線通信を行う端末(User Equipment、UE)200とを含む。NG-RAN20は、図示しないコアネットワーク(CN)に接続される。CNは、Access and Mobility Management Function(AMF)などのNetwork Function(NF)により構成される。なお、無線通信システム10の具体的な構成、例えばgNB100及びUE200の数は、図1に示す例に限定されない。また、NG-RAN20及びCNは、単に「ネットワーク」と表現されてもよく、無線通信システム10に含まれると解されてもよいし、含まれないと解されてもよい。
As shown in FIG. 1, the
gNB100は、UE200に接続するための機能である分散装置(Distributed Unit、DU)と、ネットワークに接続するための機能である中央装置(Central Unit、CU)とを有するCentralized-Radio Access Network(C-RAN)構成の基地局であってもよい。この場合、gNB100は、DUに読み替えられてもよいし、CUに読み替えられてもよい。gNB100は、DUである場合、gNB-DU、Integrated Access and Backhaul(IAB)ノード、無線通信ノードなどと呼ばれてもよい。同様に、gNB100は、CUである場合、gNB-CU、IABドナーなどと呼ばれてもよい。 The gNB100 may be a base station in a Centralized-Radio Access Network (C-RAN) configuration having a distributed unit (DU) that has the function of connecting to the UE200, and a central unit (CU) that has the function of connecting to the network. In this case, the gNB100 may be read as a DU or a CU. If the gNB100 is a DU, it may be called a gNB-DU, an Integrated Access and Backhaul (IAB) node, a wireless communication node, etc. Similarly, if the gNB100 is a CU, it may be called a gNB-CU, an IAB donor, etc.
また、無線通信システム10は、複数の周波数レンジ(FR)に対応してもよい。すなわち、図2に示すように、次のようなFRに対応してもよい。
・FR1:410MHz~7.125GHz
・FR2-1:24.25GHz~52.6GHz
・FR2-2: 52.6GHz超~71GHz
The
・FR1: 410MHz to 7.125GHz
・FR2-1: 24.25GHz to 52.6GHz
・FR2-2: Over 52.6GHz to 71GHz
FR1においては、15、30または60kHzのサブキャリア間隔(SCS)及び5~100MHzの帯域幅(BW)が用いられてもよい。FR2-1においては、60または120kHz(240kHzが含まれてもよい。)のSCS及び50~400MHzのBWが用いられてもよい。 In FR1, a subcarrier spacing (SCS) of 15, 30 or 60 kHz and a bandwidth (BW) of 5 to 100 MHz may be used. In FR2-1, an SCS of 60 or 120 kHz (which may include 240 kHz) and a BW of 50 to 400 MHz may be used.
FR2-2においては、位相雑音の増大を避けるために、より大きなSCSを有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)またはDiscrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing(DFT-S-OFDM)を適用してもよい。 In FR2-2, Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) or Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing (DFT-S-OFDM) with a larger SCS may be applied to avoid increased phase noise.
また、図3に示すように、無線通信システム10における1スロットは、14シンボルで構成される。この構成が維持される場合、SCSが大きく(広く)なるほど、シンボル期間(及びスロット期間)は短くなる。なお、SCSは、図3に示す周波数に限定されず、例えば、480kHz、960kHzなどの周波数であってもよい。
Also, as shown in FIG. 3, one slot in the
また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよく、例えば、28または56シンボルであってもよい。さらに、サブフレームあたりのスロット数は、SCSによって異なってもよい。 In addition, the number of symbols constituting one slot does not necessarily have to be 14 symbols, and may be, for example, 28 or 56 symbols. Furthermore, the number of slots per subframe may differ depending on the SCS.
(2)無線通信システムの機能ブロック構成
(2.1)基地局の機能ブロック構成
図4に示すように、gNB100は、送受信部110と、生成部120と、制御部130とを備える。
(2) Functional block configuration of wireless communication system (2.1) Functional block configuration of base station As shown in FIG. 4, the gNB 100 includes a
送受信部110は、UE200との間で無線信号を送受信する。送受信部110は、UE200または他のgNB100に無線信号を送信する送信部と、UE200または他のgNB100から無線信号を受信する受信部と、を構成してもよい。無線信号には、生成部120が生成するメッセージ、制御部130が設定する学習モデルが含まれる。
The
生成部120は、UE200に送信するメッセージを生成する。メッセージは、UE200に対して、UE200の能力情報(UE Capability Information)を要求するUE Capability Enquiryであってもよいし、ネットワーク側に送信する他のメッセージであってもよい。
The
生成部120は、UE Capability Enquiryにおいて、UE200の能力情報として、UE200が利用可能な学習モデルの情報を要求してもよい。UE200が利用可能な学習モデルの情報は、UE200が利用可能な学習モデルに係るパラメータ(またはパラメータの最大値)であってもよいし、UE200が利用可能な学習モデルに係るパラメータに応じて分類されるカテゴリであってもよい。すなわち、パラメータ(またはパラメータの最大値)及びカテゴリは、UE200が利用可能な学習モデルを示す情報である。
In the UE Capability Enquiry, the
制御部130は、gNB100を制御する。制御部130は、例えば、送受信部110による無線信号の送受信、生成部120によるメッセージの生成を制御する。
The
制御部130は、UE200が利用可能な学習モデルを、その学習モデルに係るパラメータに応じて、複数のカテゴリに分類する。なお、カテゴリは、クラスと呼ばれてもよい。
The
パラメータは、UE200が利用可能な学習モデルのサイズ(容量)、複雑性、数などであってもよい。複雑性は、レイヤ数、ニューロン数、訓練データセットのサイズ、学習モデルの予測に必要な情報数などであってもよい。カテゴリは、上述したパラメータを、その数値に応じて分類したものである。詳細は後述するが、UE200が利用可能な学習モデルは、例えばそのサイズに応じて、A~Cの3つのカテゴリ(クラス)に分類される。 The parameters may be the size (capacity), complexity, number, etc. of learning models available to UE200. The complexity may be the number of layers, the number of neurons, the size of the training data set, the amount of information required to predict the learning model, etc. The categories are classifications of the above-mentioned parameters according to their numerical values. Details will be described later, but the learning models available to UE200 are classified into three categories (classes), A to C, for example, according to their size.
なお、上述したパラメータ及びカテゴリは例示である。パラメータは、UE200が利用可能な学習モデルのバージョンの新旧、学習モデルに設定される有効期間が満了するまでの長さであってもよい。有効期間は、学習モデルが教師データにより訓練されてからの所定の期間であると解されてもよい。なお、有効期間が満了した場合、制御部130は、学習モデルを再学習させ、有効期間を再設定してもよい。カテゴリは、A及びBの2つまたはA~Dの4つであってもよい。
The above-mentioned parameters and categories are merely examples. The parameters may be the version of the learning model available to
制御部130は、UE200に対して、上述した学習モデルを設定する。すなわち、送受信部110は、制御部130がUE200に対して設定する学習モデルを送信する。
The
具体的には、制御部130は、UE200から通知されるカテゴリに基づいて、学習モデルを設定する。なお、動作例の欄でも説明するが、UE200が通知するカテゴリが、例えば上述したカテゴリBである場合、制御部130は、カテゴリBよりも低いカテゴリAに該当する学習モデルを、UE200に対して設定してもよい。これは、同じカテゴリBであっても上述したパラメータ(例えば、学習モデルのサイズ)には幅があるため(例えば、1Mbytes以上100Mbytes未満)、制御部130が設定する学習モデルのサイズ(例えば、50Mbytes)を、UE200が利用できない(例えば、UE200が利用可能な学習モデルが最大30Mbytes)おそれがあるからである。なお、この問題を考えない場合(あるいは、考えなくてもよい場合)、制御部130は、カテゴリBに該当する学習モデルを、UE200に対して設定してもよい。
Specifically, the
(2.2)端末の機能ブロック構成
図5に示すように、UE200は、送受信部210と、生成部220と、制御部230とを備える。
(2.2) Functional Block Configuration of Terminal As shown in FIG. 5 , the
送受信部210は、gNB100との間で無線信号を送受信する。送受信部210は、gNB100に無線信号を送信する送信部と、gNB100から無線信号を受信する受信部と、を構成してもよい。無線信号には、生成部220が生成するメッセージが含まれる。
The
生成部220は、gNB100に送信するメッセージを生成する。メッセージは、UE200の能力情報(UE Capability Information)であってもよいし、gNB100またはネットワーク側に送信する他のメッセージであってもよい。
The
送受信部210は、生成部220が生成するUE200の能力情報を送信することにより、UE200が利用可能な学習モデルの情報を通知してもよい。UE200が利用可能な学習モデルの情報は、UE200が利用可能な学習モデルに係るパラメータ(またはパラメータの最大値)であってもよいし、UE200が利用可能な学習モデルに係るパラメータに応じて分類されるカテゴリであってもよい。すなわち、パラメータ(またはパラメータの最大値)及びカテゴリは、UE200が利用可能な学習モデルを示す情報である。なお、パラメータ及びカテゴリは、gNB100についての説明及び後述する動作例についての説明を参照されたい。
The
制御部230は、UE200を制御する。制御部230は、例えば、送受信部210による無線信号の送受信、生成部220によるメッセージの生成を制御する。
The
制御部230は、学習モデルを利用する。制御部230は、gNB100から設定(送信)される学習モデルをインストールする。UE200は、学習モデルを利用することにより、Channel State Information(CSI)フィードバック、ビーム管理(BM)、測位(positioning)などの処理を最適化することが出来る。
The
UE200は、例えばCSIフィードバックについて、学習モデルによりCSIフィードバックに係るoverheadを削減することができる。さらに、UE200は、学習モデルによりCSIフィードバックの精度を向上することができる。 UE200 can reduce overhead related to CSI feedback, for example, by using a learning model. Furthermore, UE200 can improve the accuracy of CSI feedback by using a learning model.
UE200は、例えばBMについて、学習モデルにより将来の自身にとって品質の良いビームを推測(predict)することが出来る。 UE200 can use a learning model to predict, for example, a BM, a beam of good quality for itself in the future.
UE200は、例えば測位について、実際に測位する代わりに、学習モデルにより将来の自身の位置を推測(predict)することが出来る。さらに、UE200は、学習モデルにより測位の精度を高めることが出来る。 For example, in terms of positioning, UE200 can predict its own future location using a learning model instead of actually performing positioning. Furthermore, UE200 can improve the accuracy of positioning using the learning model.
(3)無線通信システムの動作
(3.1)課題
(3.1.1)課題1
学習モデルに係るパラメータ、例えば学習モデルのサイズ(容量)は、数メガバイトから数ギガバイトまで、多岐にわたる。UE200は、利用可能な学習モデルのサイズをgNB100に通知する必要があるが、通信リソース(周波数方向のリソースに限らず、例えば時間方向のリソースも含む)が限られる場合、利用可能な学習モデルのサイズを詳細に通知することが難しいという問題があった。
(3) Operation of wireless communication system (3.1) Issues (3.1.1)
Parameters related to the learning model, for example, the size (capacity) of the learning model, range widely from several megabytes to several gigabytes. The
(3.1.2)課題2
学習モデルに係るパラメータ、例えば学習モデルの複雑性は、レイヤ数、ニューロン数、訓練データセットのサイズ、学習モデルの予測に必要な情報数など、多岐にわたる。UE200は、利用可能な学習モデルの複雑性をgNB100に通知する必要があるが、通信リソース(周波数方向のリソースに限らず、例えば時間方向のリソースも含む)が限られる場合、利用可能な学習モデルの複雑性を詳細に通知することが難しいという問題があった。
(3.1.2)
Parameters related to the learning model, for example, the complexity of the learning model, vary widely, including the number of layers, the number of neurons, the size of the training data set, the amount of information required for predicting the learning model, etc. The
(3.1.3)課題3
学習モデルに係るパラメータ、例えば(UE200が利用可能な)学習モデルの数は、多岐にわたる。UE200は、利用可能な学習モデルの数をgNB100に通知する必要があるが、通信リソース(周波数方向のリソースに限らず、例えば時間方向のリソースも含む)が限られる場合、利用可能な学習モデルの数を詳細に通知することが難しいという問題があった。
(3.1.3)
The parameters related to the learning model, for example, the number of learning models (available to the UE 200) are diverse. The
(3.2)動作例
(3.2.1)動作例1
図6に示すように、gNB100は、UE200に対して、UE Capability Enquiryを要求することが出来る。すなわち、gNB100は、UE200の能力情報(UE Capability Information)を要求することが出来る。具体的には、UE200が利用可能な学習モデルのサイズを要求することが出来る。
(3.2) Operational Examples (3.2.1) Operational Example 1
As shown in Fig. 6, the
UE200が利用可能な学習モデルのサイズは、例えば、以下のカテゴリ(クラス)に分類される。
・Class A:1Mbytes以下
・Class B:1Mbytes以上100Mbytes未満
・Class C:100Mbytes以上
The sizes of the learning models available to
・Class A: 1Mbytes or less ・Class B: 1Mbytes or more but less than 100Mbytes ・Class C: 100Mbytes or more
図6に示すように、UE200は、gNB100からの要求に応じて、UE200が利用可能な学習モデルのサイズを通知してもよい。この場合、UE200が利用可能な学習モデルのサイズを通知するために、上述したカテゴリを通知してもよい。例えば、UE200が利用可能な学習モデルのサイズが(最大)30Mbytesである場合、Class Bのカテゴリを通知してもよい。 As shown in FIG. 6, UE200 may notify the size of the learning model available to UE200 in response to a request from gNB100. In this case, in order to notify the size of the learning model available to UE200, the above-mentioned category may be notified. For example, if the size of the learning model available to UE200 is (maximum) 30 Mbytes, the Class B category may be notified.
gNB100は、UE200が利用可能な学習モデルのサイズがClass Bのカテゴリであることが通知されるので、Class Aに該当するサイズの学習モデルを、UE200に対して設定することが出来る。なお、上述の通り、gNB100は、Class Bに該当する学習モデルを、UE200に対して設定してもよい。 The gNB100 is notified that the size of the learning model available to the UE200 is in the Class B category, and is therefore able to set a learning model of a size corresponding to Class A for the UE200. As mentioned above, the gNB100 may also set a learning model corresponding to Class B for the UE200.
図7に示すように、UE200は、gNB100からの要求に応じて、UE200が利用可能な学習モデルのサイズを通知するために、サイズの最大値を通知してもよい。例えば、UE200が利用可能な学習モデルのサイズが(最大)30Mbytesである場合、サイズとして30Mbytesを通知してもよい。gNB100は、UE200が利用可能な学習モデルのサイズが最大30Mbytesであることが通知されるので、最大30Mbytesの学習モデルを、UE200に対して設定することが出来る。 As shown in FIG. 7, in response to a request from gNB100, UE200 may notify the maximum size in order to notify the size of the learning model available to UE200. For example, if the size of the learning model available to UE200 is (maximum) 30 Mbytes, the size may be notified as 30 Mbytes. Since gNB100 is notified that the size of the learning model available to UE200 is maximum 30 Mbytes, it can set a learning model of maximum 30 Mbytes for UE200.
以上のように、UE200は、gNB100に対して、UE200が利用可能な学習モデルに係るパラメータ(サイズ)を、簡易なカテゴリとして通知することが出来る。これにより、UE200は、複雑なパラメータの代わりに簡易なカテゴリを通知するので、通信リソースを逼迫させるおそれを低減することが出来る。 As described above, UE200 can notify gNB100 of the parameters (sizes) related to the learning model that UE200 can use as simple categories. This allows UE200 to notify of simple categories instead of complex parameters, reducing the risk of straining communication resources.
(3.2.2)動作例2
図8に示すように、gNB100は、UE200に対して、UE Capability Enquiryを要求することが出来る。すなわち、gNB100は、UE200の能力情報(UE Capability Information)を要求することが出来る。具体的には、UE200が利用可能な学習モデルの複雑性を要求することが出来る。
(3.2.2) Operation example 2
As shown in Fig. 8, the
UE200が利用可能な学習モデルの複雑性は、例えば、以下のカテゴリ(クラス)に分類される。
・Class A:単純
・Class B:複雑
・Class C:非常に複雑
The complexity of the learning model available to
・Class A: Simple ・Class B: Complex ・Class C: Very complex
UE200が利用可能な学習モデルの複雑性は、例えば、学習モデルのレイヤ数、ニューロン数、訓練データセットのサイズ、学習モデルの予測に必要な情報数に依存する。すなわち、複雑性は、これらのパラメータが所定の数値範囲よりも少なければClass Aに分類され、所定の数値範囲に収まればClass Bに分類され、所定の数値範囲よりも多ければClass Cに分類される。 The complexity of the learning model that UE200 can use depends, for example, on the number of layers of the learning model, the number of neurons, the size of the training dataset, and the amount of information required to predict the learning model. That is, if these parameters are less than a specified numerical range, the complexity is classified as Class A; if they are within a specified numerical range, the complexity is classified as Class B; and if they are greater than the specified numerical range, the complexity is classified as Class C.
複雑性は、学習モデルのレイヤ数、ニューロン数、訓練データセットのサイズ、学習モデルの予測に必要な情報数のいずれか1つにより代表されてもよい。すなわち、複雑性は、これらのパラメータ(レイヤ数、ニューロン数、訓練データセットのサイズ、学習モデルの予測に必要な情報数)のいずれか1つにより分類されてもよい。一方で、複雑性は、これらのパラメータを総合的に勘案して分類されてもよい。 Complexity may be represented by any one of the number of layers of a learning model, the number of neurons, the size of a training dataset, and the amount of information required to predict a learning model. In other words, complexity may be classified by any one of these parameters (number of layers, number of neurons, size of a training dataset, and the amount of information required to predict a learning model). On the other hand, complexity may be classified by taking these parameters into consideration comprehensively.
なお、学習モデルのレイヤとは、例えば、ニューラルネットワークにおける各レイヤであってもよい。各レイヤは、入力レイヤ、中間レイヤ、出力レイヤからなるが、主に中間レイヤの数が多岐にわたり、複雑性に関連する。ニューロンとは、ニューラルネットワークにおけるニューロンであってもよい。訓練データセットのサイズとは、ニューラルネットワークを訓練する教師データセットのサイズであってもよい。 Note that the layers of the learning model may be, for example, each layer in a neural network. Each layer is composed of an input layer, an intermediate layer, and an output layer, but the number of intermediate layers varies widely, which is related to the complexity. The neurons may be neurons in a neural network. The size of the training dataset may be the size of the teacher dataset for training the neural network.
学習モデルの予測に必要な情報とは、例えば、学習モデルがUE200の測位に係るモデルである場合、Positioning Reference Signal(PRS)、Sounding Reference Signal(SRS)、Channel State Information Reference Signal(CSI-RS)、SS/PBCH Block(SSB)などの参照信号(または同期信号)のReference Signal Received Power(RSRP)、Reference Signal Received Quality(RSRQ)、Signal-to-Interference-plus-Noise Ratio(SINR)であってもよいし、送受信ポイント(TRP)の位置情報、UE antenna boresight、Angle of Arrival(AoA)、Angle of Departure(AoD)、UE200の位置、移動速度、移動方向、UE200を取り巻く環境に係る情報であってもよい。 Information required for predicting the learning model may be, for example, when the learning model is a model related to the positioning of UE200, the Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal-to-Interference-plus-Noise Ratio (SINR) of reference signals (or synchronization signals) such as Positioning Reference Signal (PRS), Sounding Reference Signal (SRS), Channel State Information Reference Signal (CSI-RS), and SS/PBCH Block (SSB), or may be location information of the transmitting/receiving point (TRP), UE antenna boresight, Angle of Arrival (AoA), Angle of Departure (AoD), the position, moving speed, moving direction of UE200, and information related to the environment surrounding UE200.
図8に示すように、UE200は、gNB100からの要求に応じて、UE200が利用可能な学習モデルの複雑性を通知してもよい。この場合、UE200が利用可能な学習モデルの複雑性を通知するために、上述したカテゴリを通知してもよい。例えば、UE200が利用可能な学習モデルの複雑性が「複雑」である場合、Class Bのカテゴリを通知してもよい。 As shown in FIG. 8, UE200 may notify the complexity of the learning model available to UE200 in response to a request from gNB100. In this case, the above-mentioned categories may be notified in order to notify the complexity of the learning model available to UE200. For example, if the complexity of the learning model available to UE200 is "complex", the category of Class B may be notified.
gNB100は、UE200が利用可能な学習モデルの複雑性がClass Bのカテゴリであることが通知されるので、Class Aに該当する複雑性の学習モデルを、UE200に対して設定することが出来る。なお、上述の通り、gNB100は、Class Bに該当する学習モデルを、UE200に対して設定してもよい。 The gNB100 is notified that the complexity of the learning model available to the UE200 is in the Class B category, and is therefore able to set a learning model of complexity corresponding to Class A for the UE200. As mentioned above, the gNB100 may also set a learning model corresponding to Class B for the UE200.
図9に示すように、UE200は、gNB100からの要求に応じて、UE200が利用可能な学習モデルの複雑性を通知するために、複雑性を示す上述した各パラメータ(レイヤ数、ニューロン数、訓練データセットのサイズ、学習モデルの予測に必要な情報数)の最大値を通知してもよい。例えば、UE200が利用可能な学習モデルのレイヤ数が(最大)100である場合、レイヤ数として100を通知してもよい。gNB100は、UE200が利用可能な学習モデルの複雑性(ここでは、レイヤ数が複雑性を代表するものとする。)が最大100であることが通知されるので、最大100レイヤの学習モデルを、UE200に対して設定することが出来る。 As shown in FIG. 9, in response to a request from gNB100, UE200 may notify the maximum value of each of the above-mentioned parameters indicating complexity (number of layers, number of neurons, size of training data set, amount of information required for predicting the learning model) in order to notify the complexity of the learning model available to UE200. For example, if the number of layers of the learning model available to UE200 is (maximum) 100, the number of layers may be notified as 100. Since gNB100 is notified that the complexity of the learning model available to UE200 (here, the number of layers represents the complexity) is up to 100, it is possible to set a learning model with up to 100 layers for UE200.
複雑性が1つのパラメータによって代表される場合、当該パラメータの最大値のみを通知してもよい。一方で、複雑性が複数のパラメータを総合的に勘案して評価される場合、当該複数のパラメータのそれぞれの最大値を通知してもよい。 If the complexity is represented by one parameter, only the maximum value of that parameter may be notified. On the other hand, if the complexity is evaluated by comprehensively taking into account multiple parameters, the maximum values of each of the multiple parameters may be notified.
以上のように、UE200は、gNB100に対して、UE200が利用可能な学習モデルに係るパラメータ(複雑性)を、簡易なカテゴリとして通知することが出来る。これにより、UE200は、複雑なパラメータの代わりに簡易なカテゴリを通知するので、通信リソースを逼迫させるおそれを低減することが出来る。 As described above, UE200 can notify gNB100 of the parameters (complexity) related to the learning model that UE200 can use as a simple category. As a result, UE200 notifies of the simple category instead of the complex parameters, which can reduce the risk of straining communication resources.
特に、学習モデルの複雑性は、上述した多くのパラメータ(レイヤ数、ニューロン数、訓練データセットのサイズ、学習モデルの予測に必要な情報数)に依存するので、詳細に通知しようとすると通信リソースを逼迫させるおそれが高い。従って、複雑なパラメータの代わりに簡易なカテゴリを通知する有効性が、動作例1及び後述する動作例3に比して高いと言える。 In particular, since the complexity of the learning model depends on many of the parameters mentioned above (number of layers, number of neurons, size of the training dataset, amount of information required for predicting the learning model), there is a high risk of straining communication resources if detailed notification is attempted. Therefore, it can be said that the effectiveness of notifying simple categories instead of complex parameters is higher than that of Operation Example 1 and Operation Example 3 described below.
(3.2.3)動作例3
図10に示すように、gNB100は、UE200に対して、UE Capability Enquiryを要求することが出来る。すなわち、gNB100は、UE200の能力情報(UE Capability Information)を要求することが出来る。具体的には、UE200が利用可能な学習モデルの数を要求することが出来る。
(3.2.3) Operation example 3
As shown in Fig. 10, the
UE200が利用可能な学習モデルの数は、例えば、以下のカテゴリ(クラス)に分類される。
・Class A:1のみ
・Class B:2以上5未満
・Class C:5以上
The number of learning models available to
・Class A: 1 only ・Class B: 2 or more and less than 5 ・Class C: 5 or more
図10に示すように、UE200は、gNB100からの要求に応じて、UE200が利用可能な学習モデルの数を通知してもよい。この場合、UE200が利用可能な学習モデルの数を通知するために、上述したカテゴリを通知してもよい。例えば、UE200が利用可能な学習モデルのサイズが(最大)3である場合、Class Bのカテゴリを通知してもよい。 As shown in FIG. 10, UE200 may notify the number of learning models available to UE200 in response to a request from gNB100. In this case, in order to notify the number of learning models available to UE200, the above-mentioned categories may be notified. For example, if the size of the learning models available to UE200 is (maximum) 3, the Class B category may be notified.
gNB100は、UE200が利用可能な学習モデルのサイズがClass Bのカテゴリであることが通知されるので、Class Aに該当する数の学習モデルを、UE200に対して設定することが出来る。なお、上述の通り、gNB100は、Class Bに該当する学習モデルを、UE200に対して設定してもよい。 The gNB100 is notified that the size of the learning models available to the UE200 is in the Class B category, and can therefore set a number of learning models corresponding to Class A for the UE200. As mentioned above, the gNB100 may also set a learning model corresponding to Class B for the UE200.
図11に示すように、UE200は、gNB100からの要求に応じて、UE200が利用可能な学習モデルの数を通知するために、数の最大値を通知してもよい。例えば、UE200が利用可能な学習モデルの数が(最大)3である場合、数として3を通知してもよい。gNB100は、UE200が利用可能な学習モデルの数が最大3であることが通知されるので、最大3の学習モデルを、UE200に対して設定することが出来る。
As shown in FIG. 11, in response to a request from gNB100, UE200 may notify the maximum number of learning models available to UE200 in order to notify the number of learning models available to UE200. For example, if the number of learning models available to UE200 is (maximum) 3, the
以上のように、UE200は、gNB100に対して、UE200が利用可能な学習モデルに係るパラメータ(数)を、簡易なカテゴリとして通知することが出来る。これにより、UE200は、複雑なパラメータの代わりに簡易なカテゴリを通知するので、通信リソースを逼迫させるおそれを低減することが出来る。 As described above, UE200 can notify gNB100 of the parameters (number) related to the learning model that UE200 can use as simple categories. This allows UE200 to notify of simple categories instead of complex parameters, reducing the risk of straining communication resources.
(4)その他の実施形態
以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(4) Other Embodiments The contents of the present invention have been described above in accordance with the embodiments. However, the present invention is not limited to these descriptions, and it will be obvious to those skilled in the art that various modifications and improvements are possible.
上述した開示において、学習モデルは、Channel State Information(CSI)フィードバック、ビーム管理(BM)、測位(positioning)などの処理を最適化するものとしたが、これに限られない。例えば、UE200の呼損、無線リンク障害(RLF)、不要なハンドオーバ(HO)の最小化を抑制するもの、換言すれば、UE200のモビリティを最適化するものであってもよい。 In the above disclosure, the learning model optimizes processes such as Channel State Information (CSI) feedback, beam management (BM), and positioning, but is not limited to this. For example, the learning model may minimize call losses, radio link failures (RLF), and unnecessary handovers (HO) of UE200, in other words, optimize the mobility of UE200.
上述した開示において、UE200の能力情報の要求および通知は、上述した学習モデルに設定される有効期間に基づいて実行されてもよい。これにより、さらに通信リソースを有効活用することが出来る。 In the above disclosure, the request and notification of the capability information of UE200 may be performed based on the validity period set in the above learning model. This allows for more efficient use of communication resources.
上述した開示において、学習モデルは、AI/MLモデルの他、同様のモデルを意味する別の用語に置換されてもよい。 In the above disclosure, learning model may be replaced with another term meaning a similar model, in addition to the AI/ML model.
上述した開示において、学習モデルは、gNB100が設定または送信するものとしたが、これに限られない。ネットワーク側の他の構成が設定または送信してもよい。 In the above disclosure, the learning model is set or transmitted by the gNB100, but this is not limited to this. It may be set or transmitted by other configurations on the network side.
上述した開示において、学習モデルによる予測は、AI predictionと呼ばれてもよい。 In the above disclosure, predictions made by a learning model may be referred to as AI predictions.
上述した開示において、「利用」は、「ダウンロード」、「インストール」、「処理」、「予測」、「制御」に読み替えられてもよいし、「利用可能」は、「サポート」に読み替えられてもよい。また、「送信」は、「要求」、「設定」、「指示」、「通知」に読み替えられてもよい。 In the above disclosure, "use" may be read as "download," "install," "process," "predict," or "control," and "available" may be read as "support." Additionally, "send" may be read as "request," "configure," "instruct," or "notify."
上述した動作例は、矛盾が生じない限り、組み合わせて複合的に適用されてもよい。 The above operational examples may be combined and applied in a composite manner, provided no contradictions arise.
上述した開示において、設定(configure)、アクティブ化(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。同様に、リンクする(link)、関連付ける(associate)、対応する(correspond)、マップする(map)、は互いに読み替えられてもよく、配置する(allocate)、割り当てる(assign)、モニタする(monitor)、マップする(map)、も互いに読み替えられてもよい。 In the above disclosure, configure, activate, update, indicate, enable, specify, and select may be read as interchangeable. Similarly, link, associate, correspond, and map may be read as interchangeable, and allocate, assign, monitor, and map may also be read as interchangeable.
さらに、固有(specific)、個別(dedicated)、UE固有、UE個別、は互いに読み替えられてもよい。同様に、共通(common)、共有(shared)、グループ共通(group-common)、UE共通、UE共有、は互いに読み替えられてもよい。 Furthermore, specific, dedicated, UE-specific, and UE-individual may be read as interchangeable. Similarly, common, shared, group-common, UE-common, and UE-shared may be read as interchangeable.
上述した実施形態の説明に用いたブロック構成図(図4、図5)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block diagrams (FIGS. 4 and 5) used to explain the above-mentioned embodiments show functional blocks. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and connected directly or indirectly (e.g., using wires, wirelessly, etc.) and these multiple devices. The functional blocks may be realized by combining the one device or the multiple devices with software.
機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。 Functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, regard, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment. For example, a functional block (component) that performs the transmission function is called a transmitting unit or transmitter. As mentioned above, there are no particular limitations on the method of realization for any of these.
さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、当該装置のハードウェア構成の一例を示す図である。図12に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
Furthermore, the above-mentioned gNB100 and UE200 (the device) may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 12 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 12, the device may be configured as a computer device including a
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be interpreted as a circuit, device, unit, etc. The hardware configuration of the apparatus may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
当該装置の各機能ブロック(図4、図5)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (Figures 4 and 5) is realized by any hardware element of the computer device, or a combination of the hardware elements.
また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
Furthermore, each function of the device is realized by loading a specific software (program) onto hardware such as the
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
The
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
The
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
The
通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
The
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
The
また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
Furthermore, each device such as the
さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
Furthermore, the device may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware. For example, the
また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI))、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング)、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in the present disclosure and may be performed using other methods. For example, the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling), broadcast information (Master Information Block (MIB), System Information Block (SIB)), other signals, or a combination of these. Furthermore, RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure may be applied to at least one of systems utilizing Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system (5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), or other suitable systems and next generation systems enhanced therefrom. Multiple systems may also be applied in combination (e.g., a combination of at least one of LTE and LTE-A with 5G).
本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The processing steps, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be reordered unless inconsistent. For example, the methods described in this disclosure present elements of various steps using an example order and are not limited to the particular order presented.
本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In this disclosure, certain operations that are described as being performed by a base station may in some cases be performed by its upper node. In a network consisting of one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by at least one of the base station and other network nodes other than the base station (such as, but not limited to, an MME or S-GW). Although the above example shows a case where there is one other network node other than the base station, it may also be a combination of multiple other network nodes (such as an MME and an S-GW).
情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). They may be input and output via multiple network nodes.
入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table. The input and output information may be overwritten, updated, or appended. The output information may be deleted. The input information may be sent to another device.
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be based on a value represented by one bit (0 or 1), a Boolean value (true or false), or a numerical comparison (e.g., a comparison with a predetermined value).
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched depending on the execution. In addition, notification of specific information (e.g., notification that "X is the case") is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received over a transmission medium. For example, if software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in this disclosure and the terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal (signaling). Also, the signal may be a message. Also, the component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by an index.
上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above-mentioned parameters are not limiting in any respect. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. The various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, terms such as "base station (BS)", "wireless base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", "carrier", and "component carrier" may be used interchangeably. Base stations may also be referred to by terms such as macrocell, small cell, femtocell, and picocell.
基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (e.g., three) cells (also called sectors). If a base station accommodates multiple cells, the overall coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small indoor base station (Remote Radio Head: RRH)).
「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or a base station subsystem that provides communication services within that coverage.
本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably.
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, etc. At least one of the base station and the mobile station may be a device mounted on a moving object, or the moving object itself, etc. The moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned). At least one of the base station and the mobile station may include a device that does not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Furthermore, the base station in the present disclosure may be interpreted as a mobile station (user terminal, the same applies below). For example, each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a mobile station is replaced with communication between multiple mobile stations (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). In this case, the mobile station may be configured to have the functions of a base station. Furthermore, terms such as "uplink" and "downlink" may be interpreted as terms corresponding to communication between terminals (for example, "side"). For example, the uplink channel, downlink channel, etc. may be interpreted as a side channel.
同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, the mobile station in this disclosure may be interpreted as a base station. In this case, the base station may be configured to have the functions of the mobile station.
無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。 A radio frame may be composed of one or more frames in the time domain. Each of the one or more frames in the time domain may be called a subframe.
サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A subframe may further be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology may indicate, for example, at least one of the following: Subcarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame structure, a particular filtering operation performed by the transceiver in the frequency domain, a particular windowing operation performed by the transceiver in the time domain, etc.
スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols in the time domain (e.g., Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.). A slot may be a numerology-based unit of time.
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (or PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (or PUSCH) mapping type B.
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frame, subframe, slot, minislot, and symbol all represent time units for transmitting signals. Radio frame, subframe, slot, minislot, and symbol may each be referred to by a different name that corresponds to the radio frame, subframe, slot, minislot, and symbol.
例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, or one slot or one minislot may be called a TTI. In other words, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms. Note that the unit expressing the TTI may be called a slot, minislot, etc., instead of a subframe.
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the smallest time unit for scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units. Note that the definition of TTI is not limited to this.
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for a channel-encoded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc. When a TTI is given, the time interval (e.g., the number of symbols) in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 In addition, when one slot or one minislot is called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms, and a short TTI (e.g., a shortened TTI, etc.) may be interpreted as a TTI having a TTI length of 1 ms or more but less than the TTI length of a long TTI.
リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers included in an RB may be determined based on the numerology.
また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Furthermore, the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs may also be referred to as a physical resource block (PRB), a sub-carrier group (SCG), a resource element group (REG), a PRB pair, an RB pair, etc.
また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Furthermore, a resource block may be composed of one or more resource elements (RE). For example, one RE may be a radio resource area of one subcarrier and one symbol.
帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP), which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP). One or more BWPs may be configured for a UE within one carrier.
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell," "carrier," etc. in this disclosure may be read as "BWP."
上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures of radio frames, subframes, slots, minislots, and symbols are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connected" may be read as "access." As used in this disclosure, two elements may be considered to be "connected" or "coupled" to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal may also be abbreviated as Reference Signal (RS) or referred to as a pilot depending on the applicable standard.
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with "part," "circuit," "device," etc.
本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using a designation such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient way of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed therein or that the first element must precede the second element in some way.
本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Additionally, the term "or," as used in this disclosure, is not intended to be an exclusive or.
本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, where articles have been added through translation, such as a, an, and the in English, this disclosure may include that the noun following these articles is in the plural form.
本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of actions. "Determining" and "determining" may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), ascertaining something that is deemed to be a "judging" or "determining," and the like. "Determining" and "determining" may also include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and the like. Additionally, "judgment" and "decision" can include considering resolving, selecting, choosing, establishing, comparing, etc., to have been "judged" or "decided." In other words, "judgment" and "decision" can include considering some action to have been "judged" or "decided." Additionally, "judgment" can be interpreted as "assuming," "expecting," "considering," etc.
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."
図13は、車両2001の構成例を示す。図13に示すように、車両2001は、駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。
FIG. 13 shows an example of the configuration of a
駆動部2002は、例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。
The
操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。
The
電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両に備えられた各種センサ2021~2027からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでもよい。
The
各種センサ2021~2028からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
Signals from the
情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両1の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。
The
運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSSなど)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップなど)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)など)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能または自動運転機能を実現する。
The driving
通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031及び車両1の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~2028との間でデータを送受信する。
The
通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。
The
通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などについても無線通信を介して外部装置へ送信する。
The
通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、センサ2021~2028などの制御を行ってもよい。
The
以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described herein. The present disclosure can be implemented in modified and altered forms without departing from the spirit and scope of the present disclosure as defined by the claims. Therefore, the description of the present disclosure is intended to be illustrative and does not have any limiting meaning on the present disclosure.
(付記)
上述した開示は、以下のように表現されてもよい。
(Additional Note)
The above disclosure may be expressed as follows:
第1の特徴は、学習モデルに係るパラメータに応じて、複数のカテゴリに分類される前記学習モデルを利用する制御部と、基地局に対して、前記制御部が利用可能な学習モデルの情報として、前記カテゴリを通知する送信部と、を備える端末である。 The first feature is a terminal equipped with a control unit that uses learning models classified into multiple categories according to parameters related to the learning models, and a transmission unit that notifies a base station of the categories as information on learning models that the control unit can use.
第2の特徴は、第1の特徴において、前記パラメータは、前記学習モデルのサイズ、複雑性、数の少なくとも1つである、端末である。 The second feature is that in the first feature, the parameter is at least one of the size, complexity, and number of the learning models.
第3の特徴は、第2の特徴において、前記学習モデルのレイヤ数、ニューロン数、訓練データセットのサイズ、前記学習モデルの予測に必要な情報数の少なくとも1つである、端末である。 The third feature is that in the second feature, the terminal is characterized in that at least one of the number of layers of the learning model, the number of neurons, the size of the training dataset, and the amount of information required for prediction of the learning model.
第4の特徴は、第3の特徴において、前記送信部は、前記学習モデルのレイヤ数、ニューロン数、訓練データセットのサイズ、前記学習モデルの予測に必要な情報数の少なくとも1つにおいて、前記制御部が利用可能な最大値を通知する、端末である。 The fourth feature is the third feature, in which the transmission unit is a terminal that notifies the control unit of the maximum value available for at least one of the number of layers of the learning model, the number of neurons, the size of the training data set, and the amount of information required for prediction of the learning model.
第5の特徴は、第1の特徴乃至第4の特徴のいずれかにおいて、前記送信部は、前記基地局からの要求に応じて、前記カテゴリを通知する、端末である。 The fifth feature is that in any one of the first to fourth features, the transmitting unit is a terminal that notifies the category in response to a request from the base station.
第6の特徴は、学習モデルに係るパラメータに応じて、前記学習モデルを複数のカテゴリに分類する制御部と、端末に対して、前記端末が利用可能な学習モデルのカテゴリを要求するメッセージを送信する送信部と、を備える基地局である。 The sixth feature is a base station that includes a control unit that classifies learning models into a plurality of categories according to parameters related to the learning models, and a transmission unit that transmits a message to a terminal requesting categories of learning models that the terminal can use.
10 無線通信システム
20 NG-RAN
100 gNB
110 送受信部
120 生成部
130 制御部
200 UE
210 送受信部
220 生成部
230 制御部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
1007 バス
2001 車両
2002 駆動部
2003 操舵部
2004 アクセルペダル
2005 ブレーキペダル
2006 シフトレバー
2007 左右の前輪
2008 左右の後輪
2009 車軸
2010 電子制御部
2012 情報サービス部
2013 通信モジュール
2021 電流センサ
2022 回転数センサ
2023 空気圧センサ
2024 車速センサ
2025 加速度センサ
2026 ブレーキペダルセンサ
2027 シフトレバーセンサ
2028 物体検出センサ
2029 アクセルペダルセンサ
2030 運転支援システム部
2031 マイクロプロセッサ
2032 メモリ(ROM、RAM)
2033 通信ポート
10
100 gNB
110 Transmitter/
210 Transmitting/receiving
2033 communication port
Claims (6)
基地局に対して、前記制御部が利用可能な学習モデルの情報として、前記カテゴリを通知する送信部と、
を備える端末。 A control unit that uses a learning model classified into a plurality of categories according to parameters related to the learning model;
a transmission unit that notifies a base station of the category as information of a learning model that the control unit can use;
A terminal comprising:
請求項1に記載の端末。 The parameter is at least one of the size, complexity, and number of the learning models.
The terminal according to claim 1.
請求項2に記載の端末。 The complexity is at least one of the number of layers of the learning model, the number of neurons, the size of a training data set, and the amount of information required for prediction of the learning model.
The terminal according to claim 2.
請求項3に記載の端末。 The transmission unit notifies the control unit of a maximum value available for at least one of the number of layers of the learning model, the number of neurons, the size of a training dataset, and the amount of information required for prediction of the learning model.
The terminal according to claim 3.
請求項1に記載の端末。 The transmission unit notifies the category in response to a request from the base station.
The terminal according to claim 1.
端末に対して、前記端末が利用可能な学習モデルのカテゴリを要求するメッセージを送信する送信部と、
を備える基地局。 A control unit that classifies the learning model into a plurality of categories according to parameters related to the learning model;
A transmitter that transmits a message to a terminal requesting a category of a learning model available to the terminal;
A base station comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/014004 WO2024209565A1 (en) | 2023-04-04 | 2023-04-04 | Terminal and base station |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/014004 WO2024209565A1 (en) | 2023-04-04 | 2023-04-04 | Terminal and base station |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024209565A1 true WO2024209565A1 (en) | 2024-10-10 |
Family
ID=92971462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/014004 WO2024209565A1 (en) | 2023-04-04 | 2023-04-04 | Terminal and base station |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024209565A1 (en) |
-
2023
- 2023-04-04 WO PCT/JP2023/014004 patent/WO2024209565A1/en unknown
Non-Patent Citations (2)
Title |
---|
BRIAN CLASSON, FUTUREWEI: "Discussion on common AI/ML characteristics and operations", 3GPP DRAFT; R1-2300043; TYPE OTHER; FS_NR_AIML_AIR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, GR; 20230227 - 20230303, 17 February 2023 (2023-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052247197 * |
TCL COMMUNICATION: "Discussions on Common Aspects of AI/ML Framework", 3GPP DRAFT; R1-2209389, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20221010 - 20221019, 30 September 2022 (2022-09-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052277308 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4486000A1 (en) | Communication device and radio communication method | |
WO2023080094A1 (en) | Wireless base station, wireless communication system, and wireless communication method | |
WO2024209565A1 (en) | Terminal and base station | |
WO2024171432A1 (en) | Wireless base station and wireless communication method | |
WO2024171464A1 (en) | Wireless base station and wireless communication method | |
WO2024171461A1 (en) | Terminal and wireless communication method | |
WO2024069903A1 (en) | Terminal and communication method | |
WO2024100901A1 (en) | Base station | |
WO2024069904A1 (en) | Terminal and communication method | |
WO2024095456A1 (en) | Wireless base station | |
WO2024100745A1 (en) | Terminal, base station, and communication method | |
WO2024189927A1 (en) | Terminal and power supply method | |
WO2024181301A1 (en) | Base station | |
WO2024161657A1 (en) | Terminal and positioning method | |
WO2024161656A1 (en) | Terminal and positioning method | |
WO2024157485A1 (en) | Terminal and positioning method | |
WO2024075192A1 (en) | Terminal, base station, and communication method | |
WO2024100905A1 (en) | Terminal, base station, and communication method | |
WO2024142334A1 (en) | Terminal and power supply method | |
WO2024100892A1 (en) | Terminal, base station and communication method | |
WO2025022641A1 (en) | Base station and radio communication method | |
WO2024209683A1 (en) | Wireless base station and wireless communication method | |
WO2024202051A1 (en) | Base station | |
WO2025032834A1 (en) | Terminal, base station, and communication method | |
WO2024214302A1 (en) | Terminal and radio communication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23931977 Country of ref document: EP Kind code of ref document: A1 |