[go: up one dir, main page]

WO2024204823A1 - Deep brain stimulation device - Google Patents

Deep brain stimulation device Download PDF

Info

Publication number
WO2024204823A1
WO2024204823A1 PCT/JP2024/013333 JP2024013333W WO2024204823A1 WO 2024204823 A1 WO2024204823 A1 WO 2024204823A1 JP 2024013333 W JP2024013333 W JP 2024013333W WO 2024204823 A1 WO2024204823 A1 WO 2024204823A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
drive signal
deep brain
input
Prior art date
Application number
PCT/JP2024/013333
Other languages
French (fr)
Japanese (ja)
Inventor
篤 南部
伸彦 畑中
聡美 知見
オリビエ ダービン
Original Assignee
大学共同利用機関法人自然科学研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大学共同利用機関法人自然科学研究機構 filed Critical 大学共同利用機関法人自然科学研究機構
Publication of WO2024204823A1 publication Critical patent/WO2024204823A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light

Definitions

  • This disclosure relates to a deep brain stimulation device.
  • Deep brain stimulation is a method to reduce symptoms exhibited by patients with movement disorders (Parkinson's disease, dystonia, dyskinesia, essential tremor, etc.) by electrically stimulating deep parts of the brain, such as the thalamus and the basal ganglia, including the subthalamic nucleus and globus pallidus.
  • the basal ganglia together with the motor cortex of the cerebral cortex, which outputs motor commands to muscles, form a loop circuit (neural network) via the thalamus, and any impairment of function within the loop will result in movement disorders.
  • the basal ganglia are a group of nerve cells located deep within the cerebrum, and consist of the striatum, globus pallidus, subthalamic nucleus, substantia nigra, etc.
  • Known deep brain stimulation therapies include adaptive deep brain stimulation (aDBS) and the conventional constant deep brain stimulation (cDBS), which is widely used in clinical practice.
  • aDBS adaptive deep brain stimulation
  • cDBS constant deep brain stimulation
  • activity in the low beta band (13 Hz to 30 Hz) in the basal ganglia, particularly the subthalamic nucleus may serve as a biomarker for adaptive deep brain stimulation, but further improvements are required.
  • Patent Documents 1 to 4 are known as technologies related to deep brain stimulation.
  • Non-Patent Document 1 discloses adaptive deep brain stimulation technology.
  • the inventors of the present application have conducted extensive research into the mechanism of decreased movement in Parkinson's disease. As a result, it has become clear that in Parkinson's disease, motor commands are prevented from passing through the basal ganglia, making it impossible to initiate movement.
  • the electrical potential in the brain changes before the actual movement of a body part.
  • the main area that the inventors of the present application focused on as the area where the electrical potential change occurs is the primary motor cortex.
  • the electrical potential of the higher motor cortex (supplementary motor area, premotor cortex) also correlates with movement. Therefore, if this change in the electrical potential in the brain is detected, a predetermined signal processing is performed on the detection result, and the subthalamic nucleus, etc. is stimulated in accordance with the passage of the motor command, making it easier for the motor command to pass, it is possible to treat movement disorders such as Parkinson's disease.
  • the deep brain stimulation device disclosed herein comprises an EEG detector, a drive signal generating device that receives an output signal from the EEG detector, extracts signal components in a frequency band that includes a center frequency selected from 80 Hz to 200 Hz and has a lower limit frequency at least higher than 30 Hz, determines the frequency of waveforms among the extracted signal components that have an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time, and generates a drive signal having a frequency and amplitude according to the frequency, and a deep brain stimulation element that is provided with the drive signal output from the drive signal generating device.
  • the gamma 2 frequency band of the cortical EEG in the primary motor cortex is a frequency band that includes a center frequency selected from 80 Hz to 200 Hz, and has a lower limit frequency that is at least higher than 30 Hz.
  • the signal components in the gamma 2 frequency band in the primary motor cortex are extracted and detected from the output signal of the EEG detector as the potential before the actual movement of the body part (motor preparation potential).
  • the extracted signal components are subjected to a specified signal processing to generate a drive signal for stimulation, it is possible to obtain an effective treatment effect for movement disorders (Parkinson's disease) with little power consumption.
  • the above-mentioned predetermined signal processing is a process of determining the frequency of waveforms among the extracted signal components whose intensity is equal to or exceeds a reference value and whose duration is equal to or exceeds a reference time, and generating a drive signal having a frequency and amplitude according to the frequency.
  • the number of times that a waveform that satisfies the condition occurs within a certain period of time is determined, and the frequency and amplitude of the drive signal are determined according to this number of occurrences.
  • the drive signal generating device can preferably generate a drive signal such that the higher the frequency, the higher the frequency of the drive signal, and the higher the frequency, the larger the amplitude of the drive signal. In other words, both the frequency and amplitude of the drive signal monotonically increase with frequency.
  • an upper limit can be set for the frequency and amplitude of the drive signal, and in this case, the frequency and amplitude will saturate if the upper limit is exceeded. Therefore, it is not necessary to always monotonically increase in the signal processing.
  • the frequency and amplitude may increase not only linearly but also nonlinearly. Even with nonlinear control, stimulating the subthalamic nucleus etc. makes it easier for motor commands to pass, making it possible to treat movement disorders.
  • the frequency and amplitude can be changed not only continuously but also discretely with respect to the frequency. Even with discrete control, stimulating the subthalamic nucleus etc. makes it easier for motor commands to pass, making it possible to treat movement disorders.
  • An analog filter or a digital filter can be used to extract the above frequency band in the drive signal generating device.
  • a window discriminator can be placed in the subsequent stage.
  • the window discriminator generates one pulse voltage and outputs a pulse signal every time a waveform whose intensity is equal to or greater than a reference value and whose duration is equal to or greater than a reference time is detected.
  • the control device can control the frequency and amplitude of the drive signal according to the frequency of the pulse signal output from the window discriminator.
  • the output signal from the EEG detector can be digitized and input to the control device to generate a drive control signal having a frequency and amplitude according to the frequency, and this can be input to the drive circuit.
  • the drive circuit can use an analog isolator that has an input section to which a drive control signal from a control device is input, and an output section that generates a drive signal isolated from the input based on the drive control signal. Since isolated signal transmission is performed between the input and output sections, the maximum value of the drive signal can be limited on the output section side, improving safety.
  • the isolator has the function of electrically isolating between its input terminal and output terminal, regardless of the type of input, such as direct current or pulse current.
  • the drive signal generating device is housed in a sealed container, and a signal line extending outside the sealed container is connected to the drive signal output terminal of the drive signal generating device, and the signal line is preferably connected to the deep brain stimulation element. Since the drive signal generating device that performs electrical processing is housed inside the sealed container, it is possible to protect the drive signal generating device. It is also possible to implant the sealed container inside the body.
  • the deep brain stimulation device of the present disclosure comprises an EEG detector, a drive signal generating device that extracts signal components of a predetermined frequency band from the output signal of the EEG detector, determines the frequency of waveforms among the extracted signal components whose intensity is equal to or exceeds a reference value and whose duration is equal to or exceeds a reference time, and generates a drive signal having a frequency and amplitude corresponding to the frequency, and a deep brain stimulation element to which the drive signal output from the drive signal generating device is applied.
  • the signal components of the predetermined frequency band are frequency bands that correlate with movement, and are preferably the frequency bands described above.
  • the drive signal generating device preferably generates a drive signal such that the higher the frequency, the higher the frequency of the drive signal, and the higher the frequency, the larger the amplitude of the drive signal.
  • the deep brain stimulation device disclosed herein comprises an EEG detector, a drive signal generating device that extracts signal components of a predetermined frequency band from the output signal of the EEG detector, determines the frequency of waveforms among the extracted signal components whose intensity is equal to or exceeds a reference value and whose duration is equal to or exceeds a reference time, and generates a drive signal having a frequency or amplitude corresponding to the frequency, and a deep brain stimulation element to which the drive signal output from the drive signal generating device is applied.
  • the signal components of the predetermined frequency band are frequency bands that correlate with movement, and preferably the above-mentioned frequency bands. Increasing the frequency and amplitude of the drive signal increases the power supplied to the deep brain stimulation element, and increases the amount of stimulation. Even when only one of these parameters is increased, a therapeutic effect can be expected, but it is more effective to increase both parameters.
  • This deep brain stimulation device makes it possible to obtain therapeutic effects while reducing power consumption.
  • FIG. 1 is a diagram showing a deep brain stimulation apparatus according to a first embodiment.
  • FIG. 2 is a timing chart of the input signal SF and the pulse output signal SP of the window discriminator.
  • FIG. 3 is a plan view of the deep brain stimulation element (FIG. 3(A)) and an enlarged view of the tip portion (FIG. 3(B)).
  • FIG. 4 is a graph showing temporal changes in EEG signals in the beta, gamma 1, and gamma 2 bands (FIG. 4(A) shows data for monkeys A and B combined, FIG. 4(B) shows data for monkey A, and FIG. 4(C) shows data for monkey B).
  • FIG. 4(A) shows data for monkeys A and B combined
  • FIG. 4(B) shows data for monkey A
  • FIG. 4(C) shows data for monkey B).
  • FIG. 5 is a graph showing the success rate of operations that satisfy the criteria conditions in the DBS-OFF, aDBS, and cDBS states.
  • FIG. 6 is a graph showing the power of the output signal in the gamma 2 band during the premovement, movement, and return periods (FIG. 6(A) shows data for monkeys A and B combined, FIG. 6(B) shows data for monkey A, and FIG. 6(C) shows data for monkey B).
  • FIG. 7 is a graph showing the time required to complete an operation in the DBS-OFF, aDBS, and cDBS states, normalized with respect to the DBS-OFF state.
  • FIG. 8 is a graph showing the ratio of the charge supplied by the aDBS to the charge supplied by the cDBS.
  • FIG. 9 is a diagram showing a deep brain stimulation apparatus according to the second embodiment.
  • FIG. 10 is a diagram showing a deep brain stimulation device as a medical device.
  • FIG. 11 is a diagram showing a deep brain stimulation device equipped with a plurality of detection elements.
  • FIG. 12 is a diagram showing a circuit configuration for receiving and processing a plurality of electroencephalogram signals.
  • FIG. 13 is a diagram showing a circuit configuration of the detection element.
  • FIG. 14 is a block diagram of a control device to which a plurality of electrocorticogram signals are input.
  • FIG. 15 is a block diagram of a control device to which a plurality of electrocortical signal are input.
  • FIG. 16 is a graph (A) showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal, and a graph (B) showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal.
  • FIG. 17 is a graph (A) showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal, and a graph (B) showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal.
  • FIG. 17 is a graph (A) showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal, and a graph (B) showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal.
  • FIG. 18 is a graph (A) showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal, and a graph (B) showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal.
  • FIG. 19 is a graph (A) showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal, and a graph (B) showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal.
  • FIG. 19 is a graph (A) showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal, and a graph (B) showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal.
  • FIG. 20 is a graph (A) showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal, and a graph (B) showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal.
  • FIG. 1 is a diagram showing a deep brain stimulation device 100 according to the first embodiment.
  • the deep brain stimulation device 100 comprises an EEG detector 1, a drive signal generating device 10, and a deep brain stimulation element 8 to which the drive signal output from the drive signal generating device 10 is applied.
  • the deep brain stimulation element 8 is a deep brain stimulation probe (electrode) that applies an electrical signal to a target area.
  • the deep brain stimulation element 8 can also be an element that converts an electrical signal into an optical (electromagnetic wave) signal and applies it to the target area.
  • the drive signal generating device 10 receives the output signal of the EEG detector 1, generates a drive signal, and supplies the drive signal to the deep brain stimulation element 8.
  • the drive signal generating device 10 includes a filter 2 (analog filter), a window discriminator 3, a first interface 4, a control device 5, a second interface 6, and a drive circuit 7 (analog isolator).
  • the electroencephalogram detector 1 receives an electrocortical electroencephalogram signal from the motor cortex of the cerebral cortex.
  • the output signal of the electroencephalogram detector 1 is input to the filter 2, which extracts signal components in a predetermined frequency band (including the ⁇ 2 band).
  • the output signal of the filter 2 is input to the window discriminator 3.
  • the window discriminator 3 generates a pulse signal S P from the extracted signal components according to the occurrence frequency of events correlated with brain activity. Specifically, the window discriminator 3 generates one pulse voltage and outputs the pulse signal S P every time one waveform having an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time is detected.
  • the control device 5 receives the pulse signal output from the window discriminator 3.
  • the control device 5 processes the pulse signal S P to generate a drive control signal S C according to the frequency of event occurrence.
  • the drive control signal S C has a frequency and amplitude according to the frequency of the pulse signal S P.
  • the drive circuit 7 generates a drive signal S D having a frequency and amplitude according to the drive control signal S C output from the control device 5 and electrically insulated from S C.
  • the drive signal S D (stimulation pulse) is synchronized with the drive control signal S C and is input to the deep brain stimulation element 8.
  • the subthalamic nucleus STN that the deep brain stimulation element 8 contacts is stimulated by an electrical signal. This stimulation reduces neurological movement disorders and can treat movement disorders. This will be described in detail below.
  • the EEG detector 1 includes detection elements (first detection element 1A, second detection element 1B) arranged in the primary motor area M1 of the motor cortex, a preamplifier 1C to which the output signals of the detection elements are input, and a main amplifier 1D (biological signal amplifier) connected to the rear stage of the preamplifier 1C.
  • the first detection element 1A and the second detection element 1B form a bipolar electrode.
  • Each of these pair of electrodes is a stainless steel conductor, and is covered with an insulating material, fluororesin (polytetrafluoroethylene), except for the tip. The distance between the pair of electrodes is 2 mm.
  • the pair of electrodes is connected to the positive and negative input terminals of the preamplifier 1C in the amplifier, respectively.
  • the EEG detector 1 in this example uses a bipolar induction detection method, but other detection methods such as unipolar induction can also be used.
  • the EEG detector 1 detects cortical EEG (local field potential (LFP)) in the motor cortex (primary motor area M1) and outputs an EEG signal.
  • cortical EEG local field potential (LFP)
  • LFP local field potential
  • Filter 2 is a bandpass filter that receives the output signal from EEG detector 1, extracts components in the gamma 2 wave frequency band (80 Hz to 200 Hz), and outputs the extracted signal.
  • the frequency band to be extracted (80 Hz to 200 Hz) is not an absolute range, but rather a frequency band that is highly correlated with brain activity immediately before the movement of a body part may be selected.
  • the upper limit frequency that filter 2 passes is not limited to 200 Hz, but since unnecessary frequency components become noise, it is desirable to block them if not necessary.
  • a portion of gamma 1 waves (30 Hz to 80 Hz) can also be included in the frequency band extracted by filter 2, but the lower limit frequency that filter 2 passes is set to at least a frequency higher than the upper limit frequency (30 Hz) of beta waves (13 Hz to 30 Hz).
  • the lower limit frequency that filter 2 passes can be set to 40 Hz or higher, 50 Hz or higher, 60 Hz or higher, or 70 Hz or higher. In order to clearly distinguish between gamma 2 waves and gamma 1 waves, the lower limit frequency that filter 2 passes can be set to 80 Hz or higher, 90 Hz or higher, or 100 Hz or higher.
  • a center frequency f C between 80 Hz and 200 Hz as the ⁇ 2 frequency band of the cortical electroencephalogram in the primary motor cortex, and to extract a frequency band including the selected center frequency f C.
  • the filter 2 extracts a band of the center frequency fc ⁇ the allowable frequency deviation ⁇ f, the frequency band is given by fc ⁇ f.
  • the frequency band is the center frequency fc (120 Hz) ⁇ the allowable frequency deviation ⁇ f (80 Hz).
  • the frequency band is the center frequency fc (130 Hz) ⁇ the allowable frequency deviation ⁇ f (70 Hz).
  • the frequency band is the center frequency fc (140 Hz) ⁇ the allowable frequency deviation ⁇ f (60 Hz).
  • the frequency band is the center frequency fc (160 Hz) ⁇ the allowable frequency deviation ⁇ f (40 Hz).
  • the frequency band width fw is exemplified above as 80 Hz to 160 Hz, but brain activity can be detected even if the frequency band width fw is set smaller or larger.
  • the window discriminator 3 receives the output signal S F from the filter 2. During brain activity, nerve cells in the brain generate pulse-like action potentials, and the superposition of these potentials is considered to constitute ⁇ 2 of the cortical electroencephalogram. The window discriminator 3 monitors the components of the received signal and determines whether the signal components satisfy the following criterion condition ( ⁇ ):
  • the pulse signal S P has information on the frequency of signal components (waveform BS of an electroencephalogram signal that satisfies the reference condition ( ⁇ )) that satisfy the above-mentioned reference condition ( ⁇ ). In short, the number of occurrences (frequency) of the waveform BS that satisfies the reference condition within a certain period of time is found.
  • the pulse signal S P output from the window discriminator 3 is input to the control device 5 via the first interface 4.
  • the control device 5 processes the received pulse signal S P to generate a drive control signal S C , and inputs it to the drive circuit 7 via the second interface 6. Specifically, the control device 5 generates a drive control signal S C having a frequency and amplitude according to the number of pulse voltages P included in a unit period (the frequency of signal components that satisfy the reference condition ( ⁇ ) included in the output signal of the filter 2).
  • the drive signal S D is synchronized with the drive control signal S C , and the frequency f of the drive signal S D is the same as the frequency f of the drive control signal S C.
  • the amplitude A of the drive signal S D is proportional to the amplitude A of the drive control signal S C.
  • the moving average ⁇ TTL of the number of pulses included in the judgment period T P is used.
  • the control device 5 increases the frequency f and amplitude A of the drive control signal S C so as to monotonically increase (e.g., proportionally) with respect to the number of pulses.
  • the frequency f saturates when it exceeds an upper limit frequency f limit (e.g., 150 Hz) and does not increase even if the number of pulses increases.
  • Gain f is a coefficient that determines the slope of this monotonically increasing function (linear function).
  • the control device 5 increases the amplitude A of the drive control signal SC so as to monotonically increase (e.g., proportionally) with respect to the number of pulses.
  • the amplitude A saturates when it exceeds an upper limit amplitude A limit (e.g., 1.5 mA) and does not increase even if the number of pulses increases.
  • Threshold f 50 Hz
  • Gain A is a coefficient that determines the slope of this monotonically increasing function (linear function). Note that the frequency threshold Threshold f and the amplitude threshold Threshold A are each greater than 0, and it is preferable that the drive signal S D is provided to the deep brain stimulation element 8 even when the subject is in a resting period.
  • Gain f and Gain A are set so that the frequency and amplitude are maintained lower than the predetermined upper limit, and even if the input is maximized in normal use, the output does not reach the upper limit.
  • the drive control signal S C has a frequency f and an amplitude A, and the duration of the pulse can be set to, for example, 60 microseconds.
  • the above relational expression is a function in which the frequency f and the amplitude A increase linearly according to the pulse generation frequency (average value ⁇ TTL), but other function expressions can also be used. That is, it is sufficient that the frequency f and the amplitude A increase monotonically according to the pulse generation frequency (average value ⁇ TTL).
  • the frequency and the amplitude increase nonlinearly with the increase in the frequency. Even in nonlinear control, stimulating the subthalamic nucleus or the like makes it easier for motor commands to pass, so that movement disorders can be treated.
  • the frequency and the amplitude can be changed not only continuously but also discretely with respect to the frequency. Even in discrete control, stimulating the subthalamic nucleus etc. makes it easier for motor commands to pass through, making it possible to treat movement disorders.
  • the drive signal generating device 10 extracts the signal components of the frequency band corresponding to the above-mentioned gamma 2 wave, obtains the frequency of the waveform of the signal components that satisfy the reference condition ( ⁇ ), and generates a drive signal S D having a frequency corresponding to the frequency.
  • the drive signal generating device 10 extracts the signal components of the frequency band corresponding to the above-mentioned gamma 2 wave, obtains the frequency of the waveform of the signal components that satisfy the reference condition ( ⁇ ), and generates a drive signal S D having an amplitude corresponding to the frequency.
  • the drive circuit 7 will now be explained.
  • the drive circuit 7 generates a drive signal S D synchronized with the input drive control signal S C and inputs the drive signal S D to the deep brain stimulation element 8.
  • the drive signal S D in this example supplies a drive current to the deep brain stimulation element 8, and is a current signal having the same frequency as the drive control signal S C, which is a voltage pulse signal, and the amplitude of this current signal is proportional to the amplitude of the voltage pulse signal.
  • the drive circuit 7 (analog isolator) includes an input section to which the drive control signal S C is input, and an output section to which the drive control signal S C is transmitted in an electrically insulated state from the input section and which generates the drive signal S D. That is, these input section and output section are isolated from each other so that no current flows directly between them.
  • the signal transmission structure between the input section and the output section includes a structure using a transformer and a structure using a photocoupler.
  • the use of an isolator has the advantage that the influence on the drive signal S D can be suppressed in the event of a malfunction on the input section side. That is, the maximum value of the drive signal S D can be limited on the output section side, improving safety. It is also possible to adopt a circuit other than an analog isolator as the drive circuit 7.
  • Figure 3 shows a plan view of the deep brain stimulation element 8 (Figure 3(A)) and an enlarged view of the tip portion ( Figure 3(B)).
  • the deep brain stimulation element 8 has a tip 8A that contacts the deep brain, an input 8B to which a drive signal is input, and a support 8C that connects the tip 8A and the input 8B.
  • the surface of the support 8C is covered with a coating film 8a made of resin (e.g., polyimide), and a conductor of a high melting point metal (e.g., tungsten) runs inside the coating film 8a.
  • resin e.g., polyimide
  • a conductor of a high melting point metal e.g., tungsten
  • the tip portion 8A is equipped with a first stimulation portion 8b, a second stimulation portion 8c, and a third stimulation portion 8d, and these stimulation portions are provided on the surface of a cylindrical body 8e made of resin (e.g., epoxy resin).
  • a tip potential detection portion 8f is exposed from the tip of the cylindrical body 8e.
  • the tip potential detection portion 8f is made of a high impedance electrode (up to 500 k ⁇ ).
  • the first stimulation portion 8b, the second stimulation portion 8c, and the third stimulation portion 8d are each made of a low impedance electrode (up to 10 k ⁇ ).
  • the center-to-center distance between the first stimulation portion 8b, the second stimulation portion 8c, and the third stimulation portion 8d is 0.75 mm.
  • the first stimulating section 8b there are multiple conductors connected to the first stimulating section 8b, the second stimulating section 8c, the third stimulating section 8d, and the tip potential detecting section 8f. These conductors are electrically insulated from each other and are each connected to multiple conductors that pass through the inside of the coating film 8a.
  • the first stimulating section 8b, the second stimulating section 8c, and the third stimulating section 8d are made of an electrode material that is less reactive to chemical substances in the body.
  • the electrode material a high melting point metal, platinum, or an alloy containing at least one metal selected from these metal materials may be used.
  • a platinum-iridium alloy may be used as the electrode material.
  • Each stimulating section has a shape formed by wrapping a wire made of an electrode material around the cylindrical body 8e multiple times (e.g., eight times), but may have other shapes as long as it can provide electrical stimulation.
  • the material of the tip potential detecting section 8f is also made of an electrode material that is less reactive to chemical substances in the body, like the material of the first to third stimulating sections.
  • the tip potential detecting section 8f can be used to confirm whether the deep brain stimulating element is located in the target area (subthalamic nucleus STN), and can be used to measure neural activity.
  • a drive signal (drive current) is supplied to the first stimulator 8b, the second stimulator 8c, and the third stimulator 8d
  • electrical stimulation is given to the parts where they are in contact. It is not necessary to supply a drive current to all of the stimulators. That is, after inserting the deep brain stimulation element 8 into the brain, a magnetic resonance imaging (MRI) device is used to measure the positions of these stimulators (electrodes), and two of the three stimulators that are in appropriate positions are selected, and a drive signal is given to the selected stimulators.
  • MRI magnetic resonance imaging
  • the task began after the monkey placed its hand on the home key for at least 1 second.
  • the monkey was stimulated (for 0.3 seconds) by a visual (LED light) and an auditory (buzzer) signal, the monkey was required to reach and touch the target within 6 seconds. If the task was successful, the monkey was rewarded with a drop of water 0.1 seconds after touching the target. The monkey was required to return its hand to the home key in 12 seconds. If the monkey was unable to return its hand to the home key, the experimenter placed the monkey's hand on the home key to start the next trial.
  • the rest period is a period during which no task is being performed, specifically the period from one second before the onset of stimulation by visual and auditory signals until the onset of said stimulation.
  • the premovement period begins at the onset of the visual and auditory cues and ends when the hand is released from the home key.
  • a movement period begins when the monkey removes his hand from the home key and ends when he touches the target.
  • the return period began when the monkey released his hand from the target and ended when he returned his hand to or near the home key.
  • a “series” was defined as 25 trials in which the monkeys successfully reached the target, regardless of whether they returned to the home key. Monkeys were deprived of water for 24 h prior to the start of the experiment, and water intake was regulated by fruit and subcutaneous fluid supply as needed.
  • a detection element for detecting electrocortical electroencephalogram signals was implanted in the head.
  • the head was fixed in a stereotaxic frame, and then the skull above the primary motor cortex M1 on the opposite side to the hand used to perform the task was removed.
  • Ketamine hydrochloride 5-8 mg/kg (body weight), intramuscular injection
  • xylazine hydrochloride 0.5-1 mg/kg (body weight), intramuscular injection
  • the electrodes which served as the detection elements for the EEG signals, were made of 200 ⁇ m diameter polytetrafluoroethylene-coated stainless steel wires (California Fine Wire).
  • the wires were paired and impedance matched ( ⁇ 1 k ⁇ ) to ensure optimal common-mode rejection.
  • LFPs local field potentials
  • the wires were implanted in layers III-V of the upper limb region of the primary motor cortex M1 with a center-to-center distance of 2 mm and mechanically fixed with acrylic resin.
  • a rectangular plastic chamber covering the primary motor cortex M1 was fixed to the skull with acrylic resin.
  • the first circuit uses a brain-machine interface and is the online processing system shown in Figure 1. This circuit modulates the control parameters of the stimulation pulses (STN-DBS parameters) as a function of ⁇ 2 activity from the primary motor cortex M1.
  • STN-DBS parameters the control parameters of the stimulation pulses
  • the second circuit is the offline processing system.
  • This circuit is a data recorder that digitizes and stores data from the headstage, brain-machine interface, deep brain stimulator, and behavioral device for offline analysis of the experimental results.
  • the local field potential (LFP) measured in the primary motor cortex M1 was amplified (10,000 times, frequency band 50-300 Hz) using a biosignal amplifier (Nihon Kohden Corporation, product name MEG-6116/AB610J), and the amplifier's output signal was then input to a filter (NF Corporation, product name FV-664) to extract the signal components indicating ⁇ 2 activity (80-200 Hz).
  • LFP local field potential
  • LFPs local field potentials
  • the pulse signal S P (transistor-transistor logic (TTL) pulse) generated by the window discriminator as a function of the gamma 2 band activity was sent to the control device (computer) via a first interface (digital input/analog output card: PCI6713 (National Instruments)).
  • TTL transistor-transistor logic
  • the instantaneous frequency of the ⁇ 2 drive pulse was moved and averaged over a 50 ms window to modulate the frequency f and amplitude A of the drive control signal S C (drive signal S D ) for deep brain stimulation.
  • the drive control signal S C generated in the control device is a pulse signal having a frequency f, an amplitude A, and a pulse width of 60 ⁇ s.
  • This pulse signal was input to a drive circuit (analog isolator: Dagan, BSI-950 (product name)) via a second interface (digital input/analog output card: PCI6713 (manufactured by National Instruments)), and output from the drive circuit as a drive signal S D , which was supplied to the deep brain stimulation element.
  • a drive circuit analog isolator: Dagan, BSI-950 (product name)
  • PCI6713 digital input/analog output card
  • the pulse width of the drive control signal S C was set to 60 microseconds ( ⁇ s) in both aDBBS and cDBS. This pulse width does not cause artifacts in the local field potential (LFP) of the primary motor cortex M1 and has been applied clinically. Because there is debate about the clinical effects associated with low-frequency stimulation, the frequency range of the drive control signal S C (drive signal S D ) was set to 50-150 Hz.
  • the amplitude A of the drive signal S D (stimulation pulse, drive pulse current) in the experiment was 1 mA in cDBS and 0.5-1.5 mA in aDBS.
  • the therapeutic effect was measured under the following conditions (a) to (c).
  • the frequency of the drive signal supplied to the deep brain stimulation element was 100 Hz
  • the amplitude was 1 mA
  • the pulse width was 60 microseconds ( ⁇ s).
  • DBS-OFF Condition without deep brain stimulation
  • aDBS Conditions for performing adaptive deep brain stimulation
  • cDBS Condition for constant deep brain stimulation
  • a deep brain stimulator deep brain stimulation probe (electrode) as shown in Figure 3 was prepared and inserted vertically or obliquely (inclined 36 degrees forward from the vertical in the monkey's sagittal plane) into the subthalamic nucleus (STN) along the same trajectory in each experiment.
  • Multi-unit recording was performed from the high-impedance tip potential detection unit located at the tip of the deep brain stimulator, and the sensory response to passive joint movement of the arm was recorded to identify the dorsolateral motor subregion.
  • Two adjacent stimulating units (contact electrodes) included in the deep brain stimulator were placed in this motor region, and bipolar stimulation was performed through these stimulating units.
  • LFPs local field potentials
  • LFPs local field potentials
  • the extracted signals were stored in the memory of the control device (computer) and downsampled to 500 Hz. The signals were checked by the experimenter, and those containing artifacts longer than 3% in duration were excluded from the analysis.
  • LFPs local field potentials
  • DBS-OFF deep brain stimulation
  • a dynamic autoregressive model based on the Kalman smoother was used to track the instantaneous frequency bands of local field potentials (LFPs) from the primary motor cortex (beta band (13-30 Hz), gamma1 band (30-80 Hz), gamma2 band (80-200 Hz)).
  • Figure 4 is a graph showing the change over time in activity in the beta, gamma 1, and gamma 2 bands.
  • Figure 4(A) shows data for monkey A and monkey B combined
  • Figure 4(B) shows data for monkey A
  • Figure 4(C) shows data for monkey B.
  • the activity of the primary motor cortex in the beta, gamma1, and gamma2 bands represents the cortical EEG signal (voltage) in each frequency band, and changes during the task periods (rest period (Rest), premovement period (Premovement), movement period (Movement), and return period (Return)) under DBS-OFF conditions. These four task periods were normalized in time, with each period set to 100 time units and linked on the graph (400 time units in total). The activity of the beta, gamma1, and gamma2 bands was calculated using a Kalman filter and normalized using the median value during the rest period (Rest).
  • the data in the middle row of the graph indicates the median, and the area between the data in the upper and lower rows indicates the interquartile range (25th to 75th percentile). Additionally, the partially interrupted horizontal line at the bottom during the premovement to return periods indicates periods of significant change (P value ⁇ 0.05) compared to the data during the rest period.
  • FIG. 5 is a chart showing the success rate of each task under the conditions of no deep brain stimulation (DBS-OFF), adaptive deep brain stimulation (aDBS), and constant deep brain stimulation (cDBS). Data for monkeys A and B combined (upper row), monkey A's data (middle row), and monkey B's data (lower row) are shown. The chart shows the percentage (success rate, %) of attempts in which the target was reached (Reach) and attempts in which the target was returned to the home key (Return). As shown in this chart, when the adaptive deep brain stimulation (aDBS) condition of this embodiment was used, the success rate of attempts in which the target was reached (Reach) was almost equal to the success rate under the constant deep brain stimulation (cDBS) condition.
  • aDBS adaptive deep brain stimulation
  • aDBS a driving signal for stimulation
  • Pulse train For each period, the pulse train of the drive control signal (drive signal S D ) is characterized by the time between pulses and its amplitude. The central tendency and variance of these quantities were used to evaluate the variation of the stimulation train between periods and DBS paradigms. The central tendency was estimated by the median and the variance by the median absolute deviation.
  • the average rate of successful target arrival was 87.5% (Monkey A: 92.2%, Monkey B: 86.6%), and the average rate of successful return to the home key was 61.0% (Monkey A: 90.0%, Monkey B: 55.7%).
  • the median premovement period was 546 ms with an interquartile range of 420-833 ms, the median movement period was 408 ms with an interquartile range of 292-632 ms, and the median return period was 998 ms with an interquartile range of 627-1001 ms.
  • Beta band activity tended to decrease during the premovement and movement periods (Page test, P value > 0.99), but not during the return period (Page test, P value ⁇ 0.01) ( Figure 4).
  • the median power in the beta band decreased during the premovement, movement, and return periods (P value ⁇ 0.001).
  • the pulse interval was 0.012 seconds (interquartile range: 0.011 seconds to 0.016 seconds) and the amplitude was 0.653 mA (interquartile range: 0.488 mA to 0.801 mA).
  • the pulse interval decreased (-12.05%, -13.61%, P ⁇ 0.001), while the amplitude increased during these periods (+23.55%, +25.09%, P ⁇ 0.001).
  • the pulse interval during the return period increased (+4.35%, P ⁇ 0.001), but was lower than that observed during the rest period (-9.68%, P ⁇ 0.001).
  • the pulse amplitude decreased (-4.80%, P ⁇ 0.001), but was higher than that during the rest period (+19.35%, P ⁇ 0.001).
  • the variance of the pulse interval and the variance of the amplitude were also modulated during the task period.
  • the variance of the pulse interval was decreased during the premovement period (-29.41%, P value ⁇ 0.001), during the movement period (-64.71%, P value ⁇ 0.001), and increased during the return period (50.01% increase compared to the movement period, P value ⁇ 0.001), which remained higher than the rest period (29.41%, P value ⁇ 0.001).
  • the variance of the stimulation pulse amplitude decreased during the premovement period (-13%, P value ⁇ 0.001) and during the movement period (-38%, P value ⁇ 0.001).
  • the variance of the pulse amplitude increased during the return period (33%, P value ⁇ 0.001) and remained 10% lower than the value during the rest period (P value ⁇ 0.001).
  • the changes in the central tendency and the variance of the interstimulus interval and amplitude were similar in the two monkeys.
  • Figure 6 shows the power of the gamma 2 band output signal during the premovement, movement, and return periods
  • Figure 6(A) shows data for monkeys A and B combined
  • Figure 6(B) shows data for monkey A
  • Figure 6(C) shows data for monkey B
  • the power spectral density of the gamma 2 band during the motor task is shown.
  • the top panel shows aDBS
  • the bottom panel shows cDBS.
  • Data are expressed as a percentage of the median during the rest period.
  • the median is shown in the center of the box plot, and the upper and lower positions indicate the interquartile range (25th to 75th percentile).
  • the + symbol in the figure means that the value is significantly different from the premovement period (P value ⁇ 0.05), and the diamond symbol means that the value is significantly different from the movement period (P value ⁇ 0.05).
  • Figure 7 is a graph showing the normalized time required to complete each task (premovement, movement, return) in DBS-OFF, aDBS, and cDBS states.
  • the time required to complete a movement in DBS-OFF is set to 100%.
  • the range in parentheses indicates the interquartile range (25th to 75th percentile).
  • P1 is the P value when post hoc comparisons are applied to the DBS-OFF case
  • P2 is the P value when post hoc comparisons are applied to the cDBS case.
  • Figure 8 is a graph showing the ratio of charge supplied by aDBS to charge supplied by cDBS.
  • the charge supplied by the isolator was 6 ⁇ C/sec.
  • the aDBS supplied only 53.7% (26.5%-71.8%, P value ⁇ 0.001) of the supply during the rest period (Rest) of the cDBS, and 75.7% (69.7%-106.6%, P value ⁇ 0.05) of the supply during the movement period (Movement) of the cDBS. That is, the aDBS can reduce power consumption significantly more than the cDBS. Note that the aDBS also consumes a small amount of power during the rest period (Rest).
  • aDBS and cDBS improved task performance more than DBS-OFF.
  • aDBS delivered less charge than cDBS, but achieved the same therapeutic effect.
  • the frequency (interval between stimulation pulses) and amplitude of the drive signal during task execution were adjusted. During the task execution period, the interval between stimulation pulses was minimized, the amplitude of stimulation pulses was maximized, and the variance of the interval and amplitude of stimulation pulses was minimized.
  • the location of the stimulation site (electrode position of the deep brain stimulator) in the dorsal motor area of the subthalamic nucleus was confirmed every time using brain coordinate guidance, electrophysiological mapping, and responses to sensory and motor stimulation. Furthermore, according to previous findings, when a drive signal of 150 Hz and 2 mA or more is supplied by cDBS, side effects may occur, so the frequency of cDBS was limited to 100 Hz and the amplitude to 1 mA. Similarly, the frequency of aDBS was limited to 50 Hz to 150 Hz and the amplitude to 0.5 mA to 1.5 mA.
  • the pulse width of the drive signal was set to 60 ⁇ s in both aDBS and cDBS. This pulse width is commonly used in clinical applications of DBS, but this short pulse width may cause slight artifacts in DBS of local field potentials in the primary motor cortex. For wider pulse widths (>200 ⁇ s), additional processing to avoid artifacts may be warranted in a closed loop system.
  • the above treatment improved motor dysfunction due to Parkinson's disease, improving reaction and movement times.
  • the clinical effects of DBS are known to exhibit hysteresis. Simply switching DBS from OFF to ON delays changes in tremor, rigidity, and bradykinesia by several seconds or minutes, despite immediate changes in basal ganglia circuit dynamics. Thus, these delays may be reduced when the driving signal provided by DBS is modulated rather than switched between ON and OFF states.
  • stimulation during periods prior to voluntary body part movement, i.e., rest and premovement periods is useful.
  • the pulse interval (frequency) and amplitude of the drive signal have a variance. This variance is the basis for irregular pattern generation, which allows clinical utility while reducing the charge supply compared to cDBS.
  • power consumption can be reduced when the patient is not engaged in motor activity, thereby extending battery life.
  • Varying the frequency of the drive signal can have a variety of effects. Parkinson's symptoms depend on the frequency of stimulation to the subthalamic nucleus. For example, bradykinesia responds nonlinearly to stimulation across multiple different frequencies.
  • the frequency of the drive signal can be multiplexed to include multiple frequencies.
  • Other possible alternatives include surrogate aDBS techniques. In these alternative aDBS techniques, the surrogate drive signal has similar statistical properties to the original drive signal (pulse train), but is not correlated with the temporal biomarkers. Such surrogate drive signals (pulse trains) can be generated by shuffling the pulse intervals of the pulse trains in the original drive signal.
  • FIG. 9 is a diagram showing a deep brain stimulation apparatus according to the second embodiment.
  • the deep brain stimulation device of the second embodiment has a filter and window discriminator realized by a digital processing configuration, and the other configurations are the same as those of the first embodiment.
  • the drive signal generating device 10 in the second embodiment includes a control device 5 that digitizes and inputs the output signal from the brain wave detector 1, and a drive circuit 7 that generates a drive signal SD having a frequency f and an amplitude A according to the drive control signal SC output from the control device 5.
  • the brain wave detector 1 outputs an analog brain wave signal SDET
  • the first interface 4 converts the brain wave signal SDET into a digital signal and inputs it to the control device 5.
  • the control device 5 is preferably a computer equipped with a central processing unit and a storage device, and the central processing unit processes the digital signals according to the procedures instructed by the software (program) stored in the storage device.
  • the control device 5 is equipped with a digital filter 5A that extracts signal components in the above-mentioned frequency band (including the ⁇ 2 band) from the digitized signal.
  • the frequency band extracted by the digital filter 5A is the same as the frequency band extracted by the filter 2 (analog filter) shown in the first embodiment.
  • the software of the digital filter 5A stored in the memory device of the control device 5 digitizes the brainwave signal, which is the input signal, performs filtering, and extracts components in the desired frequency band.
  • the control device 5 includes a measurement unit 5B that measures the frequency of signal components (waveform BS of electroencephalogram signal that satisfies the reference condition ( ⁇ )) that satisfy the above-mentioned reference condition ( ⁇ ) from the signal components extracted by the digital filter 5A. In short, the measurement unit 5B determines the number of occurrences (frequency) of the waveform BS that satisfies the reference condition ( ⁇ ) within a certain period of time.
  • the control device 5 includes a signal generation unit 5C that generates a drive control signal S C having a frequency f and an amplitude A according to the above-mentioned frequency measured by the measurement unit 5B.
  • the function of the measurement unit 5B is the same as that of the window discriminator 3 in the first embodiment, except that it processes digital signals.
  • the software of the measurement unit 5B stored in the storage device of the control device 5 performs the same processing as the window discriminator 3 on the input electroencephalogram signal of a specific frequency band, and outputs the occurrence frequency of events correlated with brain activity in a time series.
  • the deep brain stimulation device 100 can reduce the number of parts by adopting a configuration that performs digital signal processing. More specifically, in this configuration, the EEG signal output as an analog signal from the EEG detector 1 is AD converted by an analog-to-digital converter (AD conversion) that serves as an interface.
  • the waveform of the signal components in the digital signal is a discrete value, and has amplitude information that is continuous in a time series. If one data block has time information and amplitude information, the discrete value waveform is made up of a group of data blocks that are continuous in a time series.
  • a program stored in the memory device of a control device such as a computer is executed by a central processing unit, and signal processing is performed, for example, by the following steps.
  • the function of the digital filter 5A is used to extract signal components in the above-mentioned frequency band.
  • the measurement unit 5B executes the function of a window discriminator. That is, it counts the number of consecutive data blocks in a chronological order that have an amplitude equal to or greater than a reference value (Vth), and when the count value reaches or exceeds a value corresponding to a reference period (Tth), it determines that an intracerebral event has occurred, and outputs a judgment output (True) of "1" corresponding to one pulse voltage.
  • the number of judgment outputs (True) measured during a judgment period (e.g., 50 ms) indicates the degree of activity that correlates with intracerebral movement.
  • the signal generating unit 5C substitutes the input number of judgment outputs (activity correlated with intracerebral movement, in other words, the occurrence frequency of a waveform satisfying the reference condition ( ⁇ )) into a predetermined calculation formula and outputs the calculation result. That is, the occurrence frequency of a waveform satisfying the reference condition ( ⁇ ) (moving average ⁇ TTL of the number of pulses per unit time) is input into the formula represented by the above-mentioned (Condition 1), (Condition 2), and (monotonically increasing function), and a frequency f and an amplitude A corresponding to this frequency are output.
  • the signal generating unit 5C generates a drive control signal S C having the calculated frequency f and amplitude A, and outputs it to the drive circuit 7.
  • the function of the signal generating unit 5C is the same as the function of generating the drive control signal S C in the control device 5 in the first embodiment.
  • the drive control signal S C output from the control device 5 via the second interface 6 is input to a drive circuit 7 (analog isolator) and supplied to the deep brain stimulation element 8 as a drive signal S D.
  • the deep brain stimulation device of the second embodiment performs digital signal processing, which allows the device size to be reduced. This is therefore useful when the deep brain stimulation device is applied to medical equipment.
  • a specific example of the deep brain stimulation device according to the first and second embodiments applied to medical equipment will be described.
  • Figure 10 shows a deep brain stimulation device as a medical device.
  • This deep brain stimulation device is a device in which the above-mentioned drive signal generating device 10 is housed in a sealed container BOX.
  • the EEG detector 1 includes detection elements (first detection element 1A, second detection element 1B) arranged in the primary motor area M1 of the cerebral cortical motor area, a preamplifier to which the output signals of the detection elements are input, and a main amplifier.
  • the first detection element 1A and the second detection element 1B are each a plate-shaped chip electrode, and are shaped to have little effect on the brain.
  • the first detection element 1A and the second detection element 1B are connected to the input terminal of the preamplifier via the first signal line W1.
  • the EEG signal S B (voltage signal) output from the first detection element 1A and the second detection element 1B is transmitted through the first signal line W1 and input to the preamplifier.
  • the sealed container BOX contains a drive signal generating device 10 and a preamplifier and a main amplifier in the electroencephalogram detector 1.
  • a second signal line W2 extending to the outside of the sealed container BOX is connected to an output terminal of a drive signal SD of the drive signal generating device 10.
  • the second signal line W2 is connected to a deep brain stimulation element 8.
  • the deep brain stimulation element 8 in this example is made of a soft material.
  • the deep brain stimulation element 8 shown in FIG. 3 has a conductor wire made of a high melting point metal coated with a resin such as polyimide.
  • a thin conductor wire made of a high melting point metal may be passed through the inside of a soft silicone resin tube, and a plurality of stimulation parts may be formed on the outer circumferential surface of the tip of the tube.
  • the material of the stimulation part may be a conductive material with low reactivity, for example, a platinum-iridium alloy.
  • the stimulation part may be a thin film.
  • the stimulation part is made of a material that generates a light (electromagnetic wave) signal, it is also possible to embed a semiconductor light emitting element inside the tube.
  • the conductor wire inside the tube is connected to the stimulation part, and a drive signal S D is supplied.
  • the first signal line W1 is electrically connected to the first detection element 1A and the second detection element 1B in a physically continuous manner, but if the EEG signal is AC, it is also possible to connect them in an electrically isolated manner via a capacitor. By differentially amplifying the output signal from the first detection element 1A and the signal from the second detection element 1B, it is possible to reduce noise and detect weak signals. In the case of a wireless connection, it is also possible to store a very small wireless transmission amplifier inside the skull and connect the first detection element 1A and the second detection element 1B to the wireless transmission amplifier. It is also possible to supply power to the wireless transmission amplifier using induced electromotive force or ultrasound.
  • the second signal line W2 can be connected to the deep brain stimulation element 8 in the same way as the first signal line W1.
  • the material of the sealed container BOX is not particularly limited, but it can be made of fluororesin or general resin materials.
  • the sealed container BOX contains a drive signal generating device that performs electrical signal processing, and can protect these devices. It is also possible to implant the sealed container BOX inside the body.
  • the drive signal generating device 10 and the amplifier can be made of semiconductor integrated circuits.
  • the analog isolator used as the drive circuit can also be made of a digital isolator.
  • semiconductor integrated circuits can be made extremely small, it is also possible to place some or all of these devices inside the skull.
  • the control device can be a computer, but it can also be made of a logic circuit, or an application specific integrated circuit (ASIC) can also be used.
  • ASIC application specific integrated circuit
  • the deep brain stimulation device 100 detects the patient's voluntary movement from the gamma 2 band electrocortical electroencephalogram signal, generates a drive signal, and uses adaptive deep brain stimulation (aDBS) to stimulate the deep brain. Normally, when a specific movement command exceeds the functional threshold of the internal pallidum (GPi), the intended movement is performed and other movement plans are blocked. In Parkinson's disease, the decision threshold of the internal pallidum increases, and all movement plans are blocked.
  • activity in the gamma 1 band (30 Hz ⁇ frequency f) can also be used as an electrophysiological biomarker
  • the above embodiment uses activity in the gamma 2 band (80 Hz to 200 Hz) in the primary motor cortex M1. It is believed that the deep brain stimulation device 100 detects the advance generation of a movement plan in the primary motor cortex M1, lowers the functional threshold of the internal pallidum, and increases the selectability of the movement plan in this time window.
  • Figure 11 shows a deep brain stimulation device equipped with multiple detection elements.
  • the following detection elements are arranged for the left side of the brain. That is, the first left detection element S1L is arranged in the primary motor area M1. The second left detection element S2L is arranged in the supplementary motor area SMA. The third left detection element S3L is arranged in the premotor area PM. Similarly, the detection elements are arranged for the right side of the brain in the same corresponding relationship as the left side.
  • the output signals of these detection elements are input to a processing circuit 101 including an amplifier and a drive signal generating device 10.
  • the processing circuit 101 has an internal circuit 101A arranged inside the skull 102 and an external circuit 101B arranged outside the skull 102. Each circuit element in the processing circuit 101 is allocated and arranged in the internal circuit 101A and the external circuit 101B. A circuit with a large volume, such as a battery, can be arranged in the external circuit 101B.
  • the drive signal output from the processing circuit 101 is input to the deep brain stimulation element 8.
  • Figure 12 shows the circuit configuration for receiving and processing multiple EEG signals.
  • the deep brain stimulation device of this example has multiple detection elements.
  • the detection element group of this example consists of a first left detection element S1L, a second left detection element S2L, a third left detection element S3L, a first right detection element S1R, a second right detection element S2R, and a third right detection element S3R. These detection elements have the same structure.
  • each detection element has a single detection electrode 1S and an indifferent electrode 1RE that provides a reference potential ⁇ Ref.
  • Each detection element may have a bipolar induction structure.
  • the output signal of each detection element is input to an EEG detector 1 equipped with an amplifier.
  • EEG detector 1 equipped with an amplifier.
  • multiple EEG detectors 1 equipped with an amplifier for each input signal are shown, but a single EEG detector 1 equipped with multiple input terminals and multiple output terminals and having an amplification function for each input signal can also be used.
  • the output signal from each detection element is amplified by the EEG detector 1 and input to a drive signal generating device 10 as a cortical EEG signal.
  • the drive signal generating device 10 is part of a processing circuit 101.
  • a control device 5 in the processing circuit 101 generates a drive control signal based on the multiple input cortical EEG signals.
  • the generated drive control signal is input to a drive circuit 7.
  • the drive circuit 7 supplies a drive current to a deep brain stimulation element 8.
  • Figure 13 shows the circuit configuration of the detection element.
  • Detection element S1 represents one of the structures of the six detection elements described above.
  • detection element S1 has a single detection electrode 1S for detecting brain waves and multiple reference electrodes 1R, and has a unipolar induction configuration.
  • the multiple reference electrodes 1R are arranged to surround the single detection electrode 1S.
  • the number of reference electrodes 1R may be one.
  • Each reference electrode 1R is connected to a resistor Z and wired. The connection position becomes the node that constitutes the indifferent electrode 1RE.
  • the EEG detector 1 comprises a detection electrode 1S for detecting EEG, a plurality of reference electrodes 1R arranged around the detection electrode 1S, and a plurality of resistors Z each having one end connected to the plurality of reference electrodes 1R.
  • the EEG detector 1 comprises an amplifier having a reference potential input terminal to which a reference potential ⁇ Ref of the node to which the other ends of the plurality of resistors Z are connected is input, and a detection potential input terminal to which a detection potential ⁇ (S1) (local potential that becomes a cortical EEG signal) from the detection electrode 1S is input.
  • the indifferent electrode 1RE with this structure has a stable potential, so noise contained in the cortical EEG signal is reduced, allowing for even more stable control.
  • the EEG detector 1 outputs a cortical EEG signal S(S1).
  • FIG. 14 is a block diagram of a control device 5 to which multiple EEG cortical signals are input.
  • the EEG detector 1 In response to the output signals from each detection element, the EEG detector 1 (see FIG. 12) outputs EEG signals (cortical EEG signals).
  • the EEG detector 1 outputs the first left EEG signal S(S1L), the second left EEG signal S(S2L), the third left EEG signal S(S3L), the first right EEG signal S(S1R), the second right EEG signal S(S2R), and the third right EEG signal S(S3R).
  • Each EEG signal is converted to a digital value by an AD converter and input to the digital filter 5A.
  • the digital filter 5A extracts the signal components in the gamma 2 band and inputs them to the measurement unit 5B.
  • the measurement unit 5B executes the function of the window discriminator described above. If a component corresponding to the occurrence of a brain event is detected in the input EEG signals, the measurement unit 5B outputs a judgment output of "1". If a component exceeding a threshold continues for a reference period or longer in the EEG signal, it is judged that a brain event has occurred.
  • the threshold determination unit 5C1 sequentially receives the determination outputs of multiple (e.g., six) channels output from the measurement unit 5B.
  • the threshold determination unit 5C1 counts the number of multiple determination outputs "1" corresponding to the occurrence of a brain event during the determination period. In this example, six count values corresponding to six EEG signals are obtained.
  • the count values corresponding to the left and right EEG signals are CL1, CL2, CL3, CR1, CR2, and CR3.
  • the threshold determination unit 5C1 notifies the selection unit 5C2 of a trigger signal indicating the channel that exceeded the threshold.
  • the threshold determination unit 5C1 can select the channel that gives the largest count value and notify the selection unit 5C2 of a trigger signal indicating the channel that exceeded the threshold.
  • the selection unit 5C2 sequentially receives a plurality of judgment outputs output from the measurement unit 5B.
  • the selection unit 5C2 can temporarily store the plurality of judgment outputs that have been input.
  • the selection unit 5C2 receives a trigger signal from the threshold judgment unit 5C1, it selects and outputs the judgment output of the channel corresponding to the trigger signal. For example, the channel with the count value CL1 is selected, and the time-series judgment output temporarily stored in this channel is input to the main signal generation unit 5C3.
  • the main signal generating unit 5C3 counts the number of input judgment outputs "1" within a certain period of time, and generates a drive control signal S C having a frequency f and amplitude A corresponding to this count value (e.g. CL1), i.e., the number of judgment outputs.
  • This count value also corresponds to the frequency of judgment outputs. Since this frequency is the number of brain events occurring per unit time, if this is considered as the number of output waves per unit time, it is the frequency of occurrence of brain events and corresponds to the input frequency (f in ) to the downstream circuit. This frequency also corresponds to the moving average ⁇ TTL of the number of pulses per unit time mentioned above.
  • the selection section and directly input the threshold-exceeding count value (e.g., CL1) measured in the threshold determination section 5C1 to the main signal generation section 5C3 as the occurrence frequency (f in ) of brain events.
  • CL1 threshold-exceeding count value
  • the main signal generating unit 5C3 generates a drive control signal S C having an output frequency f and amplitude A according to the occurrence frequency of a brain event (hereinafter, input frequency f in (frequency)).
  • input frequency f in frequency
  • the generated drive control signal S C is input to the drive circuit 7, and a drive signal S D (drive current) having a frequency and amplitude proportional to the output frequency f and amplitude A is supplied to the deep brain stimulation element.
  • the digital filter 5A can be replaced with an analog filter
  • the measurement unit 5B can be replaced with a window discriminator.
  • the output of the window discriminator is AD converted and input to the signal generation unit at the subsequent stage.
  • FIG. 15 is a block diagram of the control device 5 to which multiple brainwave signals are input.
  • multiple cortical EEG signals are input to a digital filter 5A, which extracts gamma 2 band components and inputs them to a measurement unit 5B, which then sequentially outputs multiple judgment outputs.
  • the configuration is the same as that shown in FIG. 14.
  • the signal generating unit 5C includes a mixer unit 5CM and a main signal generating unit 5C3.
  • the judgment outputs of multiple channels (e.g., six) output from the measuring unit 5B are input sequentially to the mixer unit 5CM.
  • the mixer unit 5CM counts the number of judgment outputs "1" corresponding to the occurrence of a brain event within the judgment period. In this example, six count values corresponding to six cortical EEG signals are obtained.
  • the count values corresponding to the left and right cortical EEG signals are designated CL1, CL2, CL3, CR1, CR2, and CR3, respectively.
  • the mixer unit 5CM weights and adds the obtained count values to obtain a weighted average count value CW.
  • the count value CW (CL1 x wL1 + CL2 x wL2 + CL3 x wL3 + CR1 x wR1 + CR2 x wR2 + CR3 x wR3 ).
  • weighting coefficients ( wL1 , wR1 ) in the primary motor cortex M1 are set to be larger than the other coefficients.
  • This weighted average count value corresponds to the occurrence frequency (input frequency f in , frequency) of the above-mentioned brain events.
  • the number of output signals (cortical electroencephalogram signals) of the electroencephalogram detector 1 is multiple, and the drive signal generating device calculates the frequency (count value counted within a unit time) for each of the multiple output signals, and generates a drive signal having a frequency f and an amplitude A according to an input frequency f in corresponding to a value (weighted average count value in the above case) calculated by weighting and adding these frequencies. Since signals from multiple locations correlated with movements in the brain are used, it is possible to perform more precise stimulation control, and it is believed that an effective therapeutic effect can be obtained.
  • the main signal generating unit 5C3 generates a drive control signal S C ( ⁇ drive signal S D ) having an output frequency f and amplitude A according to the input frequency f in input from the mixer unit 5CM.
  • a drive control signal S C ( ⁇ drive signal S D ) having an output frequency f and amplitude A according to the input frequency f in input from the mixer unit 5CM.
  • An example of a method for calculating the frequency f and amplitude A of the drive control signal S C is as described above, and the deep brain stimulation element can be controlled according to the calculated parameters. Next, a calculation control method using such calculation will be described.
  • the frequency f and amplitude A of the drive signal S D are functions of the input frequency f in corresponding to the frequency.
  • the frequency is the number of judgment outputs (pulses) output from the window discriminator 3 per judgment period
  • This frequency is the number of brain events occurring per unit time, so it corresponds to the input frequency f in when considered as the number of output waves per unit time.
  • the relationship between the input frequency f in and the output (frequency f and amplitude A of the drive signal S D) will be described with respect to the generation of the drive control signal S C ( ⁇ drive signal S D ) in the control device.
  • aN , bN , aM , and bM are coefficients, and N and M are natural numbers (1, 2, 3, 4, etc.).
  • the input frequency threshold f TH is an input frequency f in that satisfies the condition of providing an upper limit frequency f limit (e.g., 150 Hz) and an upper limit amplitude A limit (e.g., 1.5 mA) on the output side.
  • the slope of the function of the frequency f and amplitude A of the drive signal is determined, thereby determining the input frequency threshold fTH .
  • the input frequency threshold fTH was 50 Hz ⁇ 20 Hz, particularly 50 Hz ⁇ 10 Hz.
  • Fig. 16 is a graph explaining the first calculation control method.
  • Fig. 16(A) is a graph showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal S D.
  • Fig. 16(B) is a graph showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal S D.
  • a1 , b1 , a2 , and b2 being coefficients greater than 0, within a predetermined input frequency range (0 ⁇ f in ⁇ f TH )
  • the frequency (f) and amplitude (A) satisfy the following relationship.
  • ⁇ f a 1 ⁇ f in +b 1
  • ⁇ A a 2 ⁇ f in +b 2
  • the first calculation control method calculates the frequency f and amplitude A that are proportional to the input frequency f in , generates a drive signal (drive control signal) having these parameters, and supplies this to the deep brain stimulation element.
  • This method is simple in calculation and enables high-speed processing, and therefore can provide effective treatment.
  • FIG. 17A and 17B are graphs for explaining the second calculation control method.
  • Fig. 17A is a graph showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal S D.
  • Fig. 17B is a graph showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal S D.
  • each input frequency interval is fN ⁇ fin ⁇ fN +1 .
  • the frequency f of the drive signal is given by the following formula in the frequency interval fN ⁇ fin ⁇ fN +1 ( fN ⁇ fN +1 ).
  • the frequency interval is a value that is not 0 Hz (0 ⁇ fN+1 - fN ), and ( fN+1- fN ) is set to, for example, 5 Hz or more.
  • ⁇ f a N ⁇ f in +b N aN > aN+1 bN ⁇ bN+1
  • each input frequency interval is fM ⁇ fin ⁇ fM +1 .
  • the amplitude A of the drive signal is given by the following formula in the frequency interval fM ⁇ fin ⁇ fM+1 ( fM ⁇ fM+1 ).
  • the frequency interval is a value that is not 0 Hz (0 ⁇ fM+1 - fM ), and ( fM+1 - fM ) is set to, for example, 5 Hz or more.
  • ⁇ A a M ⁇ f in +b M aM > aM+1 bM ⁇ bM + 1
  • aN , bN , aM , and bM are coefficients greater than 0.
  • These graphs of frequency f and amplitude A are line graphs formed by combining graphs of linear functions. In the initial state (range where input frequency f in is small) where symptoms of Parkinson's disease are observed, the slope is large, and the deterioration of symptoms is quickly suppressed. In the period where input frequency f in is large, the slope is made small to prevent overstimulation, and the increase in stimulation is suppressed. On the other hand, since this graph is obtained by combining linear functions, the calculation is simple, high-speed processing is possible, and the effectiveness of treatment is therefore increased.
  • FIGS. 18A and 18B are graphs for explaining the third calculation control method.
  • Fig. 18A is a graph showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal S D.
  • Fig. 18B is a graph showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal S D.
  • each input frequency interval is fN ⁇ f in ⁇ f N+1 .
  • the frequency f of the drive control signal (drive signal) is given by the following formula where the frequency interval is fN ⁇ f in ⁇ f N+1 (f N ⁇ f N+1 ).
  • the frequency interval is a value that is not 0 Hz (0 ⁇ f N+1 -f N ), and (f N+1 -f N ) is set to, for example, 5 Hz or more.
  • f bN bN ⁇ bN+1
  • each input frequency interval is fM ⁇ f in ⁇ fM +1 .
  • the amplitude A of the drive control signal (drive signal) is given by the following formula in the frequency interval fM ⁇ f in ⁇ fM+1 ( fM ⁇ fM+1 ).
  • the frequency interval is a value that is not 0 Hz (0 ⁇ fM+1 -fM ), and ( fM+1 -fM ) is set to, for example, 5 Hz or more.
  • ⁇ A bM bM ⁇ bM + 1
  • bN and bM are coefficients greater than 0.
  • a graph of these frequencies f and amplitudes A is a stepped graph. In this case, since control is performed using constants that change stepwise, calculation is simple and high-speed processing is possible, thereby increasing the effectiveness of treatment.
  • FIG. 19A and 19B are graphs for explaining the fourth calculation control method.
  • Fig. 19A is a graph showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal S D.
  • Fig. 19B is a graph showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal S D.
  • the frequency f and amplitude A of the drive control signal (drive signal) in this graph satisfy the condition that the input frequency intervals ( fN ⁇ f in ⁇ f N+1 ) and ( fM ⁇ f in ⁇ f M+1 ) are minimized to the limit in the example shown in the broken line type graph (FIG. 17) described above. That is, there are intervals where (f N+1 -f N ) approaches 0 and (f M+1 -f M ) approaches 0.
  • the graph of frequency f and amplitude A is a graph that changes smoothly.
  • the output frequency f and amplitude A are functions of the input frequency f in , the second derivative of this function is negative, and the slope of the tangent to this function (first derivative) is 0 or more.
  • the frequency f is a function of the input frequency f in which the slope decreases as the input frequency f in increases under the condition of 0 ⁇ f in ⁇ f TH
  • f TH is the input frequency f in that gives the upper limit of the frequency f
  • the amplitude A is a function of the input frequency f in which the slope decreases as the input frequency f in increases under the condition of 0 ⁇ f in ⁇ f TH .
  • Fig. 20 is a graph for explaining the fifth calculation control method.
  • Fig. 20(A) is a graph showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal S D.
  • Fig. 20(B) is a graph showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal S D.
  • these graphs satisfy the condition that the input frequency ranges (f N ⁇ f in ⁇ f N+1 ) and (f M ⁇ f in ⁇ f M+1 ) are minimized in the relationship given by the following formula. Note that a N and a M are coefficients greater than 0.
  • the frequency f of the drive control signal (drive signal) is given by the following formula in the frequency range fN ⁇ fin ⁇ fN +1 ( fN ⁇ fN +1 ).
  • ⁇ f a N ⁇ f in +b N aN ⁇ aN+1 bN > bN+1
  • the amplitude A of the drive control signal (drive signal) is given by the following formula in the frequency range fM ? fin ? fM+1 ( fM ⁇ fM+1 ).
  • ⁇ A a M ⁇ f in +b M aM ⁇ aM +1 bM > bM+1
  • the frequency f is a function of the input frequency f in which the slope increases with increasing input frequency f in the condition of 0 ⁇ f in ⁇ f TH
  • f TH is the input frequency f in that gives the upper limit value of the frequency f
  • the amplitude A is a function of the input frequency f in which the slope increases with increasing input frequency f in the condition of 0 ⁇ f in ⁇ f TH .
  • the output frequency f and the amplitude A become constant values and are suppressed so as not to stimulate too much. Therefore, the effectiveness of the treatment is increased.
  • the output frequency f and the amplitude A are set small in the initial stage, the power consumption can be suppressed.
  • an exponential function can be adopted as the nonlinear function.
  • the above-mentioned drive signal generating device 10 includes a signal generating unit that generates a drive signal S D having a frequency f and an amplitude A according to an input frequency f in corresponding to the above-mentioned frequency.
  • This signal generating unit is a part that includes the control device 5 and the drive circuit 7 in an analog system.
  • this signal generating unit is a part that includes the signal generating unit 5C and the drive circuit 7 in a digital system. Note that in the above-mentioned calculation method, the data of the calculation results obtained from each calculation formula may be stored in a storage device, and the data corresponding to the input frequency f in may be read out from the storage device.
  • the above-mentioned deep brain stimulation device 100 comprises an EEG detector 1, a drive signal generating device 10 which extracts signal components of a predetermined frequency band from the output signal of the EEG detector 1, determines the frequency of waveforms among the extracted signal components whose intensity is equal to or greater than a reference value and whose duration is equal to or greater than a reference time, and generates a drive signal SD having a frequency f and amplitude A corresponding to the frequency, and a deep brain stimulation element 8 to which the drive signal SD output from the drive signal generating device 10 is applied.
  • the drive signal generating device 10 can also extract signal components of a predetermined frequency band from the output signal of the electroencephalogram detector 1, determine the frequency of waveforms whose intensity is equal to or greater than a reference value and whose duration is equal to or greater than a reference time among the extracted signal components, and generate a drive signal S D having a frequency f or amplitude A according to the frequency.
  • the signal components of the predetermined frequency band are frequency bands that correlate with movement, and are preferably the above-mentioned frequency bands.
  • the drive signal generating device 10 can preferably generate a drive signal such that the higher the frequency, the higher the frequency of the drive signal, and the higher the frequency, the larger the amplitude of the drive signal. Increasing the frequency and amplitude of the drive signal increases the power supplied to the deep brain stimulation element 8 and increases the amount of stimulation. Although a therapeutic effect can be expected even when only one of these parameters is increased, it is more effective to increase both parameters.
  • the above-mentioned deep brain stimulation device 100 can be applied to a variety of subjects.
  • Applicable subjects include primates (e.g., humans, chimpanzees, and monkeys), but the principle of extracting and processing frequencies from the motor cortex can also be applied to other mammals (e.g., dogs, cats, mice, guinea pigs, rats, birds, horses, pigs, cows, etc.). It is also possible to use it in conjunction with a therapeutic drug for Parkinson's disease.
  • the deep brain stimulation device 100 can restore functional disorders in the loop circuits in the brain through stimulation. Therefore, it is believed that the use of this deep brain stimulation device can be effective in treating movement disorders other than Parkinson's disease that have similar functional disorders.
  • the frequency of the waveform in which the intensity and duration of the signal components exceed the standard is detected. If the frequency is high, the frequency and amplitude of the drive signal are increased to increase the power of the stimulation.
  • the lower limit frequency that passes through the filter is at least higher than 30 Hz, but as described above, this lower limit frequency can also be 40 Hz, 60 Hz, 80 Hz, 100 Hz, or 120 Hz.
  • the central frequency is basically the frequency that is the object of observation, but it will naturally be higher than the lower limit frequency.
  • the lower limit frequency can be set to 100 Hz or more, and the central frequency can be set to 100 Hz or more and 200 Hz or less.
  • the extraction frequency of the deep brain stimulation device 100 can also be set to other frequency bands.
  • Non-Patent Document 1 discloses a device that utilizes the increased activity of the gamma 1 band in dyskinesia, a side effect of Parkinson's disease treatment, to suppress the side effect by suppressing gamma 1 band activity.
  • a deep brain stimulation device utilizes the increased activity of the gamma 2 band when starting to move, and rather enhances gamma 2 band activity to assist the movement.
  • the drive signal generating device extracts signal components from a frequency band that includes a center frequency selected from 80 Hz to 200 Hz and has a lower limit frequency at least higher than 40 Hz, determines the frequency of waveforms among the extracted signal components that have an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time, and generates a drive signal having a frequency and amplitude according to the frequency.
  • the drive signal generating device extracts signal components from a frequency band that includes a center frequency selected from 80 Hz to 200 Hz and has a lower limit frequency at least higher than 60 Hz, determines the frequency of waveforms among the extracted signal components that have an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time, and generates a drive signal having a frequency and amplitude according to the frequency.
  • the drive signal generating device extracts signal components from a frequency band that includes a center frequency selected from 80 Hz to 200 Hz and has a lower limit frequency at least higher than 80 Hz, determines the frequency of waveforms among the extracted signal components that have an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time, and generates a drive signal having a frequency and amplitude according to the frequency.
  • the drive signal generating device extracts signal components in a frequency band that includes a center frequency selected from 100 Hz to 200 Hz and has a lower limit frequency at least higher than 100 Hz, determines the frequency of waveforms among the extracted signal components that have an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time, and generates a drive signal having a frequency and amplitude according to the frequency.
  • the deep brain stimulation device includes an EEG detector, an analog or digital filter to which the output signal from the EEG detector is input, a drive circuit that outputs a drive signal having a frequency corresponding to the frequency of waveforms in which the intensity of the signal component extracted by the filter is equal to or greater than a reference value and the duration is equal to or greater than a reference time, and a deep brain stimulation element connected to the drive circuit.
  • the lower limit frequency of the frequency extracted by this filter may be set to 80 Hz or higher.
  • the lower limit frequency of the frequency extracted by this filter may be set to 90 Hz or higher.
  • the lower limit frequency of the frequency extracted by this filter may be set to 100 Hz or higher.
  • 1...EEG detector 2...filter, 3...window discriminator, 5...control device, 5A...digital filter, 5B...measuring unit, 5C...signal generating unit, 7...driving circuit (analog isolator), 8...deep brain stimulation element, 10...driving signal generating device, 100...deep brain stimulation device, BOX...sealed container, S C ...driving control signal, S D ...driving signal.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

A deep brain stimulation device is anticipated that makes it possible to obtain a therapeutic effect while reducing electric power consumption. This deep brain stimulation device comprises: a brain wave detector 1; a drive signal generation device 10 to which an output signal from the brain wave detector 1 is inputted; and a deep brain stimulation element 8 to which a drive signal outputted from the drive signal generation device 10 is applied. The drive signal generation device 10 extracts a signal component in a γ2 frequency band, determines an occurrence rate of waveforms having an intensity greater than or equal to a reference value and a duration greater than or equal to a reference period of time among the extracted signal components, and generates a drive signal having a frequency and an amplitude corresponding to the occurrence rate. The higher the occurrence rate is, the higher the frequency of the drive signal is and the higher the amplitude of the drive signal is.

Description

脳深部刺激装置Deep Brain Stimulator

 本開示は、脳深部刺激装置に関する。 This disclosure relates to a deep brain stimulation device.

 脳深部刺激療法(DBS)は、視床下核や淡蒼球などの大脳基底核や視床などの脳深部を電気刺激することで、運動異常症(パーキンソン病、ジストニア、ジスキネジア、本態性振戦等)の患者が示す症状を減少させる方法である。大脳基底核は、筋肉への運動指令を出力する大脳皮質運動野と共に、視床を介してループ回路(神経ネットワーク)を形成しており、ループ内の機能に障害があると、運動障害が生じる。大脳基底核は、大脳の深部に存在する神経細胞群であり、線条体、淡蒼球、視床下核、黒質などからなる。 Deep brain stimulation (DBS) is a method to reduce symptoms exhibited by patients with movement disorders (Parkinson's disease, dystonia, dyskinesia, essential tremor, etc.) by electrically stimulating deep parts of the brain, such as the thalamus and the basal ganglia, including the subthalamic nucleus and globus pallidus. The basal ganglia, together with the motor cortex of the cerebral cortex, which outputs motor commands to muscles, form a loop circuit (neural network) via the thalamus, and any impairment of function within the loop will result in movement disorders. The basal ganglia are a group of nerve cells located deep within the cerebrum, and consist of the striatum, globus pallidus, subthalamic nucleus, substantia nigra, etc.

 脳深部刺激療法には、アダプティブ脳深部刺激療法(aDBS)と、広く臨床に用いられている従前のコンスタント脳深部刺激療法(cDBS)が知られている。臨床段階では、大脳基底核、特に視床下核における低β帯域(13Hz~30Hz)の活性が、アダプティブ脳深部刺激療法におけるバイオマーカーとなる可能性があるが、更なる改良が求められている。脳深部刺激療法の関連技術として、特許文献1~特許文献4が知られている。  Known deep brain stimulation therapies include adaptive deep brain stimulation (aDBS) and the conventional constant deep brain stimulation (cDBS), which is widely used in clinical practice. At the clinical stage, activity in the low beta band (13 Hz to 30 Hz) in the basal ganglia, particularly the subthalamic nucleus, may serve as a biomarker for adaptive deep brain stimulation, but further improvements are required. Patent Documents 1 to 4 are known as technologies related to deep brain stimulation.

 非特許文献1は、アダプティブ脳深部刺激技術を開示している。 Non-Patent Document 1 discloses adaptive deep brain stimulation technology.

米国特許出願公開2016/0263380号公報US Patent Application Publication No. 2016/0263380 米国特許出願公開2014/0350634号公報US Patent Application Publication No. 2014/0350634 米国特許10716943号明細書U.S. Pat. No. 1,071,6943 米国特許10478085号明細書U.S. Pat. No. 1,047,8085

Swann NC, et al.、「Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing」、 Journal of Neural Engineering、2018年5月9日、Vol.15、Number 4、46006Swann NC, et al., “Adaptive deep brain stimulation for Parkinson’s disease using motor cortex sensing”, Journal of Neural Engineering, May 9, 2018, Vol. 15, Number 4, 46006

 従来の脳深部刺激装置においても、脳内の目的部位に刺激を与えることで、治療効果を得ることができる。例えば、脳波信号の電位が閾値を超えた場合に、予め設定された固定の刺激強度で、目的部位の刺激を開始することができる。一方、医療機器においては、電力消費量を低減しつつ、治療効果を得ることが可能な脳深部刺激装置が期待されている。  Even with conventional deep brain stimulation devices, it is possible to achieve therapeutic effects by stimulating targeted areas in the brain. For example, when the potential of an EEG signal exceeds a threshold, stimulation of the targeted area can begin at a preset fixed stimulation intensity. Meanwhile, in the medical equipment field, hopes are high for deep brain stimulation devices that can achieve therapeutic effects while reducing power consumption.

 本願発明者らは、パーキンソン病における運動減少メカニズムについて、鋭意検討を行った。その結果、パーキンソン病においては、運動指令が大脳基底核を通過することが妨げられ、運動が開始できなくなっていることが明らかになった。運動の意思が脳内で発生すると、身体部位の実際の運動前に、脳内の電位が変化する。電位変化が生じる部位として、本願発明者らが着目した主な部位は、一次運動野である。なお、高次運動野(補足運動野、運動前野)の電位も運動に相関する。したがって、この脳内電位の変化を検出し、検出結果に所定の信号処理を行い、運動指令の通過に合わせて、視床下核等を刺激し、運動指令を通過しやすくすれば、パーキンソン病等の運動異常症の治療が可能である。 The inventors of the present application have conducted extensive research into the mechanism of decreased movement in Parkinson's disease. As a result, it has become clear that in Parkinson's disease, motor commands are prevented from passing through the basal ganglia, making it impossible to initiate movement. When the intention to move arises in the brain, the electrical potential in the brain changes before the actual movement of a body part. The main area that the inventors of the present application focused on as the area where the electrical potential change occurs is the primary motor cortex. The electrical potential of the higher motor cortex (supplementary motor area, premotor cortex) also correlates with movement. Therefore, if this change in the electrical potential in the brain is detected, a predetermined signal processing is performed on the detection result, and the subthalamic nucleus, etc. is stimulated in accordance with the passage of the motor command, making it easier for the motor command to pass, it is possible to treat movement disorders such as Parkinson's disease.

 本開示の脳深部刺激装置は、脳波検出器と、前記脳波検出器の出力信号が入力され、80Hz~200Hzから選択される中心周波数を含み、且つ、少なくとも30Hzよりも高い下限周波数を有する周波数帯域の信号成分を抽出し、抽出された信号成分のうち、強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度を求め、当該頻度に応じた周波数及び振幅を有する駆動信号を生成する駆動信号生成装置と、前記駆動信号生成装置から出力された前記駆動信号が与えられる脳深部刺激素子と、を備える。 The deep brain stimulation device disclosed herein comprises an EEG detector, a drive signal generating device that receives an output signal from the EEG detector, extracts signal components in a frequency band that includes a center frequency selected from 80 Hz to 200 Hz and has a lower limit frequency at least higher than 30 Hz, determines the frequency of waveforms among the extracted signal components that have an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time, and generates a drive signal having a frequency and amplitude according to the frequency, and a deep brain stimulation element that is provided with the drive signal output from the drive signal generating device.

 一次運動野における皮質脳波のγ2周波数帯域は、80Hz~200Hzから選択される中心周波数を含む周波数帯域であって、少なくとも下限周波数が30Hzよりも高い周波数帯域である。身体部位の実際の運動前の電位(運動準備電位)として、一次運動野におけるγ2周波数帯域の信号成分を、脳波検出器の出力信号から抽出して検出する。抽出した信号成分に、所定の信号処理を行い、刺激用の駆動信号を生成した場合には、少ない電力消費量で、運動異常症(パーキンソン病)に対する有効な治療効果を得ることができた。 The gamma 2 frequency band of the cortical EEG in the primary motor cortex is a frequency band that includes a center frequency selected from 80 Hz to 200 Hz, and has a lower limit frequency that is at least higher than 30 Hz. The signal components in the gamma 2 frequency band in the primary motor cortex are extracted and detected from the output signal of the EEG detector as the potential before the actual movement of the body part (motor preparation potential). When the extracted signal components are subjected to a specified signal processing to generate a drive signal for stimulation, it is possible to obtain an effective treatment effect for movement disorders (Parkinson's disease) with little power consumption.

 上述の所定の信号処理とは、抽出された信号成分のうち、強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度を求め、当該頻度に応じた周波数及び振幅を有する駆動信号を生成する処理である。すなわち、一定期間内において、当該条件を満たす波形の発生回数が求められ、この発生回数に応じて駆動信号の周波数及び振幅が決定される。駆動信号生成装置は、好適には、この頻度が高いほど、駆動信号の周波数が高くなり、この頻度が高いほど、駆動信号の振幅が大きくなるように、駆動信号を生成することができる。換言すれば、頻度に対して、駆動信号の周波数及び振幅が、共に単調増加する。 The above-mentioned predetermined signal processing is a process of determining the frequency of waveforms among the extracted signal components whose intensity is equal to or exceeds a reference value and whose duration is equal to or exceeds a reference time, and generating a drive signal having a frequency and amplitude according to the frequency. In other words, the number of times that a waveform that satisfies the condition occurs within a certain period of time is determined, and the frequency and amplitude of the drive signal are determined according to this number of occurrences. The drive signal generating device can preferably generate a drive signal such that the higher the frequency, the higher the frequency of the drive signal, and the higher the frequency, the larger the amplitude of the drive signal. In other words, both the frequency and amplitude of the drive signal monotonically increase with frequency.

 もちろん、駆動信号の周波数及び振幅に上限値を設定することができ、この場合には、上限値を超えた場合、周波数及び振幅は飽和する。したがって、当該信号処理において、常に単調増加をさせる必要はない。前記頻度の増加に伴って、周波数及び振幅が、線形に増加する場合のみならず、非線形に増加する場合も考えられる。非線形制御においても、視床下核等を刺激すると、運動指令が通過しやすくなるので、運動異常症の治療が可能である。また、前記頻度に対して、周波数及び振幅を連続的に変化させるのみならず、離散的に変化させることもできる。離散的制御においても、視床下核等を刺激すると、運動指令が通過しやすくなるので、運動異常症の治療が可能である。 Of course, an upper limit can be set for the frequency and amplitude of the drive signal, and in this case, the frequency and amplitude will saturate if the upper limit is exceeded. Therefore, it is not necessary to always monotonically increase in the signal processing. As the frequency increases, the frequency and amplitude may increase not only linearly but also nonlinearly. Even with nonlinear control, stimulating the subthalamic nucleus etc. makes it easier for motor commands to pass, making it possible to treat movement disorders. Furthermore, the frequency and amplitude can be changed not only continuously but also discretely with respect to the frequency. Even with discrete control, stimulating the subthalamic nucleus etc. makes it easier for motor commands to pass, making it possible to treat movement disorders.

 駆動信号生成装置における上記の周波数帯域の抽出にはアナログフィルタ、又は、デジタルフィルタを用いることができる。アナログフィルタを用いる場合、その後段に、ウインドウ・ディスクリミネータを配置することができる。ウインドウ・ディスクリミネータは、強度が基準値以上であり且つ継続時間が基準時間以上の1つの波形が検出される毎に、1つのパルス電圧を生成して、パルス信号を出力する。制御装置は、ウインドウ・ディスクリミネータから出力されたパルス信号の頻度に応じて、駆動信号の周波数及び振幅を制御することができる。デジタルフィルタを用いる場合、制御装置には、脳波検出器からの出力信号をデジタル化し入力して、前記頻度に応じた周波数及び振幅を有する駆動制御信号を生成し、これを駆動回路に入力することができる。 An analog filter or a digital filter can be used to extract the above frequency band in the drive signal generating device. When an analog filter is used, a window discriminator can be placed in the subsequent stage. The window discriminator generates one pulse voltage and outputs a pulse signal every time a waveform whose intensity is equal to or greater than a reference value and whose duration is equal to or greater than a reference time is detected. The control device can control the frequency and amplitude of the drive signal according to the frequency of the pulse signal output from the window discriminator. When a digital filter is used, the output signal from the EEG detector can be digitized and input to the control device to generate a drive control signal having a frequency and amplitude according to the frequency, and this can be input to the drive circuit.

 駆動回路は、制御装置からの駆動制御信号が入力される入力部と、駆動制御信号に基づき入力から絶縁された駆動信号を生成する出力部と、を備えるアナログ・アイソレータを用いることができる。入出力部間において絶縁された信号伝達を行うので、駆動信号の最大値を出力部側で制限することができ、安全性を向上させることができる。なお、アイソレータは、直流電流及びパルス電流などの入力の種類に関わらず、その入力端子と出力端子との間を電気的に絶縁する機能を有している。 The drive circuit can use an analog isolator that has an input section to which a drive control signal from a control device is input, and an output section that generates a drive signal isolated from the input based on the drive control signal. Since isolated signal transmission is performed between the input and output sections, the maximum value of the drive signal can be limited on the output section side, improving safety. The isolator has the function of electrically isolating between its input terminal and output terminal, regardless of the type of input, such as direct current or pulse current.

 駆動信号生成装置は、密閉容器内に収容され、駆動信号生成装置の駆動信号の出力端子には、密閉容器の外部に延びる信号線が接続され、信号線は、脳深部刺激素子に接続されていることが好ましい。密閉容器内に、電気的な処理を行う駆動信号生成装置を収容しているので、駆動信号生成装置を保護することができる。また、密閉容器を体内に埋め込むことも可能である。 The drive signal generating device is housed in a sealed container, and a signal line extending outside the sealed container is connected to the drive signal output terminal of the drive signal generating device, and the signal line is preferably connected to the deep brain stimulation element. Since the drive signal generating device that performs electrical processing is housed inside the sealed container, it is possible to protect the drive signal generating device. It is also possible to implant the sealed container inside the body.

 本開示の脳深部刺激装置は、脳波検出器と、前記脳波検出器の出力信号から、所定の周波数帯域の信号成分を抽出し、抽出された信号成分のうち、強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度を求め、当該頻度に応じた周波数及び振幅を有する駆動信号を生成する駆動信号生成装置と、前記駆動信号生成装置から出力された前記駆動信号が与えられる脳深部刺激素子とを備える。所定の周波数帯域の信号成分とは、運動に相関する周波数帯域であり、好適には上記の周波数帯域である。駆動信号生成装置は、好適には、この頻度が高いほど、駆動信号の周波数が高くなり、この頻度が高いほど、駆動信号の振幅が大きくなるように、駆動信号を生成する。 The deep brain stimulation device of the present disclosure comprises an EEG detector, a drive signal generating device that extracts signal components of a predetermined frequency band from the output signal of the EEG detector, determines the frequency of waveforms among the extracted signal components whose intensity is equal to or exceeds a reference value and whose duration is equal to or exceeds a reference time, and generates a drive signal having a frequency and amplitude corresponding to the frequency, and a deep brain stimulation element to which the drive signal output from the drive signal generating device is applied. The signal components of the predetermined frequency band are frequency bands that correlate with movement, and are preferably the frequency bands described above. The drive signal generating device preferably generates a drive signal such that the higher the frequency, the higher the frequency of the drive signal, and the higher the frequency, the larger the amplitude of the drive signal.

 本開示の脳深部刺激装置は、脳波検出器と、前記脳波検出器の出力信号から、所定の周波数帯域の信号成分を抽出し、抽出された信号成分のうち、強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度を求め、当該頻度に応じた周波数又は振幅を有する駆動信号を生成する駆動信号生成装置と、前記駆動信号生成装置から出力された前記駆動信号が与えられる脳深部刺激素子とを備える。所定の周波数帯域の信号成分とは、運動に相関する周波数帯域であり、好適には上記の周波数帯域である。駆動信号の周波数及び振幅を増加させると、脳深部刺激素子に供給される電力が増加し、刺激量が増加する。これらのパラメータの一方のみを増加させた場合においても、治療効果が期待できるが、双方のパラメータを増加させた方が効果的である。 The deep brain stimulation device disclosed herein comprises an EEG detector, a drive signal generating device that extracts signal components of a predetermined frequency band from the output signal of the EEG detector, determines the frequency of waveforms among the extracted signal components whose intensity is equal to or exceeds a reference value and whose duration is equal to or exceeds a reference time, and generates a drive signal having a frequency or amplitude corresponding to the frequency, and a deep brain stimulation element to which the drive signal output from the drive signal generating device is applied. The signal components of the predetermined frequency band are frequency bands that correlate with movement, and preferably the above-mentioned frequency bands. Increasing the frequency and amplitude of the drive signal increases the power supplied to the deep brain stimulation element, and increases the amount of stimulation. Even when only one of these parameters is increased, a therapeutic effect can be expected, but it is more effective to increase both parameters.

 この脳深部刺激装置によれば、電力消費量を低減しつつ、治療効果を得ることが可能である。 This deep brain stimulation device makes it possible to obtain therapeutic effects while reducing power consumption.

図1は、第1実施形態に係る脳深部刺激装置を示す図である。FIG. 1 is a diagram showing a deep brain stimulation apparatus according to a first embodiment. 図2は、ウインドウ・ディスクリミネータの入力信号S及びパルス出力信号Sのタイミングチャートである。FIG. 2 is a timing chart of the input signal SF and the pulse output signal SP of the window discriminator. 図3は、脳深部刺激素子の平面図(図3(A))、先端部分の拡大図(図3(B))である。FIG. 3 is a plan view of the deep brain stimulation element (FIG. 3(A)) and an enlarged view of the tip portion (FIG. 3(B)). 図4は、β帯域、γ1帯域、γ2帯域における皮質脳波信号の時間的変化を示すグラフ(図4(A)はサルAとBを一緒にしたデータ、図4(B)はサルAのデータ、図4(C)はサルBのデータを示すグラフ)である。FIG. 4 is a graph showing temporal changes in EEG signals in the beta, gamma 1, and gamma 2 bands (FIG. 4(A) shows data for monkeys A and B combined, FIG. 4(B) shows data for monkey A, and FIG. 4(C) shows data for monkey B). 図5は、DBS-OFF、aDBS、cDBSの状態において、基準条件を満たす動作が成功した比率を示す図表である。FIG. 5 is a graph showing the success rate of operations that satisfy the criteria conditions in the DBS-OFF, aDBS, and cDBS states. 図6は、運動前期間(Premovement)、運動期間(Movement)、戻り期間(Return)におけるγ2帯域の出力信号のパワーを示すグラフ(図6(A)はサルAとBを一緒にしたデータ、図6(B)はサルAのデータ、図6(C)はサルBのデータを示すグラフ)である。FIG. 6 is a graph showing the power of the output signal in the gamma 2 band during the premovement, movement, and return periods (FIG. 6(A) shows data for monkeys A and B combined, FIG. 6(B) shows data for monkey A, and FIG. 6(C) shows data for monkey B). 図7は、DBS-OFF、aDBS、cDBSの状態において、動作完了に要する時間を、DBS-OFFの状態を基準にして正規化して示す図表である。FIG. 7 is a graph showing the time required to complete an operation in the DBS-OFF, aDBS, and cDBS states, normalized with respect to the DBS-OFF state. 図8は、cDBSによる供給電荷に対するaDBSの供給電荷の比率を示す図表である。FIG. 8 is a graph showing the ratio of the charge supplied by the aDBS to the charge supplied by the cDBS. 図9は、第2実施形態に係る脳深部刺激装置を示す図である。FIG. 9 is a diagram showing a deep brain stimulation apparatus according to the second embodiment. 図10は、医療機器としての脳深部刺激装置を示す図である。FIG. 10 is a diagram showing a deep brain stimulation device as a medical device. 図11は、複数の検出素子を備えた脳深部刺激装置を示す図である。FIG. 11 is a diagram showing a deep brain stimulation device equipped with a plurality of detection elements. 図12は、複数の脳波信号を受信して処理する回路構成を示す図である。FIG. 12 is a diagram showing a circuit configuration for receiving and processing a plurality of electroencephalogram signals. 図13は、検出素子の回路構成を示す図である。FIG. 13 is a diagram showing a circuit configuration of the detection element. 図14は、複数の皮質脳波信号が入力される制御装置のブロック図である。FIG. 14 is a block diagram of a control device to which a plurality of electrocorticogram signals are input. 図15は、複数の皮質脳波信号が入力される制御装置のブロック図である。FIG. 15 is a block diagram of a control device to which a plurality of electrocortical signal are input. 図16は、入力周波数fin(Hz)と駆動信号の周波数f(Hz)との関係を示すグラフ(A)、及び、入力周波数fin(Hz)と駆動信号の振幅Aとの関係を示すグラフ(B)である。FIG. 16 is a graph (A) showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal, and a graph (B) showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal. 図17は、入力周波数fin(Hz)と駆動信号の周波数f(Hz)との関係を示すグラフ(A)、及び、入力周波数fin(Hz)と駆動信号の振幅Aとの関係を示すグラフ(B)である。FIG. 17 is a graph (A) showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal, and a graph (B) showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal. 図18は、入力周波数fin(Hz)と駆動信号の周波数f(Hz)との関係を示すグラフ(A)、及び、入力周波数fin(Hz)と駆動信号の振幅Aとの関係を示すグラフ(B)である。FIG. 18 is a graph (A) showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal, and a graph (B) showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal. 図19は、入力周波数fin(Hz)と駆動信号の周波数f(Hz)との関係を示すグラフ(A)、及び、入力周波数fin(Hz)と駆動信号の振幅Aとの関係を示すグラフ(B)である。FIG. 19 is a graph (A) showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal, and a graph (B) showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal. 図20は、入力周波数fin(Hz)と駆動信号の周波数f(Hz)との関係を示すグラフ(A)、及び、入力周波数fin(Hz)と駆動信号の振幅Aとの関係を示すグラフ(B)である。FIG. 20 is a graph (A) showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal, and a graph (B) showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal.

 以下、図面を参照して種々の例示的実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附することとし、重複する説明は省略する。
(第1実施形態)
 図1は、第1実施形態に係る脳深部刺激装置100を示す図である。
Various exemplary embodiments will be described in detail below with reference to the drawings. Note that the same or corresponding parts in each drawing are denoted by the same reference numerals, and duplicated explanations will be omitted.
First Embodiment
FIG. 1 is a diagram showing a deep brain stimulation device 100 according to the first embodiment.

 脳深部刺激装置100は、脳波検出器1と、駆動信号生成装置10と、駆動信号生成装置10から出力された駆動信号が与えられる脳深部刺激素子8とを備えている。本例の脳深部刺激素子8は、目的部位に電気信号を与える脳深部刺激プローブ(電極)である。脳深部刺激素子8として、電気信号に変えて、目的部位に光(電磁波)信号を与える素子とすることもできる。 The deep brain stimulation device 100 comprises an EEG detector 1, a drive signal generating device 10, and a deep brain stimulation element 8 to which the drive signal output from the drive signal generating device 10 is applied. In this example, the deep brain stimulation element 8 is a deep brain stimulation probe (electrode) that applies an electrical signal to a target area. The deep brain stimulation element 8 can also be an element that converts an electrical signal into an optical (electromagnetic wave) signal and applies it to the target area.

 駆動信号生成装置10には、脳波検出器1の出力信号が入力され、駆動信号を生成し、駆動信号を脳深部刺激素子8に供給する。駆動信号生成装置10は、フィルタ2(アナログフィルタ)と、ウインドウ・ディスクリミネータ3と、第1インターフェース4と、制御装置5と、第2インターフェース6、駆動回路7(アナログ・アイソレータ)とを備えている。 The drive signal generating device 10 receives the output signal of the EEG detector 1, generates a drive signal, and supplies the drive signal to the deep brain stimulation element 8. The drive signal generating device 10 includes a filter 2 (analog filter), a window discriminator 3, a first interface 4, a control device 5, a second interface 6, and a drive circuit 7 (analog isolator).

 脳波検出器1は、大脳皮質運動野からの皮質脳波信号を受信する。フィルタ2には、脳波検出器1の出力信号が入力され、所定の周波数帯域(γ2帯域を含む)の信号成分を抽出する。ウインドウ・ディスクリミネータ3には、フィルタ2の出力信号が入力される。ウインドウ・ディスクリミネータ3は、抽出された信号成分から、脳内活動に相関するイベントの発生頻度に応じたパルス信号Sを生成する。具体的には、ウインドウ・ディスクリミネータ3は、強度が基準値以上であり且つ継続時間が基準時間以上の1つの波形が検出される毎に、1つのパルス電圧を生成して、パルス信号Sを出力する。 The electroencephalogram detector 1 receives an electrocortical electroencephalogram signal from the motor cortex of the cerebral cortex. The output signal of the electroencephalogram detector 1 is input to the filter 2, which extracts signal components in a predetermined frequency band (including the γ2 band). The output signal of the filter 2 is input to the window discriminator 3. The window discriminator 3 generates a pulse signal S P from the extracted signal components according to the occurrence frequency of events correlated with brain activity. Specifically, the window discriminator 3 generates one pulse voltage and outputs the pulse signal S P every time one waveform having an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time is detected.

 制御装置5には、ウインドウ・ディスクリミネータ3から出力されるパルス信号が入力される。制御装置5は、パルス信号Sを処理して、イベント発生頻度に応じた駆動制御信号Sを生成する。駆動制御信号Sは、パルス信号Sの頻度に応じた周波数及び振幅を有する。駆動回路7は、制御装置5から出力された駆動制御信号Sに応じた周波数及び振幅を有し、Sとは電気的に絶縁された駆動信号Sを生成する。駆動信号S(刺激パルス)は、駆動制御信号Sに同期しており、脳深部刺激素子8に入力される。脳深部刺激素子8に駆動信号Sが入力されると、脳深部刺激素子8が接触する視床下核STNが電気信号により刺激される。この刺激により、神経学的運動障害を減少させ、運動異常症を治療することができる。以下、詳説する。 The control device 5 receives the pulse signal output from the window discriminator 3. The control device 5 processes the pulse signal S P to generate a drive control signal S C according to the frequency of event occurrence. The drive control signal S C has a frequency and amplitude according to the frequency of the pulse signal S P. The drive circuit 7 generates a drive signal S D having a frequency and amplitude according to the drive control signal S C output from the control device 5 and electrically insulated from S C. The drive signal S D (stimulation pulse) is synchronized with the drive control signal S C and is input to the deep brain stimulation element 8. When the drive signal S D is input to the deep brain stimulation element 8, the subthalamic nucleus STN that the deep brain stimulation element 8 contacts is stimulated by an electrical signal. This stimulation reduces neurological movement disorders and can treat movement disorders. This will be described in detail below.

 脳波検出器1について説明する。 The following describes the EEG detector 1.

 脳波検出器1は、大脳皮質運動野の一次運動野M1に配置された検出素子(第1検出素子1A、第2検出素子1B)と、検出素子の出力信号が入力される前置増幅器1Cと、前置増幅器1Cの後段に接続された主増幅器1D(生体信号増幅器)とを備えている。本例では、第1検出素子1A及び第2検出素子1Bは、バイポーラ電極を構成している。これらの一対の電極は、それぞれ、ステンレスの導線であり、先端部を除いて、絶縁体であるフッ素樹脂(ポリテトラフルオロエチレン)により被覆されている。一対の電極間の距離は2mmである。一対の電極は、アンプにおける前置増幅器1Cの正負の入力端子に、それぞれ接続されている。本例の脳波検出器1は、双極誘導の検出方法を用いているが、単極誘導等、他の検出方法を用いることもできる。脳波検出器1は、大脳皮質運動野(一次運動野M1)における皮質脳波(局所フィールド電位(Local Field Potential:LFP))を検出し、脳波信号を出力する。 The EEG detector 1 includes detection elements (first detection element 1A, second detection element 1B) arranged in the primary motor area M1 of the motor cortex, a preamplifier 1C to which the output signals of the detection elements are input, and a main amplifier 1D (biological signal amplifier) connected to the rear stage of the preamplifier 1C. In this example, the first detection element 1A and the second detection element 1B form a bipolar electrode. Each of these pair of electrodes is a stainless steel conductor, and is covered with an insulating material, fluororesin (polytetrafluoroethylene), except for the tip. The distance between the pair of electrodes is 2 mm. The pair of electrodes is connected to the positive and negative input terminals of the preamplifier 1C in the amplifier, respectively. The EEG detector 1 in this example uses a bipolar induction detection method, but other detection methods such as unipolar induction can also be used. The EEG detector 1 detects cortical EEG (local field potential (LFP)) in the motor cortex (primary motor area M1) and outputs an EEG signal.

 フィルタ2について説明する。 Explain filter 2.

 フィルタ2は、バンドパスフィルタであり、脳波検出器1からの出力信号を受信して、γ2波の周波数帯域(80Hz~200Hz)の成分を抽出し、抽出後の信号を出力する。 Filter 2 is a bandpass filter that receives the output signal from EEG detector 1, extracts components in the gamma 2 wave frequency band (80 Hz to 200 Hz), and outputs the extracted signal.

 抽出する周波数帯域(80Hz~200Hz)は、絶対的な範囲ではなく、身体部位の運動直前の段階における脳活動との相関が高い周波数帯域を選択すればよい。かかる観点から、フィルタ2の通過させる上限周波数は、200Hzに制限されないが、不要な周波数成分はノイズになるので、必要がなければ、遮断することが望ましい。フィルタ2において抽出する周波数帯域内に、γ2波に加えて、γ1波(30Hz~80Hz)の一部を含ませることもできるが、フィルタ2の通過させる下限周波数は、少なくともβ波(13Hz~30Hz)の上限周波数(30Hz)よりも大きく設定される。γ2波と、β波とを、明確に区別するために、好適には、フィルタ2の通過させる下限周波数は、40Hz以上に設定することができ、50Hz以上に設定することができ、60Hz以上に設定することができ、或いは、70Hz以上に設定することもできる。γ2波と、γ1波とを、明確に区別するために、フィルタ2の通過させる下限周波数は、80Hz以上に設定することができ、90Hz以上に設定することができ、或いは、100Hz以上に設定することもできる。 The frequency band to be extracted (80 Hz to 200 Hz) is not an absolute range, but rather a frequency band that is highly correlated with brain activity immediately before the movement of a body part may be selected. From this perspective, the upper limit frequency that filter 2 passes is not limited to 200 Hz, but since unnecessary frequency components become noise, it is desirable to block them if not necessary. In addition to gamma 2 waves, a portion of gamma 1 waves (30 Hz to 80 Hz) can also be included in the frequency band extracted by filter 2, but the lower limit frequency that filter 2 passes is set to at least a frequency higher than the upper limit frequency (30 Hz) of beta waves (13 Hz to 30 Hz). In order to clearly distinguish between gamma 2 waves and beta waves, the lower limit frequency that filter 2 passes can be set to 40 Hz or higher, 50 Hz or higher, 60 Hz or higher, or 70 Hz or higher. In order to clearly distinguish between gamma 2 waves and gamma 1 waves, the lower limit frequency that filter 2 passes can be set to 80 Hz or higher, 90 Hz or higher, or 100 Hz or higher.

 このような観点から、一次運動野における皮質脳波のγ2周波数帯域として、中心周波数fを、80Hz~200Hzの間から選択し、選択された中心周波数fを含む周波数帯域を、抽出することが好ましい。フィルタ2が、中心周波数fc±許容周波数変位量Δfの帯域を抽出する場合、周波数帯域はfc±Δfで与えられる。 From this viewpoint, it is preferable to select a center frequency f C between 80 Hz and 200 Hz as the γ2 frequency band of the cortical electroencephalogram in the primary motor cortex, and to extract a frequency band including the selected center frequency f C. When the filter 2 extracts a band of the center frequency fc±the allowable frequency deviation Δf, the frequency band is given by fc±Δf.

 フィルタ2を通過させる下限周波数が40Hzであり、上限周波数が200Hzの場合は、この周波数帯域は、中心周波数fc(120Hz)±許容周波数変位量Δf(80Hz)である。周波数帯域の幅fwは、200Hz-40Hz=160Hzである。 If the lower limit frequency for passing through filter 2 is 40 Hz and the upper limit frequency is 200 Hz, the frequency band is the center frequency fc (120 Hz) ± the allowable frequency deviation Δf (80 Hz). The width of the frequency band fw is 200 Hz - 40 Hz = 160 Hz.

 フィルタ2を通過させる下限周波数が60Hzであり、上限周波数が200Hzの場合は、この周波数帯域は、中心周波数fc(130Hz)±許容周波数変位量Δf(70Hz)である。周波数帯域の幅fwは、200Hz-60Hz=140Hzである。 If the lower limit frequency for passing through filter 2 is 60 Hz and the upper limit frequency is 200 Hz, the frequency band is the center frequency fc (130 Hz) ± the allowable frequency deviation Δf (70 Hz). The width of the frequency band fw is 200 Hz - 60 Hz = 140 Hz.

 フィルタ2を通過させる下限周波数が80Hzであり、上限周波数が200Hzの場合は、この周波数帯域は、中心周波数fc(140Hz)±許容周波数変位量Δf(60Hz)である。周波数帯域の幅fwは、200Hz-80Hz=120Hzである。 If the lower limit frequency for passing through filter 2 is 80 Hz and the upper limit frequency is 200 Hz, the frequency band is the center frequency fc (140 Hz) ± the allowable frequency deviation Δf (60 Hz). The width of the frequency band fw is 200 Hz - 80 Hz = 120 Hz.

 フィルタ2を通過させる下限周波数が100Hzであり、上限周波数が200Hzの場合は、この周波数帯域は、中心周波数fc(150Hz)±許容周波数変位量Δf(50Hz)である。周波数帯域の幅fwは、200Hz-100Hz=100Hzである。 If the lower limit frequency for passing through filter 2 is 100 Hz and the upper limit frequency is 200 Hz, the frequency band is the center frequency fc (150 Hz) ± the allowable frequency deviation Δf (50 Hz). The width of the frequency band fw is 200 Hz - 100 Hz = 100 Hz.

 フィルタ2を通過させる下限周波数が120Hzであり、上限周波数が200Hzの場合は、この周波数帯域は、中心周波数fc(160Hz)±許容周波数変位量Δf(40Hz)である。周波数帯域の幅fwは、200Hz-120Hz=80Hzである。 If the lower limit frequency for passing through filter 2 is 120 Hz and the upper limit frequency is 200 Hz, the frequency band is the center frequency fc (160 Hz) ± the allowable frequency deviation Δf (40 Hz). The width of the frequency band fw is 200 Hz - 120 Hz = 80 Hz.

 これらの例示では、許容周波数変位量Δfは、40Hz~80Hzの範囲から選択して、設定している。中心周波数fcが、80Hz~200Hzの間に設定されていれば、許容周波数変位量Δfは、例えば、Δf=30Hz、Δf=20Hz、又は、Δf=10Hzに設定してもよい。すなわち、許容周波数変位量Δfは、例示的には、10Hz~80Hzの範囲から選択して、設定することができるが、脳活動のモニタが可能であれば、この範囲外の値を選択することもできる。周波数帯域の幅fwは、上記では80Hz~160Hzを例示したが、周波数帯域の幅fwを更に小さく設定しても、大きく設定しても、脳活動の検出は可能である。 In these examples, the allowable frequency shift Δf is set by selecting from the range of 40 Hz to 80 Hz. If the center frequency fc is set between 80 Hz and 200 Hz, the allowable frequency shift Δf may be set, for example, to Δf = 30 Hz, Δf = 20 Hz, or Δf = 10 Hz. That is, the allowable frequency shift Δf can be set by selecting from the range of 10 Hz to 80 Hz, but if brain activity can be monitored, a value outside this range can also be selected. The frequency band width fw is exemplified above as 80 Hz to 160 Hz, but brain activity can be detected even if the frequency band width fw is set smaller or larger.

 フィルタ2の抽出する運動に相関する周波数帯域γ2は、実験では霊長類としてのサル(Monkeys)に適用されるが、同じ霊長類であるヒト(Humans)にも適用できる。 The frequency band γ2 correlated with the movement extracted by filter 2 was applied to monkeys (primates) in the experiment, but it can also be applied to humans (humans), who are also primates.

 ウインドウ・ディスクリミネータ3について説明する。 Explain window discriminator 3.

 ウインドウ・ディスクリミネータ3は、フィルタ2からの出力信号Sを受信する。脳内の神経細胞は、脳活動時には、パルス状の活動電位を発生し、それが重畳したものが、皮質脳波のγ2を構成していると考えられる。ウインドウ・ディスクリミネータ3は、受信信号の成分をモニタし、信号成分が、以下の基準条件(α)を満たしたかどうかを判定する。 The window discriminator 3 receives the output signal S F from the filter 2. During brain activity, nerve cells in the brain generate pulse-like action potentials, and the superposition of these potentials is considered to constitute γ2 of the cortical electroencephalogram. The window discriminator 3 monitors the components of the received signal and determines whether the signal components satisfy the following criterion condition (α):

 基準条件(α):基準値(Vth)以上の強度を有する信号成分が、基準期間(Tth)以上、継続する。 Reference condition (α): A signal component having an intensity equal to or greater than the reference value (Vth) continues for a period equal to or greater than the reference period (Tth).

 基準条件(α)の判定結果が真(True)である場合は、脳活動に関する1つのイベントが発生したと見做して、これに対応した1つのパルス信号Sを出力する。 When the result of the determination of the reference condition (α) is true, it is assumed that one event related to brain activity has occurred, and one pulse signal SP corresponding to this is output.

 図2は、フィルタ2の出力信号S及びパルス信号Sのタイミングチャートである。 FIG. 2 is a timing chart of the output signal SF and the pulse signal SP of the filter 2. As shown in FIG.

 ウインドウ・ディスクリミネータ3の構造としては、様々なものがあるので、一例について説明する。フィルタ2からの受信信号Sの最大値を100%とする。ウインドウ・ディスクリミネータ3が、比較器を備えている場合、比較器の基準値(Vth)(閾値)を設定する。Vthは、本例では受信信号Sの最大値の75%に設定しているが、それ以外にも設定することができる。比較器は、受信信号Sの信号成分の強度が基準値(Vth)以上となると、「1」を出力する。 There are various types of structure for the window discriminator 3, so an example will be described below. The maximum value of the received signal S F from the filter 2 is set to 100%. If the window discriminator 3 is equipped with a comparator, a reference value (Vth) (threshold value) of the comparator is set. In this example, Vth is set to 75% of the maximum value of the received signal S F , but it can also be set to another value. The comparator outputs "1" when the intensity of the signal component of the received signal S F is equal to or greater than the reference value (Vth).

 この比較器の出力信号を、サンプリング・クロック信号に同期して、定期的にサンプリングする。基準期間(Tth)内にサンプリングされた比較器の出力が、全て「1」であれば、上述の基準条件(α)の判定結果が、真(True)となる。すなわち、基準値(Vth)以上の強度を有する信号成分が、基準期間(Tth)以上、継続したと判定できる。この場合、ウインドウ・ディスクリミネータ3は、受信信号S(フィルタ後の脳波信号)に含まれる成分(波形BS)が、基準条件(α)を満たしたと判定して、これに対応した1つのパルス信号S(パルス電圧P)を出力する。1つのパルス電圧Pの例示的なパルス幅は60マイクロ秒(μs)である。本例では、基準期間(Tth)は0.5ミリ秒(ms)に設定される。ウインドウ・ディスクリミネータ3における上記の判定を行う判定回路は、例えば、トランジスタ・トランジスタ論理回路(TTL回路)を用いて、構成することができる。 The output signal of this comparator is sampled periodically in synchronization with the sampling clock signal. If all the outputs of the comparator sampled within the reference period (Tth) are "1", the judgment result of the above-mentioned reference condition (α) is true. That is, it can be judged that the signal component having the intensity equal to or greater than the reference value (Vth) has continued for the reference period (Tth) or more. In this case, the window discriminator 3 judges that the component (waveform BS) contained in the received signal S F (filtered electroencephalogram signal) satisfies the reference condition (α), and outputs one pulse signal S P (pulse voltage P) corresponding to this. An exemplary pulse width of one pulse voltage P is 60 microseconds (μs). In this example, the reference period (Tth) is set to 0.5 milliseconds (ms). The judgment circuit that performs the above judgment in the window discriminator 3 can be configured, for example, using a transistor-transistor logic circuit (TTL circuit).

 脳活動に関する1つのイベント(波形BS)が発生する毎に、1つのパルス電圧Pが生成される。脳内では、時系列に複数のイベントが発生している。したがって、ウインドウ・ディスクリミネータ3からは、複数のパルス電圧Pを含むパルス信号Sが出力される。パルス信号Sは、上述の基準条件(α)を満たす信号成分(基準条件(α)を満たす脳波信号の波形BS)の頻度の情報を有している。要するに、一定期間内において、基準条件を満たす波形BSの発生回数(頻度)が求められる。 Each time an event (waveform BS) related to brain activity occurs, one pulse voltage P is generated. In the brain, multiple events occur in a time series. Therefore, a pulse signal S P including multiple pulse voltages P is output from the window discriminator 3. The pulse signal S P has information on the frequency of signal components (waveform BS of an electroencephalogram signal that satisfies the reference condition (α)) that satisfy the above-mentioned reference condition (α). In short, the number of occurrences (frequency) of the waveform BS that satisfies the reference condition within a certain period of time is found.

 ウインドウ・ディスクリミネータ3から出力されたパルス信号Sは、第1インターフェース4を介して、制御装置5に入力される。制御装置5は、受信したパルス信号Sを処理して、駆動制御信号Sを生成し、第2インターフェース6を介して、駆動回路7に入力する。具体的には、制御装置5は、単位期間内に含まれるパルス電圧Pの個数(フィルタ2の出力信号に含まれる、基準条件(α)を満たす信号成分の頻度)に応じた周波数及び振幅を有する駆動制御信号Sを生成する。 The pulse signal S P output from the window discriminator 3 is input to the control device 5 via the first interface 4. The control device 5 processes the received pulse signal S P to generate a drive control signal S C , and inputs it to the drive circuit 7 via the second interface 6. Specifically, the control device 5 generates a drive control signal S C having a frequency and amplitude according to the number of pulse voltages P included in a unit period (the frequency of signal components that satisfy the reference condition (α) included in the output signal of the filter 2).

 制御装置5について説明する。 Explain the control device 5.

 制御装置5における駆動制御信号Sの生成方法について、さらに説明する。なお、駆動信号Sは、駆動制御信号Sに同期しており、駆動信号Sの周波数fと、駆動制御信号Sの周波数fは同一である。駆動信号Sの振幅Aと、駆動制御信号Sの振幅Aは、比例している。 A method for generating the drive control signal S C in the control device 5 will be further described. The drive signal S D is synchronized with the drive control signal S C , and the frequency f of the drive signal S D is the same as the frequency f of the drive control signal S C. The amplitude A of the drive signal S D is proportional to the amplitude A of the drive control signal S C.

 制御装置5は、判定期間T内におけるパルス信号Sのパルス数(単位期間内におけるパルス電圧Pの個数(=頻度))を計測する。本例の判定期間Tは、上記の基準期間(Tth=0.5ms)の100倍であり、50ミリ秒(ms)に設定される。なお、本例では、判定期間T内に含まれるパルス数の移動平均μTTLを用いる。 The control device 5 measures the number of pulses of the pulse signal S P within the judgment period T P (the number (= frequency) of the pulse voltage P within a unit period). In this example, the judgment period T P is 100 times the reference period (Tth=0.5 ms) and is set to 50 milliseconds (ms). In this example, the moving average μ TTL of the number of pulses included in the judgment period T P is used.

 制御装置5は、判定期間T内のパルス数(平均値μTTL)が増加すると、換言すれば、脳内活動イベント発生頻度が増加すると、このパルス数に対して単調増加(例:比例)するように、駆動制御信号Sの周波数f及び振幅Aを増加させる。周波数fは、上限周波数flimit(例:150Hz)以上になると飽和し、パルス数が増加しても増加しない。 When the number of pulses (average value μTTL) in the judgment period T P increases, in other words, when the frequency of occurrence of brain activity events increases, the control device 5 increases the frequency f and amplitude A of the drive control signal S C so as to monotonically increase (e.g., proportionally) with respect to the number of pulses. The frequency f saturates when it exceeds an upper limit frequency f limit (e.g., 150 Hz) and does not increase even if the number of pulses increases.

 周波数fに関して、この関係を数式で示すと以下のようなる。
(条件1)   f<flimitの場合:f=f
(条件2)   flimit≦fの場合:f=flimit
(単調増加関数)f=Threshold+(μTTL/Threshold)×Gain
 周波数f(及び周波数f)は、単位時間当たりのパルス数の平均値μTTLの関数である。Thresholdは、パルス数の平均値μTTLがゼロの場合における駆動制御信号Sの周波数であり、例示的には、Threshold=50Hzである。この場合、横軸をμTTL、縦軸を周波数fにすると、周波数fは、μTTL=5000/Gainに到達するまでは、周波数fであり、傾き(Gain/50)で増加する。Gainは、この単調増加関数(一次関数)の傾きを決める係数である。
With respect to frequency f, this relationship can be expressed mathematically as follows:
(Condition 1) If f 0 <f limit : f = f 0
(Condition 2) If f limit ≦f 0 : f = f limit
(monotonically increasing function) f0 = Threshold f + (μTTL/Threshold f ) × Gain f
The frequency f (and frequency f 0 ) is a function of the average value μTTL of the number of pulses per unit time. Threshold f is the frequency of the drive control signal S C when the average value μTTL of the number of pulses is zero, and for example, Threshold f = 50 Hz. In this case, if the horizontal axis is μTTL and the vertical axis is frequency f, the frequency f is frequency f 0 until it reaches μTTL = 5000/Gain f , and increases at a slope (Gain f /50). Gain f is a coefficient that determines the slope of this monotonically increasing function (linear function).

 制御装置5は、判定期間T内のパルス数(平均値μTTL)が増加すると、換言すれば、脳内活動イベント発生頻度が増加すると、このパルス数に対して単調増加(例:比例)するように、駆動制御信号Sの振幅Aを増加させる。振幅Aは、上限振幅Alimit(例:1.5mA)以上になると飽和し、パルス数が増加しても増加しない。 When the number of pulses (average value μTTL) in the judgment period TP increases, in other words, when the frequency of occurrence of brain activity events increases, the control device 5 increases the amplitude A of the drive control signal SC so as to monotonically increase (e.g., proportionally) with respect to the number of pulses. The amplitude A saturates when it exceeds an upper limit amplitude A limit (e.g., 1.5 mA) and does not increase even if the number of pulses increases.

 振幅Aに関して、この関係を数式で示すと以下のようなる。
(条件1)   A<Alimitの場合:A=A
(条件2)   Alimit≦Aの場合:A=Alimit
(単調増加関数)A=Threshold+(μTTL/Threshold)×Gain
 振幅Aは、単位時間当たりのパルス数の平均値μTTLの関数である。Thresholdは、パルス数の平均値μTTLがゼロの場合における駆動制御信号Sの振幅であり、例示的には、Threshold=0.5mAである。この場合、Threshold=50Hzの場合では、横軸をμTTL、縦軸を振幅Aにすると、振幅Aは、μTTL=50/Gainに到達するまでは、傾き(Gain/50)で増加する。Gainは、この単調増加関数(一次関数)の傾きを決める係数である。なお、周波数閾値Threshold及び振幅閾値Thresholdは、それぞれ0よりも大きく、被検体が休憩期間の場合においても、脳深部刺激素子8に駆動信号Sが与えられることが好ましい。
Regarding the amplitude A, this relationship can be expressed mathematically as follows:
(Condition 1) If A0 < Alimit , then A= A0
(Condition 2) If A limit ≦A 0 : A = A limit
(Monotonically increasing function) A0 = Threshold A + (μTTL/Threshold f ) × Gain A
The amplitude A is a function of the average value μTTL of the number of pulses per unit time. Threshold A is the amplitude of the drive control signal S C when the average value μTTL of the number of pulses is zero, and for example, Threshold A = 0.5 mA. In this case, when Threshold f = 50 Hz, if the horizontal axis is μTTL and the vertical axis is amplitude A, the amplitude A increases with a slope (Gain A / 50) until it reaches μTTL = 50 / Gain A. Gain A is a coefficient that determines the slope of this monotonically increasing function (linear function). Note that the frequency threshold Threshold f and the amplitude threshold Threshold A are each greater than 0, and it is preferable that the drive signal S D is provided to the deep brain stimulation element 8 even when the subject is in a resting period.

 GainおよびGainは、周波数および振幅が、既定の上限値よりも低く維持されるように設定され、通常の使用状態において、入力が最大になっても、出力が上限値に達しない。駆動制御信号Sは、周波数f、振幅Aを有し、パルスの持続時間は、例示的に60マイクロ秒に設定することができる。なお、上記の関係式は、周波数f及び振幅Aが、パルス発生頻度(平均値μTTL)に応じて、線形に増加する関数であるが、これら以外の関数式も用いることができる。すなわち、周波数f及び振幅Aが、パルス発生頻度(平均値μTTL)に応じて、単調増加する関数であればよい。例えば、この頻度の増加に伴って、周波数及び振幅が、非線形に増加する場合も考えられる。非線形制御においても、視床下核等を刺激すると、運動指令が通過しやすくなるので、運動異常症の治療が可能である。また、頻度に対して、周波数及び振幅を連続的に変化させるのみならず、離散的に変化させることもできる。離散的制御においても、視床下核等を刺激すると、運動指令が通過しやすくなるので、運動異常症の治療が可能である。 Gain f and Gain A are set so that the frequency and amplitude are maintained lower than the predetermined upper limit, and even if the input is maximized in normal use, the output does not reach the upper limit. The drive control signal S C has a frequency f and an amplitude A, and the duration of the pulse can be set to, for example, 60 microseconds. The above relational expression is a function in which the frequency f and the amplitude A increase linearly according to the pulse generation frequency (average value μTTL), but other function expressions can also be used. That is, it is sufficient that the frequency f and the amplitude A increase monotonically according to the pulse generation frequency (average value μTTL). For example, it is possible that the frequency and the amplitude increase nonlinearly with the increase in the frequency. Even in nonlinear control, stimulating the subthalamic nucleus or the like makes it easier for motor commands to pass, so that movement disorders can be treated. In addition, the frequency and the amplitude can be changed not only continuously but also discretely with respect to the frequency. Even in discrete control, stimulating the subthalamic nucleus etc. makes it easier for motor commands to pass through, making it possible to treat movement disorders.

 駆動制御信号S(駆動信号S)の周波数f及び振幅Aを増加させると、脳深部刺激素子8に供給される電力が増加し、刺激量が増加する。これらのパラメータの一方のみを増加させた場合においても、治療効果が期待できるが、双方のパラメータを増加させた方が効果的である。片方のパラメータのみを変化させる場合、駆動信号生成装置10は、上述のγ2波に対応する周波数帯域の信号成分を抽出し、基準条件(α)を満たす信号成分の波形の頻度を求め、当該頻度に応じた周波数を有する駆動信号Sを生成する。或いは、駆動信号生成装置10は、上述のγ2波に対応する周波数帯域の信号成分を抽出し、基準条件(α)を満たす信号成分の波形の頻度を求め、当該頻度に応じた振幅を有する駆動信号Sを生成する。 When the frequency f and amplitude A of the drive control signal S C (drive signal S D ) are increased, the power supplied to the deep brain stimulation element 8 is increased, and the amount of stimulation is increased. Although a therapeutic effect can be expected even when only one of these parameters is increased, it is more effective to increase both parameters. When only one parameter is changed, the drive signal generating device 10 extracts the signal components of the frequency band corresponding to the above-mentioned gamma 2 wave, obtains the frequency of the waveform of the signal components that satisfy the reference condition (α), and generates a drive signal S D having a frequency corresponding to the frequency. Alternatively, the drive signal generating device 10 extracts the signal components of the frequency band corresponding to the above-mentioned gamma 2 wave, obtains the frequency of the waveform of the signal components that satisfy the reference condition (α), and generates a drive signal S D having an amplitude corresponding to the frequency.

 駆動回路7について説明する。 The drive circuit 7 will now be explained.

 駆動回路7は、入力された駆動制御信号Sに同期した駆動信号Sを生成し、駆動信号Sを脳深部刺激素子8に入力する。脳内活動に対応するイベントの発生頻度が高いほど、駆動制御信号Sの指示する周波数及び振幅、すなわち、供給電力は増加する。駆動制御信号Sの周波数及び振幅が高いほど、駆動信号Sの周波数及び振幅が高くなり、脳深部刺激素子8への供給電力は増加する。なお、本例の駆動信号Sは、駆動電流を脳深部刺激素子8へ供給するものであり、電圧パルス信号である駆動制御信号Sと同一の周波数を有する電流信号であり、この電流信号の振幅は、電圧パルス信号の振幅に比例する。 The drive circuit 7 generates a drive signal S D synchronized with the input drive control signal S C and inputs the drive signal S D to the deep brain stimulation element 8. The higher the frequency of occurrence of events corresponding to brain activity, the higher the frequency and amplitude indicated by the drive control signal S C , i.e., the supply power. The higher the frequency and amplitude of the drive control signal S C , the higher the frequency and amplitude of the drive signal S D , and the higher the power supplied to the deep brain stimulation element 8. The drive signal S D in this example supplies a drive current to the deep brain stimulation element 8, and is a current signal having the same frequency as the drive control signal S C, which is a voltage pulse signal, and the amplitude of this current signal is proportional to the amplitude of the voltage pulse signal.

 駆動回路7(アナログ・アイソレータ)は、駆動制御信号Sが入力される入力部と、この入力部から、電気的に絶縁した状態で駆動制御信号Sが伝達され、駆動信号Sを生成する出力部とを備えている。すなわち、これらの入力部と出力部とは、隔離され、直接、電流が流れないようにされている。入力部と出力部との間の信号伝達構造としては、トランスを用いた構造や、フォトカプラを用いた構造等がある。アイソレータを用いることにより、入力部側に不具合があった場合における、駆動信号Sへの影響を抑制することができるという利点がある。すなわち、駆動信号Sの最大値を出力部側で制限することができ、安全性を向上させることができる。駆動回路7としては、アナログ・アイソレータ以外の回路を採用することも可能である。 The drive circuit 7 (analog isolator) includes an input section to which the drive control signal S C is input, and an output section to which the drive control signal S C is transmitted in an electrically insulated state from the input section and which generates the drive signal S D. That is, these input section and output section are isolated from each other so that no current flows directly between them. The signal transmission structure between the input section and the output section includes a structure using a transformer and a structure using a photocoupler. The use of an isolator has the advantage that the influence on the drive signal S D can be suppressed in the event of a malfunction on the input section side. That is, the maximum value of the drive signal S D can be limited on the output section side, improving safety. It is also possible to adopt a circuit other than an analog isolator as the drive circuit 7.

 脳深部刺激素子8について説明する。 Explain about the deep brain stimulation element 8.

 図3は、脳深部刺激素子8の平面図(図3(A))、先端部分の拡大図(図3(B))である。 Figure 3 shows a plan view of the deep brain stimulation element 8 (Figure 3(A)) and an enlarged view of the tip portion (Figure 3(B)).

 脳深部刺激素子8は、脳深部に接触する先端部8Aと、駆動信号が入力される入力部8Bと、先端部8Aと入力部8Bとを接続する支持部8Cとを備えている。 The deep brain stimulation element 8 has a tip 8A that contacts the deep brain, an input 8B to which a drive signal is input, and a support 8C that connects the tip 8A and the input 8B.

 支持部8Cの表面は樹脂(例:ポリイミド)からなるコーディング膜8aにより被覆されており、コーディング膜8aの内側には、高融点金属(例:タングステン)の導線が通っている。 The surface of the support 8C is covered with a coating film 8a made of resin (e.g., polyimide), and a conductor of a high melting point metal (e.g., tungsten) runs inside the coating film 8a.

 先端部8Aは、第1刺激部8b、第2刺激部8c、及び、第3刺激部8dを備えており、これらの刺激部は、樹脂(例:エポキシ樹脂)からなる筒体8eの表面に設けられている。筒体8eの先端からは、先端電位検出部8fが露出している。本例の先端電位検出部8fは高インピーダンス電極(~500kΩ)からなる。本例の第1刺激部8b、第2刺激部8c、及び、第3刺激部8dは、それぞれ低インピーダンス電極(~10kΩ)からなる。第1刺激部8b、第2刺激部8c、及び、第3刺激部8dの中心間距離は、本例では0.75mmである。 The tip portion 8A is equipped with a first stimulation portion 8b, a second stimulation portion 8c, and a third stimulation portion 8d, and these stimulation portions are provided on the surface of a cylindrical body 8e made of resin (e.g., epoxy resin). A tip potential detection portion 8f is exposed from the tip of the cylindrical body 8e. In this example, the tip potential detection portion 8f is made of a high impedance electrode (up to 500 kΩ). In this example, the first stimulation portion 8b, the second stimulation portion 8c, and the third stimulation portion 8d are each made of a low impedance electrode (up to 10 kΩ). In this example, the center-to-center distance between the first stimulation portion 8b, the second stimulation portion 8c, and the third stimulation portion 8d is 0.75 mm.

 筒体8eの内部には、第1刺激部8b、第2刺激部8c、第3刺激部8d、及び、先端電位検出部8fに、それぞれ接続された複数の導線が通っている。これらの各導線は、お互いに電気的に絶縁され、それぞれコーディング膜8aの内側を通る複数の導線に接続されている。 Inside the cylindrical body 8e, there are multiple conductors connected to the first stimulating section 8b, the second stimulating section 8c, the third stimulating section 8d, and the tip potential detecting section 8f. These conductors are electrically insulated from each other and are each connected to multiple conductors that pass through the inside of the coating film 8a.

 第1刺激部8b、第2刺激部8c、及び、第3刺激部8dは、生体内化学物質に対して、反応性が低い電極材料からなる。この電極材料としては、高融点金属、又は、白金、或いは、これらの金属材料から選択される少なくとも1種類以上の金属を含む合金を用いることもできる。電極材料として、例示的には、白金イリジウム合金を用いてもよい。それぞれの刺激部は、電極材料からなるワイヤを筒体8eの周囲に複数回(例示的には8回)、巻き付けて構成される形状を有するが、電気的な刺激が与えられるものであれば、他の形状であってもよい。先端電位検出部8fの材料も、第1~第3刺激部の材料と同様に、生体内化学物質に対して、反応性が低い電極材料からなる。先端電位検出部8fは、目的部位(視床下核STN)に、脳深部刺激素子が位置しているかどうかを確認する際に利用することができ、神経活動の計測に利用することができる。 The first stimulating section 8b, the second stimulating section 8c, and the third stimulating section 8d are made of an electrode material that is less reactive to chemical substances in the body. As the electrode material, a high melting point metal, platinum, or an alloy containing at least one metal selected from these metal materials may be used. As an example, a platinum-iridium alloy may be used as the electrode material. Each stimulating section has a shape formed by wrapping a wire made of an electrode material around the cylindrical body 8e multiple times (e.g., eight times), but may have other shapes as long as it can provide electrical stimulation. The material of the tip potential detecting section 8f is also made of an electrode material that is less reactive to chemical substances in the body, like the material of the first to third stimulating sections. The tip potential detecting section 8f can be used to confirm whether the deep brain stimulating element is located in the target area (subthalamic nucleus STN), and can be used to measure neural activity.

 第1刺激部8b、第2刺激部8c、及び、第3刺激部8dに、駆動信号(駆動電流)が供給されると、電気的刺激が、これらが接触する部位に与えられる。全ての刺激部に駆動電流を供給する必要はない。すなわち、脳深部刺激素子8を脳内に挿入した後、磁気共鳴画像(MRI)装置を用いて、これらの刺激部(電極)の位置を計測し、3つの刺激部のうち、適切な位置に存在する2つを選択し、選択された刺激部に駆動信号を与えることができる。
(実験例)
 上述の脳深部刺激装置100を用いた治療効果について検証実験を行った。
When a drive signal (drive current) is supplied to the first stimulator 8b, the second stimulator 8c, and the third stimulator 8d, electrical stimulation is given to the parts where they are in contact. It is not necessary to supply a drive current to all of the stimulators. That is, after inserting the deep brain stimulation element 8 into the brain, a magnetic resonance imaging (MRI) device is used to measure the positions of these stimulators (electrodes), and two of the three stimulators that are in appropriate positions are selected, and a drive signal is given to the selected stimulators.
(Experimental Example)
An experiment was carried out to verify the therapeutic effect of using the above-described deep brain stimulation device 100.

 まず、被検体と訓練について説明する。被検体として2頭の雌ニホンザル(Macaca fuscata)を用意した。サルA(Monkey)の体重は5.0kg、サルB(Monkey)の体重は5.4kgである。サルに4か月間、週5日の訓練を行った。この訓練後、サルにMPTP(1-メチル-4-フェニル-1,2,3,6-テトラヒドロピリジン)処理を施し、訓練と同じ内容の実験を行った。この訓練では、サルに単純な垂直方向上肢到達課題を達成させた。 First, we will explain the subjects and training. Two female Japanese macaques (Macaca fuscata) were prepared as subjects. Monkey A weighed 5.0 kg, and Monkey B weighed 5.4 kg. The monkeys were trained five days a week for four months. After this training, the monkeys were treated with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), and an experiment with the same content as the training was conducted. In this training, the monkeys were asked to complete a simple vertical upper limb reaching task.

 訓練において、サルたちは、固定されたプラスチックの塔に向かい、サル椅子に座った。塔には、緑色の発光ダイオード(LED)が視覚ターゲットとして埋め込んである。LEDの下15cmの塔の基部の位置に、ホームキー(水平なプラットフォーム)が固定され、サルが肘を90°に曲げた状態において、ホームキー上で、快適に手を休めることができる。手の動きを監視するために、ホームキーとターゲットのLEDに、赤外線光電センサ(株式会社キーエンス製)を設けた。 During training, the monkeys sat in monkey chairs facing a fixed plastic tower. A green light-emitting diode (LED) was embedded in the tower as a visual target. A home key (a horizontal platform) was fixed at the base of the tower, 15 cm below the LED, allowing the monkeys to rest their hands comfortably on the home key with their elbows bent at 90°. To monitor hand movements, infrared photoelectric sensors (manufactured by Keyence Corporation) were attached to the home key and the target LED.

 サルが、少なくとも1秒間、ホームキー上に手を置いた後、タスクを開始した。サルが視覚信号(LED発光)および聴覚信号(ブザー音)により刺激(0.3秒間)された場合、サルは6秒以内に、ターゲットに手を到達させ、触れることが要求された。この作業が成功すると、ターゲットに触れた0.1秒後に、サルには一滴の飲み水が報酬として与えられた。サルは、12秒で、手をホームキーに戻すことが求められた。サルが手をホームキーに戻せない場合は、実験者は次の試行を開始するために、サルの手をホームキーの上に置いた。 The task began after the monkey placed its hand on the home key for at least 1 second. When the monkey was stimulated (for 0.3 seconds) by a visual (LED light) and an auditory (buzzer) signal, the monkey was required to reach and touch the target within 6 seconds. If the task was successful, the monkey was rewarded with a drop of water 0.1 seconds after touching the target. The monkey was required to return its hand to the home key in 12 seconds. If the monkey was unable to return its hand to the home key, the experimenter placed the monkey's hand on the home key to start the next trial.

 この課題では、4つの期間を定義した。
・休憩期間(Rest)は、課題を行っていない期間で、具体的には視覚信号及び聴覚信号による刺激開始の1秒前から、当該刺激開始までの期間である。
・運動前期間(Premovement)は、視覚信号及び聴覚信号による刺激開始時に始まり、手がホームキーから離れたときに終わる。
・運動期間(Movement)は、サルが手をホームキーから離した時に始まり、ターゲットに触れたときに終わる。
・戻り期間(Return)は、サルがターゲットから手を離したときに始まり、ホームキーまたはその近くに手を戻したときに終わる。
In this assignment, four time periods were defined.
The rest period (Rest) is a period during which no task is being performed, specifically the period from one second before the onset of stimulation by visual and auditory signals until the onset of said stimulation.
The premovement period begins at the onset of the visual and auditory cues and ends when the hand is released from the home key.
A movement period begins when the monkey removes his hand from the home key and ends when he touches the target.
The return period began when the monkey released his hand from the target and ended when he returned his hand to or near the home key.

 ホームキーに戻るかどうかにかかわらず、ターゲットへの到達に成功した25回の試行を、「シリーズ」と定義した。サルは、実験開始前の24時間、水分を摂取させず、水分の摂取は、必要に応じて果実および皮下液供給により調節した。 A "series" was defined as 25 trials in which the monkeys successfully reached the target, regardless of whether they returned to the home key. Monkeys were deprived of water for 24 h prior to the start of the experiment, and water intake was regulated by fruit and subcutaneous fluid supply as needed.

 次に、頭部固定と電極移植のための外科手術について説明する。全身麻酔の下で、頭蓋骨にパイプを固定するための外科手術を実施した。この外科手術は、実験中に頭部を定位固定フレームに固定するための処置である。麻酔薬として、ケタミン塩酸塩(5~8mg/kg(体重)、筋肉注射)、塩酸キシラジン(0.5~1mg/kg(体重)、筋肉注射)およびプロポフォール(6~7μg/ml、血中濃度、静脈注射)を用いた。 Next, we will explain the surgical procedure for head fixation and electrode implantation. Under general anesthesia, a surgical procedure was performed to fix the pipes to the skull. This procedure was performed to fix the head in a stereotaxic frame during the experiment. The anesthetics used were ketamine hydrochloride (5-8 mg/kg (body weight), intramuscular injection), xylazine hydrochloride (0.5-1 mg/kg (body weight), intramuscular injection), and propofol (6-7 μg/ml, blood concentration, intravenous injection).

 この外科手術の10日後、皮質脳波信号検出用の検出素子(電極)を頭部内に埋め込んだ。全身麻酔の下で、頭部を定位固定フレームに固定した後、作業遂行に使用する手の反対側の一次運動野M1上の頭蓋骨を除去した。麻酔薬として、ケタミン塩酸塩(5~8mg/kg(体重)、筋肉注射)と塩酸キシラジン(0.5~1mg/kg(体重)、筋肉注射)を用いた。一次運動野M1の上肢領域を、電気生理学的マッピングにより特定した。 Ten days after this surgery, a detection element (electrode) for detecting electrocortical electroencephalogram signals was implanted in the head. Under general anesthesia, the head was fixed in a stereotaxic frame, and then the skull above the primary motor cortex M1 on the opposite side to the hand used to perform the task was removed. Ketamine hydrochloride (5-8 mg/kg (body weight), intramuscular injection) and xylazine hydrochloride (0.5-1 mg/kg (body weight), intramuscular injection) were used as anesthetics. The upper limb area of the primary motor cortex M1 was identified by electrophysiological mapping.

 皮質脳波信号の検出素子としての電極は、直径200μmのポリテトラフルオロエチレン被覆ステンレス鋼ワイヤ(California Fine Wire社製)で製作した。ワイヤを対にして、インピーダンス整合を行い(≦1kΩ)、最適なコモンモード除去ができるようにした。後の局所フィールド電位(LFP)の記録のために、これらのワイヤは、2mmの電極中心間距離で、一次運動野M1の上肢領域の第III層~第V層内に埋め込まれ、アクリル樹脂により機械的に固定された。一次運動野M1を覆う長方形のプラスチックチャンバーを、アクリル樹脂により、頭蓋骨に固定した。 The electrodes, which served as the detection elements for the EEG signals, were made of 200 μm diameter polytetrafluoroethylene-coated stainless steel wires (California Fine Wire). The wires were paired and impedance matched (≤1 kΩ) to ensure optimal common-mode rejection. For subsequent recording of local field potentials (LFPs), the wires were implanted in layers III-V of the upper limb region of the primary motor cortex M1 with a center-to-center distance of 2 mm and mechanically fixed with acrylic resin. A rectangular plastic chamber covering the primary motor cortex M1 was fixed to the skull with acrylic resin.

 パーキンソン病の誘導について説明する。サルにMPTPを投与し、中等度から重度のパーキンソン病を誘導した。全身麻酔導入後、タスク遂行に使用した手と反対側の外頸動脈、内頸動脈および総頸動脈を、頸部領域で切開した。麻酔薬として、ケタミン塩酸塩(5~8mg/kg(体重)、筋肉注射)、塩酸キシラジン(0.5~1mg/kg(体重)、筋肉注射)およびプロポフォール(6~7μg/ml、血中濃度、静脈注射)を用いた。外頸動脈を一時的にクランプし、生理食塩水に溶解したMPTP(2mg/mL)を、総頸動脈に注入した(サルA:0.6mg/kg、サルB:1.3mg/kg)。 Induction of Parkinson's disease. Monkeys were administered MPTP to induce moderate to severe Parkinson's disease. After induction of general anesthesia, the external carotid artery, internal carotid artery, and common carotid artery on the opposite side to the hand used for performing the task were incised in the neck region. The anesthetic agents used were ketamine hydrochloride (5-8 mg/kg (body weight), intramuscular injection), xylazine hydrochloride (0.5-1 mg/kg (body weight), intramuscular injection), and propofol (6-7 μg/ml, blood concentration, intravenous injection). The external carotid artery was temporarily clamped, and MPTP (2 mg/mL) dissolved in saline was injected into the common carotid artery (Monkey A: 0.6 mg/kg, Monkey B: 1.3 mg/kg).

 その後、ケタミン塩酸塩(5~8mg/kg(体重)、筋肉注射)および塩酸キシラジン(0.5~1mg/kg(体重)、筋肉注射)による全身麻酔下で、さらなるMPTPの筋肉内注射(サルA、0.6mg/kg(1回注射時)、5回注射)、伏在静脈を介して、さらなるMPTP静脈内注射(サルB、0.8mg/kgおよび0.7mg/kg、2回注射)を行った。サルAへのMPTPの総投与量は3.6mg/kg、サルBは2.8mg/kgであった。  Subsequently, under general anesthesia with ketamine hydrochloride (5-8 mg/kg body weight, intramuscular injection) and xylazine hydrochloride (0.5-1 mg/kg body weight, intramuscular injection), further MPTP was injected intramuscularly (Monkey A, 0.6 mg/kg (single injection), 5 injections) and further MPTP was injected intravenously via the saphenous vein (Monkey B, 0.8 mg/kg and 0.7 mg/kg, 2 injections). The total dose of MPTP administered to Monkey A was 3.6 mg/kg and to Monkey B was 2.8 mg/kg.

 最後のMPTP注入の5~8週後で、パーキンソン病症状が2週間安定した時、パーキンソン病状態の電気生理学的記録を開始した。パーキンソン病症状の重症度は、頸動脈へのMPTP注射の反対側で、霊長類のパーキンソン病症状評価尺度(最悪の症状を示す最大スコア、20点)を用いて評価した。サルは、L-ドーパ及びカルビドパ(200~500mg/日、経口投与)による治療に反応した。 Electrophysiological recordings of parkinsonian states were started 5-8 weeks after the last MPTP injection, when parkinsonian symptoms had stabilized for 2 weeks. The severity of parkinsonian symptoms was assessed using the Primate Parkinson's Disease Rating Scale (maximum score of 20 points indicates the worst symptoms) on the side opposite to the MPTP injection into the carotid artery. Monkeys responded to treatment with L-dopa and carbidopa (200-500 mg/day, orally).

 皮質の電気生理学的記録と刺激パルスへの変換について説明する。薬物オフ状態(休薬後少なくとも12時間)で、行動タスク及び電気生理学的記録を実施した。外部からの電磁雑音を遮断するために、銅ネットで遮蔽された防音室内でサルの頭部を拘束し、サルをサル椅子に座らせた。記録チャンバから10cm離して、ヘッドアンプ(Blackrock Microsystems社製、Cerebus(製品名:登録商標))を配置し、直流(12V)の電源により、一次運動野M1の皮質記録電極からの局所フィールド電位(LFP)を増幅した。アンプの出力信号は、2つの別個の回路に伝達された。  We describe cortical electrophysiological recordings and their conversion into stimulation pulses. Behavioral tasks and electrophysiological recordings were performed in a drug-off state (at least 12 hours after withdrawal). The monkey's head was restrained in a soundproof room shielded with copper netting to block external electromagnetic noise, and the monkey was seated in a monkey chair. A head amplifier (Blackrock Microsystems, Cerebus (registered trademark)) was placed 10 cm away from the recording chamber, and a direct current (12 V) power supply was used to amplify local field potentials (LFPs) from the cortical recording electrode in the primary motor cortex M1. The amplifier output signal was transmitted to two separate circuits.

 第1の回路は、ブレイン・マシン・インターフェイスを用い、図1に示したオンライン処理システムである。この回路では、一次運動野M1からのγ2活性の関数として、刺激パルスの制御パラメータ(STN-DBSパラメータ)を変調する。 The first circuit uses a brain-machine interface and is the online processing system shown in Figure 1. This circuit modulates the control parameters of the stimulation pulses (STN-DBS parameters) as a function of γ2 activity from the primary motor cortex M1.

 第2の回路は、オフライン処理システムである。この回路はデータ記録装置であり、実験結果のオフライン分析のために、ヘッドステージ、ブレイン・マシン・インターフェイス、脳深部刺激素子および行動デバイスからのデータをデジタル化して保存する構成とした。 The second circuit is the offline processing system. This circuit is a data recorder that digitizes and stores data from the headstage, brain-machine interface, deep brain stimulator, and behavioral device for offline analysis of the experimental results.

 ブレイン・マシン・インターフェイスにおいて、一次運動野M1において測定された局所フィールド電位(LFP)を、生体信号増幅器(日本光電工業株式会社製、MEG-6116/AB610J(製品名))により増幅(1万倍、周波数帯域50~300Hz)した後、増幅器の出力信号をフィルタ(株式会社エヌエフ回路設計ブロック製、FV-664(製品名))に入力し、γ2活性(80~200Hz)を示す信号成分を抽出した。 In the brain-machine interface, the local field potential (LFP) measured in the primary motor cortex M1 was amplified (10,000 times, frequency band 50-300 Hz) using a biosignal amplifier (Nihon Kohden Corporation, product name MEG-6116/AB610J), and the amplifier's output signal was then input to a filter (NF Corporation, product name FV-664) to extract the signal components indicating γ2 activity (80-200 Hz).

 最初の試行シリーズを開始する前に、サルが、腕、脚及び体幹を自由に動かす状態で、一次運動野M1における局所フィールド電位(LFP)を、15分間記録した。これにより、γ2帯の信号の最大振動振幅を決定することができた。ウインドウ・ディスクリミネータ(日本光電工業株式会社、EN-611J(製品名))は、γ2帯域の発振(γ2帯の最大振動振幅の75%よりも大きい振幅で、継続時間が0.5ミリ秒(ms)を超える成分)を検出した。更なる処理のため、γ2帯活動の関数として、ウインドウ・ディスクリミネータによって生成されたパルス信号S(トランジスタ-トランジスタ論理(TTL)パルス)は、第1インターフェース(デジタル入力/アナログ出力カード:PCI6713(ナショナルインスツルメンツ製))を介して制御装置(コンピュータ)に送信された。 Before starting the first trial series, local field potentials (LFPs) were recorded for 15 min in the primary motor cortex M1 while the monkey was moving its arms, legs and trunk freely. This allowed the determination of the maximum oscillation amplitude of the gamma 2 band signal. A window discriminator (Nihon Kohden Corporation, product name EN-611J) detected gamma 2 band oscillations (components with an amplitude greater than 75% of the maximum oscillation amplitude of the gamma 2 band and a duration greater than 0.5 milliseconds (ms)). For further processing, the pulse signal S P (transistor-transistor logic (TTL) pulse) generated by the window discriminator as a function of the gamma 2 band activity was sent to the control device (computer) via a first interface (digital input/analog output card: PCI6713 (National Instruments)).

 制御装置においては、上述のように、γ2駆動パルスの瞬時周波数を、50msのウインドウにわたって移動平均化し、脳深部刺激用の駆動制御信号S(駆動信号S)の周波数f及び振幅Aを変調した。制御装置において生成された駆動制御信号Sは、周波数f、振幅A及びパルス幅60μsを有するパルス信号である。このパルス信号は、第2インターフェース(デジタル入力/アナログ出力カード:PCI6713(ナショナルインスツルメンツ製))を介して、駆動回路(アナログ・アイソレータ:Dagan社製、BSI-950(製品名))に入力され、駆動回路から駆動信号Sとして出力され、駆動信号Sは脳深部刺激素子に供給された。 In the control device, as described above, the instantaneous frequency of the γ2 drive pulse was moved and averaged over a 50 ms window to modulate the frequency f and amplitude A of the drive control signal S C (drive signal S D ) for deep brain stimulation. The drive control signal S C generated in the control device is a pulse signal having a frequency f, an amplitude A, and a pulse width of 60 μs. This pulse signal was input to a drive circuit (analog isolator: Dagan, BSI-950 (product name)) via a second interface (digital input/analog output card: PCI6713 (manufactured by National Instruments)), and output from the drive circuit as a drive signal S D , which was supplied to the deep brain stimulation element.

 駆動制御信号S(駆動信号S)のパルス幅は、aDBSおよびcDBSの両方の場合において、60マイクロ秒(μs)に設定した。このパルス幅は、一次運動野M1の局所フィールド電位(LFP)においてアーティファクトを生じさせず、臨床に適用されているからである。低周波刺激に関連する臨床的効果については議論があるため、駆動制御信号S(駆動信号S)の周波数範囲は、50~150Hzに設定した。実験における駆動信号S(刺激パルス、駆動パルス電流)の振幅Aは、cDBSにおいては1mA、aDBSにおいては0.5mA~1.5mAとした。 The pulse width of the drive control signal S C (drive signal S D ) was set to 60 microseconds (μs) in both aDBBS and cDBS. This pulse width does not cause artifacts in the local field potential (LFP) of the primary motor cortex M1 and has been applied clinically. Because there is debate about the clinical effects associated with low-frequency stimulation, the frequency range of the drive control signal S C (drive signal S D ) was set to 50-150 Hz. The amplitude A of the drive signal S D (stimulation pulse, drive pulse current) in the experiment was 1 mA in cDBS and 0.5-1.5 mA in aDBS.

 なお、振幅の最適化に関する予備実験によれば、一定周波数、一定振幅(振幅A=1mA)の駆動信号Sを、サルに埋め込まれた脳深部刺激素子に与えた場合、最適性能が得られた。振幅Aが2mAを超えると成績は低下し、振幅Aが3mA以上においては、筋収縮とジスキネジアが観察された。これらの副作用は、内包のような視床下核STNの隣接領域への電流広がりによるものと解釈される。 In addition, preliminary experiments on amplitude optimization showed that optimal performance was obtained when a drive signal SD of constant frequency and constant amplitude (amplitude A = 1 mA) was applied to a deep brain stimulator implanted in a monkey. Performance decreased when amplitude A exceeded 2 mA, and muscle contractions and dyskinesias were observed when amplitude A was 3 mA or higher. These side effects are interpreted as being due to current spreading to adjacent regions of the subthalamic nucleus (STN), such as the internal capsule.

 実験においては、以下の条件(a)~(c)において、治療効果を測定した。なお、コンスタント脳深部刺激(cDBS)において、脳深部刺激素子に供給される駆動信号の周波数は100Hz、振幅は1mA、パルス幅は60マイクロ秒(μs)である。
(a)脳深部刺激を行わない(DBS-OFF)条件。
(b)アダプティブ脳深部刺激(aDBS)を行う条件。
(c)コンスタント脳深部刺激(cDBS)を行う条件。
In the experiment, the therapeutic effect was measured under the following conditions (a) to (c). In the constant deep brain stimulation (cDBS), the frequency of the drive signal supplied to the deep brain stimulation element was 100 Hz, the amplitude was 1 mA, and the pulse width was 60 microseconds (μs).
(a) Condition without deep brain stimulation (DBS-OFF).
(b) Conditions for performing adaptive deep brain stimulation (aDBS).
(c) Condition for constant deep brain stimulation (cDBS).

 図3に示した脳深部刺激素子(脳深部刺激プローブ(電極))を用意し、視床下核STNに対して、鉛直または斜め方向(サルの矢状面内において鉛直方向から36度前方に傾斜した方向)に、各実験において同じ軌道に沿って、脳深部刺激素子を挿入した。脳深部刺激素子の先端に位置する高インピーダンスの先端電位検出部からのマルチユニット記録を行い、腕の受動的な関節運動に対する感覚応答を記録することにより、視床下核背側部の運動領域(dorsolateral motor subregion)を特定した。この運動領域に、脳深部刺激素子に含まれる2つの近接する刺激部(接触電極)を配置し、これらの刺激部を通して双極刺激を行った。 A deep brain stimulator (deep brain stimulation probe (electrode)) as shown in Figure 3 was prepared and inserted vertically or obliquely (inclined 36 degrees forward from the vertical in the monkey's sagittal plane) into the subthalamic nucleus (STN) along the same trajectory in each experiment. Multi-unit recording was performed from the high-impedance tip potential detection unit located at the tip of the deep brain stimulator, and the sensory response to passive joint movement of the arm was recorded to identify the dorsolateral motor subregion. Two adjacent stimulating units (contact electrodes) included in the deep brain stimulator were placed in this motor region, and bipolar stimulation was performed through these stimulating units.

 一次運動野から記録された局所フィールド電位(LFP)の後処理について説明する。 We explain the post-processing of local field potentials (LFPs) recorded from the primary motor cortex.

 オフライン分析のために、一次運動野からの局所フィールド電位(LFP)を双極信号として記録し、ダブル逆バターワース型フィルタ(double reverse Butterworth filter)を用いて、3~200Hzの周波数帯域の信号成分を抽出した。このフィルタは、0位相シフトで、200Hzで-3dBの特性を有する。抽出した信号は、制御装置(コンピュータ)の記憶装置内に保存し、500Hzにダウンサンプリングした。この信号を、実験者が確認し、持続時間が3%よりも長いアーティファクトを含むものは解析から除外した。 For offline analysis, local field potentials (LFPs) from the primary motor cortex were recorded as bipolar signals and signal components in the frequency band from 3 to 200 Hz were extracted using a double reverse Butterworth filter, which has a characteristic of -3 dB at 200 Hz with zero phase shift. The extracted signals were stored in the memory of the control device (computer) and downsampled to 500 Hz. The signals were checked by the experimenter, and those containing artifacts longer than 3% in duration were excluded from the analysis.

 まず、一次運動野からの局所フィールド電位(LFP)は、脳深部刺激を行わない(DBS-OFF)条件において解析し、β帯域、γ1帯域、γ2帯域における挙動を定義した。タスクに関連する発振活動の変化は、周波数帯域に特有のものであり、振幅が小さく、高いダイナミクスを有すると仮定した。一次運動野からの局所フィールド電位(LFP)の瞬時周波数の帯域(β帯域(13~30Hz)、γ1帯域(30~80Hz)、γ2帯域(80~200Hz))を追跡するために、カルマンスムーザー(Kalman smoother)に基づく動的自己回帰モデル(dynamic autoregressive model)を用いた。 First, local field potentials (LFPs) from the primary motor cortex were analyzed under conditions without deep brain stimulation (DBS-OFF) to define the behavior in the beta, gamma1, and gamma2 bands. We hypothesized that task-related changes in oscillatory activity would be frequency band specific, small in amplitude, and highly dynamic. A dynamic autoregressive model based on the Kalman smoother was used to track the instantaneous frequency bands of local field potentials (LFPs) from the primary motor cortex (beta band (13-30 Hz), gamma1 band (30-80 Hz), gamma2 band (80-200 Hz)).

 DBS-OFF条件における測定結果について説明する。  We will explain the measurement results under DBS-OFF conditions.

 図4は、β帯域、γ1帯域、γ2帯域の活性度(Activity)の時間的変化を示すグラフである。図4(A)はサルAとサルBを一緒にしたデータ、図4(B)はサルAのデータ、図4(C)はサルBのデータを示している。 Figure 4 is a graph showing the change over time in activity in the beta, gamma 1, and gamma 2 bands. Figure 4(A) shows data for monkey A and monkey B combined, Figure 4(B) shows data for monkey A, and Figure 4(C) shows data for monkey B.

 β帯域、γ1帯域、γ2帯域における一次運動野の活性度は、各周波数帯域における皮質脳波信号(電圧)を示しており、DBS-OFF条件におけるタスク期間(休憩期間(Rest)、運動前期間(Premovement)、運動期間(Movement)、戻り期間(Return))において、変化している。これらの4つのタスク期間は、時間的に正規化され、各期間は100時間単位に設定され、グラフ上で連結されている(合計で400時間単位)。β帯域、γ1帯域、γ2帯域の活性度は、カルマンフィルタを用いて計算し、休憩期間(Rest)における中央値を用いて正規化した。グラフにおける中段のデータは、中央値を示しており、上段データと下段データとの間の領域は、四分位範囲(25~75パーセンタイル)を示している。また、運動前期間(Premovement)~戻り期間(Return)において、最下部に示された一部分が中断している水平線は、休憩期間(Rest)におけるデータと比較して、有意に変化している(P値<0.05)期間を示している。 The activity of the primary motor cortex in the beta, gamma1, and gamma2 bands represents the cortical EEG signal (voltage) in each frequency band, and changes during the task periods (rest period (Rest), premovement period (Premovement), movement period (Movement), and return period (Return)) under DBS-OFF conditions. These four task periods were normalized in time, with each period set to 100 time units and linked on the graph (400 time units in total). The activity of the beta, gamma1, and gamma2 bands was calculated using a Kalman filter and normalized using the median value during the rest period (Rest). The data in the middle row of the graph indicates the median, and the area between the data in the upper and lower rows indicates the interquartile range (25th to 75th percentile). Additionally, the partially interrupted horizontal line at the bottom during the premovement to return periods indicates periods of significant change (P value < 0.05) compared to the data during the rest period.

 図5は、脳深部刺激を行わない(DBS-OFF)条件、アダプティブ脳深部刺激を行う(aDBS)条件、コンスタント脳深部刺激を行う(cDBS)条件における各タスクの成功率を示す図表である。サルA及びサルBを一緒にしたデータ(上段)、サルAのデータ(中段)、サルBのデータ(下段)が示されている。同図表では、ターゲットに到達できた試行(Reach)、ホームキーに戻れた試行(Return)の割合(成功率、%)が示されている。この図表に示されるように、本実施形態のアダプティブ脳深部刺激を行う(aDBS)条件を用いた場合において、ターゲットに到達できた試行(Reach)の成功率は、コンスタント脳深部刺激を行う(cDBS)条件の場合の成功率と、ほぼ等しい結果となっている。すなわち、一次運動野におけるγ2周波数帯域の信号成分を抽出し、上述のように、刺激用の駆動信号を生成した場合(aDBS)、パーキンソン病に対する有効な治療効果を得ることができた。なお、aDBSはcDBSよりも、電力消費量が低い。 FIG. 5 is a chart showing the success rate of each task under the conditions of no deep brain stimulation (DBS-OFF), adaptive deep brain stimulation (aDBS), and constant deep brain stimulation (cDBS). Data for monkeys A and B combined (upper row), monkey A's data (middle row), and monkey B's data (lower row) are shown. The chart shows the percentage (success rate, %) of attempts in which the target was reached (Reach) and attempts in which the target was returned to the home key (Return). As shown in this chart, when the adaptive deep brain stimulation (aDBS) condition of this embodiment was used, the success rate of attempts in which the target was reached (Reach) was almost equal to the success rate under the constant deep brain stimulation (cDBS) condition. In other words, when the signal component of the gamma 2 frequency band in the primary motor cortex was extracted and a driving signal for stimulation was generated as described above (aDBS), an effective therapeutic effect against Parkinson's disease was obtained. Furthermore, aDBS consumes less power than cDBS.

 パルス列について説明する。各周期に対して、駆動制御信号(駆動信号S)のパルス列は、パルス間の時間とその振幅によって特徴づけられる。これらの数値の中心傾向(central tendency)と分散は、期間同士およびDBSパラダイム間の刺激列の変化を評価するために用いられた。中心傾向は中央値によって推定し、分散は中央値絶対偏差で推定した。供給される電荷Qは、クーロン(C)/秒で表され、アイソレータによって供給され、Q=強度×パルス幅×周波数で計算される。 Pulse train: For each period, the pulse train of the drive control signal (drive signal S D ) is characterized by the time between pulses and its amplitude. The central tendency and variance of these quantities were used to evaluate the variation of the stimulation train between periods and DBS paradigms. The central tendency was estimated by the median and the variance by the median absolute deviation. The delivered charge Q, expressed in coulombs (C)/sec, is delivered by the isolator and is calculated as Q=intensity×pulse width×frequency.

 データの統計解析について説明する。全データは、中央値および四分位範囲(25~75パーセンタイル値)として報告される。異なる条件のデータ間の比較は、Benjamini-Hochberg補正により調整した(P値<0.05)対比較に対して、ノンパラメトリックKruskal-Wallis検定およびMann-Whitney検定を用いて行った。Page検定は、瞬時周波数の時系列に適用され、順序付けられた系列が単調である(すなわち、傾向なし)という帰無仮説と、系列がP値=0.95で増加したという別の仮説とを検定した。なお、Benjamini-Hochberg補正は、「Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289-300 (1995)」に例示される。Kruskal-Wallis検定及びMann-Whitney検定は、「Campbell, R. C. “Statistics for Biologists” (Cambridge University Press, 1989)」に例示される。Page検定は、「Page, E. B. Ordered hypotheses for multiple treatments: A significance test for linear ranks. J. Am. Stat. Assoc. 58, 216-230 (1963))」に例示される。 Statistical analysis of the data is described. All data are reported as median and interquartile range (25th to 75th percentiles). Comparisons between data from different conditions were performed using nonparametric Kruskal-Wallis and Mann-Whitney tests for pairwise comparisons adjusted by the Benjamini-Hochberg correction (P value < 0.05). The Page test was applied to the time series of instantaneous frequencies to test the null hypothesis that the ordered series is monotonic (i.e., no trend) and the alternative hypothesis that the series increased with a P value = 0.95. The Benjamini-Hochberg correction is exemplified in "Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289-300 (1995)". The Kruskal-Wallis test and Mann-Whitney test are exemplified in "Campbell, R. C. "Statistics for Biologists" (Cambridge University Press, 1989)". The Page test is exemplified in "Page, E. B. Ordered hypotheses for multiple treatments: A significance test for linear ranks. J. Am. Stat. Assoc. 58, 216-230 (1963)".

 次に、実験結果について更に説明する。 Next, we will further explain the experimental results.

 まず、パーキンソン病症状の重症度およびタスク遂行能力について説明する。MPTP処理後、2頭のサルは無動症、動作緩慢、固縮、屈曲姿勢を含むパーキンソン病症候群の基本的徴候を示し、頸動脈MPTP注入の反対側でより重症であった。霊長類パーキンソン病評価尺度のスコアは、実験期間を通じて安定していた。両方のサルは、L-ドーパおよびカルビドパ(L-ドーパ:200mg/日)の経口投与に反応し、パーキンソン病スコア(サルA:4、サルB:6)が低下した。一方、高用量(L-ドーパ>500mg/日)では運動亢進症状が認められた。2頭の被検体は、1回のセッションにおいて、25回試行実験の1~6シリーズを実施することができた。データセットは、DBS-OFF条件下で実施された2583回の試行実験(サルA:1112回、サルB:1471回)を含む。 First, we describe the severity of parkinsonian symptoms and task performance. After MPTP treatment, the two monkeys showed cardinal signs of parkinsonian syndrome, including akinesia, bradykinesia, rigidity, and flexed posture, which were more severe on the contralateral side of the carotid MPTP injection. Primate Parkinson's Rating Scale scores remained stable throughout the experimental period. Both monkeys responded to oral administration of L-dopa and carbidopa (L-dopa: 200 mg/day) with a decrease in parkinsonian scores (Monkey A: 4, Monkey B: 6). On the other hand, hyperkinetic symptoms were observed at higher doses (L-dopa > 500 mg/day). The two subjects were able to perform 1 to 6 series of 25 trials in one session. The dataset includes 2583 trials (Monkey A: 1112, Monkey B: 1471) performed under DBS-OFF conditions.

 図5に示したように、ターゲット到達に成功した比率は平均で87.5%(サルA:92.2%、サルB:86.6%)、ホームキーへの戻りに成功した比率は平均で61.0%(サルA:90.0%、サルB:55.7%)であった。なお、運動前期間(Premovement)の中央値は546ms、四分位範囲は420~833msであり、運動期間(Movement)の中央値は408ms、四分位範囲は292~632msであり、戻り期間(Return)の中央値は998ms、四分位範囲は627~1001msである。 As shown in Figure 5, the average rate of successful target arrival was 87.5% (Monkey A: 92.2%, Monkey B: 86.6%), and the average rate of successful return to the home key was 61.0% (Monkey A: 90.0%, Monkey B: 55.7%). The median premovement period was 546 ms with an interquartile range of 420-833 ms, the median movement period was 408 ms with an interquartile range of 292-632 ms, and the median return period was 998 ms with an interquartile range of 627-1001 ms.

 次に、DBS-OFF条件下のタスク中の一次運動野M1の局所フィールド電位(LFP)について説明する。最初に、一次運動野M1において、運動のバイオマーカーとして、β帯域、γ1帯域、γ2帯域の周波数帯域のうち、どれが使用できるかを調査した。DBS-OFF条件における一次運動野の局所フィールド電位(M1-LFP)の瞬時周波数分析は、β帯域、γ1帯域、γ2帯域のパワーが、タスク期間に沿って変化することを示した(図4)。 Next, we will explain the local field potentials (LFPs) of the primary motor cortex M1 during the task under DBS-OFF conditions. First, we investigated which of the frequency bands, beta, gamma1, and gamma2, in the primary motor cortex M1 can be used as biomarkers of movement. Instantaneous frequency analysis of the local field potentials of the primary motor cortex (M1-LFPs) under DBS-OFF conditions showed that the power of the beta, gamma1, and gamma2 bands changed along the task period (Figure 4).

 β帯域の活性度は、運動前期間(Premovement)と運動期間(Movement)において、減少する傾向があった(Page検定、P値>0.99)が、戻り期間(Return)においては、その傾向はなかった(Page検定、P値<0.01)(図4)。 Beta band activity tended to decrease during the premovement and movement periods (Page test, P value > 0.99), but not during the return period (Page test, P value < 0.01) (Figure 4).

 γ1帯域の活性度は、運動前期間(Premovement)においては、安定した単調傾向を示さなかったが(Page検定、P値<0.01)、運動期間(Movement)においては、下降傾向を示し(Page検定、P値>0.99)、戻り期間(Return)においては、傾向は無かった(Page検定、P値<0.55)(図4)。 The activity of the gamma 1 band did not show a stable monotonic trend during the premovement period (Page test, P value < 0.01), but showed a decreasing trend during the movement period (Page test, P value > 0.99), and no trend during the return period (Page test, P value < 0.55) (Figure 4).

 γ2帯域の活性度は、運動前期間(Premovement)と、運動期間(Movement)において、増加傾向を示した(Page検定、P値>0.99)が、戻り期間(Return)においては、減少傾向を示した(Page検定、P値>0.99)(図4)。 The activity of the gamma 2 band showed a tendency to increase during the premovement and movement periods (Page test, P value > 0.99), but showed a tendency to decrease during the return period (Page test, P value > 0.99) (Figure 4).

 各タスク期間中のパワースペクトル密度について検討すると、運動前期間(Premovement)、運動期間(Movement)、戻り期間(Return)において、β帯域のパワーの中央値が低下した(P値<0.001)。 When examining the power spectral density during each task period, the median power in the beta band decreased during the premovement, movement, and return periods (P value < 0.001).

 両方のサルを組み合わせたγ1帯域パワーの中央値は、運動前期間(Premovement)においては変化しなかったが、運動期間(Movement)、戻り期間(Return)においては増加し、その一方で、サルBのγ1パワー中央値は、運動期間(Movement)において変化しなかった(P値>0.5)。 The median gamma 1 band power for both monkeys combined did not change during the premovement period but increased during the movement and return periods, whereas the median gamma 1 power for monkey B did not change during the movement period (P value > 0.5).

 γ2帯域パワーの中央値は、個々のサルの、運動前期間(Premovement)、運動期間(Movement)、及び、戻り期間(Return)において増加した(P値<0.0002)。これらの動的変化とγ2帯域のパワー中央値は、一次運動野M1におけるγ2帯域の活性度(M1-γ2活性度)が、パーキンソン病状態における運動に適したバイオマーカーであることを示唆している。γ1帯域の活性度を除いて、Kalmanフィルタと高速フーリエ変換(FFT)解析は一致した。 The median gamma-2 band power increased during the premovement, movement, and return periods in each monkey (P value < 0.0002). These dynamic changes and the median gamma-2 band power suggest that gamma-2 band activity in the primary motor cortex M1 (M1-gamma-2 activity) is a suitable biomarker for movement in the parkinsonian state. With the exception of gamma-1 band activity, the Kalman filter and fast Fourier transform (FFT) analyses were consistent.

 次に、aDBSのパルス間隔および振幅について説明する。aDBSにおいては、タスク期間内において、パルス間隔および振幅を変調した(両方の特徴、P値<0.001)。 Next, we will explain the pulse interval and amplitude of aDBS. In aDBS, the pulse interval and amplitude were modulated within the task period (both features, P value < 0.001).

 休憩期間(Rest)において、パルス間隔は0.012秒(四分位範囲:0.011秒~0.016秒)、振幅は0.653mA(四分位範囲:0.488mA~0.801mA)であった。 During the rest period (Rest), the pulse interval was 0.012 seconds (interquartile range: 0.011 seconds to 0.016 seconds) and the amplitude was 0.653 mA (interquartile range: 0.488 mA to 0.801 mA).

 運動前期間(Premovement)及び運動期間(Movement)において、パルス間隔は減少し(-12.05%、-13.61%、P値<0.001)、振幅はこれらの期間において増加した(+23.55%、+25.09%、P値<0.001)。運動期間(Movement)と比較して、戻り期間(Return)のパルス間隔は、増加した(+4.35%、P値<0.001)が、休憩期間(Rest)に観察された値よりは、低い値(-9.68%、P値<0.001)であった。パルス振幅は、戻り期間(Return)においては、減少した(-4.80%、P値<0.001)が、休憩期間(Rest)の値より高い値であった(+19.35%、P値<0.001)。 During the premovement and movement periods, the pulse interval decreased (-12.05%, -13.61%, P < 0.001), while the amplitude increased during these periods (+23.55%, +25.09%, P < 0.001). Compared to the movement period, the pulse interval during the return period increased (+4.35%, P < 0.001), but was lower than that observed during the rest period (-9.68%, P < 0.001). During the return period, the pulse amplitude decreased (-4.80%, P < 0.001), but was higher than that during the rest period (+19.35%, P < 0.001).

 パルス間隔の分散と振幅の分散も、タスク期間中に変調された。パルス間隔の分散は、運動前期間(Premovement)と(-29.41%、P値<0.001)、運動期間(Movement)において減少し(-64.71%、P値<0.001)、戻り期間(Return)において増加し(運動期間と比べて50.01%増、P値<0.001)、これは休憩期間(Rest)よりも高く維持された(29.41%、P値<0.001)。 The variance of the pulse interval and the variance of the amplitude were also modulated during the task period. The variance of the pulse interval was decreased during the premovement period (-29.41%, P value < 0.001), during the movement period (-64.71%, P value < 0.001), and increased during the return period (50.01% increase compared to the movement period, P value < 0.001), which remained higher than the rest period (29.41%, P value < 0.001).

 刺激用のパルス振幅の分散は、運動前期間(Premovement)において減少し(-13%、P値<0.001)、運動期間(Movement)においても減少した(-38%、P値<0.001)。パルス振幅の分散は、戻り期間(Return)において増加し(33%、P値<0.001)、休憩期間(Rest)における値よりも10%低く維持された(P値<0.001)。2頭のサルの中心傾向及び刺激間隔及び振幅の分散の変化は類似していた。 The variance of the stimulation pulse amplitude decreased during the premovement period (-13%, P value < 0.001) and during the movement period (-38%, P value < 0.001). The variance of the pulse amplitude increased during the return period (33%, P value < 0.001) and remained 10% lower than the value during the rest period (P value < 0.001). The changes in the central tendency and the variance of the interstimulus interval and amplitude were similar in the two monkeys.

 図6は、運動前期間(Premovement)、運動期間(Movement)、戻り期間(Return)におけるγ2帯域の出力信号のパワーを示すグラフ(図6(A)はサルAとBを一緒にしたデータ、図6(B)はサルAのデータ、図6(C)はサルBのデータを示すグラフ)である。運動タスク実行期間におけるγ2帯域のパワースペクトル密度が示されている。上段にはaDBSの場合が示され、下段にはcDBSの場合が示されている。データは、休憩期間(Rest)における中央値のパーセントとして表現されている。ボックスプロットの中央には中央値が示され、上下位置は四分位範囲(25~75パーセンタイル)を示している。図中の+印は、運動前期間(Premovement)と有意に異なることを意味し(P値<0.05)、ダイヤ印は運動期間(Movement)と有意に異なることを意味している(P値<0.05)。 Figure 6 shows the power of the gamma 2 band output signal during the premovement, movement, and return periods (Figure 6(A) shows data for monkeys A and B combined, Figure 6(B) shows data for monkey A, and Figure 6(C) shows data for monkey B). The power spectral density of the gamma 2 band during the motor task is shown. The top panel shows aDBS, and the bottom panel shows cDBS. Data are expressed as a percentage of the median during the rest period. The median is shown in the center of the box plot, and the upper and lower positions indicate the interquartile range (25th to 75th percentile). The + symbol in the figure means that the value is significantly different from the premovement period (P value < 0.05), and the diamond symbol means that the value is significantly different from the movement period (P value < 0.05).

 一次運動野M1のγ2帯域の活性度は、aDBSおよびcDBSにより、運動期間(Movement)において増加し、戻り期間(Return)において減少した(P値<0.001)(図6(A)、(B)、(C))。 Activity in the gamma 2 band in the primary motor cortex M1 increased during the movement period and decreased during the return period with aDBS and cDBS (P value < 0.001) (Figures 6 (A), (B), (C)).

 aDBSおよびcDBSによる行動変化について説明する。ターゲットに到達する成功率は、aDBSとcDBSで同程度であり(91.5%、図5)、ホームキーに戻る成功率はcDBSの方が高かった(75.9%(aDBS)、80.7%(cDBS)、図5)。サルBが、この結果に影響を与えた。 We now explain the behavioral changes caused by aDBS and cDBS. The success rate of reaching the target was similar for aDBS and cDBS (91.5%, Figure 5), and the success rate of returning to the home key was higher for cDBS (75.9% (aDBS), 80.7% (cDBS), Figure 5). Monkey B influenced these results.

 図7は、DBS-OFF、aDBS、cDBSの状態において、各タスク(運動前期間(Premovement)、運動期間(Movement)、戻り期間(Return))の動作完了に要する時間を正規化して示す図表である。DBS-OFFの場合に、動作完了に要する時間を100%とする。括弧内の範囲は、四分位範囲(25~75パーセンタイル)を示している。図中のP値に関して、P1は、DBS-OFFの場合に対して事後比較(post hoc comparisons)を適用した場合のP値であり、P2は、cDBSの場合に対して事後比較を適用した場合のP値である。 Figure 7 is a graph showing the normalized time required to complete each task (premovement, movement, return) in DBS-OFF, aDBS, and cDBS states. The time required to complete a movement in DBS-OFF is set to 100%. The range in parentheses indicates the interquartile range (25th to 75th percentile). Regarding the P values in the figure, P1 is the P value when post hoc comparisons are applied to the DBS-OFF case, and P2 is the P value when post hoc comparisons are applied to the cDBS case.

 aDBSでは、運動前期間(Premovement)及び運動期間(Movement)は短縮されたが(-20.1%および-15.8%、P値<0.001)、戻り期間(Return)は変化しなかった(P値>0.05)。 In aDBS, the premovement and movement periods were shortened (-20.1% and -15.8%, respectively, P value < 0.001), but the return period did not change (P value > 0.05).

 cDBSでは、運動前期間(Premovement)及び運動期間(Movement)は短縮され(-12.0%および-10.0%、P値<0.001)、戻り期間(Return)は増加した(+6.5%、P値<0.001)。 In cDBS, the premovement and movement periods were shortened (-12.0% and -10.0%, P value < 0.001), and the return period was increased (+6.5%, P value < 0.001).

 aDBSとcDBSは、運動前期間(Premovement)及び運動期間(Movement)において、臨床的に有益である。aDBSは、cDBSと比較して、運動前期間(Premovement)において効果があり(8.1%の差、P値<0.001)、運動期間(Movement)において効果がある(5.8%の差、P値<0.001)。 aDBS and cDBS are clinically beneficial in the premovement and movement periods. aDBS is more effective in the premovement period (8.1% difference, P value < 0.001) and in the movement period (5.8% difference, P value < 0.001) compared to cDBS.

 aDBSとcDBSの間の臨床効果の差は、戻り期間(Return)に現れ、サルBでは期間が増加したが(33.2%、P値<0.001)、サルAでは有意に増加しなかった(P値>0.05)。 The difference in clinical efficacy between aDBS and cDBS was evident in the return period, which increased in monkey B (33.2%, P value < 0.001) but did not increase significantly in monkey A (P value > 0.05).

 図8は、cDBSによる供給電荷に対するaDBSの供給電荷の比率を示す図表である。 Figure 8 is a graph showing the ratio of charge supplied by aDBS to charge supplied by cDBS.

 cDBSの期間において、アイソレータによって供給された電荷は、6μC/秒であった。aDBSは、cDBSの休憩期間(Rest)の間における供給のわずか53.7%(26.5%~71.8%、P値<0.001)を供給し、cDBSの運動期間(Movement)における供給の75.7%(69.7%~106.6%、P値<0.05)を供給した。すなわち、aDBSは、cDBSよりも、大幅に消費電力を低下させることができる。なお、aDBSの場合も、休憩期間(Rest)において、わずかに電力を消費している。 During the cDBS period, the charge supplied by the isolator was 6 μC/sec. The aDBS supplied only 53.7% (26.5%-71.8%, P value < 0.001) of the supply during the rest period (Rest) of the cDBS, and 75.7% (69.7%-106.6%, P value < 0.05) of the supply during the movement period (Movement) of the cDBS. That is, the aDBS can reduce power consumption significantly more than the cDBS. Note that the aDBS also consumes a small amount of power during the rest period (Rest).

 aDBSとcDBSは共にDBS-OFFよりもタスク性能を改善した。aDBSは、cDBSよりも少ない電荷を供給したが、同等の治療効果を得ることができた。タスク実行中の駆動信号の周波数(刺激パルスの間隔)と振幅を調節した。タスク実行期間において、刺激パルスの間隔を最小にし、刺激パルスの振幅を最大にし、刺激パルスの間隔と振幅の分散を最小にした。 Both aDBS and cDBS improved task performance more than DBS-OFF. aDBS delivered less charge than cDBS, but achieved the same therapeutic effect. The frequency (interval between stimulation pulses) and amplitude of the drive signal during task execution were adjusted. During the task execution period, the interval between stimulation pulses was minimized, the amplitude of stimulation pulses was maximized, and the variance of the interval and amplitude of stimulation pulses was minimized.

 なお、副作用の発生する可能性は最小にすることが好ましい。今回のサルを用いた研究では、視床下核の背側運動領域における刺激部位の位置(脳深部刺激素子の電極位置)を、脳座標によるガイド、電気生理学的マッピング、感覚・運動刺激に対する反応を用いて、毎回確認している。また、これまでの知見によると、150Hzで2mA以上の駆動信号を、cDBSによって供給する場合、副作用が生じる場合があるので、cDBSの周波数は100Hz、振幅は1mAに制限した。同様に、aDBSの周波数は50Hz~150Hz、振幅は0.5mA~1.5mAに制限した。また、aDBSおよびcDBSの双方において、駆動信号のパルス幅は、60μ秒とした。このパルス幅は、DBSの臨床応用において一般的に用いられているが、この短いパルス幅は、一次運動野の局所フィールド電位のDBSにおいて、わずかなアーティファクトを引き起こした場合がある。さらに広いパルス幅(>200μs)の場合、閉ループシステムにおいて、アーティファクトを発生させないための追加処理をする方がよいかもしれない。 It is preferable to minimize the possibility of side effects. In this monkey study, the location of the stimulation site (electrode position of the deep brain stimulator) in the dorsal motor area of the subthalamic nucleus was confirmed every time using brain coordinate guidance, electrophysiological mapping, and responses to sensory and motor stimulation. Furthermore, according to previous findings, when a drive signal of 150 Hz and 2 mA or more is supplied by cDBS, side effects may occur, so the frequency of cDBS was limited to 100 Hz and the amplitude to 1 mA. Similarly, the frequency of aDBS was limited to 50 Hz to 150 Hz and the amplitude to 0.5 mA to 1.5 mA. In addition, the pulse width of the drive signal was set to 60 μs in both aDBS and cDBS. This pulse width is commonly used in clinical applications of DBS, but this short pulse width may cause slight artifacts in DBS of local field potentials in the primary motor cortex. For wider pulse widths (>200 μs), additional processing to avoid artifacts may be warranted in a closed loop system.

 上述の処理によると、パーキンソン病による運動機能障害を改善しており、反応時間および運動時間を改善した。DBSの臨床効果はヒステリシスを示すことが知られている。単純に、DBSを、OFF状態からON状態にすると、基底核回路ダイナミクスの即時の変化にもかかわらず、振戦、硬直および運動緩慢の変化が、数秒または数分遅れる。したがって、DBSによる駆動信号の供給は、ON状態とOFF状態の間でスイッチングするよりも、むしろ変調するときに、これらの遅延時間を減少されることができるかもしれない。aDBSにおいては、自主的な身体部位の運動期間(Movement)の前の期間、すなわち、休憩期間(Rest)および運動前期間(Premovement)における刺激が有用である。 The above treatment improved motor dysfunction due to Parkinson's disease, improving reaction and movement times. The clinical effects of DBS are known to exhibit hysteresis. Simply switching DBS from OFF to ON delays changes in tremor, rigidity, and bradykinesia by several seconds or minutes, despite immediate changes in basal ganglia circuit dynamics. Thus, these delays may be reduced when the driving signal provided by DBS is modulated rather than switched between ON and OFF states. In aDBS, stimulation during periods prior to voluntary body part movement, i.e., rest and premovement periods, is useful.

 cDBSとは対照的に、aDBSにおいては、駆動信号のパルス間隔(周波数)と振幅が分散を有している。この分散は、不規則なパターン生成の基礎となり、cDBSと比較して、電荷供給量を低減しつつ、臨床的に有用性を与えることができる。aDBSにおいては、患者が運動活動に従事していないときに、電力消費を低減することができるので、バッテリ寿命を延長することができる。 In contrast to cDBS, in aDBS, the pulse interval (frequency) and amplitude of the drive signal have a variance. This variance is the basis for irregular pattern generation, which allows clinical utility while reducing the charge supply compared to cDBS. In aDBS, power consumption can be reduced when the patient is not engaged in motor activity, thereby extending battery life.

 駆動信号の周波数を変化させた場合、様々な効果が得られる可能性がある。パーキンソン病の症状は、視床下核への刺激の周波数に依存している。例えば、運動緩慢は、複数の異なる周波数にわたる刺激に非線形に応答する。駆動信号の周波数は、複数の周波数を含むように、多重化することも可能である。その他、代替的(surrogate)なaDBS法というのも考えられる。代替的なaDBS法においては、代替的駆動信号は、オリジナルの駆動信号(パルス列)と同様の統計的特性を有するが、時間的なバイオマーカーとは相関しないものである。このような代替的な駆動信号(パルス列)は、オリジナルの駆動信号におけるパルス列のパルス間隔の順序を入れ替えて混ぜることによって、生成することができる。 Varying the frequency of the drive signal can have a variety of effects. Parkinson's symptoms depend on the frequency of stimulation to the subthalamic nucleus. For example, bradykinesia responds nonlinearly to stimulation across multiple different frequencies. The frequency of the drive signal can be multiplexed to include multiple frequencies. Other possible alternatives include surrogate aDBS techniques. In these alternative aDBS techniques, the surrogate drive signal has similar statistical properties to the original drive signal (pulse train), but is not correlated with the temporal biomarkers. Such surrogate drive signals (pulse trains) can be generated by shuffling the pulse intervals of the pulse trains in the original drive signal.

 以上、説明したように、上述の脳深部刺激装置は、運動前期間(Premovement)と運動期間(Movement)において、休憩期間(Rest)と比較して、より高いパルス振幅とより高いパルス周波数の駆動信号を、脳深部刺激素子に供給した。また、aDBSは、cDBSと比較して、2/3の電荷しか供給しなかったが、十分な治療成果を得ることができた。
(第2実施形態)
 図9は、第2実施形態に係る脳深部刺激装置を示す図である。
As described above, the above-mentioned deep brain stimulation device supplied a driving signal with a higher pulse amplitude and a higher pulse frequency to the deep brain stimulation element during the premovement and movement periods (Movement) compared to the rest period (Rest). Also, aDBS supplied only 2/3 of the charge compared to cDBS, but was able to obtain sufficient therapeutic results.
Second Embodiment
FIG. 9 is a diagram showing a deep brain stimulation apparatus according to the second embodiment.

 第2実施形態の脳深部刺激装置は、第1実施形態の脳深部刺激装置と比較して、フィルタ及びウインドウ・ディスクリミネータをデジタル処理の構成により、実現したものであり、その他の構成は、第1実施形態と同一である。 Compared to the deep brain stimulation device of the first embodiment, the deep brain stimulation device of the second embodiment has a filter and window discriminator realized by a digital processing configuration, and the other configurations are the same as those of the first embodiment.

 すなわち、第2実施形態における駆動信号生成装置10は、脳波検出器1からの出力信号をデジタル化して入力する制御装置5と、制御装置5から出力された駆動制御信号Sに応じた周波数f及び振幅Aを有する駆動信号Sを生成する駆動回路7とを備えている。脳波検出器1は、アナログ信号である脳波信号SDETを出力するが、第1インターフェース4は、脳波信号SDETをデジタル信号に変換して、制御装置5に入力する。 That is, the drive signal generating device 10 in the second embodiment includes a control device 5 that digitizes and inputs the output signal from the brain wave detector 1, and a drive circuit 7 that generates a drive signal SD having a frequency f and an amplitude A according to the drive control signal SC output from the control device 5. The brain wave detector 1 outputs an analog brain wave signal SDET , and the first interface 4 converts the brain wave signal SDET into a digital signal and inputs it to the control device 5.

 制御装置5は、好適には中央処理装置と記憶装置を備えたコンピュータであり、記憶装置内に格納されたソフトウエア(プログラム)の指示する手順に従って、中央処理装置はデジタル信号の処理を実行する。 The control device 5 is preferably a computer equipped with a central processing unit and a storage device, and the central processing unit processes the digital signals according to the procedures instructed by the software (program) stored in the storage device.

 制御装置5は、デジタル化した信号から上述の周波数帯域(γ2帯域を含む)の信号成分を抽出するデジタルフィルタ5Aを備えている。デジタルフィルタ5Aの抽出する周波数帯域は、第1実施形態において示したフィルタ2(アナログフィルタ)において抽出する周波数帯域と同一である。換言すれば、制御装置5の記憶装置内に格納されたデジタルフィルタ5Aのソフトウエアは、入力された信号である脳波信号をデジタル化し、フィルタ処理を行い、所望の周波数帯域の成分を抽出する。 The control device 5 is equipped with a digital filter 5A that extracts signal components in the above-mentioned frequency band (including the γ2 band) from the digitized signal. The frequency band extracted by the digital filter 5A is the same as the frequency band extracted by the filter 2 (analog filter) shown in the first embodiment. In other words, the software of the digital filter 5A stored in the memory device of the control device 5 digitizes the brainwave signal, which is the input signal, performs filtering, and extracts components in the desired frequency band.

 制御装置5は、デジタルフィルタ5Aにより抽出された信号成分から、上述の基準条件(α)を満たす信号成分(基準条件(α)を満たす脳波信号の波形BS)の頻度を計測する計測部5Bを備えている。要するに、計測部5Bは、一定期間内において、基準条件(α)を満たす波形BSの発生回数(頻度)を求めている。制御装置5は、計測部5Bで計測された上記の頻度に応じた周波数f及び振幅Aを有する駆動制御信号Sを生成する信号生成部5Cを備えている。計測部5Bの機能は、デジタル信号を処理するという点を除いて、第1実施形態におけるウインドウ・ディスクリミネータ3の機能と同一である。換言すれば、制御装置5の記憶装置内に格納された計測部5Bのソフトウエアは、入力された特定周波数帯域の脳波信号に、ウインドウ・ディスクリミネータ3と同一の処理を施し、脳内活動度に相関するイベントの発生頻度を時系列に出力する。 The control device 5 includes a measurement unit 5B that measures the frequency of signal components (waveform BS of electroencephalogram signal that satisfies the reference condition (α)) that satisfy the above-mentioned reference condition (α) from the signal components extracted by the digital filter 5A. In short, the measurement unit 5B determines the number of occurrences (frequency) of the waveform BS that satisfies the reference condition (α) within a certain period of time. The control device 5 includes a signal generation unit 5C that generates a drive control signal S C having a frequency f and an amplitude A according to the above-mentioned frequency measured by the measurement unit 5B. The function of the measurement unit 5B is the same as that of the window discriminator 3 in the first embodiment, except that it processes digital signals. In other words, the software of the measurement unit 5B stored in the storage device of the control device 5 performs the same processing as the window discriminator 3 on the input electroencephalogram signal of a specific frequency band, and outputs the occurrence frequency of events correlated with brain activity in a time series.

 脳深部刺激装置100は、デジタル信号処理を行う構成を採用することより、部品点数を減らすことができる。詳説すれば、この構成において、脳波検出器1から出力されるアナログ信号としての脳波信号は、インターフェースとしてのアナログデジタル変換器(AD変換)により、AD変換される。デジタル信号における信号成分の波形は、離散値であり、時系列に連続する振幅の情報を有している。1つのデータ・ブロックが、時刻情報と振幅情報を有しているものとすると、離散値の波形は、時系列に連続するデータ・ブロック群で構成される。コンピュータ等の制御装置の記憶装置内に格納されたプログラムは、中央処理装置により実行され、例示的には以下の工程によって信号処理が行われる。 The deep brain stimulation device 100 can reduce the number of parts by adopting a configuration that performs digital signal processing. More specifically, in this configuration, the EEG signal output as an analog signal from the EEG detector 1 is AD converted by an analog-to-digital converter (AD conversion) that serves as an interface. The waveform of the signal components in the digital signal is a discrete value, and has amplitude information that is continuous in a time series. If one data block has time information and amplitude information, the discrete value waveform is made up of a group of data blocks that are continuous in a time series. A program stored in the memory device of a control device such as a computer is executed by a central processing unit, and signal processing is performed, for example, by the following steps.

 第1工程では、デジタルフィルタ5Aの機能を用いて、上述の周波数帯域の信号成分を抽出する。 In the first step, the function of the digital filter 5A is used to extract signal components in the above-mentioned frequency band.

 第2工程では、計測部5Bがウインドウ・ディスクリミネータの機能を実行する。すなわち、基準値(Vth)以上の振幅を有するデータ・ブロックが、時系列に連続した数をカウントし、カウント値が、基準期間(Tth)に相当する値以上となった場合に、脳内イベントが発生したと判定し、1つのパルス電圧に対応する判定出力(真:True)「1」を出力する。判定期間(例:50ms)の間に計測された判定出力(True)の回数は、脳内の運動に相関する活性度を意味する。 In the second step, the measurement unit 5B executes the function of a window discriminator. That is, it counts the number of consecutive data blocks in a chronological order that have an amplitude equal to or greater than a reference value (Vth), and when the count value reaches or exceeds a value corresponding to a reference period (Tth), it determines that an intracerebral event has occurred, and outputs a judgment output (True) of "1" corresponding to one pulse voltage. The number of judgment outputs (True) measured during a judgment period (e.g., 50 ms) indicates the degree of activity that correlates with intracerebral movement.

 第3工程では、信号生成部5Cが、入力された判定出力回数(脳内の運動に相関する活性度、換言すれば、基準条件(α)を満たす波形の発生頻度)を、所定の演算式に代入し、演算結果を出力する。すなわち、上述の(条件1)、(条件2)、(単調増加関数)で示される数式に、基準条件(α)を満たす波形の発生頻度(単位時間当たりのパルス数の移動平均μTTL)を入力し、この頻度に対応した周波数f及び振幅Aを出力する。信号生成部5Cは、演算された周波数f及び振幅Aを有する駆動制御信号Sを生成して、駆動回路7に出力する。 In the third step, the signal generating unit 5C substitutes the input number of judgment outputs (activity correlated with intracerebral movement, in other words, the occurrence frequency of a waveform satisfying the reference condition (α)) into a predetermined calculation formula and outputs the calculation result. That is, the occurrence frequency of a waveform satisfying the reference condition (α) (moving average μTTL of the number of pulses per unit time) is input into the formula represented by the above-mentioned (Condition 1), (Condition 2), and (monotonically increasing function), and a frequency f and an amplitude A corresponding to this frequency are output. The signal generating unit 5C generates a drive control signal S C having the calculated frequency f and amplitude A, and outputs it to the drive circuit 7.

 なお、信号生成部5Cの機能は、第1実施形態における制御装置5における駆動制御信号Sの生成機能と同一である。制御装置5から第2インターフェース6を介して出力された駆動制御信号Sは、駆動回路7(アナログ・アイソレータ)に入力され、駆動信号Sとして脳深部刺激素子8に供給される。 The function of the signal generating unit 5C is the same as the function of generating the drive control signal S C in the control device 5 in the first embodiment. The drive control signal S C output from the control device 5 via the second interface 6 is input to a drive circuit 7 (analog isolator) and supplied to the deep brain stimulation element 8 as a drive signal S D.

 第2実施形態の脳深部刺激装置は、デジタル信号処理を行うので、装置サイズを小さくすることができる。したがって、脳深部刺激装置を医療機器に適用する場合に有用である。次に、第1実施形態及び第2実施形態に係る脳深部刺激装置を医療機器に適用した場合の具体例について説明する。 The deep brain stimulation device of the second embodiment performs digital signal processing, which allows the device size to be reduced. This is therefore useful when the deep brain stimulation device is applied to medical equipment. Next, a specific example of the deep brain stimulation device according to the first and second embodiments applied to medical equipment will be described.

 図10は、医療機器としての脳深部刺激装置を示す図である。 Figure 10 shows a deep brain stimulation device as a medical device.

 この脳深部刺激装置は、上述の駆動信号生成装置10を、密閉容器BOX内に収容したものである。上述のように、脳波検出器1は、大脳皮質運動野の一次運動野M1に配置された検出素子(第1検出素子1A、第2検出素子1B)と、検出素子の出力信号が入力される前置増幅器と、主増幅器とを備えている。第1検出素子1A及び第2検出素子1Bは、それぞれ板状のチップ電極であり、脳への影響が少ない形状にされている。第1検出素子1A及び第2検出素子1Bは、第1信号線W1を介して、前置増幅器の入力端子に接続されている。第1検出素子1A及び第2検出素子1Bから出力された脳波信号S(電圧信号)は、第1信号線W1を伝達され、前置増幅器に入力される。 This deep brain stimulation device is a device in which the above-mentioned drive signal generating device 10 is housed in a sealed container BOX. As described above, the EEG detector 1 includes detection elements (first detection element 1A, second detection element 1B) arranged in the primary motor area M1 of the cerebral cortical motor area, a preamplifier to which the output signals of the detection elements are input, and a main amplifier. The first detection element 1A and the second detection element 1B are each a plate-shaped chip electrode, and are shaped to have little effect on the brain. The first detection element 1A and the second detection element 1B are connected to the input terminal of the preamplifier via the first signal line W1. The EEG signal S B (voltage signal) output from the first detection element 1A and the second detection element 1B is transmitted through the first signal line W1 and input to the preamplifier.

 密閉容器BOX内には、駆動信号生成装置10と、脳波検出器1における前置増幅器及び主増幅器とが収容されている。駆動信号生成装置10の駆動信号Sの出力端子には、密閉容器BOXの外部に延びる第2信号線W2が接続されている。第2信号線W2は、脳深部刺激素子8に接続されている。 The sealed container BOX contains a drive signal generating device 10 and a preamplifier and a main amplifier in the electroencephalogram detector 1. A second signal line W2 extending to the outside of the sealed container BOX is connected to an output terminal of a drive signal SD of the drive signal generating device 10. The second signal line W2 is connected to a deep brain stimulation element 8.

 本例の脳深部刺激素子8は、軟らかい材料から構成されている。図3に示した脳深部刺激素子8は、ポリイミド等の樹脂で被覆した高融点金属の導線を備えていた。軟らかいシリコーン樹脂のチューブの内部に高融点金属からなる細い導線を通しておき、チューブの先端部の外周面上に複数の刺激部の形成することもできる。刺激部の材料としては、反応性が低い導電性材料であればよいが、例えば、白金イリジウム合金を用いることができる。刺激部は薄い膜であってもよい。刺激部を光(電磁波)信号の発生材料から構成する場合、チューブの内側に半導体発光素子を埋め込むことも考えられる。チューブ内の導線は、刺激部に接続され、駆動信号Sが供給される。 The deep brain stimulation element 8 in this example is made of a soft material. The deep brain stimulation element 8 shown in FIG. 3 has a conductor wire made of a high melting point metal coated with a resin such as polyimide. A thin conductor wire made of a high melting point metal may be passed through the inside of a soft silicone resin tube, and a plurality of stimulation parts may be formed on the outer circumferential surface of the tip of the tube. The material of the stimulation part may be a conductive material with low reactivity, for example, a platinum-iridium alloy. The stimulation part may be a thin film. When the stimulation part is made of a material that generates a light (electromagnetic wave) signal, it is also possible to embed a semiconductor light emitting element inside the tube. The conductor wire inside the tube is connected to the stimulation part, and a drive signal S D is supplied.

 第1信号線W1と第1検出素子1A及び第2検出素子1Bとは、物理的に連続する電気的接続がされているが、脳波信号が交流である場合は、キャパシタを介して、電気的にアイソレーションした接続をすることも可能である。第1検出素子1Aからの出力信号と、第2検出素子1Bからの信号の差動増幅を行うことで、ノイズを低減することができ、微弱な信号を検出可能である。無線接続をする場合、頭蓋骨内に超小型の無線送信アンプを格納し、第1検出素子1A及び第2検出素子1Bを無線送信アンプに接続することもできる。無線送信アンプへは、誘導起電力又は超音波を用いて電力供給を行うことも可能である。第2信号線W2と脳深部刺激素子8との接続も、第1信号線W1の場合と同様に行うことが可能である。 The first signal line W1 is electrically connected to the first detection element 1A and the second detection element 1B in a physically continuous manner, but if the EEG signal is AC, it is also possible to connect them in an electrically isolated manner via a capacitor. By differentially amplifying the output signal from the first detection element 1A and the signal from the second detection element 1B, it is possible to reduce noise and detect weak signals. In the case of a wireless connection, it is also possible to store a very small wireless transmission amplifier inside the skull and connect the first detection element 1A and the second detection element 1B to the wireless transmission amplifier. It is also possible to supply power to the wireless transmission amplifier using induced electromotive force or ultrasound. The second signal line W2 can be connected to the deep brain stimulation element 8 in the same way as the first signal line W1.

 密閉容器BOXの材料は、特に限定されないが、フッ素樹脂や一般的な樹脂材料から構成することが可能である。密閉容器BOX内に、電気的な信号処理を行う駆動信号生成装置等を収容しているので、これらを保護することができる。また、密閉容器BOXを体内に埋め込むことも可能である。また、駆動信号生成装置10及び上記の増幅器は、半導体集積回路により、構成することができる。駆動回路としてのアナログ・アイソレータは、デジタル・アイソレータにより構成することもできる。更に、半導体集積回路は超小型化が可能であるため、これらの装置の一部又は全部を頭蓋骨の内側に配置することも可能である。また、制御装置としては、コンピュータを用いることができるが、論理回路により構成することもでき、特定用途向け集積回路(ASIC)を用いることもできる。 The material of the sealed container BOX is not particularly limited, but it can be made of fluororesin or general resin materials. The sealed container BOX contains a drive signal generating device that performs electrical signal processing, and can protect these devices. It is also possible to implant the sealed container BOX inside the body. The drive signal generating device 10 and the amplifier can be made of semiconductor integrated circuits. The analog isolator used as the drive circuit can also be made of a digital isolator. Furthermore, since semiconductor integrated circuits can be made extremely small, it is also possible to place some or all of these devices inside the skull. The control device can be a computer, but it can also be made of a logic circuit, or an application specific integrated circuit (ASIC) can also be used.

 以上、説明したように、上述の脳深部刺激装置100は、患者の随意運動を、γ2帯域の皮質脳波信号から検知し、駆動信号を生成して、脳深部に刺激を与えるアダプティブ脳深部刺激療法(aDBS)を用いている。通常、特定の動作指令が、淡蒼球内節(GPi)の機能の閾値を超えた場合に、意図した運動が行われ、その他の運動計画はブロックされる。パーキンソン病では、淡蒼球内節の判定閾値が上昇し、すべて動作計画がブロックされる。電気生理学的なバイオマーカーとして、γ1帯域(30Hz<周波数f)の活性を用いることもできるが、上述の実施形態では一次運動野M1におけるγ2帯域(80Hz~200Hz)の活性度を利用した。脳深部刺激装置100は、運動計画が、一次運動野M1において、前もって発生するのを検知し、淡蒼球内節の機能の閾値を低下させ、この時間窓における運動計画の選択可能性を増加させていると考えられる。 As described above, the deep brain stimulation device 100 detects the patient's voluntary movement from the gamma 2 band electrocortical electroencephalogram signal, generates a drive signal, and uses adaptive deep brain stimulation (aDBS) to stimulate the deep brain. Normally, when a specific movement command exceeds the functional threshold of the internal pallidum (GPi), the intended movement is performed and other movement plans are blocked. In Parkinson's disease, the decision threshold of the internal pallidum increases, and all movement plans are blocked. Although activity in the gamma 1 band (30 Hz < frequency f) can also be used as an electrophysiological biomarker, the above embodiment uses activity in the gamma 2 band (80 Hz to 200 Hz) in the primary motor cortex M1. It is believed that the deep brain stimulation device 100 detects the advance generation of a movement plan in the primary motor cortex M1, lowers the functional threshold of the internal pallidum, and increases the selectability of the movement plan in this time window.

 図11は、複数の検出素子を備えた脳深部刺激装置を示す図である。 Figure 11 shows a deep brain stimulation device equipped with multiple detection elements.

 左側の脳に関して以下の検出素子が配置されている。すなわち、一次運動野M1には、左側第1検出素子S1Lが配置されている。補足運動野SMAには、左側第2検出素子S2Lが配置されている。運動前野PMには、左側第3検出素子S3Lが配置されている。同様に、右側の脳に関しても、左側と同様の対応関係で、検出素子が配置されている。これらの検出素子の出力信号は、アンプ及び駆動信号生成装置10を含む処理回路101に入力される。処理回路101は、頭蓋骨102の内側に配置される内部回路101Aと、頭蓋骨102の外側に配置される外部回路101Bとを備えている。処理回路101内の各回路要素は、内部回路101A及び外部回路101Bに振り分けて配置される。電池等の体積の大きな回路は、外部回路101B内に配置することができる。処理回路101から出力された駆動信号は、脳深部刺激素子8に入力される。 The following detection elements are arranged for the left side of the brain. That is, the first left detection element S1L is arranged in the primary motor area M1. The second left detection element S2L is arranged in the supplementary motor area SMA. The third left detection element S3L is arranged in the premotor area PM. Similarly, the detection elements are arranged for the right side of the brain in the same corresponding relationship as the left side. The output signals of these detection elements are input to a processing circuit 101 including an amplifier and a drive signal generating device 10. The processing circuit 101 has an internal circuit 101A arranged inside the skull 102 and an external circuit 101B arranged outside the skull 102. Each circuit element in the processing circuit 101 is allocated and arranged in the internal circuit 101A and the external circuit 101B. A circuit with a large volume, such as a battery, can be arranged in the external circuit 101B. The drive signal output from the processing circuit 101 is input to the deep brain stimulation element 8.

 図12は、複数の脳波信号を受信して処理する回路構成を示す図である。 Figure 12 shows the circuit configuration for receiving and processing multiple EEG signals.

 本例の脳深部刺激装置は、複数の検出素子を備えている。本例の検出素子群は、左側第1検出素子S1L、左側第2検出素子S2L、左側第3検出素子S3L、右側第1検出素子S1R、右側第2検出素子S2R、及び、右側第3検出素子S3Rからなる。これらの検出素子の構造は、同一である。各検出素子は、単極誘導の構造の場合、単一の検出電極1Sと、基準電位φRefを与える不関電極1REとを備えている。各検出素子は双極誘導の構造を有してもよい。 The deep brain stimulation device of this example has multiple detection elements. The detection element group of this example consists of a first left detection element S1L, a second left detection element S2L, a third left detection element S3L, a first right detection element S1R, a second right detection element S2R, and a third right detection element S3R. These detection elements have the same structure. In the case of a unipolar induction structure, each detection element has a single detection electrode 1S and an indifferent electrode 1RE that provides a reference potential φRef. Each detection element may have a bipolar induction structure.

 各検出素子の出力信号は、アンプを備えた脳波検出器1に入力される。同図では、入力信号毎にアンプを備えた複数の脳波検出器1を示しているが、複数の入力端子及び複数の出力端子を備え、各入力信号の増幅機能を有する単一の脳波検出器1を用いることもできる。各検出素子からの出力信号は、脳波検出器1により増幅され、皮質脳波信号として駆動信号生成装置10に入力される。駆動信号生成装置10は、処理回路101の一部である。処理回路101内の制御装置5は、入力された複数の皮質脳波信号に基づいて、駆動制御信号を生成する。生成された駆動制御信号は、駆動回路7に入力される。駆動回路7は、脳深部刺激素子8へ駆動電流を供給する。 The output signal of each detection element is input to an EEG detector 1 equipped with an amplifier. In the figure, multiple EEG detectors 1 equipped with an amplifier for each input signal are shown, but a single EEG detector 1 equipped with multiple input terminals and multiple output terminals and having an amplification function for each input signal can also be used. The output signal from each detection element is amplified by the EEG detector 1 and input to a drive signal generating device 10 as a cortical EEG signal. The drive signal generating device 10 is part of a processing circuit 101. A control device 5 in the processing circuit 101 generates a drive control signal based on the multiple input cortical EEG signals. The generated drive control signal is input to a drive circuit 7. The drive circuit 7 supplies a drive current to a deep brain stimulation element 8.

 図13は、検出素子の回路構成を示す図である。 Figure 13 shows the circuit configuration of the detection element.

 検出素子S1は、上述の6つの検出素子のうちの1つの構造を代表して示している。好適例の検出素子S1は、脳波検出用の単一の検出電極1Sと、複数の参照電極1Rとを備えており、単極誘導の構成を有している。本例の複数の参照電極1Rは、単一の検出電極1Sを囲むように配置されている。参照電極1Rの数は、1つであってもよい。各参照電極1Rには、それぞれ抵抗器Zが接続され、結線されている。結線位置は、不関電極1REを構成する節点となる。 Detection element S1 represents one of the structures of the six detection elements described above. In a preferred embodiment, detection element S1 has a single detection electrode 1S for detecting brain waves and multiple reference electrodes 1R, and has a unipolar induction configuration. In this embodiment, the multiple reference electrodes 1R are arranged to surround the single detection electrode 1S. The number of reference electrodes 1R may be one. Each reference electrode 1R is connected to a resistor Z and wired. The connection position becomes the node that constitutes the indifferent electrode 1RE.

 以上のように、脳波検出器1は、脳波検出用の検出電極1Sと、検出電極1Sの周囲に配置された複数の参照電極1Rと、複数の参照電極1Rに、それぞれ一方端が接続された複数の抵抗器Zを備えている。脳波検出器1は、複数の抵抗器Zの他方端が接続された節点の基準電位φRefが入力される基準電位入力端子と、検出電極1Sからの検出電位φ(S1)(皮質脳波信号となる局所電位)が入力される検出電位入力端子を備えたアンプを備えている。この構造の不関電極1REは、電位が安定するので、皮質脳波信号に含まれるノイズが減少し、更に安定した制御を行うことができる。脳波検出器1は、皮質脳波信号S(S1)を出力する。 As described above, the EEG detector 1 comprises a detection electrode 1S for detecting EEG, a plurality of reference electrodes 1R arranged around the detection electrode 1S, and a plurality of resistors Z each having one end connected to the plurality of reference electrodes 1R. The EEG detector 1 comprises an amplifier having a reference potential input terminal to which a reference potential φRef of the node to which the other ends of the plurality of resistors Z are connected is input, and a detection potential input terminal to which a detection potential φ(S1) (local potential that becomes a cortical EEG signal) from the detection electrode 1S is input. The indifferent electrode 1RE with this structure has a stable potential, so noise contained in the cortical EEG signal is reduced, allowing for even more stable control. The EEG detector 1 outputs a cortical EEG signal S(S1).

 図14は、複数の皮質脳波信号が入力される制御装置5のブロック図である。 FIG. 14 is a block diagram of a control device 5 to which multiple EEG cortical signals are input.

 デジタルフィルタ5A、計測部5B、信号生成部5Cの基本機能は、図9において説明した通りである。各検出素子からの出力信号に応じて、脳波検出器1(図12参照)は、それぞれ脳波信号(皮質脳波信号)を出力する。すなわち、左側第1検出素子S1L、左側第2検出素子S2L、左側第3検出素子S3L、右側第1検出素子S1R、右側第2検出素子S2R、右側第3検出素子S3Rからの出力信号に応じて、脳波検出器1は、それぞれ、左側第1脳波信号S(S1L)、左側第2脳波信号S(S2L)、左側第3脳波信号S(S3L)、右側第1脳波信号S(S1R)、右側第2脳波信号S(S2R)、右側第3脳波信号S(S3R)を出力する。 The basic functions of the digital filter 5A, the measuring unit 5B, and the signal generating unit 5C are as described in FIG. 9. In response to the output signals from each detection element, the EEG detector 1 (see FIG. 12) outputs EEG signals (cortical EEG signals). That is, in response to the output signals from the first left detection element S1L, the second left detection element S2L, the third left detection element S3L, the first right detection element S1R, the second right detection element S2R, and the third right detection element S3R, the EEG detector 1 outputs the first left EEG signal S(S1L), the second left EEG signal S(S2L), the third left EEG signal S(S3L), the first right EEG signal S(S1R), the second right EEG signal S(S2R), and the third right EEG signal S(S3R).

 各脳波信号は、AD変換器によってデジタル値に変換され、デジタルフィルタ5Aに入力される。デジタルフィルタ5Aは、入力された複数の脳波信号が、それぞれアナログ信号の場合におけるγ2帯域の信号成分を抽出して、計測部5Bに入力する。計測部5Bは、上述のウインドウ・ディスクリミネータの機能を実行する。計測部5Bは、入力された複数の脳波信号において、脳内イベント発生に対応する成分が検出された場合は、判定出力「1」を出力する。脳波信号において、閾値を超えた成分が、基準期間以上継続した場合に、脳内イベントが発生したと判定する。 Each EEG signal is converted to a digital value by an AD converter and input to the digital filter 5A. When the input EEG signals are analog signals, the digital filter 5A extracts the signal components in the gamma 2 band and inputs them to the measurement unit 5B. The measurement unit 5B executes the function of the window discriminator described above. If a component corresponding to the occurrence of a brain event is detected in the input EEG signals, the measurement unit 5B outputs a judgment output of "1". If a component exceeding a threshold continues for a reference period or longer in the EEG signal, it is judged that a brain event has occurred.

 閾値判定部5C1には、計測部5Bから出力される複数(例:6個)のチャネルの判定出力が順次入力される。閾値判定部5C1は、脳内イベント発生に対応する複数の判定出力「1」の数を、判定期間内において、カウントする。本例では、6個の脳波信号に対応する6個のカウント値が得られる。左右の脳波信号に対応するそれぞれのカウント値を、CL1,CL2,CL3,CR1,CR2,CR3とする。これらのカウント値のいずれか1つ(例:CL1)が、脳内活性度に相関して設定される閾値THCを超えた場合(例:THC<CL1)、閾値判定部5C1は、閾値を超えたチャネルを示すトリガー信号を選択部5C2に通知する。閾値判定部5C1において、複数のチャネルのカウント値が閾値を超えた場合、最大のカウント値を与えるチャネルを選択し、閾値を超えたチャネルを示すトリガー信号を選択部5C2に通知することができる。 The threshold determination unit 5C1 sequentially receives the determination outputs of multiple (e.g., six) channels output from the measurement unit 5B. The threshold determination unit 5C1 counts the number of multiple determination outputs "1" corresponding to the occurrence of a brain event during the determination period. In this example, six count values corresponding to six EEG signals are obtained. The count values corresponding to the left and right EEG signals are CL1, CL2, CL3, CR1, CR2, and CR3. When one of these count values (e.g., CL1) exceeds a threshold THC set in correlation with brain activity (e.g., THC<CL1), the threshold determination unit 5C1 notifies the selection unit 5C2 of a trigger signal indicating the channel that exceeded the threshold. When the count values of multiple channels exceed the threshold, the threshold determination unit 5C1 can select the channel that gives the largest count value and notify the selection unit 5C2 of a trigger signal indicating the channel that exceeded the threshold.

 選択部5C2には、計測部5Bから出力される複数の判定出力が順次入力される。選択部5C2は、入力された複数の判定出力を一時的に記憶することができる。選択部5C2は、閾値判定部5C1から、トリガー信号を受信した場合、当該トリガー信号に対応するチャネルの判定出力を選択し、出力する。例えば、カウント値がCL1のチャネルが選択され、このチャネルにおいて一時的に記憶されていた時系列の判定出力が、メイン信号生成部5C3に入力される。 The selection unit 5C2 sequentially receives a plurality of judgment outputs output from the measurement unit 5B. The selection unit 5C2 can temporarily store the plurality of judgment outputs that have been input. When the selection unit 5C2 receives a trigger signal from the threshold judgment unit 5C1, it selects and outputs the judgment output of the channel corresponding to the trigger signal. For example, the channel with the count value CL1 is selected, and the time-series judgment output temporarily stored in this channel is input to the main signal generation unit 5C3.

 メイン信号生成部5C3は、一定期間内において、入力された判定出力「1」の数をカウントし、このカウント値(例:CL1)、すなわち判定出力回数に応じた周波数f及び振幅Aを有する駆動制御信号Sを生成する。また、このカウント値は、判定出力の頻度に対応する。この頻度は、単位時間当たりの脳内イベント発生回数であるから、これを単位時間当たりの出力の波の数と考えると、脳内イベントの発生周波数であり、後段の回路への入力周波数(fin)に対応する。この周波数は、上述の単位時間当たりのパルス数の移動平均μTTLにも対応する。 The main signal generating unit 5C3 counts the number of input judgment outputs "1" within a certain period of time, and generates a drive control signal S C having a frequency f and amplitude A corresponding to this count value (e.g. CL1), i.e., the number of judgment outputs. This count value also corresponds to the frequency of judgment outputs. Since this frequency is the number of brain events occurring per unit time, if this is considered as the number of output waves per unit time, it is the frequency of occurrence of brain events and corresponds to the input frequency (f in ) to the downstream circuit. This frequency also corresponds to the moving average μTTL of the number of pulses per unit time mentioned above.

 なお、選択部を省略して、閾値判定部5C1において計測された閾値越えのカウント値(例:CL1)を、脳内イベントの発生周波数(fin)として、直接、メイン信号生成部5C3に入力することもできる。 It is also possible to omit the selection section and directly input the threshold-exceeding count value (e.g., CL1) measured in the threshold determination section 5C1 to the main signal generation section 5C3 as the occurrence frequency (f in ) of brain events.

 メイン信号生成部5C3は、脳内イベントの発生周波数(以下、入力周波数fin(頻度))に応じて、出力周波数f及び振幅Aを有する駆動制御信号Sを生成する。入力周波数finと駆動制御信号Sの出力周波数fとが、一次関数の関係を有する場合は、駆動制御信号Sの周波数fは、(f=a×fin+b)で与えられる(aは係数、bは係数)。出力周波数fの上限値を設定しておくと、出力周波数fが上限値を超えた場合、出力周波数fは一定となる。 The main signal generating unit 5C3 generates a drive control signal S C having an output frequency f and amplitude A according to the occurrence frequency of a brain event (hereinafter, input frequency f in (frequency)). When the input frequency f in and the output frequency f of the drive control signal S C have a linear function relationship, the frequency f of the drive control signal S C is given by (f = a 1 × f in + b 1 ) (a 1 is a coefficient, b 1 is a coefficient). If an upper limit value for the output frequency f is set, the output frequency f will be constant when it exceeds the upper limit value.

 入力周波数finと振幅Aが、一次関数の関係を有する場合は、駆動制御信号Sの振幅Aは、(A=a×fin+b)で与えられる(aは係数、bは係数)。振幅Aの上限値を設定しておくと、振幅Aが上限値を超えた場合、振幅Aは一定となる。生成された駆動制御信号Sは、駆動回路7に入力され、出力周波数f及び振幅Aに比例した周波数及び振幅を有する駆動信号S(駆動電流)が、脳深部刺激素子に供給される。 When the input frequency f in and the amplitude A have a linear function relationship, the amplitude A of the drive control signal S C is given by (A=a 2 ×f in +b 2 ) (a 2 is a coefficient, and b 2 is a coefficient). If an upper limit value for the amplitude A is set, the amplitude A becomes constant when it exceeds the upper limit value. The generated drive control signal S C is input to the drive circuit 7, and a drive signal S D (drive current) having a frequency and amplitude proportional to the output frequency f and amplitude A is supplied to the deep brain stimulation element.

 なお、上述の構成において、デジタルフィルタ5Aはアナログフィルタと置換することもでき、計測部5Bはウインドウ・ディスクリミネータと置換することもできる。この場合、ウインドウ・ディスクリミネータの出力をAD変換して、後段の信号生成部に入力する。 In the above configuration, the digital filter 5A can be replaced with an analog filter, and the measurement unit 5B can be replaced with a window discriminator. In this case, the output of the window discriminator is AD converted and input to the signal generation unit at the subsequent stage.

 以上、説明したように、図14に示した制御装置を備えた脳深部刺激装置においては、脳波検出器1の出力信号(皮質脳波信号)の数は、複数であり、駆動信号生成装置の制御装置5は、複数の皮質脳波信号のそれぞれに対して、前述の頻度を求め、いずれか1つの頻度(例:単位時間内のカウント値CL1に対応する脳内イベントの発生周波数(入力周波数fin))が、閾値を超えた場合、当該頻度(入力周波数fin)に応じた周波数f及び振幅Aを有する駆動制御信号S(駆動信号S)を生成している。脳内の運動に相関する複数箇所の信号のいずれかが脳内イベント発生を示す場合に刺激を行うので、より安定的で高速な応答の刺激制御を行うことができ、有効な治療効果が得られると考えられる。 As described above, in the deep brain stimulation device equipped with the control device shown in Fig. 14, the number of output signals (cortical electroencephalogram signals) of the electroencephalogram detector 1 is multiple, and the control device 5 of the drive signal generating device calculates the above-mentioned frequency for each of the multiple cortical electroencephalogram signals, and when any one of the frequencies (e.g., the frequency of occurrence of a brain event corresponding to the count value CL1 within a unit time (input frequency f in )) exceeds a threshold value, it generates a drive control signal S C (drive signal S D ) having a frequency f and amplitude A corresponding to that frequency (input frequency f in ). Since stimulation is performed when any of the multiple signals correlated with intracerebral movement indicates the occurrence of a brain event, it is possible to perform stimulation control with more stable and faster response, and it is considered that an effective therapeutic effect can be obtained.

 図15は、複数の脳波信号が入力される制御装置5のブロック図である。 FIG. 15 is a block diagram of the control device 5 to which multiple brainwave signals are input.

 同図の制御装置5において、デジタルフィルタ5Aに複数の皮質脳波信号が入力され、当該フィルタにおいてγ2帯域の成分が抽出され、計測部5Bに入力され、計測部5Bが複数の判定出力を順次出力する構成は、図14に示したものと同一である。 In the control device 5 shown in the figure, multiple cortical EEG signals are input to a digital filter 5A, which extracts gamma 2 band components and inputs them to a measurement unit 5B, which then sequentially outputs multiple judgment outputs. The configuration is the same as that shown in FIG. 14.

 信号生成部5Cは、ミキサ部5CMと、メイン信号生成部5C3とを備えている。ミキサ部5CMには、計測部5Bから出力される複数(例:6個)のチャネルの判定出力が順次入力される。ミキサ部5CMは、脳内イベント発生に対応する複数の判定出力「1」の数を、判定期間内において、カウントする。本例では、6個の皮質脳波信号に対応する6個のカウント値が得られる。左右の皮質脳波信号に対応するそれぞれのカウント値を、CL1,CL2,CL3,CR1,CR2,CR3とする。 The signal generating unit 5C includes a mixer unit 5CM and a main signal generating unit 5C3. The judgment outputs of multiple channels (e.g., six) output from the measuring unit 5B are input sequentially to the mixer unit 5CM. The mixer unit 5CM counts the number of judgment outputs "1" corresponding to the occurrence of a brain event within the judgment period. In this example, six count values corresponding to six cortical EEG signals are obtained. The count values corresponding to the left and right cortical EEG signals are designated CL1, CL2, CL3, CR1, CR2, and CR3, respectively.

 ミキサ部5CMは、得られたカウント値に重みづけをして加算し、加重平均されたカウント値CWを求める。例えば、重みづけの係数をwL1、wL2、wL3、wR1、wR2、wR3とする(wL1+wL2+wL3+wR1+wR2+wR3=1)。この場合、カウント値CW=(CL1×wL1+CL2×wL2+CL3×wL3+CR1×wR1+CR2×wR2+CR3×wR3)となる。一例として、wL1=0.5/2、wL2=0.25/2、wL3=0.25/2、wL1=wR1、wL2=wR2、wL3=wR3とする。一次運動野M1における重みづけの係数(wL1、wR1)は、他の係数よりも大きく設定されている。この加重平均カウント値は、上述の脳内イベントの発生周波数(入力周波数fin、頻度)に対応する。 The mixer unit 5CM weights and adds the obtained count values to obtain a weighted average count value CW. For example, the weighting coefficients are wL1 , wL2 , wL3 , wR1, wR2 , and wR3 ( wL1 + wL2 + wL3 + wR1 + wR2 + wR3 = 1). In this case, the count value CW = (CL1 x wL1 + CL2 x wL2 + CL3 x wL3 + CR1 x wR1 + CR2 x wR2 + CR3 x wR3 ). As an example, wL1 = 0.5 /2, wL2 = 0.25/2, wL3 = 0.25/2, wL1 = wR1 , wL2 = wR2 , wL3 = wR3 . The weighting coefficients ( wL1 , wR1 ) in the primary motor cortex M1 are set to be larger than the other coefficients. This weighted average count value corresponds to the occurrence frequency (input frequency f in , frequency) of the above-mentioned brain events.

 以上、説明したように、図15に示した制御装置を備えた脳深部刺激装置においては、脳波検出器1の出力信号(皮質脳波信号)の数は、複数であり、駆動信号生成装置は、複数の出力信号のそれぞれに対して、頻度(単位時間内にカウントされたカウント値)を求め、これらの頻度に重みづけをして加算して求められる値(上記では加重平均カウント値)に対応する入力周波数finに応じた周波数f及び振幅Aを有する駆動信号を生成している。脳内の運動に相関する複数箇所の信号を用いているので、より精密な刺激制御を行うことができ、有効な治療効果が得られると考えられる。 As described above, in the deep brain stimulation device equipped with the control device shown in Fig. 15, the number of output signals (cortical electroencephalogram signals) of the electroencephalogram detector 1 is multiple, and the drive signal generating device calculates the frequency (count value counted within a unit time) for each of the multiple output signals, and generates a drive signal having a frequency f and an amplitude A according to an input frequency f in corresponding to a value (weighted average count value in the above case) calculated by weighting and adding these frequencies. Since signals from multiple locations correlated with movements in the brain are used, it is possible to perform more precise stimulation control, and it is believed that an effective therapeutic effect can be obtained.

 メイン信号生成部5C3は、ミキサ部5CMから入力された入力周波数finに応じた出力周波数f及び振幅Aを有する駆動制御信号S(∝駆動信号S)を生成する。駆動制御信号Sの周波数f及び振幅Aの演算方法の一例は、上述の通りであり、演算されたパラメータに応じて、脳深部刺激素子を制御することができる。次に、このような演算を用いた演算制御方法について説明する。 The main signal generating unit 5C3 generates a drive control signal S C (∝ drive signal S D ) having an output frequency f and amplitude A according to the input frequency f in input from the mixer unit 5CM. An example of a method for calculating the frequency f and amplitude A of the drive control signal S C is as described above, and the deep brain stimulation element can be controlled according to the calculated parameters. Next, a calculation control method using such calculation will be described.

 駆動信号Sの周波数f及び振幅Aは、前述の頻度に対応する入力周波数finの関数である。前述の頻度は、アナログ方式の場合はウインドウ・ディスクリミネータ3から出力される判定出力(パルス)の判定期間当たりの回数であり、デジタル方式の場合は、計測部5Bから出力される判定出力(デジタル値=1)の判定期間当たりの回数である。この頻度は、単位時間当たりの脳内イベント発生回数であるから、単位時間当たりの出力の波の数と考えると、入力周波数finに対応する。以下では、制御装置における駆動制御信号S(∝駆動信号S)の生成に関し、入力周波数finと出力(駆動信号Sの周波数f及び振幅A)との関係について説明する。 The frequency f and amplitude A of the drive signal S D are functions of the input frequency f in corresponding to the frequency. In the case of an analog system, the frequency is the number of judgment outputs (pulses) output from the window discriminator 3 per judgment period, and in the case of a digital system, the frequency is the number of judgment outputs (digital value = 1) output from the measurement unit 5B per judgment period. This frequency is the number of brain events occurring per unit time, so it corresponds to the input frequency f in when considered as the number of output waves per unit time. In the following, the relationship between the input frequency f in and the output (frequency f and amplitude A of the drive signal S D) will be described with respect to the generation of the drive control signal S C (∝ drive signal S D ) in the control device.

 なお、以下の説明において、a、b、a、bは係数であり、N、Mは自然数(1,2,3,4…)である。また、以下の説明において説明される入力周波数finの区間(f≦fin≦fN+1、f≦fin≦fM+1)は、一致させる(f=f、fN+1=fM+1)ことができる。また、以下の説明において、入力周波数閾値fTHは、出力側の上限周波数flimit(例:150Hz)及び上限振幅Alimit(例:1.5mA)を与える条件を満たす入力周波数finである。fTH≦finの条件下では、周波数f及び振幅Aは飽和し、周波数f=bMAX1(定数)、振幅A=bMAX2(定数)となる。駆動信号の周波数f及び振幅Aの関数の傾きを決定する。その結果、入力周波数閾値fTHが決定される。
多くの場合、入力周波数閾値fTHは、50Hz±20Hz、特に、50Hz±10Hzであった。
In the following description, aN , bN , aM , and bM are coefficients, and N and M are natural numbers (1, 2, 3, 4, etc.). In addition, the range of the input frequency f in described in the following description ( fN ≦f in ≦f N+1 , fM ≦f in ≦f M+1 ) can be made to match (f N =f M , f N+1 =f M+1 ). In the following description, the input frequency threshold f TH is an input frequency f in that satisfies the condition of providing an upper limit frequency f limit (e.g., 150 Hz) and an upper limit amplitude A limit (e.g., 1.5 mA) on the output side. Under the condition of f TH ≦f in , the frequency f and the amplitude A are saturated, and the frequency f=b MAX1 (constant) and the amplitude A=b MAX2 (constant). The slope of the function of the frequency f and amplitude A of the drive signal is determined, thereby determining the input frequency threshold fTH .
In many cases, the input frequency threshold fTH was 50 Hz ± 20 Hz, particularly 50 Hz ± 10 Hz.

 図16は、第1の演算制御方法を説明するグラフである。図16(A)は、入力周波数fin(Hz)と駆動信号Sの周波数f(Hz)との関係を示すグラフである。図16(B)は、入力周波数fin(Hz)と駆動信号Sの振幅Aとの関係を示すグラフである。a、b、a、bを0よりも大きな係数とし、所定の入力周波数範囲(0≦fin≦fTH)内において、周波数(f)及び振幅(A)は、以下の関係を満たしている。
・f=a×fin+b
・A=a×fin+b
Fig. 16 is a graph explaining the first calculation control method. Fig. 16(A) is a graph showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal S D. Fig. 16(B) is a graph showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal S D. With a1 , b1 , a2 , and b2 being coefficients greater than 0, within a predetermined input frequency range (0≦f in ≦f TH ), the frequency (f) and amplitude (A) satisfy the following relationship.
・f=a 1 ×f in +b 1
・A=a 2 ×f in +b 2

 第1の演算制御方法は、上述のように、入力周波数finに比例した関係を有する周波数f及び振幅Aを演算し、これらのパラメータを有する駆動信号(駆動制御信号)を生成して、これを脳深部刺激素子に供給している。この方法は、演算が簡単であり、高速の処理が可能となり、したがって、有効な治療を行うことができる。 As described above, the first calculation control method calculates the frequency f and amplitude A that are proportional to the input frequency f in , generates a drive signal (drive control signal) having these parameters, and supplies this to the deep brain stimulation element. This method is simple in calculation and enables high-speed processing, and therefore can provide effective treatment.

 図17は、第2の演算制御方法を説明するグラフである。図17(A)は、入力周波数fin(Hz)と駆動信号Sの周波数f(Hz)との関係を示すグラフである。図17(B)は、入力周波数fin(Hz)と駆動信号Sの振幅Aとの関係を示すグラフである。 17A and 17B are graphs for explaining the second calculation control method. Fig. 17A is a graph showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal S D. Fig. 17B is a graph showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal S D.

 複数の入力周波数区間を定義した場合、個々の入力周波数区間は、f≦fin≦fN+1である。駆動信号(駆動制御信号)の周波数fは、周波数の区間がf≦fin≦fN+1において(f<fN+1)、以下の式で与えられる。周波数の区間は、0Hzではない値であり(0<fN+1-f)、(fN+1-f)は、例えば、5Hz以上に設定される。
・f=a×fin+b
・a>aN+1
・b<bN+1
 なお、隣接する入力周波数区間のグラフは連続し、a×fN+1+bN = aN+1×fN+1+bN+1を満たしている。
When multiple input frequency intervals are defined, each input frequency interval is fN fin ≦fN +1 . The frequency f of the drive signal (drive control signal) is given by the following formula in the frequency interval fNfin ≦fN +1 ( fN <fN +1 ). The frequency interval is a value that is not 0 Hz (0< fN+1 - fN ), and ( fN+1- fN ) is set to, for example, 5 Hz or more.
・f=a N ×f in +b N
aN > aN+1
bN < bN+1
The graphs of adjacent input frequency intervals are continuous and satisfy aNfN +1 + bN =aN + 1fN +1 +bN +1 .

 複数の入力周波数区間を定義した場合、個々の入力周波数区間は、fM≦fin≦fM+1である。駆動信号(駆動制御信号)の振幅Aは、周波数の区間がf≦fin≦fM+1において(f<fM+1)、以下の式で与えられる。周波数の区間は、0Hzではない値であり(0<fM+1-f)、(fM+1-f)は、例えば、5Hz以上に設定される。
・A=a×fin+b
・a>aM+1
・b<bM+1
 なお、隣接する入力周波数区間のグラフは連続し、aM×fM+1+b= aM+1×fM+1+bM+1を満たしている。
When multiple input frequency intervals are defined, each input frequency interval is fMfinfM +1 . The amplitude A of the drive signal (drive control signal) is given by the following formula in the frequency interval fM≦ finfM+1 ( fM < fM+1 ). The frequency interval is a value that is not 0 Hz (0< fM+1 - fM ), and ( fM+1 - fM ) is set to, for example, 5 Hz or more.
・A=a M ×f in +b M
aM > aM+1
bM < bM + 1
The graphs of adjacent input frequency intervals are continuous and satisfy aMfM +1 + bM =aM +1fM +1 + bM+1 .

 a、b、a、bは0よりも大きな係数である。これらの周波数f及び振幅Aのグラフは、一次関数のグラフを結合してなる折れ線グラフである。パーキンソン病の症状が観察される初期状態(入力周波数finが小さい範囲)において、傾きが大きく、症状の悪化を迅速に抑制する。入力周波数finが大きい期間においては、刺激し過ぎないように、傾きを小さくし、刺激の増加を抑制している。その一方で、このグラフは、一次関数の結合により得られるので、演算が簡単であり、高速の処理が可能となり、したがって、治療の有効性が増加する。 aN , bN , aM , and bM are coefficients greater than 0. These graphs of frequency f and amplitude A are line graphs formed by combining graphs of linear functions. In the initial state (range where input frequency f in is small) where symptoms of Parkinson's disease are observed, the slope is large, and the deterioration of symptoms is quickly suppressed. In the period where input frequency f in is large, the slope is made small to prevent overstimulation, and the increase in stimulation is suppressed. On the other hand, since this graph is obtained by combining linear functions, the calculation is simple, high-speed processing is possible, and the effectiveness of treatment is therefore increased.

 図18は、第3の演算制御方法を説明するグラフである。図18(A)は、入力周波数fin(Hz)と駆動信号Sの周波数f(Hz)との関係を示すグラフである。図18(B)は、入力周波数fin(Hz)と駆動信号Sの振幅Aとの関係を示すグラフである。 18A and 18B are graphs for explaining the third calculation control method. Fig. 18A is a graph showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal S D. Fig. 18B is a graph showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal S D.

 複数の入力周波数区間を定義した場合、個々の入力周波数区間は、f≦fin≦fN+1である。駆動制御信号(駆動信号)の周波数fは、周波数の区間がf≦fin≦fN+1において(f<fN+1)、以下の式で与えられる。周波数の区間は、0Hzではない値であり(0<fN+1-f)、(fN+1-f)は、例えば、5Hz以上に設定される。
・f=b
・b<bN+1
When multiple input frequency intervals are defined, each input frequency interval is fN f in ≦f N+1 . The frequency f of the drive control signal (drive signal) is given by the following formula where the frequency interval is fN ≦f in ≦f N+1 (f N <f N+1 ). The frequency interval is a value that is not 0 Hz (0<f N+1 -f N ), and (f N+1 -f N ) is set to, for example, 5 Hz or more.
f = bN
bN < bN+1

 複数の入力周波数区間を定義した場合、個々の入力周波数区間は、fM≦fin≦fM+1である。駆動制御信号(駆動信号)の振幅Aは、周波数の区間がf≦fin≦fM+1において(f<fM+1)、以下の式で与えられる。周波数の区間は、0Hzではない値であり(0<fM+1-f)、(fM+1-f)は、例えば、5Hz以上に設定される。
・A=b
・b<bM+1
When multiple input frequency intervals are defined, each input frequency interval is fM ≦f in ≦fM +1 . The amplitude A of the drive control signal (drive signal) is given by the following formula in the frequency interval fM ≦f infM+1 ( fM < fM+1 ). The frequency interval is a value that is not 0 Hz (0< fM+1 -fM ), and ( fM+1 -fM ) is set to, for example, 5 Hz or more.
・A= bM
bM < bM + 1

 b、bは0よりも大きな係数である。これらの周波数f及び振幅Aのグラフは、階段状のグラフとなる。この制御の場合、段階的に変化する定数で制御するので、演算が簡単であり、高速の処理が可能となり、したがって、治療の有効性が増加する。 bN and bM are coefficients greater than 0. A graph of these frequencies f and amplitudes A is a stepped graph. In this case, since control is performed using constants that change stepwise, calculation is simple and high-speed processing is possible, thereby increasing the effectiveness of treatment.

 図19は、第4の演算制御方法を説明するグラフである。図19(A)は、入力周波数fin(Hz)と駆動信号Sの周波数f(Hz)との関係を示すグラフである。図19(B)は、入力周波数fin(Hz)と駆動信号Sの振幅Aとの関係を示すグラフである。 19A and 19B are graphs for explaining the fourth calculation control method. Fig. 19A is a graph showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal S D. Fig. 19B is a graph showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal S D.

 このグラフにおける駆動制御信号(駆動信号)の周波数f及び振幅Aは、上述の折れ線タイプのグラフ(図17)に示した例において、入力周波数の区間(f≦fin≦fN+1)及び(f≦fin≦fM+1)を極限まで小さくした条件を満たしている。すなわち、(fN+1-f)を0に近づけ、(fM+1-f)を0に近づけた区間を有する。この場合、周波数f及び振幅Aのグラフは、滑らかな変化をするグラフとなる。換言すれば、出力周波数f及び振幅Aは、入力周波数finの関数であり、この関数の二階微分が負であり、且つ、この関数の接線の傾き(一階微分)が0以上である。 The frequency f and amplitude A of the drive control signal (drive signal) in this graph satisfy the condition that the input frequency intervals ( fN ≦f in ≦f N+1 ) and ( fM ≦f in ≦f M+1 ) are minimized to the limit in the example shown in the broken line type graph (FIG. 17) described above. That is, there are intervals where (f N+1 -f N ) approaches 0 and (f M+1 -f M ) approaches 0. In this case, the graph of frequency f and amplitude A is a graph that changes smoothly. In other words, the output frequency f and amplitude A are functions of the input frequency f in , the second derivative of this function is negative, and the slope of the tangent to this function (first derivative) is 0 or more.

 すなわち、周波数fは、0≦fin≦fTHの条件において、入力周波数finの増加に対して、傾きが減少する、入力周波数finの関数であり、fTHは周波数fの上限値を与える入力周波数finである。振幅Aは、0≦fin≦fTHの条件において、入力周波数finの増加に対して、傾きが減少する、入力周波数finの関数である。 That is, the frequency f is a function of the input frequency f in which the slope decreases as the input frequency f in increases under the condition of 0≦f in ≦f TH , and f TH is the input frequency f in that gives the upper limit of the frequency f . The amplitude A is a function of the input frequency f in which the slope decreases as the input frequency f in increases under the condition of 0≦f in f TH .

 これらの周波数f及び振幅Aのグラフは、パーキンソン病の症状が観察される初期状態(入力周波数finが小さい範囲)において、傾きが大きく、症状の悪化を迅速に抑制する。入力周波数finが大きい範囲においては、刺激し過ぎないように、傾きを小さくし、刺激の増加を抑制している。したがって、治療の有効性が増加する。なお、非線形関数としては、対数関数を採用することもできる。 These graphs of frequency f and amplitude A have a steep slope in the initial state where Parkinson's disease symptoms are observed (in the range where the input frequency f in is small), and the deterioration of symptoms is quickly suppressed. In the range where the input frequency f in is large, the slope is made small to prevent overstimulation, and the increase in stimulation is suppressed. Therefore, the effectiveness of treatment is increased. Note that a logarithmic function can also be adopted as the nonlinear function.

 図20は、第5の演算制御方法を説明するグラフである。図20(A)は、入力周波数fin(Hz)と駆動信号Sの周波数f(Hz)との関係を示すグラフである。図20(B)は、入力周波数fin(Hz)と駆動信号Sの振幅Aとの関係を示すグラフである。これらのグラフは、fin≦fTHの場合、以下の式で与えられる関係において、入力周波数の区間(f≦fin≦fN+1)及び(f≦fin≦fM+1)を極限まで小さくした条件を満たしている。なお、a、aは0よりも大きな係数である。 Fig. 20 is a graph for explaining the fifth calculation control method. Fig. 20(A) is a graph showing the relationship between the input frequency f in (Hz) and the frequency f (Hz) of the drive signal S D. Fig. 20(B) is a graph showing the relationship between the input frequency f in (Hz) and the amplitude A of the drive signal S D. In the case of f in ≦f TH , these graphs satisfy the condition that the input frequency ranges (f N ≦f in ≦f N+1 ) and (f M ≦f in ≦f M+1 ) are minimized in the relationship given by the following formula. Note that a N and a M are coefficients greater than 0.

 駆動制御信号(駆動信号)の周波数fは、周波数の区間がf≦fin≦fN+1において(f<fN+1)、以下の式で与えられる。
・f=a×fin+b
・a<aN+1
・b>bN+1
The frequency f of the drive control signal (drive signal) is given by the following formula in the frequency range fN fin ≦fN +1 ( fN <fN +1 ).
・f=a N ×f in +b N
aN < aN+1
bN > bN+1

 駆動制御信号(駆動信号)の振幅Aは、周波数の区間がf≦fin≦fM+1において(f<fM+1)、以下の式で与えられる。
・A=a×fin+b
・a<aM+1
・b>bM+1
The amplitude A of the drive control signal (drive signal) is given by the following formula in the frequency range fM ? fin ? fM+1 ( fM < fM+1 ).
・A=a M ×f in +b M
aM < aM +1
bM > bM+1

 なお、fTH≦finの場合、上述のように、周波数f及び振幅Aは飽和する。 When f TH ≦f in , the frequency f and the amplitude A are saturated as described above.

 周波数fは、0≦fin≦fTHの条件において、入力周波数finの増加に対して、傾きが増加する、入力周波数finの関数であり、fTHは周波数fの上限値を与える入力周波数finである。振幅Aは、0≦fin≦fTHの条件において、入力周波数finの増加に対して、傾きが増加する、入力周波数finの関数である。これらの周波数f及び振幅Aのグラフは、パーキンソン病の症状が観察される初期状態(入力周波数finが小さい範囲)において、傾きが小さく、あまり刺激しない。入力周波数finが大きい範囲においては、傾きが大きくなり、重症化した場合の刺激が強力になる。一方、入力周波数finが閾値fTHを超えた場合、出力周波数fと振幅Aは、一定値となり、刺激し過ぎないように抑制している。したがって、治療の有効性が増加する。また、初期段階において出力周波数f及び振幅Aを小さく設定しているので、電力消費量を抑制することができる。なお、非線形関数としては、指数関数を採用することもできる。 The frequency f is a function of the input frequency f in which the slope increases with increasing input frequency f in the condition of 0≦f in ≦f TH , and f TH is the input frequency f in that gives the upper limit value of the frequency f. The amplitude A is a function of the input frequency f in which the slope increases with increasing input frequency f in the condition of 0≦f in ≦f TH . These graphs of the frequency f and the amplitude A have a small slope and do not stimulate much in the initial state (in the range where the input frequency f in is small) where symptoms of Parkinson's disease are observed. In the range where the input frequency f in is large, the slope becomes large and the stimulation becomes strong when the condition becomes severe. On the other hand, when the input frequency f in exceeds the threshold value f TH , the output frequency f and the amplitude A become constant values and are suppressed so as not to stimulate too much. Therefore, the effectiveness of the treatment is increased. In addition, since the output frequency f and the amplitude A are set small in the initial stage, the power consumption can be suppressed. In addition, an exponential function can be adopted as the nonlinear function.

 上述の駆動信号生成装置10は、前述の頻度に対応した入力周波数finに応じた周波数f及び振幅Aを有する駆動信号Sを生成する信号生成部を備えている。この信号生成部は、アナログ方式おける制御装置5及び駆動回路7を含む部分である。また、この信号生成部は、デジタル方式における信号生成部5C及び駆動回路7を含む部分である。なお、上述の演算方法において、各演算式から求められる演算結果のデータを記憶装置内に格納しておき、入力周波数finに対応するデータを、記憶装置内から読み出す構成としてもよい。 The above-mentioned drive signal generating device 10 includes a signal generating unit that generates a drive signal S D having a frequency f and an amplitude A according to an input frequency f in corresponding to the above-mentioned frequency. This signal generating unit is a part that includes the control device 5 and the drive circuit 7 in an analog system. Also, this signal generating unit is a part that includes the signal generating unit 5C and the drive circuit 7 in a digital system. Note that in the above-mentioned calculation method, the data of the calculation results obtained from each calculation formula may be stored in a storage device, and the data corresponding to the input frequency f in may be read out from the storage device.

 以上、説明したように、上述の脳深部刺激装置100は、脳波検出器1と、脳波検出器1の出力信号から、所定の周波数帯域の信号成分を抽出し、抽出された信号成分のうち、強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度を求め、当該頻度に応じた周波数f及び振幅Aを有する駆動信号Sを生成する駆動信号生成装置10と、駆動信号生成装置10から出力された駆動信号Sが与えられる脳深部刺激素子8とを備える。 As explained above, the above-mentioned deep brain stimulation device 100 comprises an EEG detector 1, a drive signal generating device 10 which extracts signal components of a predetermined frequency band from the output signal of the EEG detector 1, determines the frequency of waveforms among the extracted signal components whose intensity is equal to or greater than a reference value and whose duration is equal to or greater than a reference time, and generates a drive signal SD having a frequency f and amplitude A corresponding to the frequency, and a deep brain stimulation element 8 to which the drive signal SD output from the drive signal generating device 10 is applied.

 駆動信号生成装置10は、脳波検出器1の出力信号から、所定の周波数帯域の信号成分を抽出し、抽出された信号成分のうち、強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度を求め、当該頻度に応じた周波数f又は振幅Aを有する駆動信号Sを生成することもできる。所定の周波数帯域の信号成分とは、運動に相関する周波数帯域であり、好適には上記の周波数帯域である。駆動信号生成装置10は、好適には、この頻度が高いほど、駆動信号の周波数が高くなり、この頻度が高いほど、駆動信号の振幅が大きくなるように、駆動信号を生成することができる。駆動信号の周波数及び振幅を増加させると、脳深部刺激素子8に供給される電力が増加し、刺激量が増加する。これらのパラメータの一方のみを増加させた場合においても、治療効果が期待できるが、双方のパラメータを増加させた方が効果的である。 The drive signal generating device 10 can also extract signal components of a predetermined frequency band from the output signal of the electroencephalogram detector 1, determine the frequency of waveforms whose intensity is equal to or greater than a reference value and whose duration is equal to or greater than a reference time among the extracted signal components, and generate a drive signal S D having a frequency f or amplitude A according to the frequency. The signal components of the predetermined frequency band are frequency bands that correlate with movement, and are preferably the above-mentioned frequency bands. The drive signal generating device 10 can preferably generate a drive signal such that the higher the frequency, the higher the frequency of the drive signal, and the higher the frequency, the larger the amplitude of the drive signal. Increasing the frequency and amplitude of the drive signal increases the power supplied to the deep brain stimulation element 8 and increases the amount of stimulation. Although a therapeutic effect can be expected even when only one of these parameters is increased, it is more effective to increase both parameters.

 なお、上述の脳深部刺激装置100は、様々な対象に適用することができる。適用の対象は、霊長類(例えば、ヒト、チンパンジーおよびサル)を含むが、運動野からの周波数抽出を行い処理する原理は、その他の哺乳類(例えば、犬、猫、マウス、モルモット、ラット、鳥、馬、豚、牛等)にも、適用することできる。また、パーキンソン病用の治療薬を併用することも可能である。 The above-mentioned deep brain stimulation device 100 can be applied to a variety of subjects. Applicable subjects include primates (e.g., humans, chimpanzees, and monkeys), but the principle of extracting and processing frequencies from the motor cortex can also be applied to other mammals (e.g., dogs, cats, mice, guinea pigs, rats, birds, horses, pigs, cows, etc.). It is also possible to use it in conjunction with a therapeutic drug for Parkinson's disease.

 脳深部刺激装置100は、刺激により、脳内ループ回路内の機能障害を回復させることができる。したがって、この脳深部刺激装置を用いれば、同様の機能障害があるパーキンソン病以外の運動異常症に対しても、治療効果が得られるものと考えらえる。 The deep brain stimulation device 100 can restore functional disorders in the loop circuits in the brain through stimulation. Therefore, it is believed that the use of this deep brain stimulation device can be effective in treating movement disorders other than Parkinson's disease that have similar functional disorders.

 また、上述の脳深部刺激装置100においては、フィルタにより、中心波長が、80Hz~200Hzの信号成分を抽出した後で、その信号成分の強度及び継続時間が基準を超える状態の波形(図2参照)の頻度を検出している。頻度が高い場合は、駆動信号の周波数及び振幅を増加させ、刺激のパワーを大きくしている。フィルタを通過させる下限周波数は、少なくとも30Hzよりも高いが、上述のように、この下限周波数は、40Hz、60Hz、80Hz、100Hz、又は、120Hzとすることもできる。中心周波数は、基本的には観測の目的となる周波数であるが、下限周波数よりも当然高くなる。したがって、例えば、γ2帯域の脳波を検出するべく、下限周波数を100Hz以上とし、中心周波数を100Hz以上200Hz以下に設定することもできる。このような周波数帯域は、従来の非特許文献1とは明らかに異なる周波数帯域となるが、上述のように、脳深部刺激装置100の抽出周波数は、その他の周波数帯域に設定することも可能である。非特許文献1は、パーキンソン病の治療の副作用であるジスキネジアにおいて、γ1帯域の活動が増えている性質を利用して、γ1帯域活動を抑制することにより、その副作用を抑える装置を開示している。一方、実施形態に係る脳深部刺激装置においては、運動を開始しようとする際、γ2帯域活動が増えている性質を利用して、むしろγ2帯域活動を増強することにより、運動の補助を行っている。これらの技術は、一見すると類似しているが、バックグラウンドにある原理は全く異なり、記録している周波数帯域も異なる。 In addition, in the above-mentioned deep brain stimulation device 100, after extracting signal components with a central wavelength of 80 Hz to 200 Hz by a filter, the frequency of the waveform (see FIG. 2) in which the intensity and duration of the signal components exceed the standard is detected. If the frequency is high, the frequency and amplitude of the drive signal are increased to increase the power of the stimulation. The lower limit frequency that passes through the filter is at least higher than 30 Hz, but as described above, this lower limit frequency can also be 40 Hz, 60 Hz, 80 Hz, 100 Hz, or 120 Hz. The central frequency is basically the frequency that is the object of observation, but it will naturally be higher than the lower limit frequency. Therefore, for example, in order to detect brain waves in the gamma 2 band, the lower limit frequency can be set to 100 Hz or more, and the central frequency can be set to 100 Hz or more and 200 Hz or less. Although such a frequency band is clearly different from that of the conventional non-patent document 1, as described above, the extraction frequency of the deep brain stimulation device 100 can also be set to other frequency bands. Non-Patent Document 1 discloses a device that utilizes the increased activity of the gamma 1 band in dyskinesia, a side effect of Parkinson's disease treatment, to suppress the side effect by suppressing gamma 1 band activity. On the other hand, a deep brain stimulation device according to an embodiment utilizes the increased activity of the gamma 2 band when starting to move, and rather enhances gamma 2 band activity to assist the movement. Although these technologies appear similar at first glance, the underlying principles are completely different, and the frequency bands that are recorded are also different.

 駆動信号生成装置は、80Hz~200Hzから選択される中心周波数を含み、且つ、少なくとも40Hzよりも高い下限周波数を有する周波数帯域の信号成分を抽出し、抽出された信号成分のうち、強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度を求め、当該頻度に応じた周波数及び振幅を有する駆動信号を生成することができる。 The drive signal generating device extracts signal components from a frequency band that includes a center frequency selected from 80 Hz to 200 Hz and has a lower limit frequency at least higher than 40 Hz, determines the frequency of waveforms among the extracted signal components that have an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time, and generates a drive signal having a frequency and amplitude according to the frequency.

 駆動信号生成装置は、80Hz~200Hzから選択される中心周波数を含み、且つ、少なくとも60Hzよりも高い下限周波数を有する周波数帯域の信号成分を抽出し、抽出された信号成分のうち、強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度を求め、当該頻度に応じた周波数及び振幅を有する駆動信号を生成することができる。 The drive signal generating device extracts signal components from a frequency band that includes a center frequency selected from 80 Hz to 200 Hz and has a lower limit frequency at least higher than 60 Hz, determines the frequency of waveforms among the extracted signal components that have an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time, and generates a drive signal having a frequency and amplitude according to the frequency.

 駆動信号生成装置は、80Hz~200Hzから選択される中心周波数を含み、且つ、少なくとも80Hzよりも高い下限周波数を有する周波数帯域の信号成分を抽出し、抽出された信号成分のうち、強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度を求め、当該頻度に応じた周波数及び振幅を有する駆動信号を生成することができる。 The drive signal generating device extracts signal components from a frequency band that includes a center frequency selected from 80 Hz to 200 Hz and has a lower limit frequency at least higher than 80 Hz, determines the frequency of waveforms among the extracted signal components that have an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time, and generates a drive signal having a frequency and amplitude according to the frequency.

 駆動信号生成装置は、100Hz~200Hzから選択される中心周波数を含み、且つ、少なくとも100Hzよりも高い下限周波数を有する周波数帯域の信号成分を抽出し、抽出された信号成分のうち、強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度を求め、当該頻度に応じた周波数及び振幅を有する駆動信号を生成することができる。 The drive signal generating device extracts signal components in a frequency band that includes a center frequency selected from 100 Hz to 200 Hz and has a lower limit frequency at least higher than 100 Hz, determines the frequency of waveforms among the extracted signal components that have an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time, and generates a drive signal having a frequency and amplitude according to the frequency.

 上述のように、脳深部刺激装置は、脳波検出器と、脳波検出器からの出力信号が入力されるアナログ又はデジタルのフィルタと、フィルタが抽出した信号成分の強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度に応じた周波数を有する駆動信号を出力する駆動回路と、駆動回路に接続された脳深部刺激素子とを備える。 As described above, the deep brain stimulation device includes an EEG detector, an analog or digital filter to which the output signal from the EEG detector is input, a drive circuit that outputs a drive signal having a frequency corresponding to the frequency of waveforms in which the intensity of the signal component extracted by the filter is equal to or greater than a reference value and the duration is equal to or greater than a reference time, and a deep brain stimulation element connected to the drive circuit.

 γ2帯域の検出機能を明確にするため、このフィルタの抽出する周波数の下限周波数は、80Hz以上であるとしてよい。 To clarify the detection function of the gamma 2 band, the lower limit frequency of the frequency extracted by this filter may be set to 80 Hz or higher.

  γ2帯域の検出機能を明確にするため、このフィルタの抽出する周波数の下限周波数は、90Hz以上であるとしてよい。 To clarify the detection function of the γ2 band, the lower limit frequency of the frequency extracted by this filter may be set to 90 Hz or higher.

 γ2帯域の検出機能を明確にするため、このフィルタの抽出する周波数の下限周波数は、100Hz以上であるとしてよい。 To clarify the detection function of the gamma 2 band, the lower limit frequency of the frequency extracted by this filter may be set to 100 Hz or higher.

 以上、種々の例示的実施形態について説明してきたが、上述した例示的実施形態に限定されることなく、様々な省略、置換、及び変更がなされてもよい。また、異なる実施形態における要素を組み合わせて他の実施形態を形成することが可能である。また、以上の説明から、本開示の種々の実施形態は、説明の目的本明細書において説明されており、本開示の範囲及び主旨から逸脱することなく種々の変更をなし得ることが、理解されるであろう。したがって、本明細書に開示した種々の実施形態は限定することを意図しておらず、真の範囲と主旨は、添付の特許請求の範囲によって示される。 Although various exemplary embodiments have been described above, various omissions, substitutions, and modifications may be made without being limited to the above-described exemplary embodiments. Elements in different embodiments may be combined to form other embodiments. It will be understood from the above description that the various embodiments of the present disclosure have been described herein for illustrative purposes, and that various modifications may be made without departing from the scope and spirit of the present disclosure. Accordingly, the various embodiments disclosed herein are not intended to be limiting, with the true scope and spirit being indicated by the appended claims.

1…脳波検出器、2…フィルタ、3…ウインドウ・ディスクリミネータ、5…制御装置、5A…デジタルフィルタ、5B…計測部、5C…信号生成部、7…駆動回路(アナログ・アイソレータ)、8…脳深部刺激素子、10…駆動信号生成装置、100…脳深部刺激装置、BOX…密閉容器、S…駆動制御信号、S…駆動信号。 1...EEG detector, 2...filter, 3...window discriminator, 5...control device, 5A...digital filter, 5B...measuring unit, 5C...signal generating unit, 7...driving circuit (analog isolator), 8...deep brain stimulation element, 10...driving signal generating device, 100...deep brain stimulation device, BOX...sealed container, S C ...driving control signal, S D ...driving signal.

Claims (25)

 脳波検出器と、
 前記脳波検出器の出力信号が入力され、80Hz~200Hzから選択される中心周波数を含み、且つ、少なくとも30Hzよりも高い下限周波数を有する周波数帯域の信号成分を抽出し、抽出された信号成分のうち、強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度を求め、当該頻度に応じた周波数及び振幅を有する駆動信号を生成する駆動信号生成装置と、
 前記駆動信号生成装置から出力された前記駆動信号が与えられる脳深部刺激素子と、
を備える脳深部刺激装置。
A brainwave detector;
a drive signal generating device which receives an output signal from the electroencephalogram detector, extracts signal components in a frequency band having a center frequency selected from 80 Hz to 200 Hz and a lower limit frequency at least higher than 30 Hz, determines a frequency of waveforms having an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time among the extracted signal components, and generates a drive signal having a frequency and amplitude according to the frequency;
a deep brain stimulation element to which the drive signal output from the drive signal generating device is applied;
A deep brain stimulation device comprising:
 前記駆動信号生成装置は、
 前記頻度が高いほど、前記駆動信号の周波数が高くなり、
 前記頻度が高いほど、前記駆動信号の振幅が大きくなる、
ように前記駆動信号を生成する、
請求項1に記載の脳深部刺激装置。
The drive signal generating device includes:
The higher the frequency, the higher the frequency of the drive signal;
The higher the frequency, the larger the amplitude of the drive signal.
generating the drive signal such that
The deep brain stimulation device according to claim 1 .
 前記駆動信号生成装置は、
 前記脳波検出器の出力信号が入力され、前記周波数帯域の信号成分を抽出するアナログフィルタと、
 前記アナログフィルタの出力信号が入力され、強度が基準値以上であり且つ継続時間が基準時間以上の1つの波形が検出される毎に、1つのパルス電圧を生成して、パルス信号を出力するウインドウ・ディスクリミネータと、
 前記ウインドウ・ディスクリミネータから出力されるパルス信号が入力され、当該パルス信号の頻度に応じた周波数及び振幅を有する駆動制御信号を生成する制御装置と、
 前記制御装置から出力された前記駆動制御信号に応じた周波数及び振幅を有する前記駆動信号を生成する駆動回路と、
を備える、
請求項1に記載の脳深部刺激装置。
The drive signal generating device includes:
an analog filter that receives the output signal of the electroencephalogram detector and extracts signal components in the frequency band;
a window discriminator which receives the output signal of the analog filter, generates a pulse voltage every time a waveform having an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time is detected, and outputs a pulse signal;
a control device that receives the pulse signal output from the window discriminator and generates a drive control signal having a frequency and amplitude corresponding to the frequency of the pulse signal;
a drive circuit that generates the drive signal having a frequency and an amplitude corresponding to the drive control signal output from the control device;
Equipped with
The deep brain stimulation device according to claim 1 .
 前記駆動信号生成装置は、
 前記脳波検出器からの出力信号がデジタル信号として入力される制御装置と、
 前記制御装置から出力された駆動制御信号に応じた周波数及び振幅を有する前記駆動信号を生成する駆動回路と、
を備え、
 前記制御装置は、
 前記デジタル信号から前記周波数帯域の信号成分を抽出するデジタルフィルタと、
 前記抽出された信号成分から前記波形の頻度を計測する計測部と、
 前記計測部で計測された前記頻度に応じた周波数及び振幅を有する前記駆動制御信号を生成する信号生成部と、
を備える、
請求項1に記載の脳深部刺激装置。
The drive signal generating device includes:
a control device to which an output signal from the electroencephalogram detector is input as a digital signal;
a drive circuit that generates the drive signal having a frequency and amplitude corresponding to a drive control signal output from the control device;
Equipped with
The control device includes:
a digital filter that extracts a signal component in the frequency band from the digital signal;
a measurement unit that measures a frequency of the waveform from the extracted signal components;
a signal generating unit that generates the drive control signal having a frequency and an amplitude according to the frequency measured by the measuring unit;
Equipped with
The deep brain stimulation device according to claim 1 .
 前記駆動回路は、
 前記駆動制御信号が入力される入力部と、
 前記駆動制御信号に基づき入力から絶縁された前記駆動信号を生成する出力部と、
を備えるアナログ・アイソレータである、
請求項3又は請求項4に記載の脳深部刺激装置。
The drive circuit includes:
an input unit to which the drive control signal is input;
an output section that generates the drive signal insulated from the input based on the drive control signal;
An analog isolator comprising:
The deep brain stimulation device according to claim 3 or 4.
 前記駆動信号生成装置は、密閉容器内に収容され、
 前記駆動信号生成装置の前記駆動信号の出力端子には、前記密閉容器の外部に延びる信号線が接続され、
 前記信号線は、前記脳深部刺激素子に接続されている、
請求項1~請求項4のいずれか一項に記載の脳深部刺激装置。
The drive signal generating device is housed in a sealed container,
a signal line extending to the outside of the sealed container is connected to an output terminal of the drive signal of the drive signal generating device;
The signal line is connected to the deep brain stimulation element.
A deep brain stimulation device according to any one of claims 1 to 4.
 前記脳波検出器の前記出力信号の数は、複数であり、
 前記駆動信号生成装置は、
 複数の前記出力信号のそれぞれに対して、前記頻度を求め、いずれか1つの頻度が閾値を超えた場合、当該頻度に対応する入力周波数に応じた周波数及び振幅を有する前記駆動信号を生成する、
請求項1~請求項4のいずれか一項に記載の脳深部刺激装置。
the number of the output signals of the electroencephalogram detector is more than one;
The drive signal generating device includes:
determining the frequency for each of the plurality of output signals, and when any one of the frequencies exceeds a threshold, generating the drive signal having a frequency and an amplitude according to an input frequency corresponding to the frequency;
A deep brain stimulation device according to any one of claims 1 to 4.
 前記脳波検出器の前記出力信号の数は、複数であり、
 前記駆動信号生成装置は、
 複数の前記出力信号のそれぞれに対して、前記頻度を求め、これらの頻度に重みづけをして加算して求められる値に対応する入力周波数に応じた周波数及び振幅を有する前記駆動信号を生成する、
請求項1~請求項4のいずれか一項に記載の脳深部刺激装置。
the number of the output signals of the electroencephalogram detector is more than one;
The drive signal generating device includes:
determining the frequency for each of the plurality of output signals, weighting and adding the frequencies to generate the drive signal having a frequency and amplitude according to an input frequency corresponding to a value obtained by weighting and adding the frequencies;
A deep brain stimulation device according to any one of claims 1 to 4.
 前記脳波検出器は、
 脳波検出用の検出電極と、
 前記検出電極の周囲に配置された複数の参照電極と、
 複数の前記参照電極に、それぞれ一方端が接続された複数の抵抗器と、
 複数の前記抵抗器の他方端が接続された節点の基準電位が入力される基準電位入力端子及び前記検出電極からの検出電位が入力される検出電位入力端子を備えたアンプと、
を備える、
請求項1~請求項4のいずれか一項に記載の脳深部刺激装置。
The electroencephalogram detector includes:
A detection electrode for detecting brain waves;
A plurality of reference electrodes arranged around the detection electrode;
a plurality of resistors each having one end connected to the plurality of reference electrodes;
an amplifier including a reference potential input terminal to which a reference potential of a node to which the other ends of the plurality of resistors are connected is input, and a detection potential input terminal to which a detection potential from the detection electrode is input;
Equipped with
A deep brain stimulation device according to any one of claims 1 to 4.
 前記駆動信号生成装置は、前記頻度に対応した入力周波数finに応じた周波数f及び振幅Aを有する前記駆動信号を生成する信号生成部を備える、
請求項1又は請求項2に記載の脳深部刺激装置。
The drive signal generating device includes a signal generating unit that generates the drive signal having a frequency f and an amplitude A according to an input frequency f in corresponding to the frequency.
3. A deep brain stimulation device according to claim 1 or 2.
 前記周波数f及び前記振幅Aは、
 0≦fin≦fTHの条件において、以下の関係を満たし、
 f=a×fin+b
 A=a×fin+b
 a、b、a、bは0よりも大きな係数であり、
 fTHは前記周波数fの上限値を与える入力周波数finである、
請求項10に記載の脳深部刺激装置。
The frequency f and the amplitude A are
In the condition of 0≦f in ≦f TH , the following relationship is satisfied:
f=a 1 ×f in +b 1 ,
A=a 2 ×f in +b 2 ,
a 1 , b 1 , a 2 , and b 2 are coefficients greater than 0;
f TH is an input frequency f in that gives an upper limit value of the frequency f,
The deep brain stimulation device according to claim 10.
 前記周波数fは、
 0≦fin≦fTHの条件において、複数の入力周波数区間を定義し、個々の入力周波数区間は、f≦fin≦fN+1であり、以下の関係を満たし、
 f=a×fin+b
 a>aN+1
 b<bN+1
 0<fN+1-f
 前記振幅Aは、
 0≦fin≦fTHの条件において、複数の入力周波数区間を定義し、個々の入力周波数区間は、f≦fin≦fM+1であり、以下の関係を満たし、
 A=a×fin+b
 a>aM+1
 b<bM+1
 0<fM+1-f
 a、b、a、bは0よりも大きな係数であり、N、Mは自然数であり、
 fTHは前記周波数fの上限値を与える入力周波数finである、
請求項10に記載の脳深部刺激装置。
The frequency f is
A plurality of input frequency intervals are defined under the condition of 0≦f in ≦f TH , and each input frequency interval is f N ≦f in ≦f N+1 and satisfies the following relationship:
f=a N ×f in +b N ,
aN > aN+1 ,
bN <bN+1;
0<f N+1 −f N ,
The amplitude A is
A plurality of input frequency intervals are defined under the condition of 0≦f in ≦f TH , and each input frequency interval is f M ≦f in ≦f M+1 and satisfies the following relationship:
A=a M ×f in +b M ,
aM > aM+1 ,
bM <bM+1;
0<f M+1 −f M ,
aN , bN , aM , and bM are coefficients greater than 0, and N and M are natural numbers;
f TH is an input frequency f in that gives an upper limit value of the frequency f,
The deep brain stimulation device according to claim 10.
 前記周波数fは、
 0≦fin≦fTHの条件において、複数の入力周波数区間を定義し、個々の入力周波数区間は、f≦fin≦fN+1であり、以下の関係を満たし、
 f=b
 b<bN+1
 0<fN+1-f
 前記振幅Aは、
 0≦fin≦fTHの条件において、複数の入力周波数区間を定義し、個々の入力周波数区間は、f≦fin≦fM+1であり、以下の関係を満たし、
 A=b
 b<bM+1
 0<fM+1-f
 b、bは0よりも大きな係数であり、N、Mは自然数であり、
 fTHは前記周波数fの上限値を与える入力周波数finである、
請求項10に記載の脳深部刺激装置。
The frequency f is
A plurality of input frequency intervals are defined under the condition of 0≦f in ≦f TH , and each input frequency interval is f N ≦f in ≦f N+1 and satisfies the following relationship:
f= bN ,
bN <bN+1;
0<f N+1 −f N ,
The amplitude A is
A plurality of input frequency intervals are defined under the condition of 0≦f in ≦f TH , and each input frequency interval is f M ≦f in ≦f M+1 and satisfies the following relationship:
A= bM ,
bM <bM+1;
0<f M+1 −f M ,
b N and b M are coefficients greater than 0, and N and M are natural numbers;
f TH is an input frequency f in that gives an upper limit value of the frequency f,
The deep brain stimulation device according to claim 10.
 前記周波数fは、0≦fin≦fTHの条件において、入力周波数finの増加に対して、傾きが減少する、入力周波数finの関数であり、
 fTHは前記周波数fの上限値を与える入力周波数finである、
請求項10に記載の脳深部刺激装置。
The frequency f is a function of the input frequency f in which the slope decreases with increasing input frequency f in the condition of 0≦f in ≦f TH ,
f TH is an input frequency f in that gives an upper limit value of the frequency f,
The deep brain stimulation device according to claim 10.
 前記周波数fは、0≦fin≦fTHの条件において、入力周波数finの増加に対して、傾きが増加する、入力周波数finの関数であり、
 fTHは前記周波数fの上限値を与える入力周波数finである、
請求項10に記載の脳深部刺激装置。
The frequency f is a function of the input frequency f in which the slope increases with increasing input frequency f in under the condition of 0≦f in ≦f TH ,
f TH is an input frequency f in that gives an upper limit value of the frequency f,
The deep brain stimulation device according to claim 10.
 脳波検出器と、
 前記脳波検出器の出力信号から、所定の周波数帯域の信号成分を抽出し、抽出された信号成分のうち、強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度を求め、当該頻度に応じた周波数及び振幅を有する駆動信号を生成する駆動信号生成装置と、
 前記駆動信号生成装置から出力された前記駆動信号が与えられる脳深部刺激素子と、
を備える脳深部刺激装置。
A brainwave detector;
a drive signal generating device that extracts signal components of a predetermined frequency band from the output signal of the electroencephalogram detector, determines a frequency of waveforms of which the intensity is equal to or greater than a reference value and whose duration is equal to or greater than a reference time among the extracted signal components, and generates a drive signal having a frequency and amplitude corresponding to the frequency;
a deep brain stimulation element to which the drive signal output from the drive signal generating device is applied;
A deep brain stimulation device comprising:
 脳波検出器と、
 前記脳波検出器の出力信号から、所定の周波数帯域の信号成分を抽出し、抽出された信号成分のうち、強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度を求め、当該頻度に応じた周波数又は振幅を有する駆動信号を生成する駆動信号生成装置と、
 前記駆動信号生成装置から出力された前記駆動信号が与えられる脳深部刺激素子と、
を備える脳深部刺激装置。
A brainwave detector;
a drive signal generating device that extracts signal components of a predetermined frequency band from the output signal of the electroencephalogram detector, determines a frequency of waveforms of which the intensity is equal to or greater than a reference value and whose duration is equal to or greater than a reference time among the extracted signal components, and generates a drive signal having a frequency or amplitude corresponding to the frequency;
a deep brain stimulation element to which the drive signal output from the drive signal generating device is applied;
A deep brain stimulation device comprising:
 前記駆動信号生成装置は、
 80Hz~200Hzから選択される中心周波数を含み、且つ、少なくとも40Hzよりも高い下限周波数を有する周波数帯域の信号成分を抽出し、抽出された信号成分のうち、強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度を求め、当該頻度に応じた周波数及び振幅を有する駆動信号を生成する、
請求項1に記載の脳深部刺激装置。
The drive signal generating device includes:
extracting signal components in a frequency band including a center frequency selected from 80 Hz to 200 Hz and having a lower limit frequency at least higher than 40 Hz, determining the frequency of waveforms among the extracted signal components that have an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time, and generating a drive signal having a frequency and amplitude according to the frequency;
The deep brain stimulation device according to claim 1 .
 前記駆動信号生成装置は、
 80Hz~200Hzから選択される中心周波数を含み、且つ、少なくとも60Hzよりも高い下限周波数を有する周波数帯域の信号成分を抽出し、抽出された信号成分のうち、強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度を求め、当該頻度に応じた周波数及び振幅を有する駆動信号を生成する、
請求項1に記載の脳深部刺激装置。
The drive signal generating device includes:
extracting signal components in a frequency band including a center frequency selected from 80 Hz to 200 Hz and having a lower limit frequency at least higher than 60 Hz, determining the frequency of waveforms having an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time among the extracted signal components, and generating a drive signal having a frequency and amplitude according to the frequency;
The deep brain stimulation device according to claim 1 .
 前記駆動信号生成装置は、
 80Hz~200Hzから選択される中心周波数を含み、且つ、少なくとも80Hzよりも高い下限周波数を有する周波数帯域の信号成分を抽出し、抽出された信号成分のうち、強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度を求め、当該頻度に応じた周波数及び振幅を有する駆動信号を生成する、
請求項1に記載の脳深部刺激装置。
The drive signal generating device includes:
extracting signal components in a frequency band including a center frequency selected from 80 Hz to 200 Hz and having a lower limit frequency at least higher than 80 Hz, determining the frequency of waveforms having an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time among the extracted signal components, and generating a drive signal having a frequency and amplitude according to the frequency;
The deep brain stimulation device according to claim 1 .
 前記駆動信号生成装置は、
 100Hz~200Hzから選択される中心周波数を含み、且つ、少なくとも100Hzよりも高い下限周波数を有する周波数帯域の信号成分を抽出し、抽出された信号成分のうち、強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度を求め、当該頻度に応じた周波数及び振幅を有する駆動信号を生成する、
請求項1に記載の脳深部刺激装置。
The drive signal generating device includes:
extracting signal components in a frequency band including a center frequency selected from 100 Hz to 200 Hz and having a lower limit frequency at least higher than 100 Hz, determining the frequency of waveforms having an intensity equal to or greater than a reference value and a duration equal to or greater than a reference time among the extracted signal components, and generating a drive signal having a frequency and amplitude according to the frequency;
The deep brain stimulation device according to claim 1 .
 脳波検出器と、
 前記脳波検出器からの出力信号が入力されるアナログ又はデジタルのフィルタと、
 前記フィルタが抽出した信号成分の強度が基準値以上であり且つ継続時間が基準時間以上の波形の頻度に応じた周波数を有する駆動信号を出力する駆動回路と、
 前記駆動回路に接続された脳深部刺激素子と、
を備える、
脳深部刺激装置。
A brainwave detector;
an analog or digital filter to which the output signal from the electroencephalogram detector is input;
a drive circuit that outputs a drive signal having a frequency corresponding to the frequency of waveforms in which the intensity of the signal component extracted by the filter is equal to or greater than a reference value and the duration is equal to or greater than a reference time;
a deep brain stimulation element connected to the drive circuit;
Equipped with
Deep brain stimulator.
 前記フィルタの抽出する周波数の下限周波数は、80Hz以上である、
請求項22に記載の脳深部刺激装置。
The lower limit frequency of the frequency to be extracted by the filter is 80 Hz or more.
23. The deep brain stimulation device of claim 22.
 前記フィルタの抽出する周波数の下限周波数は、90Hz以上である、
請求項22に記載の脳深部刺激装置。
The lower limit frequency of the frequency to be extracted by the filter is 90 Hz or more.
23. The deep brain stimulation device of claim 22.
 前記フィルタの抽出する周波数の下限周波数は、100Hz以上である、
請求項22に記載の脳深部刺激装置。
The lower limit frequency of the frequency to be extracted by the filter is 100 Hz or more.
23. The deep brain stimulation device of claim 22.
PCT/JP2024/013333 2023-03-30 2024-03-29 Deep brain stimulation device WO2024204823A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-056438 2023-03-30
JP2023056438 2023-03-30

Publications (1)

Publication Number Publication Date
WO2024204823A1 true WO2024204823A1 (en) 2024-10-03

Family

ID=92906074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/013333 WO2024204823A1 (en) 2023-03-30 2024-03-29 Deep brain stimulation device

Country Status (1)

Country Link
WO (1) WO2024204823A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020177882A1 (en) * 1998-08-05 2002-11-28 Dilorenzo Daniel J. Optimal method and apparatus for neural modulation for the treatment of neurological disease, particularly movement disorders
US20070066915A1 (en) * 2002-10-15 2007-03-22 Medtronic, Inc. Phase Shifting of Neurological Signals in a Medical Device System
US20070067003A1 (en) * 2005-09-14 2007-03-22 University Of Florida Research Foundation, Inc. Closed-loop micro-control system for predicting and preventing epilectic seizures
JP2010517472A (en) * 2007-01-31 2010-05-20 メドトロニック,インコーポレイテッド Chopper-stabilized instrumentation amplifier
US20120101552A1 (en) * 2010-10-21 2012-04-26 Medtronic, Inc. Stereo data representation of biomedical signals along a lead
US20120271375A1 (en) * 2011-04-20 2012-10-25 Medtronic, Inc. Electrical brain therapy parameter determination based on a bioelectrical resonance response
US20140163627A1 (en) * 2012-10-31 2014-06-12 The Regents Of The University Of California Methods and Systems for Treating Neurological Movement Disorders
US20180353759A1 (en) * 2015-06-04 2018-12-13 The Regents Of The University Of California Methods and Systems for Treating Neurological Movement Disorders
JP2020508739A (en) * 2017-02-28 2020-03-26 メドトロニック,インコーポレイテッド Apparatus and method for sensing a physiological signal during stimulation therapy
US20220143415A1 (en) * 2019-02-13 2022-05-12 Oxford University Innovation Limited Emulation of electrophysiological signals derived by stimulation of a body

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020177882A1 (en) * 1998-08-05 2002-11-28 Dilorenzo Daniel J. Optimal method and apparatus for neural modulation for the treatment of neurological disease, particularly movement disorders
US20070066915A1 (en) * 2002-10-15 2007-03-22 Medtronic, Inc. Phase Shifting of Neurological Signals in a Medical Device System
US20070067003A1 (en) * 2005-09-14 2007-03-22 University Of Florida Research Foundation, Inc. Closed-loop micro-control system for predicting and preventing epilectic seizures
JP2010517472A (en) * 2007-01-31 2010-05-20 メドトロニック,インコーポレイテッド Chopper-stabilized instrumentation amplifier
US20120101552A1 (en) * 2010-10-21 2012-04-26 Medtronic, Inc. Stereo data representation of biomedical signals along a lead
US20120271375A1 (en) * 2011-04-20 2012-10-25 Medtronic, Inc. Electrical brain therapy parameter determination based on a bioelectrical resonance response
US20140163627A1 (en) * 2012-10-31 2014-06-12 The Regents Of The University Of California Methods and Systems for Treating Neurological Movement Disorders
US20180353759A1 (en) * 2015-06-04 2018-12-13 The Regents Of The University Of California Methods and Systems for Treating Neurological Movement Disorders
JP2020508739A (en) * 2017-02-28 2020-03-26 メドトロニック,インコーポレイテッド Apparatus and method for sensing a physiological signal during stimulation therapy
US20220143415A1 (en) * 2019-02-13 2022-05-12 Oxford University Innovation Limited Emulation of electrophysiological signals derived by stimulation of a body

Similar Documents

Publication Publication Date Title
Groppa et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee
US20200289815A1 (en) Method and System For Physiological Target Localization From Macroelectrode Recordings and Monitoring Spinal Cord Function
Corneil et al. Neck muscle responses to stimulation of monkey superior colliculus. I. Topography and manipulation of stimulation parameters
Manganotti et al. Effect of high-frequency repetitive transcranial magnetic stimulation on brain excitability in severely brain-injured patients in minimally conscious or vegetative state
Nelson et al. Closed-loop seizure control with very high frequency electrical stimulation at seizure onset in the GAERS model of absence epilepsy
US7620456B2 (en) Systems and methods for reducing the likelihood of inducing collateral neural activity during neural stimulation threshold test procedures
Inghilleri et al. Corticospinal potentials after transcranial stimulation in humans.
US10098539B2 (en) Systems and methods for non-invasive brain stimulation with ultrasound
Hanajima et al. Very fast oscillations evoked by median nerve stimulation in the human thalamus and subthalamic nucleus
JP2008516696A (en) Medical device for detection, prevention and / or treatment of neurological disorders and method related to the medical device
EP3458147B1 (en) Systems for stimulation to enhance stroke recovery
Sefcik et al. The evolution of endovascular electroencephalography: historical perspective and future applications
Soldozy et al. A systematic review of endovascular stent-electrode arrays, a minimally invasive approach to brain-machine interfaces
Strohman et al. Low-intensity focused ultrasound to the human dorsal anterior cingulate attenuates acute pain perception and autonomic responses
Simon et al. Electroencephalography, electrocorticography, and cortical stimulation techniques
Cioni et al. Epidural recordings of electrical events produced in the spinal cord by segmental, ascending and descending volleys
Shaw et al. The zona incerta modulates spontaneous spike-wave discharges in the rat
Matsumoto et al. Central and Peripheral Motor Conduction Studies by Single-Pulse Magnetic Stimulation
Journee et al. Intraoperative neurophysiological assessment of disabling symptoms in DBS surgery
WO2024204823A1 (en) Deep brain stimulation device
Caliandro et al. Jitter of corticospinal neurons during repetitive transcranial magnetic stimulation. Method and possible clinical implications
Tripathi et al. Direct activation of cortical neurons in the primary somatosensory cortex of the rat in vivo using focused ultrasound
Wang et al. Intracortical electrodes
Dringenberg et al. Superior colliculus stimulation enhances neocortical serotonin release and electrocorticographic activation in the urethane-anesthetized rat
Pikov et al. Spinal hyperexcitability and bladder hyperreflexia during reversible frontal cortical inactivation induced by low-frequency electrical stimulation in the cat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24780916

Country of ref document: EP

Kind code of ref document: A1