[go: up one dir, main page]

WO2024204686A1 - Electrode recovery method and electrode for power storage device - Google Patents

Electrode recovery method and electrode for power storage device Download PDF

Info

Publication number
WO2024204686A1
WO2024204686A1 PCT/JP2024/012993 JP2024012993W WO2024204686A1 WO 2024204686 A1 WO2024204686 A1 WO 2024204686A1 JP 2024012993 W JP2024012993 W JP 2024012993W WO 2024204686 A1 WO2024204686 A1 WO 2024204686A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
storage device
recovery method
negative electrode
positive electrode
Prior art date
Application number
PCT/JP2024/012993
Other languages
French (fr)
Japanese (ja)
Inventor
敦 玉井
紗枝 石原
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2024204686A1 publication Critical patent/WO2024204686A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present invention relates to a method for restoring an electrode and an electrode for an electricity storage device.
  • the present application aims to solve the above problem by recovering the increase in resistance caused by the decrease in particle adhesion. This will ultimately contribute to improving energy efficiency.
  • the method for recovering an electrode according to aspect 1 of the present invention comprises the steps of: A method for recovering electrodes of a used electricity storage device, comprising the steps of: a first step of evaluating the condition of the electrode; a second step of compressing the electrode in a thickness direction of the electrode; may include: ⁇ 2>
  • Aspect 2 of the present invention is the electrode recovery method of aspect 1, The first step further includes the step of measuring a resistance component of the electrode.
  • Aspect 3 of the present invention is the electrode recovery method according to aspect 1 or 2, wherein the resistance component may be a composite layer resistance or an interface resistance of the electrode.
  • Aspect 4 of the present invention is a method for recovering an electrode according to any one of aspects 1 to 3, In the second step, compression may be performed while heating.
  • Aspect 5 of the present invention is the electrode recovery method according to any one of aspects 1 to 4, wherein the second step further includes a calculation step of measuring a thickness of the electrode and calculating a difference between the thickness and an estimated thickness before use, In the second step, the electrode may be compressed in the thickness direction so that a thickness of the electrode is reduced by the difference acquired in the calculation step.
  • a sixth aspect of the present invention is the electrode recovery method according to any one of the first to fifth aspects, wherein the second step further includes a coating step of coating a conductive agent on a surface of the electrode.
  • a seventh aspect of the present invention is the method for recovering an electrode according to any one of the first to sixth aspects, wherein the conductive agent is carbon fiber.
  • Aspect 8 of the present invention may be the electrode recovery method according to any one of Aspects 1 to 7, wherein the coating step is a step of coating a dispersion liquid in which the conductive agent is dispersed, and drying the coating liquid.
  • a ninth aspect of the present invention is the electrode recovery method according to any one of the first to eighth aspects, wherein ultrasonic waves may be applied to the electrode in the coating step.
  • An electrode for a power storage device according to a tenth aspect of the present invention is obtained by the electrode recovery method according to any one of the first to ninth aspects.
  • the above aspects of the present invention make it possible to recover from the increase in resistance caused by the decrease in particle adhesion, which in turn contributes to improved energy efficiency.
  • FIG. 2 is a flowchart of a method for recovering an electrode according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of an electrode.
  • FIG. 2 is a diagram for explaining an example of a dV/dQ curve for each of a positive electrode and a negative electrode in an initial state.
  • 11 is a diagram illustrating an example of a curve fitted to an actual measured dV/dQ curve of a power storage device.
  • FIG. FIG. 13 is a diagram for explaining a comparison between a dV/dQ curve in an initial state and a diagnostic dV/dQ curve.
  • 5 is a flowchart of a method for recovering an electrode according to a second embodiment of the present invention.
  • FIG. 1 is a flowchart of the electrode recovery method according to one embodiment of the present invention.
  • the electrode recovery method disclosed herein is a method for recovering electrodes of a used energy storage device, and includes a first step S1 of evaluating the state of the electrode, and a second step S2 of compressing the electrode in the thickness direction of the electrode. Each step will be described below.
  • First step S1 In the first step S1, the state of the electrodes of the used energy storage device is evaluated. In the first step S1, the state of the electrodes of the used energy storage device may be evaluated based on physical quantity data obtained when the used energy storage device is charged and discharged.
  • the physical quantity data is, for example, a voltage value and a current value during charging.
  • the used electricity storage device has electrodes including an active material, a binder, and a current collector.
  • the electricity storage device is not particularly limited as long as it can store electricity and has electrodes including an active material, a binder, and a current collector.
  • the electricity storage device is, for example, a lithium ion secondary battery.
  • FIG. 2 is a schematic diagram showing the configuration of the electrodes.
  • the electrodes targeted by the active material separation method of the present disclosure are a positive electrode 10 and a negative electrode 20. The configuration of the electrodes will be described below.
  • the positive electrode 10 which is an electrode, includes a positive electrode active material 11, a positive electrode conductive assistant 12, a positive electrode binder 13, and a positive electrode current collector 14.
  • a layer consisting of the positive electrode active material 11, the positive electrode conductive assistant 12, and the positive electrode binder 13 is a positive electrode mixture layer.
  • the positive electrode mixture layer may be formed on one side or both sides of the positive electrode current collector 14. Note that, as long as the positive electrode active material 11 is conductive, the positive electrode mixture layer does not need to include the positive electrode conductive assistant 12.
  • the positive electrode active material 11 used in the positive electrode is not particularly limited as long as it is capable of absorbing and releasing Li ions.
  • the positive electrode active material 11 include lithium nickel oxide (e.g., LiNiO 2 ), lithium cobalt oxide (e.g., LiCoO 2 ), lithium nickel cobalt oxide, lithium nickel cobalt manganese oxide, LiFePO 4 , LiMn 1-x Fe x PO 4 , LiMnPO 4 , LiCoPO 4 , and LiNiPO 4.
  • the positive electrode active material 11 preferably contains one or more elements selected from the group consisting of manganese, nickel, and cobalt.
  • the positive electrode conductive assistant 12 which is a conductive assistant used in the positive electrode 10, assists in the formation of a conductive path between the positive electrode active material 11 and the positive electrode current collector 14.
  • the positive electrode conductive assistant 12 includes carbon black such as acetylene black, carbon nanotubes, and graphite such as artificial graphite.
  • the positive electrode binder 13 which is a binder for the positive electrode active material 11, binds the positive electrode active material 11, the positive electrode conductive assistant 12, and the positive electrode current collector 14 together.
  • the positive electrode binder 13 include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyamide (PA), polyimide (PI), polyacrylic acid and its copolymers, polyamideimide (PAI), polybenzimidazole, polyethersulfone (PES), maleic anhydride-modified polypropylene, and mixtures thereof.
  • the positive electrode binder 13 preferably contains a crystalline polymer having a melting point.
  • the positive electrode binder 13 is preferably a polymer containing fluorine. Examples of the polymer containing fluorine include PVDF and PTFE.
  • the positive electrode collector 14 may be, for example, a metal foil such as aluminum foil, stainless steel foil, or nickel foil. A carbon coating layer may be formed on the positive electrode collector 14. The positive electrode collector 14 may also be processed into a mesh shape.
  • the negative electrode 20 which is an electrode, includes a negative electrode active material 21, a negative electrode conductive assistant 22, a negative electrode binder 23, and a negative electrode current collector 24.
  • a layer consisting of the negative electrode active material 21, the negative electrode conductive assistant 22, and the negative electrode binder 23 is defined as a negative electrode mixture layer.
  • the negative electrode mixture layer may be formed on one side or both sides of the negative electrode current collector 24. Note that, as long as the negative electrode active material 21 is conductive, the negative electrode mixture layer does not need to include the negative electrode conductive assistant 22.
  • the negative electrode active material 21, which is the active material of the negative electrode 20, is not particularly limited as long as it is capable of absorbing and releasing Li ions.
  • Examples of the negative electrode active material 21 include graphite (artificial graphite, natural graphite), amorphous carbon (hard carbon), mesocarbon microbeads, carbon fiber, and Si materials (silicon, Si alloys, Si oxides).
  • the negative electrode conductive assistant 22 which is a conductive assistant for the negative electrode 20, assists in the formation of a conductive path between the negative electrode active material 21 and the negative electrode current collector 24.
  • the negative electrode conductive assistant 22 includes carbon black such as acetylene black, carbon nanotubes, and graphite such as artificial graphite.
  • the negative electrode binder 23 which is a binder for the negative electrode 20, binds the negative electrode active material 21, the negative electrode conductive assistant 22, and the negative electrode current collector 24 together.
  • the negative electrode binder 23 include carboxymethyl cellulose, polyvinylidene fluoride, polytetrafluoroethylene, polyacrylic acid, fluororubber, and diene rubber such as styrene butadiene rubber.
  • the negative electrode binder 23 preferably contains a crystalline polymer having a melting point.
  • the negative electrode binder 23 is preferably a polymer containing fluorine. Examples of the polymer containing fluorine include PVDF, PTFE, and fluororubber.
  • the negative electrode current collector 24, which is a current collector for the negative electrode 20, may be, for example, a metal foil such as copper foil, stainless steel foil, or nickel foil. A carbon coating layer may be formed on the negative electrode current collector 24.
  • the negative electrode current collector 24 may also be processed into a mesh shape.
  • a storage device with the same specifications as the target storage device is disassembled, and single-pole data in coin cell units, that is, dV/dQ curves for each single pole of the positive and negative electrodes in the initial state, as exemplified in FIG. 3, are obtained. Furthermore, these single-pole dV/dQ curves are added together and fitted to the actual measurement curve of the storage device (curve drawn by a dashed line in FIG. 4) as shown in FIG. 4. In FIG. 4, the fitted curve is shown by a solid line. This allows each extreme value of the actual measurement curve to be assigned to the positive and negative electrodes.
  • the dV/dQ curve in the initial state of the used storage device is obtained in advance. Then, the positions of each peak based on the positive and negative electrodes in the dV/dQ curve are determined, and the peak widths in the initial state of each of the positive and negative electrodes are determined.
  • the horizontal axis indicates the cell capacity (Ah), and the vertical axis indicates the amount of change in voltage relative to the change in reference capacity (dV/dQ).
  • the two peaks between 0 and 30% on the low SOC side may be determined as the peaks of the positive electrode, the two peaks between 30 and 60% as the peaks of the negative electrode (graphite in this embodiment) (intersections with the dashed line Gr), and the two peaks between 60 and 100% on the high SOC side as the peaks of silicon oxide (SiO) in the negative electrode (intersections with the dashed line SiO). It can also be determined that the positive electrode peak is convex on the negative side of dV/dQ, and the negative electrode peak is convex on the positive side of dV/dQ. Note that although peaks originating from the material that constitutes the electrodes are generated, if the negative electrode does not contain SiO, for example, no peaks originating from SiO are generated.
  • the voltage and current are continuously measured by charging at a low current. It is important that the current is relatively low.
  • the capacity is obtained by integrating the current value with respect to time, and a curve of the voltage value versus the capacity is obtained from this. Furthermore, a differential capacity curve (dV/dQ curve) versus the capacity can be obtained by differentiating the voltage value with respect to the capacity.
  • the dV/dQ curve is obtained by calculating the derivative of the voltage in the charge/discharge curve of the storage device at the reference capacity. This method makes it possible to accurately recognize the fluctuation characteristics of the voltage with respect to the reference capacity of the storage device to be subjected to degradation judgment, and by comparing the generated dV/dQ curve for degradation judgment with the dV/dQ curve obtained in the initial state of the storage device, it becomes possible to evaluate and determine the degree to which the battery at that time has deteriorated from the initial state.
  • the dV/dQ curve obtained for a used energy storage device is called a diagnostic dV/dQ curve, which indicates the amount of change in voltage relative to the change in the reference capacity of the used energy storage device.
  • the first capacity loss rate due to deterioration of the positive electrode the second capacity loss rate due to deterioration of the negative electrode, and the amount of capacity loss due to other factors are evaluated.
  • the change in the width between these two peaks is evaluated.
  • the peak widths of the positive and negative electrodes in the state after the battery has started to be used are determined, and the change in the peak widths due to use of the energy storage device is evaluated by comparing them with the peak widths in the initial state described above.
  • the dV/dQ curve in the initial state is compared with the diagnostic dV/dQ curve, and a rate of change in the width between two peaks based on the positive electrode and the negative electrode is calculated.
  • the rate of change in the width between two peaks based on the positive electrode of the diagnostic dV/dQ curve relative to the dV/dQ curve in the initial state is defined as the first capacity decrease rate
  • the rate of change in the width between two peaks based on the negative electrode of the diagnostic dV/dQ curve relative to the dV/dQ curve in the initial state is defined as the second capacity decrease rate.
  • Figure 5 shows a comparison between the dV/dQ curve in the initial state and the diagnostic dV/dQ curve.
  • the solid line shows the dV/dQ curve in the initial state
  • the dashed line shows the diagnostic dV/dQ curve.
  • the diagnostic dV/dQ curve is shifted along the vertical axis to avoid overlap.
  • Figure 5 when comparing the dV/dQ curve in the initial state with the diagnostic dV/dQ curve, it can be seen that the width between the two peaks based on the positive and negative poles has changed.
  • the amount of shift of the diagnostic dV/dQ curve from the dV/dQ curve in the initial state is defined as the amount of capacity loss due to factors (other factors) other than the deterioration of the positive or negative electrode.
  • the amount of shift of the diagnostic dV/dQ curve from the dV/dQ curve in the initial state is determined to be mainly due to the decrease in the amount of Li involved in charging and discharging due to the deposition of the negative electrode film containing Li caused by the swelling and shrinkage of the active material.
  • the amount of shift of the midpoint of the two peaks based on the negative electrode is defined as the amount of capacity loss due to other factors.
  • the threshold can be set for each storage device.
  • the first step S1 further includes a step of measuring the resistance component of the electrode.
  • the resistance component of the electrode can be measured using an AC impedance method or a multi-point probe method. Note that, for example, when refilling the power storage device with Li, the electrode may be removed as described below and the second step S2 may be carried out without performing the measurements using the AC impedance method or the multi-point probe method.
  • the following method can be used.
  • the AC impedance is measured in the state of a storage device (cell) using a commercially available AC impedance measuring device.
  • an AC voltage with an amplitude of 10 mV superimposed on the OCV (open circuit voltage) is applied from 1 MHz to 1 mHz, and the internal resistance can be obtained from the response current.
  • the obtained results are plotted as a cole-cole plot.
  • the resistance components of the electrodes to be measured include, for example, composite layer resistance and interface resistance. Each resistance component can be separated based on the time constant. The measurement conditions are set appropriately depending on the storage device.
  • each resistance component based on the time constant can be performed by, for example, taking the measurement results from 1 MHz to 1 kHz as the high-frequency side resistance, judging them as metal resistance and resistance due to deterioration of the coating at the battery interface and electrolyte components, judging 1 kHz to 1 Hz as ion conduction resistance between active materials, and judging 1 Hz or less as solid ion diffusion within the particles.
  • a reference curve obtained from the AC impedance of a storage device immediately after manufacture is compared with the curve of a used storage device. For example, in a cole-cole plot of a used storage device, if the region where the impedance component increases in a roughly linear manner (right-shouldering region) with increasing frequency is larger than that of the initial storage device, it is determined that the conductive resistance has increased, and the second step S2 is carried out.
  • the electrodes removed from the electricity storage layer are evaluated.
  • the electrode to be evaluated is preferably the positive electrode 10. It is dangerous to dismantle the electricity storage device while it is charged, so it is preferable to fully discharge the electricity storage device. After discharging, the exterior material of the electricity storage device is cut, and the positive electrode 10 and the negative electrode 20 are removed from the electricity storage device.
  • the multi-point probe measurement method a fine probe is placed on the electrode surface, a constant current is passed, and the potential at multiple points is measured. A virtual electrode is also assumed, and modeling is performed to calculate the potential generated on the surface. Then, using the resistance of the composite layer and the interfacial resistance as variables, measurements are repeated until the actual potential matches the measured potential. If it is determined that the resistance of the composite layer and the interfacial resistance obtained in this way are higher than a predetermined threshold, the second step S2 is performed. For example, if the resistance of the composite layer of the electrode before use increases by 10% or more, it is determined that the resistance of the composite layer has increased, and the second step S2 is performed.
  • the electrode resistance measurement system RM2610 manufactured by HIOKI Corporation can be used.
  • the electrode is compressed in the thickness direction of the electrode. Compression can be performed by a known means such as a roll press.
  • the electrode may be either the positive electrode 10 or the negative electrode 20, but the positive electrode 10 is preferred.
  • compression while heating is preferably performed. By pressing while heating, the binders 13, 23 can be softened, making it easier to regenerate the adhesive force.
  • the heating temperature is, for example, from the melting point of the binder to 200°C.
  • the second step S2 further includes a calculation step of measuring the thickness of the electrodes 10, 20 and calculating the difference from the estimated pre-use thickness.
  • the electrode recovery method according to the first embodiment has been described above.
  • the electrode recovery method according to this embodiment can recover the increase in resistance caused by the decrease in particle adhesion.
  • a recovered electrode for a power storage device can be obtained by the electrode recovery method according to this embodiment.
  • FIG. 6 is a flowchart of the method for restoring an electrode according to the second embodiment of the present invention.
  • the electrode restoration method disclosed herein is a method for restoring an electrode of a used energy storage device, and includes a first step S1 of evaluating the state of the electrode, and a second step S2A of compressing the electrode in the thickness direction of the electrode.
  • the same reference numerals are used for configurations that are the same as those in the first embodiment, and descriptions thereof may be omitted. Each step will be described below.
  • the second step S2A preferably further includes a coating step of coating the surfaces of the electrodes 10, 20 with a conductive agent.
  • the electrode may be either the positive electrode 10 or the negative electrode 20, but the positive electrode 10 is preferred.
  • the conductive agent is not particularly limited, but may be, for example, a carbonaceous material such as acetylene black or carbon nanotubes. Carbon fiber is preferred as the conductive agent.
  • the method of coating the conductive agent is not particularly limited.
  • a dispersion liquid in which the conductive agent is dispersed may be applied and dried. That is, the coating process may be a process in which a dispersion liquid in which the conductive agent is dispersed is applied and dried.
  • the electrodes 10, 20 after the application step are compressed in the thickness direction of the electrodes 10, 20. Compression can be performed by a known means such as a roll press.
  • the heating temperature is, for example, from the melting point of the binder to 200°C.
  • the second step S2A preferably further includes a calculation step of measuring the thickness of the electrodes 10, 20 and calculating the difference from the estimated thickness before use.
  • the active material separation method according to the second embodiment makes it possible to recover from the increase in resistance caused by a decrease in particle adhesion.
  • the recovery method disclosed herein makes it possible to recover from the increase in resistance caused by a decrease in particle adhesion, and is therefore highly applicable industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

This electrode recovery method is a method for recovering an electrode from a used power storage device, the recovery method comprising: a first step (S1) for evaluating the state of the electrode; and a second step (S2) for compressing the electrode in the thickness direction of the electrode.

Description

電極の回復方法および蓄電装置用電極Electrode recovery method and electrode for power storage device

 本発明は、電極の回復方法および蓄電装置用電極に関する。
 本願は、2023年3月31日に、日本に出願された特願2023-057930号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for restoring an electrode and an electrode for an electricity storage device.
This application claims priority based on Japanese Patent Application No. 2023-057930, filed on March 31, 2023, the contents of which are incorporated herein by reference.

 近年、より多くの人々が手ごろで信頼でき、持続可能かつ先進的なエネルギーへのアクセスを確保できるようにするため、エネルギーの効率化に貢献する二次電池の再利用に関する研究開発が行われている(例えば、特許文献1参照)。 In recent years, research and development has been conducted into the reuse of secondary batteries, which contribute to energy efficiency, in order to ensure that more people have access to affordable, reliable, sustainable, and advanced energy (see, for example, Patent Document 1).

日本国特開2012-022969号公報Japanese Patent Application Publication No. 2012-022969

 ところで特許文献1のような二次電池の再利用に関する技術においては、活物質表面劣化物を除去できるが、粒子の密着度低下による抵抗増大の回復を達成できないことが課題となっている。 In the technology for reusing secondary batteries such as that described in Patent Document 1, although it is possible to remove deteriorated active material surfaces, there is an issue in that it is not possible to recover the increased resistance caused by the reduced adhesion of particles.

 本願は上記課題の解決のため、粒子の密着度低下による抵抗増大の回復を目的としたものである。そして、延いてはエネルギーの効率化に寄与するものである。 The present application aims to solve the above problem by recovering the increase in resistance caused by the decrease in particle adhesion. This will ultimately contribute to improving energy efficiency.

 前記課題を解決するために、本発明は以下の手段を提案している。
<1>本発明の態様1の電極の回復方法は、
使用済み蓄電装置の電極の回復方法であって、
 前記電極の状態を評価する第1工程と、
 前記電極を前記電極の厚み方向に圧縮する第2工程と、
を含んでもよい。
<2>本発明の態様2は、態様1の電極の回復方法において、
 前記第1工程が、前記電極の抵抗成分を測定する工程をさらに含む。
<3>本発明の態様3は、態様1または態様2の電極の回復方法において、前記抵抗成分が前記電極の合材層抵抗または界面抵抗であってもよい。
<4>本発明の態様4は、態様1~3のいずれか1つの電極の回復方法において、
前記第2工程において、加熱をしながら圧縮してもよい。
<5>本発明の態様5は、態様1~4のいずれか1つの電極の回復方法において、前記第2工程は、前記電極の厚みを測定し、推定使用前厚みとの差分を算出する算出工程を更に含み、
 前記第2工程では、前記算出工程で取得された前記差分だけ、前記電極の厚みが減少するように、前記厚み方向に圧縮してもよい。
<6>本発明の態様6は、態様1~5のいずれか1つの電極の回復方法において、前記第2工程は、前記電極の表面に導電剤を塗布する塗布工程を更に含んでもよい。
<7>本発明の態様7は、態様1~6のいずれか1つの電極の回復方法において、前記導電剤が、炭素繊維であってもよい。
<8>本発明の態様8は、態様1~7のいずれか1つの電極の回復方法において、前記塗布工程は、前記導電剤を分散した分散液を塗布し、乾燥する工程であってもよい。
<9>本発明の態様9は、態様1~8のいずれか1つの電極の回復方法において、前記塗布工程において、前記電極に超音波を印加してもよい。
<10>本発明の態様10の蓄電装置用電極は、態様1~9のいずれか1つの電極の回復方法で得られる。
In order to solve the above problems, the present invention proposes the following means.
<1> The method for recovering an electrode according to aspect 1 of the present invention comprises the steps of:
A method for recovering electrodes of a used electricity storage device, comprising the steps of:
a first step of evaluating the condition of the electrode;
a second step of compressing the electrode in a thickness direction of the electrode;
may include:
<2> Aspect 2 of the present invention is the electrode recovery method of aspect 1,
The first step further includes the step of measuring a resistance component of the electrode.
<3> Aspect 3 of the present invention is the electrode recovery method according to aspect 1 or 2, wherein the resistance component may be a composite layer resistance or an interface resistance of the electrode.
<4> Aspect 4 of the present invention is a method for recovering an electrode according to any one of aspects 1 to 3,
In the second step, compression may be performed while heating.
<5> Aspect 5 of the present invention is the electrode recovery method according to any one of aspects 1 to 4, wherein the second step further includes a calculation step of measuring a thickness of the electrode and calculating a difference between the thickness and an estimated thickness before use,
In the second step, the electrode may be compressed in the thickness direction so that a thickness of the electrode is reduced by the difference acquired in the calculation step.
<6> A sixth aspect of the present invention is the electrode recovery method according to any one of the first to fifth aspects, wherein the second step further includes a coating step of coating a conductive agent on a surface of the electrode.
<7> A seventh aspect of the present invention is the method for recovering an electrode according to any one of the first to sixth aspects, wherein the conductive agent is carbon fiber.
<8> Aspect 8 of the present invention may be the electrode recovery method according to any one of Aspects 1 to 7, wherein the coating step is a step of coating a dispersion liquid in which the conductive agent is dispersed, and drying the coating liquid.
<9> A ninth aspect of the present invention is the electrode recovery method according to any one of the first to eighth aspects, wherein ultrasonic waves may be applied to the electrode in the coating step.
<10> An electrode for a power storage device according to a tenth aspect of the present invention is obtained by the electrode recovery method according to any one of the first to ninth aspects.

 本発明の上記各態様よれば、粒子の密着度低下による抵抗増大の回復が可能となる。そして、延いてはエネルギーの効率化に寄与する。 The above aspects of the present invention make it possible to recover from the increase in resistance caused by the decrease in particle adhesion, which in turn contributes to improved energy efficiency.

本発明の第1実施形態に係る電極の回復方法のフローチャートである。2 is a flowchart of a method for recovering an electrode according to a first embodiment of the present invention. 電極の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of an electrode. 初期状態の正極と負極それぞれの単極でのdV/dQ曲線の一例を説明するための図である。FIG. 2 is a diagram for explaining an example of a dV/dQ curve for each of a positive electrode and a negative electrode in an initial state. 蓄電装置のdV/dQ曲線の実測曲線とフィッティングさせた曲線の一例を説明するための図である。11 is a diagram illustrating an example of a curve fitted to an actual measured dV/dQ curve of a power storage device. FIG. 初期状態におけるdV/dQ曲線と診断用dV/dQ曲線との比較を説明するための図である。FIG. 13 is a diagram for explaining a comparison between a dV/dQ curve in an initial state and a diagnostic dV/dQ curve. 本発明の第2実施形態に係る電極の回復方法のフローチャートである。5 is a flowchart of a method for recovering an electrode according to a second embodiment of the present invention.

 以下、図面を参照し、本発明の一実施形態に係る電極の回復方法について説明する。図1は、本発明の一実施形態に係る電極の回復方法のフローチャートである。本開示の電極の回復方法は、使用済み蓄電装置の電極の回復方法であって、電極の状態を評価する第1工程S1と、電極を電極の厚み方向に圧縮する第2工程S2と、を含む。以下、各工程について説明する。 The electrode recovery method according to one embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart of the electrode recovery method according to one embodiment of the present invention. The electrode recovery method disclosed herein is a method for recovering electrodes of a used energy storage device, and includes a first step S1 of evaluating the state of the electrode, and a second step S2 of compressing the electrode in the thickness direction of the electrode. Each step will be described below.

(第1工程S1)
 第1工程S1では、使用済み蓄電装置の電極の状態を評価する。第1工程S1では、使用済み蓄電装置の充放電時に得られる物理量データに基づき、使用済み蓄電装置の電極の状態が評価されてもよい。物理量データとは、例えば、充電時の電圧値及び電流値等である。
(First step S1)
In the first step S1, the state of the electrodes of the used energy storage device is evaluated. In the first step S1, the state of the electrodes of the used energy storage device may be evaluated based on physical quantity data obtained when the used energy storage device is charged and discharged. The physical quantity data is, for example, a voltage value and a current value during charging.

(使用済み蓄電装置)
 使用済み蓄電装置は、活物質、結着剤、および集電体を含む電極を有する。蓄電装置は、電気を蓄えることができ、かつ、活物質、結着剤、および集電体を含む電極を有していれば特に限定されない。蓄電装置は、例えば、リチウムイオン二次電池である。図2は、電極の構成を示す模式図である。本開示の活物質の分離方法が対象とする電極は正極10および負極20である。以下、電極の構成を説明する。
(Used Electricity Storage Device)
The used electricity storage device has electrodes including an active material, a binder, and a current collector. The electricity storage device is not particularly limited as long as it can store electricity and has electrodes including an active material, a binder, and a current collector. The electricity storage device is, for example, a lithium ion secondary battery. FIG. 2 is a schematic diagram showing the configuration of the electrodes. The electrodes targeted by the active material separation method of the present disclosure are a positive electrode 10 and a negative electrode 20. The configuration of the electrodes will be described below.

「正極」
 電極である正極10は、正極活物質11、正極導電助剤12、正極結着剤13、および正極集電体14を含む。正極活物質11、正極導電助剤12および正極結着剤13からなる層を正極合材層とする。正極合材層は、正極集電体14の片面または両面に形成されていてもよい。なお、正極活物質11が導電性を有していれば、正極合材層には、正極導電助剤12が含まれていなくてもよい。
"Positive electrode"
The positive electrode 10, which is an electrode, includes a positive electrode active material 11, a positive electrode conductive assistant 12, a positive electrode binder 13, and a positive electrode current collector 14. A layer consisting of the positive electrode active material 11, the positive electrode conductive assistant 12, and the positive electrode binder 13 is a positive electrode mixture layer. The positive electrode mixture layer may be formed on one side or both sides of the positive electrode current collector 14. Note that, as long as the positive electrode active material 11 is conductive, the positive electrode mixture layer does not need to include the positive electrode conductive assistant 12.

 正極で用いる活物質である正極活物質11は、Liイオンを吸蔵および放出することが可能であれば、特に限定されない。正極活物質11としては、リチウムニッケル酸化物(例えばLiNiO)、リチウムコバルト酸化物(例えばLiCoO)、リチウムニッケルコバルト酸化物、リチウムニッケルコバルトマンガン酸化物、LiFePO、LiMn1-xFePO、LiMnPO、LiCoPO、LiNiPOなどが挙げられる。正極活物質11は、マンガン、ニッケル、およびコバルトからなる群から選択される1種以上を含有することが好ましい。 The positive electrode active material 11 used in the positive electrode is not particularly limited as long as it is capable of absorbing and releasing Li ions. Examples of the positive electrode active material 11 include lithium nickel oxide (e.g., LiNiO 2 ), lithium cobalt oxide (e.g., LiCoO 2 ), lithium nickel cobalt oxide, lithium nickel cobalt manganese oxide, LiFePO 4 , LiMn 1-x Fe x PO 4 , LiMnPO 4 , LiCoPO 4 , and LiNiPO 4. The positive electrode active material 11 preferably contains one or more elements selected from the group consisting of manganese, nickel, and cobalt.

 正極10で用いる導電助剤である正極導電助剤12は、正極活物質11と正極集電体14との間の導電パスの形成を補助する。正極導電助剤12としては、導電性を有していれば特に限定されず、例えば、アセチレンブラックなどのカーボンブラック、カーボンナノチューブ、人造黒鉛などの黒鉛(グラファイト)などが挙げられる。 The positive electrode conductive assistant 12, which is a conductive assistant used in the positive electrode 10, assists in the formation of a conductive path between the positive electrode active material 11 and the positive electrode current collector 14. There are no particular limitations on the positive electrode conductive assistant 12 as long as it has conductivity, and examples of the positive electrode conductive assistant 12 include carbon black such as acetylene black, carbon nanotubes, and graphite such as artificial graphite.

 正極活物質11の結着剤である正極結着剤13は、正極活物質11、正極導電助剤12、および正極集電体14をそれぞれ結合する。正極結着剤13としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアミド(PA)、ポリイミド(PI)、ポリアクリル酸及びその共重合体、ポリアミドイミド(PAI)、ポリベンゾイミダゾール、ポリエーテルスルホン(PES)、無水マレイン酸変性ポリプロピレンおよびこれらの混合物などが挙げられる。正極結着剤13には、融点を有する結晶性の高分子が含有されていることが好ましい。正極結着剤13は、フッ素を含む高分子であることが好ましい。フッ素を含む高分子としては、PVDF、PTFEなどが挙げられる。 The positive electrode binder 13, which is a binder for the positive electrode active material 11, binds the positive electrode active material 11, the positive electrode conductive assistant 12, and the positive electrode current collector 14 together. Examples of the positive electrode binder 13 include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyamide (PA), polyimide (PI), polyacrylic acid and its copolymers, polyamideimide (PAI), polybenzimidazole, polyethersulfone (PES), maleic anhydride-modified polypropylene, and mixtures thereof. The positive electrode binder 13 preferably contains a crystalline polymer having a melting point. The positive electrode binder 13 is preferably a polymer containing fluorine. Examples of the polymer containing fluorine include PVDF and PTFE.

 正極集電体14としては、例えば、アルミニウム箔、ステンレス箔、ニッケル箔などの金属箔が挙げられる。正極集電体14には、カーボンコート層が形成されていてもよい。また、正極集電体14は、メッシュ状に加工されていてもよい。 The positive electrode collector 14 may be, for example, a metal foil such as aluminum foil, stainless steel foil, or nickel foil. A carbon coating layer may be formed on the positive electrode collector 14. The positive electrode collector 14 may also be processed into a mesh shape.

「負極」
 電極である負極20は、負極活物質21、負極導電助剤22、負極結着剤23、および負極集電体24を含む。負極活物質21、負極導電助剤22および負極結着剤23からなる層を負極合材層とする。負極合材層は、負極集電体24の片面または両面に形成されていてもよい。なお、負極活物質21が導電性を有していれば、負極合材層には、負極導電助剤22が含まれていなくてもよい。
"Negative electrode"
The negative electrode 20, which is an electrode, includes a negative electrode active material 21, a negative electrode conductive assistant 22, a negative electrode binder 23, and a negative electrode current collector 24. A layer consisting of the negative electrode active material 21, the negative electrode conductive assistant 22, and the negative electrode binder 23 is defined as a negative electrode mixture layer. The negative electrode mixture layer may be formed on one side or both sides of the negative electrode current collector 24. Note that, as long as the negative electrode active material 21 is conductive, the negative electrode mixture layer does not need to include the negative electrode conductive assistant 22.

 負極20の活物質である負極活物質21は、Liイオンを吸蔵および放出することが可能であれば、特に限定されない。負極活物質21としては、例えば、黒鉛(人造黒鉛、天然黒鉛)、アモルファスカーボン(ハードカーボン)、メソカーボンマイクロビーズ、炭素繊維、Si材料(シリコン、Si合金、Si酸化物)などが挙げられる。 The negative electrode active material 21, which is the active material of the negative electrode 20, is not particularly limited as long as it is capable of absorbing and releasing Li ions. Examples of the negative electrode active material 21 include graphite (artificial graphite, natural graphite), amorphous carbon (hard carbon), mesocarbon microbeads, carbon fiber, and Si materials (silicon, Si alloys, Si oxides).

 負極20の導電助剤である負極導電助剤22は、負極活物質21と負極集電体24との間の導電パスの形成を補助する。負極導電助剤22としては、導電性を有していれば特に限定されず、例えば、アセチレンブラックなどのカーボンブラック、カーボンナノチューブ、人造黒鉛などの黒鉛(グラファイト)などが挙げられる。 The negative electrode conductive assistant 22, which is a conductive assistant for the negative electrode 20, assists in the formation of a conductive path between the negative electrode active material 21 and the negative electrode current collector 24. There are no particular limitations on the negative electrode conductive assistant 22 as long as it has conductivity, and examples of the negative electrode conductive assistant 22 include carbon black such as acetylene black, carbon nanotubes, and graphite such as artificial graphite.

 負極20の結着剤である負極結着剤23は、負極活物質21、負極導電助剤22、および負極集電体24をそれぞれ結合する。負極結着剤23はとしては、例えば、カルボキシメチルセルロース、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアクリル酸、フッ素ゴム、スチレンブタジエンゴムなどのジエン系ゴムなどが挙げられる。負極結着剤23には、融点を有する結晶性の高分子が含有されていることが好ましい。負極結着剤23は、フッ素を含む高分子であることが好ましい。フッ素を含む高分子としては、PVDF、PTFE、フッ素ゴムなどが挙げられる。 The negative electrode binder 23, which is a binder for the negative electrode 20, binds the negative electrode active material 21, the negative electrode conductive assistant 22, and the negative electrode current collector 24 together. Examples of the negative electrode binder 23 include carboxymethyl cellulose, polyvinylidene fluoride, polytetrafluoroethylene, polyacrylic acid, fluororubber, and diene rubber such as styrene butadiene rubber. The negative electrode binder 23 preferably contains a crystalline polymer having a melting point. The negative electrode binder 23 is preferably a polymer containing fluorine. Examples of the polymer containing fluorine include PVDF, PTFE, and fluororubber.

 負極20の集電体である負極集電体24としては、例えば、銅箔、ステンレス箔、ニッケル箔などの金属箔が挙げられる。負極集電体24には、カーボンコート層が形成されていてもよい。また、負極集電体24は、メッシュ状に加工されていてもよい。 The negative electrode current collector 24, which is a current collector for the negative electrode 20, may be, for example, a metal foil such as copper foil, stainless steel foil, or nickel foil. A carbon coating layer may be formed on the negative electrode current collector 24. The negative electrode current collector 24 may also be processed into a mesh shape.

(事前準備)
 第1工程S1の事前準備として、より具体的には、例えば、先ず対象となる蓄電装置と同仕様の蓄電装置を解体し、コインセル単位における単極データ、即ち、図3に例示するような、初期状態の正極と負極それぞれの単極でのdV/dQ曲線を得る。さらに、これら単極のdV/dQ曲線を足し合わせ、図4に示すように、蓄電装置の実測曲線(図4の破線で描かれた曲線)にフィッティングさせる。図4では、フィッティングさせた曲線を実線で示す。これにより、実測曲線の各極値を正極と負極に帰属できる。このように、使用済み蓄電装置の初期状態におけるdV/dQ曲線を予め取得する。そして、dV/dQ曲線における正極及び負極それぞれに基づく各ピーク位置を決定し、かつ、正極及び負極それぞれの初期状態におけるピーク幅を決定する。
(Advance preparation)
More specifically, as a preparation for the first step S1, for example, first, a storage device with the same specifications as the target storage device is disassembled, and single-pole data in coin cell units, that is, dV/dQ curves for each single pole of the positive and negative electrodes in the initial state, as exemplified in FIG. 3, are obtained. Furthermore, these single-pole dV/dQ curves are added together and fitted to the actual measurement curve of the storage device (curve drawn by a dashed line in FIG. 4) as shown in FIG. 4. In FIG. 4, the fitted curve is shown by a solid line. This allows each extreme value of the actual measurement curve to be assigned to the positive and negative electrodes. In this way, the dV/dQ curve in the initial state of the used storage device is obtained in advance. Then, the positions of each peak based on the positive and negative electrodes in the dV/dQ curve are determined, and the peak widths in the initial state of each of the positive and negative electrodes are determined.

 なお、図3及び図4において、横軸はセルの容量(Ah)、縦軸は基準容量の変化に対する電圧の変化量を示す(dV/dQ)。 In Figures 3 and 4, the horizontal axis indicates the cell capacity (Ah), and the vertical axis indicates the amount of change in voltage relative to the change in reference capacity (dV/dQ).

 ここで、満充電状態を100%として、充電率又は充電状態(SOC:State Of Charge)の5~95%の間にピーク位置が検出できれば、微分容量解析が可能となる。具体的には、初期状態におけるdV/dQ曲線において、正極に基づく2つのピークを特定し、これらのピーク間の幅を特定する。図3及び図4において、破線との交点に正極に基づく2つのピークが位置している。また、初期状態におけるdV/dQ曲線において、負極に基づく2つのピークを特定し、これらのピーク間の幅を特定する。図3及び図4において、破線との交点に負極に基づく2つのピークが位置している。 Here, assuming a fully charged state to be 100%, if a peak position can be detected between 5% and 95% of the charge rate or state of charge (SOC: State of Charge), differential capacity analysis becomes possible. Specifically, in the dV/dQ curve in the initial state, two peaks based on the positive electrode are identified, and the width between these peaks is determined. In Figures 3 and 4, the two peaks based on the positive electrode are located at the intersections with the dashed lines. Also, in the dV/dQ curve in the initial state, two peaks based on the negative electrode are identified, and the width between these peaks is determined. In Figures 3 and 4, the two peaks based on the negative electrode are located at the intersections with the dashed lines.

 例えば、目安として、SOCが低い側で0~30%の間の2つのピークを正極のピーク、30~60%の間の2つのピークを負極(本実施形態の例ではグラファイト)のピーク(破線Grとの交点)、SOCが高い側で60~100%の間の2つのピークを負極中のシリコン酸化物(SiO)のピーク(破線SiOとの交点)として判定してもよい。また、正極のピークはdV/dQの負の側へ凸となり、負極のピークはdV/dQの正の側へ凸となることでも判別できる。なお、電極を構成する材料に由来するピークが発現するが、例えば負極がSiOを含有しない場合には、SiOに由来するピークは発現しない。 For example, as a guideline, the two peaks between 0 and 30% on the low SOC side may be determined as the peaks of the positive electrode, the two peaks between 30 and 60% as the peaks of the negative electrode (graphite in this embodiment) (intersections with the dashed line Gr), and the two peaks between 60 and 100% on the high SOC side as the peaks of silicon oxide (SiO) in the negative electrode (intersections with the dashed line SiO). It can also be determined that the positive electrode peak is convex on the negative side of dV/dQ, and the negative electrode peak is convex on the positive side of dV/dQ. Note that although peaks originating from the material that constitutes the electrodes are generated, if the negative electrode does not contain SiO, for example, no peaks originating from SiO are generated.

(バッテリ使用開始後)
 バッテリ使用開始後は、低電流下での充電により、電圧及び電流を継時で取得する。電流は比較的低電流であることが重要である。電流値を時間で積分することで容量が得られ、これより容量に対する電圧値の曲線が得られる。さらに、電圧値を容量で微分することで容量に対する微分容量曲線(dV/dQ曲線)を得ることができる。
(After battery use begins)
After the battery is first used, the voltage and current are continuously measured by charging at a low current. It is important that the current is relatively low. The capacity is obtained by integrating the current value with respect to time, and a curve of the voltage value versus the capacity is obtained from this. Furthermore, a differential capacity curve (dV/dQ curve) versus the capacity can be obtained by differentiating the voltage value with respect to the capacity.

 充電のレートは、一般的な0.2~0.5Cであっても解析可能である。しかし、例えば、0.02~0.07Cの低レートであることで、より高精度の解析が可能となる。なお、ある程度充電が進み、電圧が一定となった場合には、電流を段階的に下げて充電を行ってもよい。 Analysis is possible even with a typical charging rate of 0.2 to 0.5C. However, a lower rate of, for example, 0.02 to 0.07C, allows for more accurate analysis. Note that once charging has progressed to a certain extent and the voltage has stabilized, charging can be continued with the current gradually reduced.

 dV/dQ曲線は、上述のように、蓄電装置の充放電曲線における電圧について、基準容量での微分値を計算することによって得られる。このような方法によれば、劣化判定対象の蓄電装置の基準容量に対する電圧の変動特性を精度良く認識することができるので、生成した劣化判定用のdV/dQ曲線を、当該蓄電装置の初期状態において取得されたdV/dQ曲線と比較することにより、その時点のバッテリが初期状態からどの程度劣化したかを評価・判定することが可能となる。 As described above, the dV/dQ curve is obtained by calculating the derivative of the voltage in the charge/discharge curve of the storage device at the reference capacity. This method makes it possible to accurately recognize the fluctuation characteristics of the voltage with respect to the reference capacity of the storage device to be subjected to degradation judgment, and by comparing the generated dV/dQ curve for degradation judgment with the dV/dQ curve obtained in the initial state of the storage device, it becomes possible to evaluate and determine the degree to which the battery at that time has deteriorated from the initial state.

 使用済み蓄電装置について取得したdV/dQ曲線を、使用済み蓄電装置の基準容量の変化に対する電圧の変化量を示す診断用dV/dQ曲線と称する。 The dV/dQ curve obtained for a used energy storage device is called a diagnostic dV/dQ curve, which indicates the amount of change in voltage relative to the change in the reference capacity of the used energy storage device.

 次に、得られた診断用dV/dQ曲線および初期状態におけるdV/dQ曲線に基づき、正極の劣化による第1の容量低下率と、負極の劣化による第2の容量低下率と、他の要因による容量低下量とをそれぞれ評価する。 Next, based on the obtained diagnostic dV/dQ curve and the dV/dQ curve in the initial state, the first capacity loss rate due to deterioration of the positive electrode, the second capacity loss rate due to deterioration of the negative electrode, and the amount of capacity loss due to other factors are evaluated.

 具体的には、使用済み蓄電装置のセルについて、それぞれの電極に由来する2つのピークを特定し、初期状態とバッテリ使用開始後の状態におけるこれら2つのピーク間の幅(ピーク幅)の変化を評価する。すなわち、バッテリ使用開始後の状態における、正極及び負極それぞれのピーク幅を決定し、上述した初期状態におけるピーク幅と比較することで蓄電装置の使用によるピーク幅の変化を評価する。 Specifically, for the cells of a used energy storage device, two peaks originating from each electrode are identified, and the change in the width between these two peaks (peak width) between the initial state and the state after the battery has started to be used is evaluated. In other words, the peak widths of the positive and negative electrodes in the state after the battery has started to be used are determined, and the change in the peak widths due to use of the energy storage device is evaluated by comparing them with the peak widths in the initial state described above.

(第1の容量低下率及び第2の容量低下率)
 初期状態におけるdV/dQ曲線と診断用dV/dQ曲線とを比較し、正極及び負極に基づく2つのピーク間の幅の変化率を算出する。そして、初期状態におけるdV/dQ曲線に対する診断用dV/dQ曲線の正極に基づく2つのピーク間の幅の変化率を前記第1の容量低下率とし、初期状態におけるdV/dQ曲線に対する診断用dV/dQ曲線の負極に基づく2つのピーク間の幅の変化率を第2の容量低下率と規定する。
(First Capacity Decay Rate and Second Capacity Decay Rate)
The dV/dQ curve in the initial state is compared with the diagnostic dV/dQ curve, and a rate of change in the width between two peaks based on the positive electrode and the negative electrode is calculated. The rate of change in the width between two peaks based on the positive electrode of the diagnostic dV/dQ curve relative to the dV/dQ curve in the initial state is defined as the first capacity decrease rate, and the rate of change in the width between two peaks based on the negative electrode of the diagnostic dV/dQ curve relative to the dV/dQ curve in the initial state is defined as the second capacity decrease rate.

 図5に、初期状態におけるdV/dQ曲線と診断用dV/dQ曲線との比較を示す。図5では、実線が初期状態におけるdV/dQ曲線、破線が診断用dV/dQ曲線を示している。また、診断用dV/dQ曲線は重複を避けるために縦軸に沿ってずらしている。図5に示すように、初期状態におけるdV/dQ曲線と診断用dV/dQ曲線とを比較すると、正極及び負極に基づく2つのピーク間の幅が変化していることがわかる。 Figure 5 shows a comparison between the dV/dQ curve in the initial state and the diagnostic dV/dQ curve. In Figure 5, the solid line shows the dV/dQ curve in the initial state, and the dashed line shows the diagnostic dV/dQ curve. The diagnostic dV/dQ curve is shifted along the vertical axis to avoid overlap. As shown in Figure 5, when comparing the dV/dQ curve in the initial state with the diagnostic dV/dQ curve, it can be seen that the width between the two peaks based on the positive and negative poles has changed.

(他の要因による容量低下量)
 初期状態におけるdV/dQ曲線に対する診断用dV/dQ曲線のシフト量を正極または負極の劣化とは異なる要因(その他の要因)による容量低下量と規定する。初期状態におけるdV/dQ曲線に対する診断用dV/dQ曲線のシフト量は、活物質の膨潤収縮によるLiを含有する負極被膜の堆積による、充放電に関与するLi量の減少が主因であると判断される。例えば、負極に基づく2つのピークの中点がシフトした量を、他の要因による容量低下量とする。
(Capacity loss due to other factors)
The amount of shift of the diagnostic dV/dQ curve from the dV/dQ curve in the initial state is defined as the amount of capacity loss due to factors (other factors) other than the deterioration of the positive or negative electrode. The amount of shift of the diagnostic dV/dQ curve from the dV/dQ curve in the initial state is determined to be mainly due to the decrease in the amount of Li involved in charging and discharging due to the deposition of the negative electrode film containing Li caused by the swelling and shrinkage of the active material. For example, the amount of shift of the midpoint of the two peaks based on the negative electrode is defined as the amount of capacity loss due to other factors.

 得られた第1の容量低下率及び第2の容量低下率が共に予め定められた閾値(例えば5%)を下回りかつ、容量低下量が予め定められた閾値を上回る条件に該当するか否かを判定する。閾値は、蓄電装置毎に設定することができる。 It is determined whether the obtained first capacity decline rate and second capacity decline rate are both below a predetermined threshold (e.g., 5%) and the capacity decline amount exceeds a predetermined threshold. The threshold can be set for each storage device.

 第1の容量低下率及び第2の容量低下率が閾値以下であることを確認した場合、次に電極の状態をより詳細に分析することが好ましい。具体的には、電極の抵抗成分を測定する。即ち、電極の回復方法は、第1工程S1が更に、電極の抵抗成分を測定する工程を含むことが好ましい。電極の抵抗成分は、交流インピーダンス法、多点プローブ法を用いて測定することができる。なお、例えば、蓄電装置にLiを補充する場合などでは、交流インピーダンス法、多点プローブ法の測定を行わないで、後述する電極の取り出しを行い、第2工程S2を実施してもよい。 If it is confirmed that the first capacity loss rate and the second capacity loss rate are equal to or less than the threshold value, it is preferable to then analyze the state of the electrode in more detail. Specifically, the resistance component of the electrode is measured. That is, in the electrode recovery method, it is preferable that the first step S1 further includes a step of measuring the resistance component of the electrode. The resistance component of the electrode can be measured using an AC impedance method or a multi-point probe method. Note that, for example, when refilling the power storage device with Li, the electrode may be removed as described below and the second step S2 may be carried out without performing the measurements using the AC impedance method or the multi-point probe method.

 抵抗成分を交流インピーダンス法で測定する場合は、例えば、以下のような方法で測定することができる。市販の交流インピーダンス測定装置で例えば、蓄電装置(セル)の状態で交流インピーダンスを測定する。例えば、OCV(開回路電圧)に対して振幅10mVを重畳させた交流電圧を1MHzから1mHzまで印加し,その応答電流から内部抵抗を求めることができる。得られた結果をcole cole plotする。測定する電極の抵抗成分としては、例えば、合材層抵抗または界面抵抗などが挙げられる。各抵抗成分は時定数に基づいて分離することができる。測定条件は蓄電装置によって、適宜設定される。時定数による各抵抗成分の分離は、例えば、1MHzから1kHzまでの測定結果を高周波側の抵抗とし、金属抵抗および電池界面の被膜、電解液成分の劣化による抵抗と判定し、1kHzから1Hzまでを活物質間のイオン電導抵抗と判定し、1Hz以下を粒子内の固体イオン拡散とすることで、各抵抗成分を分離することができる。 When measuring the resistance components using the AC impedance method, for example, the following method can be used. For example, the AC impedance is measured in the state of a storage device (cell) using a commercially available AC impedance measuring device. For example, an AC voltage with an amplitude of 10 mV superimposed on the OCV (open circuit voltage) is applied from 1 MHz to 1 mHz, and the internal resistance can be obtained from the response current. The obtained results are plotted as a cole-cole plot. The resistance components of the electrodes to be measured include, for example, composite layer resistance and interface resistance. Each resistance component can be separated based on the time constant. The measurement conditions are set appropriately depending on the storage device. The separation of each resistance component based on the time constant can be performed by, for example, taking the measurement results from 1 MHz to 1 kHz as the high-frequency side resistance, judging them as metal resistance and resistance due to deterioration of the coating at the battery interface and electrolyte components, judging 1 kHz to 1 Hz as ion conduction resistance between active materials, and judging 1 Hz or less as solid ion diffusion within the particles.

 交流インピーダンス法で電極の状態を判定する場合は、例えば、製造直後の蓄電装置の交流インピーダンスで得られる基準曲線と使用済み蓄電装置の曲線とを比較する。例えば、使用済み蓄電装置のcole-cole plotにおいて、周波数の上昇に伴って、インピーダンス成分が略直線上に大きくなる領域(右肩上がり領域)が初期の蓄電装置よりも大きくなる場合を伝導抵抗が増加したと判断し、第2工程S2を実施する。 When determining the state of the electrodes using the AC impedance method, for example, a reference curve obtained from the AC impedance of a storage device immediately after manufacture is compared with the curve of a used storage device. For example, in a cole-cole plot of a used storage device, if the region where the impedance component increases in a roughly linear manner (right-shouldering region) with increasing frequency is larger than that of the initial storage device, it is determined that the conductive resistance has increased, and the second step S2 is carried out.

 多点プローブ測定方法の場合は、蓄電地層から取り出した電極を評価する。蓄電装置から電極である正極10および負極20を取り出す方法は特に限定されず、公知の方法を用いることができる。評価する電極は正極10が好ましい。蓄電装置が充電された状態で解体を行うと危険であるので、蓄電装置を十分放電することが好ましい。放電後、蓄電装置の外装材などを切断し、蓄電装置の中から正極10および負極20を取り出す。 In the case of the multi-point probe measurement method, the electrodes removed from the electricity storage layer are evaluated. There are no particular limitations on the method for removing the electrodes, the positive electrode 10 and the negative electrode 20, from the electricity storage device, and any known method can be used. The electrode to be evaluated is preferably the positive electrode 10. It is dangerous to dismantle the electricity storage device while it is charged, so it is preferable to fully discharge the electricity storage device. After discharging, the exterior material of the electricity storage device is cut, and the positive electrode 10 and the negative electrode 20 are removed from the electricity storage device.

 多点プローブ測定方法では、微細な探査針を電極表面に当て、定電流を流し、多点の電位を計測する。また、仮想の電極を想定し、表面に発生する電位を計算で求めるためのモデリングを行う。その後、合材層の抵抗と界面抵抗を変数として、実測電位と計測電位が一致するまで、繰り返し測定を行う。これで得られた合材層の抵抗と界面抵抗とが所定の閾値よりも高いと判断される場合、第2工程S2を実施する。例えば、使用前の電極の合材層の抵抗より10%以上増大した場合、合材層の抵抗が増加したと判断し、第2工程S2を実施する。多点プローブ測定システムとしては、例えば、HIOKI社製電極抵抗測定システムRM2610を用いることができる。 In the multi-point probe measurement method, a fine probe is placed on the electrode surface, a constant current is passed, and the potential at multiple points is measured. A virtual electrode is also assumed, and modeling is performed to calculate the potential generated on the surface. Then, using the resistance of the composite layer and the interfacial resistance as variables, measurements are repeated until the actual potential matches the measured potential. If it is determined that the resistance of the composite layer and the interfacial resistance obtained in this way are higher than a predetermined threshold, the second step S2 is performed. For example, if the resistance of the composite layer of the electrode before use increases by 10% or more, it is determined that the resistance of the composite layer has increased, and the second step S2 is performed. As an example of a multi-point probe measurement system, the electrode resistance measurement system RM2610 manufactured by HIOKI Corporation can be used.

(第2工程S2)
 第2工程S2では、電極を前記電極の厚み方向に圧縮する。圧縮はロールプレスなど公知の手段で行うことができる。電極は正極10、負極20どちらでよいが、正極10が好ましい。第2工程S2において、加熱しながら圧縮することが好ましい。加熱しながらプレスすることで、結着剤13,23を軟化させて密着力をより再生しやすくすることができる。加熱温度は例えば、結着剤の融点以上~200℃以下である。
(Second step S2)
In the second step S2, the electrode is compressed in the thickness direction of the electrode. Compression can be performed by a known means such as a roll press. The electrode may be either the positive electrode 10 or the negative electrode 20, but the positive electrode 10 is preferred. In the second step S2, compression while heating is preferably performed. By pressing while heating, the binders 13, 23 can be softened, making it easier to regenerate the adhesive force. The heating temperature is, for example, from the melting point of the binder to 200°C.

 第2工程S2は、電極10,20の厚みを測定し、推定使用前厚みとの差分を算出する算出工程を更に含むことが好ましい。第2工程S2では、算出工程で取得された差分だけ、電極10,20の厚みが減少するように、電極の厚み方向に圧縮することが好ましい。このように圧縮することで、充放電に伴う活物質の膨張収縮により減少した粒子間接触などを回復させることができる。推定使用前厚みには、蓄電装置の製造時の電極の厚みの情報があれば、その情報を用いる。初期の製造時の厚みの情報が無い場合は、例えば、使用済み電極の厚みから電極部分の空隙部分を除いた厚みを推定使用前厚みとしてもよい。 It is preferable that the second step S2 further includes a calculation step of measuring the thickness of the electrodes 10, 20 and calculating the difference from the estimated pre-use thickness. In the second step S2, it is preferable to compress the electrodes 10, 20 in the thickness direction so that the thickness of the electrodes 10, 20 is reduced by the difference obtained in the calculation step. By compressing in this manner, it is possible to restore inter-particle contact that has been reduced due to the expansion and contraction of the active material associated with charging and discharging. If there is information on the thickness of the electrodes at the time of manufacture of the energy storage device, this information is used for the estimated pre-use thickness. If there is no information on the thickness at the time of initial manufacture, for example, the thickness obtained by excluding voids in the electrode portion from the thickness of the used electrode may be used as the estimated pre-use thickness.

 以上、第1実施形態に係る電極の回復方法について説明した。本実施形態に係る電極の回復方法によれば、粒子の密着度低下による抵抗増大を回復することができる。本実施形態の電極回復方法によって、回復した蓄電装置用電極を得ることができる。 The electrode recovery method according to the first embodiment has been described above. The electrode recovery method according to this embodiment can recover the increase in resistance caused by the decrease in particle adhesion. A recovered electrode for a power storage device can be obtained by the electrode recovery method according to this embodiment.

 次に、本発明の第2実施形態に係る電極の回復方法について説明する。図6は、本発明の第2実施形態に係る電極の回復方法のフローチャートである。本開示の電極の回復方法は、使用済み蓄電装置の電極の回復方法であって、電極の状態を評価する第1工程S1と、電極を電極の厚み方向に圧縮する第2工程S2Aと、を含む。以下の説明において、第1実施形態と同じ構成については、同じ符号を付与し、説明を省略する場合がある。以下、各工程について説明する。 Next, a method for restoring an electrode according to a second embodiment of the present invention will be described. FIG. 6 is a flowchart of the method for restoring an electrode according to the second embodiment of the present invention. The electrode restoration method disclosed herein is a method for restoring an electrode of a used energy storage device, and includes a first step S1 of evaluating the state of the electrode, and a second step S2A of compressing the electrode in the thickness direction of the electrode. In the following description, the same reference numerals are used for configurations that are the same as those in the first embodiment, and descriptions thereof may be omitted. Each step will be described below.

(第2工程S2)
 第2工程S2Aでは、電極10,20の表面に導電剤を塗布する塗布工程を更に含むことが好ましい。電極は正極10、負極20どちらでよいが、正極10が好ましい。導電剤は特に限定されないが、例えば、アセチレンブラック、カーボンナノチューブなどの炭素性材料である。導電剤としては、炭素繊維が好ましい。導電剤を塗布することで、導電剤の添加によって、導電性を補うことができ、合材層抵抗および界面抵抗を低減することができる。
(Second step S2)
The second step S2A preferably further includes a coating step of coating the surfaces of the electrodes 10, 20 with a conductive agent. The electrode may be either the positive electrode 10 or the negative electrode 20, but the positive electrode 10 is preferred. The conductive agent is not particularly limited, but may be, for example, a carbonaceous material such as acetylene black or carbon nanotubes. Carbon fiber is preferred as the conductive agent. By coating the conductive agent, the addition of the conductive agent can compensate for the conductivity, and the composite layer resistance and the interface resistance can be reduced.

 塗布工程において、導電剤を塗布する方法は特に限定されない。例えば、塗布工程において、導電剤を分散した分散液を塗布し、乾燥してもよい。即ち、塗布工程は、導電剤を分散した分散液を塗布し、乾燥する工程であってもよい。また、塗布工程において、超音波を印加することが好ましい。超音波を印加することで、導電剤を電極10,20内の空隙に侵入させることができ、より抵抗を低減することができる。これによって、電極の状態をより改善し、回復させることができる。 In the coating process, the method of coating the conductive agent is not particularly limited. For example, in the coating process, a dispersion liquid in which the conductive agent is dispersed may be applied and dried. That is, the coating process may be a process in which a dispersion liquid in which the conductive agent is dispersed is applied and dried. In addition, it is preferable to apply ultrasonic waves in the coating process. By applying ultrasonic waves, the conductive agent can penetrate into the gaps in the electrodes 10 and 20, and the resistance can be further reduced. This can further improve and restore the condition of the electrodes.

 第2工程S2Aでは、塗布工程後の電極10,20を電極10,20の厚み方向に圧縮する。圧縮はロールプレスなど公知の手段で行うことができる。第2工程S2Aにおいて、加熱しながら電極10,20を圧縮することが好ましい。加熱しながらプレスすることで、結着剤13,23を軟化させて密着力をより再生しやすくすることができる。加熱温度は例えば、結着剤の融点以上~200℃以下である。 In the second step S2A, the electrodes 10, 20 after the application step are compressed in the thickness direction of the electrodes 10, 20. Compression can be performed by a known means such as a roll press. In the second step S2A, it is preferable to compress the electrodes 10, 20 while heating them. By pressing while heating, the binders 13, 23 can be softened, making it easier to restore the adhesive force. The heating temperature is, for example, from the melting point of the binder to 200°C.

 第2工程S2Aは、電極10,20の厚みを測定し、推定使用前厚みとの差分を算出する算出工程を更に含むことが好ましい。第2工程S2Aでは、算出工程で取得された差分だけ、電極10,20の厚みが減少するように、電極の厚み方向に圧縮することが好ましい。このように圧縮することで、充放電に伴う活物質の膨張収縮により減少した粒子間接触などを回復させることができる。 The second step S2A preferably further includes a calculation step of measuring the thickness of the electrodes 10, 20 and calculating the difference from the estimated thickness before use. In the second step S2A, it is preferable to compress the electrodes 10, 20 in the thickness direction so that the thickness of the electrodes 10, 20 is reduced by the difference obtained in the calculation step. By compressing in this manner, it is possible to restore interparticle contact and the like that has been reduced due to the expansion and contraction of the active material associated with charging and discharging.

 以上説明したように、第2実施形態に係る活物質の分離方法によれば、粒子の密着度低下による抵抗増大の回復が可能となる。 As described above, the active material separation method according to the second embodiment makes it possible to recover from the increase in resistance caused by a decrease in particle adhesion.

 なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能である。 The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. In addition, the components in the above-described embodiment can be replaced with well-known components as appropriate without departing from the spirit of the present invention.

 本開示の回復方法によれば、粒子の密着度低下による抵抗増大の回復が可能となるので、産業上の利用可能性が高い。 The recovery method disclosed herein makes it possible to recover from the increase in resistance caused by a decrease in particle adhesion, and is therefore highly applicable industrially.

10 正極、11 正極活物質、12 正極導電助剤、13 正極結着剤、14 正極集電体、20 負極、21 負極活物質、22 負極導電助剤、23 負極結着剤、24 負極集電体、S1 第1工程、S2 第2工程 10 Positive electrode, 11 Positive electrode active material, 12 Positive electrode conductive additive, 13 Positive electrode binder, 14 Positive electrode current collector, 20 Negative electrode, 21 Negative electrode active material, 22 Negative electrode conductive additive, 23 Negative electrode binder, 24 Negative electrode current collector, S1 First step, S2 Second step

Claims (10)

 使用済み蓄電装置の電極の回復方法であって、
 前記電極の状態を評価する第1工程と、
 前記電極を前記電極の厚み方向に圧縮する第2工程と、
を含む、電極の回復方法。
A method for recovering electrodes of a used electricity storage device, comprising the steps of:
a first step of evaluating the condition of the electrode;
a second step of compressing the electrode in a thickness direction of the electrode;
A method for recovering an electrode, comprising:
 前記第1工程が、前記電極の抵抗成分を測定する工程をさらに含む、請求項1に記載の電極の回復方法。 The electrode recovery method according to claim 1, wherein the first step further includes a step of measuring the resistance component of the electrode.  前記抵抗成分が前記電極の合材層抵抗または界面抵抗である、請求項2に記載の電極の回復方法。 The electrode recovery method according to claim 2, wherein the resistance component is a composite layer resistance or an interface resistance of the electrode.  前記第2工程において、加熱をしながら圧縮する、請求項1に記載の電極の回復方法。 The electrode recovery method according to claim 1, in which the second step involves compressing while heating.  前記第2工程は、前記電極の厚みを測定し、推定使用前厚みとの差分を算出する算出工程を更に含み、
 前記第2工程では、前記算出工程で取得された前記差分だけ、前記電極の厚みが減少するように、前記厚み方向に圧縮する、請求項1に記載の電極の回復方法。
The second step further includes a calculation step of measuring the thickness of the electrode and calculating a difference between the thickness and an estimated thickness before use,
The electrode recovery method according to claim 1 , wherein in the second step, the electrode is compressed in the thickness direction so that the thickness of the electrode is reduced by the difference acquired in the calculation step.
 前記第2工程は、前記電極の表面に導電剤を塗布する塗布工程を更に含む、請求項1に記載の電極の回復方法。 The electrode recovery method according to claim 1, wherein the second step further includes a coating step of coating a conductive agent on the surface of the electrode.  前記導電剤が、炭素繊維である、請求項6に記載の電極の回復方法。 The method for recovering an electrode according to claim 6, wherein the conductive agent is carbon fiber.  前記塗布工程は、前記導電剤を分散した分散液を塗布し、乾燥する工程である、請求項6に記載の電極の回復方法。 The electrode recovery method according to claim 6, wherein the coating step is a step of coating a dispersion liquid in which the conductive agent is dispersed, and drying the dispersion liquid.  前記塗布工程において、前記電極に超音波を印加する、請求項8に記載の電極の回復方法。 The electrode recovery method according to claim 8, wherein ultrasonic waves are applied to the electrode during the application process.  請求項1~9のいずれか1項に記載の電極の回復方法で得られる、蓄電装置用電極。 An electrode for a power storage device obtained by the electrode recovery method described in any one of claims 1 to 9.
PCT/JP2024/012993 2023-03-31 2024-03-29 Electrode recovery method and electrode for power storage device WO2024204686A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023057930 2023-03-31
JP2023-057930 2023-03-31

Publications (1)

Publication Number Publication Date
WO2024204686A1 true WO2024204686A1 (en) 2024-10-03

Family

ID=92905826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/012993 WO2024204686A1 (en) 2023-03-31 2024-03-29 Electrode recovery method and electrode for power storage device

Country Status (1)

Country Link
WO (1) WO2024204686A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228510A (en) * 2005-02-16 2006-08-31 Gs Yuasa Corporation:Kk Reuse method of anode active material for nonaqueous electrolyte secondary battery
JP2019212482A (en) * 2018-06-05 2019-12-12 トヨタ自動車株式会社 Regeneration processing method for lithium ion secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228510A (en) * 2005-02-16 2006-08-31 Gs Yuasa Corporation:Kk Reuse method of anode active material for nonaqueous electrolyte secondary battery
JP2019212482A (en) * 2018-06-05 2019-12-12 トヨタ自動車株式会社 Regeneration processing method for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
Guerfi et al. LiFePO4 water-soluble binder electrode for Li-ion batteries
CN112802992B (en) Pole piece and lithium ion battery
JP6245228B2 (en) Inspection method for all-solid-state secondary battery and method for manufacturing all-solid-state secondary battery using the inspection method
KR20190017649A (en) All solid state battery and anode
JP7123251B2 (en) SECONDARY BATTERY ELECTRODE CONTAINING A DOUBLE-LAYER MIXTURE LAYER CONTAINING ACTIVE MATERIALS WITH DIFFERENT PARTICLES AND MANUFACTURING METHOD THEREOF
JP2020068170A (en) Method for manufacturing all-solid-state battery
US20170092988A1 (en) Method of manufacturing electrode laminate and method of manufacturing all-solid-state battery
US11334984B2 (en) Analysis method for crack rate of electrode active material of electrode for lithium secondary battery
KR102717687B1 (en) All solid state battery
JP2016072026A (en) Electric storage device manufacturing apparatus and electric storage device manufacturing method
JP2018181702A (en) Method of manufacturing all solid lithium ion secondary battery
US20240162444A1 (en) Electrode for secondary battery, method of manufacturing the same and secondary battery comprising the same
CN114300648A (en) A positive electrode plate and preparation method thereof, positive electrode plate, solid-state battery
JP2020140896A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
KR102735051B1 (en) All solid state battery
CN112881925B (en) Method for testing quick charge performance of anode material
WO2024204686A1 (en) Electrode recovery method and electrode for power storage device
JP2015072875A (en) Evaluation method of positive electrode
KR20210061928A (en) All-solid-state battery
CN114864921B (en) Negative electrode active material layer
JP7626122B2 (en) Electrode, battery, and method for producing electrode
JP6776978B2 (en) An all-solid-state lithium-ion secondary battery including a negative electrode for an all-solid-state lithium-ion secondary battery and its negative electrode.
JP7626112B2 (en) Electrode, battery, and method for producing electrode
JP7193671B1 (en) Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, battery module, and battery system using the same, method for manufacturing positive electrode for non-aqueous electrolyte secondary battery
KR102735052B1 (en) All solid state battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24780781

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2025511245

Country of ref document: JP