WO2024204433A1 - Method for manufacturing composite particles and electrode for electrochemical element - Google Patents
Method for manufacturing composite particles and electrode for electrochemical element Download PDFInfo
- Publication number
- WO2024204433A1 WO2024204433A1 PCT/JP2024/012439 JP2024012439W WO2024204433A1 WO 2024204433 A1 WO2024204433 A1 WO 2024204433A1 JP 2024012439 W JP2024012439 W JP 2024012439W WO 2024204433 A1 WO2024204433 A1 WO 2024204433A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composite particles
- electrode
- stirring
- less
- solvent
- Prior art date
Links
- 239000011246 composite particle Substances 0.000 title claims abstract description 188
- 238000004519 manufacturing process Methods 0.000 title claims description 46
- 238000000034 method Methods 0.000 title claims description 26
- 239000000203 mixture Substances 0.000 claims abstract description 84
- 238000005469 granulation Methods 0.000 claims abstract description 52
- 230000003179 granulation Effects 0.000 claims abstract description 52
- 239000011230 binding agent Substances 0.000 claims abstract description 44
- 239000000463 material Substances 0.000 claims abstract description 44
- 239000002904 solvent Substances 0.000 claims abstract description 44
- 239000007772 electrode material Substances 0.000 claims abstract description 41
- 239000000843 powder Substances 0.000 claims abstract description 41
- 238000013019 agitation Methods 0.000 claims abstract description 15
- 238000003756 stirring Methods 0.000 claims description 93
- 239000002245 particle Substances 0.000 claims description 46
- 239000007921 spray Substances 0.000 claims description 25
- 238000004513 sizing Methods 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 11
- 239000002482 conductive additive Substances 0.000 claims description 7
- 239000003125 aqueous solvent Substances 0.000 claims description 5
- 238000009835 boiling Methods 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 description 48
- 238000002156 mixing Methods 0.000 description 46
- 239000000178 monomer Substances 0.000 description 38
- 230000002093 peripheral effect Effects 0.000 description 36
- -1 etc.) Substances 0.000 description 29
- 239000007788 liquid Substances 0.000 description 25
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 23
- 238000011156 evaluation Methods 0.000 description 23
- 229910001416 lithium ion Inorganic materials 0.000 description 23
- 230000015572 biosynthetic process Effects 0.000 description 22
- 239000010410 layer Substances 0.000 description 22
- 238000005259 measurement Methods 0.000 description 21
- 239000007787 solid Substances 0.000 description 21
- 238000002360 preparation method Methods 0.000 description 19
- 239000007789 gas Substances 0.000 description 17
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 14
- 238000005336 cracking Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 13
- 239000003792 electrolyte Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 12
- 238000005984 hydrogenation reaction Methods 0.000 description 11
- 239000007774 positive electrode material Substances 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 239000012530 fluid Substances 0.000 description 9
- 238000006116 polymerization reaction Methods 0.000 description 9
- 238000007789 sealing Methods 0.000 description 9
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 8
- 238000005273 aeration Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 150000002848 norbornenes Chemical class 0.000 description 8
- 229920002554 vinyl polymer Polymers 0.000 description 8
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 7
- 150000001993 dienes Chemical class 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 239000006229 carbon black Substances 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 239000007773 negative electrode material Substances 0.000 description 5
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 239000005022 packaging material Substances 0.000 description 4
- 229920000058 polyacrylate Polymers 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- XBFJAVXCNXDMBH-UHFFFAOYSA-N tetracyclo[6.2.1.1(3,6).0(2,7)]dodec-4-ene Chemical compound C1C(C23)C=CC1C3C1CC2CC1 XBFJAVXCNXDMBH-UHFFFAOYSA-N 0.000 description 4
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical group C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical group [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical class CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 229910001290 LiPF6 Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000012644 addition polymerization Methods 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000007142 ring opening reaction Methods 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- 239000003115 supporting electrolyte Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- YAJYJWXEWKRTPO-UHFFFAOYSA-N 2,3,3,4,4,5-hexamethylhexane-2-thiol Chemical compound CC(C)C(C)(C)C(C)(C)C(C)(C)S YAJYJWXEWKRTPO-UHFFFAOYSA-N 0.000 description 2
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 2
- XUFPYLQWLKKGDQ-UHFFFAOYSA-N 4,4a,9,9a-tetrahydro-1,4-methano-1h-fluorene Chemical compound C12CC3=CC=CC=C3C1C1C=CC2C1 XUFPYLQWLKKGDQ-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229910001558 CF3SO3Li Inorganic materials 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004373 Pullulan Substances 0.000 description 2
- 229920001218 Pullulan Polymers 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000012295 chemical reaction liquid Substances 0.000 description 2
- 150000001934 cyclohexanes Chemical class 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000007580 dry-mixing Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011883 electrode binding agent Substances 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 239000011361 granulated particle Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052739 hydrogen Chemical group 0.000 description 2
- 239000001257 hydrogen Chemical group 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 2
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- UMCSHTKHXAMMQM-UHFFFAOYSA-N methyl 4-methyltetracyclo[6.2.1.13,6.02,7]dodec-9-ene-4-carboxylate Chemical compound C1C(C23)C=CC1C3C1CC2CC1(C)C(=O)OC UMCSHTKHXAMMQM-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 235000019423 pullulan Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 150000003440 styrenes Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- FMZITCJWMYHQFG-UHFFFAOYSA-N 1,2,3,4,4a,5,8,8a-octahydro-2-methyl-1,4:5,8-dimethanonaphthalene Chemical compound C1C(C23)C=CC1C3C1CC2CC1C FMZITCJWMYHQFG-UHFFFAOYSA-N 0.000 description 1
- GDXHBFHOEYVPED-UHFFFAOYSA-N 1-(2-butoxyethoxy)butane Chemical compound CCCCOCCOCCCC GDXHBFHOEYVPED-UHFFFAOYSA-N 0.000 description 1
- KXJGSNRAQWDDJT-UHFFFAOYSA-N 1-acetyl-5-bromo-2h-indol-3-one Chemical compound BrC1=CC=C2N(C(=O)C)CC(=O)C2=C1 KXJGSNRAQWDDJT-UHFFFAOYSA-N 0.000 description 1
- YBJCDTIWNDBNTM-UHFFFAOYSA-N 1-methylsulfonylethane Chemical compound CCS(C)(=O)=O YBJCDTIWNDBNTM-UHFFFAOYSA-N 0.000 description 1
- QEDJMOONZLUIMC-UHFFFAOYSA-N 1-tert-butyl-4-ethenylbenzene Chemical compound CC(C)(C)C1=CC=C(C=C)C=C1 QEDJMOONZLUIMC-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- SPSPIUSUWPLVKD-UHFFFAOYSA-N 2,3-dibutyl-6-methylphenol Chemical compound CCCCC1=CC=C(C)C(O)=C1CCCC SPSPIUSUWPLVKD-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- HXLLCROMVONRRO-UHFFFAOYSA-N 2-butoxyethenylbenzene Chemical compound CCCCOC=CC1=CC=CC=C1 HXLLCROMVONRRO-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- XCKPLVGWGCWOMD-YYEYMFTQSA-N 3-[[(2r,3r,4s,5r,6r)-6-[(2s,3s,4r,5r)-3,4-bis(2-cyanoethoxy)-2,5-bis(2-cyanoethoxymethyl)oxolan-2-yl]oxy-3,4,5-tris(2-cyanoethoxy)oxan-2-yl]methoxy]propanenitrile Chemical compound N#CCCO[C@H]1[C@H](OCCC#N)[C@@H](COCCC#N)O[C@@]1(COCCC#N)O[C@@H]1[C@H](OCCC#N)[C@@H](OCCC#N)[C@H](OCCC#N)[C@@H](COCCC#N)O1 XCKPLVGWGCWOMD-YYEYMFTQSA-N 0.000 description 1
- JYZKYCYHXBQTCY-UHFFFAOYSA-N 3-methoxycarbonylbicyclo[2.2.1]hept-5-ene-2-carboxylic acid Chemical compound C1C2C=CC1C(C(=O)OC)C2C(O)=O JYZKYCYHXBQTCY-UHFFFAOYSA-N 0.000 description 1
- ZNBNBTIDJSKEAM-UHFFFAOYSA-N 4-[7-hydroxy-2-[5-[5-[6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl]-5-methyloxolan-2-yl]-2,8-dimethyl-1,10-dioxaspiro[4.5]decan-9-yl]-2-methyl-3-propanoyloxypentanoic acid Chemical compound C1C(O)C(C)C(C(C)C(OC(=O)CC)C(C)C(O)=O)OC11OC(C)(C2OC(C)(CC2)C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CC1 ZNBNBTIDJSKEAM-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- KSEUIMCJKBBLJV-UHFFFAOYSA-N 4-propylbicyclo[2.2.1]hept-5-en-2-ol Chemical compound C1C(O)C2C=CC1(CCC)C2 KSEUIMCJKBBLJV-UHFFFAOYSA-N 0.000 description 1
- JGLIHSMBVDZMSA-UHFFFAOYSA-N 5-(cyclohexen-1-yl)bicyclo[2.2.1]hept-2-ene Chemical compound C1=CC2CC1CC2C1=CCCCC1 JGLIHSMBVDZMSA-UHFFFAOYSA-N 0.000 description 1
- POSPFJFAPNOQDO-UHFFFAOYSA-N 5-(cyclopenten-1-yl)bicyclo[2.2.1]hept-2-ene Chemical compound C1CCC=C1C1C(C=C2)CC2C1 POSPFJFAPNOQDO-UHFFFAOYSA-N 0.000 description 1
- LUMNWCHHXDUKFI-UHFFFAOYSA-N 5-bicyclo[2.2.1]hept-2-enylmethanol Chemical compound C1C2C(CO)CC1C=C2 LUMNWCHHXDUKFI-UHFFFAOYSA-N 0.000 description 1
- YSWATWCBYRBYBO-UHFFFAOYSA-N 5-butylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CCCC)CC1C=C2 YSWATWCBYRBYBO-UHFFFAOYSA-N 0.000 description 1
- LVXDMUDXBUNBQY-UHFFFAOYSA-N 5-cyclohexylbicyclo[2.2.1]hept-2-ene Chemical compound C1=CC2CC1CC2C1CCCCC1 LVXDMUDXBUNBQY-UHFFFAOYSA-N 0.000 description 1
- DGBJYYFKBCUCNY-UHFFFAOYSA-N 5-cyclopentylbicyclo[2.2.1]hept-2-ene Chemical compound C1CCCC1C1C(C=C2)CC2C1 DGBJYYFKBCUCNY-UHFFFAOYSA-N 0.000 description 1
- VTWPBVSOSWNXAX-UHFFFAOYSA-N 5-decylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CCCCCCCCCC)CC1C=C2 VTWPBVSOSWNXAX-UHFFFAOYSA-N 0.000 description 1
- INYHZQLKOKTDAI-UHFFFAOYSA-N 5-ethenylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C=C)CC1C=C2 INYHZQLKOKTDAI-UHFFFAOYSA-N 0.000 description 1
- QHJIJNGGGLNBNJ-UHFFFAOYSA-N 5-ethylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CC)CC1C=C2 QHJIJNGGGLNBNJ-UHFFFAOYSA-N 0.000 description 1
- OJOWICOBYCXEKR-UHFFFAOYSA-N 5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=CC)CC1C=C2 OJOWICOBYCXEKR-UHFFFAOYSA-N 0.000 description 1
- WMWDGZLDLRCDRG-UHFFFAOYSA-N 5-hexylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(CCCCCC)CC1C=C2 WMWDGZLDLRCDRG-UHFFFAOYSA-N 0.000 description 1
- PCBPVYHMZBWMAZ-UHFFFAOYSA-N 5-methylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C)CC1C=C2 PCBPVYHMZBWMAZ-UHFFFAOYSA-N 0.000 description 1
- PGNNHYNYFLXKDZ-UHFFFAOYSA-N 5-phenylbicyclo[2.2.1]hept-2-ene Chemical compound C1=CC2CC1CC2C1=CC=CC=C1 PGNNHYNYFLXKDZ-UHFFFAOYSA-N 0.000 description 1
- CJQNJRMLJAAXOS-UHFFFAOYSA-N 5-prop-1-enylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C=CC)CC1C=C2 CJQNJRMLJAAXOS-UHFFFAOYSA-N 0.000 description 1
- CSRQAJIMYJHHHQ-UHFFFAOYSA-N 9-ethylidenetetracyclo[6.2.1.13,6.02,7]dodec-4-ene Chemical compound C1C(C23)C=CC1C3C1CC2CC1=CC CSRQAJIMYJHHHQ-UHFFFAOYSA-N 0.000 description 1
- FBZNZJCZXOHDHW-UHFFFAOYSA-N C12CC3=CC=CC=C3CC2C2CC1C=C2 Chemical compound C12CC3=CC=CC=C3CC2C2CC1C=C2 FBZNZJCZXOHDHW-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- 229910020632 Co Mn Inorganic materials 0.000 description 1
- 229910020680 Co—Ni—Mn Inorganic materials 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- 229920001780 ECTFE Polymers 0.000 description 1
- 229910008163 Li1+x Mn2-x O4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910018058 Ni-Co-Al Inorganic materials 0.000 description 1
- 229910018102 Ni-Mn-Al Inorganic materials 0.000 description 1
- 229910018144 Ni—Co—Al Inorganic materials 0.000 description 1
- 229910018548 Ni—Mn—Al Inorganic materials 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- IGHHPVIMEQGKNE-UHFFFAOYSA-N [3-(hydroxymethyl)-2-bicyclo[2.2.1]hept-5-enyl]methanol Chemical compound C1C2C=CC1C(CO)C2CO IGHHPVIMEQGKNE-UHFFFAOYSA-N 0.000 description 1
- DSHXMENPUICESR-UHFFFAOYSA-N [5-(hydroxymethyl)-5-bicyclo[2.2.1]hept-2-enyl]methanol Chemical compound C1C2C(CO)(CO)CC1C=C2 DSHXMENPUICESR-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- BMAXQTDMWYDIJX-UHFFFAOYSA-N bicyclo[2.2.1]hept-2-ene-5-carbonitrile Chemical compound C1C2C(C#N)CC1C=C2 BMAXQTDMWYDIJX-UHFFFAOYSA-N 0.000 description 1
- NIDNOXCRFUCAKQ-UHFFFAOYSA-N bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2C(O)=O NIDNOXCRFUCAKQ-UHFFFAOYSA-N 0.000 description 1
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- GNGHYFMQCBTLSA-UHFFFAOYSA-N ethyl 5-methylbicyclo[2.2.1]hept-2-ene-5-carboxylate Chemical compound C1C2C(C(=O)OCC)(C)CC1C=C2 GNGHYFMQCBTLSA-UHFFFAOYSA-N 0.000 description 1
- FCCGTJAGEHZPBF-UHFFFAOYSA-N ethyl bicyclo[2.2.1]hept-2-ene-5-carboxylate Chemical compound C1C2C(C(=O)OCC)CC1C=C2 FCCGTJAGEHZPBF-UHFFFAOYSA-N 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 238000009775 high-speed stirring Methods 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 229910000378 hydroxylammonium sulfate Inorganic materials 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003703 image analysis method Methods 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 229910001547 lithium hexafluoroantimonate(V) Inorganic materials 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 229910001537 lithium tetrachloroaluminate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- ILXAVRFGLBYNEJ-UHFFFAOYSA-K lithium;manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[O-]P([O-])([O-])=O ILXAVRFGLBYNEJ-UHFFFAOYSA-K 0.000 description 1
- CJYZTOPVWURGAI-UHFFFAOYSA-N lithium;manganese;manganese(3+);oxygen(2-) Chemical compound [Li+].[O-2].[O-2].[O-2].[O-2].[Mn].[Mn+3] CJYZTOPVWURGAI-UHFFFAOYSA-N 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- AEBDJCUTXUYLDC-UHFFFAOYSA-N methyl 5-methylbicyclo[2.2.1]hept-2-ene-5-carboxylate Chemical compound C1C2C(C(=O)OC)(C)CC1C=C2 AEBDJCUTXUYLDC-UHFFFAOYSA-N 0.000 description 1
- RMAZRAQKPTXZNL-UHFFFAOYSA-N methyl bicyclo[2.2.1]hept-2-ene-5-carboxylate Chemical compound C1C2C(C(=O)OC)CC1C=C2 RMAZRAQKPTXZNL-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 239000002530 phenolic antioxidant Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229940096992 potassium oleate Drugs 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- MLICVSDCCDDWMD-KVVVOXFISA-M potassium;(z)-octadec-9-enoate Chemical compound [K+].CCCCCCCC\C=C/CCCCCCCC([O-])=O MLICVSDCCDDWMD-KVVVOXFISA-M 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000001256 steam distillation Methods 0.000 description 1
- 229920003047 styrene-styrene-butadiene-styrene Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WHNYVDJJCTVMGO-UHFFFAOYSA-N tricyclo[5.2.1.02,6]dec-8-ene Chemical compound C1=CC2CC1C1C2CCC1 WHNYVDJJCTVMGO-UHFFFAOYSA-N 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a method for producing composite particles and electrodes for electrochemical devices.
- Electrochemical elements such as lithium-ion secondary batteries are small, lightweight, have high energy density, and can be repeatedly charged and discharged, making them suitable for a wide range of applications.
- Electrodes for electrochemical elements have a structure in which an electrode mixture layer is disposed on an electrode substrate, the electrode mixture layer containing an electrode active material as the main component and, as necessary, other components such as a conductive assistant and a binder in order to impart specific functions such as electrical conductivity, adhesion, and flexibility to the electrode. From the viewpoint of improving the performance of electrochemical elements, it is preferable that the electrode active material and other components are uniformly dispersed in the electrode mixture layer.
- Methods that have been considered for forming an electrode mixture layer include a method in which a slurry composition containing an electrode active material, a conductive assistant, a binder, and a solvent is applied to an electrode substrate and then dried to form an electrode mixture layer, and a method in which a slurry composition containing an electrode active material, a conductive assistant, a binder, and a solvent is spray-dried to obtain composite particles, and the obtained composite particles are pressure-molded onto an electrode substrate to form an electrode mixture layer.
- Patent Document 1 a method of spray-drying a slurry composition as described above (see, for example, Patent Document 1); a fluidized bed granulation method in which powder is granulated in a state suspended in a fluid such as an air current blown up from below (see, for example, Patent Document 2); and a granulation method that includes stirring the electrode active material and binder and then crushing them (see, for example, Patent Document 3).
- an object of the present invention is to provide a method for producing composite particles that can increase the flexibility of an electrode, suppress cracking of the electrode active material in the electrode, and further improve the cycle characteristics of an electrochemical element equipped with such an electrode.
- Another object of the present invention is to provide a method for producing an electrode for an electrochemical device by using the composite particles obtained according to the production method of the present invention.
- the present inventors have conducted extensive research with the aim of solving the above problems.
- the present inventors have newly discovered that by forming composite particles by adding a composition containing a binder, a conductive assistant, and a solvent under stirring conditions, it is possible to manufacture composite particles that can improve the properties of the resulting electrodes and electrochemical elements, as described above, and have completed the present invention.
- a method for producing composite particles comprising the steps of: In a granulation tank equipped with two or more agitating blades having different agitation shafts, (i) stirring a powder material containing an electrode active material to bring it into a stirred state; (ii) adding a composition containing a binder, a conductive assistant, and a solvent to the powder material in a stirred state to form composite particles;
- the means for adding the composition in step (ii) is a spray nozzle.
- step (ii) In the method for producing composite particles described in [1] or [2] above, after the step (ii), a step (iii) of sizing the composite particles by stirring the particles after the addition of the composition is completed can be carried out.
- step (iii) In the method for producing composite particles described in [3] above, it is preferable to add a conductive assistant in step (iii). By adding a conductive assistant in step (iii), the properties of the resulting composite particles can be further improved.
- the powder material in step (i) preferably contains a conductive assistant.
- the conductive assistant By stirring the conductive assistant together with the electrode active material in step (i) and then carrying out step (ii), the properties of the resulting composite particles can be further improved.
- the solvent contained in the composition is a non-aqueous solvent having a boiling point of 95°C or less at 1 atm.
- the present invention also aims to advantageously solve the above problems, and the method for producing an electrode for an electrochemical element of the present invention is characterized by comprising the steps of producing composite particles according to any one of the methods for producing composite particles described in any one of [1] to [6] above, and pressure-molding the produced composite particles on an electrode substrate to form an electrode mixture layer.
- An electrode comprising an electrode mixture layer formed using composite particles obtained according to any one of the methods for producing composite particles described above has excellent flexibility, is less susceptible to cracking of the electrode active material contained therein, and can further improve the cycle characteristics of an electrochemical element comprising such an electrode.
- the present invention it is possible to provide a method for producing composite particles that can increase the flexibility of an electrode, suppress cracking of the electrode active material in the electrode, and further improve the cycle characteristics of an electrochemical element provided with such an electrode. Furthermore, according to the present invention, there can be provided a method for producing an electrode for an electrochemical device by using the composite particles obtained according to the production method of the present invention.
- FIG. 2 is a top view of an example of a granulation tank. 2 is a cross-sectional view taken along the line AA shown in FIG. 1.
- the method for producing composite particles of the present invention it is possible to efficiently provide composite particles that can be advantageously used as a compounding component of an electrode mixture layer provided in an electrode of an electrochemical device such as a secondary battery. Also, the method for producing an electrode for an electrochemical device of the present invention includes pressure molding the composite particles obtained according to the production method of the present invention.
- the method for producing composite particles of the present invention includes the steps of: (i) stirring a powder material containing an electrode active material to bring it into a stirred state; (ii) adding a composition containing a binder, a conductive additive, and a solvent to the powder material in a stirred state to form composite particles;
- the method is characterized in that the above steps (i) to (ii) are carried out in this order in a granulation tank equipped with two or more stirring blades having different stirring shafts.
- step (i) to (ii) it is possible to provide composite particles that can increase the flexibility of the electrode, suppress cracking of the electrode active material in the electrode, and improve the cycle characteristics of an electrochemical device equipped with such an electrode. Furthermore, optionally, following the above step (ii), a step (iii) of regulating the size of the composite particles by stirring them after the addition of the composition is completed may be carried out.
- the granulation tank needs to be provided with two or more stirring blades with different stirring shafts.
- the uniformity of the composition of the composite particles obtained is increased, and as a result, the cycle characteristics of an electrochemical element equipped with an electrode formed using such composite particles can be improved.
- An example of a granulation tank will be described with reference to Figs. 1 and 2.
- Fig. 1 is a top view of the granulation tank 1
- Fig. 2 is a cross-sectional view along the A-A section line shown in Fig. 1.
- the granulation tank 1 is provided with a main stirring blade 2 and a sub-stirring blade 3 having a stirring shaft different from that of the main stirring blade 2.
- the number of stirring blades is not particularly limited as long as it is two or more. By providing two or more stirring blades, the uniformity of the composition of the composite particles can be increased, and the cycle characteristics of an electrochemical element equipped with an electrode formed using such composite particles can be improved.
- the granulation tank 1 has at least one supply means capable of supplying a liquid composition.
- supply means include a spray nozzle configured to be able to supply a mist of liquid, and a drip funnel.
- the number of supply means is not particularly limited, but multiple supply means may be arranged separately from each other depending on the size of the granulation tank.
- the granulation tank 1 may have a supply port for the powder material and a discharge port configured to be able to discharge the formed composite particles.
- the stirring shaft of the main stirring blade 2 is shown by a dashed line as the first stirring shaft RA1
- the stirring shaft of the auxiliary stirring blade is shown by a dashed line as the second stirring shaft RA2.
- the angle ⁇ between the first stirring shaft RA1 and the second stirring shaft RA2 is approximately 90 degrees.
- the angle between the first stirring shaft RA1 and the second stirring shaft RA2 refers to the acute angle between the angles formed by these two axes.
- “different stirring shafts” means that the angle ⁇ between the stirring shafts is 20° or more and 90° or less.
- the angle ⁇ between the stirring shafts is preferably 30° or more, more preferably 45° or more, and even more preferably 85° or more.
- the powder material can be effectively stirred, and the particle size and coefficient of variation of the resulting composite particles can be well controlled.
- the flexibility of the electrode formed using such composite particles and cracking of the electrode active material in the electrode can be suppressed, and the cycle characteristics of the resulting electrochemical element can be improved.
- the "coefficient of variation” refers to the coefficient of variation of the area-equivalent diameter of the composite particles, and is an index that represents the breadth of the particle size distribution.
- the coefficient of variation of the area-equivalent diameter can be calculated as a percentage by dividing the standard deviation of the area-equivalent diameter of the composite particles by the average value of the area-equivalent diameter, according to the method described in the examples of this specification.
- the shape of the granulation tank is not particularly limited as long as it can accommodate the powder material containing the electrode active material for a predetermined period of time and can be stirred by at least two stirring blades.
- the shape of the granulation tank may be cylindrical, with the bottom and top surfaces being circular and the upper part tapered in the height direction, as in the granulation tank 1 shown in Figures 1 and 2.
- one of the at least two stirring shafts may coincide with the central axis of the cylinder, and the other stirring shaft may coincide with a direction perpendicular to the central axis.
- the value obtained by dividing the diameter of the bottom by the height (diameter/height) is preferably 0.1 or more, more preferably 0.3 or more, even more preferably 0.5 or more, preferably 2.5 or less, more preferably 2.0 or less, and even more preferably 1.5 or less. This is because the powder material can be effectively stirred.
- the main agitator 2 has three main blades 21.
- the shape and number of the main blades 21 are not particularly limited.
- the auxiliary agitator 3 has two auxiliary blades 31.
- the auxiliary blades 31 are illustrated as anchor blades in Figures 1 and 2, but are not limited to this.
- the number of auxiliary blades 31 is also not limited to the illustrated form, and may be one, or three or more.
- the granulation tank 1 may be equipped with a ventilation mechanism (not shown) configured to ventilate air and thereby suppress the mixing of powder material into each drive part of the main agitator 2 and the auxiliary agitator 3.
- Examples of granulation tanks that satisfy the above conditions include the high-speed mixer manufactured by EarthTechnica, the Henschel mixer manufactured by Mitsui Mining (now the FM mixer manufactured by Nippon Coke Company), the vertical granulator manufactured by Powrex, the CF granulator manufactured by Freund Corporation, the high-speed stirring and mixing granulator manufactured by Nara Machinery Works, the SP granulator manufactured by Dalton, and the balance granulator manufactured by Freund Corporation.
- the powder material is stirred to a stirred state.
- the powder material needs to contain an electrode active material, and may optionally contain a conductive assistant.
- the positive electrode active material is not particularly limited, and examples thereof include lithium-containing cobalt oxide (lithium cobalt oxide, LiCoO 2 ), lithium manganese oxide (LiMn 2 O 4 ), lithium-containing nickel oxide (LiNiO 2 ), Co—Ni—Mn lithium-containing composite oxide (Li(Co Mn Ni)O 2 ), Ni—Mn—Al lithium-containing composite oxide, Ni—Co—Al lithium-containing composite oxide, olivine-type lithium iron phosphate (LiFePO 4 ), olivine-type lithium manganese phosphate (LiMnPO 4 ), Li 2 MnO 3 -LiNiO 2 solid solution, lithium-excess spinel compound represented by Li 1+x Mn 2-x O 4 (0 ⁇ X ⁇ 2), Li[Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ]O 2 , LiNi 0.5 Mn 1.5 O 4 , and other known positive electrode active materials.
- the negative electrode active material include carbon-based negative electrode active materials
- the particle diameter of the electrode active material is preferably 0.03 ⁇ m or more, more preferably 0.1 ⁇ m or more, even more preferably 0.5 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 30 ⁇ m or less.
- the particle diameter of the electrode active material can be measured by a laser diffraction method. More specifically, in the particle diameter distribution (volume basis) measured using a laser diffraction type particle diameter distribution measuring device, the particle diameter D50 at which the cumulative volume calculated from the small diameter side is 50% is set as the volume average particle diameter, and this value preferably satisfies the above particle diameter range.
- the particle diameter of the electrode active material is equal to or less than the above upper limit, the composition within the composite particle can be made more homogeneous. Furthermore, if the particle diameter of the electrode active material is equal to or less than the above upper limit, the electrode density of the obtained electrode can be increased, and the specific surface area of the electrode active material is sufficiently large, so that the electrochemical reaction when forming an electrochemical element can be optimized. If the particle size of the electrode active material is equal to or greater than the lower limit, the powder material can be easily handled when used to manufacture the composite particles, and the productivity of the composite particles can be improved. Furthermore, if the particle size of the electrode active material is equal to or greater than the lower limit, deterioration of the electrode active material during repeated charging and discharging of the electrochemical device can be effectively suppressed.
- the conductive assistant material is not particularly limited, and examples thereof include carbon black (e.g., acetylene black, Ketjen Black (registered trademark), furnace black, etc.), single-walled or multi-walled carbon nanotubes (multi-walled carbon nanotubes include cup-stacked types), carbon nanohorns, vapor-grown carbon fibers, milled carbon fibers obtained by crushing polymer fibers after firing, and single-walled or multi-walled graphene. These can be used alone or in combination.
- carbon black e.g., acetylene black, Ketjen Black (registered trademark), furnace black, etc.
- single-walled or multi-walled carbon nanotubes include cup-stacked types
- carbon nanohorns vapor-grown carbon fibers
- milled carbon fibers obtained by crushing polymer fibers after firing and single-walled or multi-walled graphene.
- the mixing ratio of these is not particularly limited, and can be the general mixing ratio of these contained in electrodes for electrochemical elements.
- the solid content concentration of the powder material at the start of the preliminary mixing operation is likely to be less than 100% by mass. From the viewpoint of improving the properties of the composite particles obtained and the production efficiency of the composite particles, it is preferable to increase the solid content concentration of the powder material by performing the preliminary mixing operation.
- the solid content concentration of the powder material at the end of the preliminary mixing operation is preferably 95% by mass or more, more preferably 97% by mass or more, and even more preferably 98% by mass or more.
- the solid content concentration of the powder material can be measured by the method described in the Examples.
- the peripheral speed of the main stirring blade and the auxiliary stirring blade in the preliminary stirring operation is preferably 1 m/s or more and 20 m/s or less. If the peripheral speed is within this range, the homogeneity of the composition of the obtained composite particles can be increased, thereby suppressing cracking of the electrode active material in the obtained electrode, and ultimately improving the cycle characteristics of an electrochemical element equipped with such an electrode.
- the peripheral speeds of the main stirring blade and the auxiliary stirring blade in the preliminary stirring operation may be the same or different, and may be different, but if they are different, it is preferable that the peripheral speed of the auxiliary stirring blade is faster than the peripheral speed of the main stirring blade.
- the aeration amount in the preliminary mixing operation is preferably 0.1/min to 100/min, calculated by dividing the flow rate of the air flowing into the granulation tank by the volume of the granulation tank (flow rate/volume). If the aeration amount is within this range, the solid content concentration of the powder material can be increased satisfactorily in the preliminary mixing operation.
- the aeration amount may be the amount of aeration provided by the ventilation mechanism for preventing the powder material from entering the drive parts of the main mixing blade and the auxiliary mixing blade, as described above.
- the temperature of the ventilated air is preferably less than 50°C, more preferably 45°C or less, even more preferably 40°C or less, and particularly preferably 30°C or less.
- pre-mixing time is not particularly limited.
- the pre-mixing time is preferably a time that allows the solids concentration to be equal to or greater than the preferred threshold value described above.
- the pre-mixing time may be 5 minutes or more and 60 minutes or less.
- the preliminary mixing operation may be carried out in multiple stages. In that case, it is preferable to carry out a preliminary mixing operation using a mixing device (hereinafter also referred to as "mixing device A") different from the granulation tank equipped with the above-mentioned mixing blades prior to the preliminary mixing operation in the granulation tank equipped with the above-mentioned mixing blades.
- the mixing device A is not particularly limited as long as it is a mixing device different from the granulation tank equipped with the above-mentioned mixing blades, and examples thereof include a dry mixing device and a wet mixing device.
- a dry mixing device for example, Miracle KCK manufactured by Asada Iron Works, and Hybridization System manufactured by Nara Machinery Co., Ltd. can be used.
- a wet mixing device for example, Planetary Despa manufactured by Asada Iron Works can be used.
- the rate characteristics of the obtained electrochemical element can be improved. This is thought to be because the volume resistivity of the obtained composite particles can be reduced by carrying out the preliminary mixing operation using the mixing device A.
- a composition containing a binder, a conductive assistant, and a solvent is added to the powder material in a stirring state to form composite particles.
- the binder is not particularly limited, and can be any suitable binder. Known binders that can be blended in electrodes for chemical elements can be used.
- the composite particle forming operation when a composition containing a binder, a conductive assistant, and a solvent is added to a powder material, The manner of addition is not particularly limited as long as it is a manner other than lump-sum addition.
- the manner of addition may be a continuous addition throughout the composite particle formation operation, or a manner in which addition is stopped once or multiple times during the composite particle formation operation.
- a continuous addition mode is preferable. That is, while the composite particle forming operation is being performed, that is, while the powder material, the solvent, the conductive assistant, and the binder are all added, the continuous addition mode is preferable. In an atmosphere in which both are kept in a state of agitation, composite particles of the powder material and binder are gradually formed, and the particles and the particles collide with each other and with the solvent, resulting in a granulation effect. . In other words, during the composite particle formation operation, the composite particle formation action and the particle size regulation action can proceed simultaneously in the presence of a solvent. It can be formed while granulating.
- the means for adding the composition containing the binder, the conductive assistant, and the solvent to the powder material include a spray nozzle and a dropping funnel.
- a spray nozzle it is preferable to use a spray nozzle.
- the gas-liquid ratio is preferably 1.30 or more, more preferably 1.40 or more, even more preferably 1.45 or more, preferably 1.80 or less, more preferably 1.70 or less, and even more preferably 1.60 or less.
- the particle size of the composite particles can be suppressed from becoming too large.
- the gas-liquid ratio is equal to or less than the upper limit, the particle size of the composite particles can be suppressed from becoming too small.
- the value of the spray surface density (g/ mm2 /min), which is a value corresponding to the amount of the composition sprayed per unit area on the stationary surface, is preferably 0.20 (g/ mm2 /min) or more, more preferably 0.25 (g/ mm2 /min) or more, even more preferably 0.38 (g/ mm2 /min) or more, preferably 0.60 (g/ mm2 /min) or less, more preferably 0.50 (g/ mm2 /min) or less, and even more preferably 0.41 (g/ mm2 /min) or less.
- the particle size of the composite particles can be prevented from becoming excessively small. That is, by controlling the gas-liquid ratio and/or the spray surface density to an appropriate range, the particle size of the obtained composite particles can be well controlled.
- binder examples include conjugated diene polymers, acrylic polymers, aromatic vinyl block polymers, fluorine polymers, cellulose polymers, cyclic olefin polymers, etc.
- the binders may be used alone or in combination of two or more.
- Conjugated diene polymers refer to polymers containing conjugated diene monomer units.
- Specific examples of conjugated diene polymers include, but are not limited to, copolymers containing aromatic vinyl monomer units and aliphatic conjugated diene monomer units, such as styrene-butadiene copolymer (SBR), butadiene rubber (BR), acrylic rubber (NBR) (copolymers containing acrylonitrile units and butadiene units), and hydrogenated versions of these.
- SBR styrene-butadiene copolymer
- BR butadiene rubber
- NBR acrylic rubber
- the acrylic polymer is not particularly limited, and examples thereof include polymers containing crosslinkable monomer units, (meth)acrylic acid ester monomer units, and acidic group-containing monomer units.
- the proportion of (meth)acrylic acid ester monomer units in the acrylic polymer is preferably 50% by mass or more, more preferably 55% by mass or more, and even more preferably 58% by mass or more, and is preferably 98% by mass or less, more preferably 97% by mass or less, and even more preferably 96% by mass or less.
- Aromatic vinyl block polymers include block polymers containing block regions consisting of aromatic vinyl monomer units.
- aromatic vinyl monomers include styrene, styrene sulfonic acid and its salts, ⁇ -methylstyrene, p-t-butylstyrene, butoxystyrene, vinyltoluene, chlorostyrene, and vinylnaphthalene, with styrene being preferred.
- Preferred examples of aromatic vinyl block polymers include styrene-isoprene-styrene block copolymers, and styrene-butadiene-styrene copolymers, as well as hydrogenated versions of these.
- fluorine-based polymer refers to a polymer that contains fluorine-containing monomer units and may further contain fluorine-free monomer units (fluorine-free monomers).
- fluorine-containing monomers include, but are not limited to, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, vinyl trifluoride, vinyl fluoride, trifluoroethylene, trifluorochloroethylene, 2,3,3,3-tetrafluoropropene, and perfluoroalkyl vinyl ether.
- fluorine-based polymers include, but are not limited to, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxy fluororesin, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer (vinylidene fluoride-hexafluoropropylene copolymer), and the like.
- Cellulosic polymers include, but are not limited to, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose, pullulan, and carboxymethyl cellulose.
- Cyclic olefin polymers are not particularly limited, and examples include polymers (addition polymers or ring-opening polymers) synthesized using cyclic olefin compounds as monomers and their hydrogenated products, as well as hydrogenated polymers using aromatic vinyl compounds as monomers.
- additional polymers or ring-opening polymers synthesized using cyclic olefin compounds as monomers and their hydrogenated products
- hydrogenated ring-opening polymers using cyclic olefin compounds as monomers and hydrogenated polymers using aromatic vinyl compounds as monomers are preferred, since the electrolyte swelling degree and glass transition temperature can be easily adjusted to appropriate levels.
- the cyclic olefin compound is not particularly limited and may be, for example, norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-hexylnorbornene, 5-decylnorbornene, 5-cyclohexylnorbornene, 5-cyclopentylnorbornene, and other unsubstituted or alkyl group-containing norbornenes; Norbornenes having an alkenyl group, such as 5-ethylidenenorbornene, 5-vinylnorbornene, 5-propenylnorbornene, 5-cyclohexenylnorbornene, and 5-cyclopentenylnorbornene; norbornenes having an aromatic ring, such as 5-phenylnorbornene; norbornenes having a polar group containing an oxygen atom, such as 5-methoxycarbonylnorbornene, 5-ethoxycarbonyln
- non-polar norbornene monomers are preferred as cyclic olefin compounds, and norbornenes having unsubstituted or alkyl groups (e.g., norbornene, 8-ethyltetracyclododecene), norbornenes having alkenyl groups (e.g., ethylidenetetracyclododecene (8-ethylidenetetracyclododecene)), dicyclopentadiene, norbornene derivatives having aromatic rings (e.g., tetracyclo[9.2.1.02,10.03,8]tetradeca-3,5,7,12-tetraene (also called 1,4-methano-1,4,4a,9a-tetrahydro-9H-fluorene)), and tetracyclododecenes having unsubstituted or alkyl groups (e.g., tetracyclododecene, 8
- the polymer using a cyclic olefin compound as a monomer may be a polymer using only a cyclic olefin compound as a monomer, or may be a polymer using a cyclic olefin compound and a copolymerizable compound other than a cyclic olefin compound as monomers, but is preferably a polymer using only a cyclic olefin compound as a monomer.
- the polymer using a cyclic olefin compound as a monomer is preferably a polymer using tetracyclododecene, dicyclopentadiene, and norbornene as monomers, and more preferably a ring-opening polymer using tetracyclododecene, dicyclopentadiene, and norbornene as monomers.
- the solvent is not particularly limited, and any solvent can be used as long as it can dissolve or disperse the binder.
- organic solvents such as N-methyl-2-pyrrolidone, cyclohexane, n-hexane, acetone, methyl ethyl ketone, ethyl acetate, tetrahydrofuran, methylene chloride, and chloroform, and water can be used as the solvent.
- organic solvents such as N-methyl-2-pyrrolidone, cyclohexane, n-hexane, acetone, methyl ethyl ketone, ethyl acetate, tetrahydrofuran, methylene chloride, and chloroform
- water can be used as the solvent.
- a non-aqueous solvent having a boiling point of 95° C. or less at 1 atm.
- the boiling point of the non-aqueous solvent at 1 atm is more preferably 90° C. or less, and even more preferably 85° C. or less.
- the lower limit of the boiling point of the non-aqueous solvent at 1 atm is not particularly limited, but from the viewpoint of increasing the stability when forming the composite particles, it is preferably 50° C. or more.
- solvents that satisfy such conditions include cyclohexane, n-hexane, acetone, methyl ethyl ketone, ethyl acetate, tetrahydrofuran, methylene chloride, chloroform, and the like. These may be used alone or in combination of two or more kinds in any ratio.
- the viscosity index of the composition containing the binder, conductive assistant, and solvent, which is continuously added to the granulation tank in the composite particle formation operation is preferably 100 mPa ⁇ s or more and 1000 mPa ⁇ s or less.
- the viscosity index of the composition is the value obtained by dividing the viscosity of the composition by the solid content concentration and multiplying it by 100, and can be measured and calculated by the method described in the examples.
- the peripheral speed of the main stirring blade and the auxiliary stirring blade in the composite particle forming operation is preferably 1 m/s or more and 20 m/s or less. If the peripheral speed of the main stirring blade is within the above range, the particle size of the obtained composite particles can be well controlled. In addition, if the peripheral speed of the auxiliary stirring blade is within the above range, the coefficient of variation of the obtained composite particles can be well controlled. Furthermore, in order to enhance the particle size regulation action occurring during the composite particle forming operation and to suppress gas generation during high-temperature storage of the electrode formed using the composite particles, the lower limit of the peripheral speed of the main stirring blade is preferably 6 m/s or more, and the upper limit is preferably 12 m/s or less.
- the aeration amount in the composite particle formation operation is preferably 0.1/min to 100/min, calculated by dividing the flow rate of air flowing into the granulation tank by the volume of the granulation tank (flow rate/volume). If the aeration amount is within this range, the amount of solvent vapor in the granulation tank can be well controlled in the composite particle formation operation, and composite particles can be efficiently formed.
- the duration of the composite particle formation operation is not particularly limited.
- the composite particle formation time may be 5 minutes or more and 60 minutes or less.
- the composite particles are sized by stirring after the addition of the composition is completed (i.e., after the composite particle formation operation (ii) is completed). From the viewpoint of enhancing the electrical conductivity, a conductive assistant may be further added.
- the peripheral speed of the main stirring blade and the auxiliary stirring blade in the sizing operation is preferably 0.1 m/s or more and 10 m/s or less. If the peripheral speed of the main stirring blade is within the above range, the density coefficient and areal circularity of the obtained composite particles can be well controlled. Also, if the peripheral speed of the auxiliary stirring blade is within the above range, the variation coefficient and perimeter envelope of the obtained composite particles can be well controlled.
- the "perimeter envelope" of the composite particles is a value that serves as an index of the roughness of the outer periphery of the particle, and can be measured according to the method described in the examples of this specification.
- the aeration rate during the sizing operation calculated by dividing the flow rate of the air flowing into the granulation tank by the volume of the granulation tank (flow rate/volume), is 0.1/min or more and 100/min or less. If the aeration rate is within this range, the moist state of the composite particles can be well controlled during the sizing operation, and the composite particles can be efficiently formed.
- the duration of the sizing operation is not particularly limited.
- the sizing time may be, for example, 10 seconds or more, or 60 minutes or less, preferably 20 minutes or less, preferably 10 minutes or less, and more preferably 3 minutes or less.
- the temperature in the granulation tank is preferably less than 50° C., more preferably not more than 45° C., and even more preferably not more than 40° C.
- composite particles The composite particles obtained through the above steps (i) to (iii) preferably satisfy the following attributes:
- the composite particles preferably have a particle diameter of 20 ⁇ m or more, more preferably 30 ⁇ m or more, even more preferably 40 ⁇ m or more, preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 150 ⁇ m or less.
- the particle diameter of the composite particles means the average particle diameter of the area equivalent diameter, and can be measured according to the method described in the examples of this specification. If the particle diameter of the composite particles is equal to or greater than the above lower limit, the flexibility of the electrode formed using the composite particles can be increased, and the rate characteristics of the electrochemical element equipped with such an electrode can be improved. In addition, if the particle diameter of the composite particles is equal to or less than the above upper limit, the cycle characteristics of the resulting electrochemical element can be improved.
- the coefficient of variation of the composite particles is preferably 5% or more, more preferably 7% or more, even more preferably 10% or more, and preferably 50% or less, more preferably 45% or less, and even more preferably 40% or less. If the coefficient of variation is equal to or greater than the lower limit, the cracking of the electrode active material in the electrode formed using the composite particles can be suppressed well. Also, if the coefficient of variation is equal to or less than the upper limit, the flexibility of the obtained electrode can be improved.
- the coefficient of variation of a composite particle means the particle size distribution of the composite particle, and can be calculated as a percentage by dividing the standard deviation of the area-equivalent diameters of the composite particles by the average area-equivalent diameters, according to the method described in the examples of this specification.
- the bulk density of the composite particles is preferably 1.0 to 4.0. If the bulk density is equal to or higher than the lower limit, cracking of the electrode active material in the electrode formed using the composite particles can be suppressed. If the bulk density is equal to or lower than the upper limit, the flexibility of the resulting electrode can be increased.
- the circularity of the composite particles is preferably 0.50 or more, more preferably 0.60 or more, even more preferably 0.70 or more, and preferably 0.93 or less, more preferably 0.92 or less, and even more preferably 0.91 or less. If the circularity of the composite particles is equal to or more than the lower limit, the cracking of the electrode active material in the electrode formed using the composite particles can be suppressed. In addition, if the circularity of the composite particles is equal to or less than the upper limit, the rate characteristics of the obtained electrochemical element can be improved.
- the circumferential envelopment degree of the composite particles is preferably 0.70 or more, more preferably 0.72 or more, even more preferably 0.75 or more, and preferably 0.97 or less, more preferably 0.94 or less, and even more preferably 0.92 or less. If the circumferential envelopment degree of the composite particles is the above lower limit or more, the flexibility of the electrode formed using the composite particles can be improved. If the circumferential envelopment degree of the composite particles is the above upper limit or less, the cycle characteristics of the obtained electrochemical element can be improved.
- the flowability of the composite particles can be evaluated based on the angle of repose and the angle of collapse measured using a powder tester, and can also be evaluated based on the roughness of the surface smoothed with a doctor blade as described in the examples of the present application.
- the surface roughness is preferably 0.70 ⁇ m 3 or less, more preferably 0.50 ⁇ m 3 or less, even more preferably 0.30 ⁇ m 3 or less, and particularly preferably 0.20 ⁇ m 3 or less, in terms of spatial volume per 5.4 mm 2.
- the lower limit of the surface roughness is not particularly limited, but may be, for example, 0.01 ⁇ m 3 or more. If the composite particles have excellent flowability, the smoothness of the surface of the resulting electrode can be improved, thereby reducing the internal resistance of the electrochemical element and improving the rate characteristics.
- the method for producing an electrode for an electrochemical device of the present invention includes producing composite particles according to the above-mentioned production method of the present invention, and pressure-molding the produced composite particles on an electrode substrate to form an electrode mixture layer (pressure molding operation).
- the electrode for an electrochemical device obtained according to this production method has excellent flexibility and is less susceptible to cracking of the electrode active material contained therein, and furthermore, can improve the cycle characteristics of an electrochemical device equipped with this electrode.
- the pressure molding operation can be carried out according to a known method.
- the composite particles produced according to the production method of the present invention can be subjected to a roll press machine and roll pressed on the electrode substrate to pressure mold the composite particles on the electrode substrate to form an electrode mixture layer.
- the pressure during pressing can be appropriately set according to the desired electrode density.
- the electrode substrate is made of a material that is conductive and electrochemically durable.
- the electrode substrate may be a collector made of, for example, iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like.
- the above materials may be used alone or in combination of two or more types in any ratio.
- the electrochemical element formed using the above-mentioned electrode for electrochemical elements of the present invention is not particularly limited, and may be, for example, a lithium ion secondary battery, an electric double layer capacitor, or a lithium ion capacitor, and is preferably a lithium ion secondary battery.
- the electrochemical element formed using the electrode for electrochemical elements of the present invention has excellent cycle characteristics.
- a lithium ion secondary battery as the electrochemical element of the present invention typically comprises electrodes (positive and negative electrodes), an electrolyte, and a separator, and uses the electrochemical element electrode of the present invention for at least one of the positive and negative electrodes.
- the electrode other than the above-mentioned electrode for electrochemical elements of the present invention that can be used in a lithium ion secondary battery as an electrochemical element is not particularly limited, and a known electrode can be used.
- the electrode other than the above-mentioned electrode for electrochemical elements can be an electrode formed by forming an electrode mixture layer on a current collector using a known manufacturing method.
- an organic electrolyte in which a supporting electrolyte is dissolved in an organic solvent is usually used.
- a lithium salt is used.
- the lithium salt for example, LiPF6 , LiAsF6 , LiBF4 , LiSbF6, LiAlCl4, LiClO4 , CF3SO3Li, C4F9SO3Li , CF3COOLi , ( CF3CO ) 2NLi , ( CF3SO2 ) 2NLi , ( C2F5SO2 )NLi, etc. are listed.
- LiPF6 LiClO4 , and CF3SO3Li are preferred , and LiPF6 is particularly preferred, because they are easily dissolved in the solvent and show a high degree of dissociation .
- the electrolyte may be used alone or in combination of two or more kinds in any ratio.
- the organic solvent used in the electrolyte is not particularly limited as long as it can dissolve the supporting electrolyte, but for example, carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), and methyl ethyl carbonate (EMC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; and sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; are preferably used. A mixture of these solvents may also be used. The concentration of the electrolyte in the electrolyte can be adjusted as appropriate. Known additives, such as vinylene carbonate, fluoroethylene carbonate, and ethyl methyl sulfone, may also be added to the electrolyte.
- DMC dimethyl carbonate
- EC ethylene carbonate
- the separator is not particularly limited and may be any known one. Among them, a microporous film made of a polyolefin resin (polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferable. Furthermore, the separator may be a separator with a functional layer, in which a functional layer (porous membrane layer or adhesive layer) is provided on one or both sides of a separator substrate.
- a functional layer porous membrane layer or adhesive layer
- a lithium ion secondary battery can be manufactured, for example, by stacking a positive electrode and a negative electrode with a separator therebetween, wrapping or folding the stack according to the battery shape as necessary, placing the stack in a battery container, injecting an electrolyte into the battery container, and sealing the container.
- a fuse In order to prevent the occurrence of an internal pressure rise in the secondary battery, overcharging and overdischarging, etc., a fuse, an overcurrent prevention element such as a PTC element, an expanded metal, a lead plate, etc. may be provided as necessary.
- the shape of the secondary battery may be, for example, any of a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, etc.
- Particle diameter average particle diameter D A ( ⁇ m) of the area-equivalent diameter of 4,000 analyzed composite particles
- Average areal circularity The average areal circularity C of 4,000 analyzed particles calculated by 4 ⁇ A/P 2 (A: projected area, P: perimeter)
- Average perimeter envelope The average value of the perimeter of the convex circumscribing figure (minimum convex hull) of all particles in the observation field divided by the perimeter P
- the void volume ( ⁇ m3 ) per 5.4 mm2 of the smoothed surface was measured using a laser microscope.
- the positive electrodes prepared in the examples and comparative examples were wound around rods of different diameters to evaluate whether the positive electrode mixture layer cracked.
- the flexibility of the electrode was evaluated according to the following criteria, depending on the diameter of the thinnest rod on which the positive electrode mixture layer did not crack.
- B It does not break even when wrapped around a rod with a diameter of 1.80 mm.
- C It does not break even when wrapped around a rod with a diameter of 2.10 mm.
- D It does not break even when wrapped around a rod with a diameter of 3.00 mm.
- the lithium ion secondary battery as the electrochemical element prepared in the examples and comparative examples was left at rest at a temperature of 25°C for 5 hours after injecting the electrolyte.
- the battery was charged to a cell voltage of 3.65V at a constant current of 0.2C at a temperature of 25°C, and then aged at a temperature of 60°C for 12 hours.
- the battery was discharged to a cell voltage of 3.00V at a constant current of 0.2C at a temperature of 25°C.
- the battery was CC-CV charged (upper cell voltage 4.20V) at a constant current of 0.2C, and CC discharged to 3.00V at a constant current of 0.2C.
- the evaluation cell prepared in the above-mentioned ⁇ Cycle characteristics> section was CC-CV charged (upper cell voltage 4.20 V) by a constant current method of 0.2 C at a temperature of 25° C., and then stored for one week in a constant temperature environment of 60° C.
- the cell volume was measured before and after storage, and the increase was taken as the amount of gas generated, which was evaluated according to the following criteria.
- B The amount of gas generated is 5% or more and less than 10%.
- C The amount of gas generated is 10% or more and less than 20%.
- D The amount of gas generated is 20% or more.
- the lithium ion secondary battery as the electrochemical element prepared in the example was left to stand at a temperature of 25°C for 5 hours after injecting the electrolyte.
- the battery was charged to a cell voltage of 3.65V at a constant current of 0.2C at a temperature of 25°C, and then aged at a temperature of 60°C for 12 hours.
- the battery was discharged to a cell voltage of 3.00V at a constant current of 0.2C at a temperature of 25°C.
- the battery was CC-CV charged (upper cell voltage 4.20V) at a constant current of 0.2C, and CC discharged to 3.00V at a constant current of 0.2C. This charge and discharge at 0.2C was repeated three times.
- the battery was charged to 4.2V by a constant current method of 0.1C, and then discharged to 3.0V at 0.1C to obtain the 0.1C discharge capacity. Furthermore, the battery was charged to 4.2V at 0.1C, and then discharged to 3.0V at 1C to obtain the 1C discharge capacity.
- Electric capacity ratio is 92 or more.
- A: Electric capacity ratio is 90% or more and less than 92.
- B: Electric capacity ratio is 80% or more and less than 90%.
- C: Electric capacity ratio is 70% or more and less than 80%.
- Example 1 ⁇ Production of binder A1>
- a reactor equipped with a stirring device and the inside of which was sufficiently replaced with nitrogen 270 parts of dehydrated cyclohexane and 0.53 parts of ethylene glycol dibutyl ether were placed, and 0.47 parts of n-butyllithium (15% cyclohexane solution) were further added.
- n-butyllithium 15% cyclohexane solution
- the polymer solution was transferred to a pressure-resistant reactor equipped with a stirrer, and 7.0 parts of a diatomaceous earth-supported nickel catalyst (manufactured by JGC Catalysts and Chemicals, product name "E22U", nickel loading 60%) as a hydrogenation catalyst and 80 parts of dehydrated cyclohexane were added and mixed.
- the inside of the reactor was replaced with hydrogen gas, and hydrogen was further supplied while stirring the solution, and the hydrogenation reaction was carried out at a temperature of 190°C and a pressure of 4.5 MPa for 6 hours.
- the reaction solution was filtered to remove the hydrogenation catalyst, and then 1.0 part of a xylene solution in which 0.1 part of pentaerythrityl tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] (manufactured by Koyo Chemical Laboratory, product name "Songnox 1010”), a phenolic antioxidant, was dissolved, was added to the filtrate and dissolved. Cyclohexane was further added to prepare a binder A1 solution of a predetermined concentration.
- Binder A1> Proportion of structural units derived from 1,2- and 3,4-addition polymerization among structural units derived from linear conjugated diene compounds in polymer blocks -
- the ratio of structural units derived from 1,2- and 3,4-addition polymerization among the structural units derived from the chain conjugated diene compound in the polymer block was calculated from the ratio of 1H bonded to the carbon of the carbon-carbon unsaturated bond in the polymer main chain to 1H bonded to the carbon of the carbon-carbon unsaturated bond in the polymer side chain from the 1H -NMR spectrum (in deuterated chloroform) of the block copolymer. The value is shown above.
- composition containing binder, conductive assistant, and solvent Two parts of carbon black (BET specific surface area: 62 m 2 /g, bulk density 0.16 g/cm 3 ) as a conductive assistant were mixed with two parts of the binder A1 solution obtained above in terms of solid content, and cyclohexane was further added as a solvent to prepare a mixture of conductive assistant, binder, and solvent with a solid content concentration of 10% and a total amount of 1 kg.
- carbon black BET specific surface area: 62 m 2 /g, bulk density 0.16 g/cm 3
- the obtained mixture was dispersed for 1 hour at a peripheral speed of 12 m/s using a bead mill (LMZ015, manufactured by Ashizawa Finetech) using zirconia beads with a diameter of 0.5 mm, to prepare a composition containing conductive assistant, binder, and solvent.
- the obtained composition had a solid content concentration of 10 mass% and a viscosity index of 300 mPa ⁇ s.
- a composite particle production device was prepared, which had a cylindrical container with an inner diameter of 180 mm and a capacity of 2 L as a granulation tank, and agitation blades on two axes, vertical and horizontal, with the axis of the cylindrical container being the vertical direction (the vertical direction is the main agitation blade, and the horizontal direction is the auxiliary agitation blade).
- the main agitation blade was an inclined paddle with three main blades with a diameter of 170 mm
- the auxiliary agitation blade had a V-shaped anchor blade with a diameter of 30 mm, and was configured with a mechanism that was sealed by ventilating air to prevent raw materials from being mixed into each drive part of the main agitation blade and the auxiliary agitation blade.
- the prepared composite particles were fed to a press roll (roll temperature 100 ° C., press line pressure 500 kN / m) of a roll press machine (Hirano Giken Kogyo Co., Ltd. "Press cut rough surface hot roll") using a quantitative feeder (Nikka Spray K-V) manufactured by Nikka Corporation. Between the press rolls, an aluminum foil having a thickness of 20 ⁇ m was inserted, and the composite particles supplied from the quantitative feeder were attached to the aluminum foil, and pressure-molded at a molding speed of 1.5 m / min to obtain a positive electrode raw sheet for lithium ion secondary batteries having a positive electrode active material layer with a basis weight of 30 mg / cm 2.
- This positive electrode raw sheet was rolled with a roll press to produce a sheet-shaped positive electrode consisting of a positive electrode mixture layer with a density of 3.5 g / cm 3 and aluminum foil.
- ⁇ Preparation of negative electrode> In a 5 MPa pressure vessel equipped with a stirrer, 33 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 3.5 parts of itaconic acid as an acidic group-containing monomer, 63.5 parts of styrene as an aromatic vinyl monomer, 0.4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 parts of potassium persulfate as a polymerization initiator were added, and the mixture was heated to 50 ° C.
- the mixture was then diluted with ion-exchanged water to a solid content concentration of 60%, and then kneaded for 60 minutes at a rotation speed of 45 rpm. Then, 1.5 parts of the aqueous dispersion containing the negative electrode binder obtained as described above was added in terms of solid content, and kneaded for 40 minutes at a rotation speed of 40 rpm. Then, ion-exchanged water was added so that the viscosity was 3000 ⁇ 500 mPa ⁇ s (measured with a B-type viscometer at 25°C and 60 rpm), to prepare a slurry for the negative electrode composite layer. Next, a copper foil having a thickness of 15 ⁇ m was prepared as a current collector.
- the above-mentioned negative electrode composite layer slurry was applied to the copper foil so that the coating amount after drying was 15 mg/cm 2 , and dried at 60 ° C for 20 minutes and at 120 ° C for 20 minutes. Then, the negative electrode raw material was heated at 150 ° C for 2 hours to obtain a negative electrode raw material.
- This negative electrode raw material was rolled with a roll press to produce a sheet-shaped negative electrode consisting of a negative electrode composite layer (both sides) having a density of 1.6 g/cm 3 and copper foil.
- the aluminum packaging material was closed by heat sealing at a temperature of 150 ° C., and a lithium ion secondary battery was prepared. Various evaluations were performed using this lithium ion secondary battery. The results are shown in Table 1.
- Example 2 In the (ii) composite particle formation operation in ⁇ Preparation of composite particles>, various operations, measurements, and evaluations were carried out in the same manner as in Example 1, except that a composition produced using binder A2 (solid content concentration: 10% by mass, binder liquid viscosity: 400 mPa ⁇ s, solvent: acetone) prepared as described below was used instead of binder A1. The results are shown in Table 1.
- ⁇ Production of binder A2> In a reactor having an internal volume of 10 liters, 100 parts of ion-exchanged water, 35 parts of acrylonitrile as a nitrile group-containing monomer, and 65 parts of 1,3-butadiene as an aliphatic conjugated diene monomer were charged, and 2 parts of potassium oleate as an emulsifier, 0.1 parts of potassium phosphate as a stabilizer, and 0.4 parts of tert-dodecyl mercaptan (TDM) as a molecular weight regulator were added, and emulsion polymerization was carried out at a temperature of 530 ° C.
- TDM tert-dodecyl mercaptan
- a 25% by mass aqueous solution of calcium chloride (CaCl 2 ) was added as a coagulant in an amount of 3 parts per 100 parts of polymer solids in the obtained aqueous dispersion while stirring, and the polymer in the aqueous dispersion was coagulated. After that, the polymer was filtered off, and 50 times the amount of ion-exchanged water was passed through the obtained polymer to wash it, and then the polymer was dried under reduced pressure at a temperature of 90° C. to obtain a polymer precursor. Next, an oil phase hydrogenation method was adopted as a hydrogenation method to hydrogenate the polymer precursor.
- CaCl 2 calcium chloride
- the polymer precursor was dissolved in acetone so that the concentration of the polymer precursor was 12%, to obtain an acetone solution of the polymer precursor as the hydrogenation target, which was placed in an autoclave, and 500 ppm of palladium-silica (Pd/SiO 2 ) was added as a catalyst to 100% of the polymer precursor as the hydrogenation target, and then a hydrogenation reaction was carried out at a temperature of 90° C. for 6 hours under a hydrogen pressure of 3.0 MPa to obtain a hydrogenation reaction product. After the hydrogenation reaction was completed, the palladium-silica was filtered off, and acetone was added so as to give a predetermined solid content concentration, thereby obtaining a binder A2 solution.
- Pd/SiO 2 palladium-silica
- Example 3 Except for the following changes in the ⁇ Preparation of Composite Particles> step, the same operations, measurements, and evaluations were carried out as in Example 1. The results are shown in Table 1.
- Example 4 Except for the following changes in the ⁇ Preparation of Composite Particles> step, the same operations, measurements, and evaluations were carried out as in Example 1. The results are shown in Table 1.
- (i) preliminary stirring operation in ⁇ Preparation of composite particles> in addition to the electrode active material, a part of the conductive auxiliary material to be blended was also added.
- the preliminary stirring operation was performed in two stages. Specifically, the preliminary stirring operation in the granulation tank under the same conditions as in Example 1 was performed by shortening the time to 1 minute.
- NMC532 as a positive electrode active material for lithium ion batteries and carbon black as a conductive auxiliary material was mixed using Miracle KCK (registered trademark) (model: M-KCK-L) manufactured by Asada Iron Works, under conditions of a rotation speed of 40 rpm, a processing speed of 1 L/h, and a processing time of 10 minutes, and the obtained powder material was subjected to a preliminary stirring operation with a stirring time of 1 minute.
- Miracle KCK registered trademark
- M-KCK-L manufactured by Asada Iron Works
- Example 5 ⁇ Preparation of Composite Particles> Various operations, measurements, and evaluations were carried out in the same manner as in Example 1, except that the steps were changed as follows. The results are shown in Table 1.
- the main stirring blade was operated at a peripheral speed of 8 m/s, and room temperature sealing air was circulated at 10 L/min (airflow rate 5/min). Then, the operation time of (iii) particle size adjustment operation was shortened to 1 minute.
- the maximum temperature in the system throughout these steps (i) to (iii) was 40°C.
- Example 6 Except for the following changes in the ⁇ Preparation of Composite Particles> step, the same operations, measurements, and evaluations were carried out as in Example 1. The results are shown in Table 1.
- a part of the conductive additive was also added. Specifically, a mixture of 96 parts by mass of NMC532 as a positive electrode active material for lithium ion batteries and 0.5 parts by mass of carbon black as a conductive additive was used as a powder material and subjected to the preliminary diffusion operation.
- the amount of conductive assistant blended in the composition containing the binder, solvent, and conductive assistant added to the stirring tank was reduced so that the total blended amount in the composite particles was the same as in Example 1.
- the means of adding the predetermined composition was changed to a two-fluid spray.
- the gas-liquid ratio (gas volume/liquid volume) and spray surface density in this case were as shown in Table 1.
- the maximum temperature in the system throughout these steps (i) to (iii) was 40°C.
- Example 7 The same operations, measurements and evaluations as in Example 6 were carried out, except for the following changes in the ⁇ Preparation of Composite Particles> step. The results are shown in Table 1.
- (ii) In the composite particle forming operation, when a predetermined composition was added by two-fluid spray, the gas-liquid ratio (gas volume/liquid volume) and spray surface density were as shown in Table 1. The maximum temperature in the system throughout steps (i) to (iii) was 36°C.
- Example 8 The same operations, measurements and evaluations as in Example 6 were carried out, except for the following changes in the ⁇ Preparation of Composite Particles> step. The results are shown in Table 1.
- the main impeller was operated at a peripheral speed of 15 m/s
- the auxiliary impeller was operated at a peripheral speed of 2 m/s
- the means of adding the predetermined composition was changed to a two-fluid spray.
- the gas-liquid ratio (gas volume/liquid volume) and spray surface density were as shown in Table 1.
- the secondary stirring blade was operated at a peripheral speed of 10 m/s.
- the maximum temperature in the system throughout steps (i) to (iii) was 42°C.
- Example 9 The same operations, measurements and evaluations as in Example 6 were carried out, except for the following changes in the ⁇ Preparation of Composite Particles> step. The results are shown in Table 1.
- (ii) In the composite particle forming operation, the main impeller was operated at a peripheral speed of 3 m/s, the auxiliary impeller was operated at a peripheral speed of 10 m/s, and the means of adding the predetermined composition was changed to a two-fluid spray.
- the gas-liquid ratio (gas volume/liquid volume) and spray surface density were as shown in Table 1.
- the maximum temperature in the system throughout steps (i) to (iii) was 34°C.
- Example 10 The same operations, measurements and evaluations as in Example 6 were carried out, except for the following changes in the ⁇ Preparation of Composite Particles> step. The results are shown in Table 1.
- the main impeller was operated at a peripheral speed of 8 m/s
- the auxiliary impeller was operated at a peripheral speed of 6 m/s
- the means of adding the predetermined composition was changed to a two-fluid spray.
- the gas-liquid ratio (gas volume/liquid volume) and spray surface density were as shown in Table 1.
- the main stirring blade was operated at a peripheral speed of 0.4 m/s.
- the maximum temperature in the system throughout steps (i) to (iii) was 38°C.
- Example 11 The same operations, measurements and evaluations as in Example 6 were carried out, except for the following changes in the ⁇ Preparation of Composite Particles> step. The results are shown in Table 1.
- the main impeller was operated at a peripheral speed of 5 m/s
- the auxiliary impeller was operated at a peripheral speed of 10 m/s
- the means of adding the predetermined composition was changed to a two-fluid spray.
- the gas-liquid ratio (gas volume/liquid volume) and spray surface density were as shown in Table 1.
- the main stirring blade was operated at a peripheral speed of 6 m/s.
- the maximum temperature in the system throughout steps (i) to (iii) was 38°C.
- Example 1 Except for using a granulation vessel not having a secondary stirring blade, the same operations, measurements, and evaluations (except for rate characteristics) as in Example 1 were carried out. The results are shown in Table 2.
- Example 3 The same operations, measurements, and evaluations (except for rate characteristics) as in Example 1 were carried out, except that (i) no preliminary stirring operation was carried out, (ii) the electrode active material and the conductive assistant were charged into the granulation tank when the composite particle formation operation was started, and (ii) the conductive assistant was not mixed into the composition added in the composite particle formation operation. The results are shown in Table 2.
- Tables 1 and 2 show that in Examples 1 to 11, which were carried out in this order in a granulation tank equipped with two or more agitating blades with different agitation shafts, (i) a powder material containing an electrode active material was agitated to create an agitated state; and (ii) a composition containing a binder, a conductive additive, and a solvent was added to the powder material in the agitated state to form composite particles, it was possible to produce composite particles that increase the flexibility of the electrode, suppress cracking of the electrode active material in the electrode, and further improve the cycle characteristics of an electrochemical element equipped with such an electrode.
- the present invention it is possible to provide a method for producing composite particles that can increase the flexibility of an electrode, suppress cracking of the electrode active material in the electrode, and further improve the cycle characteristics of an electrochemical element provided with such an electrode. Furthermore, according to the present invention, there can be provided a method for producing an electrode for an electrochemical device by using the composite particles obtained according to the production method of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、複合粒子及び電気化学素子用電極の製造方法に関するものである。 The present invention relates to a method for producing composite particles and electrodes for electrochemical devices.
リチウムイオン二次電池などの電気化学素子は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。 Electrochemical elements such as lithium-ion secondary batteries are small, lightweight, have high energy density, and can be repeatedly charged and discharged, making them suitable for a wide range of applications.
電気化学素子の性能を向上させるために、電気化学素子用電極を形成する材料についても様々な改善が行われている。電気化学素子用電極は、電極基材上に、電極活物質を主成分とし、必要に応じて、導電性、密着性、柔軟性などの特有の機能を電極に付与するために、導電助材や結着材などのその他の成分を含有する電極合材層が配置されてなる構造を有する。電気化学素子の性能向上の観点からは、電極合材層において、電極活物質及びその他の成分が均一に分散していることが好ましい。 In order to improve the performance of electrochemical elements, various improvements have been made to the materials that form the electrodes for electrochemical elements. Electrodes for electrochemical elements have a structure in which an electrode mixture layer is disposed on an electrode substrate, the electrode mixture layer containing an electrode active material as the main component and, as necessary, other components such as a conductive assistant and a binder in order to impart specific functions such as electrical conductivity, adhesion, and flexibility to the electrode. From the viewpoint of improving the performance of electrochemical elements, it is preferable that the electrode active material and other components are uniformly dispersed in the electrode mixture layer.
電極合材層を形成するための方途としては、電極活物質、導電助材、結着材、及び溶媒を含むスラリー組成物を電極基材上に塗布及び乾燥して電極合材層を形成する方途と、電極活物質、導電助材、結着材、及び溶媒を含むスラリー組成物をスプレードライするなどして複合粒子を得て、得られた複合粒子を電極基材上にて加圧成形することにより電極合材層を形成する方途などが、従来から検討されてきた。 Methods that have been considered for forming an electrode mixture layer include a method in which a slurry composition containing an electrode active material, a conductive assistant, a binder, and a solvent is applied to an electrode substrate and then dried to form an electrode mixture layer, and a method in which a slurry composition containing an electrode active material, a conductive assistant, a binder, and a solvent is spray-dried to obtain composite particles, and the obtained composite particles are pressure-molded onto an electrode substrate to form an electrode mixture layer.
複合粒子の製造方法としては、上記のようにスラリー組成物をスプレードライする方法(例えば、特許文献1参照)、及び、下から吹き上げる気流などの流体中に粉体を浮遊懸濁させた状態において造粒する流動層造粒法(例えば、特許文献2参照)、さらには、電極活物質と結着材とを撹拌した後に解砕することを含む造粒方法(例えば、特許文献3参照)が検討されてきた。 As methods for producing composite particles, the following have been considered: a method of spray-drying a slurry composition as described above (see, for example, Patent Document 1); a fluidized bed granulation method in which powder is granulated in a state suspended in a fluid such as an air current blown up from below (see, for example, Patent Document 2); and a granulation method that includes stirring the electrode active material and binder and then crushing them (see, for example, Patent Document 3).
しかし、従来の造粒粒子の製造方法には、得られる造粒粒子を用いて形成した電極及びかかる電極を備える電気化学素子の性状において、一層の向上の余地があった。 However, conventional methods for producing granulated particles leave room for further improvement in the properties of electrodes formed using the resulting granulated particles and electrochemical elements equipped with such electrodes.
そこで、本発明は、電極の柔軟性を高めるとともに、電極における電極活物質の割れを抑制し、さらには、かかる電極を備える電気化学素子のサイクル特性を向上させることができる、複合粒子の製造方法を提供することを目的とする。
また、本発明は、本発明の製造方法に従って得られた複合粒子を用いて電気化学素子用電極を製造する方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a method for producing composite particles that can increase the flexibility of an electrode, suppress cracking of the electrode active material in the electrode, and further improve the cycle characteristics of an electrochemical element equipped with such an electrode.
Another object of the present invention is to provide a method for producing an electrode for an electrochemical device by using the composite particles obtained according to the production method of the present invention.
本発明者らは、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者らは、撹拌条件下においてバインダー、導電助剤、及び溶媒を含む組成物を添加して複合粒子を形成することで、上記のように、得られる電極及び電気化学素子の性状を向上させ得る複合粒子を製造可能なことを新たに見出し、本発明を完成させた。 The present inventors have conducted extensive research with the aim of solving the above problems. The present inventors have newly discovered that by forming composite particles by adding a composition containing a binder, a conductive assistant, and a solvent under stirring conditions, it is possible to manufacture composite particles that can improve the properties of the resulting electrodes and electrochemical elements, as described above, and have completed the present invention.
即ち、この発明は、上記課題を有利に解決することを目的とするものである。
[1]複合粒子の製造方法であって、
撹拌軸が相異なる2つ以上の撹拌翼を備える造粒槽内にて、
(i)電極活物質を含む粉体材料を撹拌して撹拌状態とする工程;
(ii)撹拌状態にある前記粉体材料に対して、バインダー、導電助剤、及び溶媒を含む組成物を添加して複合粒子とする工程;
をこの順に実施することを特徴とする。撹拌軸が相異なる2つ以上の撹拌翼を備える造粒槽内にて、上記(i)~(ii)の操作をこの順に実施することで、電極の柔軟性を高めるとともに、電極における電極活物質の割れを抑制し、さらには、かかる電極を備える電気化学素子のサイクル特性を向上させることができる、複合粒子を提供することができる。
That is, an object of the present invention is to advantageously solve the above problems.
[1] A method for producing composite particles, comprising the steps of:
In a granulation tank equipped with two or more agitating blades having different agitation shafts,
(i) stirring a powder material containing an electrode active material to bring it into a stirred state;
(ii) adding a composition containing a binder, a conductive assistant, and a solvent to the powder material in a stirred state to form composite particles;
By carrying out the above operations (i) to (ii) in this order in a granulation tank equipped with two or more stirring blades having different stirring shafts, it is possible to provide composite particles which can increase the flexibility of the electrode, suppress cracking of the electrode active material in the electrode, and further improve the cycle characteristics of an electrochemical device equipped with such an electrode.
[2]ここで、上記[1]に記載した複合粒子の製造方法において、前記(ii)の工程において、前記組成物を添加する際の添加手段が、スプレーノズルである、ことが好ましい。(ii)の工程において組成物を添加する際にスプレーノズルを用いて組成物を噴霧供給することで、得られる複合粒子の性状を一層向上させることができる。 [2] Here, in the method for producing composite particles described in [1] above, it is preferable that the means for adding the composition in step (ii) is a spray nozzle. By spraying and supplying the composition using a spray nozzle when adding the composition in step (ii), the properties of the obtained composite particles can be further improved.
[3]また、上記[1]又は[2]に記載の複合粒子の製造方法において、前記(ii)の工程の後に、(iii)前記組成物の添加完了後に前記複合粒子を撹拌することで整粒する工程を行うことができる。 [3] In the method for producing composite particles described in [1] or [2] above, after the step (ii), a step (iii) of sizing the composite particles by stirring the particles after the addition of the composition is completed can be carried out.
[4]また、上記[3]に記載の複合粒子の製造方法において、前記(iii)の工程において、導電助剤を添加することが好ましい。(iii)の工程において導電助剤を添加することで、得られる複合粒子の性状を一層向上させることができる。 [4] In the method for producing composite particles described in [3] above, it is preferable to add a conductive assistant in step (iii). By adding a conductive assistant in step (iii), the properties of the resulting composite particles can be further improved.
[5]また、上記[1]~[4]の何れかの本発明の複合粒子の製造方法において、前記(i)の工程における前記粉体材料が、導電助剤を含むことが好ましい。(i)の工程にて電極活物質と共に導電助剤も撹拌状態としてから、(ii)の工程を実施することで、得られる複合粒子の性状を一層向上させることができる。 [5] In the method for producing composite particles according to any one of the above [1] to [4], the powder material in step (i) preferably contains a conductive assistant. By stirring the conductive assistant together with the electrode active material in step (i) and then carrying out step (ii), the properties of the resulting composite particles can be further improved.
[6]また、上記[1]~[5]の何れかの本発明の複合粒子の製造方法において、前記組成物に含有される前記溶媒が、1atm下での沸点が95℃以下の非水系溶媒であることが好ましい。かかる条件を満たす溶媒を含む組成物を上記(ii)の操作で用いれば、効率的に複合粒子を製造することができる。 [6] In the method for producing composite particles of the present invention described above in any one of [1] to [5], it is preferable that the solvent contained in the composition is a non-aqueous solvent having a boiling point of 95°C or less at 1 atm. By using a composition containing a solvent that satisfies such conditions in the above operation (ii), composite particles can be produced efficiently.
[7]また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子用電極の製造方法は、上記[1]~[6]のいずれかに記載の複合粒子の製造方法に従って複合粒子を製造することと、製造した前記複合粒子を電極基材上で加圧成形して電極合材層を形成することと、を含むことを特徴とする。上述したいずれかの複合粒子の製造方法に従って得た複合粒子を用いて形成した電極合材層を備える電極は柔軟性に優れるとともに、含有する電極活物質の割れが少なく、さらには、かかる電極を備える電気化学素子のサイクル特性を向上させることができる。 [7] The present invention also aims to advantageously solve the above problems, and the method for producing an electrode for an electrochemical element of the present invention is characterized by comprising the steps of producing composite particles according to any one of the methods for producing composite particles described in any one of [1] to [6] above, and pressure-molding the produced composite particles on an electrode substrate to form an electrode mixture layer. An electrode comprising an electrode mixture layer formed using composite particles obtained according to any one of the methods for producing composite particles described above has excellent flexibility, is less susceptible to cracking of the electrode active material contained therein, and can further improve the cycle characteristics of an electrochemical element comprising such an electrode.
本発明によれば、電極の柔軟性を高めるとともに、電極における電極活物質の割れを抑制し、さらには、かかる電極を備える電気化学素子のサイクル特性を向上させることができる、複合粒子の製造方法を提供することができる。
また、本発明によれば、本発明の製造方法に従って得た複合粒子を用いて電気化学素子用電極を製造する方法を提供することができる。
According to the present invention, it is possible to provide a method for producing composite particles that can increase the flexibility of an electrode, suppress cracking of the electrode active material in the electrode, and further improve the cycle characteristics of an electrochemical element provided with such an electrode.
Furthermore, according to the present invention, there can be provided a method for producing an electrode for an electrochemical device by using the composite particles obtained according to the production method of the present invention.
以下、本発明の実施形態について詳細に説明する。
ここで、本発明の複合粒子の製造方法によれば、二次電池のような電気化学素子の電極に備えられる電極合材層の配合成分として有利に用いることができる、複合粒子を効率的に提供することができる。また、本発明の電気化学素子用電極の製造方法は、本発明の製造方法に従って得られた複合粒子を加圧成形することを含む。
Hereinafter, an embodiment of the present invention will be described in detail.
Here, according to the method for producing composite particles of the present invention, it is possible to efficiently provide composite particles that can be advantageously used as a compounding component of an electrode mixture layer provided in an electrode of an electrochemical device such as a secondary battery. Also, the method for producing an electrode for an electrochemical device of the present invention includes pressure molding the composite particles obtained according to the production method of the present invention.
(複合粒子の製造方法)
本発明の複合粒子の製造方法は、撹拌軸が相異なる2つ以上の撹拌翼を備える造粒槽内にて、
(i)電極活物質を含む粉体材料を撹拌して撹拌状態とする工程;
(ii)撹拌状態にある粉体材料に対して、バインダー、導電助剤、及び溶媒を含む組成物を添加して複合粒子とする工程;
をこの順に実施することを特徴とする。撹拌軸が相異なる2つ以上の撹拌翼を備える造粒槽内にて、上記(i)~(ii)の操作をこの順に実施することで、電極の柔軟性を高めるとともに、電極における電極活物質の割れを抑制し、さらには、かかる電極を備える電気化学素子のサイクル特性を向上させることができる、複合粒子を提供することができる。さらに、任意で、上記(ii)の操作に続いて、(iii)組成物の添加完了後に複合粒子を撹拌することで整粒する工程を行ってもよい。
(Method for producing composite particles)
The method for producing composite particles of the present invention includes the steps of:
(i) stirring a powder material containing an electrode active material to bring it into a stirred state;
(ii) adding a composition containing a binder, a conductive additive, and a solvent to the powder material in a stirred state to form composite particles;
The method is characterized in that the above steps (i) to (ii) are carried out in this order in a granulation tank equipped with two or more stirring blades having different stirring shafts. By carrying out the above steps (i) to (ii) in this order, it is possible to provide composite particles that can increase the flexibility of the electrode, suppress cracking of the electrode active material in the electrode, and improve the cycle characteristics of an electrochemical device equipped with such an electrode. Furthermore, optionally, following the above step (ii), a step (iii) of regulating the size of the composite particles by stirring them after the addition of the composition is completed may be carried out.
<造粒槽>
造粒槽は、撹拌軸が相異なる2つ以上の撹拌翼を備えることを必要とする。撹拌軸が相異なる2つ以上の撹拌翼を備えることで得られる複合粒子の組成の均一性が高まり、結果的に、かかる複合粒子を用いて形成した電極を備える電気化学素子のサイクル特性を高めることができる。一例にかかる造粒槽について、図1~2を参照して説明する。図1は、造粒槽1の上面図であり、図2は、図1に示すA-A切断線に従う断面図である。造粒槽1は、主撹拌翼2と、主撹拌翼2と撹拌軸の相異なる副撹拌翼3とを備える。なお、撹拌翼の個数は、2つ以上である限りにおいて特に限定されない。撹拌翼を2つ以上有することで、複合粒子の組成の均一性を高めることにより、かかる複合粒子を用いて形成した電極を備える電気化学素子のサイクル特性を高めることができる。
<Granulation tank>
The granulation tank needs to be provided with two or more stirring blades with different stirring shafts. By providing two or more stirring blades with different stirring shafts, the uniformity of the composition of the composite particles obtained is increased, and as a result, the cycle characteristics of an electrochemical element equipped with an electrode formed using such composite particles can be improved. An example of a granulation tank will be described with reference to Figs. 1 and 2. Fig. 1 is a top view of the
さらに、図示しないが、造粒槽1は、液状の組成物を供給し得る供給手段を少なくとも一つ備えている。かかる供給手段としては、霧状の液状物を供給可能に構成されたスプレーノズル、及び滴下ロートが挙げられる。供給手段の個数は特に限定されないが、造粒槽のサイズに応じて複数個が、相互に離散して配置されていてもよい。さらに、図示しないが、造粒槽1は、粉体材料の供給口及び形成した複合粒子を排出可能に構成された排出口を備えうる。
Furthermore, although not shown, the
図2に、主撹拌翼2の撹拌軸を、第一撹拌軸RA1として破線で示し、副撹拌翼の撹拌軸を第二撹拌軸RA2として破線で示す。図2では、第一撹拌軸RA1と第二撹拌軸RA2とがなす角θは、約90度となっている。なお、第一撹拌軸RA1と第二撹拌軸RA2とがなす角は、これらの2つの軸線がなす角度のうち、鋭角側の角度を意味する。ここで、本明細書において、「撹拌軸が相異なる」とは、撹拌軸同士がなす角θが、20°以上90°以下であることを意味する。撹拌軸同士がなす角θは、30°以上であることが好ましく、45°以上であることがより好ましく、85°以上であることがさらに好ましい。撹拌軸同士がなす角θが上記範囲内であれば、粉体材料を効果的に撹拌することができ、得られる複合粒子の粒子径及び変動係数を良好に制御することができ、その結果、かかる複合粒子を用いて形成した電極の柔軟性及び電極における電極活物質の割れを抑制することができ、さらには、得られる電気化学素子のサイクル特性を高めることができる。なお、「変動係数」とは、複合粒子の面積相当径の変動係数を意味し、粒子径分布の広さを表す指標である。面積相当径の変動係数は、複合粒子の面積相当径の標準偏差を面積相当径の平均値で除し、100分率とした値として、本明細書の実施例に記載した方法に従って算出することができる。
In Figure 2, the stirring shaft of the main stirring
造粒槽の形状は、内部において電極活物質を含む粉体材料を所定期間にわたり収容可能であるとともに、少なくとも2つの撹拌翼により撹拌可能である限りにおいて特に限定されない。例えば、造粒槽の形状は、図1~2に示す造粒槽1のように、底面及び上面の形状が円形であり、高さ方向における上部がテーパーを有する円筒形状であってもよい。なお、造粒槽の形状が図1~2に示すような所定の円筒形状である場合において、少なくとも2つの撹拌軸のうちの一方は円筒の中心軸線に一致しており、他方の撹拌軸はかかる中心軸線に対して鉛直な方向に一致していてもよい。さらに、造粒槽の形状が図1~2に示すような所定の円筒形状である場合において、底面の直径を高さで除した値(直径/高さ)が、0.1以上であることが好ましく、0.3以上であることがより好ましく、0.5以上であることがさらに好ましく、2.5以下であることが好ましく、2.0以下であることがより好ましく、1.5以下であることがさらに好ましい。粉体材料を効果的に撹拌することができるからである。
The shape of the granulation tank is not particularly limited as long as it can accommodate the powder material containing the electrode active material for a predetermined period of time and can be stirred by at least two stirring blades. For example, the shape of the granulation tank may be cylindrical, with the bottom and top surfaces being circular and the upper part tapered in the height direction, as in the
主撹拌翼2は、3つの主ブレード21を備える。主ブレード21の形状及び数は特に限定されない。副撹拌翼3は、2つの副ブレード31を備える。副ブレード31は、図1~2ではアンカー翼として図示するが、これに限定されない。また、副ブレード31の数も図示の態様に限定されず、1つ、又は3つ以上であってもよい。さらに、造粒槽1は、図示しないが、空気を通気することで主撹拌翼2及び副撹拌翼3の各駆動部への粉体材料の混入を抑制し得るように構成された、通気機構を備えうる。
The
上記のような条件を満たす造粒槽としては、例えば、アーステクニカ社製ハイスピードミキサー、三井鉱山社製ヘンシェルミキサー(現、日本コークス社製FMミキサー)、パウレック社製バーティカルグラニュレーター、フロイント産業社製CFグラニュレーター、奈良機械製作所社製高速撹拌混合造粒機、ダルトン社製SPグラニュレーター、フロイント産業社製バランスグランなどが使用できる。 Examples of granulation tanks that satisfy the above conditions include the high-speed mixer manufactured by EarthTechnica, the Henschel mixer manufactured by Mitsui Mining (now the FM mixer manufactured by Nippon Coke Company), the vertical granulator manufactured by Powrex, the CF granulator manufactured by Freund Corporation, the high-speed stirring and mixing granulator manufactured by Nara Machinery Works, the SP granulator manufactured by Dalton, and the balance granulator manufactured by Freund Corporation.
以下、造粒槽内にて実施される各種操作について説明する。 The following describes the various operations carried out in the granulation tank.
<(i)予備撹拌操作>
予備撹拌操作においては、粉体材料を撹拌して撹拌状態とする。ここで、粉体材料は、電極活物質を含むことを必要とし、任意で、導電助材を含有してもよい。予備撹拌操作を実施することにより、得られる複合粒子を用いて形成した電極を備える電気化学素子のサイクル特性を高めることができる。
<(i) Pre-stirring operation>
In the preliminary stirring operation, the powder material is stirred to a stirred state. Here, the powder material needs to contain an electrode active material, and may optionally contain a conductive assistant. By carrying out the preliminary stirring operation, it is possible to improve the cycle characteristics of an electrochemical device having an electrode formed using the obtained composite particles.
正極活物質としては、特に限定されることなく、例えば、リチウム含有コバルト酸化物(コバルト酸リチウム、LiCoO2)、マンガン酸リチウム(LiMn2O4)、リチウム含有ニッケル酸化物(LiNiO2)、Co-Ni-Mnのリチウム含有複合酸化物(Li(Co Mn Ni)O2)、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、オリビン型リン酸鉄リチウム(LiFePO4)、オリビン型リン酸マンガンリチウム(LiMnPO4)、Li2MnO3-LiNiO2系固溶体、Li1+xMn2-xO4(0<X<2)で表されるリチウム過剰のスピネル化合物、Li[Ni0.17Li0.2Co0.07Mn0.56]O2、LiNi0.5Mn1.5O4等の既知の正極活物質が挙げられる。また、負極活物質としては、炭素系負極活物質、金属系負極活物質、及びこれらを組み合わせた負極活物質などが挙げられる。 The positive electrode active material is not particularly limited, and examples thereof include lithium-containing cobalt oxide (lithium cobalt oxide, LiCoO 2 ), lithium manganese oxide (LiMn 2 O 4 ), lithium-containing nickel oxide (LiNiO 2 ), Co—Ni—Mn lithium-containing composite oxide (Li(Co Mn Ni)O 2 ), Ni—Mn—Al lithium-containing composite oxide, Ni—Co—Al lithium-containing composite oxide, olivine-type lithium iron phosphate (LiFePO 4 ), olivine-type lithium manganese phosphate (LiMnPO 4 ), Li 2 MnO 3 -LiNiO 2 solid solution, lithium-excess spinel compound represented by Li 1+x Mn 2-x O 4 (0<X<2), Li[Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ]O 2 , LiNi 0.5 Mn 1.5 O 4 , and other known positive electrode active materials. Examples of the negative electrode active material include carbon-based negative electrode active materials, metal-based negative electrode active materials, and negative electrode active materials that are a combination of these.
電極活物質の粒子径は、0.03μm以上が好ましく、0.1μm以上がより好ましく、0.5μm以上がさらに好ましく、500μm以下が好ましく、200μm以下がより好ましく、30μm以下がさらに好ましい。電極活物質の粒子径は、レーザー回折法にて測定することができる。より具体的には、レーザー回折式粒子径分布測定装置を用いて測定した粒子径分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径D50を、体積平均粒子径として、この値が上記粒子径範囲を満たすことが好ましい。電極活物質の粒子径が上記上限値以下であれば、複合粒子内の組成をより均質にすることができる。さらに、電極活物質の粒子径が上記上限値以下であれば、得られる電極の電極密度を高めることができるとともに、電極活物質の比表面積が十分に大きいため電気化学素子を形成した際における電気化学的反応を最適化することができる。電極活物質の粒子径が上記下限値以上であれば、複合粒子を製造する際の材料としての粉体材料のハンドリング性が向上するとともに、複合粒子の生産性が向上する。さらに、電極活物質の粒子径が上記下限値以上であれば電気化学素子の充放電を繰り返し行った際における電極活物質劣化を良好に抑制することができる。 The particle diameter of the electrode active material is preferably 0.03 μm or more, more preferably 0.1 μm or more, even more preferably 0.5 μm or more, preferably 500 μm or less, more preferably 200 μm or less, and even more preferably 30 μm or less. The particle diameter of the electrode active material can be measured by a laser diffraction method. More specifically, in the particle diameter distribution (volume basis) measured using a laser diffraction type particle diameter distribution measuring device, the particle diameter D50 at which the cumulative volume calculated from the small diameter side is 50% is set as the volume average particle diameter, and this value preferably satisfies the above particle diameter range. If the particle diameter of the electrode active material is equal to or less than the above upper limit, the composition within the composite particle can be made more homogeneous. Furthermore, if the particle diameter of the electrode active material is equal to or less than the above upper limit, the electrode density of the obtained electrode can be increased, and the specific surface area of the electrode active material is sufficiently large, so that the electrochemical reaction when forming an electrochemical element can be optimized. If the particle size of the electrode active material is equal to or greater than the lower limit, the powder material can be easily handled when used to manufacture the composite particles, and the productivity of the composite particles can be improved. Furthermore, if the particle size of the electrode active material is equal to or greater than the lower limit, deterioration of the electrode active material during repeated charging and discharging of the electrochemical device can be effectively suppressed.
導電助材としては、特に限定されることなく、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラックなど)、単層又は多層カーボンナノチューブ(多層カーボンナノチューブにはカップスタック型が含まれる)、カーボンナノホーン、気相成長炭素繊維、ポリマー繊維を焼成後に破砕して得られるミルドカーボン繊維、単層又は多層グラフェンなどを用いることができる。これらは、一種を単独で、或いは複数種を組み合わせて用いることができる。 The conductive assistant material is not particularly limited, and examples thereof include carbon black (e.g., acetylene black, Ketjen Black (registered trademark), furnace black, etc.), single-walled or multi-walled carbon nanotubes (multi-walled carbon nanotubes include cup-stacked types), carbon nanohorns, vapor-grown carbon fibers, milled carbon fibers obtained by crushing polymer fibers after firing, and single-walled or multi-walled graphene. These can be used alone or in combination.
電極活物質と導電助材とを併用する場合のこれらの配合量比は特に限定されず、電気化学素子用電極に含有されるこれらの一般的な配合量比とすることができる。 When the electrode active material and the conductive assistant are used together, the mixing ratio of these is not particularly limited, and can be the general mixing ratio of these contained in electrodes for electrochemical elements.
予備撹拌操作では、液状成分を配合しないことが好ましい。粉体材料には、製造時及び保管時などに付着し得る水分などの影響で、不可避的に液状成分が少量含有されうる。言い換えれば、予備撹拌操作の開始時における粉体材料の固形分濃度は、100質量%未満である蓋然性が高い。ここで、得られる複合粒子の性状及び複合粒子の製造効率を高める観点からは、予備撹拌操作を行うことで、粉体材料の固形分濃度を高めることが好ましい。具体的には、予備撹拌操作の終了時における粉体材料の固形分濃度が95質量%以上であることが好ましく、97質量%以上であることがより好ましく、98質量%以上であることがさらに好ましい。粉体材料の固形分濃度は、実施例に記載の方法により測定することができる。 It is preferable not to mix liquid components in the preliminary mixing operation. A small amount of liquid components may be unavoidably contained in the powder material due to the influence of moisture that may adhere during production and storage. In other words, the solid content concentration of the powder material at the start of the preliminary mixing operation is likely to be less than 100% by mass. From the viewpoint of improving the properties of the composite particles obtained and the production efficiency of the composite particles, it is preferable to increase the solid content concentration of the powder material by performing the preliminary mixing operation. Specifically, the solid content concentration of the powder material at the end of the preliminary mixing operation is preferably 95% by mass or more, more preferably 97% by mass or more, and even more preferably 98% by mass or more. The solid content concentration of the powder material can be measured by the method described in the Examples.
予備撹拌操作における主撹拌翼及び副撹拌翼の周速は、1m/s以上20m/s以下であることが好ましい。周速がかかる範囲内であれば、得られる複合粒子の組成の均質性を高めることができ、これにより得られる電極における電極活物質の割れを抑制し、ひいてはかかる電極を備える電気化学素子のサイクル特性を高めることができる。ここで、予備撹拌操作における主撹拌翼及び副撹拌翼の周速は、同一であっても異なっていてもよく、異なっていてもよいが異なっている場合においては、副撹拌翼の周速の方が主撹拌翼の周速よりも早いことが好ましい。 The peripheral speed of the main stirring blade and the auxiliary stirring blade in the preliminary stirring operation is preferably 1 m/s or more and 20 m/s or less. If the peripheral speed is within this range, the homogeneity of the composition of the obtained composite particles can be increased, thereby suppressing cracking of the electrode active material in the obtained electrode, and ultimately improving the cycle characteristics of an electrochemical element equipped with such an electrode. Here, the peripheral speeds of the main stirring blade and the auxiliary stirring blade in the preliminary stirring operation may be the same or different, and may be different, but if they are different, it is preferable that the peripheral speed of the auxiliary stirring blade is faster than the peripheral speed of the main stirring blade.
予備撹拌操作における通気量は、造粒槽に流入させる空気の流量を造粒槽の容量で割った値(流量/容量)が0.1/分以上100/分であることが好ましい。通気量がかかる範囲内であれば、予備撹拌操作において、良好に粉体材料の固形分濃度を高めることができる。なお、通気量は、上述した、主撹拌翼及び副撹拌翼の駆動部への粉体材料の進入を防止するための通気機構による通気量でありうる。さらに、通気する空気の温度は、50℃未満であることが好ましく、45℃以下であることがより好ましく、40℃以下であることがさらに好ましく、30℃以下であることが特に好ましい。 The aeration amount in the preliminary mixing operation is preferably 0.1/min to 100/min, calculated by dividing the flow rate of the air flowing into the granulation tank by the volume of the granulation tank (flow rate/volume). If the aeration amount is within this range, the solid content concentration of the powder material can be increased satisfactorily in the preliminary mixing operation. The aeration amount may be the amount of aeration provided by the ventilation mechanism for preventing the powder material from entering the drive parts of the main mixing blade and the auxiliary mixing blade, as described above. Furthermore, the temperature of the ventilated air is preferably less than 50°C, more preferably 45°C or less, even more preferably 40°C or less, and particularly preferably 30°C or less.
予備撹拌操作を実施する時間(予備撹拌時間)は、特に限定されない。例えば予備撹拌時間は、固形分濃度を上述した好適閾値以上となるようにし得る時間であることが好ましい。例えば、予備撹拌時間は、5分以上60分以下でありうる。 The time for which the pre-mixing operation is performed (pre-mixing time) is not particularly limited. For example, the pre-mixing time is preferably a time that allows the solids concentration to be equal to or greater than the preferred threshold value described above. For example, the pre-mixing time may be 5 minutes or more and 60 minutes or less.
なお、予備撹拌操作は、複数段階に分けて実施してもよい。その場合、上述した撹拌翼を備える造粒槽とは異なる撹拌装置(以下、「撹拌装置A」とも称する。)を用いた予備撹拌操作を、上述した撹拌翼を備える造粒槽における予備撹拌操作に先立って実施することが好ましい。撹拌装置Aとしては、上述した撹拌翼を備える造粒槽とは異なる撹拌装置である限りにおいて特に限定されることなく、例えば、乾式による混合装置、湿式による混合装置が挙げられる。乾式による混合装置としては、例えば、淺田鉄工社製ミラクルKCK、奈良機械社製作所社製ハイブリタイゼーションシステム等を用いることができる。湿式による混合装置としては、例えば、淺田鉄工社製プラネタリーデスパ等を用いることができる。そうした、撹拌装置Aを用いた予備撹拌操作を、上述した撹拌翼を備える造粒槽を用いた予備撹拌操作よりも前に実施することで、得られる電気化学素子のレート特性を高めることができる。これは、撹拌装置Aを用いた予備撹拌操作の実施により、得られる複合粒子の体積抵抗率を低減することができるためであると考えられる。 The preliminary mixing operation may be carried out in multiple stages. In that case, it is preferable to carry out a preliminary mixing operation using a mixing device (hereinafter also referred to as "mixing device A") different from the granulation tank equipped with the above-mentioned mixing blades prior to the preliminary mixing operation in the granulation tank equipped with the above-mentioned mixing blades. The mixing device A is not particularly limited as long as it is a mixing device different from the granulation tank equipped with the above-mentioned mixing blades, and examples thereof include a dry mixing device and a wet mixing device. As a dry mixing device, for example, Miracle KCK manufactured by Asada Iron Works, and Hybridization System manufactured by Nara Machinery Co., Ltd. can be used. As a wet mixing device, for example, Planetary Despa manufactured by Asada Iron Works can be used. By carrying out such a preliminary mixing operation using the mixing device A before the preliminary mixing operation using the above-mentioned granulation tank equipped with the mixing blades, the rate characteristics of the obtained electrochemical element can be improved. This is thought to be because the volume resistivity of the obtained composite particles can be reduced by carrying out the preliminary mixing operation using the mixing device A.
<(ii)複合粒子形成操作>
複合粒子形成操作においては、撹拌状態にある粉体材料に対して、バインダー、導電助剤、及び溶媒を含む組成物を添加して複合粒子とする。バインダーとしては特に限定されることなく、電気化学素子用電極に配合されうるバインダーとして既知のものを用いることができる。また、複合粒子形成操作において、粉体材料に対してバインダー、導電助剤、及び溶媒を含む組成物を添加する際の添加態様としては、一括添加以外の態様であれば特に限定されない。例えば、複合粒子形成操作を通じて連続的に添加する態様、複合粒子形成操作を実施する間に1回又は複数回の添加停止期間を介在させる断続的な添加態様などが挙げられる。中でも、連続的に添加する態様が好ましい。複合粒子形成操作が実施されている間、すなわち、粉体材料、溶媒、導電助剤、及びバインダーが全て共に撹拌状態に置かれている雰囲気のもとでは、粉体材料及びバインダーの複合粒子が徐々に形成されつつ、粒子同士、及び粒子と溶媒とが相互に衝突することで整粒作用が生じうる。言い換えると、複合粒子形成操作の最中に、溶媒の存在下で、複合粒子の形成作用と整粒作用とが同時進行しうる。このようにして、複合粒子形成操作においては、複合粒子を整粒しながら形成することができる。
<(ii) Composite particle formation operation>
In the composite particle forming operation, a composition containing a binder, a conductive assistant, and a solvent is added to the powder material in a stirring state to form composite particles. The binder is not particularly limited, and can be any suitable binder. Known binders that can be blended in electrodes for chemical elements can be used. In addition, in the composite particle forming operation, when a composition containing a binder, a conductive assistant, and a solvent is added to a powder material, The manner of addition is not particularly limited as long as it is a manner other than lump-sum addition. For example, the manner of addition may be a continuous addition throughout the composite particle formation operation, or a manner in which addition is stopped once or multiple times during the composite particle formation operation. Among them, a continuous addition mode is preferable. That is, while the composite particle forming operation is being performed, that is, while the powder material, the solvent, the conductive assistant, and the binder are all added, the continuous addition mode is preferable. In an atmosphere in which both are kept in a state of agitation, composite particles of the powder material and binder are gradually formed, and the particles and the particles collide with each other and with the solvent, resulting in a granulation effect. . In other words, during the composite particle formation operation, the composite particle formation action and the particle size regulation action can proceed simultaneously in the presence of a solvent. It can be formed while granulating.
粉体材料に対してバインダー、導電助剤、及び溶媒を含む組成物を添加する際の添加手段としては、上記の通りスプレーノズル及び滴下ロート等が挙げられる。中でも、効率性の観点から、スプレーノズルを用いることが好ましい。スプレーノズルとして、気体の流れにより液体を粉砕・微粒化して噴出させる機構を有する2流体スプレーを用いる際には、気液比(気体体積/液体体積)が1.30以上であることが好ましく、1.40以上であることがより好ましく、1.45以上であることが更に好ましく、1.80以下であることが好ましく、1.70以下であることがより好ましく、1.60以下であることが更に好ましい。気液比が上記下限値以上であれば、複合粒子の粒子径が肥大化することを抑制することができる。また、気液比が上記上限値以下であれば、複合粒子の粒子径が過度に小さくなることを抑制することができる。また、静止面への単位面積あたりの組成物噴霧量に相当する値である噴霧面密度(g/mm2/分)の値が、0.20(g/mm2/分)以上であることが好ましく、0.25(g/mm2/分)以上であることがより好ましく、0.38(g/mm2/分)以上であることが更に好ましく、0.60(g/mm2/分)以下であることが好ましく、0.50(g/mm2/分)以下であることがより好ましく、0.41(g/mm2/分)以下であることが更に好ましい。噴霧面密度(g/mm2/分)の値が上記下限値以上であれば、複合粒子の粒子径が過度に小さくなることを抑制することができる。すなわち、気液比、及び/又は噴霧面密度を適切な範囲に制御することにより、得られる複合粒子の粒子径を良好に制御することができる。 As described above, the means for adding the composition containing the binder, the conductive assistant, and the solvent to the powder material include a spray nozzle and a dropping funnel. Among them, from the viewpoint of efficiency, it is preferable to use a spray nozzle. When using a two-fluid spray having a mechanism for pulverizing and atomizing the liquid by the flow of gas as the spray nozzle, the gas-liquid ratio (gas volume/liquid volume) is preferably 1.30 or more, more preferably 1.40 or more, even more preferably 1.45 or more, preferably 1.80 or less, more preferably 1.70 or less, and even more preferably 1.60 or less. If the gas-liquid ratio is equal to or more than the lower limit, the particle size of the composite particles can be suppressed from becoming too large. In addition, if the gas-liquid ratio is equal to or less than the upper limit, the particle size of the composite particles can be suppressed from becoming too small. In addition, the value of the spray surface density (g/ mm2 /min), which is a value corresponding to the amount of the composition sprayed per unit area on the stationary surface, is preferably 0.20 (g/ mm2 /min) or more, more preferably 0.25 (g/ mm2 /min) or more, even more preferably 0.38 (g/ mm2 /min) or more, preferably 0.60 (g/ mm2 /min) or less, more preferably 0.50 (g/ mm2 /min) or less, and even more preferably 0.41 (g/ mm2 /min) or less. If the value of the spray surface density (g/ mm2 /min) is equal to or more than the lower limit, the particle size of the composite particles can be prevented from becoming excessively small. That is, by controlling the gas-liquid ratio and/or the spray surface density to an appropriate range, the particle size of the obtained composite particles can be well controlled.
[バインダー]
バインダーとしては、例えば、共役ジエン系重合体、アクリル系重合体、芳香族ビニル系ブロック重合体、フッ素系重合体、セルロース系重合体、環状オレフィン系重合体などを用いることができる。バインダーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[binder]
Examples of the binder that can be used include conjugated diene polymers, acrylic polymers, aromatic vinyl block polymers, fluorine polymers, cellulose polymers, cyclic olefin polymers, etc. The binders may be used alone or in combination of two or more.
共役ジエン系重合体とは、共役ジエン単量体単位を含む重合体を指す。そして、共役ジエン系重合体の具体例としては、特に限定されることなく、スチレン-ブタジエン共重合体(SBR)などの芳香族ビニル単量体単位及び脂肪族共役ジエン単量体単位を含む共重合体、ブタジエンゴム(BR)、アクリルゴム(NBR)(アクリロニトリル単位及びブタジエン単位を含む共重合体)、並びに、それらの水素化物などが挙げられる。 Conjugated diene polymers refer to polymers containing conjugated diene monomer units. Specific examples of conjugated diene polymers include, but are not limited to, copolymers containing aromatic vinyl monomer units and aliphatic conjugated diene monomer units, such as styrene-butadiene copolymer (SBR), butadiene rubber (BR), acrylic rubber (NBR) (copolymers containing acrylonitrile units and butadiene units), and hydrogenated versions of these.
アクリル系重合体としては、特に限定されることなく、例えば、架橋性単量体単位と、(メタ)アクリル酸エステル単量体単位と、酸性基含有単量体単位とを含有する重合体などが挙げられる。なお、アクリル系重合体における(メタ)アクリル酸エステル単量体単位の割合は、好ましくは50質量%以上、より好ましくは55質量%以上、さらに好ましくは58質量%以上であり、好ましくは98質量%以下、より好ましくは97質量%以下、さらに好ましくは96質量%以下である。 The acrylic polymer is not particularly limited, and examples thereof include polymers containing crosslinkable monomer units, (meth)acrylic acid ester monomer units, and acidic group-containing monomer units. The proportion of (meth)acrylic acid ester monomer units in the acrylic polymer is preferably 50% by mass or more, more preferably 55% by mass or more, and even more preferably 58% by mass or more, and is preferably 98% by mass or less, more preferably 97% by mass or less, and even more preferably 96% by mass or less.
芳香族ビニル系ブロック重合体としては、芳香族ビニル単量体単位位からなるブロック領域を含有するブロック重合体が挙げられる。芳香族ビニル単量体としては、例えば、スチレン、スチレンスルホン酸及びその塩、α-メチルスチレン、p-t-ブチルスチレン、ブトキシスチレン、ビニルトルエン、クロロスチレン、並びに、ビニルナフタレンが挙げられ、中でもスチレンが好ましい。芳香族ビニル系ブロック重合体として、好ましくは、スチレン-イソプレン-スチレンブロック共重合体、及びスチレン-ブタジエン-スチレン共重合体、並びに、それらの水素化物などが挙げられる。 Aromatic vinyl block polymers include block polymers containing block regions consisting of aromatic vinyl monomer units. Examples of aromatic vinyl monomers include styrene, styrene sulfonic acid and its salts, α-methylstyrene, p-t-butylstyrene, butoxystyrene, vinyltoluene, chlorostyrene, and vinylnaphthalene, with styrene being preferred. Preferred examples of aromatic vinyl block polymers include styrene-isoprene-styrene block copolymers, and styrene-butadiene-styrene copolymers, as well as hydrogenated versions of these.
フッ素系重合体とは、フッ素含有単量体単位を含有し、さらに、フッ素を含有しない単量体(フッ素非含有単量体)単位を含有してもよい重合体を意味する。フッ素含有単量体としては、特に限定されることなく、例えば、フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、三フッ化塩化ビニル、フッ化ビニル、トリフルオロエチレン、トリフルオロクロロエチレン、2,3,3,3-テトラフルオロプロペン、パーフルオロアルキルビニルエーテルなどが挙げられる。フッ素系重合体としては、特に限定されることなく、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ペルフルオロアルコキシフッ素樹脂、四フッ化エチレン-六フッ化プロピレン共重合体、エチレン-四フッ化エチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体、フッ化ビニリデン-六フッ化プロピレン共重合体(フッ化ビニリデン-ヘキサフルオロプロピレン共重合体)などが挙げられる。 The term "fluorine-based polymer" refers to a polymer that contains fluorine-containing monomer units and may further contain fluorine-free monomer units (fluorine-free monomers). Examples of fluorine-containing monomers include, but are not limited to, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, vinyl trifluoride, vinyl fluoride, trifluoroethylene, trifluorochloroethylene, 2,3,3,3-tetrafluoropropene, and perfluoroalkyl vinyl ether. Examples of fluorine-based polymers include, but are not limited to, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxy fluororesin, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer (vinylidene fluoride-hexafluoropropylene copolymer), and the like.
セルロース系重合体としては、特に限定されることなく、例えば、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート、シアノエチルプルラン、シアノエチルポリビニルアルコール、シアノエチルセルロース、シアノエチルスクロース、プルラン及びカルボキシルメチルセルロースなどが挙げられる。 Cellulosic polymers include, but are not limited to, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose, pullulan, and carboxymethyl cellulose.
環状オレフィン系重合体としては、特に限定されることなく、例えば、環状オレフィン化合物をモノマーとして用いて合成した重合体(付加重合体又は開環重合体)及びその水素化物、並びに、芳香族ビニル化合物をモノマーとして用いた重合体の水素化物が挙げられる。中でも、電解液膨潤度およびガラス転移温度を適度な大きさに調整し易いため、環状オレフィン化合物をモノマーとして用いた開環重合体の水素化物、及び、芳香族ビニル化合物をモノマーとして用いた重合体の水素化物が好ましい。 Cyclic olefin polymers are not particularly limited, and examples include polymers (addition polymers or ring-opening polymers) synthesized using cyclic olefin compounds as monomers and their hydrogenated products, as well as hydrogenated polymers using aromatic vinyl compounds as monomers. Among these, hydrogenated ring-opening polymers using cyclic olefin compounds as monomers and hydrogenated polymers using aromatic vinyl compounds as monomers are preferred, since the electrolyte swelling degree and glass transition temperature can be easily adjusted to appropriate levels.
環状オレフィン化合物としては、特に限定されることなく、例えば、
ノルボルネン、5-メチルノルボルネン、5-エチルノルボルネン、5-ブチルノルボルネン、5-ヘキシルノルボルネン、5-デシルノルボルネン、5-シクロヘキシルノルボルネン、5-シクロペンチルノルボルネン等の非置換又はアルキル基を有するノルボルネン類;
5-エチリデンノルボルネン、5-ビニルノルボルネン、5-プロペニルノルボルネン、5-シクロヘキセニルノルボルネン、5-シクロペンテニルノルボルネン等のアルケニル基を有するノルボルネン類;
5-フェニルノルボルネン等の芳香環を有するノルボルネン類;
5-メトキシカルボニルノルボルネン、5-エトキシカルボニルノルボルネン、5-メチル-5-メトキシカルボニルノルボルネン、5-メチル-5-エトキシカルボニルノルボルネン、ノルボルネニル-2-メチルプロピオネート、ノルボルネニル-2-メチルオクタノネート、5-ヒドロキシメチルノルボルネン、5,6-ジ(ヒドロキシメチル)ノルボルネン、5,5-ジ(ヒドロキシメチル)ノルボルネン、5-ヒドロキシ-i-プロピルノルボルネン、5,6-ジカルボキシノルボルネン、5-メトキシカルボニル-6-カルボキシノルボルネン等の酸素原子を含む極性基を有するノルボルネン類;
5-シアノノルボルネン等の窒素原子を含む極性基を有するノルボルネン類;
ジシクロペンタジエン、メチルジシクロペンタジエン、トリシクロ[5.2.1.02,6]デカ-8-エン等の芳香環構造を含まない3環以上の多環式ノルボルネン類;
テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレンともいう)、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ-4,6,8,13-テトラエン(1,4-メタノ-1,4,4a,9,9a,10-ヘキサヒドロアントラセンともいう)等の芳香環を有する3環以上の多環式ノルボルネン類;
テトラシクロドデセン、8-メチルテトラシクロドデセン、8-エチルテトラシクロドデセン、8-シクロヘキシルテトラシクロドデセン、8-シクロペンチルテトラシクロドデセン、8-メトキシカルボニル-8-メチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン等の非置換又はアルキル基を有するテトラシクロドデセン類;
8-メチリデンテトラシクロドデセン、8-エチリデンテトラシクロドデセン、8-ビニルテトラシクロドデセン、8-プロペニルテトラシクロドデセン、8-シクロヘキセニルテトラシクロドデセン、8-シクロペンテニルテトラシクロドデセン等の環外に二重結合を有するテトラシクロドデセン類;
8-フェニルテトラシクロドデセン等の芳香環を有するテトラシクロドデセン類;
8-メトキシカルボニルテトラシクロドデセン、8-メチル-8-メトキシカルボニルテトラシクロドデセン、8-ヒドロキシメチルテトラシクロドデセン、8-カルボキシテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸、テトラシクロドデセン-8,9-ジカルボン酸無水物等の酸素原子を含む置換基を有するテトラシクロドデセン類;
8-シアノテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸イミド等の窒素原子を含む置換基を有するテトラシクロドデセン類;
8-クロロテトラシクロドデセン等のハロゲン原子を含む置換基を有するテトラシクロドデセン類;
8-トリメトキシシリルテトラシクロドデセン等のケイ素原子を含む置換基を有するテトラシクロドデセン類;
上述したテトラシクロドデセン類とシクロペンタジエンとのディールズ・アルダー付加体等のヘキサシクロヘプタデセン類;
などが挙げられる。
The cyclic olefin compound is not particularly limited and may be, for example,
norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-hexylnorbornene, 5-decylnorbornene, 5-cyclohexylnorbornene, 5-cyclopentylnorbornene, and other unsubstituted or alkyl group-containing norbornenes;
Norbornenes having an alkenyl group, such as 5-ethylidenenorbornene, 5-vinylnorbornene, 5-propenylnorbornene, 5-cyclohexenylnorbornene, and 5-cyclopentenylnorbornene;
norbornenes having an aromatic ring, such as 5-phenylnorbornene;
norbornenes having a polar group containing an oxygen atom, such as 5-methoxycarbonylnorbornene, 5-ethoxycarbonylnorbornene, 5-methyl-5-methoxycarbonylnorbornene, 5-methyl-5-ethoxycarbonylnorbornene, norbornenyl-2-methylpropionate, norbornenyl-2-methyloctanonate, 5-hydroxymethylnorbornene, 5,6-di(hydroxymethyl)norbornene, 5,5-di(hydroxymethyl)norbornene, 5-hydroxy-i-propylnorbornene, 5,6-dicarboxynorbornene, and 5-methoxycarbonyl-6-carboxynorbornene;
Norbornenes having a polar group containing a nitrogen atom, such as 5-cyanonorbornene;
Polycyclic norbornenes having three or more rings and not containing an aromatic ring structure, such as dicyclopentadiene, methyldicyclopentadiene, and tricyclo[5.2.1.02,6]dec-8-ene;
Polycyclic norbornenes having three or more aromatic rings, such as tetracyclo[9.2.1.02,10.03,8]tetradeca-3,5,7,12-tetraene (also referred to as 1,4-methano-1,4,4a,9a-tetrahydro-9H-fluorene) and tetracyclo[10.2.1.02,11.04,9]pentadeca-4,6,8,13-tetraene (also referred to as 1,4-methano-1,4,4a,9,9a,10-hexahydroanthracene);
tetracyclododecenes having unsubstituted or alkyl groups, such as tetracyclododecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 8-cyclohexyltetracyclododecene, 8-cyclopentyltetracyclododecene, and 8-methoxycarbonyl-8-methyltetracyclo[4.4.0.12,5.17,10]-3-dodecene;
tetracyclododecenes having an exocyclic double bond, such as 8-methylidenetetracyclododecene, 8-ethylidenetetracyclododecene, 8-vinyltetracyclododecene, 8-propenyltetracyclododecene, 8-cyclohexenyltetracyclododecene, and 8-cyclopentenyltetracyclododecene;
tetracyclododecenes having an aromatic ring, such as 8-phenyltetracyclododecene;
tetracyclododecenes having a substituent containing an oxygen atom, such as 8-methoxycarbonyltetracyclododecene, 8-methyl-8-methoxycarbonyltetracyclododecene, 8-hydroxymethyltetracyclododecene, 8-carboxytetracyclododecene, tetracyclododecene-8,9-dicarboxylic acid, and tetracyclododecene-8,9-dicarboxylic anhydride;
tetracyclododecenes having a nitrogen atom-containing substituent, such as 8-cyanotetracyclododecene and tetracyclododecene-8,9-dicarboxylic acid imide;
tetracyclododecenes having a substituent containing a halogen atom, such as 8-chlorotetracyclododecene;
tetracyclododecenes having a substituent containing a silicon atom, such as 8-trimethoxysilyltetracyclododecene;
hexacycloheptadecenes such as the Diels-Alder adducts of the above-mentioned tetracyclododecenes and cyclopentadiene;
etc.
中でも、環状オレフィン化合物としては、非極性ノルボルネン系単量体が好ましく、非置換又はアルキル基を有するノルボルネン類(例えば、ノルボルネン、8-エチルテトラシクロドデセン)、アルケニル基を有するノルボルネン類(例えば、エチリデンテトラシクロドデセン(8-エチリデンテトラシクロドデセン))、ジシクロペンタジエン、芳香環を有するノルボルネン誘導体(例えば、テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレンともいう))、非置換又はアルキル基を有するテトラシクロドデセン類(例えば、テトラシクロドデセン、8-メトキシカルボニル-8-メチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン)がより好ましい。 Among them, non-polar norbornene monomers are preferred as cyclic olefin compounds, and norbornenes having unsubstituted or alkyl groups (e.g., norbornene, 8-ethyltetracyclododecene), norbornenes having alkenyl groups (e.g., ethylidenetetracyclododecene (8-ethylidenetetracyclododecene)), dicyclopentadiene, norbornene derivatives having aromatic rings (e.g., tetracyclo[9.2.1.02,10.03,8]tetradeca-3,5,7,12-tetraene (also called 1,4-methano-1,4,4a,9a-tetrahydro-9H-fluorene)), and tetracyclododecenes having unsubstituted or alkyl groups (e.g., tetracyclododecene, 8-methoxycarbonyl-8-methyltetracyclo[4.4.0.12,5.17,10]-3-dodecene) are more preferred.
なお、任意に水素添加し得る、環状オレフィン化合物をモノマーとして用いた重合体は、モノマーとして環状オレフィン化合物のみを用いた重合体であってもよいし、モノマーとして環状オレフィン化合物と、環状オレフィン化合物以外の共重合可能な化合物とを用いた重合体であってもよいが、モノマーとして環状オレフィン化合物のみを用いた重合体であることが好ましい。 The polymer using a cyclic olefin compound as a monomer, which can be optionally hydrogenated, may be a polymer using only a cyclic olefin compound as a monomer, or may be a polymer using a cyclic olefin compound and a copolymerizable compound other than a cyclic olefin compound as monomers, but is preferably a polymer using only a cyclic olefin compound as a monomer.
そして、任意に水素添加し得る、環状オレフィン化合物をモノマーとして用いた重合体は、モノマーとしてテトラシクロドデセン、ジシクロペンタジエン及びノルボルネンを用いた重合体であることが好ましく、モノマーとしてテトラシクロドデセン、ジシクロペンタジエン及びノルボルネンを用いた開環重合体であることがより好ましい。 The polymer using a cyclic olefin compound as a monomer, which can be optionally hydrogenated, is preferably a polymer using tetracyclododecene, dicyclopentadiene, and norbornene as monomers, and more preferably a ring-opening polymer using tetracyclododecene, dicyclopentadiene, and norbornene as monomers.
[溶媒]
溶媒としては、特に限定されることなく、上述したバインダーを溶解又は分散可能な限りにおいてあらゆる溶媒を用いることができる。例えば、溶媒としてはN-メチル-2-ピロリドン、シクロヘキサン、n―ヘキサン、アセトン、メチルエチルケトン、酢酸エチル、テトラヒドロフラン、メチレンクロライド、及びクロロホルムなどの有機溶媒及び水を用いることができる。中でも、造粒槽内において溶媒を効率的に除去して複合粒子を形成する際の乾燥エネルギーを低減する観点から、1atm下での沸点が95℃以下の非水系溶媒を用いることが好ましい。さらに、上記効果を一層良好に達成する観点から、非水系溶媒の1atm下での沸点が90℃以下であることがより好ましく、85℃以下であることがさらに好ましい。非水系溶媒の1atm下での沸点の下限値は特に限定されないが、複合粒子を形成する際の安定性を高める観点からは50℃以上であることが好ましい。かかる条件を満たす溶媒としては、シクロヘキサン、n―ヘキサン、アセトン、メチルエチルケトン、酢酸エチル、テトラヒドロフラン、メチレンクロライド、クロロホルム、などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[solvent]
The solvent is not particularly limited, and any solvent can be used as long as it can dissolve or disperse the binder. For example, organic solvents such as N-methyl-2-pyrrolidone, cyclohexane, n-hexane, acetone, methyl ethyl ketone, ethyl acetate, tetrahydrofuran, methylene chloride, and chloroform, and water can be used as the solvent. Among them, from the viewpoint of efficiently removing the solvent in the granulation tank to reduce the drying energy when forming the composite particles, it is preferable to use a non-aqueous solvent having a boiling point of 95° C. or less at 1 atm. Furthermore, from the viewpoint of achieving the above-mentioned effect more favorably, the boiling point of the non-aqueous solvent at 1 atm is more preferably 90° C. or less, and even more preferably 85° C. or less. The lower limit of the boiling point of the non-aqueous solvent at 1 atm is not particularly limited, but from the viewpoint of increasing the stability when forming the composite particles, it is preferably 50° C. or more. Examples of solvents that satisfy such conditions include cyclohexane, n-hexane, acetone, methyl ethyl ketone, ethyl acetate, tetrahydrofuran, methylene chloride, chloroform, and the like. These may be used alone or in combination of two or more kinds in any ratio.
[組成物粘度指数]
複合粒子形成操作にて造粒槽内に連続添加するバインダー、導電助剤、及び溶媒を含む組成物の粘度指数は、100mPa・s以上1000mPa・s以下であることが好ましい。バインダー、導電助剤、及び溶媒を含む組成物の粘度指数を上記範囲内とすることで、得られる複合粒子の粒子径及び変動係数を良好に制御することができる。なお、組成物の粘度指数は、組成物の粘度を固形分濃度で割って100をかけた値であり、実施例に記載の方法により測定及び算出することができる。
[Composition Viscosity Index]
The viscosity index of the composition containing the binder, conductive assistant, and solvent, which is continuously added to the granulation tank in the composite particle formation operation, is preferably 100 mPa·s or more and 1000 mPa·s or less. By setting the viscosity index of the composition containing the binder, conductive assistant, and solvent within the above range, the particle size and variation coefficient of the obtained composite particles can be well controlled. The viscosity index of the composition is the value obtained by dividing the viscosity of the composition by the solid content concentration and multiplying it by 100, and can be measured and calculated by the method described in the examples.
[撹拌翼周速]
複合粒子形成操作における主撹拌翼及び副撹拌翼の周速は、1m/s以上20m/s以下であることが好ましい。主撹拌翼の周速が上記範囲内であれば、得られる複合粒子の粒子径を良好に制御することができる。また、副撹拌翼の周速が上記範囲内であれば、得られる複合粒子の変動係数を良好に制御することができる。さらに、複合粒子形成操作が行われている際に生じる整粒作用を高めて、複合粒子を用いて形成した電極の高温保存時のガス発生を抑制する観点から、主撹拌翼の周速の下限は6m/s以上であることが好ましく、上限は12m/s以下であることが好ましい。
[Mixing blade peripheral speed]
The peripheral speed of the main stirring blade and the auxiliary stirring blade in the composite particle forming operation is preferably 1 m/s or more and 20 m/s or less. If the peripheral speed of the main stirring blade is within the above range, the particle size of the obtained composite particles can be well controlled. In addition, if the peripheral speed of the auxiliary stirring blade is within the above range, the coefficient of variation of the obtained composite particles can be well controlled. Furthermore, in order to enhance the particle size regulation action occurring during the composite particle forming operation and to suppress gas generation during high-temperature storage of the electrode formed using the composite particles, the lower limit of the peripheral speed of the main stirring blade is preferably 6 m/s or more, and the upper limit is preferably 12 m/s or less.
[通気量]
複合粒子形成操作における通気量は、造粒槽に流入させる空気の流量を造粒槽の容量で割った値(流量/容量)が0.1/分以上100/分であることが好ましい。通気量がかかる範囲内であれば、複合粒子形成操作において、造粒槽内の溶媒蒸気量を良好に制御することができ、複合粒子を効率的に形成することができる。
[Ventilation volume]
The aeration amount in the composite particle formation operation is preferably 0.1/min to 100/min, calculated by dividing the flow rate of air flowing into the granulation tank by the volume of the granulation tank (flow rate/volume). If the aeration amount is within this range, the amount of solvent vapor in the granulation tank can be well controlled in the composite particle formation operation, and composite particles can be efficiently formed.
[時間]
複合粒子形成操作の持続時間(複合粒子形成時間)は、特に限定されない。例えば、複合粒子形成時間は、5分以上60分以下でありうる。
[time]
The duration of the composite particle formation operation (composite particle formation time) is not particularly limited. For example, the composite particle formation time may be 5 minutes or more and 60 minutes or less.
<(iii)整粒操作>
整粒操作においては、組成物の添加完了後(すなわち、(ii)複合粒子形成操作の完了後)に複合粒子を撹拌することで整粒する。整粒操作においては、複合粒子の性状を一層高める観点から、導電助材をさらに添加してもよい。
<(iii) Sizing operation>
In the sizing operation, the composite particles are sized by stirring after the addition of the composition is completed (i.e., after the composite particle formation operation (ii) is completed). From the viewpoint of enhancing the electrical conductivity, a conductive assistant may be further added.
整粒操作における主撹拌翼及び副撹拌翼の周速は、0.1m/s以上10m/s以下であることが好ましい。主撹拌翼の周速が上記範囲内であれば、得られる複合粒子の密度係数及び面積円形度を良好に制御することができる。また、副撹拌翼の周速が上記範囲内であれば、得られる複合粒子の変動係数及び周囲長包絡度を良好に制御することができる。なお、複合粒子の「周囲長包絡度」とは、粒子の外周の粗さの指標となる値で、本明細書の実施例に記載の方法に従って測定することができる。 The peripheral speed of the main stirring blade and the auxiliary stirring blade in the sizing operation is preferably 0.1 m/s or more and 10 m/s or less. If the peripheral speed of the main stirring blade is within the above range, the density coefficient and areal circularity of the obtained composite particles can be well controlled. Also, if the peripheral speed of the auxiliary stirring blade is within the above range, the variation coefficient and perimeter envelope of the obtained composite particles can be well controlled. The "perimeter envelope" of the composite particles is a value that serves as an index of the roughness of the outer periphery of the particle, and can be measured according to the method described in the examples of this specification.
整粒操作における通気量は、造粒槽に流入させる空気の流量を造粒槽の容量で割った値(流量/容量)が0.1/分以上100/分以下であることが好ましい。通気量がかかる範囲内であれば、整粒操作において、複合粒子の湿潤状態を良好に制御することができ、複合粒子を効率的に形成することができる。 It is preferable that the aeration rate during the sizing operation, calculated by dividing the flow rate of the air flowing into the granulation tank by the volume of the granulation tank (flow rate/volume), is 0.1/min or more and 100/min or less. If the aeration rate is within this range, the moist state of the composite particles can be well controlled during the sizing operation, and the composite particles can be efficiently formed.
整粒操作を行う場合における、整粒操作の持続時間(整粒時間)は、特に限定されない。整粒時間は、例えば、10秒以上であってもよく、60分以下であってもよく、20分以下であることが好ましく、10分以下であることが好ましく、3分以下であることがより好ましい。整粒操作の時間を上記上限以下とすることで、複合粒子を用いて形成した電極を高温条件下で保存した際のガス発生量を低減することができる。 When performing a sizing operation, the duration of the sizing operation (sizing time) is not particularly limited. The sizing time may be, for example, 10 seconds or more, or 60 minutes or less, preferably 20 minutes or less, preferably 10 minutes or less, and more preferably 3 minutes or less. By setting the sizing operation time to the above upper limit or less, it is possible to reduce the amount of gas generated when an electrode formed using the composite particles is stored under high temperature conditions.
<造粒槽内温度>
上記(i)~(iii)の操作を通じて、造粒槽内の温度が、50℃未満であることが好ましく、45℃以下であることがより好ましく、40℃以下であることがさらに好ましい。かかる温度条件を満たすことで、得られる複合粒子に含有される電極活物質の劣化を効果的に抑制することができ、複合粒子を用いて形成した電極における電極活物質の割れを効果的に抑制することができる。
<Temperature inside granulation tank>
Throughout the above operations (i) to (iii), the temperature in the granulation tank is preferably less than 50° C., more preferably not more than 45° C., and even more preferably not more than 40° C. By satisfying such temperature conditions, deterioration of the electrode active material contained in the obtained composite particles can be effectively suppressed, and cracking of the electrode active material in an electrode formed using the composite particles can be effectively suppressed.
(複合粒子)
上記操作(i)~(iii)を経て得られた複合粒子は、下記の属性を満たすことが好ましい。
(Composite particles)
The composite particles obtained through the above steps (i) to (iii) preferably satisfy the following attributes:
<複合粒子の粒子径>
複合粒子は、粒子径が20μm以上であることが好ましく、30μm以上であることがより好ましく、40μm以上であることがさらに好ましく、250μm以下であることが好ましく、200μm以下であることがより好ましく、150μm以下であることがさらに好ましい。なお、複合粒子の粒子径は面積相当径の平均の粒子径を意味し、本明細書の実施例に記載の方法に従って測定することができる。複合粒子の粒子径が上記下限値以上であれば、複合粒子を用いて形成した電極の柔軟性を高めるとともに、かかる電極を備える電気化学素子のレート特性を高めることができる。また、複合粒子の粒子径が上記上限値以下であれば、得られる電気化学素子のサイクル特性を高めることができる。
<Particle size of composite particles>
The composite particles preferably have a particle diameter of 20 μm or more, more preferably 30 μm or more, even more preferably 40 μm or more, preferably 250 μm or less, more preferably 200 μm or less, and even more preferably 150 μm or less. The particle diameter of the composite particles means the average particle diameter of the area equivalent diameter, and can be measured according to the method described in the examples of this specification. If the particle diameter of the composite particles is equal to or greater than the above lower limit, the flexibility of the electrode formed using the composite particles can be increased, and the rate characteristics of the electrochemical element equipped with such an electrode can be improved. In addition, if the particle diameter of the composite particles is equal to or less than the above upper limit, the cycle characteristics of the resulting electrochemical element can be improved.
<複合粒子の変動係数>
複合粒子の変動係数は、5%以上であることが好ましく、7%以上であることがより好ましく、10%以上であることがさらに好ましく、50%以下であることが好ましく、45%以下であることがより好ましく、40%以下であることがさらに好ましい。変動係数が上記下限値以上であれば、複合粒子を用いて形成した電極における電極活物質の割れを良好に抑制することができる。また、変動係数が上記上限値以下であれば、得られる電極の柔軟性を向上させることができる。
本願において、複合粒子の変動係数は、複合粒子の粒子径分布を意味し、複合粒子の面積相当径の標準偏差を面積相当径の平均値で除し、100分率とした値として、本明細書の実施例に記載した方法に従って算出することができる。
<Coefficient of variation of composite particles>
The coefficient of variation of the composite particles is preferably 5% or more, more preferably 7% or more, even more preferably 10% or more, and preferably 50% or less, more preferably 45% or less, and even more preferably 40% or less. If the coefficient of variation is equal to or greater than the lower limit, the cracking of the electrode active material in the electrode formed using the composite particles can be suppressed well. Also, if the coefficient of variation is equal to or less than the upper limit, the flexibility of the obtained electrode can be improved.
In the present application, the coefficient of variation of a composite particle means the particle size distribution of the composite particle, and can be calculated as a percentage by dividing the standard deviation of the area-equivalent diameters of the composite particles by the average area-equivalent diameters, according to the method described in the examples of this specification.
<かさ密度>
複合粒子のかさ密度は、1.0以上4.0以下が好ましい。かさ密度が上記下限値以上であれば、複合粒子を用いて形成した電極における電極活物質の割れを抑制することができる。また、かさ密度が上記上限値以下であれば得られる電極の柔軟性を高めることができる。
<Bulk density>
The bulk density of the composite particles is preferably 1.0 to 4.0. If the bulk density is equal to or higher than the lower limit, cracking of the electrode active material in the electrode formed using the composite particles can be suppressed. If the bulk density is equal to or lower than the upper limit, the flexibility of the resulting electrode can be increased.
<面積円形度>
複合粒子の面積円形度は、0.50以上が好ましく、0.60以上がより好ましく、0.70以上がさらに好ましく、0.93以下が好ましく、0.92以下がより好ましく、0.91以下がさらに好ましい。複合粒子の面積円形度が上記下限値以上であれば、複合粒子を用いて形成した電極における電極活物質の割れを抑制することができる。また、複合粒子の面積円形度が上記上限値以下であれば、得られる電気化学素子のレート特性を高めることができる。
<Circularity of area>
The circularity of the composite particles is preferably 0.50 or more, more preferably 0.60 or more, even more preferably 0.70 or more, and preferably 0.93 or less, more preferably 0.92 or less, and even more preferably 0.91 or less. If the circularity of the composite particles is equal to or more than the lower limit, the cracking of the electrode active material in the electrode formed using the composite particles can be suppressed. In addition, if the circularity of the composite particles is equal to or less than the upper limit, the rate characteristics of the obtained electrochemical element can be improved.
<周囲長包絡度>
複合粒子の周囲長包絡度は、0.70以上が好ましく、0.72以上がより好ましく、0.75以上がさらに好ましく、0.97以下が好ましく、0.94以下がより好ましく、0.92以下がさらに好ましい。複合粒子の周囲長包絡度が上記下限値以上であれば、複合粒子を用いて形成した電極の柔軟性を高めることができる。複合粒子の周囲長包絡度が上記上限値以下であれば、得られる電気化学素子のサイクル特性を高めることができる。
<Circumference Envelope>
The circumferential envelopment degree of the composite particles is preferably 0.70 or more, more preferably 0.72 or more, even more preferably 0.75 or more, and preferably 0.97 or less, more preferably 0.94 or less, and even more preferably 0.92 or less. If the circumferential envelopment degree of the composite particles is the above lower limit or more, the flexibility of the electrode formed using the composite particles can be improved. If the circumferential envelopment degree of the composite particles is the above upper limit or less, the cycle characteristics of the obtained electrochemical element can be improved.
<流動性>
複合粒子の流動性は、パウダーテスターを用いて測定される安息角や崩壊角で評価するほか、本願実施例に記載したように、ドクターブレードで均した表面の粗さに基づいて評価することができる。表面粗さは、5.4mm2当たりの空間体積で、0.70μm3以下であることが好ましく、0.50μm3以下であることがより好ましく、0.30μm3以下であることが更に好ましく、0.20μm3以下であることが特に好ましい。表面粗さの下限値は特に限定されないが、例えば、0.01μm3以上でありうる。複合粒子が流動性に優れていれば、得られる電極の表面の平滑性を高めることで、電気化学素子の内部抵抗を低減してレート特性を高めることができる。
<Liquidity>
The flowability of the composite particles can be evaluated based on the angle of repose and the angle of collapse measured using a powder tester, and can also be evaluated based on the roughness of the surface smoothed with a doctor blade as described in the examples of the present application. The surface roughness is preferably 0.70 μm 3 or less, more preferably 0.50 μm 3 or less, even more preferably 0.30 μm 3 or less, and particularly preferably 0.20 μm 3 or less, in terms of spatial volume per 5.4
(電気化学素子用電極の製造方法)
本発明の電気化学素子用電極の製造方法は、上述した本発明の製造方法に従って複合粒子を製造することと、製造した複合粒子を電極基材上で加圧成形して電極合材層を形成することと(加圧成形操作)、を含む。かかる製造方法に従って得られた電気化学素子用電極は、柔軟性に優れるとともに、含有する電極活物質の割れが少なく、さらには、かかる電極を備える電気化学素子のサイクル特性を向上させることができる。
(Method of manufacturing an electrode for an electrochemical device)
The method for producing an electrode for an electrochemical device of the present invention includes producing composite particles according to the above-mentioned production method of the present invention, and pressure-molding the produced composite particles on an electrode substrate to form an electrode mixture layer (pressure molding operation). The electrode for an electrochemical device obtained according to this production method has excellent flexibility and is less susceptible to cracking of the electrode active material contained therein, and furthermore, can improve the cycle characteristics of an electrochemical device equipped with this electrode.
<加圧成形操作>
加圧成形操作は、既知の方法に従って実施することができる。例えば、本発明の製造方法に従って製造した複合粒子を、ロールプレス機に供して、電極基材上にてロールプレスすることにより、電極基材上にて複合粒子を加圧成形して電極合材層を形成することができる。プレスの際の圧力は、目的とする電極密度に従って適宜設定することができる。
<Pressure molding operation>
The pressure molding operation can be carried out according to a known method. For example, the composite particles produced according to the production method of the present invention can be subjected to a roll press machine and roll pressed on the electrode substrate to pressure mold the composite particles on the electrode substrate to form an electrode mixture layer. The pressure during pressing can be appropriately set according to the desired electrode density.
電極基材としては、導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、電極基材としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The electrode substrate is made of a material that is conductive and electrochemically durable. Specifically, the electrode substrate may be a collector made of, for example, iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like. The above materials may be used alone or in combination of two or more types in any ratio.
(電気化学素子)
そして、上述した本発明の電気化学素子用電極を用いて形成した電気化学素子は、特に限定されることなく、例えば、リチウムイオン二次電池、電気二重層キャパシタ、又はリチウムイオンキャパシタであり、好ましくはリチウムイオン二次電池でありうる。本発明の電気化学素子用電極を用いて形成した電気化学素子は、サイクル特性に優れる。
(Electrochemical element)
The electrochemical element formed using the above-mentioned electrode for electrochemical elements of the present invention is not particularly limited, and may be, for example, a lithium ion secondary battery, an electric double layer capacitor, or a lithium ion capacitor, and is preferably a lithium ion secondary battery. The electrochemical element formed using the electrode for electrochemical elements of the present invention has excellent cycle characteristics.
ここで、以下では、一例として電気化学素子がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。本発明の電気化学素子としてのリチウムイオン二次電池は、通常、電極(正極及び負極)、電解液、並びにセパレータを備え、正極及び負極の少なくとも一方に本発明の電気化学素子用電極を使用する。 Hereinafter, an example will be described in which the electrochemical element is a lithium ion secondary battery, but the present invention is not limited to the following example. A lithium ion secondary battery as the electrochemical element of the present invention typically comprises electrodes (positive and negative electrodes), an electrolyte, and a separator, and uses the electrochemical element electrode of the present invention for at least one of the positive and negative electrodes.
<電極>
ここで、電気化学素子としてのリチウムイオン二次電池に使用し得る、上述した本発明の電気化学素子用電極以外の電極としては、特に限定されることなく、既知の電極を用いることができる。具体的には、上述した電気化学素子用電極以外の電極としては、既知の製造方法を用いて集電体上に電極合材層を形成してなる電極を用いることができる。
<Electrodes>
Here, the electrode other than the above-mentioned electrode for electrochemical elements of the present invention that can be used in a lithium ion secondary battery as an electrochemical element is not particularly limited, and a known electrode can be used. Specifically, the electrode other than the above-mentioned electrode for electrochemical elements can be an electrode formed by forming an electrode mixture layer on a current collector using a known manufacturing method.
<電解液>
電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C4F9SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO2)2NLi、(C2F5SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましく、LiPF6が特に好ましい。なお、電解質は1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
<Electrolyte>
As the electrolyte, an organic electrolyte in which a supporting electrolyte is dissolved in an organic solvent is usually used. As the supporting electrolyte, for example, a lithium salt is used. As the lithium salt, for example, LiPF6 , LiAsF6 , LiBF4 , LiSbF6, LiAlCl4, LiClO4 , CF3SO3Li, C4F9SO3Li , CF3COOLi , ( CF3CO ) 2NLi , ( CF3SO2 ) 2NLi , ( C2F5SO2 )NLi, etc. are listed. Among them , LiPF6 , LiClO4 , and CF3SO3Li are preferred , and LiPF6 is particularly preferred, because they are easily dissolved in the solvent and show a high degree of dissociation . The electrolyte may be used alone or in combination of two or more kinds in any ratio.
電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤、例えばビニレンカーボネート、フルオロエチレンカーボネート、エチルメチルスルホンなどを添加してもよい。 The organic solvent used in the electrolyte is not particularly limited as long as it can dissolve the supporting electrolyte, but for example, carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), and methyl ethyl carbonate (EMC); esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; and sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; are preferably used. A mixture of these solvents may also be used. The concentration of the electrolyte in the electrolyte can be adjusted as appropriate. Known additives, such as vinylene carbonate, fluoroethylene carbonate, and ethyl methyl sulfone, may also be added to the electrolyte.
<セパレータ>
セパレータとしては、特に限定されることなく既知のものを用いることができる。中でも、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。さらに、セパレータとしては、セパレータ基材の片面又は両面に機能層(多孔膜層又は接着層)が設けられた、機能層付きセパレータを用いてもよい。
<Separator>
The separator is not particularly limited and may be any known one. Among them, a microporous film made of a polyolefin resin (polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferable. Furthermore, the separator may be a separator with a functional layer, in which a functional layer (porous membrane layer or adhesive layer) is provided on one or both sides of a separator substrate.
<リチウムイオン二次電池の製造方法>
リチウムイオン二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
<Method of manufacturing lithium-ion secondary battery>
A lithium ion secondary battery can be manufactured, for example, by stacking a positive electrode and a negative electrode with a separator therebetween, wrapping or folding the stack according to the battery shape as necessary, placing the stack in a battery container, injecting an electrolyte into the battery container, and sealing the container. In order to prevent the occurrence of an internal pressure rise in the secondary battery, overcharging and overdischarging, etc., a fuse, an overcurrent prevention element such as a PTC element, an expanded metal, a lead plate, etc. may be provided as necessary. The shape of the secondary battery may be, for example, any of a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, etc.
以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される繰り返し単位(単量体単位)の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
実施例及び比較例において、各種の属性の測定及び評価は、それぞれ下記の方法に従って実施した。
The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. In the following description, "%" and "parts" expressing amounts are based on mass unless otherwise specified.
In addition, in a polymer produced by copolymerizing multiple types of monomers, the ratio of a repeating unit (monomer unit) formed by polymerizing a certain monomer in the polymer usually coincides with the ratio (feed ratio) of the certain monomer to all monomers used in the polymerization of the polymer, unless otherwise specified.
In the examples and comparative examples, the measurement and evaluation of various attributes were carried out according to the following methods.
<粉体材料の固形分濃度>
質量Wa[g]のアルミ皿に、測定対象をWo[g]量り取り、130℃のホットプレートで1時間加熱した。加熱後の質量W[g]を測定し、下記式から粉体材料の固形分濃度Cs[%]を算出した。
Cs=(W-Wa)/Wo×100 [%]
<Solid content of powder material>
The measurement target was weighed out in an amount of Wo [g] on an aluminum dish with a mass of Wa [g] and heated for 1 hour on a hot plate at 130° C. The mass W [g] after heating was measured, and the solid content concentration Cs [%] of the powder material was calculated using the following formula.
Cs=(W-Wa)/Wo×100 [%]
<バインダー、導電助剤、及び溶媒を含む組成物の粘度指数Cη>
バインダー、導電助剤、及び溶媒を含む組成物の粘度指数は、以下に示す方法で測定した粘度と、前述の方法で測定した固形分濃度から下記式を用いて算出した。
粘度測定:B型粘度計(東機産業社製「TVB-10M」)にて25℃、60rpmでの粘度ηを測定した。使用するローターは粘度に合わせて適宜変更した。
粘度指数の算出:Cη=η/Cs×100 [mPa・s]
<Viscosity index Cη of composition containing binder, conductive assistant, and solvent>
The viscosity index of the composition containing the binder, the conductive assistant, and the solvent was calculated using the following formula from the viscosity measured by the method shown below and the solid content measured by the method described above.
Viscosity measurement: The viscosity η was measured at 25° C. and 60 rpm using a Brookfield viscometer (TVB-10M, manufactured by Toki Sangyo Co., Ltd.) The rotor used was appropriately changed according to the viscosity.
Calculation of viscosity index: Cη = η / Cs × 100 [mPa s]
<複合粒子の粒子径、粒子径分布の変動係数、面積円形度、周囲長包絡度>
JIS Z 8827-1に基づき画像解析法に基づいて、実施例、比較例にて作成した複合粒子の画像解析処理を実施し、所定の物性を算出した。具体的にはMalvern製「Morphologi G3」を使用し、各実施例、比較例で作製した複合粒子をそれぞれ4000個について画像を二値化処理して解析し、以下の物性を求めた。なお用語の定義はJIS Z 8890、「粉体の粒子特性評価-用語」に従うものである。
粒子径:解析した複合粒子4000個の面積相当径の粒子径平均値DA(μm)
粒子径分布の変動係数:解析した複合粒子4000個の面積相当径の平均値DAとその標準偏差σから算出される値CV
CV=σ/DA×100(%)
平均面積円形度:解析した粒子4000個について、4πA/P2 (A:投影面積、P周囲長)で算出される面積円形度の平均値CA
平均周囲長包絡度:観察視野内の全粒子の、凸形外接図形(最小凸包)の周囲長を周囲長Pで除したものの平均値
<Particle size, coefficient of variation of particle size distribution, circularity, and perimeter envelope of composite particles>
Based on the image analysis method in accordance with JIS Z 8827-1, image analysis processing was performed on the composite particles prepared in the examples and comparative examples, and the specified physical properties were calculated. Specifically, using Malvern's "Morphologi G3," images of 4,000 composite particles prepared in each example and comparative example were binarized and analyzed to determine the following physical properties. The definitions of terms are in accordance with JIS Z 8890, "Evaluation of particle characteristics of powders - Terminology."
Particle diameter: average particle diameter D A (μm) of the area-equivalent diameter of 4,000 analyzed composite particles
Coefficient of variation of particle size distribution: A value calculated from the average value D A of the area-equivalent diameters of 4,000 analyzed composite particles and its standard deviation σ CV
CV=σ/D A ×100(%)
Average areal circularity: The average areal circularity C of 4,000 analyzed particles calculated by 4πA/P 2 (A: projected area, P: perimeter)
Average perimeter envelope: The average value of the perimeter of the convex circumscribing figure (minimum convex hull) of all particles in the observation field divided by the perimeter P
<かさ密度ρa>
JIS R 1628-1997に記載の定容積測定法に基づき、複合粒子のかさ密度(g/cm3)測定した。
<Bulk density ρ a >
The bulk density (g/cm 3 ) of the composite particles was measured based on the constant volume measurement method described in JIS R 1628-1997.
<流動性(表面粗さによる評価)>
20cm四方の表面が平滑なガラス板の上に、実施例、比較例で製造した複合粒子25gを、それぞれ直径20mm程度となるように配置し、280μmのドクターブレードで均した。均した表面について、レーザー顕微鏡を用いて5.4mm2当たりの空間体積(μm3)を測定した。
<Fluidity (evaluation based on surface roughness)>
25 g of the composite particles produced in the Examples and Comparative Examples were placed on a 20 cm square glass plate with a smooth surface so that the diameter was about 20 mm, and the particles were smoothed with a 280 μm doctor blade. The void volume ( μm3 ) per 5.4 mm2 of the smoothed surface was measured using a laser microscope.
<電極柔軟性>
実施例、比較例で作製した正極を、径の異なる棒に巻き付けて正極合材層が割れるかどうかを評価した。棒に巻き付けたときに正極合材層が割れない棒の直径が小さいほど、電極が柔軟性に富み、捲回性に優れることを示す。電極の柔軟性を、正極合材層が割れなかった最も細い棒の直径に応じて、以下の基準で評価した。
A:直径1.50mmの棒に巻きつけても割れない。
B:直径1.80mmの棒に巻きつけても割れない。
C:直径2.10mmの棒に巻きつけても割れない。
D:直径3.00mmの棒に巻きつけても割れない。
<Electrode flexibility>
The positive electrodes prepared in the examples and comparative examples were wound around rods of different diameters to evaluate whether the positive electrode mixture layer cracked. The smaller the diameter of the rod on which the positive electrode mixture layer did not crack when wound around the rod, the more flexible the electrode was and the better the winding properties. The flexibility of the electrode was evaluated according to the following criteria, depending on the diameter of the thinnest rod on which the positive electrode mixture layer did not crack.
A: It does not break even when wrapped around a rod with a diameter of 1.50 mm.
B: It does not break even when wrapped around a rod with a diameter of 1.80 mm.
C: It does not break even when wrapped around a rod with a diameter of 2.10 mm.
D: It does not break even when wrapped around a rod with a diameter of 3.00 mm.
<活物質割れの有無>
実施例、比較例で作製した正極の断面SEM像を1000倍で観察し、活物質の割れが観測された個数に従い、以下のように評価した。
A:割れた正極活物質が観測されない。
B:割れた正極活物質の数が1個以上、3個未満。
C:割れた正極活物質の数が3個以上、5個未満。
D:割れた正極活物質の数が5個以上。
<Whether or not the active material is cracked>
Cross-sectional SEM images of the positive electrodes produced in the Examples and Comparative Examples were observed at 1000x magnification, and the number of cracks observed in the active material was evaluated as follows.
A: No cracked positive electrode active material was observed.
B: The number of broken positive electrode active materials was 1 or more and less than 3.
C: The number of cracked positive electrode active materials was 3 or more and less than 5.
D: The number of broken positive electrode active materials was 5 or more.
<サイクル特性>
実施例、比較例で作製した電気化学素子としてのリチウムイオン二次電池を、電解液注液後、温度25℃で5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、0.2Cの定電流法にて、CC-CV充電(上限セル電圧4.20V)を行い、0.2Cの定電流法にて3.00VまでCC放電した。この0.2Cにおける充放電を3回繰り返し実施し、評価用セルとした。
次に、温度45℃の環境下、上記の評価用セルについて、セル電圧4.20-3.00V、0.5Cの充放電レートにて充放電の操作を100サイクル行った。その際、第1回目のサイクルの放電容量をX1,第100回目のサイクルの放電容量をX2と定義した。該放電容量X1及び放電容量X2を用いて、容量維持率=(X2/X1)×100(%)を算出し、下記の基準で評価した。容量維持率の値が大きいほど、リチウムイオン二次電池がサイクル特性に優れることを示す。
A:容量維持率が90%以上
B:容量維持率が85%以上90%未満
C:容量維持率が80%以上85%未満
D:容量維持率が80%未満
<Cycle characteristics>
The lithium ion secondary battery as the electrochemical element prepared in the examples and comparative examples was left at rest at a temperature of 25°C for 5 hours after injecting the electrolyte. Next, the battery was charged to a cell voltage of 3.65V at a constant current of 0.2C at a temperature of 25°C, and then aged at a temperature of 60°C for 12 hours. Then, the battery was discharged to a cell voltage of 3.00V at a constant current of 0.2C at a temperature of 25°C. Then, the battery was CC-CV charged (upper cell voltage 4.20V) at a constant current of 0.2C, and CC discharged to 3.00V at a constant current of 0.2C. This charge and discharge at 0.2C was repeated three times to obtain an evaluation cell.
Next, the above evaluation cell was subjected to 100 cycles of charge and discharge at a cell voltage of 4.20-3.00V and a charge and discharge rate of 0.5C in an environment at a temperature of 45°C. At this time, the discharge capacity of the first cycle was defined as X1, and the discharge capacity of the 100th cycle was defined as X2. Using the discharge capacity X1 and the discharge capacity X2, the capacity retention rate = (X2/X1) x 100 (%) was calculated and evaluated according to the following criteria. A larger value of the capacity retention rate indicates that the lithium ion secondary battery has better cycle characteristics.
A: Capacity retention rate is 90% or more. B: Capacity retention rate is 85% or more and less than 90%. C: Capacity retention rate is 80% or more and less than 85%. D: Capacity retention rate is less than 80%.
<高温保存時のガス発生量>
上述した<サイクル特性>の項目にて準備した評価用セルを温度25℃において0.2Cの定電流法にて、CC-CV充電(上限セル電圧4.20V)を行った後に、60℃の恒温環境にて1週間の保存を行った。保存前後のセル体積測定により、増加分をガス発生量とし、下記の基準で評価した。
A:ガス発生量が5%未満
B:ガス発生量が5%以上10%未満
C;ガス発生量が10%以上20%未満
D:ガス発生量が20%以上
<Gas generation amount during high temperature storage>
The evaluation cell prepared in the above-mentioned <Cycle characteristics> section was CC-CV charged (upper cell voltage 4.20 V) by a constant current method of 0.2 C at a temperature of 25° C., and then stored for one week in a constant temperature environment of 60° C. The cell volume was measured before and after storage, and the increase was taken as the amount of gas generated, which was evaluated according to the following criteria.
A: The amount of gas generated is less than 5%. B: The amount of gas generated is 5% or more and less than 10%. C: The amount of gas generated is 10% or more and less than 20%. D: The amount of gas generated is 20% or more.
<レート特性>
実施例で作製した電気化学素子としてのリチウムイオン二次電池を、電解液注液後、温度25℃で5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、0.2Cの定電流法にて、CC-CV充電(上限セル電圧4.20V)を行い、0.2Cの定電流法にて3.00VまでCC放電した。この0.2Cにおける充放電を3回繰り返し実施した。
次に、温度25℃の環境下、0.1Cの定電流法によって4.2Vまで充電しその後0.1Cにて3.0Vまで放電し、0.1C放電容量を求めた。さらに、0.1Cにて4.2Vまで充電しその後1Cにて3.0Vまで放電し、1C放電容量を求めた。これらの測定を、実施例、比較例で作製した電気化学素子としてのリチウムイオン二次電池それぞれ10セルについて行い、各測定値の平均値を、0.1C放電容量a、1C放電容量bとした。そして、電気容量の比=b/a×100(%)を算出し、下記の基準で評価した。電気容量の比の値が大きいほど、電気化学素子としてのリチウムイオン二次電池がレート特性に優れることを示す。
AA:電気容量の比が92以上
A:電気容量の比が90%以上92未満
B:電気容量の比が80%以上90%未満
C:電気容量の比が70%以上80%未満
D:電気容量の比が70%未満
<Rate characteristics>
The lithium ion secondary battery as the electrochemical element prepared in the example was left to stand at a temperature of 25°C for 5 hours after injecting the electrolyte. Next, the battery was charged to a cell voltage of 3.65V at a constant current of 0.2C at a temperature of 25°C, and then aged at a temperature of 60°C for 12 hours. Then, the battery was discharged to a cell voltage of 3.00V at a constant current of 0.2C at a temperature of 25°C. Then, the battery was CC-CV charged (upper cell voltage 4.20V) at a constant current of 0.2C, and CC discharged to 3.00V at a constant current of 0.2C. This charge and discharge at 0.2C was repeated three times.
Next, in an environment of 25°C, the battery was charged to 4.2V by a constant current method of 0.1C, and then discharged to 3.0V at 0.1C to obtain the 0.1C discharge capacity. Furthermore, the battery was charged to 4.2V at 0.1C, and then discharged to 3.0V at 1C to obtain the 1C discharge capacity. These measurements were performed on 10 cells of each of the lithium ion secondary batteries as electrochemical elements prepared in the examples and comparative examples, and the average values of the respective measurements were taken as 0.1C discharge capacity a and 1C discharge capacity b. Then, the ratio of the electric capacity = b/a x 100 (%) was calculated and evaluated according to the following criteria. The larger the value of the ratio of the electric capacity, the more excellent the rate characteristics of the lithium ion secondary battery as an electrochemical element.
AA: Electric capacity ratio is 92 or more. A: Electric capacity ratio is 90% or more and less than 92. B: Electric capacity ratio is 80% or more and less than 90%. C: Electric capacity ratio is 70% or more and less than 80%. D: Electric capacity ratio is less than 70%.
(実施例1)
<バインダーA1の製造>
撹拌装置を備え、内部が充分に窒素置換された反応器に、脱水シクロヘキサン270部、エチレングリコールジブチルエーテル0.53部を入れ、さらに、n-ブチルリチウム(15%シクロヘキサン溶液)0.47部を加えた。全容を60℃で撹拌しながら、脱水スチレン12.5部を40分間に亘って連続的に反応器内に添加した。添加終了後、そのままさらに60℃で20分間全容を撹拌した。反応液をガスクロマトグラフィーにより測定したところ、この時点での重合転化率は99.5%であった。次に、脱水したイソプレン75.0部を、反応液に100分間に亘って連続的に添加し、添加終了後そのまま20分間撹拌を続けた。この時点での重合転化率は99.5%であった。その後、さらに、脱水スチレン12.5部を、60分間に亘って連続的に添加し、添加終了後そのまま全容を30分間撹拌した。この時点での重合転化率はほぼ100%であった。ここで、反応液にイソプロピルアルコール0.5部を加えて反応を停止させた。得られたブロック共重合体の全イソプレン由来の構造単位の内、1,2-及び3,4-付加重合由来の構造単位の割合は58%であった。次に、上記重合体溶液を、撹拌装置を備えた耐圧反応器に移送し、水素化触媒として珪藻土担持型ニッケル触媒(日揮触媒化成社製、製品名「E22U」、ニッケル担持量60%)7.0部、及び脱水シクロヘキサン80部を添加して混合した。反応器内部を水素ガスで置換し、さらに溶液を撹拌しながら水素を供給し、温度190℃、圧力4.5MPaにて6時間水素化反応を行った。水素化反応終了後、反応溶液をろ過して水素化触媒を除去した後、ろ液に、フェノール系酸化防止剤であるペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](コーヨ化学研究所社製、製品名「Songnox1010」)0.1部を溶解したキシレン溶液1.0部を添加して溶解させた。さらにシクロヘキサンを添加することで、所定の濃度のバインダーA1溶液を作製した。
Example 1
<Production of binder A1>
In a reactor equipped with a stirring device and the inside of which was sufficiently replaced with nitrogen, 270 parts of dehydrated cyclohexane and 0.53 parts of ethylene glycol dibutyl ether were placed, and 0.47 parts of n-butyllithium (15% cyclohexane solution) were further added. While stirring the entire volume at 60°C, 12.5 parts of dehydrated styrene were continuously added into the reactor over 40 minutes. After the addition was completed, the entire volume was further stirred at 60°C for 20 minutes. When the reaction liquid was measured by gas chromatography, the polymerization conversion rate at this point was 99.5%. Next, 75.0 parts of dehydrated isoprene was continuously added to the reaction liquid over 100 minutes, and after the addition was completed, stirring was continued for 20 minutes. The polymerization conversion rate at this point was 99.5%. Thereafter, 12.5 parts of dehydrated styrene was further continuously added over 60 minutes, and after the addition was completed, the entire volume was stirred for 30 minutes. The polymerization conversion rate at this point was almost 100%. Here, 0.5 parts of isopropyl alcohol was added to the reaction solution to terminate the reaction. The ratio of structural units derived from 1,2- and 3,4-addition polymerization to the total structural units derived from isoprene in the obtained block copolymer was 58%. Next, the polymer solution was transferred to a pressure-resistant reactor equipped with a stirrer, and 7.0 parts of a diatomaceous earth-supported nickel catalyst (manufactured by JGC Catalysts and Chemicals, product name "E22U", nickel loading 60%) as a hydrogenation catalyst and 80 parts of dehydrated cyclohexane were added and mixed. The inside of the reactor was replaced with hydrogen gas, and hydrogen was further supplied while stirring the solution, and the hydrogenation reaction was carried out at a temperature of 190°C and a pressure of 4.5 MPa for 6 hours. After the hydrogenation reaction was completed, the reaction solution was filtered to remove the hydrogenation catalyst, and then 1.0 part of a xylene solution in which 0.1 part of pentaerythrityl tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] (manufactured by Koyo Chemical Laboratory, product name "Songnox 1010"), a phenolic antioxidant, was dissolved, was added to the filtrate and dissolved. Cyclohexane was further added to prepare a binder A1 solution of a predetermined concentration.
<バインダーA1の評価>
-重合体ブロック中の鎖状共役ジエン化合物由来の構造単位の内、1,2-及び3,4-付加重合由来の構造単位の割合-
重合体ブロック中の鎖状共役ジエン化合物由来の構造単位の内、1,2-及び3,4-付加重合由来の構造単位の割合は、ブロック共重合体の1H-NMRスペクトル(重クロロホルム中)から、ポリマー主鎖にある炭素-炭素不飽和結合部の炭素に結合した1Hと、ポリマー側鎖にある炭素-炭素不飽和結合部の炭素に結合した1Hの比率から算出した。値は、上記に示す。
<Evaluation of Binder A1>
- Proportion of structural units derived from 1,2- and 3,4-addition polymerization among structural units derived from linear conjugated diene compounds in polymer blocks -
The ratio of structural units derived from 1,2- and 3,4-addition polymerization among the structural units derived from the chain conjugated diene compound in the polymer block was calculated from the ratio of 1H bonded to the carbon of the carbon-carbon unsaturated bond in the polymer main chain to 1H bonded to the carbon of the carbon-carbon unsaturated bond in the polymer side chain from the 1H -NMR spectrum (in deuterated chloroform) of the block copolymer. The value is shown above.
<バインダー、導電助剤、及び溶媒を含む組成物の調製>
導電助材としてのカーボンブラック(BET比表面積:62m2/g、かさ密度0.16g/cm3)2部と、上記で得られたバインダーA1溶液を固形分換算で2部と、を混合し、さらに溶媒としてのシクロヘキサンを加え、固形分濃度10%、総量1kgの、導電助材、バインダー、及び溶媒の混合物を用意した。次に、得られた混合物を、直径0.5mmのジルコニアビーズを用いたビーズミル(LMZ015、アシザワファインテック製)を使用し、周速12m/sにて1時間分散処理することにより、導電助材、バインダー、及び溶媒を含有する組成物を調製した。得られた組成物は、固形分濃度10質量%、粘度指数300mPa・s)であった。
<Preparation of composition containing binder, conductive assistant, and solvent>
Two parts of carbon black (BET specific surface area: 62 m 2 /g, bulk density 0.16 g/cm 3 ) as a conductive assistant were mixed with two parts of the binder A1 solution obtained above in terms of solid content, and cyclohexane was further added as a solvent to prepare a mixture of conductive assistant, binder, and solvent with a solid content concentration of 10% and a total amount of 1 kg. Next, the obtained mixture was dispersed for 1 hour at a peripheral speed of 12 m/s using a bead mill (LMZ015, manufactured by Ashizawa Finetech) using zirconia beads with a diameter of 0.5 mm, to prepare a composition containing conductive assistant, binder, and solvent. The obtained composition had a solid content concentration of 10 mass% and a viscosity index of 300 mPa·s.
<複合粒子の作製>
造粒槽としての、内径180mm、内容量2Lの円筒状容器に、円筒状容器の軸線方向を鉛直方向として、鉛直方向と水平方向の2軸に撹拌翼を持つ(鉛直方向が主撹拌翼であり、水平方向が副撹拌翼である。)、複合粒子作製装置を準備した。なお、主撹拌翼は直径170mmの3枚の主ブレードを備える傾斜パドル、副撹拌翼は直径30mmのV型アンカーブレードを持ち、主撹拌翼及び副撹拌翼の各駆動部への原料混入を防ぐため、空気を通気することでシールされる機構からなる。上記複合粒子作製装置を用いて、(i)予備撹拌操作、(ii)複合粒子形成操作、及び(iii)整粒操作をこの順に実施して、複合粒子を作製した。
まず、(i)予備撹拌操作において、造粒槽内にリチウムイオン電池用正極活物質としてのNMC532(平均粒子径6μm)を96質量部(1344g)投入した。次に主撹拌翼及び副撹拌翼の各駆動部をシールするための室温の空気(以下、「シール用空気」とも称する。)を20L/分(通気量10/分)で流通し、主撹拌翼を周速5m/s、副撹拌部を周速6m/sの運転条件で15分間撹拌した。撹拌後の粉体材料の固形分濃度を測定したところ、99質量%以上だった。
次に(ii)複合粒子形成操作として、室温のシール用空気を20L/分(通気量10/分)で流通し、主撹拌翼を周速5m/s、副撹拌翼を周速6m/sの運転条件で、バインダーA1、導電助材としてのカーボンブラック、及び溶媒を含む組成物(固形分濃度:10質量%、粘度指数:300mPa・s、溶媒:シクロヘキサン)を固形分として4質量部(280g)を15分かけて滴下ロートにより連続的に添加した。
次に(iii)整粒操作として、室温のシール用空気を20L/分(通気量10/分)で流通し、主撹拌翼を周速2m/s、副撹拌翼を周速2m/sの運転条件で、10分間運転した。これらの工程(i)~(iii)を通じた系内の最高温度は、38℃であった。
上記の操作(i)~(iii)をこの順に実施して作製した複合粒子について、各種測定を実施した。結果を表1に示す。
<Preparation of Composite Particles>
A composite particle production device was prepared, which had a cylindrical container with an inner diameter of 180 mm and a capacity of 2 L as a granulation tank, and agitation blades on two axes, vertical and horizontal, with the axis of the cylindrical container being the vertical direction (the vertical direction is the main agitation blade, and the horizontal direction is the auxiliary agitation blade). The main agitation blade was an inclined paddle with three main blades with a diameter of 170 mm, and the auxiliary agitation blade had a V-shaped anchor blade with a diameter of 30 mm, and was configured with a mechanism that was sealed by ventilating air to prevent raw materials from being mixed into each drive part of the main agitation blade and the auxiliary agitation blade. Using the composite particle production device, (i) a preliminary mixing operation, (ii) a composite particle formation operation, and (iii) a sizing operation were performed in this order to produce composite particles.
First, in the (i) preliminary mixing operation, 96 parts by mass (1344 g) of NMC532 (average particle size 6 μm) was added as a positive electrode active material for lithium ion batteries into the granulation tank. Next, room temperature air (hereinafter also referred to as "sealing air") for sealing each driving part of the main mixing blade and the auxiliary mixing blade was circulated at 20 L/min (airflow rate 10/min), and the mixture was mixed for 15 minutes under the operating conditions of a peripheral speed of the main mixing blade of 5 m/s and a peripheral speed of the auxiliary mixing part of 6 m/s. The solid content concentration of the powder material after mixing was measured and found to be 99% by mass or more.
Next, (ii) as a composite particle formation operation, room temperature sealing air was circulated at 20 L/min (airflow rate 10/min), the main stirring blade was operated at a peripheral speed of 5 m/s, and the sub stirring blade was operated at a peripheral speed of 6 m/s. Under these operating conditions, 4 parts by mass (280 g) of a composition containing binder A1, carbon black as a conductive additive, and a solvent (solid content concentration: 10 mass%, viscosity index: 300 mPa·s, solvent: cyclohexane) was continuously added as a solid content using a dropping funnel over a period of 15 minutes.
Next, (iii) as a particle size adjustment operation, room temperature sealing air was circulated at 20 L/min (airflow rate 10/min), and the main stirring blade was operated at a peripheral speed of 2 m/s, and the auxiliary stirring blade was operated at a peripheral speed of 2 m/s for 10 minutes. The maximum temperature in the system throughout these steps (i) to (iii) was 38°C.
The composite particles prepared by carrying out the above steps (i) to (iii) in this order were subjected to various measurements. The results are shown in Table 1.
<リチウムイオン二次電池用正極の作製>
作製した複合粒子を、定量フィーダ(ニッカ社製「ニッカスプレーK-V))を用いてロールプレス機(ヒラノ技研工業社製「押し切り粗面熱ロール」)のプレス用ロール(ロール温度100℃、プレス線圧500kN/m)に供給した。プレス用ロール間に、厚さ20μmのアルミニウム箔を挿入し、定量フィーダから供給された上記複合粒子をアルミニウム箔上に付着させ、成形速度1.5m/分で加圧成形し、目付30mg/cm2の正極活物質層を有するリチウムイオン二次電池用正極原反を得た。この正極原反をロールプレスで圧延し、密度が3.5g/cm3の正極合材層と、アルミニウム箔とからなるシート状正極を作製した。
<負極の作製>
撹拌機付き5MPa耐圧容器に、脂肪族共役ジエン単量体としての1,3-ブタジエン33部、酸性基含有単量体としてのイタコン酸3.5部、芳香族ビニル単量体としてのスチレン63.5部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部、及び、重合開始剤としての過硫酸カリウム0.5部を入れ、十分に撹拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し重合反応を停止して、粒子状のバインダー(スチレン-ブタジエン共重合体)を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加してpH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、混合物を30℃以下まで冷却し、負極用結着材を含む水分散液を得た。
次にプラネタリーミキサーに、負極活物質としての人造黒鉛48.75部と、天然黒鉛48.75部と、増粘剤としてのカルボキシメチルセルロース1部とを投入した。さらに、イオン交換水を用いて固形分濃度が60%となるように希釈し、その後、回転速度45rpmで60分混練した。その後、上記に従って得た負極用結着材を含む水分散液を固形分相当で1.5部投入し、回転速度40rpmで40分混練した。そして、粘度が3000±500mPa・s(B型粘度計、25℃、60rpmで測定)となるようにイオン交換水を加えることにより、負極合材層用スラリーを調製した。
次に、集電体として、厚さ15μmの銅箔を準備した。上記負極合材層用スラリーを銅箔に乾燥後の塗布量が15mg/cm2になるように塗布し、60℃で20分、120℃で20分間乾燥した。その後、150℃で2時間加熱処理して、負極原反を得た。この負極原反をロールプレスで圧延し、密度が1.6g/cm3の負極合材層(両面)と、銅箔とからなるシート状負極を作製した。
<リチウムイオン二次電池の作製>
上記の正極、負極及びセパレータ(ポリエチレン製、厚み12μm)を用いて、単層ラミネートセル(放電容量250mAh相当)を作製し、アルミ包材内に配置した。その後、アルミ包材内に、電解液として濃度1.0MのLiPF6溶液(溶媒:エチレンカーボネート(EC)/ジエチルカーボネート(DEC)=3/7(体積比)の混合溶媒、添加剤:ビニレンカーボネート2体積%(溶媒比)含有)を充填した。さらに、アルミ包材の開口を密封するために、温度150℃のヒートシールをしてアルミ包材を閉口し、リチウムイオン二次電池を作製した。このリチウムイオン二次電池を用いて、各種の評価を実施した。結果を表1に示す。
<Preparation of Positive Electrode for Lithium-Ion Secondary Battery>
The prepared composite particles were fed to a press roll (roll temperature 100 ° C., press line pressure 500 kN / m) of a roll press machine (Hirano Giken Kogyo Co., Ltd. "Press cut rough surface hot roll") using a quantitative feeder (Nikka Spray K-V) manufactured by Nikka Corporation. Between the press rolls, an aluminum foil having a thickness of 20 μm was inserted, and the composite particles supplied from the quantitative feeder were attached to the aluminum foil, and pressure-molded at a molding speed of 1.5 m / min to obtain a positive electrode raw sheet for lithium ion secondary batteries having a positive electrode active material layer with a basis weight of 30 mg / cm 2. This positive electrode raw sheet was rolled with a roll press to produce a sheet-shaped positive electrode consisting of a positive electrode mixture layer with a density of 3.5 g / cm 3 and aluminum foil.
<Preparation of negative electrode>
In a 5 MPa pressure vessel equipped with a stirrer, 33 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 3.5 parts of itaconic acid as an acidic group-containing monomer, 63.5 parts of styrene as an aromatic vinyl monomer, 0.4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 parts of potassium persulfate as a polymerization initiator were added, and the mixture was heated to 50 ° C. to start polymerization. When the polymerization conversion rate reached 96%, the mixture was cooled to stop the polymerization reaction, and a mixture containing a particulate binder (styrene-butadiene copolymer) was obtained. After adding a 5% aqueous sodium hydroxide solution to this mixture to adjust the pH to 8, the unreacted monomer was removed by heating and vacuum distillation. The mixture was then cooled to 30 ° C. or less to obtain an aqueous dispersion containing a binder for the negative electrode.
Next, 48.75 parts of artificial graphite as a negative electrode active material, 48.75 parts of natural graphite, and 1 part of carboxymethyl cellulose as a thickener were added to the planetary mixer. The mixture was then diluted with ion-exchanged water to a solid content concentration of 60%, and then kneaded for 60 minutes at a rotation speed of 45 rpm. Then, 1.5 parts of the aqueous dispersion containing the negative electrode binder obtained as described above was added in terms of solid content, and kneaded for 40 minutes at a rotation speed of 40 rpm. Then, ion-exchanged water was added so that the viscosity was 3000±500 mPa·s (measured with a B-type viscometer at 25°C and 60 rpm), to prepare a slurry for the negative electrode composite layer.
Next, a copper foil having a thickness of 15 μm was prepared as a current collector. The above-mentioned negative electrode composite layer slurry was applied to the copper foil so that the coating amount after drying was 15 mg/cm 2 , and dried at 60 ° C for 20 minutes and at 120 ° C for 20 minutes. Then, the negative electrode raw material was heated at 150 ° C for 2 hours to obtain a negative electrode raw material. This negative electrode raw material was rolled with a roll press to produce a sheet-shaped negative electrode consisting of a negative electrode composite layer (both sides) having a density of 1.6 g/cm 3 and copper foil.
<Preparation of Lithium-Ion Secondary Battery>
Using the above positive electrode, negative electrode and separator (made of polyethylene, thickness 12 μm), a single-layer laminate cell (equivalent to a discharge capacity of 250 mAh) was prepared and placed in an aluminum packaging material. Then, a 1.0 M LiPF 6 solution (solvent: mixed solvent of ethylene carbonate (EC) / diethyl carbonate (DEC) = 3 / 7 (volume ratio), additive: containing 2 volume% vinylene carbonate (solvent ratio)) was filled into the aluminum packaging material as an electrolyte. Furthermore, in order to seal the opening of the aluminum packaging material, the aluminum packaging material was closed by heat sealing at a temperature of 150 ° C., and a lithium ion secondary battery was prepared. Various evaluations were performed using this lithium ion secondary battery. The results are shown in Table 1.
(実施例2)
<複合粒子の作製>における(ii)複合粒子形成操作において、バインダーA1に代えて、下記に従って調製したバインダーA2(固形分濃度10質量%、バインダー液粘度:400mPa・s、溶媒:アセトン)を用いて製造した組成物を用いた以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
<バインダーA2の製造>
内容積10リットルの反応器中に、イオン交換水100部、並びにニトリル基含有単量体としてのアクリロニトリル35部及び脂肪族共役ジエン単量体としての1,3-ブタジエン65部を仕込み、乳化剤としてオレイン酸カリウム2部、安定剤としてリン酸カリウム0.1部、さらに、分子量調整剤としてtert-ドデシルメルカプタン(TDM)0.4部を加えて、重合開始剤としての過硫酸カリウム0.35部の存在下、温度530 ℃で乳化重合を行い、アクリロニトリルと1,3-ブタジエンとを共重合した。重合転化率が95%に達した時点で、単量体100部あたり0.2部のヒドロキシルアミン硫酸塩を添加して重合を停止させた。続いて、加温し、減圧下で約90℃にて水蒸気蒸留して、残留単量体を回収した後、置換フェノールとしてジブチルヒドロキシトルエン(BHT)を0.1部添加して、重合体の水分散液を得た。得られた水分散液中の重合体固形分100部に対し、凝固剤として3部となる量の塩化カルシウム(CaCl2)の25質量%水溶液を撹拌しながら加え、水分散液中の重合体を凝固させた。その後、濾別し、得られた重合体に対し50倍量のイオン交換水を通水して、水洗した後、温度90℃の減圧下で重合体を乾燥することにより重合体の前駆体を得た。次いで、水素化方法として、油層水素化法を採用し、上記重合体の前駆体を水素化した。この重合体の前駆体の濃度が12%となるようにアセトンに溶解することで、水素化対象物としての重合体の前駆体のアセトン溶液を得て、これをオートクレーブに入れ、水素化対象物としての重合体の前駆体の100%に対して、触媒としてパラジウム・シリカ(Pd/SiO2)500ppmを加えた後、水素圧3.0MPaの下、温度90℃で6時間水素添加反応を行ない、水素添加反応物を得た。水素添加反応終了後、パラジウム・シリカを濾別し、所定の固形分濃度となるようにアセトンを投入し、バインダーA2溶液を得た。
Example 2
In the (ii) composite particle formation operation in <Preparation of composite particles>, various operations, measurements, and evaluations were carried out in the same manner as in Example 1, except that a composition produced using binder A2 (solid content concentration: 10% by mass, binder liquid viscosity: 400 mPa·s, solvent: acetone) prepared as described below was used instead of binder A1. The results are shown in Table 1.
<Production of binder A2>
In a reactor having an internal volume of 10 liters, 100 parts of ion-exchanged water, 35 parts of acrylonitrile as a nitrile group-containing monomer, and 65 parts of 1,3-butadiene as an aliphatic conjugated diene monomer were charged, and 2 parts of potassium oleate as an emulsifier, 0.1 parts of potassium phosphate as a stabilizer, and 0.4 parts of tert-dodecyl mercaptan (TDM) as a molecular weight regulator were added, and emulsion polymerization was carried out at a temperature of 530 ° C. in the presence of 0.35 parts of potassium persulfate as a polymerization initiator, to copolymerize acrylonitrile and 1,3-butadiene. When the polymerization conversion rate reached 95%, 0.2 parts of hydroxylamine sulfate per 100 parts of monomer was added to terminate the polymerization. Subsequently, the mixture was heated and subjected to steam distillation at about 90 ° C. under reduced pressure to recover the residual monomer, and then 0.1 parts of dibutylhydroxytoluene (BHT) was added as a substituted phenol to obtain an aqueous dispersion of the polymer. A 25% by mass aqueous solution of calcium chloride (CaCl 2 ) was added as a coagulant in an amount of 3 parts per 100 parts of polymer solids in the obtained aqueous dispersion while stirring, and the polymer in the aqueous dispersion was coagulated. After that, the polymer was filtered off, and 50 times the amount of ion-exchanged water was passed through the obtained polymer to wash it, and then the polymer was dried under reduced pressure at a temperature of 90° C. to obtain a polymer precursor. Next, an oil phase hydrogenation method was adopted as a hydrogenation method to hydrogenate the polymer precursor. The polymer precursor was dissolved in acetone so that the concentration of the polymer precursor was 12%, to obtain an acetone solution of the polymer precursor as the hydrogenation target, which was placed in an autoclave, and 500 ppm of palladium-silica (Pd/SiO 2 ) was added as a catalyst to 100% of the polymer precursor as the hydrogenation target, and then a hydrogenation reaction was carried out at a temperature of 90° C. for 6 hours under a hydrogen pressure of 3.0 MPa to obtain a hydrogenation reaction product. After the hydrogenation reaction was completed, the palladium-silica was filtered off, and acetone was added so as to give a predetermined solid content concentration, thereby obtaining a binder A2 solution.
(実施例3)
<複合粒子の作製>工程にて以下の点を変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
<複合粒子の作製>における(i)予備撹拌操作を2段階に分けて実施した。具体的には、実施例1と同様の条件とした造粒槽内における予備撹拌操作の時間を1分間に短縮して実施した。さらにかかる操作に先立って、淺田鉄工社製ミラクルKCK(登録商標)(型式:M・KCK-L)を用い、回転数40rpm、処理速度1L/h、処理時間10分の条件において、リチウムイオン電池用正極活物質としてのNMC532を96質量部と導電助材としてのカーボンブラック0.5部との混合物を混合し、得られた粉体材料を、撹拌時間を1分間とした予備撹拌操作に供した。
また、(ii)複合粒子形成操作において、撹拌槽内に添加するバインダー、溶媒、及び導電助材を含む組成物に配合する導電助剤の量を、複合粒子における総配合量が実施例1と同じになるように減量した。さらに、(ii)複合粒子形成操作において、主撹拌翼を周速8m/sで運転し、室温のシール用空気を10L/分(通気量5/分)で流通し、所定の組成物の添加手段を2流体スプレーに変更した。この際の気液比(気体体積/液体体積)及び噴霧面密度は表1に示す通りとした。そして、(iii)整粒操作の運転時間を1分間に短縮した。これらの工程(i)~(iii)を通じた系内の最高温度は、40℃であった。
Example 3
Except for the following changes in the <Preparation of Composite Particles> step, the same operations, measurements, and evaluations were carried out as in Example 1. The results are shown in Table 1.
(i) Preliminary mixing operation in <Preparation of composite particles> was carried out in two stages. Specifically, the preliminary mixing operation in the granulation tank under the same conditions as in Example 1 was shortened to 1 minute. Furthermore, prior to this operation, a mixture of 96 parts by mass of NMC532 as a positive electrode active material for lithium ion batteries and 0.5 parts by mass of carbon black as a conductive assistant was mixed using Miracle KCK (registered trademark) (model: M.KCK-L) manufactured by Asada Iron Works, under conditions of a rotation speed of 40 rpm, a processing speed of 1 L/h, and a processing time of 10 minutes, and the obtained powder material was subjected to a preliminary mixing operation with a mixing time of 1 minute.
In addition, (ii) in the composite particle forming operation, the amount of conductive assistant added to the composition containing the binder, solvent, and conductive assistant added to the stirring tank was reduced so that the total amount in the composite particles was the same as in Example 1. Furthermore, in (ii) in the composite particle forming operation, the main stirring blade was operated at a peripheral speed of 8 m/s, room temperature sealing air was circulated at 10 L/min (airflow rate 5/min), and the addition means of the predetermined composition was changed to a two-fluid spray. The gas-liquid ratio (gas volume/liquid volume) and spray surface density at this time were as shown in Table 1. And, (iii) the operation time of the sizing operation was shortened to 1 minute. The maximum temperature in the system throughout these steps (i) to (iii) was 40°C.
(実施例4)
<複合粒子の作製>工程にて以下の点を変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
<複合粒子の作製>における(i)予備撹拌操作に際して、電極活物質に加えて、配合する導電助材の一部も添加した。また、予備撹拌操作を2段階に分けて実施した。具体的には、実施例1と同様の条件とした造粒槽内における予備撹拌操作の時間を1分間に短縮して実施した。さらにかかる操作に先立って、淺田鉄工社製ミラクルKCK(登録商標)(型式:M・KCK-L)を用い、回転数40rpm、処理速度1L/h、処理時間10分の条件において、リチウムイオン電池用正極活物質としてのNMC532と導電助材としてのカーボンブラックとの混合物を混合し、得られた粉体材料を、撹拌時間を1分間とした予備撹拌操作に供した。
Example 4
Except for the following changes in the <Preparation of Composite Particles> step, the same operations, measurements, and evaluations were carried out as in Example 1. The results are shown in Table 1.
In the (i) preliminary stirring operation in <Preparation of composite particles>, in addition to the electrode active material, a part of the conductive auxiliary material to be blended was also added. The preliminary stirring operation was performed in two stages. Specifically, the preliminary stirring operation in the granulation tank under the same conditions as in Example 1 was performed by shortening the time to 1 minute. Furthermore, prior to this operation, a mixture of NMC532 as a positive electrode active material for lithium ion batteries and carbon black as a conductive auxiliary material was mixed using Miracle KCK (registered trademark) (model: M-KCK-L) manufactured by Asada Iron Works, under conditions of a rotation speed of 40 rpm, a processing speed of 1 L/h, and a processing time of 10 minutes, and the obtained powder material was subjected to a preliminary stirring operation with a stirring time of 1 minute.
(実施例5)
<複合粒子の作製>工程を以下の通りに変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
<複合粒子の作製>における(ii)複合粒子形成操作において、主撹拌翼を周速8m/sで運転し、室温のシール用空気を10L/分(通気量5/分)で流通した。そして、(iii)整粒操作の運転時間を1分間に短縮した。これらの工程(i)~(iii)を通じた系内の最高温度は、40℃であった。
Example 5
<Preparation of Composite Particles> Various operations, measurements, and evaluations were carried out in the same manner as in Example 1, except that the steps were changed as follows. The results are shown in Table 1.
In the (ii) composite particle formation operation in <Preparation of composite particles>, the main stirring blade was operated at a peripheral speed of 8 m/s, and room temperature sealing air was circulated at 10 L/min (airflow rate 5/min). Then, the operation time of (iii) particle size adjustment operation was shortened to 1 minute. The maximum temperature in the system throughout these steps (i) to (iii) was 40°C.
(実施例6)
<複合粒子の作製>工程にて以下の点を変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
<複合粒子の作製>における(i)予備撹拌操作に際して、電極活物質に加えて、配合する導電助材の一部も添加した。具体的には、リチウムイオン電池用正極活物質としてのNMC532を96質量部と導電助材としてのカーボンブラック0.5部との混合物を粉体材料として、予備拡散操作に供した。
また、(ii)複合粒子形成操作において、撹拌槽内に添加するバインダー、溶媒、及び導電助材を含む組成物に配合する導電助剤の量を、複合粒子における総配合量が実施例1と同じになるように減量した。さらに、(ii)複合粒子形成操作において、所定の組成物の添加手段を2流体スプレーに変更した。この際の気液比(気体体積/液体体積)及び噴霧面密度は表1に示す通りとした。これらの工程(i)~(iii)を通じた系内の最高温度は、40℃であった。
Example 6
Except for the following changes in the <Preparation of Composite Particles> step, the same operations, measurements, and evaluations were carried out as in Example 1. The results are shown in Table 1.
In the (i) preliminary stirring operation in <Preparation of composite particles>, in addition to the electrode active material, a part of the conductive additive was also added. Specifically, a mixture of 96 parts by mass of NMC532 as a positive electrode active material for lithium ion batteries and 0.5 parts by mass of carbon black as a conductive additive was used as a powder material and subjected to the preliminary diffusion operation.
In addition, in (ii) the composite particle formation operation, the amount of conductive assistant blended in the composition containing the binder, solvent, and conductive assistant added to the stirring tank was reduced so that the total blended amount in the composite particles was the same as in Example 1. Furthermore, in (ii) the composite particle formation operation, the means of adding the predetermined composition was changed to a two-fluid spray. The gas-liquid ratio (gas volume/liquid volume) and spray surface density in this case were as shown in Table 1. The maximum temperature in the system throughout these steps (i) to (iii) was 40°C.
(実施例7)
<複合粒子の作製>工程にて以下の点を変更した以外は、実施例6と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
(ii)複合粒子形成操作において、所定の組成物を2流体スプレーにて添加するにあたり、気液比(気体体積/液体体積)及び噴霧面密度を表1に示す通りとした。
工程(i)~(iii)を通じた系内の最高温度は、36℃であった。
(Example 7)
The same operations, measurements and evaluations as in Example 6 were carried out, except for the following changes in the <Preparation of Composite Particles> step. The results are shown in Table 1.
(ii) In the composite particle forming operation, when a predetermined composition was added by two-fluid spray, the gas-liquid ratio (gas volume/liquid volume) and spray surface density were as shown in Table 1.
The maximum temperature in the system throughout steps (i) to (iii) was 36°C.
(実施例8)
<複合粒子の作製>工程にて以下の点を変更した以外は、実施例6と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
(ii)複合粒子形成操作において、主撹拌翼を周速15m/sで運転し、副撹拌翼を周速2m/sで運転し、所定の組成物の添加手段を2流体スプレーに変更した。この際の気液比(気体体積/液体体積)及び噴霧面密度は表1に示す通りとした。
(iii)整粒操作において、副撹拌翼を周速10m/sで運転した。
工程(i)~(iii)を通じた系内の最高温度は、42℃であった。
(Example 8)
The same operations, measurements and evaluations as in Example 6 were carried out, except for the following changes in the <Preparation of Composite Particles> step. The results are shown in Table 1.
(ii) In the composite particle forming operation, the main impeller was operated at a peripheral speed of 15 m/s, the auxiliary impeller was operated at a peripheral speed of 2 m/s, and the means of adding the predetermined composition was changed to a two-fluid spray. The gas-liquid ratio (gas volume/liquid volume) and spray surface density were as shown in Table 1.
(iii) In the sizing operation, the secondary stirring blade was operated at a peripheral speed of 10 m/s.
The maximum temperature in the system throughout steps (i) to (iii) was 42°C.
(実施例9)
<複合粒子の作製>工程にて以下の点を変更した以外は、実施例6と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
(ii)複合粒子形成操作において、主撹拌翼を周速3m/sで運転し、副撹拌翼を周速10m/sで運転し、所定の組成物の添加手段を2流体スプレーに変更した。この際の気液比(気体体積/液体体積)及び噴霧面密度は表1に示す通りとした。
工程(i)~(iii)を通じた系内の最高温度は、34℃であった。
Example 9
The same operations, measurements and evaluations as in Example 6 were carried out, except for the following changes in the <Preparation of Composite Particles> step. The results are shown in Table 1.
(ii) In the composite particle forming operation, the main impeller was operated at a peripheral speed of 3 m/s, the auxiliary impeller was operated at a peripheral speed of 10 m/s, and the means of adding the predetermined composition was changed to a two-fluid spray. The gas-liquid ratio (gas volume/liquid volume) and spray surface density were as shown in Table 1.
The maximum temperature in the system throughout steps (i) to (iii) was 34°C.
(実施例10)
<複合粒子の作製>工程にて以下の点を変更した以外は、実施例6と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
(ii)複合粒子形成操作において、主撹拌翼を周速8m/sで運転し、副撹拌翼を周速6m/sで運転し、所定の組成物の添加手段を2流体スプレーに変更した。この際の気液比(気体体積/液体体積)及び噴霧面密度は表1に示す通りとした。
(iii)整粒操作において、主撹拌翼を周速0.4m/sで運転した。
工程(i)~(iii)を通じた系内の最高温度は、38℃であった。
Example 10
The same operations, measurements and evaluations as in Example 6 were carried out, except for the following changes in the <Preparation of Composite Particles> step. The results are shown in Table 1.
(ii) In the composite particle forming operation, the main impeller was operated at a peripheral speed of 8 m/s, the auxiliary impeller was operated at a peripheral speed of 6 m/s, and the means of adding the predetermined composition was changed to a two-fluid spray. The gas-liquid ratio (gas volume/liquid volume) and spray surface density were as shown in Table 1.
(iii) In the sizing operation, the main stirring blade was operated at a peripheral speed of 0.4 m/s.
The maximum temperature in the system throughout steps (i) to (iii) was 38°C.
(実施例11)
<複合粒子の作製>工程にて以下の点を変更した以外は、実施例6と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
(ii)複合粒子形成操作において、主撹拌翼を周速5m/sで運転し、副撹拌翼を周速10m/sで運転し、所定の組成物の添加手段を2流体スプレーに変更した。この際の気液比(気体体積/液体体積)及び噴霧面密度は表1に示す通りとした。
(iii)整粒操作において、主撹拌翼を周速6m/sで運転した。
工程(i)~(iii)を通じた系内の最高温度は、38℃であった。
(Example 11)
The same operations, measurements and evaluations as in Example 6 were carried out, except for the following changes in the <Preparation of Composite Particles> step. The results are shown in Table 1.
(ii) In the composite particle forming operation, the main impeller was operated at a peripheral speed of 5 m/s, the auxiliary impeller was operated at a peripheral speed of 10 m/s, and the means of adding the predetermined composition was changed to a two-fluid spray. The gas-liquid ratio (gas volume/liquid volume) and spray surface density were as shown in Table 1.
(iii) In the sizing operation, the main stirring blade was operated at a peripheral speed of 6 m/s.
The maximum temperature in the system throughout steps (i) to (iii) was 38°C.
(比較例1)
造粒槽として、副撹拌翼を有さないものを使用した以外は、実施例1と同様の各種操作、測定、及び評価(レート特性以外)を実施した。結果を表2に示す。
(Comparative Example 1)
Except for using a granulation vessel not having a secondary stirring blade, the same operations, measurements, and evaluations (except for rate characteristics) as in Example 1 were carried out. The results are shown in Table 2.
(比較例2)
造粒槽として、副撹拌翼の回転軸が鉛直方向であるものを使用し、(ii)複合粒子形成操作及び(iii)整粒操作における両拡散翼の周速を同一とした以外は、実施例1と同様の各種操作、測定、及び評価(レート特性以外)を実施した。結果を表2に示す。
(Comparative Example 2)
A granulation vessel was used in which the rotation axis of the auxiliary agitator was in the vertical direction, and the peripheral speeds of both the diffusion blades in (ii) the composite particle formation operation and (iii) the sizing operation were the same, except that various operations, measurements, and evaluations (except for the rate characteristics) were carried out in the same manner as in Example 1. The results are shown in Table 2.
(比較例3)
(i)予備撹拌操作を実施せず、(ii)複合粒子形成操作を開始する際に造粒槽に電極活物質及び導電助材を投入し、さらに、(ii)複合粒子形成操作にて添加する組成物に導電助材を配合しなかった以外は、実施例1と同様の各種操作、測定、及び評価(レート特性以外)を実施した。結果を表2に示す。
(Comparative Example 3)
The same operations, measurements, and evaluations (except for rate characteristics) as in Example 1 were carried out, except that (i) no preliminary stirring operation was carried out, (ii) the electrode active material and the conductive assistant were charged into the granulation tank when the composite particle formation operation was started, and (ii) the conductive assistant was not mixed into the composition added in the composite particle formation operation. The results are shown in Table 2.
(比較例4)
(ii)複合粒子形成操作を実施せず、(i)予備撹拌操作において、造粒槽内に電極活物質、導電助材、並びに、バインダー及び溶媒を含む組成物を一括添加し撹拌し、その後、(iii)整粒操作を実施した以外は、実施例1と同様の各種操作、測定、及び評価(レート特性以外)を実施した。結果を表2に示す。これらの工程を通じた系内の最高温度は、52℃であった。
(Comparative Example 4)
(ii) No composite particle formation operation was performed, (i) in the preliminary stirring operation, the electrode active material, the conductive assistant, and the composition containing the binder and the solvent were added all at once to the granulation tank and stirred, and then (iii) a particle size adjustment operation was performed. Except for this, various operations, measurements, and evaluations (other than rate characteristics) were performed in the same manner as in Example 1. The results are shown in Table 2. The maximum temperature in the system throughout these steps was 52°C.
(比較例5)
(ii)複合粒子形成操作において、導電助剤及びバインダーを含まない組成物、すなわち溶媒のみを造粒槽内に添加した。具体的には、(ii)複合粒子形成操作において、シール用空気を20L/分(通気量10/分)で流通し、主撹拌翼を周速5m/s、副撹拌翼を周速6m/sの運転条件で回転させ、溶媒としてのシクロヘキサン280gを15分かけて造粒槽内に連続的に添加した。かかる点以外は、実施例1と同様の各種操作、測定、及び評価(レート特性以外)を実施した。結果を表2に示す。
(Comparative Example 5)
(ii) In the composite particle forming operation, a composition not containing a conductive assistant and a binder, i.e., only a solvent, was added to the granulation tank. Specifically, (ii) in the composite particle forming operation, sealing air was circulated at 20 L/min (airflow rate 10/min), the main stirring blade was rotated at a peripheral speed of 5 m/s, and the auxiliary stirring blade was rotated at a peripheral speed of 6 m/s, and 280 g of cyclohexane as a solvent was continuously added to the granulation tank over 15 minutes. Other than this, various operations, measurements, and evaluations (other than rate characteristics) similar to those in Example 1 were performed. The results are shown in Table 2.
表1~2より、撹拌軸が相異なる2つ以上の撹拌翼を備える造粒槽内にて、(i)電極活物質を含む粉体材料を撹拌して撹拌状態とすること;(ii)撹拌状態にある前記粉体材料に対して、バインダー、導電助剤、及び溶媒を含む組成物を添加して複合粒子とすること、をこの順に実施した実施例1~11では、電極の柔軟性を高めるとともに、電極における電極活物質の割れを抑制し、さらには、かかる電極を備える電気化学素子のサイクル特性を向上させることができる、複合粒子を製造できたことが分かる。 Tables 1 and 2 show that in Examples 1 to 11, which were carried out in this order in a granulation tank equipped with two or more agitating blades with different agitation shafts, (i) a powder material containing an electrode active material was agitated to create an agitated state; and (ii) a composition containing a binder, a conductive additive, and a solvent was added to the powder material in the agitated state to form composite particles, it was possible to produce composite particles that increase the flexibility of the electrode, suppress cracking of the electrode active material in the electrode, and further improve the cycle characteristics of an electrochemical element equipped with such an electrode.
本発明によれば、電極の柔軟性を高めるとともに、電極における電極活物質の割れを抑制し、さらには、かかる電極を備える電気化学素子のサイクル特性を向上させることができる、複合粒子の製造方法を提供することができる。
また、本発明によれば、本発明の製造方法に従って得られた複合粒子を用いて電気化学素子用電極を製造する方法を提供することができる。
According to the present invention, it is possible to provide a method for producing composite particles that can increase the flexibility of an electrode, suppress cracking of the electrode active material in the electrode, and further improve the cycle characteristics of an electrochemical element provided with such an electrode.
Furthermore, according to the present invention, there can be provided a method for producing an electrode for an electrochemical device by using the composite particles obtained according to the production method of the present invention.
1 造粒槽
2 主撹拌翼
21 主ブレード
3 副撹拌翼
31 副ブレード
RA1 第一撹拌軸
RA2 第二撹拌軸
1
Claims (7)
撹拌軸が相異なる2つ以上の撹拌翼を備える造粒槽内にて、
(i)電極活物質を含む粉体材料を撹拌して撹拌状態とする工程;
(ii)撹拌状態にある前記粉体材料に対して、バインダー、導電助剤、及び溶媒を含む組成物を添加して複合粒子とする工程;
をこの順に実施する、複合粒子の製造方法。 A method for producing composite particles, comprising the steps of:
In a granulation tank equipped with two or more agitating blades having different agitation shafts,
(i) stirring a powder material containing an electrode active material to bring it into a stirred state;
(ii) adding a composition containing a binder, a conductive assistant, and a solvent to the powder material in a stirred state to form composite particles;
A method for producing composite particles, comprising carrying out the above steps in this order.
製造した前記複合粒子を電極基材上で加圧成形して電極合材層を形成することと、
を含む、電気化学素子用電極の製造方法。
Producing composite particles according to the method of any one of claims 1 to 6;
Pressing the produced composite particles onto an electrode substrate to form an electrode mixture layer;
A method for producing an electrode for an electrochemical element, comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-059377 | 2023-03-31 | ||
JP2023059377 | 2023-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024204433A1 true WO2024204433A1 (en) | 2024-10-03 |
Family
ID=92905714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/012439 WO2024204433A1 (en) | 2023-03-31 | 2024-03-27 | Method for manufacturing composite particles and electrode for electrochemical element |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024204433A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015170550A (en) * | 2014-03-10 | 2015-09-28 | トヨタ自動車株式会社 | Method for producing positive electrode for lithium secondary battery, positive electrode for lithium secondary battery and granulated product |
JP2016149242A (en) * | 2015-02-12 | 2016-08-18 | トヨタ自動車株式会社 | Method of manufacturing positive electrode for nonaqueous electrolytic solution secondary battery |
JP2017054637A (en) * | 2015-09-08 | 2017-03-16 | トヨタ自動車株式会社 | Method for producing non-aqueous electrolyte secondary battery |
WO2023053651A1 (en) * | 2021-09-29 | 2023-04-06 | 日本ゼオン株式会社 | Production method for composite particles and electrode for electrochemical element |
-
2024
- 2024-03-27 WO PCT/JP2024/012439 patent/WO2024204433A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015170550A (en) * | 2014-03-10 | 2015-09-28 | トヨタ自動車株式会社 | Method for producing positive electrode for lithium secondary battery, positive electrode for lithium secondary battery and granulated product |
JP2016149242A (en) * | 2015-02-12 | 2016-08-18 | トヨタ自動車株式会社 | Method of manufacturing positive electrode for nonaqueous electrolytic solution secondary battery |
JP2017054637A (en) * | 2015-09-08 | 2017-03-16 | トヨタ自動車株式会社 | Method for producing non-aqueous electrolyte secondary battery |
WO2023053651A1 (en) * | 2021-09-29 | 2023-04-06 | 日本ゼオン株式会社 | Production method for composite particles and electrode for electrochemical element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105814718B (en) | Conductive material paste for electrode, method for producing positive electrode slurry, method for producing positive electrode, and secondary battery | |
WO2018168615A1 (en) | Conductive material dispersion liquid for electrochemical element electrodes, slurry composition for electrochemical element electrodes, method for producing same, electrode for electrochemical elements, and electrochemical element | |
CN106104859B (en) | Slurry for positive electrode of lithium ion secondary battery and method for producing the same, and method for producing lithium ion secondary battery and positive electrode thereof | |
JP6414201B2 (en) | Secondary battery binder composition | |
US20240372070A1 (en) | Methods of producing composite particles and electrode for electrochemical device | |
CN115720686A (en) | Electrode for electrochemical element and electrochemical element | |
JP6870770B1 (en) | Conductive material dispersion for electrochemical elements, slurry for electrochemical element electrodes, electrodes for electrochemical elements and electrochemical elements | |
JP2017132660A (en) | Manufacturing method of coated nickel-based lithium-nickel composite oxide particle | |
US20240429396A1 (en) | Composite particles, electrode for electrochemical device, and electrochemical device | |
JP6365181B2 (en) | Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery | |
WO2024204433A1 (en) | Method for manufacturing composite particles and electrode for electrochemical element | |
CN115461897B (en) | Dispersant composition for electrochemical devices, conductive material dispersion for electrochemical devices, and slurry for electrodes of electrochemical devices | |
WO2023100625A1 (en) | Composite particles and producing method thereof, electrode for electrochemical device, and electrochemical device | |
WO2024048355A1 (en) | Composite particles and production method for same, electrochemical element electrode, and electrochemical element | |
WO2024142986A1 (en) | Composite particle, electrode for secondary battery, and secondary battery | |
WO2025047682A1 (en) | Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, nonaqueous secondary battery electrode, and nonaqueous secondary battery | |
WO2025047683A1 (en) | Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery | |
WO2024018997A1 (en) | Conductive material dispersion liquid for electrochemical elements, slurry for electrochemical element electrodes, electrode for electrochemical elements, and electrochemical element | |
WO2025047816A1 (en) | Nonaqueous secondary battery electrode, method for manufacturing same, and nonaqueous secondary battery | |
KR20240140910A (en) | Composite particles for electrochemical device positive electrode and method for producing the same, positive electrode for electrochemical device, and electrochemical device | |
WO2024048354A1 (en) | Carbon nanotube dispersion, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24780534 Country of ref document: EP Kind code of ref document: A1 |