[go: up one dir, main page]

WO2024204211A1 - Method for producing metal powder, and metal powder - Google Patents

Method for producing metal powder, and metal powder Download PDF

Info

Publication number
WO2024204211A1
WO2024204211A1 PCT/JP2024/011976 JP2024011976W WO2024204211A1 WO 2024204211 A1 WO2024204211 A1 WO 2024204211A1 JP 2024011976 W JP2024011976 W JP 2024011976W WO 2024204211 A1 WO2024204211 A1 WO 2024204211A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal powder
gas phase
raw
ratio
powder
Prior art date
Application number
PCT/JP2024/011976
Other languages
French (fr)
Japanese (ja)
Inventor
裕二 秋本
峰人 岩崎
秀康 家田
陽輔 青木
真司 渡邊
敦士 小副川
Original Assignee
昭栄化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭栄化学工業株式会社 filed Critical 昭栄化学工業株式会社
Publication of WO2024204211A1 publication Critical patent/WO2024204211A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Definitions

  • the present invention relates to a method for producing metal powder and to metal powder.
  • metal powders with excellent crystallinity and a narrow particle size distribution as conductive powders used to form electrodes for electronic components.
  • Known methods for producing metal powders with excellent crystallinity include spray pyrolysis, atomization, and methods for producing metal powders through a process of vaporizing raw metals using plasma, in which metal powders are produced through high temperature conditions in a gas phase. While these methods can produce metal powders with extremely high crystallinity, the breadth and narrowness of the particle size distribution depends on the uniformity/homogeneity of the raw materials and the temperature distribution in the gas phase, and therefore more strict control is required to obtain metal powders with an even narrower particle size distribution. In order to achieve this, the manufacturing equipment must be enlarged and complicated, which may lead to increased costs.
  • a wet reduction method and the like are known as a method for easily producing metal powders with a narrow particle size distribution.
  • the crystallinity of metal powders obtained by the wet reduction method is completely insufficient to meet the level required in recent years.
  • various studies have been carried out on methods for improving the crystallinity of metal powder produced by the wet reduction method or the like, as described below.
  • Patent Document 1 discloses a method for producing nickel powder in which a nickel raw material consisting of nickel fine powder or nickel compound fine powder is mixed and ground with a spacer consisting of a fine powder of at least one type of salt selected from alkali metal salts or alkaline earth metal salts, the ground product is heat-treated to cause the nickel fine powder to thermally decompose and/or grow in grains with the spacer in between, and then the heat-treated product is acid-treated to dissolve the spacer, the dissolved material is washed away with water, and the remainder is dried to obtain nickel powder with grain growth.
  • Patent Document 2 discloses a method for producing spherical nickel powder, which comprises a first step of mixing an alkaline earth metal compound powder with a nickel compound powder, a second step of heating the mixture obtained in the first step in a hydrogen atmosphere while preventing the formation of a complex oxide in order to reduce the nickel in the mixture to metallic nickel, a third step of heating the heated product obtained in the second step in a non-oxidizing atmosphere while preventing the particles from coarsening in order to improve the sphericity of the metallic nickel particles in the heated product obtained in the second step, and a fourth step of dissolving and removing the alkaline earth metal in the heated product obtained in the third step with an acid.
  • Patent Document 3 discloses a method for producing metal powder with a crystallite size of 800 angstroms or more, which comprises mixing metal powder with at least one of an alkali metal halide, an alkaline earth metal halide, and a rare earth halide, heating the mixture to a temperature equal to or higher than the melting point of the halide, and then cooling the mixture, and removing the halide by wet processing the resulting reaction product to recover the metal powder.
  • Patent Document 4 describes a method for treating metal powder to modify its density, which is characterized in that the particle surfaces are coated with an oxide, hydroxide or carbonate of an alkaline earth metal, the metal powder is then heat-treated at or below its melting point, the heat-treated product is leached with an acid, and the metal powder is then collected by solid-liquid separation.
  • Patent Document 5 discloses a method for producing spherical nickel powder, which comprises a first step of adding 0.01 wt% to 30 wt% of a rare earth compound to spherical nickel or spherical nickel compound powder, and a second step of heating and reducing the nickel in the mixture obtained in this step in a hydrogen atmosphere, and/or further heating the nickel in a non-oxidizing atmosphere after reduction.
  • Patent Document 6 discloses a method for producing spherical nickel powder, which comprises a first step of adding and mixing at least one selected from SiO2.nH2O (n ⁇ 0) and Al2O3.nH2O (n ⁇ 0) in an amount of 0.01 wt% to 30 wt%, calculated on an anhydrous basis, to spherical nickel or spherical nickel compound powder, and a second step of heating and reducing the nickel in the mixture obtained in the first step in a hydrogen atmosphere and/or further heating the mixture in a non-oxidizing atmosphere after reduction.
  • Patent Document 7 discloses a method for producing a conductive powder , which comprises the steps of: (A) adding 40 parts by weight or more and 100 parts by weight or less of boron oxide or boric acid, calculated as B2O3 , per 100 parts by weight of metal powder to a dispersion solution of a metal powder, mixing the mixture, and then drying the dispersion solution to obtain a mixture of the metal powder and boron oxide or boric acid; (B) heat-treating the mixture in a neutral atmosphere to obtain a heat-treated product; and (C) dissolving the heat-treated product in water or acid to obtain a metal powder.
  • Patent Document 8 discloses a method for producing nickel powder, which comprises adding and mixing a sintering inhibitor and pure water to nickel powder obtained by a wet reduction method, drying this mixed slurry by spray heat treatment, and then heat treating the dried mixture in a reducing or inert atmosphere at a temperature below the melting point of the sintering inhibitor to sinter the nickel powder, and then separating and removing the sintering inhibitor from the sintered nickel powder.
  • Patent Document 9 discloses a method for producing platinum powder with high dispersibility and a crystallite size in the range of 30 to 100 (nm), which includes a mixing step of mixing platinum powder with an admixture consisting of a powder of at least one type of oxide of a metal element in any one of Groups 3 to 15 of the long periodic table, a heat treatment step of subjecting the mixed powder obtained in the mixing step to a heat treatment at a predetermined temperature, a dissolving step of treating the heat-treated mixed powder with an acid or alkali to dissolve the admixture, and a removal step of removing the admixture by cleaning the mixed powder in which the admixture has been dissolved.
  • Patent Document 10 discloses a method for producing nickel powder, which comprises mixing nickel powder with a fine powder of an alkaline earth metal compound selected from the group consisting of oxides, hydroxides, carbonates, and hydrogen carbonates of alkaline earth metals, or coating the surface of each particle of the nickel powder with the alkaline earth metal compound, and then carrying out a heat treatment in an inert gas or slightly reducing gas atmosphere at a temperature below the melting temperature of the alkaline earth metal compound.
  • an alkaline earth metal compound selected from the group consisting of oxides, hydroxides, carbonates, and hydrogen carbonates of alkaline earth metals
  • Patent Documents 1 to 10 have various problems as methods for producing metal powders that can be suitably used as conductive materials. Furthermore, even if the methods described in Patent Documents 1 to 10 are carried out, the excellent crystallinity required in recent years cannot be obtained, and there is a demand for an even better method for improving the crystallinity of metal powders.
  • the present invention therefore aims to provide a method for producing metal powder that produces metal powder with excellent crystallinity and a narrow particle size distribution.
  • the present invention which solves the above problems, is as described below.
  • the metal powder precursor dispersed in the gas phase is cooled to produce a metal powder, and then the metal powder dispersed in the gas phase is cooled to a temperature at which the metal powder does not sinter.
  • the raw metal powder has a CV value, as defined below, of 0.40 or less.
  • CV value When the cumulative 50% particle diameter based on the number calculated based on the particle diameters of 100 or more particles randomly selected and measured by scanning electron microscope observation is defined as D50 , the ratio of the standard deviation calculated based on the particle diameters of 100 or more particles randomly selected and measured by scanning electron microscope observation to D50 .
  • D50 the ratio of the standard deviation calculated based on the particle diameters of 100 or more particles randomly selected and measured by scanning electron microscope observation to D50 .
  • Crystallite size ratio The ratio of the crystallite size to D50, where D50 is the cumulative 50% particle size based on the number calculated based on the particle sizes of 100 or more randomly selected particles measured by scanning electron microscope observation, and D50 is the crystallite size calculated by Scherrer's formula using the measured values by X-ray diffraction.
  • D50 is the cumulative 50% particle size based on the number calculated based on the particle sizes of 100 or more randomly selected particles measured by scanning electron microscope observation
  • D50 is the crystallite size calculated by Scherrer's formula using the measured values by X-ray diffraction.
  • the ratio of the D50 defined below of the metal powder to the D50 defined below of the raw metal powder is 1.0 to 2.0, and the ratio of the CV value defined below of the metal powder to the CV value defined below of the raw metal powder is 1.0 to 2.0.
  • D50 cumulative 50% particle diameter on a number basis calculated based on particle diameters measured by observing 100 or more particles randomly selected by scanning electron microscope.
  • CV value cumulative 50% particle diameter on a number basis calculated based on particle diameters measured by observing 100 or more particles randomly selected by scanning electron microscope is defined as D50 .
  • CV value The ratio of the standard deviation calculated based on the particle diameters of 100 or more randomly selected particles measured by scanning electron microscope observation to D50 , where D50 is the cumulative 50% particle diameter based on the number of particles measured by randomly selecting 100 or more particles by scanning electron microscope observation.
  • Crystallite size A value calculated by Scherrer's formula using the measured value by X-ray diffraction.
  • Crystallite size ratio A ratio of the crystallite size to D50 , where D50 is the value calculated by Scherrer's formula using the measured value by X-ray diffraction.
  • the present invention provides a method for producing metal powder that has excellent crystallinity and a narrow particle size distribution.
  • the method for producing metal powder of the present invention includes a first step of dispersing a raw metal powder, produced by reducing metal ions in a liquid phase, in a gas phase using a carrier gas; a second step of heat-treating the raw metal powder dispersed in the gas phase at a temperature of (Tm-100)°C or higher (wherein Tm°C is the temperature at which the raw metal powder melts) to produce a metal powder precursor dispersed in the gas phase; and a third step of cooling the metal powder precursor dispersed in the gas phase to produce a metal powder.
  • the present invention disperses raw metal powder produced by reducing metal ions in a liquid phase into a gas phase, and then heat-treats the powder while it is dispersed in the gas phase.
  • This allows heat treatment at a high temperature (the temperature at which the raw metal powder melts -100°C) at which the raw metal powder would sinter together in conventional methods.
  • the metal powder precursor produced by heat treatment is cooled while still dispersed in the gas phase, so coalescence of the metal powder particles can be suppressed.
  • the above configuration of the present invention makes it possible to produce metal powder that maintains a narrow particle size distribution while also having excellent crystallinity that was not possible with conventional methods.
  • the method for producing metal powder of the present invention it is possible to obtain metal powder that has better crystallinity than conventional methods and also has a narrow particle size distribution.
  • the metal powder obtained by the present invention may be classified.
  • the particle size distribution of the metal powder obtained by the present invention is sufficiently narrow, so the proportion of powder removed by classification is small. In other words, classification can be performed with a good yield.
  • the metal powder manufacturing method of the present invention allows heat treatment to be performed at a higher temperature than conventional methods, shortening the heat treatment time. In other words, the amount of metal powder produced per unit time can be dramatically improved.
  • D 50 The cumulative 50% particle diameter based on the number calculated based on the particle diameters measured by randomly selecting 100 or more particles by scanning electron microscope observation is defined as D50 .
  • the particle diameter is defined as the diameter of a perfect circle having the same area as the projected area of a particle.
  • CV value The ratio of the standard deviation calculated based on the particle diameters of 100 or more particles randomly selected by scanning electron microscope observation to D50 (standard deviation/ D50 ) is defined as the CV value.
  • At least 100 particles are randomly selected by observation under a scanning electron microscope, and the ratio of the minor axis to the major axis of a rectangle circumscribing the particle so as to have the smallest area (minor axis diameter/major axis diameter) is measured for each particle, and the average value of these ratios is defined as the aspect ratio.
  • the method for producing metal powder of the present invention includes the following first, second and third steps.
  • the first step in the present invention is a step of dispersing a raw metal powder produced by reducing metal ions in a liquid phase into a gas phase by a carrier gas. Since the raw metal powder is produced by reducing metal ions in a liquid phase, a raw metal powder with a narrow particle size distribution is produced, and the raw metal powder is further dispersed in a gas phase by a carrier gas, so that in the second step described later, heat treatment can be performed at a much higher temperature than in the conventional method, and therefore a metal powder having excellent crystallinity while maintaining a narrow particle size distribution can be produced.
  • a known method can be used to produce raw metal powder by reducing metal ions in the liquid phase.
  • a metal salt can be dissolved in water in advance to form an aqueous metal salt solution, and a reducing agent can be added to the aqueous solution to reduce the metal ions, producing raw metal powder.
  • Raw metal powder of the desired particle size and particle size distribution can be obtained by known methods such as appropriately adjusting the metal ion concentration in the liquid phase, the concentration and addition timing of the reducing agent, and the concentration and addition timing of other additives.
  • metal salt there are no particular limitations on the metal salt, and examples that can be used include nickel nitrate, nickel sulfate, nickel acetate, silver nitrate, copper nitrate, and copper sulfate.
  • the reducing agent is not particularly limited, and for example, hydrazine or formaldehyde can be used.
  • the raw metal powder in the present invention may be, for example, a metal powder selected from nickel, copper, silver, palladium, gold, platinum, and iron, or may be an alloy powder of two or more of the above metals, or may be an alloy powder and/or composite powder to which an appropriate amount of other metal elements, such as magnesium, calcium, ruthenium, rhodium, rhenium, iridium, osmium, titanium, tungsten, and tin, which are widely known to be added to the above metals, or nonmetal elements, such as silicon, bismuth, phosphorus, and sulfur, have been added.
  • other metal elements such as magnesium, calcium, ruthenium, rhodium, rhenium, iridium, osmium, titanium, tungsten, and tin
  • the D 50 of the raw metal powder is not particularly limited, and can be, for example, 10 nm or more and 15 ⁇ m or less.
  • the D 50 of the raw metal powder when generating a metal powder with a small particle size can be, for example, 10 nm or more and 200 nm or less, 60 nm or more and 200 nm or less, 70 nm or more and 200 nm or less, 80 nm or more and 200 nm or less, 80 nm or more and 180 nm or less, 80 nm or more and 150 nm or less, or 80 nm or more and 120 nm or less.
  • the D 50 of the raw metal powder when generating a metal powder with a medium particle size can be, for example, 200 nm or more and 1.0 ⁇ m or less.
  • the D 50 of the raw metal powder when generating a metal powder with a large particle size can be, for example, 1.0 ⁇ m or more and 15 ⁇ m or less, or 1.0 ⁇ m or more and 5.0 ⁇ m or less.
  • the CV value of the raw metal powder is preferably 0.40 or less, more preferably 0.39 or less, more preferably 0.38 or less, more preferably 0.37 or less, more preferably 0.36 or less, and particularly preferably 0.35 or less.
  • the lower limit of the CV value of the raw metal powder is not particularly limited, and can be, for example, 0.01 or more.
  • the "CV value" is used as an index of the width or narrowness of the particle size distribution, and the smaller the CV value, the narrower the particle size distribution.
  • gas that constitutes the carrier gas there are no particular limitations on the type of gas that constitutes the carrier gas; for example, nitrogen gas can be used.
  • the concentration of the raw metal powder in the gas phase dispersed in the gas phase by the carrier gas is preferably 1.0 g/L or less, more preferably 0.5 g/L or less, even more preferably 0.1 g/L or less, and particularly preferably 0.05 g/L or less.
  • the lower limit of the raw metal powder concentration in the gas phase is not particularly limited, but from the viewpoint of production efficiency, it is preferably 0.001 g/L or more.
  • the raw metal powder dispersed in the gas phase by the carrier gas may be dispersed in the gas phase in a dry state or in a state suspended in a liquid. From the viewpoint of energy efficiency during the heat treatment in the second step described later, it is preferable to disperse the raw metal powder in a dry state in the gas phase. From the viewpoint of dispersibility of the raw metal powder in the gas phase, it is preferable to disperse the raw metal powder in a suspended state in a liquid in the gas phase. By improving dispersibility in the gas phase, the raw metal powder particles are less likely to come into contact with each other, and as a result, it is easier to obtain metal powder with a narrow particle size distribution.
  • the raw metal powder is suspended in a liquid when it is produced by reducing metal ions in the liquid phase, and the liquid can be removed by an appropriate method to make the raw metal powder dry. Even when the raw metal powder is dispersed in the gas phase in a suspended state, the liquid in which the raw metal powder is suspended can be replaced with another liquid before dispersion in the gas phase.
  • the present invention may be a batch type or a continuous type, but from the viewpoint of production volume per unit time and energy efficiency, a continuous type is preferable.
  • a continuous type for example, the raw metal powder dispersed in the gas phase can be heat-treated while being transported by a carrier gas.
  • the direction of the above-mentioned transport is not particularly limited, and the heat treatment can be performed while being transported in various directions, such as the direction of gravity, the horizontal direction, or the direction opposite to the direction of gravity. From the viewpoint of maintaining a narrow particle size distribution, it is preferable to heat-treat the raw metal powder dispersed in the gas phase while being transported in the direction of gravity by a carrier gas.
  • the second step in the present invention is a step of producing a metal powder precursor dispersed in a gas phase by heat treating the raw metal powder dispersed in a gas phase at a temperature of (Tm-100) ° C. or higher (where Tm ° C. is the temperature at which the raw metal powder melts).
  • Tm ° C. is the temperature at which the raw metal powder melts.
  • This allows heat treatment at a much higher temperature than before, so that metal powder that maintains a narrow particle size distribution and also has excellent crystallinity can be produced.
  • the heat treatment time can be shortened, and the amount of metal powder produced per unit time can be dramatically improved.
  • heat treatment can be performed at a temperature of Tm ° C. or higher, which is much higher than before, spherical metal powder with a good aspect ratio can be produced.
  • the heat treatment temperature in the second step may be (Tm-100)°C or higher, where Tm°C is the temperature at which the raw metal powder melts and Tb°C is the temperature at which the raw metal powder vaporizes, but is preferably (Tm-50)°C or higher, more preferably Tm°C or higher, even more preferably (Tm+50)°C or higher, and particularly preferably (Tm+100)°C or higher.
  • Tm°C is the temperature at which the raw metal powder melts
  • Tb°C is the temperature at which the raw metal powder vaporizes
  • the second step is preferably a step of generating a metal powder precursor (metal droplets) in a liquid state dispersed in a gas phase by heat treating the raw metal powder dispersed in a gas phase at a temperature of Tm°C or higher.
  • Tm is the temperature at which the raw metal powder melts, but does not necessarily mean the temperature at which the raw metal powder melts completely, and may be any temperature at which 90% by mass or more of the raw metal powder melts. That is, even if a part of the raw metal powder is not melted, the metal powder produced by the present invention is heat-treated at a temperature sufficiently higher than that of the conventional example, and therefore a metal powder having excellent crystallinity can be obtained.
  • the upper limit of the heat treatment temperature in the second step is preferably less than Tb°C, more preferably (Tb-500)°C or less, more preferably (Tb-800)°C or less, more preferably (Tb-850)°C or less, more preferably (Tb-900)°C or less, even more preferably (Tb-950)°C or less, and particularly preferably (Tb-1000)°C or less.
  • the upper limit of the heat treatment temperature in the second step is more preferably (Tm + 500) ° C or less, more preferably (Tm + 450) ° C or less, more preferably (Tm + 400) ° C or less, more preferably (Tm + 350) ° C or less, more preferably (Tm + 300) ° C or less, more preferably (Tm + 250) ° C or less, even more preferably (Tm + 200) ° C or less, and particularly preferably (Tm + 150) ° C or less.
  • the raw metal powder is less likely to vaporize, making it easier to obtain a metal powder that maintains a narrow particle size distribution while also having excellent crystallinity.
  • the "temperature at which the raw metal powder vaporizes" refers to the boiling point of the bulk of the metal.
  • heat treatment by radiant heat is preferable, but heat treatment can also be performed by directly contacting the raw metal powder with a heat source.
  • an electric furnace electric heater
  • radiant heat generated by a flame can also be used.
  • heat treatment by radiant heat is preferable.
  • a method of heat treatment by directly contacting the raw metal powder with a heat source for example, a method of heat treatment by directly contacting the raw metal powder with a flame can be used. From the viewpoint of energy efficiency, a method of heat treatment by directly contacting the raw metal powder with a heat source is preferable.
  • heat treatment can be performed by contacting the raw metal powder with a heated high-temperature gas.
  • heat treatment can be performed by appropriately combining each of the heat treatment methods shown above, for example, heat treatment can be performed by directly heating with a flame and then by radiant heat from an electric furnace.
  • the concentration of the raw metal powder in the gas phase in the second step is preferably 1.0 g/L or less, more preferably 0.5 g/L or less, even more preferably 0.1 g/L or less, and particularly preferably 0.05 g/L or less.
  • the lower limit of the concentration of the raw metal powder in the gas phase is not particularly limited, but from the viewpoint of production efficiency, it is preferably 0.001 g/L or more.
  • the heat treatment time in the second step is not particularly limited, but is preferably 1 minute or less, more preferably 30 seconds or less, more preferably 15 seconds or less, and particularly preferably 10 seconds or less. This allows the production amount of metal powder per unit time to be increased.
  • the metal powder precursor is a precursor of the metal powder generated in the third step described below, and is generated in a state dispersed in the gas phase by heat-treating the raw metal powder dispersed in the gas phase at a temperature of (Tm-100) ° C or higher.
  • the metal powder precursor may be in a solid state, a mixed state of solid and liquid, or a liquid state. From the viewpoint of the crystallinity and aspect ratio of the metal powder generated in the third step described below, a mixed state of solid and liquid metal powder precursor or a liquid state metal powder precursor (metal droplets) is preferable, and a liquid state metal powder precursor (metal droplets) is particularly preferable.
  • the raw metal powder in the present invention is generated by reducing metal ions in a liquid phase, organic substances are used in most cases when generating the raw metal powder, and a certain amount of organic substances are often present inside the particles of the raw metal powder. Therefore, by melting the metal powder precursor in this step and moving the organic substances to the surface of the metal powder precursor, the organic substances that inhibit the improvement of crystallinity can be removed from the inside of the particles, making it easier to generate a metal powder with excellent crystallinity.
  • the metal powder precursor is a metal powder precursor in a mixed state of solid and liquid or a metal powder precursor (metal droplets) in a liquid state, it becomes easier to generate a metal powder with excellent crystallinity, and when the metal powder precursor is a metal powder precursor (metal droplets) in a liquid state, it becomes easier to generate a metal powder with excellent crystallinity.
  • the above-mentioned solid state, mixed solid and liquid state, and liquid state produced by heat treatment at a temperature of (Tm-100)°C or higher are referred to as "metal powder precursors.”
  • the concentration of the metal powder precursor in the gas phase in the second step is preferably 1.0 g/L or less, more preferably 0.5 g/L or less, even more preferably 0.1 g/L or less, and particularly preferably 0.05 g/L or less.
  • the lower limit of the concentration of the metal powder precursor in the gas phase is not particularly limited, but from the viewpoint of production efficiency, it is preferable that it is 0.001 g/L or more. Since the concentration of the metal powder precursor in the gas phase is in the above range, the dispersibility in the gas phase is excellent, and therefore, in the third step described below, it becomes easier to cool the metal powder precursor and metal powder while avoiding contact, and as a result, it becomes easier to obtain metal powder with a narrow particle size distribution.
  • the precursors are more likely to coalesce when they come into contact with each other than when the heat treatment temperature is set to (Tm-100) ° C or more and less than Tm ° C to generate a metal powder precursor in a solid state. That is, the particle size distribution of the metal powder produced in the third step described below tends to be broad.
  • the concentration of the metal powder precursor in the gas phase is within the above-mentioned range, the dispersibility in the gas phase is excellent and the metal powder precursors are less likely to come into contact with each other, making it easier to obtain metal powder with a narrow particle size distribution. That is, by setting the heat treatment temperature to Tm°C or higher and setting the concentration of the metal powder precursor in a mixed state of solid and liquid in the gas phase or the metal powder precursor in a liquid state within the above-mentioned range, it is particularly easy to obtain metal powder with excellent crystallinity and a narrow particle size distribution.
  • the third step in the present invention is to produce a metal powder by cooling the metal powder precursor dispersed in the gas phase.
  • the metal powder precursor and the metal powder are less likely to come into contact with each other, making it easier to obtain a metal powder with a narrow particle size distribution.
  • the third step of the present invention it is preferable to generate a metal powder dispersed in a gas phase by cooling the metal powder precursor dispersed in the gas phase, and then cool the metal powder dispersed in the gas phase to a temperature at which the metal powder does not sinter.
  • the method for cooling the metal powder dispersed in the gas phase to a temperature at which the metal powder does not sinter is not particularly limited, but for example, it can be cooled to less than 250°C, less than 220°C, or less than 200°C.
  • an organic compound such as acetic acid or oleic acid as a surface treatment agent, it becomes easier to suppress sintering of the metal powder even at a temperature higher than the above-mentioned temperature.
  • the metal powder precursor and the metal powder are less likely to come into contact at a temperature at which they coalesce or sinter, so that it becomes easier to obtain a metal powder with a narrow particle size distribution.
  • the "temperature at which the metal powder does not sinter” refers to the temperature at which, when the metal powder is cooled in the third step of the present invention, the metal powder is then recovered, and 100 or more particles of the recovered metal powder are randomly selected and observed under a scanning electron microscope, the number of particles that are sintered (necked) is 5% or less by number.
  • the metal powder precursor to be cooled in the third step may be in a solid state, a mixed state of solid and liquid, or a liquid state, but from the viewpoint of the crystallinity and aspect ratio of the metal powder produced by this step, a mixed state of solid and liquid metal powder precursor or a liquid state metal powder precursor (metal droplets) is preferable, and a liquid state metal powder precursor (metal droplets) is particularly preferable.
  • the metal powder When cooling the solid-state metal powder precursor, it is preferable to produce the metal powder by cooling the solid-state metal powder precursor dispersed in the gas phase to a temperature below (Tm-100)°C, and it is particularly preferable to produce the metal powder dispersed in the gas phase by cooling the solid-state metal powder precursor dispersed in the gas phase to a temperature below (Tm-100)°C, and then cool the metal powder dispersed in the gas phase to a temperature at which the metal powder does not sinter.
  • Tm-100 temperature below
  • a metal powder precursor in a mixed state of solid and liquid or a metal powder precursor in a liquid state it is preferable to produce a metal powder by cooling the liquid metal powder precursor (metal droplets) dispersed in a gas phase to a temperature below Tm°C, and it is particularly preferable to produce a metal powder dispersed in a gas phase by cooling the liquid metal powder precursor (metal droplets) dispersed in a gas phase to a temperature below Tm°C, and then cool the metal powder dispersed in the gas phase to a temperature at which the metal powder does not sinter.
  • This allows cooling while avoiding contact between the liquid metal powder precursor (metal droplets) and the metal powder, making it easier to obtain a metal powder that maintains a narrow particle size distribution while also having excellent crystallinity.
  • the concentration of the metal powder precursor in the gas phase in the third step is preferably 1.0 g/L or less, more preferably 0.5 g/L or less, even more preferably 0.1 g/L or less, and particularly preferably 0.05 g/L or less.
  • the lower limit of the concentration of the metal powder precursor in the gas phase is not particularly limited, but from the viewpoint of production efficiency, it is preferable that it is 0.001 g/L or more.
  • the concentration of the metal powder in the gas phase produced by cooling in the third step is preferably 1.0 g/L or less, more preferably 0.5 g/L or less, even more preferably 0.1 g/L or less, and particularly preferably 0.05 g/L or less.
  • concentration of the metal powder in the gas phase is preferably 0.001 g/L or more.
  • the metal powder produced in the third step may be, for example, the metal powder described below.
  • the method for producing metal powder of the present invention may include the above-mentioned first, second, and third steps, but may also include a further step before the first step, a further step between the above steps, or a further step after the third step.
  • the method for producing metal powder of the present invention can have a step of recovering the generated metal powder after the third step. That is, it can have a fourth step of recovering the generated metal powder.
  • the ratio of the crystallite diameter ratio of the metal powder to the crystallite diameter ratio of the raw metal powder is preferably 4.0 or more, more preferably 4.5 or more, and particularly preferably 5.0 or more.
  • the upper limit of the ratio of the crystallite diameter ratio of the metal powder to the crystallite diameter ratio of the raw metal powder is not particularly limited, but can be, for example, 1000 or less. If the raw metal powder is amorphous and therefore no crystal peak is detected by the method for measuring the crystallite diameter described below, the crystallite diameter ratio of the raw metal powder is set to 0, and if the crystallite diameter ratio of the generated metal powder is greater than 0, the ratio of the crystallite diameter ratio of the metal powder to the crystallite diameter ratio of the raw metal powder is set to 4.0 or more.
  • the ratio of the crystallite diameter of the metal powder to the crystallite diameter of the raw metal powder is preferably 4.0 or more, more preferably 4.5 or more, and particularly preferably 5.0 or more.
  • the upper limit of the ratio of the crystallite diameter of the metal powder to the crystallite diameter of the raw metal powder is not particularly limited, but can be, for example, 1000 or less. If the raw metal powder is amorphous and therefore no crystal peak is detected by the method for measuring the crystallite diameter described below, the crystallite diameter of the raw metal powder is set to 0 nm, and if the crystallite diameter of the generated metal powder is greater than 0 nm, the ratio of the crystallite diameter of the metal powder to the crystallite diameter of the raw metal powder is set to 4.0 or more.
  • the ratio of the D50 of the metal powder to the D50 of the raw metal powder is preferably 1.0 to 2.0, more preferably 1.0 to 1.8, even more preferably 1.0 to 1.6, even more preferably 1.0 to 1.4, and particularly preferably 1.0 to 1.2.
  • the ratio of the CV value of the metal powder to the CV value of the raw metal powder is preferably 1.0 or more and 2.0 or less, more preferably 1.0 or more and 1.8 or less, more preferably 1.0 or more and 1.6 or less, more preferably 1.0 or more and 1.4 or less, and particularly preferably 1.0 or more and 1.2 or less.
  • Metal powder> According to the manufacturing method of the present invention, it is possible to manufacture a metal powder having a CV value of 0.50 or less, a crystallite size of 30.0 nm or more, and a crystallite size ratio of 1.0 ⁇ 10 -2 or more. In other words, it is possible to manufacture a metal powder having a narrow particle size distribution and excellent crystallinity.
  • the CV value of the metal powder of the present invention may be 0.50 or less, preferably 0.45 or less, more preferably 0.40 or less, more preferably 0.39 or less, more preferably 0.38 or less, more preferably 0.37 or less, more preferably 0.36 or less, and particularly preferably 0.35 or less.
  • the crystallite size of the metal powder of the present invention may be 30.0 nm or more, preferably 35.0 nm or more, preferably 40.0 nm or more, preferably 45.0 nm or more, preferably 50.0 nm or more, preferably 60.0 nm or more, preferably 70.0 nm or more, and particularly preferably 80.0 nm or more.
  • the upper limit of the crystallite size is not particularly limited, but can be, for example, D 50 or less of the metal powder. When the crystallite size of the metal powder is in the above range, the crystallinity of the metal powder is excellent. In this specification (the present invention), the "crystallite size" is used as one of the indicators of crystallinity, and the larger the crystallite size, the better the crystallinity (higher the crystallinity).
  • the type of metal constituting the metal powder of the present invention is not particularly limited. That is, the metal powder of the present invention may be, for example, a metal powder selected from nickel, copper, silver, palladium, gold, platinum and iron, or an alloy powder of two or more of the above metals, or an alloy powder and/or composite powder to which an appropriate amount of the above-mentioned other metal elements or nonmetal elements is added.
  • the ratio of the metal components selected from nickel, copper, silver, palladium, gold, platinum and iron to the entire metal components constituting the metal powder is preferably 99% by mass or more, more preferably 99.9% by mass or more, and particularly preferably 99.99% by mass or more.
  • the less impurities contained in the metal powder the better.
  • the ratio of halogen elements to the entire metal powder is preferably 100 ppm by mass or less, more preferably 50 ppm by mass or less, even more preferably 10 ppm by mass or less, and it is particularly preferable that no halogen elements are contained.
  • the ratio of alkaline earth metals to the entire metal powder is preferably 100 ppm by mass or less, more preferably 50 ppm by mass or less, even more preferably 10 ppm by mass or less, and it is particularly preferable that no alkaline earth metals are contained.
  • the D 50 of the metal powder of the present invention is not particularly limited, and can be, for example, 10 nm or more and 15 ⁇ m or less.
  • the D 50 of the metal powder can be, for example, 10 nm or more and 200 nm or less, preferably 60 nm or more and 200 nm or less, more preferably 70 nm or more and 200 nm or less, more preferably 80 nm or more and 200 nm or less, more preferably 80 nm or more and 180 nm or less, even more preferably 80 nm or more and 150 nm or less, and particularly preferably 80 nm or more and 120 nm or less.
  • the D 50 of the metal powder When the D 50 of the metal powder is in the above range, it can be suitably used particularly for the internal electrodes of multilayer ceramic capacitors. That is, when used for the internal electrodes of multilayer ceramic capacitors, in addition to excellent crystallinity and narrow particle size distribution, the D 50 of the metal powder in the above range can form thin and highly continuous internal electrodes while suppressing short circuit defects, and it is easy to suppress delamination and cracks of the multilayer ceramic capacitor.
  • the D 50 of the metal powder When a raw metal powder having a medium particle size is produced, the D 50 of the metal powder can be, for example, 200 nm or more and 1.0 ⁇ m or less.
  • the D 50 of the metal powder When the D 50 of the metal powder is in the above range, it can be used particularly suitably for terminal electrodes of multilayer ceramic electronic components.
  • the D 50 of the metal powder in the above range makes it easy to form thin, dense, and highly continuous terminal electrodes.
  • the D 50 of the metal powder can be, for example, 1.0 ⁇ m or more and 15 ⁇ m or less, or can be 1.0 ⁇ m or more and 5.0 ⁇ m or less.
  • the D 50 of the metal powder is in the above range, it can be used particularly suitably for internal electrodes of multilayer inductors.
  • the metal powder when used for internal electrodes of a multilayer inductor, the metal powder has excellent crystallinity and a narrow particle size distribution, and since the D50 of the metal powder is within the above range, it becomes easy to form internal electrodes with low resistivity and it becomes easy to form a multilayer inductor in which short circuit defects are suppressed.
  • the crystallite size ratio of the metal powder of the present invention may be 1.0 x 10 -2 or more, preferably 2.0 x 10 -2 or more, more preferably 3.0 x 10 -2 or more, more preferably 5.0 x 10 -2 or more, more preferably 0.1 or more, more preferably 0.2 or more, more preferably 0.3 or more, more preferably 0.4 or more, more preferably 0.5 or more, and particularly preferably 0.6 or more.
  • the upper limit of the crystallite size ratio is not particularly limited, but can be, for example, 1.0 or less.
  • the crystallite size ratio is preferably 0.40 or more, more preferably 0.50 or more, and particularly preferably 0.60 or more.
  • the upper limit of the crystallite size ratio is not particularly limited, but can be, for example, 1.0 or less.
  • the crystallite diameter ratio is more preferably 5.0 ⁇ 10 -2 or more, and particularly preferably 1.0 ⁇ 10 -1 or more.
  • the upper limit of the crystallite diameter ratio is not particularly limited, but can be, for example, 1.0 or less.
  • the crystallite diameter ratio is more preferably 2.0 ⁇ 10 -2 or more, more preferably 3.0 ⁇ 10 -2 or more, even more preferably 4.0 ⁇ 10 -2 or more, and particularly preferably 5.0 ⁇ 10 -2 or more.
  • the upper limit of the crystallite diameter ratio is not particularly limited, but can be, for example, 1.0 or less.
  • the crystallite diameter ratio of the metal powder is in the above range, the crystallinity of the metal powder is excellent.
  • the "crystallite size ratio" is used as one index of crystallinity, and a larger crystallite size ratio indicates better crystallinity (higher crystallinity).
  • the aspect ratio of the metal powder of the present invention is preferably 0.70 or more and 1.0 or less, more preferably 0.80 or more and 1.0 or less, even more preferably 0.90 or more and 1.0 or less, even more preferably 0.95 or more and 1.0 or less, and particularly preferably 1.0.
  • the aspect ratio of the metal powder is in the above range, it becomes easier to narrow the particle size distribution of the metal powder.
  • the number of particles that are sintered (necked) among the particles observed in the metal powder of the present invention is 5% or less by number. This makes it easier to obtain a metal powder with a narrow particle size distribution.
  • the metal powder of the present invention has a D50 of 10 nm or more and 200 nm or less, a CV value of 0.40 or less, a crystallite diameter of 30.0 nm or more, and a crystallite diameter ratio of 0.40 or more.
  • the D50 , CV value, crystallite diameter, and crystallite diameter ratio of the metal powder are within the above ranges, so that the metal powder can be particularly suitably used for internal electrodes of multilayer ceramic capacitors.
  • the metal powder has a small particle size, excellent crystallinity, and a narrow particle size distribution, so that when used for internal electrodes of multilayer ceramic capacitors, a thin and highly continuous internal electrode can be formed while suppressing short circuit defects, and delamination and cracks of the multilayer ceramic capacitor can be easily suppressed.
  • D50 as defined in the present invention can be measured, for example, by the following method: A powder is observed using a scanning electron microscope, 100 particles constituting the powder are randomly selected from the observation, their particle diameters are measured, and the number-based cumulative 50% particle diameter D50 can be calculated based on the particle diameters.
  • the CV value defined in the present invention can be measured, for example, by the following method: A powder is observed using a scanning electron microscope, 100 particles constituting the powder are randomly selected from the observation, their particle sizes are measured, a standard deviation is calculated based on the particle sizes, and the CV value is calculated as the ratio of the standard deviation to D50 calculated by the above-mentioned method.
  • crystallite size The crystallite size defined in the present invention can be measured, for example, by the following method. That is, using an XRD measurement device, CuK ⁇ radiation (wavelength ⁇ : 1.5418 ⁇ ), tube voltage 40 kV, tube current 30 mA, step angle 0.01°, scanning speed 10.0°/min, XRD measurement of metal powder is performed for diffraction angle 2 ⁇ : 20.0 to 100.0°, the main peak with the maximum peak intensity is detected, the half-width of the peak is measured, and the crystallite size can be calculated using Scherrer's formula.
  • the main peak can be, for example, a peak corresponding to the (111) plane, around 44° in the case of nickel powder, around 38° in the case of silver powder, and around 43° in the case of copper powder.
  • the melting point and boiling point of nickel used in the following examples are about 1455°C and about 2913°C
  • the melting point and boiling point of silver are about 962°C and about 2162°C
  • the melting point and boiling point of copper are about 1085°C and about 2562°C, respectively.
  • Example 1 ⁇ Production of Metal Powder> (Examples 1 to 4)
  • hydrazine was added to an aqueous solution of nickel nitrate to reduce the nickel ions in the solution to metallic nickel, thereby obtaining a suspension of nickel powder, and the nickel powder was then separated and dried from the suspension to prepare a raw nickel powder.
  • the properties of the raw nickel powder prepared are shown in Table 1.
  • the raw material nickel powder was dispersed in the gas phase from the nozzle with a cross-sectional area of an opening of 2 cm2 using a carrier gas (nitrogen gas) with a flow rate of 2200 L/min at a concentration of 0.05 g per unit volume (1 L) of the gas phase.
  • nitrogen gas nitrogen gas
  • the raw material nickel powder was dispersed in the gas phase at the concentration, it was passed through the above-mentioned vertical tubular container and heat-treated at 1600°C for 3 seconds to generate nickel droplets of molten metallic nickel.
  • An electric furnace was installed on the outside of the vertical tubular container used for the heat treatment, and the inside of the tubular container was set to the above-mentioned temperature.
  • the nickel droplets were cooled while dispersed in the gas phase at the above concentration to produce nickel powder, and the nickel powder thus produced was further cooled to 180° C. while dispersed in the gas phase, and the nickel powder was recovered.
  • the properties of the raw nickel powder and the nickel powder were evaluated by the evaluation methods described below. The evaluation results are shown in Table 1.
  • Example 1 The raw nickel powder prepared in Example 1 was subjected to a heat treatment at the temperature and time shown in Table 1, and then cooled to 25° C. to produce nickel powder, which was then recovered. The properties of the nickel powder were then evaluated using the same evaluation method as in Example 1. The evaluation results are shown in Table 1.
  • Example 2 (Comparative Examples 2 and 3)
  • the raw nickel powder prepared in Example 1 was heat-treated at the temperature and time shown in Table 1, and then cooled to 25°C, whereupon the particles constituting the raw nickel powder were sintered together to form a metal lump.
  • Example 1 (Comparative Examples 4 and 5) The raw material nickel powder prepared in Example 1 was mixed with magnesium carbonate and stirred, then heat-treated at the temperature and time shown in Table 1, and then cooled to 25° C. to produce nickel powder, which was then recovered. The properties of the nickel powder were then evaluated using the same evaluation method as in Example 1. The evaluation results are shown in Table 1.
  • Example 6 The raw nickel powder prepared in Example 1 was mixed with magnesium carbonate and stirred, then heat-treated at the temperature and time shown in Table 1, and then cooled to 25°C. As a result, the particles constituting the raw nickel powder were sintered together to form a metal lump.
  • Nickel powder was produced, cooled, and recovered in the same manner as in Example 1, except that the heat treatment temperature was 1100°C, the heat treatment time was 4 seconds, the heat treatment did not go into a molten state during or after the heat treatment, and the nickel powder was cooled to 180°C in a state where it was dispersed in a gas phase after the heat treatment.
  • the raw nickel powder used was that prepared in Example 1.
  • the properties of the nickel powder were evaluated using the same evaluation method as in Example 1. The evaluation results are shown in Table 1.
  • Example 5 The nickel powder was produced, cooled, and recovered in the same manner as in Example 1, except that the heat treatment temperature was 1400°C, the heat treatment did not go through a molten state during or after the heat treatment, the heat treatment was cooled to 1350°C while maintaining the above-mentioned dispersion concentration, and the nickel powder was further cooled to 180°C in a state where the nickel powder was dispersed in the gas phase.
  • the raw nickel powder used was that prepared in Example 1.
  • the properties of the nickel powder were evaluated using the same evaluation method as in Example 1. The evaluation results are shown in Table 1.
  • Example 6 Nickel powder was produced, cooled, and collected in the same manner as in Example 1, except that the produced nickel droplets were cooled to 250° C. in a state where they were dispersed in the gas phase and collected.
  • the raw nickel powder used was that prepared in Example 1.
  • the properties of the nickel powder were evaluated using the same evaluation method as in Example 1. The evaluation results are shown in Table 1.
  • Example 7 Nickel powder was produced, cooled and collected in the same manner as in Example 1, except that the produced nickel droplets were cooled to 365° C. while dispersed in the gas phase, and then a diluted liquid of oleic acid was sprayed onto the nickel powder to adhere to it, and the nickel powder was further cooled to 250° C. and collected.
  • the raw nickel powder used was that prepared in Example 1.
  • the properties of the nickel powder were evaluated using the same evaluation method as in Example 1. The evaluation results are shown in Table 1.
  • Example 8 Nickel powder was produced, cooled, and recovered in the same manner as in Example 1, except that the raw nickel powder produced in Example 1 was dispersed in a gas phase at the concentration shown in Table 1.
  • the raw nickel powder used was that prepared in Example 1.
  • the properties of the nickel powder were evaluated using the same evaluation method as in Example 1. The evaluation results are shown in Table 1.
  • Example 10 First, hydrazine was added to an aqueous silver nitrate solution to reduce the silver ions in the solution to metallic silver, thereby obtaining a suspension of silver powder, and the silver powder was then separated and dried from the suspension to prepare a raw silver powder.
  • the properties of the raw silver powder prepared are shown in Table 2.
  • the raw silver powder was dispersed in the gas phase from the nozzle with a cross-sectional area of 2 cm2 at an opening using a carrier gas (nitrogen gas) with a flow rate of 2,200 L/min at a concentration of 0.05 g per unit volume (1 L) of the gas phase.
  • a carrier gas nitrogen gas
  • the raw silver powder was dispersed in the gas phase at that concentration, it was passed through the above-mentioned vertical tubular container and subjected to heat treatment for 4 seconds at the temperature shown in Table 2 to generate silver droplets of molten metallic silver.
  • An electric furnace was installed on the outside of the vertical tubular container used for the heat treatment, and was set so that the inside of the tubular container was at the above-mentioned temperature.
  • the silver droplets were dispersed in the gas phase at the above concentration, and the mixture was cooled to 120° C. to produce silver powder, which was then recovered.
  • the properties of the raw silver powder and the silver powder were evaluated using the evaluation methods described below. The evaluation results are shown in Table 2.
  • Example 16 Without separating and drying the silver powder from the suspension of silver powder obtained in Example 15, the liquid in which the silver powder was suspended was replaced with water, and the content ratio of silver powder in the suspension was adjusted to 20% by mass to obtain raw silver powder suspended in water. The raw silver powder was then dispersed in the gas phase while the raw silver powder was suspended in water. The silver powder was produced, cooled, and recovered in the same manner as in Example 15. The properties of the silver powder were evaluated by the same evaluation method as in Example 15. The evaluation results are shown in Table 2.
  • Example 8 The raw silver powder produced in Example 15 was heat-treated at the temperature and time shown in Table 2, and then cooled to 25°C, whereupon the particles constituting the raw silver powder sintered together to form a metal lump.
  • Example 9 The raw silver powder produced in Example 15 was mixed with magnesium carbonate and stirred, then heat-treated at the temperature and time shown in Table 2, and then cooled to 25°C. As a result, the particles constituting the raw silver powder sintered together to form a metal lump.
  • Example 17 First, hydrazine was added to an aqueous solution of copper nitrate to reduce the copper ions in the solution to metallic copper, thereby obtaining a suspension of copper powder, and the raw copper powder was separated from the suspension and dried to prepare a raw copper powder.
  • the properties of the prepared raw copper powder are shown in Table 2.
  • the raw copper powder was dispersed in the gas phase from the nozzle with a cross-sectional area of 2 cm2 at an opening using a carrier gas (nitrogen gas) at a flow rate of 2200 L/min at a concentration of 0.05 g per unit volume (1 L) of the gas phase.
  • a carrier gas nitrogen gas
  • the raw copper powder was dispersed in the gas phase at the concentration, and was passed through the vertical tubular vessel described above while being heat-treated at 1300°C for 4 seconds to generate copper droplets of molten metallic copper.
  • An electric furnace was installed on the outside of the vertical tubular vessel used for the heat treatment, and was set so that the temperature inside the tubular vessel was set to the above-mentioned temperature.
  • the copper droplets were dispersed in the gas phase at the above concentration, and the mixture was cooled to 60° C. to produce copper powder, which was then recovered.
  • the properties of the raw copper powder and the copper powder were evaluated by the methods described below. The evaluation results are shown in Table 2.
  • Example 10 The raw copper powder produced in Example 18 was heat-treated at the temperature and time shown in Table 2, and then cooled to 25°C, whereupon the particles constituting the raw copper powder sintered together to form metal lumps.
  • Example 11 The raw copper powder produced in Example 18 was mixed with magnesium carbonate and stirred, then heat-treated at the temperature and time shown in Table 2, and then cooled to 25°C. As a result, the particles constituting the raw copper powder sintered together to form metal lumps.
  • nickel powder produced by a known dry method nickel powder produced by a known method of heating raw metal nickel as a raw metal with plasma to melt and vaporize it, and cooling the generated metal vapor to obtain a metal powder, nickel powder produced by a known method of heating raw nickel powder with a flame to vaporize it, and cooling the generated metal vapor to obtain a metal powder, nickel powder produced by a known method of spraying nickel acetate tetrahydrate powder as a thermally decomposable compound powder into a gas phase, and then heat-treating it at a temperature equal to or higher than the thermal decomposition temperature to obtain a metal powder, and nickel powder produced by spraying molten nickel and cooling it were prepared, and the properties of the nickel powders were evaluated by the same evaluation method as in Example 1.
  • the crystallite size was 30.0 nm or more
  • the crystallite size ratio was 1.0 ⁇ 10 -2 or more
  • the CV value was more than 0.50.
  • the metal powder was observed using a scanning electron microscope (SU-1510, manufactured by Hitachi High-Technologies Corporation), and 100 particles constituting the powder were randomly selected from the observation, their particle diameters were measured, and the standard deviation was calculated based on the particle diameters. The CV value was then calculated as the ratio of the standard deviation to D50 calculated by the above-mentioned method.
  • Crystallite size and crystallite size ratio Using an XRD measurement device (Rigaku Corporation, SmartLab), the metal powder was subjected to XRD measurement at a diffraction angle 2 ⁇ of 20.0 to 100.0° using CuK ⁇ radiation (wavelength ⁇ : 1.5418 ⁇ ) under the conditions of a tube voltage of 40 kV, a tube current of 30 mA, a step angle of 0.01°, and a scanning speed of 10.0°/min. Peaks corresponding to the (111) plane (nickel powder: near 44°, silver powder: near 38°, copper powder: near 43°) were detected and the half-width was measured, and the crystallite size was calculated using the following Scherrer formula.
  • metal powders having excellent crystallinity and a narrow particle size distribution could be produced.
  • metal powders satisfying both "excellent crystallinity” and “narrow particle size distribution” could not be produced.
  • metal powders having excellent crystallinity could be produced by heat treating the raw metal powder at a temperature of (Tm-100) ° C. or higher, and metal powders having particularly excellent crystallinity could be produced by heat treating the raw metal powder at a temperature of Tm ° C. or higher.
  • metal powders having a particularly narrow particle size distribution could be produced by cooling and recovering the metal powder dispersed in the gas phase to a temperature at which the metal powder does not sinter.
  • the particle size distribution tended to become wider as the heat treatment temperature of the raw metal powder exceeded Tm° C. and became higher.
  • Example 16 compared with Example 15 in which a raw metal powder in a dry state was dispersed in a gas phase, Example 16 in which a raw metal powder in a suspended state in a liquid was dispersed in a gas phase was able to produce a metal powder with a narrower particle size distribution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

This method is for producing a metal powder and comprises: a first step for dispersing, in a gas phase by means of a carrier gas, a raw material metal powder produced by reducing metal ions in a liquid phase; a second step for subjecting the raw material metal powder dispersed in the gas phase to a thermal treatment at a temperature of at least (Tm-100)°C (where Tm°C is the melting point of the raw material metal powder) to produce a metal powder precursor dispersed in the gas phase; and a third step for cooling the metal powder precursor dispersed in the gas phase to produce a metal powder. With the present invention, it is possible to produce a metal powder having excellent crystallinity and a narrow particle size distribution.

Description

金属粉末の製造方法及び金属粉末METAL POWDER METHOD AND METAL POWDER

 本発明は、金属粉末の製造方法及び金属粉末に関する。 The present invention relates to a method for producing metal powder and to metal powder.

 近年、電子部品の電極形成に用いる導電性粉末として、結晶性に優れ且つ粒度分布が狭い金属粉末の要求が高まっている。
 結晶性に優れる金属粉末を製造する方法として、噴霧熱分解法やアトマイズ法、プラズマ等により原料金属を気化させる工程を経て金属粉末を製造する方法といった、気相中で高温状態を経て金属粉末が生成される金属粉末の製造方法が知られている。これらの製法によれば結晶性が非常に高い金属粉末が得られる一方で、粒度分布の広狭は原料や気相中の温度分布等の均一性/均質性に依存するため、より一層の粒度分布の狭い金属粉末を得るには更なる厳密な制御が必要となり、その対応のため製造設備を大型化/複雑化するとコストアップにつながりかねない。
In recent years, there has been an increasing demand for metal powders with excellent crystallinity and a narrow particle size distribution as conductive powders used to form electrodes for electronic components.
Known methods for producing metal powders with excellent crystallinity include spray pyrolysis, atomization, and methods for producing metal powders through a process of vaporizing raw metals using plasma, in which metal powders are produced through high temperature conditions in a gas phase. While these methods can produce metal powders with extremely high crystallinity, the breadth and narrowness of the particle size distribution depends on the uniformity/homogeneity of the raw materials and the temperature distribution in the gas phase, and therefore more strict control is required to obtain metal powders with an even narrower particle size distribution. In order to achieve this, the manufacturing equipment must be enlarged and complicated, which may lead to increased costs.

 また、粒度分布の狭い金属粉末を簡便に製造する方法として、湿式還元法等が知られている。しかしながら湿式還元法で得られる金属粉末の結晶性は、近年要求されているレベルに対して全く不十分であることは広く知られている。
 そこで、湿式還元法等で製造された金属粉末の結晶性を向上させる方法として、下記のような種々の検討がなされている。
In addition, a wet reduction method and the like are known as a method for easily producing metal powders with a narrow particle size distribution. However, it is widely known that the crystallinity of metal powders obtained by the wet reduction method is completely insufficient to meet the level required in recent years.
In view of this, various studies have been carried out on methods for improving the crystallinity of metal powder produced by the wet reduction method or the like, as described below.

 特許文献1には、ニッケル微粉末又はニッケル化合物の微粉末よりなるニッケル原料と、アルカリ金属塩又はアルカリ土類金属塩の中から選んだ少なくとも一種類の塩の微粉末からなるスペーサとを混合して粉砕後、この粉砕体を熱処理してスペーサ介在下でニッケル微粉末を熱分解及び/又は粒成長させ、しかる後に、この熱処理体を酸処理してスペーサを溶解させ、この溶解物を水洗除去して残余を乾燥して粒成長したニッケル粉末を得るニッケル粉末の製造方法が開示されている。 Patent Document 1 discloses a method for producing nickel powder in which a nickel raw material consisting of nickel fine powder or nickel compound fine powder is mixed and ground with a spacer consisting of a fine powder of at least one type of salt selected from alkali metal salts or alkaline earth metal salts, the ground product is heat-treated to cause the nickel fine powder to thermally decompose and/or grow in grains with the spacer in between, and then the heat-treated product is acid-treated to dissolve the spacer, the dissolved material is washed away with water, and the remainder is dried to obtain nickel powder with grain growth.

 特許文献2には、アルカリ土類金属化合物粉末と、ニッケル化合物粉末とを混合する第1工程と、第1工程で得られた混合物中のニッケルを金属ニッケルに還元するために、該混合物を水素雰囲気で複合酸化物の生成を防止しつつ加熱する第2工程と、第2工程で得られた加熱物中の金属ニッケル粒子の球形性を向上させるために、該加熱物を非酸化性雰囲気で粒子の粗大化を防止しつつ加熱する第3工程と、第3工程で得られた加熱物中のアルカリ土類金属を酸で溶解し除去する第4工程とからなる球状ニッケル粉末の製造方法が開示されている。 Patent Document 2 discloses a method for producing spherical nickel powder, which comprises a first step of mixing an alkaline earth metal compound powder with a nickel compound powder, a second step of heating the mixture obtained in the first step in a hydrogen atmosphere while preventing the formation of a complex oxide in order to reduce the nickel in the mixture to metallic nickel, a third step of heating the heated product obtained in the second step in a non-oxidizing atmosphere while preventing the particles from coarsening in order to improve the sphericity of the metallic nickel particles in the heated product obtained in the second step, and a fourth step of dissolving and removing the alkaline earth metal in the heated product obtained in the third step with an acid.

 特許文献3には、金属粉と、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、希土類ハロゲン化物のうち少なくとも1種と、を混合し、前記ハロゲン化物の融点以上まで昇温した後冷却し、得られた反応物を湿式処理によりハロゲン化物を除去して、金属粉末を回収することを特徴とする、結晶子径が800オングストローム以上の金属粉の製造方法が開示されている。 Patent Document 3 discloses a method for producing metal powder with a crystallite size of 800 angstroms or more, which comprises mixing metal powder with at least one of an alkali metal halide, an alkaline earth metal halide, and a rare earth halide, heating the mixture to a temperature equal to or higher than the melting point of the halide, and then cooling the mixture, and removing the halide by wet processing the resulting reaction product to recover the metal powder.

 特許文献4には、金属粉の密度を改質する金属粉の処理法において、粒子表面にアルカリ土類金属の酸化物、水酸化物または炭酸塩の被覆を形成してから当該金属粉を融点以下で熱処理し、得られた熱処理品を酸で浸出処理し、次いで固液分離して金属粉を採取することを特徴とする金属粉の処理法が記載されている。 Patent Document 4 describes a method for treating metal powder to modify its density, which is characterized in that the particle surfaces are coated with an oxide, hydroxide or carbonate of an alkaline earth metal, the metal powder is then heat-treated at or below its melting point, the heat-treated product is leached with an acid, and the metal powder is then collected by solid-liquid separation.

 特許文献5には、球状ニッケルまたは球状ニッケル化合物粉末に、希土類化合物を0.01wt%~30wt%添加する第1工程と、この工程で得られた混合物中のニッケルを水素雰囲気中で加熱還元、及びもしくは還元後さらに非酸化性雰囲気下で加熱する第2工程とからなる球状ニッケル粉末の製造方法が開示されている。 Patent Document 5 discloses a method for producing spherical nickel powder, which comprises a first step of adding 0.01 wt% to 30 wt% of a rare earth compound to spherical nickel or spherical nickel compound powder, and a second step of heating and reducing the nickel in the mixture obtained in this step in a hydrogen atmosphere, and/or further heating the nickel in a non-oxidizing atmosphere after reduction.

 特許文献6には、球状ニッケルまたは球状ニッケル化合物粉末に、SiO・nHO(n≧0)、Al・nHO(n≧0)より選ばれた少なくとも1種以上を、無水物換算で0.01wt%~30wt%添加し混合する第1工程と、第1工程で得られた混合物中のニッケルを水素雰囲気中で加熱還元、及びもしくは還元後さらに非酸化性雰囲気下で加熱する第2工程と、からなる球状ニッケル粉末の製造方法が開示されている。 Patent Document 6 discloses a method for producing spherical nickel powder, which comprises a first step of adding and mixing at least one selected from SiO2.nH2O (n≧0) and Al2O3.nH2O (n≧0) in an amount of 0.01 wt% to 30 wt%, calculated on an anhydrous basis, to spherical nickel or spherical nickel compound powder, and a second step of heating and reducing the nickel in the mixture obtained in the first step in a hydrogen atmosphere and/or further heating the mixture in a non-oxidizing atmosphere after reduction.

 特許文献7には、金属粉末の分散溶液中に、金属粉末100重量部に対してB換算で40重量部以上、100重量部以下の酸化硼素又は硼酸を添加し、混合した後に、該分散溶液を乾燥させて金属粉末と酸化硼素又は硼酸からなる混合物を得る工程(A)、該混合物を中性雰囲気下で加熱処理して熱処理生成物を得る工程(B)、および該熱処理生成物を、水または酸で溶解処理して金属粉末を得る工程(C)を含むことを特徴とする導電粉末の製造方法が開示されている。 Patent Document 7 discloses a method for producing a conductive powder , which comprises the steps of: (A) adding 40 parts by weight or more and 100 parts by weight or less of boron oxide or boric acid, calculated as B2O3 , per 100 parts by weight of metal powder to a dispersion solution of a metal powder, mixing the mixture, and then drying the dispersion solution to obtain a mixture of the metal powder and boron oxide or boric acid; (B) heat-treating the mixture in a neutral atmosphere to obtain a heat-treated product; and (C) dissolving the heat-treated product in water or acid to obtain a metal powder.

 特許文献8には、湿式還元法で得られたニッケル粉末に焼結防止剤と純水とを加えて混合し、この混合スラリーを噴霧熱処理により乾燥させ、乾燥後の混合物を還元もしくは不活性雰囲気中、かつ、焼結防止剤の融点以下の温度で熱処理することにより、ニッケル粉末を焼結した後、焼結後のニッケル粉末から焼結防止剤を分離除去することを特徴とするニッケル粉末の製造方法が開示されている。 Patent Document 8 discloses a method for producing nickel powder, which comprises adding and mixing a sintering inhibitor and pure water to nickel powder obtained by a wet reduction method, drying this mixed slurry by spray heat treatment, and then heat treating the dried mixture in a reducing or inert atmosphere at a temperature below the melting point of the sintering inhibitor to sinter the nickel powder, and then separating and removing the sintering inhibitor from the sintered nickel powder.

 特許文献9には、結晶子サイズが30乃至100(nm)の範囲内の高分散性を有する白金粉末を製造する方法であって、白金粉末と、長周期表の3族乃至15族の何れかの金属元素の酸化物の少なくとも一種の粉末から成る混合剤とを混合する混合工程と、その混合工程で得られた混合粉末に所定温度の熱処理を施す熱処理工程と、その熱処理が施された混合粉末を酸またはアルカリで処理することにより前記混合剤を溶解する溶解工程と、前記混合剤が溶解された混合粉末に洗浄処理を施すことによりその混合剤を除去する除去工程とを、含むことを特徴とする白金粉末の製造方法が開示されている。 Patent Document 9 discloses a method for producing platinum powder with high dispersibility and a crystallite size in the range of 30 to 100 (nm), which includes a mixing step of mixing platinum powder with an admixture consisting of a powder of at least one type of oxide of a metal element in any one of Groups 3 to 15 of the long periodic table, a heat treatment step of subjecting the mixed powder obtained in the mixing step to a heat treatment at a predetermined temperature, a dissolving step of treating the heat-treated mixed powder with an acid or alkali to dissolve the admixture, and a removal step of removing the admixture by cleaning the mixed powder in which the admixture has been dissolved.

 特許文献10には、ニッケル粉とアルカリ土類金属の酸化物、水酸化物、炭酸塩及び炭酸水素塩よりなる群から選ばれたアルカリ土類金属化合物の微粉末とを混合した後、またはニッケル粉の各粒子表面に該アルカリ土類金属化合物を被覆させた後、不活性ガス又は微還元性ガス雰囲気中で、該アルカリ土類金属化合物の溶融温度未満の温度で熱処理を実施することを特徴とするニッケル粉の製造方法が開示されている。 Patent Document 10 discloses a method for producing nickel powder, which comprises mixing nickel powder with a fine powder of an alkaline earth metal compound selected from the group consisting of oxides, hydroxides, carbonates, and hydrogen carbonates of alkaline earth metals, or coating the surface of each particle of the nickel powder with the alkaline earth metal compound, and then carrying out a heat treatment in an inert gas or slightly reducing gas atmosphere at a temperature below the melting temperature of the alkaline earth metal compound.

特開平10-102109号公報Japanese Patent Application Publication No. 10-102109 特開平11-140513号公報Japanese Patent Application Publication No. 11-140513 特開2000-096110号公報JP 2000-096110 A 特開2001-040401号公報JP 2001-040401 A 特開2001-098337号公報JP 2001-098337 A 特開2001-107103号公報JP 2001-107103 A 特開2004-176120号公報JP 2004-176120 A 特開2004-339601号公報JP 2004-339601 A 特開2006-299385号公報JP 2006-299385 A 特開2002-146401号公報JP 2002-146401 A

 これら特許文献1~10に記載の方法では、熱処理時における金属粉末同士の焼結を防ぐため、種々の物質が熱処理前に金属粉末に添加・混合される。そのため、熱処理後も当該物質が金属粉末表面に残存する。したがって、導電性材料として好適な金属粉末を得るためには熱処理後に前述の物質を除去する必要がある。しかしながら当該除去操作には酸やアルカリ等を用いるため、金属粉末表面が溶解する或いは金属粉末表面に金属化合物が生成する等の金属粉末表面への影響が避けられない。また、前述の除去操作を実施した場合であっても、添加・混合した前述の物質を完全に除去することは難しく、金属粉末表面に残存してしまう。すなわち、特許文献1~10に記載の方法は、導電性材料として好適に使用可能な金属粉末を製造する方法としては種々の問題を有する。
 また、特許文献1~10に記載の方法を実施したとしても、近年要求されているレベルの優れた結晶性は得られず、金属粉末の結晶性を向上させるための更に優れた方法が求められている。
In the methods described in Patent Documents 1 to 10, various substances are added to and mixed with the metal powder before the heat treatment in order to prevent the metal powders from sintering during the heat treatment. Therefore, the substances remain on the surface of the metal powder even after the heat treatment. Therefore, in order to obtain a metal powder suitable as a conductive material, it is necessary to remove the above-mentioned substances after the heat treatment. However, since an acid or an alkali is used in the removal operation, it is inevitable that the metal powder surface will be affected, such as dissolving the metal powder surface or forming a metal compound on the metal powder surface. Furthermore, even if the above-mentioned removal operation is performed, it is difficult to completely remove the above-mentioned substances that have been added or mixed, and they will remain on the metal powder surface. In other words, the methods described in Patent Documents 1 to 10 have various problems as methods for producing metal powders that can be suitably used as conductive materials.
Furthermore, even if the methods described in Patent Documents 1 to 10 are carried out, the excellent crystallinity required in recent years cannot be obtained, and there is a demand for an even better method for improving the crystallinity of metal powders.

 したがって、本発明は、結晶性に優れ且つ粒度分布が狭い金属粉末を製造する金属粉末の製造方法を提供することを目的とする。 The present invention therefore aims to provide a method for producing metal powder that produces metal powder with excellent crystallinity and a narrow particle size distribution.

 上記の課題を解決する本発明は以下に記載する通りのものである。
(1)液相中で金属イオンを還元することにより生成される原料金属粉末を、キャリアガスによって気相中に分散させる第1の工程と、
 前記気相中に分散した状態の前記原料金属粉末を(Tm-100)℃以上の温度(但し、Tm℃は原料金属粉末が溶融する温度である。)で熱処理することにより前記気相中に分散した状態の金属粉末前駆体を生成する第2の工程と、
 前記気相中に分散した状態の前記金属粉末前駆体を冷却することにより金属粉末を生成する第3の工程と、
 を有する金属粉末の製造方法。
(2)前記第1の工程において、前記原料金属粉末を、前記キャリアガスによって気相中に1.0g/L以下の濃度で分散させ、前記第2の工程において、前記気相中に前記濃度で分散した状態の前記原料金属粉末を(Tm-100)℃以上の温度で熱処理することにより前記気相中に分散した状態の金属粉末前駆体を生成し、前記第3の工程において、前記気相中に前記濃度で分散した状態の前記金属粉末前駆体を冷却することにより前記金属粉末を生成する、上記(1)に記載の金属粉末の製造方法。
(3)前記第2の工程において、前記気相中に分散した状態の前記原料金属粉末をTm℃以上の温度で熱処理することにより前記気相中に分散した状態の液体状態の金属粉末前駆体を生成する、上記(1)または(2)に記載の金属粉末の製造方法。
(4)前記第2の工程において、前記気相中に分散した状態の前記原料金属粉末を(Tm-100)℃以上Tb℃未満の温度(但し、Tm℃は原料金属粉末が溶融する温度であり、Tb℃は原料金属粉末が気化する温度である。)で熱処理する、上記(1)乃至(3)のいずれか1項に記載の金属粉末の製造方法。
(5)前記第1の工程において、前記原料金属粉末を、当該原料金属粉末が液中に懸濁した状態で、前記キャリアガスによって前記気相中に分散させる、上記(1)乃至(4)のいずれか1項に記載の金属粉末の製造方法。
(6)前記第3の工程において、前記気相中に分散した状態の前記金属粉末前駆体を冷却することにより金属粉末を生成し、次いで、気相中に分散した状態の金属粉末を当該金属粉末が焼結しない温度まで冷却する、上記(1)乃至(5)のいずれか1項に記載の金属粉末の製造方法。
(7)前記原料金属粉末の、下記で定義されるCV値が0.40以下である、上記(1)乃至(6)のいずれか1項に記載の金属粉末の製造方法。
 CV値:走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される個数基準の累積50%粒子径をD50としたとき、D50に対する走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される標準偏差の比
(8)前記原料金属粉末の下記で定義される結晶子径比に対する前記金属粉末の下記で定義される結晶子径比の比が4.0以上である、上記(1)乃至(7)のいずれか1項に記載の金属粉末の製造方法。
 結晶子径比:走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される個数基準の累積50%粒子径をD50とし、X線回折による測定値を用いてシェラーの式により算出される値を結晶子径としたとき、D50に対する結晶子径の比
(9)前記原料金属粉末の下記で定義される結晶子径に対する前記金属粉末の下記で定義される結晶子径の比が4.0以上である、上記(1)乃至(8)のいずれか1項に記載の金属粉末の製造方法。
 結晶子径:X線回折による測定値を用いてシェラーの式により算出される値
(10)前記原料金属粉末の下記で定義されるD50に対する前記金属粉末の下記で定義されるD50の比が1.0以上2.0以下であり、前記原料金属粉末の下記で定義されるCV値に対する前記金属粉末の下記で定義されるCV値の比が1.0以上2.0以下である、上記(1)乃至(9)のいずれか1項に記載の金属粉末の製造方法。
 D50:走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される個数基準の累積50%粒子径
 CV値:走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される個数基準の累積50%粒子径をD50としたとき、D50に対する走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される標準偏差の比
(11)前記原料金属粉末の下記で定義されるD50が10nm以上15μm以下であり、前記金属粉末の下記で定義されるD50が10nm以上15μm以下である、上記(1)乃至(10)のいずれか1項に記載の金属粉末の製造方法。
 D50:走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される個数基準の累積50%粒子径
(12)下記で定義されるCV値が0.50以下であり、下記で定義される結晶子径が30.0nm以上であり、下記で定義される結晶子径比が1.0×10-2以上である金属粉末。
 CV値:走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される個数基準の累積50%粒子径をD50としたとき、D50に対する走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される標準偏差の比
 結晶子径:X線回折による測定値を用いてシェラーの式により算出される値
 結晶子径比:X線回折による測定値を用いてシェラーの式により算出される値を結晶子径としたとき、D50に対する結晶子径の比
(13)CV値が0.40以下であり、下記で定義されるD50が10nm以上200nm以下であり、結晶子径比が0.40以上であり、下記で定義されるアスペクト比が0.95以上1.0以下である、上記(12)に記載の金属粉末。
 D50:走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される個数基準の累積50%粒子径
 アスペクト比:走査型電子顕微鏡観察により粒子100個以上を無作為に選び、面積が最小となるよう粒子に外接する長方形の長軸径に対する短軸径の比(短軸径/長軸径)を各粒子について測定し、当該測定値を平均した値
The present invention, which solves the above problems, is as described below.
(1) a first step of dispersing a raw metal powder produced by reducing metal ions in a liquid phase into a gas phase by a carrier gas;
a second step of heat-treating the raw metal powder dispersed in the gas phase at a temperature of (Tm-100)°C or higher (where Tm°C is the temperature at which the raw metal powder melts) to produce a metal powder precursor dispersed in the gas phase;
a third step of cooling the metal powder precursor dispersed in the gas phase to produce a metal powder;
A method for producing a metal powder having the above structure.
(2) The method for producing a metal powder according to (1) above, wherein in the first step, the raw metal powder is dispersed in a gas phase by the carrier gas at a concentration of 1.0 g/L or less, in the second step, the raw metal powder dispersed in the gas phase at the concentration is heat-treated at a temperature of (Tm-100)°C or more to produce a metal powder precursor dispersed in the gas phase, and in the third step, the metal powder precursor dispersed in the gas phase at the concentration is cooled to produce the metal powder.
(3) The method for producing a metal powder according to (1) or (2) above, wherein in the second step, the raw metal powder dispersed in the gas phase is heat-treated at a temperature of Tm°C or higher to produce a metal powder precursor in a liquid state dispersed in the gas phase.
(4) A method for producing a metal powder according to any one of (1) to (3) above, wherein in the second step, the raw metal powder dispersed in the gas phase is heat-treated at a temperature of (Tm-100)°C or higher and lower than Tb°C (where Tm°C is the temperature at which the raw metal powder melts, and Tb°C is the temperature at which the raw metal powder vaporizes).
(5) A method for producing a metal powder described in any one of (1) to (4) above, wherein in the first step, the raw metal powder is dispersed in the gas phase by the carrier gas while the raw metal powder is suspended in a liquid.
(6) The method for producing a metal powder according to any one of (1) to (5) above, wherein in the third step, the metal powder precursor dispersed in the gas phase is cooled to produce a metal powder, and then the metal powder dispersed in the gas phase is cooled to a temperature at which the metal powder does not sinter.
(7) The method for producing a metal powder according to any one of (1) to (6) above, wherein the raw metal powder has a CV value, as defined below, of 0.40 or less.
CV value: When the cumulative 50% particle diameter based on the number calculated based on the particle diameters of 100 or more particles randomly selected and measured by scanning electron microscope observation is defined as D50 , the ratio of the standard deviation calculated based on the particle diameters of 100 or more particles randomly selected and measured by scanning electron microscope observation to D50 . (8) The method for producing a metal powder according to any one of (1) to (7) above, wherein the ratio of the crystallite diameter ratio of the metal powder defined below to the crystallite diameter ratio of the raw metal powder defined below is 4.0 or more.
Crystallite size ratio: The ratio of the crystallite size to D50, where D50 is the cumulative 50% particle size based on the number calculated based on the particle sizes of 100 or more randomly selected particles measured by scanning electron microscope observation, and D50 is the crystallite size calculated by Scherrer's formula using the measured values by X-ray diffraction. (9) A method for producing a metal powder according to any one of (1) to (8), wherein the ratio of the crystallite size of the metal powder defined below to the crystallite size of the raw metal powder defined below is 4.0 or more.
Crystallite size: A value calculated by the Scherrer formula using measured values by X-ray diffraction. (10) The ratio of the D50 defined below of the metal powder to the D50 defined below of the raw metal powder is 1.0 to 2.0, and the ratio of the CV value defined below of the metal powder to the CV value defined below of the raw metal powder is 1.0 to 2.0. The method for producing a metal powder according to any one of (1) to (9) above.
D50 : cumulative 50% particle diameter on a number basis calculated based on particle diameters measured by observing 100 or more particles randomly selected by scanning electron microscope. CV value: cumulative 50% particle diameter on a number basis calculated based on particle diameters measured by observing 100 or more particles randomly selected by scanning electron microscope is defined as D50 . Ratio of standard deviation calculated based on particle diameters measured by observing 100 or more particles randomly selected by scanning electron microscope to D50 . (11) The method for producing a metal powder according to any one of (1) to (10) above, wherein the raw metal powder has a D50 defined below of 10 nm or more and a D50 defined below of 10 nm or more and a D50 defined below of 10 nm or more and a D50 of the metal powder.
D50 : Cumulative 50% particle size based on the number calculated based on particle sizes measured by randomly selecting 100 or more particles by scanning electron microscope observation (12) A metal powder having a CV value defined below of 0.50 or less, a crystallite size defined below of 30.0 nm or more, and a crystallite size ratio defined below of 1.0 x 10-2 or more.
CV value: The ratio of the standard deviation calculated based on the particle diameters of 100 or more randomly selected particles measured by scanning electron microscope observation to D50 , where D50 is the cumulative 50% particle diameter based on the number of particles measured by randomly selecting 100 or more particles by scanning electron microscope observation. Crystallite size: A value calculated by Scherrer's formula using the measured value by X-ray diffraction. Crystallite size ratio: A ratio of the crystallite size to D50 , where D50 is the value calculated by Scherrer's formula using the measured value by X-ray diffraction. (13) The metal powder according to (12) above, in which the CV value is 0.40 or less, the D50 defined below is 10 nm or more and 200 nm or less, the crystallite size ratio is 0.40 or more, and the aspect ratio defined below is 0.95 or more and 1.0 or less.
D50 : Cumulative 50% particle size based on the number calculated based on the particle diameters measured by randomly selecting 100 or more particles by scanning electron microscope observation. Aspect ratio: A value calculated by measuring the ratio of the minor axis diameter to the major axis diameter of a rectangle circumscribing the particle so as to have the smallest area (minor axis diameter/major axis diameter) for each particle by randomly selecting 100 or more particles by scanning electron microscope observation, and averaging the measured values.

 本発明によると、結晶性に優れ且つ粒度分布が狭い金属粉末を製造する金属粉末の製造方法を提供できる。 The present invention provides a method for producing metal powder that has excellent crystallinity and a narrow particle size distribution.

<金属粉末の製造方法>
 本発明の金属粉末の製造方法は、液相中で金属イオンを還元することにより生成される原料金属粉末を、キャリアガスによって気相中に分散させる第1の工程と、前記気相中に分散した状態の前記原料金属粉末を(Tm-100)℃以上の温度(但し、Tm℃は原料金属粉末が溶融する温度である。)で熱処理することにより前記気相中に分散した状態の金属粉末前駆体を生成する第2の工程と、前記気相中に分散した状態の前記金属粉末前駆体を冷却することにより金属粉末を生成する第3の工程と、を有する金属粉末の製造方法である。
<Metal Powder Manufacturing Method>
The method for producing metal powder of the present invention includes a first step of dispersing a raw metal powder, produced by reducing metal ions in a liquid phase, in a gas phase using a carrier gas; a second step of heat-treating the raw metal powder dispersed in the gas phase at a temperature of (Tm-100)°C or higher (wherein Tm°C is the temperature at which the raw metal powder melts) to produce a metal powder precursor dispersed in the gas phase; and a third step of cooling the metal powder precursor dispersed in the gas phase to produce a metal powder.

 従来知られていた方法は、高温で熱処理すると原料金属粉末同士が焼結して金属塊となってしまうといった問題があった。そのため、当該原料金属粉末が焼結しない温度での熱処理を前提とした方法となっており、熱処理後に得られる金属粉末の結晶性は不十分であった。  Previously known methods had the problem that when heat-treated at high temperatures, the raw metal powder would sinter together and become a metal lump. For this reason, the method was premised on heat-treating at a temperature at which the raw metal powder would not sinter, and the crystallinity of the metal powder obtained after heat treatment was insufficient.

 これに対して本発明は、液相中で金属イオンを還元することにより生成される原料金属粉末を気相中に分散させ、更に当該粉末が気相中に分散した状態で熱処理するため、従来の方法であれば原料金属粉末同士が焼結するような、〔原料金属粉末が溶融する温度-100℃〕といった高い温度で熱処理することができる。また、熱処理により生成した金属粉末前駆体を当該金属粉末前駆体が気相中に分散した状態のまま冷却するため、金属粉末同士の合一を抑制できる。本発明が以上の構成を有することにより、狭い粒度分布を維持しつつ従来の方法では得られなかった優れた結晶性も兼ね備えた金属粉末を製造することができる。 In contrast, the present invention disperses raw metal powder produced by reducing metal ions in a liquid phase into a gas phase, and then heat-treats the powder while it is dispersed in the gas phase. This allows heat treatment at a high temperature (the temperature at which the raw metal powder melts -100°C) at which the raw metal powder would sinter together in conventional methods. In addition, the metal powder precursor produced by heat treatment is cooled while still dispersed in the gas phase, so coalescence of the metal powder particles can be suppressed. The above configuration of the present invention makes it possible to produce metal powder that maintains a narrow particle size distribution while also having excellent crystallinity that was not possible with conventional methods.

 上述の通り、本発明の金属粉末の製造方法を用いることで従来よりも優れた結晶性を有しながらしかも粒度分布が狭い金属粉末が得られるが、更に粒度分布が狭い金属粉末が必要な場合には、本発明により得られた金属粉末を分級してもよい。前述の通り本発明により得られた金属粉末の粒度分布は十分狭いため、分級により除去する粉末の割合が少ない。すなわち、良好な歩留まりで分級することができる。 As described above, by using the method for producing metal powder of the present invention, it is possible to obtain metal powder that has better crystallinity than conventional methods and also has a narrow particle size distribution. However, if a metal powder with an even narrower particle size distribution is required, the metal powder obtained by the present invention may be classified. As described above, the particle size distribution of the metal powder obtained by the present invention is sufficiently narrow, so the proportion of powder removed by classification is small. In other words, classification can be performed with a good yield.

 また、本発明の金属粉末の製造方法は、従来の方法と比べて高い温度で熱処理できるため、熱処理時間を短くできる。すなわち、単位時間あたりの金属粉末の製造量を飛躍的に向上させることができる。 In addition, the metal powder manufacturing method of the present invention allows heat treatment to be performed at a higher temperature than conventional methods, shortening the heat treatment time. In other words, the amount of metal powder produced per unit time can be dramatically improved.

 以下、本発明に係る金属粉末の製造方法を構成する各工程について説明する。
 なお、本発明において規定する「D50」、「CV値」、「結晶子径」、「結晶子径比」、「アスペクト比」は下記で定義されるものとする。
(D50
 走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される個数基準の累積50%粒子径をD50と定義する。本発明においては、粒子の投影面積と同じ面積を有する真円の直径を粒子径と定義する。
(CV値)
 D50に対する走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される標準偏差の比(標準偏差/D50)をCV値と定義する。
(結晶子径)
 X線回折による測定値を用いて下記式(1)で表されるシェラーの式により算出される値dを結晶子径と定義する(下記式(1)において、Kはシェラー定数、λはX線波長、βは回折ピークの半値幅、θは回折角である。)。
 シェラーの式:d=Kλ/βcosθ  ・・・(1)
(結晶子径比)
 D50に対する結晶子径の比を結晶子径比と定義する。
(アスペクト比)
 走査型電子顕微鏡観察により粒子100個以上を無作為に選び、面積が最小となるよう粒子に外接する長方形の長軸径に対する短軸径の比(短軸径/長軸径)を各粒子について測定し、当該比の平均値をアスペクト比と定義する。
Hereinafter, each step constituting the method for producing metal powder according to the present invention will be described.
In the present invention, "D 50 ", "CV value", "crystallite size", "crystallite size ratio" and "aspect ratio" are defined as follows.
( D50 )
The cumulative 50% particle diameter based on the number calculated based on the particle diameters measured by randomly selecting 100 or more particles by scanning electron microscope observation is defined as D50 . In the present invention, the particle diameter is defined as the diameter of a perfect circle having the same area as the projected area of a particle.
(CV value)
The ratio of the standard deviation calculated based on the particle diameters of 100 or more particles randomly selected by scanning electron microscope observation to D50 (standard deviation/ D50 ) is defined as the CV value.
(Crystallite size)
The value d calculated by the Scherrer formula represented by the following formula (1) using the measured values by X-ray diffraction is defined as the crystallite size (in the following formula (1), K is the Scherrer constant, λ is the X-ray wavelength, β is the half-width of the diffraction peak, and θ is the diffraction angle).
Scherrer's formula: d = Kλ / β cos θ (1)
(Crystallite size ratio)
The ratio of the crystallite size to the D50 is defined as the crystallite size ratio.
(Aspect Ratio)
At least 100 particles are randomly selected by observation under a scanning electron microscope, and the ratio of the minor axis to the major axis of a rectangle circumscribing the particle so as to have the smallest area (minor axis diameter/major axis diameter) is measured for each particle, and the average value of these ratios is defined as the aspect ratio.

 本発明の金属粉末の製造方法は以下の第1の工程、第2の工程及び第3の工程を含む。
(第1の工程)
 本発明における第1の工程は、液相中で金属イオンを還元することにより生成される原料金属粉末を、キャリアガスによって気相中に分散させる工程である。原料金属粉末が液相中で金属イオンを還元することにより生成されるため、粒度分布の狭い原料金属粉末が生成され、更に当該原料金属粉末をキャリアガスによって気相中に分散させることで、後述の第2の工程において、従来の方法と比べると遥かに高い温度で熱処理することができるため、狭い粒度分布を維持しつつ優れた結晶性も兼ね備えた金属粉末を製造することができる。また、後述の第2の工程において、従来よりも遥かに高い温度で熱処理できるため、第2の工程における熱処理時間を短くでき、単位時間あたりの金属粉末の製造量を飛躍的に向上させることができる。また、後述の第2の工程において、Tm℃以上の温度で熱処理することで、アスペクト比が良好な球状金属粉末を製造することができる。なお、本発明(本明細書)においては、金属粉末の形状が真球に近いもの、すなわち、アスペクト比が1.0に近いものほど、良好なアスペクト比であるものとし、特に好ましいアスペクト比は、1.0である。
The method for producing metal powder of the present invention includes the following first, second and third steps.
(First step)
The first step in the present invention is a step of dispersing a raw metal powder produced by reducing metal ions in a liquid phase into a gas phase by a carrier gas. Since the raw metal powder is produced by reducing metal ions in a liquid phase, a raw metal powder with a narrow particle size distribution is produced, and the raw metal powder is further dispersed in a gas phase by a carrier gas, so that in the second step described later, heat treatment can be performed at a much higher temperature than in the conventional method, and therefore a metal powder having excellent crystallinity while maintaining a narrow particle size distribution can be produced. In addition, since heat treatment can be performed at a much higher temperature than in the conventional method in the second step described later, the heat treatment time in the second step can be shortened, and the production amount of metal powder per unit time can be dramatically improved. In addition, by performing heat treatment at a temperature of Tm ° C. or higher in the second step described later, a spherical metal powder with a good aspect ratio can be produced. In the present invention (this specification), the closer the shape of the metal powder is to a perfect sphere, that is, the closer the aspect ratio is to 1.0, the better the aspect ratio is, and a particularly preferred aspect ratio is 1.0.

 液相中で金属イオンを還元して原料金属粉末を生成する方法としては、公知の方法を用いることができ、例えば、金属塩をあらかじめ水に溶解して金属塩水溶液を形成し、当該水溶液に還元剤を添加して金属イオンを還元することで、原料金属粉末を生成することができる。液相中の金属イオン濃度や還元剤の濃度及び添加タイミング、その他の添加剤の濃度や添加タイミングを適宜調整する等の公知の方法により、所望の粒径や粒度分布の原料金属粉末を得ることができる。  A known method can be used to produce raw metal powder by reducing metal ions in the liquid phase. For example, a metal salt can be dissolved in water in advance to form an aqueous metal salt solution, and a reducing agent can be added to the aqueous solution to reduce the metal ions, producing raw metal powder. Raw metal powder of the desired particle size and particle size distribution can be obtained by known methods such as appropriately adjusting the metal ion concentration in the liquid phase, the concentration and addition timing of the reducing agent, and the concentration and addition timing of other additives.

 金属塩としては特に制限されるものではなく、例えば、硝酸ニッケル、硫酸ニッケル、酢酸ニッケル、硝酸銀、硝酸銅、硫酸銅を用いることができる。 There are no particular limitations on the metal salt, and examples that can be used include nickel nitrate, nickel sulfate, nickel acetate, silver nitrate, copper nitrate, and copper sulfate.

 還元剤としては特に制限されるものではなく、例えば、ヒドラジンやホルムアルデヒドを用いることができる。 The reducing agent is not particularly limited, and for example, hydrazine or formaldehyde can be used.

 原料金属粉末を構成する金属の種類は特に制限されない。すなわち、本発明における原料金属粉末は、例えば、ニッケル、銅、銀、パラジウム、金、白金及び鉄から選ばれる金属粉末であってもよく、また、前記金属から2種以上選ばれる合金粉末であってもよく、更には、前記金属に対して添加することが広く知られているマグネシウム、カルシウム、ルテニウム、ロジウム、レニウム、イリジウム、オスミウム、チタン、タングステン、錫などの他の金属元素や、ケイ素、ビスマス、リン、硫黄等の非金属元素を適量加えた合金粉末及び/又は複合粉末であってもよい。 The type of metal constituting the raw metal powder is not particularly limited. That is, the raw metal powder in the present invention may be, for example, a metal powder selected from nickel, copper, silver, palladium, gold, platinum, and iron, or may be an alloy powder of two or more of the above metals, or may be an alloy powder and/or composite powder to which an appropriate amount of other metal elements, such as magnesium, calcium, ruthenium, rhodium, rhenium, iridium, osmium, titanium, tungsten, and tin, which are widely known to be added to the above metals, or nonmetal elements, such as silicon, bismuth, phosphorus, and sulfur, have been added.

 原料金属粉末のD50は特に制限されず、例えば、10nm以上15μm以下とすることができる。粒径の小さい金属粉末を生成する場合の原料金属粉末のD50は、例えば、10nm以上200nm以下とすることができ、60nm以上200nm以下とすることもでき、70nm以上200nm以下とすることもでき、80nm以上200nm以下とすることもでき、80nm以上180nm以下とすることもでき、80nm以上150nm以下とすることもでき、80nm以上120nm以下とすることもできる。粒径が中程度の金属粉末を生成する場合の原料金属粉末のD50は、例えば、200nm以上1.0μm以下とすることができる。粒径の大きい金属粉末を生成する場合の原料金属粉末のD50は、例えば、1.0μm以上15μm以下とすることができ、1.0μm以上5.0μm以下とすることもできる。 The D 50 of the raw metal powder is not particularly limited, and can be, for example, 10 nm or more and 15 μm or less. The D 50 of the raw metal powder when generating a metal powder with a small particle size can be, for example, 10 nm or more and 200 nm or less, 60 nm or more and 200 nm or less, 70 nm or more and 200 nm or less, 80 nm or more and 200 nm or less, 80 nm or more and 180 nm or less, 80 nm or more and 150 nm or less, or 80 nm or more and 120 nm or less. The D 50 of the raw metal powder when generating a metal powder with a medium particle size can be, for example, 200 nm or more and 1.0 μm or less. The D 50 of the raw metal powder when generating a metal powder with a large particle size can be, for example, 1.0 μm or more and 15 μm or less, or 1.0 μm or more and 5.0 μm or less.

 原料金属粉末のCV値は、0.40以下であることが好ましく、0.39以下であることがより好ましく、0.38以下であることがより好ましく、0.37以下であることがより好ましく、0.36以下であることがより好ましく、0.35以下であることが特に好ましい。原料金属粉末のCV値の下限値は、特に制限されず、例えば、0.01以上とすることができる。なお、本明細書(本発明)において「CV値」は粒度分布の広狭の指標として用いており、CV値が小さいほど粒度分布が狭いことを示す。 The CV value of the raw metal powder is preferably 0.40 or less, more preferably 0.39 or less, more preferably 0.38 or less, more preferably 0.37 or less, more preferably 0.36 or less, and particularly preferably 0.35 or less. The lower limit of the CV value of the raw metal powder is not particularly limited, and can be, for example, 0.01 or more. In this specification (the present invention), the "CV value" is used as an index of the width or narrowness of the particle size distribution, and the smaller the CV value, the narrower the particle size distribution.

 キャリアガスを構成するガスの種類は特に制限されず、例えば、窒素ガスを用いることができる。 There are no particular limitations on the type of gas that constitutes the carrier gas; for example, nitrogen gas can be used.

 キャリアガスによって気相中に分散させる原料金属粉末の気相中の濃度は、1.0g/L以下であることが好ましく、0.5g/L以下であることがより好ましく、0.1g/L以下であることが更に好ましく、0.05g/L以下であることが特に好ましい。気相中における原料金属粉末の濃度の下限値は特に制限されないが、製造効率の観点から、0.001g/L以上であることが好ましい。気相中における原料金属粉末の濃度が上記範囲にあることで、気相中での分散性が優れたものとなるため、原料金属粉末同士が接触しにくくなり、その結果、粒度分布の狭い金属粉末が得られやすくなる。特に、熱処理温度をTm℃以上とし、且つ、気相中における原料金属粉末の濃度を上述の範囲とすることで、後述する第2の工程における金属粉末前駆体の好適な濃度について説明している段落に記載の理由と同様の理由により、結晶性に優れ且つ粒度分布が狭い金属粉末が特に得られやすくなる。 The concentration of the raw metal powder in the gas phase dispersed in the gas phase by the carrier gas is preferably 1.0 g/L or less, more preferably 0.5 g/L or less, even more preferably 0.1 g/L or less, and particularly preferably 0.05 g/L or less. The lower limit of the raw metal powder concentration in the gas phase is not particularly limited, but from the viewpoint of production efficiency, it is preferably 0.001 g/L or more. When the concentration of the raw metal powder in the gas phase is in the above range, the dispersibility in the gas phase is excellent, so that the raw metal powder particles are less likely to come into contact with each other, and as a result, it is easier to obtain metal powder with a narrow particle size distribution. In particular, by setting the heat treatment temperature to Tm°C or more and setting the concentration of the raw metal powder in the gas phase to the above range, it is particularly easy to obtain metal powder with excellent crystallinity and narrow particle size distribution, for the same reasons as those described in the paragraph explaining the suitable concentration of the metal powder precursor in the second step described later.

 キャリアガスによって気相中に分散させる原料金属粉末は、乾燥した状態で気相中に分散させてもよく、液中に懸濁した状態で気相中に分散させてもよい。後述の第2の工程における熱処理の際のエネルギー効率の観点では、乾燥した状態の原料金属粉末を気相中に分散させることが好ましい。原料金属粉末の気相中の分散性の観点では、液中に懸濁した状態の原料金属粉末を気相中に分散させることが好ましい。気相中での分散性が優れたものとなることで、原料金属粉末同士が接触しにくくなり、その結果、粒度分布の狭い金属粉末が得られやすくなる。なお、原料金属粉末は、液相中で金属イオンを還元することにより生成した段階では液中に懸濁しており、適宜の方法で液を除去して原料金属粉末を乾燥した状態にすることができる。また、液中に懸濁した状態で気相中に分散させる場合であっても、気相中に分散させる前に原料金属粉末が懸濁している液をあらかじめ他の液に置換することができる。 The raw metal powder dispersed in the gas phase by the carrier gas may be dispersed in the gas phase in a dry state or in a state suspended in a liquid. From the viewpoint of energy efficiency during the heat treatment in the second step described later, it is preferable to disperse the raw metal powder in a dry state in the gas phase. From the viewpoint of dispersibility of the raw metal powder in the gas phase, it is preferable to disperse the raw metal powder in a suspended state in a liquid in the gas phase. By improving dispersibility in the gas phase, the raw metal powder particles are less likely to come into contact with each other, and as a result, it is easier to obtain metal powder with a narrow particle size distribution. Note that the raw metal powder is suspended in a liquid when it is produced by reducing metal ions in the liquid phase, and the liquid can be removed by an appropriate method to make the raw metal powder dry. Even when the raw metal powder is dispersed in the gas phase in a suspended state, the liquid in which the raw metal powder is suspended can be replaced with another liquid before dispersion in the gas phase.

 本発明はバッチ式であってもよく、連続式であってもよいが、単位時間あたりの製造量やエネルギー効率等の観点から、連続式であることが好ましい。連続式の場合、例えば、気相中に分散した状態の原料金属粉末をキャリアガスにより移送しながら熱処理することができる。前述の移送の方向は特に限定されず、例えば、重力方向、水平方向、重力方向の逆方向など、様々な方向に移送しながら熱処理することができる。粒度分布を狭く維持するという観点では、気相中に分散した状態の原料金属粉末をキャリアガスにより重力方向に移送しながら熱処理することが好ましい。 The present invention may be a batch type or a continuous type, but from the viewpoint of production volume per unit time and energy efficiency, a continuous type is preferable. In the case of a continuous type, for example, the raw metal powder dispersed in the gas phase can be heat-treated while being transported by a carrier gas. The direction of the above-mentioned transport is not particularly limited, and the heat treatment can be performed while being transported in various directions, such as the direction of gravity, the horizontal direction, or the direction opposite to the direction of gravity. From the viewpoint of maintaining a narrow particle size distribution, it is preferable to heat-treat the raw metal powder dispersed in the gas phase while being transported in the direction of gravity by a carrier gas.

(第2の工程)
 本発明における第2の工程は、気相中に分散した状態の原料金属粉末を(Tm-100)℃以上の温度(但し、Tm℃は原料金属粉末が溶融する温度である。)で熱処理することにより、気相中に分散した状態の金属粉末前駆体を生成する工程である。これにより、従来よりも遥かに高い温度で熱処理することができるため、狭い粒度分布を維持しつつ優れた結晶性も兼ね備えた金属粉末を製造することができる。また、従来よりも遥かに高い温度で熱処理できるため、熱処理時間を短くでき、単位時間あたりの金属粉末の製造量を飛躍的に向上させることができる。また、従来よりも遥かに高い温度であるTm℃以上の温度で熱処理することができるため、アスペクト比が良好な球状金属粉末を製造することができる。
(Second step)
The second step in the present invention is a step of producing a metal powder precursor dispersed in a gas phase by heat treating the raw metal powder dispersed in a gas phase at a temperature of (Tm-100) ° C. or higher (where Tm ° C. is the temperature at which the raw metal powder melts). This allows heat treatment at a much higher temperature than before, so that metal powder that maintains a narrow particle size distribution and also has excellent crystallinity can be produced. In addition, since heat treatment can be performed at a much higher temperature than before, the heat treatment time can be shortened, and the amount of metal powder produced per unit time can be dramatically improved. In addition, since heat treatment can be performed at a temperature of Tm ° C. or higher, which is much higher than before, spherical metal powder with a good aspect ratio can be produced.

 第2の工程における熱処理温度は、原料金属粉末が溶融する温度をTm℃、原料金属粉末が気化する温度をTb℃としたとき、(Tm-100)℃以上であればよいが、(Tm-50)℃以上であることが好ましく、Tm℃以上であることがより好ましく、(Tm+50)℃以上であることが更に好ましく、(Tm+100)℃以上であることが特に好ましい。これにより、結晶性に優れる金属粉末が得られやすくなる。特に、熱処理温度がTm℃以上であることで、原料金属粉末を溶融することができるため、優れた結晶性の金属粉末が得られやすくなる。すなわち、第2の工程は、気相中に分散した状態の原料金属粉末をTm℃以上の温度で熱処理することにより、気相中に分散した状態の液体状態の金属粉末前駆体(金属液滴)を生成する工程であることが好ましい。なお、Tmは原料金属粉末が溶融する温度であるが、必ずしも原料金属粉末が完全に溶融する温度を意味するものではなく、原料金属粉末の90質量%以上が溶融する温度であればよい。すなわち、原料金属粉末の一部が溶融していない状態であっても、本発明によって製造される金属粉末は、従来例に比べて十分に高い温度で熱処理されるため、結晶性に優れる金属粉末を得ることができる。また、第2の工程における熱処理温度の上限は、Tb℃未満であることが好ましく、(Tb-500)℃以下であることがより好ましく、(Tb-800)℃以下であることがより好ましく、(Tb-850)℃以下であることがより好ましく、(Tb-900)℃以下であることがより好ましく、(Tb-950)℃以下であることが更に好ましく、(Tb-1000)℃以下であることが特に好ましい。また、第2の工程における熱処理温度の上限は、(Tm+500)℃以下であることがより好ましく、(Tm+450)℃以下であることがより好ましく、(Tm+400)℃以下であることがより好ましく、(Tm+350)℃以下であることがより好ましく、(Tm+300)℃以下であることがより好ましく、(Tm+250)℃以下であることがより好ましく、(Tm+200)℃以下であることが更に好ましく、(Tm+150)℃以下であることが特に好ましい。第2の工程における熱処理温度が上記範囲にあることで、原料金属粉末が気化しにくくなるため、狭い粒度分布を維持しつつ優れた結晶性も兼ね備えた金属粉末が得られやすくなる。なお、本発明(本明細書)において、「原料金属粉末が気化する温度」とは、当該金属のバルクの沸点を指す。 The heat treatment temperature in the second step may be (Tm-100)°C or higher, where Tm°C is the temperature at which the raw metal powder melts and Tb°C is the temperature at which the raw metal powder vaporizes, but is preferably (Tm-50)°C or higher, more preferably Tm°C or higher, even more preferably (Tm+50)°C or higher, and particularly preferably (Tm+100)°C or higher. This makes it easier to obtain metal powder with excellent crystallinity. In particular, by setting the heat treatment temperature at Tm°C or higher, the raw metal powder can be melted, making it easier to obtain metal powder with excellent crystallinity. In other words, the second step is preferably a step of generating a metal powder precursor (metal droplets) in a liquid state dispersed in a gas phase by heat treating the raw metal powder dispersed in a gas phase at a temperature of Tm°C or higher. Note that Tm is the temperature at which the raw metal powder melts, but does not necessarily mean the temperature at which the raw metal powder melts completely, and may be any temperature at which 90% by mass or more of the raw metal powder melts. That is, even if a part of the raw metal powder is not melted, the metal powder produced by the present invention is heat-treated at a temperature sufficiently higher than that of the conventional example, and therefore a metal powder having excellent crystallinity can be obtained. The upper limit of the heat treatment temperature in the second step is preferably less than Tb°C, more preferably (Tb-500)°C or less, more preferably (Tb-800)°C or less, more preferably (Tb-850)°C or less, more preferably (Tb-900)°C or less, even more preferably (Tb-950)°C or less, and particularly preferably (Tb-1000)°C or less. In addition, the upper limit of the heat treatment temperature in the second step is more preferably (Tm + 500) ° C or less, more preferably (Tm + 450) ° C or less, more preferably (Tm + 400) ° C or less, more preferably (Tm + 350) ° C or less, more preferably (Tm + 300) ° C or less, more preferably (Tm + 250) ° C or less, even more preferably (Tm + 200) ° C or less, and particularly preferably (Tm + 150) ° C or less. By setting the heat treatment temperature in the second step within the above range, the raw metal powder is less likely to vaporize, making it easier to obtain a metal powder that maintains a narrow particle size distribution while also having excellent crystallinity. In this invention (this specification), the "temperature at which the raw metal powder vaporizes" refers to the boiling point of the bulk of the metal.

 第2の工程における熱処理方法としては、輻射熱により熱処理することが好ましいが、原料金属粉末を直接熱源に接触させて熱処理することもできる。輻射熱による熱処理には、電気炉(電気ヒーター)を用いることができ、また、火炎により発生する輻射熱を用いることもできる。均一に加熱するという観点では、輻射熱による熱処理が好ましい。原料金属粉末を直接熱源に接触させて熱処理する方法としては、例えば、原料金属粉末を火炎に直接接触させて熱処理する方法を用いることができる。エネルギー効率の観点では、原料金属粉末を直接熱源に接触させて熱処理する方法が好ましい。また、原料金属粉末を加熱した高温の気体に接触させて熱処理することもできる。また、以上に示した各熱処理方法を適宜組合せて熱処理することもでき、例えば、火炎により直接加熱した後に、電気炉の輻射熱により熱処理することができる。 As a heat treatment method in the second step, heat treatment by radiant heat is preferable, but heat treatment can also be performed by directly contacting the raw metal powder with a heat source. For heat treatment by radiant heat, an electric furnace (electric heater) can be used, and radiant heat generated by a flame can also be used. From the viewpoint of uniform heating, heat treatment by radiant heat is preferable. As a method of heat treatment by directly contacting the raw metal powder with a heat source, for example, a method of heat treatment by directly contacting the raw metal powder with a flame can be used. From the viewpoint of energy efficiency, a method of heat treatment by directly contacting the raw metal powder with a heat source is preferable. Also, heat treatment can be performed by contacting the raw metal powder with a heated high-temperature gas. Also, heat treatment can be performed by appropriately combining each of the heat treatment methods shown above, for example, heat treatment can be performed by directly heating with a flame and then by radiant heat from an electric furnace.

 第2の工程における気相中の原料金属粉末の濃度は1.0g/L以下であることが好ましく、0.5g/L以下であることがより好ましく、0.1g/L以下であることが更に好ましく、0.05g/L以下であることが特に好ましい。気相中における原料金属粉末の濃度の下限値は特に制限されないが、製造効率の観点から、0.001g/L以上であることが好ましい。気相中における原料金属粉末の濃度が上記範囲にあることで、気相中での分散性が優れたものとなり、原料金属粉末や金属粉末前駆体が接触しにくくなるため、粒度分布の狭い金属粉末が得られやすくなる。特に、熱処理温度をTm℃以上とし、且つ、気相中における原料金属粉末の濃度を上述の範囲とすることで、後述する第2の工程における金属粉末前駆体の好適な濃度について説明している段落に記載の理由と同様の理由により、結晶性に優れ且つ粒度分布が狭い金属粉末が特に得られやすくなる。 The concentration of the raw metal powder in the gas phase in the second step is preferably 1.0 g/L or less, more preferably 0.5 g/L or less, even more preferably 0.1 g/L or less, and particularly preferably 0.05 g/L or less. The lower limit of the concentration of the raw metal powder in the gas phase is not particularly limited, but from the viewpoint of production efficiency, it is preferably 0.001 g/L or more. When the concentration of the raw metal powder in the gas phase is in the above range, the dispersibility in the gas phase is excellent, and the raw metal powder and the metal powder precursor are less likely to come into contact with each other, making it easier to obtain metal powder with a narrow particle size distribution. In particular, by setting the heat treatment temperature to Tm°C or more and setting the concentration of the raw metal powder in the gas phase to the above range, it is particularly easy to obtain metal powder with excellent crystallinity and narrow particle size distribution, for the same reasons as those described in the paragraph explaining the suitable concentration of the metal powder precursor in the second step described later.

 第2の工程における熱処理時間は、特に制限されるものではないが、1分以下が好ましく、30秒以下がより好ましく、15秒以下がより好ましく、10秒以下が特に好ましい。これにより、単位時間あたりの金属粉末の製造量を多くすることができる。 The heat treatment time in the second step is not particularly limited, but is preferably 1 minute or less, more preferably 30 seconds or less, more preferably 15 seconds or less, and particularly preferably 10 seconds or less. This allows the production amount of metal powder per unit time to be increased.

 金属粉末前駆体は、後述の第3の工程で生成する金属粉末の前駆体であり、気相中に分散した状態の原料金属粉末を(Tm-100)℃以上の温度で熱処理することにより、気相中に分散した状態で生成する。金属粉末前駆体は、固体状態であってもよく、固体と液体が混在した状態であってもよく、液体状態であってもよいが、後述の第3の工程で生成する金属粉末の結晶性やアスペクト比の観点から、固体と液体が混在した状態の金属粉末前駆体又は液体状態の金属粉末前駆体(金属液滴)であることが好ましく、液体状態の金属粉末前駆体(金属液滴)であることが特に好ましい。原料金属粉末を、(Tm-100)℃以上Tm℃未満の温度で熱処理することにより、格子欠陥が減少し、固体状態の金属粉末前駆体が生成する。本工程において固体状態の金属粉末前駆体を生成することで、後述の第3の工程において、結晶性に優れる金属粉末を製造することができる。また、原料金属粉末を、Tm℃以上の温度で熱処理することにより、原料金属粉末が溶融し、液体状態の金属粉末前駆体(金属液滴)が生成する。本工程において液体状態の金属粉末前駆体(金属液滴)を生成することで、後述の第3の工程において、結晶性に優れる金属粉末を製造することができる。本発明における原料金属粉末は、液相中で金属イオンを還元することにより生成されるため、原料金属粉末の生成の際に有機物を使用する場合がほとんどであり、原料金属粉末の粒子内部に一定程度有機物が存在する場合が多い。そのため、本工程において金属粉末前駆体を溶融して有機物を金属粉末前駆体の表面に移動させることで、結晶性の向上を阻害する有機物を粒子内部から除去できるため、結晶性の優れる金属粉末を生成しやすくなる。すなわち、金属粉末前駆体が、固体と液体が混在した状態の金属粉末前駆体又は液体状態の金属粉末前駆体(金属液滴)であることで、結晶性の優れる金属粉末を生成しやすくなり、金属粉末前駆体が、液体状態の金属粉末前駆体(金属液滴)であることで、結晶性の優れる金属粉末を特に生成しやすくなる。本発明では、(Tm-100)℃以上の温度で熱処理されることで生成する、前述の、固体状態のもの、固体と液体が混在した状態のもの、及び液体状態のものを「金属粉末前駆体」という。 The metal powder precursor is a precursor of the metal powder generated in the third step described below, and is generated in a state dispersed in the gas phase by heat-treating the raw metal powder dispersed in the gas phase at a temperature of (Tm-100) ° C or higher. The metal powder precursor may be in a solid state, a mixed state of solid and liquid, or a liquid state. From the viewpoint of the crystallinity and aspect ratio of the metal powder generated in the third step described below, a mixed state of solid and liquid metal powder precursor or a liquid state metal powder precursor (metal droplets) is preferable, and a liquid state metal powder precursor (metal droplets) is particularly preferable. By heat-treating the raw metal powder at a temperature of (Tm-100) ° C or higher and lower than Tm ° C, lattice defects are reduced and a solid state metal powder precursor is generated. By generating a solid state metal powder precursor in this step, a metal powder with excellent crystallinity can be manufactured in the third step described below. In addition, by heat treating the raw metal powder at a temperature of Tm ° C. or higher, the raw metal powder melts and a liquid metal powder precursor (metal droplets) is generated. By generating a liquid metal powder precursor (metal droplets) in this step, a metal powder with excellent crystallinity can be produced in the third step described below. Since the raw metal powder in the present invention is generated by reducing metal ions in a liquid phase, organic substances are used in most cases when generating the raw metal powder, and a certain amount of organic substances are often present inside the particles of the raw metal powder. Therefore, by melting the metal powder precursor in this step and moving the organic substances to the surface of the metal powder precursor, the organic substances that inhibit the improvement of crystallinity can be removed from the inside of the particles, making it easier to generate a metal powder with excellent crystallinity. That is, when the metal powder precursor is a metal powder precursor in a mixed state of solid and liquid or a metal powder precursor (metal droplets) in a liquid state, it becomes easier to generate a metal powder with excellent crystallinity, and when the metal powder precursor is a metal powder precursor (metal droplets) in a liquid state, it becomes easier to generate a metal powder with excellent crystallinity. In the present invention, the above-mentioned solid state, mixed solid and liquid state, and liquid state produced by heat treatment at a temperature of (Tm-100)°C or higher are referred to as "metal powder precursors."

 第2の工程における気相中の金属粉末前駆体の濃度は1.0g/L以下であることが好ましく、0.5g/L以下であることがより好ましく、0.1g/L以下であることが更に好ましく、0.05g/L以下であることが特に好ましい。気相中における金属粉末前駆体の濃度の下限値は特に制限されないが、製造効率の観点から、0.001g/L以上であることが好ましい。気相中における金属粉末前駆体の濃度が上記範囲にあることで、気相中での分散性が優れたものとなるため、後述の第3の工程において、金属粉末前駆体や金属粉末の接触を避けつつ冷却しやくすなり、その結果、粒度分布の狭い金属粉末が得られやすくなる。なお、熱処理温度をTm℃以上にして固体と液体が混在した状態の金属粉末前駆体又は液体状態の金属粉末前駆体を生成する場合、熱処理温度を(Tm-100)℃以上Tm℃未満にして固体状態の金属粉末前駆体を生成する場合に比べて、金属粉末前駆体同士が接触した際に当該前駆体同士が合一しやすくなる。すなわち、後述の第3の工程で生成される金属粉末の粒度分布が広くなりやすくなる。しかしながら、気相中における金属粉末前駆体の濃度が上述の範囲にあることで、気相中での分散性が優れたものとなり、金属粉末前駆体同士が接触しにくくなるため、粒度分布の狭い金属粉末が得られやすくなる。すなわち、熱処理温度をTm℃以上とし、且つ、気相中における固体と液体が混在した状態の金属粉末前駆体又は液体状態の金属粉末前駆体の濃度を上述の範囲とすることで、結晶性に優れ且つ粒度分布が狭い金属粉末が特に得られやすくなる。 The concentration of the metal powder precursor in the gas phase in the second step is preferably 1.0 g/L or less, more preferably 0.5 g/L or less, even more preferably 0.1 g/L or less, and particularly preferably 0.05 g/L or less. The lower limit of the concentration of the metal powder precursor in the gas phase is not particularly limited, but from the viewpoint of production efficiency, it is preferable that it is 0.001 g/L or more. Since the concentration of the metal powder precursor in the gas phase is in the above range, the dispersibility in the gas phase is excellent, and therefore, in the third step described below, it becomes easier to cool the metal powder precursor and metal powder while avoiding contact, and as a result, it becomes easier to obtain metal powder with a narrow particle size distribution. In addition, when the heat treatment temperature is set to Tm ° C or more to generate a metal powder precursor in a mixed state of solid and liquid or a metal powder precursor in a liquid state, the precursors are more likely to coalesce when they come into contact with each other than when the heat treatment temperature is set to (Tm-100) ° C or more and less than Tm ° C to generate a metal powder precursor in a solid state. That is, the particle size distribution of the metal powder produced in the third step described below tends to be broad. However, when the concentration of the metal powder precursor in the gas phase is within the above-mentioned range, the dispersibility in the gas phase is excellent and the metal powder precursors are less likely to come into contact with each other, making it easier to obtain metal powder with a narrow particle size distribution. That is, by setting the heat treatment temperature to Tm°C or higher and setting the concentration of the metal powder precursor in a mixed state of solid and liquid in the gas phase or the metal powder precursor in a liquid state within the above-mentioned range, it is particularly easy to obtain metal powder with excellent crystallinity and a narrow particle size distribution.

(第3の工程)
 本発明における第3の工程は、気相中に分散した状態の金属粉末前駆体を冷却することにより金属粉末を生成する工程である。気相中に分散した状態の金属粉末前駆体を冷却することで、金属粉末前駆体や金属粉末が接触しにくくなるため、粒度分布の狭い金属粉末が得られやすくなる。
(Third step)
The third step in the present invention is to produce a metal powder by cooling the metal powder precursor dispersed in the gas phase. By cooling the metal powder precursor dispersed in the gas phase, the metal powder precursor and the metal powder are less likely to come into contact with each other, making it easier to obtain a metal powder with a narrow particle size distribution.

 本発明における第3の工程は、気相中に分散した状態の金属粉末前駆体を冷却することにより気相中に分散した状態の金属粉末を生成し、次いで、気相中に分散した状態の金属粉末を当該金属粉末が焼結しない温度まで冷却することが好ましい。気相中に分散した状態の金属粉末を当該金属粉末が焼結しない温度まで冷却する方法としては、特に限定されないが、例えば、250℃未満、220℃未満又は200℃未満まで冷却することができる。また、例えば、酢酸やオレイン酸等の有機化合物を表面処理剤として用いることで、前述の温度よりも高い温度であっても金属粉末の焼結を抑制しやすくなる。すなわち、気相中に分散した状態の金属粉末前駆体を冷却することにより気相中に分散した状態の金属粉末を生成し、次いで、当該金属粉末表面に有機化合物を付着させ、次いで、気相中に分散した状態の金属粉末を当該金属粉末が焼結しない温度まで冷却することができる。第3の工程が上述の態様であることで、金属粉末前駆体や金属粉末が合一或いは焼結する温度では接触しにくくなるため、粒度分布の狭い金属粉末が得られやすくなる。なお、本明細書(本発明)において、「金属粉末が焼結しない温度」とは、本発明の第3の工程において金属粉末を冷却し、次いで、当該金属粉末を回収し、当該回収した金属粉末について走査型電子顕微鏡観察により粒子100個以上を無作為に選んで観察したとき、観察した粒子のうち焼結(ネッキング)している粒子の数が5個数%以下となる温度を指す。 In the third step of the present invention, it is preferable to generate a metal powder dispersed in a gas phase by cooling the metal powder precursor dispersed in the gas phase, and then cool the metal powder dispersed in the gas phase to a temperature at which the metal powder does not sinter. The method for cooling the metal powder dispersed in the gas phase to a temperature at which the metal powder does not sinter is not particularly limited, but for example, it can be cooled to less than 250°C, less than 220°C, or less than 200°C. In addition, for example, by using an organic compound such as acetic acid or oleic acid as a surface treatment agent, it becomes easier to suppress sintering of the metal powder even at a temperature higher than the above-mentioned temperature. That is, it is possible to generate a metal powder dispersed in a gas phase by cooling the metal powder precursor dispersed in the gas phase, then attach an organic compound to the surface of the metal powder, and then cool the metal powder dispersed in the gas phase to a temperature at which the metal powder does not sinter. By the above-mentioned aspect of the third step, the metal powder precursor and the metal powder are less likely to come into contact at a temperature at which they coalesce or sinter, so that it becomes easier to obtain a metal powder with a narrow particle size distribution. In this specification (the present invention), the "temperature at which the metal powder does not sinter" refers to the temperature at which, when the metal powder is cooled in the third step of the present invention, the metal powder is then recovered, and 100 or more particles of the recovered metal powder are randomly selected and observed under a scanning electron microscope, the number of particles that are sintered (necked) is 5% or less by number.

 第3の工程において冷却する金属粉末前駆体は、固体状態であってもよく、固体と液体が混在した状態であってもよく、液体状態であってもよいが、本工程により生成する金属粉末の結晶性やアスペクト比の観点から、固体と液体が混在した状態の金属粉末前駆体又は液体状態の金属粉末前駆体(金属液滴)であることが好ましく、液体状態の金属粉末前駆体(金属液滴)であることが特に好ましい。 The metal powder precursor to be cooled in the third step may be in a solid state, a mixed state of solid and liquid, or a liquid state, but from the viewpoint of the crystallinity and aspect ratio of the metal powder produced by this step, a mixed state of solid and liquid metal powder precursor or a liquid state metal powder precursor (metal droplets) is preferable, and a liquid state metal powder precursor (metal droplets) is particularly preferable.

 固体状態の金属粉末前駆体を冷却する場合、気相中に分散した状態の固体状態の金属粉末前駆体を(Tm-100)℃未満の温度まで冷却することにより金属粉末を生成することが好ましく、気相中に分散した状態の固体状態の金属粉末前駆体を(Tm-100)℃未満の温度まで冷却することにより気相中に分散した状態の金属粉末を生成し、次いで、気相中に分散した状態の金属粉末を当該金属粉末が焼結しない温度まで冷却することが特に好ましい。これにより、固体状態の金属粉末前駆体や金属粉末の接触を避けつつ冷却できるため、狭い粒度分布を維持しつつ優れた結晶性も兼ね備えた金属粉末を得やすくなる。 When cooling the solid-state metal powder precursor, it is preferable to produce the metal powder by cooling the solid-state metal powder precursor dispersed in the gas phase to a temperature below (Tm-100)°C, and it is particularly preferable to produce the metal powder dispersed in the gas phase by cooling the solid-state metal powder precursor dispersed in the gas phase to a temperature below (Tm-100)°C, and then cool the metal powder dispersed in the gas phase to a temperature at which the metal powder does not sinter. This allows cooling while avoiding contact between the solid-state metal powder precursor and the metal powder, making it easier to obtain a metal powder that maintains a narrow particle size distribution while also having excellent crystallinity.

 固体と液体が混在した状態の金属粉末前駆体又は液体状態の金属粉末前駆体(金属液滴)を冷却する場合、気相中に分散した状態の液体状態の金属粉末前駆体(金属液滴)をTm℃未満の温度まで冷却することにより金属粉末を生成することが好ましく、気相中に分散した状態の液体状態の金属粉末前駆体(金属液滴)をTm℃未満の温度まで冷却することにより気相中に分散した状態の金属粉末を生成し、次いで、気相中に分散した状態の金属粉末を当該金属粉末が焼結しない温度まで冷却することが特に好ましい。これにより、液体状態の金属粉末前駆体(金属液滴)や金属粉末の接触を避けつつ冷却できるため、狭い粒度分布を維持しつつ優れた結晶性も兼ね備えた金属粉末を得やすくなる。 When cooling a metal powder precursor in a mixed state of solid and liquid or a metal powder precursor in a liquid state (metal droplets), it is preferable to produce a metal powder by cooling the liquid metal powder precursor (metal droplets) dispersed in a gas phase to a temperature below Tm°C, and it is particularly preferable to produce a metal powder dispersed in a gas phase by cooling the liquid metal powder precursor (metal droplets) dispersed in a gas phase to a temperature below Tm°C, and then cool the metal powder dispersed in the gas phase to a temperature at which the metal powder does not sinter. This allows cooling while avoiding contact between the liquid metal powder precursor (metal droplets) and the metal powder, making it easier to obtain a metal powder that maintains a narrow particle size distribution while also having excellent crystallinity.

 第3の工程における気相中の金属粉末前駆体の濃度は1.0g/L以下であることが好ましく、0.5g/L以下であることがより好ましく、0.1g/L以下であることが更に好ましく、0.05g/L以下であることが特に好ましい。気相中における金属粉末前駆体の濃度の下限値は特に制限されないが、製造効率の観点から、0.001g/L以上であることが好ましい。気相中における金属粉末前駆体の濃度が上記範囲にあることで、気相中での分散性が優れたものとなるため、金属粉末前駆体や金属粉末の接触を避けつつ冷却しやくすなり、その結果、粒度分布の狭い金属粉末が得られやすくなる。特に、熱処理温度をTm℃以上とし、且つ、気相中における金属粉末前駆体の濃度を上述の範囲とすることで、前述した金属粉末前駆体の好適な濃度について説明している段落に記載の理由と同様の理由により、結晶性に優れ且つ粒度分布が狭い金属粉末が特に得られやすくなる。 The concentration of the metal powder precursor in the gas phase in the third step is preferably 1.0 g/L or less, more preferably 0.5 g/L or less, even more preferably 0.1 g/L or less, and particularly preferably 0.05 g/L or less. The lower limit of the concentration of the metal powder precursor in the gas phase is not particularly limited, but from the viewpoint of production efficiency, it is preferable that it is 0.001 g/L or more. When the concentration of the metal powder precursor in the gas phase is in the above range, the dispersibility in the gas phase is excellent, so that it is easy to cool the metal powder precursor and metal powder while avoiding contact with each other, and as a result, it is easy to obtain a metal powder with a narrow particle size distribution. In particular, by setting the heat treatment temperature to Tm°C or more and setting the concentration of the metal powder precursor in the gas phase to the above range, it is particularly easy to obtain a metal powder with excellent crystallinity and a narrow particle size distribution, for the same reasons as those described in the paragraph explaining the suitable concentration of the metal powder precursor described above.

 第3の工程において冷却により生成する金属粉末の気相中の濃度は1.0g/L以下であることが好ましく、0.5g/L以下であることがより好ましく、0.1g/L以下であることが更に好ましく、0.05g/L以下であることが特に好ましい。気相中における金属粉末の濃度の下限値は特に制限されないが、製造効率の観点から、0.001g/L以上であることが好ましい。気相中における金属粉末の濃度が上記範囲にあることで、気相中での分散性が優れたものとなるため、金属粉末前駆体や金属粉末の接触を避けつつ冷却しやすくなり、その結果、粒度分布の狭い金属粉末が得られやすくなる。 The concentration of the metal powder in the gas phase produced by cooling in the third step is preferably 1.0 g/L or less, more preferably 0.5 g/L or less, even more preferably 0.1 g/L or less, and particularly preferably 0.05 g/L or less. There is no particular lower limit to the concentration of the metal powder in the gas phase, but from the viewpoint of production efficiency, it is preferably 0.001 g/L or more. When the concentration of the metal powder in the gas phase is within the above range, the dispersibility in the gas phase is excellent, making it easier to cool the metal powder precursor and the metal powder while avoiding contact with each other, and as a result, it becomes easier to obtain metal powder with a narrow particle size distribution.

 第3の工程で生成する金属粉末は、例えば、後述の金属粉末であってもよい。 The metal powder produced in the third step may be, for example, the metal powder described below.

 本発明の金属粉末の製造方法は、前述の第1の工程、第2の工程及び第3の工程を有していればよいが、第1の工程の前に更に別の工程を有していてもよく、上記各工程間に更に別の工程を有していてもよく、第3の工程の後に更に別の工程を有していてもよい。 The method for producing metal powder of the present invention may include the above-mentioned first, second, and third steps, but may also include a further step before the first step, a further step between the above steps, or a further step after the third step.

 本発明の金属粉末の製造方法は、第3の工程の後に、生成した金属粉末を回収する工程を有することができる。すなわち、生成した金属粉末を回収する第4の工程を有することができる。特に、第3の工程において気相中に分散した状態の金属粉末を当該金属粉末が焼結しない温度まで冷却し、次いで、当該金属粉末を回収することが好ましい。これにより、金属粉末前駆体や金属粉末が合一或いは焼結する温度では接触しにくくなるため、粒度分布の狭い金属粉末が得られやすくなる。 The method for producing metal powder of the present invention can have a step of recovering the generated metal powder after the third step. That is, it can have a fourth step of recovering the generated metal powder. In particular, it is preferable to cool the metal powder dispersed in the gas phase in the third step to a temperature at which the metal powder does not sinter, and then recover the metal powder. This makes it easier to obtain metal powder with a narrow particle size distribution, since the metal powder precursor and the metal powder are less likely to come into contact at temperatures at which they coalesce or sinter.

 原料金属粉末の結晶子径比に対する金属粉末の結晶子径比の比は、4.0以上であることが好ましく、4.5以上であることがより好ましく、5.0以上であることが特に好ましい。原料金属粉末の結晶子径比に対する金属粉末の結晶子径比の比の上限は特に限定されないが、例えば、1000以下とすることができる。なお、原料金属粉末がアモルファスであるために後述の結晶子径を測定する方法では結晶ピークが検出されない場合、原料金属粉末の結晶子径比は0とし、生成される金属粉末の結晶子径比が0超の場合は、原料金属粉末の結晶子径比に対する金属粉末の結晶子径比の比は4.0以上であるものとする。 The ratio of the crystallite diameter ratio of the metal powder to the crystallite diameter ratio of the raw metal powder is preferably 4.0 or more, more preferably 4.5 or more, and particularly preferably 5.0 or more. The upper limit of the ratio of the crystallite diameter ratio of the metal powder to the crystallite diameter ratio of the raw metal powder is not particularly limited, but can be, for example, 1000 or less. If the raw metal powder is amorphous and therefore no crystal peak is detected by the method for measuring the crystallite diameter described below, the crystallite diameter ratio of the raw metal powder is set to 0, and if the crystallite diameter ratio of the generated metal powder is greater than 0, the ratio of the crystallite diameter ratio of the metal powder to the crystallite diameter ratio of the raw metal powder is set to 4.0 or more.

 原料金属粉末の結晶子径に対する金属粉末の結晶子径の比は、4.0以上であることが好ましく、4.5以上であることがより好ましく、5.0以上であることが特に好ましい。原料金属粉末の結晶子径に対する金属粉末の結晶子径の比の上限は特に限定されないが、例えば、1000以下とすることができる。なお、原料金属粉末がアモルファスであるために後述の結晶子径を測定する方法では結晶ピークが検出されない場合、原料金属粉末の結晶子径は0nmとし、生成される金属粉末の結晶子径が0nm超の場合は、原料金属粉末の結晶子径に対する金属粉末の結晶子径の比は4.0以上であるものとする。 The ratio of the crystallite diameter of the metal powder to the crystallite diameter of the raw metal powder is preferably 4.0 or more, more preferably 4.5 or more, and particularly preferably 5.0 or more. The upper limit of the ratio of the crystallite diameter of the metal powder to the crystallite diameter of the raw metal powder is not particularly limited, but can be, for example, 1000 or less. If the raw metal powder is amorphous and therefore no crystal peak is detected by the method for measuring the crystallite diameter described below, the crystallite diameter of the raw metal powder is set to 0 nm, and if the crystallite diameter of the generated metal powder is greater than 0 nm, the ratio of the crystallite diameter of the metal powder to the crystallite diameter of the raw metal powder is set to 4.0 or more.

 原料金属粉末のD50に対する金属粉末のD50の比は、1.0以上2.0以下であることが好ましく、1.0以上1.8以下であることが好ましく、1.0以上1.6以下であることが好ましく、1.0以上1.4以下であることが好ましく、1.0以上1.2以下であることが特に好ましい。 The ratio of the D50 of the metal powder to the D50 of the raw metal powder is preferably 1.0 to 2.0, more preferably 1.0 to 1.8, even more preferably 1.0 to 1.6, even more preferably 1.0 to 1.4, and particularly preferably 1.0 to 1.2.

 原料金属粉末のCV値に対する金属粉末のCV値の比は、1.0以上2.0以下であることが好ましく、1.0以上1.8以下であることが好ましく、1.0以上1.6以下であることが好ましく、1.0以上1.4以下であることが好ましく、1.0以上1.2以下であることが特に好ましい。 The ratio of the CV value of the metal powder to the CV value of the raw metal powder is preferably 1.0 or more and 2.0 or less, more preferably 1.0 or more and 1.8 or less, more preferably 1.0 or more and 1.6 or less, more preferably 1.0 or more and 1.4 or less, and particularly preferably 1.0 or more and 1.2 or less.

<金属粉末>
 本発明の製造方法により、CV値が0.50以下であり、結晶子径が30.0nm以上であり、結晶子径比が1.0×10-2以上である金属粉末を製造することができる。すなわち、粒度分布が狭く且つ結晶性に優れる金属粉末を製造することができる。
<Metal powder>
According to the manufacturing method of the present invention, it is possible to manufacture a metal powder having a CV value of 0.50 or less, a crystallite size of 30.0 nm or more, and a crystallite size ratio of 1.0 × 10 -2 or more. In other words, it is possible to manufacture a metal powder having a narrow particle size distribution and excellent crystallinity.

 本発明の金属粉末のCV値は、0.50以下であればよいが、0.45以下であることが好ましく、0.40以下であることがより好ましく、0.39以下であることがより好ましく、0.38以下であることがより好ましく、0.37以下であることがより好ましく、0.36以下であることがより好ましく、0.35以下であることが特に好ましい。金属粉末のCV値の下限値は、特に制限されず、例えば、0.01以上とすることができる。 The CV value of the metal powder of the present invention may be 0.50 or less, preferably 0.45 or less, more preferably 0.40 or less, more preferably 0.39 or less, more preferably 0.38 or less, more preferably 0.37 or less, more preferably 0.36 or less, and particularly preferably 0.35 or less. There is no particular limit to the lower limit of the CV value of the metal powder, and it can be, for example, 0.01 or more.

 本発明の金属粉末の結晶子径は、30.0nm以上であればよいが、35.0nm以上であることが好ましく、40.0nm以上であることが好ましく、45.0nm以上であることが好ましく、50.0nm以上であることが好ましく、60.0nm以上であることが好ましく、70.0nm以上であることが好ましく、80.0nm以上であることが特に好ましい。結晶子径の上限は特に限定されないが、例えば、金属粉末のD50以下とすることができる。金属粉末の結晶子径が上記範囲にあることで、当該金属粉末の結晶性が優れたものとなる。なお、本明細書(本発明)において「結晶子径」は結晶性の指標のひとつとして用いており、結晶子径が大きいほど結晶性が優れる(結晶性が高い)ことを示す。 The crystallite size of the metal powder of the present invention may be 30.0 nm or more, preferably 35.0 nm or more, preferably 40.0 nm or more, preferably 45.0 nm or more, preferably 50.0 nm or more, preferably 60.0 nm or more, preferably 70.0 nm or more, and particularly preferably 80.0 nm or more. The upper limit of the crystallite size is not particularly limited, but can be, for example, D 50 or less of the metal powder. When the crystallite size of the metal powder is in the above range, the crystallinity of the metal powder is excellent. In this specification (the present invention), the "crystallite size" is used as one of the indicators of crystallinity, and the larger the crystallite size, the better the crystallinity (higher the crystallinity).

 本発明の金属粉末を構成する金属の種類は特に制限されない。すなわち、本発明の金属粉末は、例えば、ニッケル、銅、銀、パラジウム、金、白金及び鉄から選ばれる金属粉末であってもよく、また、前記金属から2種以上選ばれる合金粉末であってもよく、その他、前出の他の金属元素や非金属元素を適量加えた合金粉末及び/又は複合粉末であってもよい。金属粉末全体に対する、ニッケル、銅、銀、パラジウム、金、白金及び鉄から選ばれる金属成分の比率は、高いほど好ましく、99質量%以上であることが好ましく、99.9質量%以上であることがより好ましく、99.99質量%以上であることが特に好ましい。また、金属粉末を構成する金属成分全体に対する、ニッケル、銅、銀、パラジウム、金、白金及び鉄から選ばれる金属成分の比率は、高いほど好ましく、99質量%以上であることが好ましく、99.9質量%以上であることがより好ましく、99.99質量%以上であることが特に好ましい。また、金属粉末に含まれる不純物は少ない方が好ましい。例えば、金属粉末全体に対するハロゲン元素の比率は、100質量ppm以下であることが好ましく、50質量ppm以下であることがより好ましく、10質量ppm以下であることが更に好ましく、ハロゲン元素を含まないことが特に好ましい。また、例えば、金属粉末全体に対するアルカリ土類金属の比率は、100質量ppm以下であることが好ましく、50質量ppm以下であることがより好ましく、10質量ppm以下であることが更に好ましく、アルカリ土類金属を含まないことが特に好ましい。 The type of metal constituting the metal powder of the present invention is not particularly limited. That is, the metal powder of the present invention may be, for example, a metal powder selected from nickel, copper, silver, palladium, gold, platinum and iron, or an alloy powder of two or more of the above metals, or an alloy powder and/or composite powder to which an appropriate amount of the above-mentioned other metal elements or nonmetal elements is added. The higher the ratio of the metal components selected from nickel, copper, silver, palladium, gold, platinum and iron to the entire metal powder, the more preferable, and it is preferably 99% by mass or more, more preferably 99.9% by mass or more, and particularly preferably 99.99% by mass or more. The higher the ratio of the metal components selected from nickel, copper, silver, palladium, gold, platinum and iron to the entire metal components constituting the metal powder, the more preferable, and it is preferably 99% by mass or more, more preferably 99.9% by mass or more, and particularly preferably 99.99% by mass or more. The less impurities contained in the metal powder, the better. For example, the ratio of halogen elements to the entire metal powder is preferably 100 ppm by mass or less, more preferably 50 ppm by mass or less, even more preferably 10 ppm by mass or less, and it is particularly preferable that no halogen elements are contained. Also, for example, the ratio of alkaline earth metals to the entire metal powder is preferably 100 ppm by mass or less, more preferably 50 ppm by mass or less, even more preferably 10 ppm by mass or less, and it is particularly preferable that no alkaline earth metals are contained.

 本発明の金属粉末のD50は特に制限されず、例えば、10nm以上15μm以下とすることができる。粒径の小さい金属粉末を生成する場合の金属粉末のD50は、例えば、10nm以上200nm以下とすることができ、60nm以上200nm以下であることが好ましく、70nm以上200nm以下であることがより好ましく、80nm以上200nm以下であることがより好ましく、80nm以上180nm以下であることがより好ましく、80nm以上150nm以下であることが更に好ましく、80nm以上120nm以下であることが特に好ましい。金属粉末のD50が上記範囲にあることで、特に積層セラミックコンデンサの内部電極用として好適に用いることができる。すなわち、積層セラミックコンデンサの内部電極用として用いた場合に、結晶性に優れ且つ粒度分布が狭いことに加え、金属粉末のD50が上記範囲にあることで、ショート不良を抑制しつつも薄く連続性の高い内部電極を形成でき、且つ、積層セラミックコンデンサのデラミネーションやクラックを抑制しやすくなる。粒径が中程度の原料金属粉末を生成する場合の金属粉末のD50は、例えば、200nm以上1.0μm以下とすることができる。金属粉末のD50が上記範囲にあることで、特に積層セラミック電子部品の端子電極用として好適に用いることができる。すなわち、積層セラミック電子部品の端子電極用として用いた場合に、結晶性に優れ且つ粒度分布が狭いことに加え、金属粉末のD50が上記範囲にあることで、薄く緻密で連続性が高い端子電極を形成しやすくなる。粒径の大きい金属粉末を生成する場合の金属粉末のD50は、例えば、1.0μm以上15μm以下とすることができ、1.0μm以上5.0μm以下とすることもできる。金属粉末のD50が上記範囲にあることで、特に積層型インダクタの内部電極用として好適に用いることができる。すなわち、積層型インダクタの内部電極用として用いた場合に、結晶性に優れ且つ粒度分布が狭いことに加え、金属粉末のD50が上記範囲にあることで、比抵抗が低い内部電極を形成しやすくなり、且つ、ショート不良が抑制された積層型インダクタを形成しやすくなる。 The D 50 of the metal powder of the present invention is not particularly limited, and can be, for example, 10 nm or more and 15 μm or less. When a metal powder having a small particle size is produced, the D 50 of the metal powder can be, for example, 10 nm or more and 200 nm or less, preferably 60 nm or more and 200 nm or less, more preferably 70 nm or more and 200 nm or less, more preferably 80 nm or more and 200 nm or less, more preferably 80 nm or more and 180 nm or less, even more preferably 80 nm or more and 150 nm or less, and particularly preferably 80 nm or more and 120 nm or less. When the D 50 of the metal powder is in the above range, it can be suitably used particularly for the internal electrodes of multilayer ceramic capacitors. That is, when used for the internal electrodes of multilayer ceramic capacitors, in addition to excellent crystallinity and narrow particle size distribution, the D 50 of the metal powder in the above range can form thin and highly continuous internal electrodes while suppressing short circuit defects, and it is easy to suppress delamination and cracks of the multilayer ceramic capacitor. When a raw metal powder having a medium particle size is produced, the D 50 of the metal powder can be, for example, 200 nm or more and 1.0 μm or less. When the D 50 of the metal powder is in the above range, it can be used particularly suitably for terminal electrodes of multilayer ceramic electronic components. That is, when used for terminal electrodes of multilayer ceramic electronic components, in addition to excellent crystallinity and narrow particle size distribution, the D 50 of the metal powder in the above range makes it easy to form thin, dense, and highly continuous terminal electrodes. When a metal powder having a large particle size is produced, the D 50 of the metal powder can be, for example, 1.0 μm or more and 15 μm or less, or can be 1.0 μm or more and 5.0 μm or less. When the D 50 of the metal powder is in the above range, it can be used particularly suitably for internal electrodes of multilayer inductors. That is, when used for internal electrodes of a multilayer inductor, the metal powder has excellent crystallinity and a narrow particle size distribution, and since the D50 of the metal powder is within the above range, it becomes easy to form internal electrodes with low resistivity and it becomes easy to form a multilayer inductor in which short circuit defects are suppressed.

 本発明の金属粉末の結晶子径比は、1.0×10-2以上であればよいが、2.0×10-2以上であることが好ましく、3.0×10-2以上であることがより好ましく、5.0×10-2以上であることがより好ましく、0.1以上であることがより好ましく、0.2以上であることがより好ましく、0.3以上であることがより好ましく、0.4以上であることがより好ましく、0.5以上であることがより好ましく、0.6以上であることが特に好ましい。結晶子径比の上限は特に限定されないが、例えば、1.0以下とすることができる。D50が10nm以上200nm以下の場合には、結晶子径比が0.40以上であることが好ましく、0.50以上であることがより好ましく、0.60以上であることが特に好ましい。D50が10nm以上200nm以下の場合の結晶子径比の上限は特に限定されないが、例えば、1.0以下とすることができる。D50が200nm以上1.0μm以下の場合には、結晶子径比が5.0×10-2以上であることがより好ましく、1.0×10-1以上であることが特に好ましい。D50が200nm以上1.0μm以下の場合の結晶子径比の上限は特に限定されないが、例えば、1.0以下とすることができる。D50が1.0μm以上15μm以下の場合には、結晶子径比が2.0×10-2以上であることがより好ましく、3.0×10-2以上であることがより好ましく、4.0×10-2以上であることが更に好ましく、5.0×10-2以上であることが特に好ましい。D50が1.0μm以上15μm以下の場合の結晶子径比の上限は特に限定されないが、例えば、1.0以下とすることができる。金属粉末の結晶子径比が上記範囲にあることで、当該金属粉末の結晶性が優れたものとなる。なお、本明細書(本発明)において「結晶子径比」は結晶性の指標のひとつとして用いており、結晶子径比が大きいほど結晶性が優れる(結晶性が高い)ことを示す。 The crystallite size ratio of the metal powder of the present invention may be 1.0 x 10 -2 or more, preferably 2.0 x 10 -2 or more, more preferably 3.0 x 10 -2 or more, more preferably 5.0 x 10 -2 or more, more preferably 0.1 or more, more preferably 0.2 or more, more preferably 0.3 or more, more preferably 0.4 or more, more preferably 0.5 or more, and particularly preferably 0.6 or more. The upper limit of the crystallite size ratio is not particularly limited, but can be, for example, 1.0 or less. When D 50 is 10 nm or more and 200 nm or less, the crystallite size ratio is preferably 0.40 or more, more preferably 0.50 or more, and particularly preferably 0.60 or more. When D 50 is 10 nm or more and 200 nm or less, the upper limit of the crystallite size ratio is not particularly limited, but can be, for example, 1.0 or less. When D 50 is 200 nm or more and 1.0 μm or less, the crystallite diameter ratio is more preferably 5.0 × 10 -2 or more, and particularly preferably 1.0 × 10 -1 or more. When D 50 is 200 nm or more and 1.0 μm or less, the upper limit of the crystallite diameter ratio is not particularly limited, but can be, for example, 1.0 or less. When D 50 is 1.0 μm or more and 15 μm or less, the crystallite diameter ratio is more preferably 2.0 × 10 -2 or more, more preferably 3.0 × 10 -2 or more, even more preferably 4.0 × 10 -2 or more, and particularly preferably 5.0 × 10 -2 or more. When D 50 is 1.0 μm or more and 15 μm or less, the upper limit of the crystallite diameter ratio is not particularly limited, but can be, for example, 1.0 or less. When the crystallite diameter ratio of the metal powder is in the above range, the crystallinity of the metal powder is excellent. In this specification (the present invention), the "crystallite size ratio" is used as one index of crystallinity, and a larger crystallite size ratio indicates better crystallinity (higher crystallinity).

 本発明の金属粉末のアスペクト比は、0.70以上1.0以下であることが好ましく、0.80以上1.0以下であることがより好ましく、0.90以上1.0以下であることがより好ましく、0.95以上1.0以下であることが更に好ましく、1.0であることが特に好ましい。金属粉末のアスペクト比が上記範囲にあることで、金属粉末の粒度分布を狭くしやすくなる。 The aspect ratio of the metal powder of the present invention is preferably 0.70 or more and 1.0 or less, more preferably 0.80 or more and 1.0 or less, even more preferably 0.90 or more and 1.0 or less, even more preferably 0.95 or more and 1.0 or less, and particularly preferably 1.0. When the aspect ratio of the metal powder is in the above range, it becomes easier to narrow the particle size distribution of the metal powder.

 本発明の金属粉末は、走査型電子顕微鏡観察により粒子100個以上を無作為に選んで観察したとき、観察した粒子のうち焼結(ネッキング)している粒子の数が5個数%以下であることが好ましい。これにより、粒度分布が狭い金属粉末が得られやすくなる。 When 100 or more particles are randomly selected and observed under a scanning electron microscope, it is preferable that the number of particles that are sintered (necked) among the particles observed in the metal powder of the present invention is 5% or less by number. This makes it easier to obtain a metal powder with a narrow particle size distribution.

 本発明の金属粉末は、D50が10nm以上200nm以下であり、CV値が0.40以下であり、結晶子径が30.0nm以上であり、結晶子径比が0.40以上であることが、特に好ましい。金属粉末のD50、CV値、結晶子径及び結晶子径比が上記範囲にあることで、特に積層セラミックコンデンサの内部電極用として好適に用いることができる。すなわち、金属粉末の粒径が小さく、結晶性に優れ、粒度分布が狭いことで、積層セラミックコンデンサの内部電極用として用いた場合に、ショート不良を抑制しつつも薄く連続性の高い内部電極を形成でき、且つ、積層セラミックコンデンサのデラミネーションやクラックを抑制しやすくなる。 It is particularly preferred that the metal powder of the present invention has a D50 of 10 nm or more and 200 nm or less, a CV value of 0.40 or less, a crystallite diameter of 30.0 nm or more, and a crystallite diameter ratio of 0.40 or more. The D50 , CV value, crystallite diameter, and crystallite diameter ratio of the metal powder are within the above ranges, so that the metal powder can be particularly suitably used for internal electrodes of multilayer ceramic capacitors. That is, the metal powder has a small particle size, excellent crystallinity, and a narrow particle size distribution, so that when used for internal electrodes of multilayer ceramic capacitors, a thin and highly continuous internal electrode can be formed while suppressing short circuit defects, and delamination and cracks of the multilayer ceramic capacitor can be easily suppressed.

<測定方法>
(D50
 本発明において定義するD50は、例えば、次に示す方法で測定することができる。すなわち、走査型電子顕微鏡を用いて粉末を観察し、当該観察により粉末を構成する粒子100個を無作為に選んで粒子径を測定し、当該粒子径に基づいて個数基準の累積50%粒子径D50を算出することができる。
<Measurement method>
( D50 )
D50 as defined in the present invention can be measured, for example, by the following method: A powder is observed using a scanning electron microscope, 100 particles constituting the powder are randomly selected from the observation, their particle diameters are measured, and the number-based cumulative 50% particle diameter D50 can be calculated based on the particle diameters.

(CV値)
 本発明において定義するCV値は、例えば、次に示す方法で測定することができる。すなわち、走査型電子顕微鏡を用いて粉末を観察し、当該観察により粉末を構成する粒子100個を無作為に選んで粒子径を測定し、当該粒子径に基づいて標準偏差を算出し、前述の方法で算出したD50に対する標準偏差の比としてCV値を算出することができる。
(CV value)
The CV value defined in the present invention can be measured, for example, by the following method: A powder is observed using a scanning electron microscope, 100 particles constituting the powder are randomly selected from the observation, their particle sizes are measured, a standard deviation is calculated based on the particle sizes, and the CV value is calculated as the ratio of the standard deviation to D50 calculated by the above-mentioned method.

(結晶子径)
 本発明において定義する結晶子径は、例えば、次に示す方法で測定することができる。すなわち、XRD測定装置を用いて、CuKα線(波長λ:1.5418Å)を使用し、管電圧40kV、管電流30mA、ステップ角度0.01°、走査速度10.0°/分の条件で、回折角2θ:20.0~100.0°について金属粉末のXRD測定を行い、ピーク強度が最大となるメインピークを検出して当該ピークの半値幅を測定し、シェラーの式を用いて結晶子径を算出することができる。なお、メインピークは、例えば、(111)面に対応するピークとして、ニッケル粉末の場合は44°付近、銀粉末の場合は38°付近、銅粉末の場合は43°付近のものを用いることができる。
(Crystallite size)
The crystallite size defined in the present invention can be measured, for example, by the following method. That is, using an XRD measurement device, CuKα radiation (wavelength λ: 1.5418 Å), tube voltage 40 kV, tube current 30 mA, step angle 0.01°, scanning speed 10.0°/min, XRD measurement of metal powder is performed for diffraction angle 2θ: 20.0 to 100.0°, the main peak with the maximum peak intensity is detected, the half-width of the peak is measured, and the crystallite size can be calculated using Scherrer's formula. In addition, the main peak can be, for example, a peak corresponding to the (111) plane, around 44° in the case of nickel powder, around 38° in the case of silver powder, and around 43° in the case of copper powder.

(アスペクト比)
 走査型電子顕微鏡観察により粒子100個以上を無作為に選び、面積が最小となるよう粒子に外接する長方形の長軸径に対する短軸径の比(短軸径/長軸径)を各粒子について測定し、当該比の平均値としてアスペクト比を算出することができる。
(Aspect Ratio)
By observing 100 or more particles at random, the ratio of the minor axis diameter to the major axis diameter of a rectangle circumscribing the particle so as to have the smallest area (minor axis diameter/major axis diameter) is measured for each particle, and the aspect ratio can be calculated as the average value of these ratios.

 以下に本発明について実施例を用いてさらに具体的に説明するが、本発明は以下の実施例に制限されるものではない。なお、以下の実施例において用いたニッケルの融点及び沸点はそれぞれ約1455℃及び約2913℃であり、銀の融点及び沸点はそれぞれ約962℃及び約2162℃であり、銅の融点及び沸点はそれぞれ約1085℃及び約2562℃である。 The present invention will be explained in more detail below using examples, but the present invention is not limited to the following examples. Note that the melting point and boiling point of nickel used in the following examples are about 1455°C and about 2913°C, the melting point and boiling point of silver are about 962°C and about 2162°C, and the melting point and boiling point of copper are about 1085°C and about 2562°C, respectively.

<金属粉末の製造>
(実施例1~4)
 まず、硝酸ニッケル水溶液にヒドラジンを添加し、液中のニッケルイオンを金属ニッケルに還元することで、ニッケル粉末の懸濁液を得、更にこの懸濁液からニッケル粉末を分離・乾燥することによって得られた、原料ニッケル粉末を準備した。準備した原料ニッケル粉末の性状を表1に示す。
 次いで、上部に粉末を噴出させるためのノズルが設置された縦型の管状容器を用い、原料ニッケル粉末を、開口部の断面積2cmのノズルから、流量2200L/分のキャリアガス(窒素ガス)によって気相の単位体積(1L)あたり0.05gの濃度で気相中に分散させた。
 そして、原料ニッケル粉末が当該濃度で気相中に分散した状態で、前述の縦型の管状容器を通過させながら、1600℃で3秒間の熱処理を行い、金属ニッケルが溶融したニッケル液滴を生成させた。なお、熱処理に用いた縦型の管状容器の外側には電気炉が設置されており、管状容器内が前述の温度となるように設定されたものを用いた。
 次いで、前述のニッケル液滴が前記濃度で気相中に分散した状態で冷却してニッケル粉末を生成し、更に、生成したニッケル粉末が気相中に分散した状態で180℃まで冷却し、当該ニッケル粉末を回収した。
 原料ニッケル粉末及びニッケル粉末の性状の評価を後述する評価方法により実施した。
 評価結果を表1に示す。
<Production of Metal Powder>
(Examples 1 to 4)
First, hydrazine was added to an aqueous solution of nickel nitrate to reduce the nickel ions in the solution to metallic nickel, thereby obtaining a suspension of nickel powder, and the nickel powder was then separated and dried from the suspension to prepare a raw nickel powder. The properties of the raw nickel powder prepared are shown in Table 1.
Next, using a vertical tubular container equipped with a nozzle at the top for spraying powder, the raw material nickel powder was dispersed in the gas phase from the nozzle with a cross-sectional area of an opening of 2 cm2 using a carrier gas (nitrogen gas) with a flow rate of 2200 L/min at a concentration of 0.05 g per unit volume (1 L) of the gas phase.
Then, while the raw material nickel powder was dispersed in the gas phase at the concentration, it was passed through the above-mentioned vertical tubular container and heat-treated at 1600°C for 3 seconds to generate nickel droplets of molten metallic nickel. An electric furnace was installed on the outside of the vertical tubular container used for the heat treatment, and the inside of the tubular container was set to the above-mentioned temperature.
Next, the nickel droplets were cooled while dispersed in the gas phase at the above concentration to produce nickel powder, and the nickel powder thus produced was further cooled to 180° C. while dispersed in the gas phase, and the nickel powder was recovered.
The properties of the raw nickel powder and the nickel powder were evaluated by the evaluation methods described below.
The evaluation results are shown in Table 1.

(比較例1)
 実施例1で準備した原料ニッケル粉末を、表1に示す温度及び時間で熱処理を行い、次いで、25℃まで冷却してニッケル粉末を生成し、当該ニッケル粉末を回収した。そして、実施例1と同様の評価方法で、ニッケル粉末の性状の評価を実施した。評価結果を表1に示す。
(Comparative Example 1)
The raw nickel powder prepared in Example 1 was subjected to a heat treatment at the temperature and time shown in Table 1, and then cooled to 25° C. to produce nickel powder, which was then recovered. The properties of the nickel powder were then evaluated using the same evaluation method as in Example 1. The evaluation results are shown in Table 1.

(比較例2、3)
 実施例1で準備した原料ニッケル粉末を、表1に示す温度及び時間で熱処理を行い、次いで、25℃まで冷却したところ、原料ニッケル粉末を構成する粒子同士が焼結して金属塊となった。
(Comparative Examples 2 and 3)
The raw nickel powder prepared in Example 1 was heat-treated at the temperature and time shown in Table 1, and then cooled to 25°C, whereupon the particles constituting the raw nickel powder were sintered together to form a metal lump.

(比較例4、5)
 実施例1で準備した原料ニッケル粉末に炭酸マグネシウムを混合して撹拌し、次いで、表1に示す温度及び時間で熱処理を行い、次いで、25℃まで冷却してニッケル粉末を生成し、当該ニッケル粉末を回収した。そして、実施例1と同様の評価方法で、ニッケル粉末の性状の評価を実施した。評価結果を表1に示す。
(Comparative Examples 4 and 5)
The raw material nickel powder prepared in Example 1 was mixed with magnesium carbonate and stirred, then heat-treated at the temperature and time shown in Table 1, and then cooled to 25° C. to produce nickel powder, which was then recovered. The properties of the nickel powder were then evaluated using the same evaluation method as in Example 1. The evaluation results are shown in Table 1.

(比較例6)
 実施例1で準備した原料ニッケル粉末に炭酸マグネシウムを混合して撹拌し、次いで、表1に示す温度及び時間で熱処理を行い、次いで、25℃まで冷却しところ、原料ニッケル粉末を構成する粒子同士が焼結して金属塊となった。
(Comparative Example 6)
The raw nickel powder prepared in Example 1 was mixed with magnesium carbonate and stirred, then heat-treated at the temperature and time shown in Table 1, and then cooled to 25°C. As a result, the particles constituting the raw nickel powder were sintered together to form a metal lump.

(比較例7)
 熱処理温度を1100℃とし、熱処理時間を4秒とし、熱処理中及び熱処理後において溶融状態を経ずに、熱処理後、ニッケル粉末が気相中に分散した状態で180℃まで冷却したこと以外は、実施例1と同様の方法でニッケル粉末を生成し、冷却し、回収した。原料ニッケル粉末としては、実施例1で準備したものを用いた。そして、実施例1と同様の評価方法で、ニッケル粉末の性状の評価を実施した。評価結果を表1に示す。
(Comparative Example 7)
Nickel powder was produced, cooled, and recovered in the same manner as in Example 1, except that the heat treatment temperature was 1100°C, the heat treatment time was 4 seconds, the heat treatment did not go into a molten state during or after the heat treatment, and the nickel powder was cooled to 180°C in a state where it was dispersed in a gas phase after the heat treatment. The raw nickel powder used was that prepared in Example 1. The properties of the nickel powder were evaluated using the same evaluation method as in Example 1. The evaluation results are shown in Table 1.

(実施例5)
 熱処理温度を1400℃とし、熱処理中及び熱処理後において溶融状態を経ずに、熱処理後、前述の分散濃度を保った状態で1350℃まで冷却し、更に、ニッケル粉末が気相中に分散した状態で180℃まで冷却したこと以外は、実施例1と同様の方法でニッケル粉末を生成し、冷却し、回収した。原料ニッケル粉末としては、実施例1で準備したものを用いた。そして、実施例1と同様の評価方法で、ニッケル粉末の性状の評価を実施した。評価結果を表1に示す。
Example 5
The nickel powder was produced, cooled, and recovered in the same manner as in Example 1, except that the heat treatment temperature was 1400°C, the heat treatment did not go through a molten state during or after the heat treatment, the heat treatment was cooled to 1350°C while maintaining the above-mentioned dispersion concentration, and the nickel powder was further cooled to 180°C in a state where the nickel powder was dispersed in the gas phase. The raw nickel powder used was that prepared in Example 1. The properties of the nickel powder were evaluated using the same evaluation method as in Example 1. The evaluation results are shown in Table 1.

(実施例6)
 生成したニッケル液滴が気相中に分散した状態で250℃まで冷却して回収したこと以外は、実施例1と同様の方法でニッケル粉末を生成し、冷却し、回収した。原料ニッケル粉末としては、実施例1で準備したものを用いた。そして、実施例1と同様の評価方法で、ニッケル粉末の性状の評価を実施した。評価結果を表1に示す。
(Example 6)
Nickel powder was produced, cooled, and collected in the same manner as in Example 1, except that the produced nickel droplets were cooled to 250° C. in a state where they were dispersed in the gas phase and collected. The raw nickel powder used was that prepared in Example 1. The properties of the nickel powder were evaluated using the same evaluation method as in Example 1. The evaluation results are shown in Table 1.

(実施例7)
 生成したニッケル液滴が気相中に分散した状態で365℃まで冷却し、次いで、液体状のオレイン酸の希釈液を噴霧してニッケル粉末に付着させ、更に当該ニッケル粉末を250℃まで冷却して回収したこと以外は、実施例1と同様の方法でニッケル粉末を生成し、冷却し、回収した。原料ニッケル粉末としては、実施例1で準備したものを用いた。そして、実施例1と同様の評価方法で、ニッケル粉末の性状の評価を実施した。評価結果を表1に示す。
(Example 7)
Nickel powder was produced, cooled and collected in the same manner as in Example 1, except that the produced nickel droplets were cooled to 365° C. while dispersed in the gas phase, and then a diluted liquid of oleic acid was sprayed onto the nickel powder to adhere to it, and the nickel powder was further cooled to 250° C. and collected. The raw nickel powder used was that prepared in Example 1. The properties of the nickel powder were evaluated using the same evaluation method as in Example 1. The evaluation results are shown in Table 1.

(実施例8、9)
 実施例1で生成した原料ニッケル粉末を、表1に示す濃度で気相中に分散させたこと以外は、実施例1と同様の方法でニッケル粉末を生成し、冷却し、回収した。原料ニッケル粉末としては、実施例1で準備したものを用いた。そして、実施例1と同様の評価方法で、ニッケル粉末の性状の評価を実施した。評価結果を表1に示す。
(Examples 8 and 9)
Nickel powder was produced, cooled, and recovered in the same manner as in Example 1, except that the raw nickel powder produced in Example 1 was dispersed in a gas phase at the concentration shown in Table 1. The raw nickel powder used was that prepared in Example 1. The properties of the nickel powder were evaluated using the same evaluation method as in Example 1. The evaluation results are shown in Table 1.

(実施例10~15)
 まず、硝酸銀水溶液にヒドラジンを添加し、液中の銀イオンを金属銀に還元することで、銀粉末の懸濁液を得、更にこの懸濁液から銀粉末を分離・乾燥することによって得られた、原料銀粉末を準備した。準備した原料銀粉末の性状を表2に示す。
 次いで、上部に粉末を噴出させるためのノズルが設置された縦型の管状容器を用い、原料銀粉末を、開口部の断面積2cmのノズルから、流量2200L/分のキャリアガス(窒素ガス)によって気相の単位体積(1L)あたり0.05gの濃度で気相中に分散させた。
 そして、原料銀粉末が当該濃度で気相中に分散した状態で、前述の縦型の管状容器を通過させながら、表2に示す温度で4秒間の熱処理を行い、金属銀が溶融した銀液滴を生成させた。なお、熱処理に用いた縦型の管状容器の外側には電気炉が設置されており、管状容器内が前述の温度となるように設定されたものを用いた。
 次いで、前述の銀液滴が気相中に前記濃度で分散した状態で、120℃まで冷却して銀粉末を生成し、当該銀粉末を回収した。
原料銀粉末及び銀粉末の性状の評価を後述する評価方法により実施した。評価結果を表2に示す。
(Examples 10 to 15)
First, hydrazine was added to an aqueous silver nitrate solution to reduce the silver ions in the solution to metallic silver, thereby obtaining a suspension of silver powder, and the silver powder was then separated and dried from the suspension to prepare a raw silver powder. The properties of the raw silver powder prepared are shown in Table 2.
Next, using a vertical tubular container equipped with a nozzle at the top for spraying powder, the raw silver powder was dispersed in the gas phase from the nozzle with a cross-sectional area of 2 cm2 at an opening using a carrier gas (nitrogen gas) with a flow rate of 2,200 L/min at a concentration of 0.05 g per unit volume (1 L) of the gas phase.
Then, while the raw silver powder was dispersed in the gas phase at that concentration, it was passed through the above-mentioned vertical tubular container and subjected to heat treatment for 4 seconds at the temperature shown in Table 2 to generate silver droplets of molten metallic silver. An electric furnace was installed on the outside of the vertical tubular container used for the heat treatment, and was set so that the inside of the tubular container was at the above-mentioned temperature.
Next, the silver droplets were dispersed in the gas phase at the above concentration, and the mixture was cooled to 120° C. to produce silver powder, which was then recovered.
The properties of the raw silver powder and the silver powder were evaluated using the evaluation methods described below. The evaluation results are shown in Table 2.

(実施例16)
 実施例15で得られた銀粉末の懸濁液から銀粉末を分離・乾燥せずに、当該銀粉末が懸濁している液を水に置換し、懸濁液中の銀粉末の含有比率を20質量%に調製することで、水中に懸濁した原料銀粉末を得た後、当該原料銀粉末が水中に懸濁した状態で当該原料銀粉末を気相中に分散させたこと以外は、実施例15と同様の方法で銀粉末を生成し、冷却し、回収した。そして、実施例15と同様の評価方法で、銀粉末の性状の評価を実施した。評価結果を表2に示す。
(Example 16)
Without separating and drying the silver powder from the suspension of silver powder obtained in Example 15, the liquid in which the silver powder was suspended was replaced with water, and the content ratio of silver powder in the suspension was adjusted to 20% by mass to obtain raw silver powder suspended in water. The raw silver powder was then dispersed in the gas phase while the raw silver powder was suspended in water. The silver powder was produced, cooled, and recovered in the same manner as in Example 15. The properties of the silver powder were evaluated by the same evaluation method as in Example 15. The evaluation results are shown in Table 2.

(比較例8)
 実施例15で生成した原料銀粉末を、表2に示す温度及び時間で熱処理を行い、次いで、25℃まで冷却したところ、原料銀粉末を構成する粒子同士が焼結して金属塊となった。
(Comparative Example 8)
The raw silver powder produced in Example 15 was heat-treated at the temperature and time shown in Table 2, and then cooled to 25°C, whereupon the particles constituting the raw silver powder sintered together to form a metal lump.

(比較例9)
 実施例15で生成した原料銀粉末に炭酸マグネシウムを混合して撹拌し、次いで、表2に示す温度及び時間で熱処理を行い、次いで、25℃まで冷却したところ、原料銀粉末を構成する粒子同士が焼結して金属塊となった。
(Comparative Example 9)
The raw silver powder produced in Example 15 was mixed with magnesium carbonate and stirred, then heat-treated at the temperature and time shown in Table 2, and then cooled to 25°C. As a result, the particles constituting the raw silver powder sintered together to form a metal lump.

(実施例17、18)
 まず、硝酸銅水溶液にヒドラジンを添加し、液中の銅イオンを金属銅に還元することで、銅粉末の懸濁液を得、更にこの懸濁液から原料銅粉末を分離・乾燥することによって得られた、原料銅粉末を準備した。準備した原料銅粉末の性状を表2に示す。
 次いで、上部に粉末を噴出させるためのノズルが設置された縦型の管状容器を用い、原料銅粉末を、開口部の断面積2cmのノズルから、流量2200L/分のキャリアガス(窒素ガス)によって気相の単位体積(1L)あたり0.05gの濃度で気相中に分散させた。
 そして、原料銅粉末が当該濃度で気相中に分散した状態で、前述の縦型の管状容器を通過させながら、1300℃で4秒間の熱処理を行い、金属銅が溶融した銅液滴を生成した。なお、熱処理に用いた縦型の管状容器の外側には電気炉が設置されており、管状容器内が前述の温度となるように設定されたものを用いた。
 次いで、前述の銅液滴が前記濃度で気相中に分散した状態で60℃まで冷却して銅粉末を生成し、当該銅粉末を回収した。
 原料銅粉末及び銅粉末の性状の評価を後述する評価方法により実施した。評価結果を表2に示す。
(Examples 17 and 18)
First, hydrazine was added to an aqueous solution of copper nitrate to reduce the copper ions in the solution to metallic copper, thereby obtaining a suspension of copper powder, and the raw copper powder was separated from the suspension and dried to prepare a raw copper powder. The properties of the prepared raw copper powder are shown in Table 2.
Next, using a vertical tubular container equipped with a nozzle at the top for spraying powder, the raw copper powder was dispersed in the gas phase from the nozzle with a cross-sectional area of 2 cm2 at an opening using a carrier gas (nitrogen gas) at a flow rate of 2200 L/min at a concentration of 0.05 g per unit volume (1 L) of the gas phase.
The raw copper powder was dispersed in the gas phase at the concentration, and was passed through the vertical tubular vessel described above while being heat-treated at 1300°C for 4 seconds to generate copper droplets of molten metallic copper. An electric furnace was installed on the outside of the vertical tubular vessel used for the heat treatment, and was set so that the temperature inside the tubular vessel was set to the above-mentioned temperature.
Next, the copper droplets were dispersed in the gas phase at the above concentration, and the mixture was cooled to 60° C. to produce copper powder, which was then recovered.
The properties of the raw copper powder and the copper powder were evaluated by the methods described below. The evaluation results are shown in Table 2.

(比較例10)
 実施例18で生成した原料銅粉末を、表2に示す温度及び時間で熱処理を行い、次いで、25℃まで冷却したところ、原料銅粉末を構成する粒子同士が焼結して金属塊となった。
(Comparative Example 10)
The raw copper powder produced in Example 18 was heat-treated at the temperature and time shown in Table 2, and then cooled to 25°C, whereupon the particles constituting the raw copper powder sintered together to form metal lumps.

(比較例11)
 実施例18で生成した原料銅粉末に炭酸マグネシウムを混合して撹拌し、次いで、表2に示す温度及び時間で熱処理を行い、次いで、25℃まで冷却したところ、原料銅粉末を構成する粒子同士が焼結して金属塊となった。
(Comparative Example 11)
The raw copper powder produced in Example 18 was mixed with magnesium carbonate and stirred, then heat-treated at the temperature and time shown in Table 2, and then cooled to 25°C. As a result, the particles constituting the raw copper powder sintered together to form metal lumps.

 以上示した実施例及び比較例のうち、「比較例2、3、6、8、9、10、11及び実施例6、9」以外の実施例及び比較例において、回収した金属粉末について走査型電子顕微鏡観察により粒子100個以上を無作為に選んで観察し、観察した粒子のうち焼結(ネッキング)している粒子の数が5個数%以下となっていることが確認できた。実施例6及び9については、焼結(ネッキング)している粒子の数が5個数%超となっていた。 In the above-mentioned examples and comparative examples, except for "Comparative Examples 2, 3, 6, 8, 9, 10, 11 and Examples 6 and 9," 100 or more particles were randomly selected from the recovered metal powder and observed using a scanning electron microscope, and it was confirmed that the number of particles that were sintered (necked) was 5% or less by number. In Examples 6 and 9, the number of particles that were sintered (necked) was more than 5% by number.

(参考例)
 公知の乾式法で製造された金属粉末として、原料金属として原料金属ニッケルをプラズマで加熱して溶融及び気化させ、生成した金属蒸気を冷却して金属粉末を得る公知の方法により生成されたニッケル粉末、原料ニッケル粉末を火炎で加熱して気化させ、生成した金属蒸気を冷却して金属粉末を得る公知の方法により生成されたニッケル粉末、熱分解性化合物粉末として酢酸ニッケル四水和物粉末を気相中に噴霧し、次いで、前記熱分解温度以上の温度で熱処理して金属粉末を得る公知の方法により生成されたニッケル粉末、及び、ニッケル溶湯を噴霧して冷却することにより生成されたニッケル粉末を準備し、それぞれ実施例1と同様の評価方法でニッケル粉末の性状の評価を実施したところ、いずれのニッケル粉末においても結晶子径は30.0nm以上であり、結晶子径比は1.0×10-2以上であったが、CV値は0.50超であった。
(Reference example)
As metal powders produced by a known dry method, nickel powder produced by a known method of heating raw metal nickel as a raw metal with plasma to melt and vaporize it, and cooling the generated metal vapor to obtain a metal powder, nickel powder produced by a known method of heating raw nickel powder with a flame to vaporize it, and cooling the generated metal vapor to obtain a metal powder, nickel powder produced by a known method of spraying nickel acetate tetrahydrate powder as a thermally decomposable compound powder into a gas phase, and then heat-treating it at a temperature equal to or higher than the thermal decomposition temperature to obtain a metal powder, and nickel powder produced by spraying molten nickel and cooling it were prepared, and the properties of the nickel powders were evaluated by the same evaluation method as in Example 1. In each of the nickel powders, the crystallite size was 30.0 nm or more, the crystallite size ratio was 1.0 × 10 -2 or more, but the CV value was more than 0.50.

<評価方法>
(D50
 走査型電子顕微鏡(日立ハイテク社製、SU-1510)を用いて金属粉末を観察し、当該観察により粉末を構成する粒子100個を無作為に選んで粒子径を測定し、当該粒子径に基づいて個数基準の累積50%粒子径D50を算出した。なお、粒子の投影面積と同じ面積を有する真円の直径を粒子径として測定した。
<Evaluation method>
( D50 )
The metal powder was observed using a scanning electron microscope (SU-1510, manufactured by Hitachi High-Technologies Corporation), and 100 particles constituting the powder were randomly selected from the observation, their particle diameters were measured, and the cumulative 50% particle diameter D50 based on the number was calculated based on the particle diameters. The particle diameter was measured as the diameter of a perfect circle having the same area as the projected area of the particle.

(CV値)
 走査型電子顕微鏡(日立ハイテク社製、SU-1510)を用いて金属粉末を観察し、当該観察により粉末を構成する粒子100個を無作為に選んで粒子径を測定し、当該粒子径に基づいて標準偏差を算出した。次いで、前述の方法で算出したD50に対する前記標準偏差の比としてCV値を算出した。
(CV value)
The metal powder was observed using a scanning electron microscope (SU-1510, manufactured by Hitachi High-Technologies Corporation), and 100 particles constituting the powder were randomly selected from the observation, their particle diameters were measured, and the standard deviation was calculated based on the particle diameters. The CV value was then calculated as the ratio of the standard deviation to D50 calculated by the above-mentioned method.

(結晶子径及び結晶子径比)
 XRD測定装置(リガク社製、SmartLab)を用いて、CuKα線(波長λ:1.5418Å)を使用し、管電圧40kV、管電流30mA、ステップ角度0.01°、走査速度10.0°/分の条件で、回折角2θ:20.0~100.0°について金属粉末のXRD測定を行った。(111)面に対応するピーク(ニッケル粉末:44°付近、銀粉末:38°付近、銅粉末:43°付近)を検出して半値幅を測定し、下記のシェラーの式を用いて結晶子径を算出した。
  シェラーの式:d=Kλ/βcosθ 
(上記式において、Kはシェラー定数、λはX線波長、βは回折ピークの半値幅、θは回折角である。)。
 次いで、前述の方法で測定したD50に対する前記結晶子径の比として結晶子径比を算出した。
(Crystallite size and crystallite size ratio)
Using an XRD measurement device (Rigaku Corporation, SmartLab), the metal powder was subjected to XRD measurement at a diffraction angle 2θ of 20.0 to 100.0° using CuKα radiation (wavelength λ: 1.5418 Å) under the conditions of a tube voltage of 40 kV, a tube current of 30 mA, a step angle of 0.01°, and a scanning speed of 10.0°/min. Peaks corresponding to the (111) plane (nickel powder: near 44°, silver powder: near 38°, copper powder: near 43°) were detected and the half-width was measured, and the crystallite size was calculated using the following Scherrer formula.
Scherrer's formula: d = Kλ/β cos θ
(In the above formula, K is the Scherrer constant, λ is the X-ray wavelength, β is the half-width of the diffraction peak, and θ is the diffraction angle).
Next, the crystallite size ratio was calculated as the ratio of the above crystallite size to D50 measured by the above method.

(アスペクト比)
 走査型電子顕微鏡観察により粒子100個以上を無作為に選び、面積が最小となるよう粒子に外接する長方形の長軸径に対する短軸径の比(短軸径/長軸径)を各粒子について測定し、当該比の平均値としてアスペクト比を算出した。アスペクト比が0.70未満の例を「×」、0.70以上0.95未満の例を「△」、0.95以上1.0以下の例を「〇」として評価した。
(Aspect Ratio)
By observing with a scanning electron microscope, 100 or more particles were randomly selected, and the ratio of the minor axis to the major axis of the rectangle circumscribing the particle so as to minimize the area (minor axis diameter/major axis diameter) was measured for each particle, and the aspect ratio was calculated as the average of the ratios. Examples with an aspect ratio of less than 0.70 were evaluated as "x", examples with an aspect ratio of 0.70 or more and less than 0.95 were evaluated as "△", and examples with an aspect ratio of 0.95 or more and 1.0 or less were evaluated as "◯".

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

 表1、2の結果から明らかなように、実施例においては、結晶性に優れ且つ粒度分布が狭い金属粉末を製造することができた。一方、比較例においては、「結晶性に優れること」及び「粒度分布が狭いこと」の両方を満たす金属粉末は製造できなかった。また、実施例1、比較例7、実施例5の結果から明らかなように、原料金属粉末の熱処理温度が(Tm-100)℃以上であることで優れた結晶性の金属粉末を製造することができ、熱処理温度がTm℃以上であることで特に優れた結晶性の金属粉末を製造することができた。また、実施例1、実施例6及び実施例7の結果から明らかなように、気相中に分散した状態の金属粉末を金属粉末が焼結しない温度まで冷却して回収することで、特に粒度分布が狭い金属粉末を製造することができた。また、実施例1、実施例8及び実施例9の結果から明らかなように、原料金属粉末を気相中に分散する濃度、熱処理する際の原料金属粉末の濃度、冷却する際の金属粉末前駆体の濃度が低いほど、粒度分布が狭い金属粉末を製造することができた。また、実施例10、実施例11及び実施例12の結果から明らかなように、原料金属粉末の熱処理温度がTm℃を超えて更に高くなるにつれて、粒度分布は広くなる傾向にあった。また、実施例15と実施例16の結果から明らかなように、乾燥した状態の原料金属粉末を気相中に分散させた実施例15に比べて、液中に懸濁した状態の原料金属粉末を気相中に分散させた実施例16の方が、粒度分布が狭い金属粉末を製造することができた。
 
As is clear from the results of Tables 1 and 2, in the examples, metal powders having excellent crystallinity and a narrow particle size distribution could be produced. On the other hand, in the comparative examples, metal powders satisfying both "excellent crystallinity" and "narrow particle size distribution" could not be produced. In addition, as is clear from the results of Example 1, Comparative Example 7, and Example 5, metal powders having excellent crystallinity could be produced by heat treating the raw metal powder at a temperature of (Tm-100) ° C. or higher, and metal powders having particularly excellent crystallinity could be produced by heat treating the raw metal powder at a temperature of Tm ° C. or higher. In addition, as is clear from the results of Examples 1, 6, and 7, metal powders having a particularly narrow particle size distribution could be produced by cooling and recovering the metal powder dispersed in the gas phase to a temperature at which the metal powder does not sinter. In addition, as is clear from the results of Examples 1, 8, and 9, the lower the concentration of the raw metal powder dispersed in the gas phase, the concentration of the raw metal powder during heat treatment, and the concentration of the metal powder precursor during cooling, the narrower the particle size distribution of the metal powder could be produced. Moreover, as is clear from the results of Examples 10, 11 and 12, the particle size distribution tended to become wider as the heat treatment temperature of the raw metal powder exceeded Tm° C. and became higher. Moreover, as is clear from the results of Examples 15 and 16, compared with Example 15 in which a raw metal powder in a dry state was dispersed in a gas phase, Example 16 in which a raw metal powder in a suspended state in a liquid was dispersed in a gas phase was able to produce a metal powder with a narrower particle size distribution.

Claims (13)

 液相中で金属イオンを還元することにより生成される原料金属粉末を、キャリアガスによって気相中に分散させる第1の工程と、
 前記気相中に分散した状態の前記原料金属粉末を(Tm-100)℃以上の温度(但し、Tm℃は原料金属粉末が溶融する温度である。)で熱処理することにより前記気相中に分散した状態の金属粉末前駆体を生成する第2の工程と、
 前記気相中に分散した状態の前記金属粉末前駆体を冷却することにより金属粉末を生成する第3の工程と、
 を有する金属粉末の製造方法。
A first step of dispersing a raw metal powder produced by reducing metal ions in a liquid phase into a gas phase by a carrier gas;
a second step of heat-treating the raw metal powder dispersed in the gas phase at a temperature of (Tm-100)°C or higher (where Tm°C is the temperature at which the raw metal powder melts) to produce a metal powder precursor dispersed in the gas phase;
a third step of cooling the metal powder precursor dispersed in the gas phase to produce a metal powder;
A method for producing a metal powder having the above structure.
 前記第1の工程において、前記原料金属粉末を、前記キャリアガスによって気相中に1.0g/L以下の濃度で分散させ、前記第2の工程において、前記気相中に前記濃度で分散した状態の前記原料金属粉末を(Tm-100)℃以上の温度で熱処理することにより前記気相中に分散した状態の金属粉末前駆体を生成し、前記第3の工程において、前記気相中に前記濃度で分散した状態の前記金属粉末前駆体を冷却することにより前記金属粉末を生成する、請求項1に記載の金属粉末の製造方法。 The method for producing metal powder according to claim 1, wherein in the first step, the raw metal powder is dispersed in the gas phase by the carrier gas at a concentration of 1.0 g/L or less, in the second step, the raw metal powder dispersed in the gas phase at the concentration is heat-treated at a temperature of (Tm-100)°C or more to produce a metal powder precursor dispersed in the gas phase, and in the third step, the metal powder precursor dispersed in the gas phase at the concentration is cooled to produce the metal powder.  前記第2の工程において、前記気相中に分散した状態の前記原料金属粉末をTm℃以上の温度で熱処理することにより前記気相中に分散した状態の液体状態の金属粉末前駆体を生成する、請求項1に記載の金属粉末の製造方法。 The method for producing metal powder according to claim 1, wherein in the second step, the raw metal powder dispersed in the gas phase is heat-treated at a temperature equal to or higher than Tm°C to produce a liquid metal powder precursor dispersed in the gas phase.  前記第2の工程において、前記気相中に分散した状態の前記原料金属粉末を(Tm-100)℃以上Tb℃未満の温度(但し、Tm℃は原料金属粉末が溶融する温度であり、Tb℃は原料金属粉末が気化する温度である。)で熱処理する、請求項1に記載の金属粉末の製造方法。 The method for producing metal powder according to claim 1, wherein in the second step, the raw metal powder dispersed in the gas phase is heat-treated at a temperature equal to or higher than (Tm-100)°C and lower than Tb°C (where Tm°C is the temperature at which the raw metal powder melts, and Tb°C is the temperature at which the raw metal powder vaporizes).  前記第1の工程において、前記原料金属粉末を、当該原料金属粉末が液中に懸濁した状態で、前記キャリアガスによって前記気相中に分散させる、請求項1に記載の金属粉末の製造方法。 The method for producing metal powder according to claim 1, wherein in the first step, the raw metal powder is dispersed in the gas phase by the carrier gas while the raw metal powder is suspended in the liquid.  前記第3の工程において、前記気相中に分散した状態の前記金属粉末前駆体を冷却することにより金属粉末を生成し、次いで、前記気相中に分散した状態の前記金属粉末を当該金属粉末が焼結しない温度まで冷却する、請求項1に記載の金属粉末の製造方法。 The method for producing metal powder according to claim 1, wherein in the third step, the metal powder precursor dispersed in the gas phase is cooled to produce a metal powder, and then the metal powder dispersed in the gas phase is cooled to a temperature at which the metal powder does not sinter.  前記原料金属粉末の、下記で定義されるCV値が0.40以下である、請求項1に記載の金属粉末の製造方法。
 CV値:走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される個数基準の累積50%粒子径をD50としたとき、D50に対する走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される標準偏差の比
The method for producing a metal powder according to claim 1, wherein the raw metal powder has a CV value, as defined below, of 0.40 or less.
CV value: When the cumulative 50% particle diameter based on the number calculated based on the particle diameters of 100 or more particles randomly selected and measured by scanning electron microscope observation is defined as D50 , the ratio of the standard deviation calculated based on the particle diameters of 100 or more particles randomly selected and measured by scanning electron microscope observation to D50
 前記原料金属粉末の下記で定義される結晶子径比に対する前記金属粉末の下記で定義される結晶子径比の比が4.0以上である、請求項1に記載の金属粉末の製造方法。
 結晶子径比:走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される個数基準の累積50%粒子径をD50とし、X線回折による測定値を用いてシェラーの式により算出される値を結晶子径としたとき、D50に対する結晶子径の比
2. The method for producing a metal powder according to claim 1, wherein the ratio of the crystallite size ratio of the metal powder, defined below, to the crystallite size ratio of the raw metal powder, defined below, is 4.0 or more.
Crystallite size ratio: The cumulative 50% particle size based on the number calculated based on the particle sizes of 100 or more randomly selected particles measured by scanning electron microscope observation is defined as D50 , and the crystallite size is defined as the value calculated by Scherrer's formula using the measured values by X-ray diffraction. The ratio of the crystallite size to D50
 前記原料金属粉末の下記で定義される結晶子径に対する前記金属粉末の下記で定義される結晶子径の比が4.0以上である、請求項1に記載の金属粉末の製造方法。
 結晶子径:X線回折による測定値を用いてシェラーの式により算出される値
2. The method for producing a metal powder according to claim 1, wherein the ratio of the crystallite size, defined below, of the metal powder to the crystallite size, defined below, of the raw metal powder is 4.0 or more.
Crystallite size: Value calculated by Scherrer's formula using measured values by X-ray diffraction
 前記原料金属粉末の下記で定義されるD50に対する前記金属粉末の下記で定義されるD50の比が1.0以上2.0以下であり、前記原料金属粉末の下記で定義されるCV値に対する前記金属粉末の下記で定義されるCV値の比が1.0以上2.0以下である、請求項1に記載の金属粉末の製造方法。
 D50:走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される個数基準の累積50%粒子径
 CV値:走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される個数基準の累積50%粒子径をD50としたとき、D50に対する走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される標準偏差の比
The method for producing a metal powder according to claim 1, wherein the ratio of the D50 , defined below, of the metal powder to the D50, defined below, of the raw metal powder is 1.0 to 2.0, and the ratio of the CV value, defined below, of the metal powder to the CV value, defined below, of the raw metal powder is 1.0 to 2.0.
D50 : cumulative 50% particle diameter based on the number calculated based on particle diameters of 100 or more particles randomly selected by scanning electron microscope observation. CV value: When the cumulative 50% particle diameter based on the number calculated based on particle diameters of 100 or more particles randomly selected by scanning electron microscope observation is defined as D50 , the ratio of the standard deviation calculated based on particle diameters of 100 or more particles randomly selected by scanning electron microscope observation to D50
 前記原料金属粉末の下記で定義されるD50が10nm以上15μm以下であり、前記金属粉末の下記で定義されるD50が10nm以上15μm以下である、請求項1に記載の金属粉末の製造方法。
 D50:走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される個数基準の累積50%粒子径
The method for producing a metal powder according to claim 1, wherein the raw metal powder has a D50 defined below of 10 nm or more and 15 μm or less, and the metal powder has a D50 defined below of 10 nm or more and 15 μm or less.
D50 : cumulative 50% particle diameter based on the number calculated based on particle diameters measured by randomly selecting 100 or more particles by scanning electron microscope observation
 下記で定義されるCV値が0.50以下であり、下記で定義される結晶子径が30.0nm以上であり、下記で定義される結晶子径比が1.0×10-2以上である金属粉末。
CV値:走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される個数基準の累積50%粒子径をD50としたとき、D50に対する走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される標準偏差の比
 結晶子径:X線回折による測定値を用いてシェラーの式により算出される値
 結晶子径比:X線回折による測定値を用いてシェラーの式により算出される値を結晶子径としたとき、D50に対する結晶子径の比
A metal powder having a CV value, as defined below, of 0.50 or less, a crystallite diameter, as defined below, of 30.0 nm or more, and a crystallite diameter ratio, as defined below, of 1.0×10 −2 or more.
CV value: When the cumulative 50% particle diameter based on the number calculated based on the particle diameters of 100 or more particles randomly selected by scanning electron microscope observation is taken as D50 , the ratio of the standard deviation calculated based on the particle diameters of 100 or more particles randomly selected by scanning electron microscope observation to D50. Crystallite diameter: A value calculated by Scherrer's formula using the measured value by X-ray diffraction. Crystallite diameter ratio: A ratio of the crystallite diameter to D50 when the value calculated by Scherrer's formula using the measured value by X-ray diffraction is taken as the crystallite diameter.
 CV値が0.40以下であり、下記で定義されるD50が10nm以上200nm以下であり、結晶子径比が0.40以上であり、下記で定義されるアスペクト比が0.95以上1.0以下である、請求項12に記載の金属粉末。
 D50:走査型電子顕微鏡観察により粒子100個以上を無作為に選んで測定される粒子径に基づいて算出される個数基準の累積50%粒子径
 アスペクト比:走査型電子顕微鏡観察により粒子100個以上を無作為に選び、面積が最小となるよう粒子に外接する長方形の長軸径に対する短軸径の比(短軸径/長軸径)を各粒子について測定し、当該測定値を平均した値
13. The metal powder according to claim 12, wherein the CV value is 0.40 or less, the D50 defined below is 10 nm or more and 200 nm or less, the crystallite size ratio is 0.40 or more, and the aspect ratio defined below is 0.95 or more and 1.0 or less.
D50 : Cumulative 50% particle size based on the number calculated based on the particle diameters measured by randomly selecting 100 or more particles by scanning electron microscope observation. Aspect ratio: A value calculated by measuring the ratio of the minor axis diameter to the major axis diameter of a rectangle circumscribing the particle so as to have the smallest area (minor axis diameter/major axis diameter) for each particle by randomly selecting 100 or more particles by scanning electron microscope observation, and averaging the measured values.
PCT/JP2024/011976 2023-03-29 2024-03-26 Method for producing metal powder, and metal powder WO2024204211A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023053378 2023-03-29
JP2023-053378 2023-03-29

Publications (1)

Publication Number Publication Date
WO2024204211A1 true WO2024204211A1 (en) 2024-10-03

Family

ID=92906646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/011976 WO2024204211A1 (en) 2023-03-29 2024-03-26 Method for producing metal powder, and metal powder

Country Status (2)

Country Link
TW (1) TW202448604A (en)
WO (1) WO2024204211A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214410A (en) * 1991-10-18 1993-08-24 Degussa Ag Metallic powder in the form of microcrystals, spheres and dense particles, binary and ternary metallic alloy powder and process and apparatus for producing same
JP2002146401A (en) * 2000-11-09 2002-05-22 Mitsui Mining & Smelting Co Ltd Nickel powder and manufacturing method
JP2004084069A (en) * 2002-06-28 2004-03-18 Mitsui Mining & Smelting Co Ltd Inorganic oxide coated metal powder and its manufacturing method
JP2005154861A (en) * 2003-11-27 2005-06-16 Mitsui Mining & Smelting Co Ltd Double layer-coated copper powder, method of producing the double layer-coated copper powder, and electrically conductive paste using the double layer-coated copper powder
JP2014029014A (en) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd Complex nickel particle
JP2015151558A (en) * 2014-02-12 2015-08-24 新日鉄住金化学株式会社 Nickel fine particle slurry, metal fine particle and method for producing the same
JP2017137530A (en) * 2016-02-03 2017-08-10 住友金属鉱山株式会社 Copper powder and manufacturing method therefor
JP2017171957A (en) * 2016-03-18 2017-09-28 住友金属鉱山株式会社 Nickel powder, production method of nickel powder, inner electrode paste using nickel powder, and electronic component
JP2018141180A (en) * 2017-02-24 2018-09-13 住友金属鉱山株式会社 Nickel-coated copper powder, method for producing the same and conductive paste
JP2019007071A (en) * 2017-06-28 2019-01-17 住友金属鉱山株式会社 Tin-coated copper powder and method for producing same, and conductive paste
CN114566327A (en) * 2021-11-11 2022-05-31 江苏博迁新材料股份有限公司 Alloy powder production method, and alloy powder, slurry and capacitor prepared by method
WO2022230650A1 (en) * 2021-04-26 2022-11-03 三井金属鉱業株式会社 Nickel powder and method for producing nickel particles

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214410A (en) * 1991-10-18 1993-08-24 Degussa Ag Metallic powder in the form of microcrystals, spheres and dense particles, binary and ternary metallic alloy powder and process and apparatus for producing same
JP2002146401A (en) * 2000-11-09 2002-05-22 Mitsui Mining & Smelting Co Ltd Nickel powder and manufacturing method
JP2004084069A (en) * 2002-06-28 2004-03-18 Mitsui Mining & Smelting Co Ltd Inorganic oxide coated metal powder and its manufacturing method
JP2005154861A (en) * 2003-11-27 2005-06-16 Mitsui Mining & Smelting Co Ltd Double layer-coated copper powder, method of producing the double layer-coated copper powder, and electrically conductive paste using the double layer-coated copper powder
JP2014029014A (en) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd Complex nickel particle
JP2015151558A (en) * 2014-02-12 2015-08-24 新日鉄住金化学株式会社 Nickel fine particle slurry, metal fine particle and method for producing the same
JP2017137530A (en) * 2016-02-03 2017-08-10 住友金属鉱山株式会社 Copper powder and manufacturing method therefor
JP2017171957A (en) * 2016-03-18 2017-09-28 住友金属鉱山株式会社 Nickel powder, production method of nickel powder, inner electrode paste using nickel powder, and electronic component
JP2018141180A (en) * 2017-02-24 2018-09-13 住友金属鉱山株式会社 Nickel-coated copper powder, method for producing the same and conductive paste
JP2019007071A (en) * 2017-06-28 2019-01-17 住友金属鉱山株式会社 Tin-coated copper powder and method for producing same, and conductive paste
WO2022230650A1 (en) * 2021-04-26 2022-11-03 三井金属鉱業株式会社 Nickel powder and method for producing nickel particles
CN114566327A (en) * 2021-11-11 2022-05-31 江苏博迁新材料股份有限公司 Alloy powder production method, and alloy powder, slurry and capacitor prepared by method

Also Published As

Publication number Publication date
TW202448604A (en) 2024-12-16

Similar Documents

Publication Publication Date Title
KR101803969B1 (en) Nickel fine powder and method of manufacturing the same
JP4687599B2 (en) Copper fine powder, method for producing the same, and conductive paste
JP7042372B2 (en) Nickel powder and its manufacturing method, nickel paste
TWI716526B (en) Nickel powder
JP6135935B2 (en) Method for producing wet nickel powder
TWI741169B (en) Ruthenium oxide powder, composition for thick film resistors, paste for thick film resistors, and thick film resistors
JP7473475B2 (en) Metal powder for use as an electrode material in multilayer ceramic capacitors and methods of making and using same - Patents.com
JPH10102108A (en) Manufacturing method of metal powder
JP4978237B2 (en) Method for producing nickel powder
JP2014029013A (en) Composite nickel particles
JP4879762B2 (en) Silver powder manufacturing method and silver powder
JP2004124257A (en) Metal copper particulate, and production method therefor
JP3812359B2 (en) Method for producing metal powder
JP2013170303A (en) Nickel alloy powder and method for producing the same
KR20190123777A (en) Nickel Powder And Nickel Paste
JP2017014545A (en) Nickel fine particle-containing composition and manufacturing method therefor
WO2024204211A1 (en) Method for producing metal powder, and metal powder
JP2004084069A (en) Inorganic oxide coated metal powder and its manufacturing method
JP2006169559A (en) Copper alloy fine-particle and method for producing the same
JP4483389B2 (en) Method for producing glass particles
CA3045573C (en) Metallic powders for use as electrode material in multilayer ceramic capacitors and method of manufacturing and of using same
JP4394535B2 (en) Method for producing nickel powder
JP2020117433A (en) Glass particles, conductive composition therewith and production method of glass particles
JP4276031B2 (en) Titanium compound-coated nickel powder and conductive paste using the same
WO2023074827A1 (en) Copper particles and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24780321

Country of ref document: EP

Kind code of ref document: A1