WO2024204181A1 - Resin composition, cured product, laminate, semiconductor device, and method for producing semiconductor device - Google Patents
Resin composition, cured product, laminate, semiconductor device, and method for producing semiconductor device Download PDFInfo
- Publication number
- WO2024204181A1 WO2024204181A1 PCT/JP2024/011922 JP2024011922W WO2024204181A1 WO 2024204181 A1 WO2024204181 A1 WO 2024204181A1 JP 2024011922 W JP2024011922 W JP 2024011922W WO 2024204181 A1 WO2024204181 A1 WO 2024204181A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formula
- resin
- group
- resin composition
- laminate
- Prior art date
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 97
- 239000004065 semiconductor Substances 0.000 title claims description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 229920005989 resin Polymers 0.000 claims abstract description 147
- 239000011347 resin Substances 0.000 claims abstract description 147
- 125000004427 diamine group Chemical group 0.000 claims abstract description 96
- 239000002253 acid Substances 0.000 claims abstract description 64
- 125000006159 dianhydride group Chemical group 0.000 claims abstract description 51
- 239000002904 solvent Substances 0.000 claims abstract description 40
- 125000004432 carbon atom Chemical group C* 0.000 claims description 59
- 238000000034 method Methods 0.000 claims description 42
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 39
- 125000004429 atom Chemical group 0.000 claims description 17
- 150000001875 compounds Chemical class 0.000 claims description 17
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 16
- 125000000217 alkyl group Chemical group 0.000 claims description 13
- 125000005462 imide group Chemical group 0.000 claims description 12
- 239000010954 inorganic particle Substances 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 125000003545 alkoxy group Chemical group 0.000 claims description 9
- 125000002947 alkylene group Chemical group 0.000 claims description 9
- -1 carboxylate ester Chemical class 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 125000005843 halogen group Chemical group 0.000 claims description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 8
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 8
- RAXXELZNTBOGNW-UHFFFAOYSA-N 1H-imidazole Chemical group C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 7
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 claims description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 5
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims description 5
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims description 4
- 150000001340 alkali metals Chemical group 0.000 claims description 4
- 125000005103 alkyl silyl group Chemical group 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 4
- 125000000962 organic group Chemical group 0.000 claims description 4
- 150000001735 carboxylic acids Chemical class 0.000 claims 1
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 1
- 239000000758 substrate Substances 0.000 description 89
- 239000010410 layer Substances 0.000 description 60
- 239000010408 film Substances 0.000 description 39
- 238000010438 heat treatment Methods 0.000 description 37
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 32
- 150000004985 diamines Chemical class 0.000 description 23
- 238000006116 polymerization reaction Methods 0.000 description 21
- 229910052594 sapphire Inorganic materials 0.000 description 18
- 239000010980 sapphire Substances 0.000 description 18
- 239000011248 coating agent Substances 0.000 description 15
- 238000000576 coating method Methods 0.000 description 15
- 230000009477 glass transition Effects 0.000 description 15
- 229920001721 polyimide Polymers 0.000 description 14
- 239000012790 adhesive layer Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 13
- 125000006158 tetracarboxylic acid group Chemical group 0.000 description 13
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 11
- 239000004642 Polyimide Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 239000003431 cross linking reagent Substances 0.000 description 8
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 8
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- QYIMZXITLDTULQ-UHFFFAOYSA-N 4-(4-amino-2-methylphenyl)-3-methylaniline Chemical compound CC1=CC(N)=CC=C1C1=CC=C(N)C=C1C QYIMZXITLDTULQ-UHFFFAOYSA-N 0.000 description 7
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 7
- 239000004205 dimethyl polysiloxane Substances 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 229920005575 poly(amic acid) Polymers 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 6
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 230000004580 weight loss Effects 0.000 description 5
- MSTZGVRUOMBULC-UHFFFAOYSA-N 2-amino-4-[2-(3-amino-4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropan-2-yl]phenol Chemical compound C1=C(O)C(N)=CC(C(C=2C=C(N)C(O)=CC=2)(C(F)(F)F)C(F)(F)F)=C1 MSTZGVRUOMBULC-UHFFFAOYSA-N 0.000 description 4
- NUIURNJTPRWVAP-UHFFFAOYSA-N 3,3'-Dimethylbenzidine Chemical group C1=C(N)C(C)=CC(C=2C=C(C)C(N)=CC=2)=C1 NUIURNJTPRWVAP-UHFFFAOYSA-N 0.000 description 4
- GPXCORHXFPYJEH-UHFFFAOYSA-N 3-[[3-aminopropyl(dimethyl)silyl]oxy-dimethylsilyl]propan-1-amine Chemical compound NCCC[Si](C)(C)O[Si](C)(C)CCCN GPXCORHXFPYJEH-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 4
- 239000002981 blocking agent Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 150000001805 chlorine compounds Chemical class 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000002966 varnish Substances 0.000 description 4
- GAYWTJPBIQKDRC-UHFFFAOYSA-N 8-trimethoxysilyloctyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCCCCCCOC(=O)C(C)=C GAYWTJPBIQKDRC-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 229940116333 ethyl lactate Drugs 0.000 description 3
- 150000002430 hydrocarbons Chemical group 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000009719 polyimide resin Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000006798 ring closing metathesis reaction Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- RKLXSINPXIQKIB-UHFFFAOYSA-N trimethoxy(oct-7-enyl)silane Chemical compound CO[Si](OC)(OC)CCCCCCC=C RKLXSINPXIQKIB-UHFFFAOYSA-N 0.000 description 3
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 3
- QYJYJTDXBIYRHH-UHFFFAOYSA-N trimethoxy-[8-(oxiran-2-ylmethoxy)octyl]silane Chemical compound C(C1CO1)OCCCCCCCC[Si](OC)(OC)OC QYJYJTDXBIYRHH-UHFFFAOYSA-N 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 2
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical group CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 2
- MXPYJVUYLVNEBB-UHFFFAOYSA-N 2-[2-(2-carboxybenzoyl)oxycarbonylbenzoyl]oxycarbonylbenzoic acid Chemical compound OC(=O)C1=CC=CC=C1C(=O)OC(=O)C1=CC=CC=C1C(=O)OC(=O)C1=CC=CC=C1C(O)=O MXPYJVUYLVNEBB-UHFFFAOYSA-N 0.000 description 2
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 2
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical group CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 2
- JRBJSXQPQWSCCF-UHFFFAOYSA-N 3,3'-Dimethoxybenzidine Chemical group C1=C(N)C(OC)=CC(C=2C=C(OC)C(N)=CC=2)=C1 JRBJSXQPQWSCCF-UHFFFAOYSA-N 0.000 description 2
- LJGHYPLBDBRCRZ-UHFFFAOYSA-N 3-(3-aminophenyl)sulfonylaniline Chemical compound NC1=CC=CC(S(=O)(=O)C=2C=C(N)C=CC=2)=C1 LJGHYPLBDBRCRZ-UHFFFAOYSA-N 0.000 description 2
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 2
- IJFXRHURBJZNAO-UHFFFAOYSA-N 3-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=CC(O)=C1 IJFXRHURBJZNAO-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 2
- QQGYZOYWNCKGEK-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)oxy]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(OC=2C=C3C(=O)OC(C3=CC=2)=O)=C1 QQGYZOYWNCKGEK-UHFFFAOYSA-N 0.000 description 2
- MQAHXEQUBNDFGI-UHFFFAOYSA-N 5-[4-[2-[4-[(1,3-dioxo-2-benzofuran-5-yl)oxy]phenyl]propan-2-yl]phenoxy]-2-benzofuran-1,3-dione Chemical group C1=C2C(=O)OC(=O)C2=CC(OC2=CC=C(C=C2)C(C)(C=2C=CC(OC=3C=C4C(=O)OC(=O)C4=CC=3)=CC=2)C)=C1 MQAHXEQUBNDFGI-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical class OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- XUPYJHCZDLZNFP-UHFFFAOYSA-N butyl butanoate Chemical compound CCCCOC(=O)CCC XUPYJHCZDLZNFP-UHFFFAOYSA-N 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- WOSVXXBNNCUXMT-UHFFFAOYSA-N cyclopentane-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1CC(C(O)=O)C(C(O)=O)C1C(O)=O WOSVXXBNNCUXMT-UHFFFAOYSA-N 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Natural products C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 2
- NGAZZOYFWWSOGK-UHFFFAOYSA-N heptan-3-one Chemical compound CCCCC(=O)CC NGAZZOYFWWSOGK-UHFFFAOYSA-N 0.000 description 2
- GJRQTCIYDGXPES-UHFFFAOYSA-N isobutyl acetate Chemical compound CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 description 2
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropyl acetate Chemical compound CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 2
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 2
- 238000010297 mechanical methods and process Methods 0.000 description 2
- 230000005226 mechanical processes and functions Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- AJFDBNQQDYLMJN-UHFFFAOYSA-N n,n-diethylacetamide Chemical compound CCN(CC)C(C)=O AJFDBNQQDYLMJN-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N propyl acetate Chemical compound CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- YKNMIGJJXKBHJE-UHFFFAOYSA-N (3-aminophenyl)-(4-aminophenyl)methanone Chemical compound C1=CC(N)=CC=C1C(=O)C1=CC=CC(N)=C1 YKNMIGJJXKBHJE-UHFFFAOYSA-N 0.000 description 1
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- OWSKJORLRSWYGK-UHFFFAOYSA-N (3-methoxy-3-methylbutyl) propanoate Chemical compound CCC(=O)OCCC(C)(C)OC OWSKJORLRSWYGK-UHFFFAOYSA-N 0.000 description 1
- KNDQHSIWLOJIGP-UMRXKNAASA-N (3ar,4s,7r,7as)-rel-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1,3-dione Chemical compound O=C1OC(=O)[C@@H]2[C@H]1[C@]1([H])C=C[C@@]2([H])C1 KNDQHSIWLOJIGP-UMRXKNAASA-N 0.000 description 1
- LTQBNYCMVZQRSD-UHFFFAOYSA-N (4-ethenylphenyl)-trimethoxysilane Chemical compound CO[Si](OC)(OC)C1=CC=C(C=C)C=C1 LTQBNYCMVZQRSD-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- QWOZZTWBWQMEPD-UHFFFAOYSA-N 1-(2-ethoxypropoxy)propan-2-ol Chemical compound CCOC(C)COCC(C)O QWOZZTWBWQMEPD-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 1
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 1
- LIPRQQHINVWJCH-UHFFFAOYSA-N 1-ethoxypropan-2-yl acetate Chemical compound CCOCC(C)OC(C)=O LIPRQQHINVWJCH-UHFFFAOYSA-N 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- IFFLKGMDBKQMAH-UHFFFAOYSA-N 2,4-diaminopyridine Chemical compound NC1=CC=NC(N)=C1 IFFLKGMDBKQMAH-UHFFFAOYSA-N 0.000 description 1
- VOZKAJLKRJDJLL-UHFFFAOYSA-N 2,4-diaminotoluene Chemical compound CC1=CC=C(N)C=C1N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 1
- 229940075142 2,5-diaminotoluene Drugs 0.000 description 1
- CIEFZSDJGQKZNS-UHFFFAOYSA-N 2,6-diaminobenzoic acid Chemical compound NC1=CC=CC(N)=C1C(O)=O CIEFZSDJGQKZNS-UHFFFAOYSA-N 0.000 description 1
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- WMDZKDKPYCNCDZ-UHFFFAOYSA-N 2-(2-butoxypropoxy)propan-1-ol Chemical compound CCCCOC(C)COC(C)CO WMDZKDKPYCNCDZ-UHFFFAOYSA-N 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- BJINVQNEBGOMCR-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethyl acetate Chemical compound COCCOCCOC(C)=O BJINVQNEBGOMCR-UHFFFAOYSA-N 0.000 description 1
- DJCYDDALXPHSHR-UHFFFAOYSA-N 2-(2-propoxyethoxy)ethanol Chemical compound CCCOCCOCCO DJCYDDALXPHSHR-UHFFFAOYSA-N 0.000 description 1
- XYVAYAJYLWYJJN-UHFFFAOYSA-N 2-(2-propoxypropoxy)propan-1-ol Chemical compound CCCOC(C)COC(C)CO XYVAYAJYLWYJJN-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- WFSMVVDJSNMRAR-UHFFFAOYSA-N 2-[2-(2-ethoxyethoxy)ethoxy]ethanol Chemical compound CCOCCOCCOCCO WFSMVVDJSNMRAR-UHFFFAOYSA-N 0.000 description 1
- FMVOPJLFZGSYOS-UHFFFAOYSA-N 2-[2-(2-ethoxypropoxy)propoxy]propan-1-ol Chemical compound CCOC(C)COC(C)COC(C)CO FMVOPJLFZGSYOS-UHFFFAOYSA-N 0.000 description 1
- WAEVWDZKMBQDEJ-UHFFFAOYSA-N 2-[2-(2-methoxypropoxy)propoxy]propan-1-ol Chemical compound COC(C)COC(C)COC(C)CO WAEVWDZKMBQDEJ-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- HGUYBLVGLMAUFF-UHFFFAOYSA-N 2-methoxybenzene-1,4-diamine Chemical compound COC1=CC(N)=CC=C1N HGUYBLVGLMAUFF-UHFFFAOYSA-N 0.000 description 1
- OBCSAIDCZQSFQH-UHFFFAOYSA-N 2-methyl-1,4-phenylenediamine Chemical compound CC1=CC(N)=CC=C1N OBCSAIDCZQSFQH-UHFFFAOYSA-N 0.000 description 1
- HHCHLHOEAKKCAB-UHFFFAOYSA-N 2-oxaspiro[3.5]nonane-1,3-dione Chemical compound O=C1OC(=O)C11CCCCC1 HHCHLHOEAKKCAB-UHFFFAOYSA-N 0.000 description 1
- UENRXLSRMCSUSN-UHFFFAOYSA-N 3,5-diaminobenzoic acid Chemical compound NC1=CC(N)=CC(C(O)=O)=C1 UENRXLSRMCSUSN-UHFFFAOYSA-N 0.000 description 1
- GWHLJVMSZRKEAQ-UHFFFAOYSA-N 3-(2,3-dicarboxyphenyl)phthalic acid Chemical compound OC(=O)C1=CC=CC(C=2C(=C(C(O)=O)C=CC=2)C(O)=O)=C1C(O)=O GWHLJVMSZRKEAQ-UHFFFAOYSA-N 0.000 description 1
- LXJLFVRAWOOQDR-UHFFFAOYSA-N 3-(3-aminophenoxy)aniline Chemical compound NC1=CC=CC(OC=2C=C(N)C=CC=2)=C1 LXJLFVRAWOOQDR-UHFFFAOYSA-N 0.000 description 1
- ZBMISJGHVWNWTE-UHFFFAOYSA-N 3-(4-aminophenoxy)aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(N)=C1 ZBMISJGHVWNWTE-UHFFFAOYSA-N 0.000 description 1
- ZDBWYUOUYNQZBM-UHFFFAOYSA-N 3-(aminomethyl)aniline Chemical compound NCC1=CC=CC(N)=C1 ZDBWYUOUYNQZBM-UHFFFAOYSA-N 0.000 description 1
- ZZYZUFNSKAIYCJ-UHFFFAOYSA-N 3-[(3-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1C(N)CCCC1CC1CC(N)CCC1 ZZYZUFNSKAIYCJ-UHFFFAOYSA-N 0.000 description 1
- CKOFBUUFHALZGK-UHFFFAOYSA-N 3-[(3-aminophenyl)methyl]aniline Chemical compound NC1=CC=CC(CC=2C=C(N)C=CC=2)=C1 CKOFBUUFHALZGK-UHFFFAOYSA-N 0.000 description 1
- DKKYOQYISDAQER-UHFFFAOYSA-N 3-[3-(3-aminophenoxy)phenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=C(OC=3C=C(N)C=CC=3)C=CC=2)=C1 DKKYOQYISDAQER-UHFFFAOYSA-N 0.000 description 1
- LBPVOEHZEWAJKQ-UHFFFAOYSA-N 3-[4-(3-aminophenoxy)phenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=CC(OC=3C=C(N)C=CC=3)=CC=2)=C1 LBPVOEHZEWAJKQ-UHFFFAOYSA-N 0.000 description 1
- NYRFBMFAUFUULG-UHFFFAOYSA-N 3-[4-[2-[4-(3-aminophenoxy)phenyl]propan-2-yl]phenoxy]aniline Chemical compound C=1C=C(OC=2C=C(N)C=CC=2)C=CC=1C(C)(C)C(C=C1)=CC=C1OC1=CC=CC(N)=C1 NYRFBMFAUFUULG-UHFFFAOYSA-N 0.000 description 1
- NQZOFDAHZVLQJO-UHFFFAOYSA-N 3-[4-[4-(3-aminophenoxy)phenoxy]phenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=CC(OC=3C=CC(OC=4C=C(N)C=CC=4)=CC=3)=CC=2)=C1 NQZOFDAHZVLQJO-UHFFFAOYSA-N 0.000 description 1
- WCXGOVYROJJXHA-UHFFFAOYSA-N 3-[4-[4-(3-aminophenoxy)phenyl]sulfonylphenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=CC(=CC=2)S(=O)(=O)C=2C=CC(OC=3C=C(N)C=CC=3)=CC=2)=C1 WCXGOVYROJJXHA-UHFFFAOYSA-N 0.000 description 1
- YSMXOEWEUZTWAK-UHFFFAOYSA-N 3-[4-[[4-(3-aminophenoxy)phenyl]methyl]phenoxy]aniline Chemical compound NC1=CC=CC(OC=2C=CC(CC=3C=CC(OC=4C=C(N)C=CC=4)=CC=3)=CC=2)=C1 YSMXOEWEUZTWAK-UHFFFAOYSA-N 0.000 description 1
- PGBSHGWIKRZGSW-UHFFFAOYSA-N 3-[9-(3-aminophenyl)fluoren-9-yl]aniline Chemical compound NC1=CC=CC(C2(C3=CC=CC=C3C3=CC=CC=C32)C=2C=C(N)C=CC=2)=C1 PGBSHGWIKRZGSW-UHFFFAOYSA-N 0.000 description 1
- GIMFLOOKFCUUOQ-UHFFFAOYSA-N 3-amino-4-hydroxy-1,2-dihydropyrimidin-6-one Chemical compound NN1CN=C(O)C=C1O GIMFLOOKFCUUOQ-UHFFFAOYSA-N 0.000 description 1
- OMIOAPDWNQGXED-UHFFFAOYSA-N 3-amino-n-(3-aminophenyl)benzamide Chemical compound NC1=CC=CC(NC(=O)C=2C=C(N)C=CC=2)=C1 OMIOAPDWNQGXED-UHFFFAOYSA-N 0.000 description 1
- UDKYPBUWOIPGDY-UHFFFAOYSA-N 3-amino-n-(4-aminophenyl)benzamide Chemical compound C1=CC(N)=CC=C1NC(=O)C1=CC=CC(N)=C1 UDKYPBUWOIPGDY-UHFFFAOYSA-N 0.000 description 1
- CWLKGDAVCFYWJK-UHFFFAOYSA-N 3-aminophenol Chemical compound NC1=CC=CC(O)=C1 CWLKGDAVCFYWJK-UHFFFAOYSA-N 0.000 description 1
- 229940018563 3-aminophenol Drugs 0.000 description 1
- NTKBNCABAMQDIG-UHFFFAOYSA-N 3-butoxypropan-1-ol Chemical compound CCCCOCCCO NTKBNCABAMQDIG-UHFFFAOYSA-N 0.000 description 1
- LBVMWHCOFMFPEG-UHFFFAOYSA-N 3-methoxy-n,n-dimethylpropanamide Chemical compound COCCC(=O)N(C)C LBVMWHCOFMFPEG-UHFFFAOYSA-N 0.000 description 1
- QMYGFTJCQFEDST-UHFFFAOYSA-N 3-methoxybutyl acetate Chemical compound COC(C)CCOC(C)=O QMYGFTJCQFEDST-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- LJMPOXUWPWEILS-UHFFFAOYSA-N 3a,4,4a,7a,8,8a-hexahydrofuro[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1C2C(=O)OC(=O)C2CC2C(=O)OC(=O)C21 LJMPOXUWPWEILS-UHFFFAOYSA-N 0.000 description 1
- WECDUOXQLAIPQW-UHFFFAOYSA-N 4,4'-Methylene bis(2-methylaniline) Chemical compound C1=C(N)C(C)=CC(CC=2C=C(C)C(N)=CC=2)=C1 WECDUOXQLAIPQW-UHFFFAOYSA-N 0.000 description 1
- ICNFHJVPAJKPHW-UHFFFAOYSA-N 4,4'-Thiodianiline Chemical compound C1=CC(N)=CC=C1SC1=CC=C(N)C=C1 ICNFHJVPAJKPHW-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- FYYYKXFEKMGYLZ-UHFFFAOYSA-N 4-(1,3-dioxo-2-benzofuran-5-yl)-2-benzofuran-1,3-dione Chemical compound C=1C=C2C(=O)OC(=O)C2=CC=1C1=CC=CC2=C1C(=O)OC2=O FYYYKXFEKMGYLZ-UHFFFAOYSA-N 0.000 description 1
- CIWROGYDTTXAGN-UHFFFAOYSA-N 4-(3,4-dicarboxy-2-methylphenyl)-3-methylphthalic acid Chemical compound C1=CC(C(O)=O)=C(C(O)=O)C(C)=C1C1=CC=C(C(O)=O)C(C(O)=O)=C1C CIWROGYDTTXAGN-UHFFFAOYSA-N 0.000 description 1
- FWOLORXQTIGHFX-UHFFFAOYSA-N 4-(4-amino-2,3,5,6-tetrafluorophenyl)-2,3,5,6-tetrafluoroaniline Chemical compound FC1=C(F)C(N)=C(F)C(F)=C1C1=C(F)C(F)=C(N)C(F)=C1F FWOLORXQTIGHFX-UHFFFAOYSA-N 0.000 description 1
- DQPPOEIMMLEMPW-UHFFFAOYSA-N 4-(4-amino-3-ethylphenyl)-2-ethylaniline;dihydrochloride Chemical compound Cl.Cl.C1=C(N)C(CC)=CC(C=2C=C(CC)C(N)=CC=2)=C1 DQPPOEIMMLEMPW-UHFFFAOYSA-N 0.000 description 1
- BFWYZZPDZZGSLJ-UHFFFAOYSA-N 4-(aminomethyl)aniline Chemical compound NCC1=CC=C(N)C=C1 BFWYZZPDZZGSLJ-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- IGSBHTZEJMPDSZ-UHFFFAOYSA-N 4-[(4-amino-3-methylcyclohexyl)methyl]-2-methylcyclohexan-1-amine Chemical compound C1CC(N)C(C)CC1CC1CC(C)C(N)CC1 IGSBHTZEJMPDSZ-UHFFFAOYSA-N 0.000 description 1
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 1
- WUPRYUDHUFLKFL-UHFFFAOYSA-N 4-[3-(4-aminophenoxy)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(OC=2C=CC(N)=CC=2)=C1 WUPRYUDHUFLKFL-UHFFFAOYSA-N 0.000 description 1
- JCRRFJIVUPSNTA-UHFFFAOYSA-N 4-[4-(4-aminophenoxy)phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC(C=C1)=CC=C1OC1=CC=C(N)C=C1 JCRRFJIVUPSNTA-UHFFFAOYSA-N 0.000 description 1
- HHLMWQDRYZAENA-UHFFFAOYSA-N 4-[4-[2-[4-(4-aminophenoxy)phenyl]-1,1,1,3,3,3-hexafluoropropan-2-yl]phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=C(C(C=2C=CC(OC=3C=CC(N)=CC=3)=CC=2)(C(F)(F)F)C(F)(F)F)C=C1 HHLMWQDRYZAENA-UHFFFAOYSA-N 0.000 description 1
- KMKWGXGSGPYISJ-UHFFFAOYSA-N 4-[4-[2-[4-(4-aminophenoxy)phenyl]propan-2-yl]phenoxy]aniline Chemical compound C=1C=C(OC=2C=CC(N)=CC=2)C=CC=1C(C)(C)C(C=C1)=CC=C1OC1=CC=C(N)C=C1 KMKWGXGSGPYISJ-UHFFFAOYSA-N 0.000 description 1
- LDFYRFKAYFZVNH-UHFFFAOYSA-N 4-[4-[4-(4-aminophenoxy)phenoxy]phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC(C=C1)=CC=C1OC(C=C1)=CC=C1OC1=CC=C(N)C=C1 LDFYRFKAYFZVNH-UHFFFAOYSA-N 0.000 description 1
- HYDATEKARGDBKU-UHFFFAOYSA-N 4-[4-[4-(4-aminophenoxy)phenyl]phenoxy]aniline Chemical group C1=CC(N)=CC=C1OC1=CC=C(C=2C=CC(OC=3C=CC(N)=CC=3)=CC=2)C=C1 HYDATEKARGDBKU-UHFFFAOYSA-N 0.000 description 1
- UTDAGHZGKXPRQI-UHFFFAOYSA-N 4-[4-[4-(4-aminophenoxy)phenyl]sulfonylphenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=C(S(=O)(=O)C=2C=CC(OC=3C=CC(N)=CC=3)=CC=2)C=C1 UTDAGHZGKXPRQI-UHFFFAOYSA-N 0.000 description 1
- PJCCVNKHRXIAHZ-UHFFFAOYSA-N 4-[4-[[4-(4-aminophenoxy)phenyl]methyl]phenoxy]aniline Chemical compound C1=CC(N)=CC=C1OC(C=C1)=CC=C1CC(C=C1)=CC=C1OC1=CC=C(N)C=C1 PJCCVNKHRXIAHZ-UHFFFAOYSA-N 0.000 description 1
- NVKGJHAQGWCWDI-UHFFFAOYSA-N 4-[4-amino-2-(trifluoromethyl)phenyl]-3-(trifluoromethyl)aniline Chemical group FC(F)(F)C1=CC(N)=CC=C1C1=CC=C(N)C=C1C(F)(F)F NVKGJHAQGWCWDI-UHFFFAOYSA-N 0.000 description 1
- LRQNMTUEZUJDMA-UHFFFAOYSA-N 4-[9-(4-amino-3,5-dimethylphenyl)fluoren-9-yl]-2,6-dimethylaniline Chemical compound CC1=C(N)C(C)=CC(C2(C3=CC=CC=C3C3=CC=CC=C32)C=2C=C(C)C(N)=C(C)C=2)=C1 LRQNMTUEZUJDMA-UHFFFAOYSA-N 0.000 description 1
- MOIGCDKWIIWHIN-UHFFFAOYSA-N 4-[9-(4-amino-3-methoxyphenyl)fluoren-9-yl]-2-methoxyaniline Chemical compound C1=C(N)C(OC)=CC(C2(C3=CC=CC=C3C3=CC=CC=C32)C=2C=C(OC)C(N)=CC=2)=C1 MOIGCDKWIIWHIN-UHFFFAOYSA-N 0.000 description 1
- YRKVLGUIGNRYJX-UHFFFAOYSA-N 4-[9-(4-amino-3-methylphenyl)fluoren-9-yl]-2-methylaniline Chemical compound C1=C(N)C(C)=CC(C2(C3=CC=CC=C3C3=CC=CC=C32)C=2C=C(C)C(N)=CC=2)=C1 YRKVLGUIGNRYJX-UHFFFAOYSA-N 0.000 description 1
- KIFDSGGWDIVQGN-UHFFFAOYSA-N 4-[9-(4-aminophenyl)fluoren-9-yl]aniline Chemical compound C1=CC(N)=CC=C1C1(C=2C=CC(N)=CC=2)C2=CC=CC=C2C2=CC=CC=C21 KIFDSGGWDIVQGN-UHFFFAOYSA-N 0.000 description 1
- YRVJEOOSOVLVLD-UHFFFAOYSA-N 4-amino-n-(4-amino-3-methylphenyl)-3-methylbenzamide Chemical compound C1=C(N)C(C)=CC(NC(=O)C=2C=C(C)C(N)=CC=2)=C1 YRVJEOOSOVLVLD-UHFFFAOYSA-N 0.000 description 1
- XPAQFJJCWGSXGJ-UHFFFAOYSA-N 4-amino-n-(4-aminophenyl)benzamide Chemical compound C1=CC(N)=CC=C1NC(=O)C1=CC=C(N)C=C1 XPAQFJJCWGSXGJ-UHFFFAOYSA-N 0.000 description 1
- ABJQKDJOYSQVFX-UHFFFAOYSA-N 4-aminonaphthalen-1-ol Chemical compound C1=CC=C2C(N)=CC=C(O)C2=C1 ABJQKDJOYSQVFX-UHFFFAOYSA-N 0.000 description 1
- YGYCECQIOXZODZ-UHFFFAOYSA-N 4415-87-6 Chemical compound O=C1OC(=O)C2C1C1C(=O)OC(=O)C12 YGYCECQIOXZODZ-UHFFFAOYSA-N 0.000 description 1
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 1
- JYCTWJFSRDBYJX-UHFFFAOYSA-N 5-(2,5-dioxooxolan-3-yl)-3a,4,5,9b-tetrahydrobenzo[e][2]benzofuran-1,3-dione Chemical group O=C1OC(=O)CC1C1C2=CC=CC=C2C(C(=O)OC2=O)C2C1 JYCTWJFSRDBYJX-UHFFFAOYSA-N 0.000 description 1
- YCOFLXCXSYIEFG-UHFFFAOYSA-N 5-(3,4-dicarboxy-5-methylphenyl)-3-methylphthalic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C)=CC(C=2C=C(C(C(O)=O)=C(C)C=2)C(O)=O)=C1 YCOFLXCXSYIEFG-UHFFFAOYSA-N 0.000 description 1
- ZHBXLZQQVCDGPA-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)sulfonyl]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(S(=O)(=O)C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 ZHBXLZQQVCDGPA-UHFFFAOYSA-N 0.000 description 1
- MBJAPGAZEWPEFB-UHFFFAOYSA-N 5-amino-2-(4-amino-2-sulfophenyl)benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC(N)=CC=C1C1=CC=C(N)C=C1S(O)(=O)=O MBJAPGAZEWPEFB-UHFFFAOYSA-N 0.000 description 1
- ZBIBQNVRTVLOHQ-UHFFFAOYSA-N 5-aminonaphthalen-1-ol Chemical compound C1=CC=C2C(N)=CC=CC2=C1O ZBIBQNVRTVLOHQ-UHFFFAOYSA-N 0.000 description 1
- YDEUKNRKEYICTH-UHFFFAOYSA-N 5-aminoquinolin-8-ol Chemical compound C1=CC=C2C(N)=CC=C(O)C2=N1 YDEUKNRKEYICTH-UHFFFAOYSA-N 0.000 description 1
- SMAMQSIENGBTRV-UHFFFAOYSA-N 5-hydroxynaphthalene-2-carboxylic acid Chemical compound OC1=CC=CC2=CC(C(=O)O)=CC=C21 SMAMQSIENGBTRV-UHFFFAOYSA-N 0.000 description 1
- NZTPZUIIYNYZKT-UHFFFAOYSA-N 6-aminonaphthalene-2-carboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(N)=CC=C21 NZTPZUIIYNYZKT-UHFFFAOYSA-N 0.000 description 1
- GVJZAZJVZJWMAM-UHFFFAOYSA-N 6-trimethoxysilylhexylurea Chemical compound CO[Si](OC)(OC)CCCCCCNC(N)=O GVJZAZJVZJWMAM-UHFFFAOYSA-N 0.000 description 1
- YZWZICWQQFBEKM-UHFFFAOYSA-N 9,9-bis(4-aminophenyl)fluorene-3-carboxylic acid Chemical compound C1=CC(N)=CC=C1C1(C=2C=CC(N)=CC=2)C2=CC=C(C(O)=O)C=C2C2=CC=CC=C21 YZWZICWQQFBEKM-UHFFFAOYSA-N 0.000 description 1
- KWHYMNBENYPORG-UHFFFAOYSA-N 9,9-bis(4-aminophenyl)fluorene-4-carboxylic acid Chemical compound C1=CC(N)=CC=C1C1(C=2C=CC(N)=CC=2)C(C=CC=C2C(O)=O)=C2C2=CC=CC=C21 KWHYMNBENYPORG-UHFFFAOYSA-N 0.000 description 1
- SNCJAJRILVFXAE-UHFFFAOYSA-N 9h-fluorene-2,7-diamine Chemical compound NC1=CC=C2C3=CC=C(N)C=C3CC2=C1 SNCJAJRILVFXAE-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- SRJYBPIDOJWGPM-UHFFFAOYSA-N C1(=CC=CC=C1)CCCCCCCC[Si](OC)(OC)OC Chemical compound C1(=CC=CC=C1)CCCCCCCC[Si](OC)(OC)OC SRJYBPIDOJWGPM-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- XXRCUYVCPSWGCC-UHFFFAOYSA-N Ethyl pyruvate Chemical compound CCOC(=O)C(C)=O XXRCUYVCPSWGCC-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- WRQNANDWMGAFTP-UHFFFAOYSA-N Methylacetoacetic acid Chemical compound COC(=O)CC(C)=O WRQNANDWMGAFTP-UHFFFAOYSA-N 0.000 description 1
- DIQMPQMYFZXDAX-UHFFFAOYSA-N Pentyl formate Chemical compound CCCCCOC=O DIQMPQMYFZXDAX-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- IPTNXMGXEGQYSY-UHFFFAOYSA-N acetic acid;1-methoxybutan-1-ol Chemical compound CC(O)=O.CCCC(O)OC IPTNXMGXEGQYSY-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- MRSWDOKCESOYBI-UHFFFAOYSA-N anthracene-2,3,6,7-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=C2C=C(C=C(C(C(=O)O)=C3)C(O)=O)C3=CC2=C1 MRSWDOKCESOYBI-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- TUQQUUXMCKXGDI-UHFFFAOYSA-N bis(3-aminophenyl)methanone Chemical compound NC1=CC=CC(C(=O)C=2C=C(N)C=CC=2)=C1 TUQQUUXMCKXGDI-UHFFFAOYSA-N 0.000 description 1
- ZLSMCQSGRWNEGX-UHFFFAOYSA-N bis(4-aminophenyl)methanone Chemical compound C1=CC(N)=CC=C1C(=O)C1=CC=C(N)C=C1 ZLSMCQSGRWNEGX-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- BTMVHUNTONAYDX-UHFFFAOYSA-N butyl propionate Chemical compound CCCCOC(=O)CC BTMVHUNTONAYDX-UHFFFAOYSA-N 0.000 description 1
- FFOPEPMHKILNIT-UHFFFAOYSA-N butyric acid isopropyl ester Natural products CCCC(=O)OC(C)C FFOPEPMHKILNIT-UHFFFAOYSA-N 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- GEQHKFFSPGPGLN-UHFFFAOYSA-N cyclohexane-1,3-diamine Chemical compound NC1CCCC(N)C1 GEQHKFFSPGPGLN-UHFFFAOYSA-N 0.000 description 1
- VKIRRGRTJUUZHS-UHFFFAOYSA-N cyclohexane-1,4-diamine Chemical compound NC1CCC(N)CC1 VKIRRGRTJUUZHS-UHFFFAOYSA-N 0.000 description 1
- UKJLNMAFNRKWGR-UHFFFAOYSA-N cyclohexatrienamine Chemical group NC1=CC=C=C[CH]1 UKJLNMAFNRKWGR-UHFFFAOYSA-N 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- CKSRFHWWBKRUKA-UHFFFAOYSA-N ethyl 2-ethoxyacetate Chemical compound CCOCC(=O)OCC CKSRFHWWBKRUKA-UHFFFAOYSA-N 0.000 description 1
- GFUIDHWFLMPAGY-UHFFFAOYSA-N ethyl 2-hydroxy-2-methylpropanoate Chemical compound CCOC(=O)C(C)(C)O GFUIDHWFLMPAGY-UHFFFAOYSA-N 0.000 description 1
- ZANNOFHADGWOLI-UHFFFAOYSA-N ethyl 2-hydroxyacetate Chemical compound CCOC(=O)CO ZANNOFHADGWOLI-UHFFFAOYSA-N 0.000 description 1
- FJAKCEHATXBFJT-UHFFFAOYSA-N ethyl 2-oxobutanoate Chemical compound CCOC(=O)C(=O)CC FJAKCEHATXBFJT-UHFFFAOYSA-N 0.000 description 1
- BHXIWUJLHYHGSJ-UHFFFAOYSA-N ethyl 3-ethoxypropanoate Chemical compound CCOCCC(=O)OCC BHXIWUJLHYHGSJ-UHFFFAOYSA-N 0.000 description 1
- IJUHLFUALMUWOM-UHFFFAOYSA-N ethyl 3-methoxypropanoate Chemical compound CCOC(=O)CCOC IJUHLFUALMUWOM-UHFFFAOYSA-N 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- 229940117360 ethyl pyruvate Drugs 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- YSGBMDFJWFIEDF-UHFFFAOYSA-N methyl 2-hydroxy-3-methylbutanoate Chemical compound COC(=O)C(O)C(C)C YSGBMDFJWFIEDF-UHFFFAOYSA-N 0.000 description 1
- HSDFKDZBJMDHFF-UHFFFAOYSA-N methyl 3-ethoxypropanoate Chemical compound CCOCCC(=O)OC HSDFKDZBJMDHFF-UHFFFAOYSA-N 0.000 description 1
- BDJSOPWXYLFTNW-UHFFFAOYSA-N methyl 3-methoxypropanoate Chemical compound COCCC(=O)OC BDJSOPWXYLFTNW-UHFFFAOYSA-N 0.000 description 1
- CWKLZLBVOJRSOM-UHFFFAOYSA-N methyl pyruvate Chemical compound COC(=O)C(C)=O CWKLZLBVOJRSOM-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- ZUSSTQCWRDLYJA-UHFFFAOYSA-N n-hydroxy-5-norbornene-2,3-dicarboximide Chemical compound C1=CC2CC1C1C2C(=O)N(O)C1=O ZUSSTQCWRDLYJA-UHFFFAOYSA-N 0.000 description 1
- OBKARQMATMRWQZ-UHFFFAOYSA-N naphthalene-1,2,5,6-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 OBKARQMATMRWQZ-UHFFFAOYSA-N 0.000 description 1
- KQSABULTKYLFEV-UHFFFAOYSA-N naphthalene-1,5-diamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1N KQSABULTKYLFEV-UHFFFAOYSA-N 0.000 description 1
- DOBFTMLCEYUAQC-UHFFFAOYSA-N naphthalene-2,3,6,7-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C=C2C=C(C(O)=O)C(C(=O)O)=CC2=C1 DOBFTMLCEYUAQC-UHFFFAOYSA-N 0.000 description 1
- YTVNOVQHSGMMOV-UHFFFAOYSA-N naphthalenetetracarboxylic dianhydride Chemical compound C1=CC(C(=O)OC2=O)=C3C2=CC=C2C(=O)OC(=O)C1=C32 YTVNOVQHSGMMOV-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 229940078552 o-xylene Drugs 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- UMSVUULWTOXCQY-UHFFFAOYSA-N phenanthrene-1,2,7,8-tetracarboxylic acid Chemical compound OC(=O)C1=CC=C2C3=CC=C(C(=O)O)C(C(O)=O)=C3C=CC2=C1C(O)=O UMSVUULWTOXCQY-UHFFFAOYSA-N 0.000 description 1
- CLYVDMAATCIVBF-UHFFFAOYSA-N pigment red 224 Chemical compound C=12C3=CC=C(C(OC4=O)=O)C2=C4C=CC=1C1=CC=C2C(=O)OC(=O)C4=CC=C3C1=C42 CLYVDMAATCIVBF-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000003880 polar aprotic solvent Substances 0.000 description 1
- 229920002577 polybenzoxazole Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- ILPVOWZUBFRIAX-UHFFFAOYSA-N propyl 2-oxopropanoate Chemical compound CCCOC(=O)C(C)=O ILPVOWZUBFRIAX-UHFFFAOYSA-N 0.000 description 1
- HUAZGNHGCJGYNP-UHFFFAOYSA-N propyl butyrate Chemical compound CCCOC(=O)CCC HUAZGNHGCJGYNP-UHFFFAOYSA-N 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- VHNQIURBCCNWDN-UHFFFAOYSA-N pyridine-2,6-diamine Chemical compound NC1=CC=CC(N)=N1 VHNQIURBCCNWDN-UHFFFAOYSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- PQTBTIFWAXVEPB-UHFFFAOYSA-N sulcotrione Chemical compound ClC1=CC(S(=O)(=O)C)=CC=C1C(=O)C1C(=O)CCCC1=O PQTBTIFWAXVEPB-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 150000000000 tetracarboxylic acids Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- KOBNDEKIQALPPB-UHFFFAOYSA-N triethoxy(oct-7-enyl)silane Chemical compound CCO[Si](OCC)(OCC)CCCCCCC=C KOBNDEKIQALPPB-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- VRHBBGAASHNPHT-UHFFFAOYSA-N trimethoxy-[6-(oxiran-2-ylmethoxy)hexyl]silane Chemical compound CO[Si](OC)(OC)CCCCCCOCC1CO1 VRHBBGAASHNPHT-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/34—Layered products comprising a layer of synthetic resin comprising polyamides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
Definitions
- the present invention relates to a resin composition, a cured product, a laminate, a semiconductor device, and a method for manufacturing a semiconductor device. More specifically, the present invention relates to a resin composition that is suitable for thinning semiconductor devices, and a cured product, a laminate, a semiconductor device, and a method for manufacturing a semiconductor device that use the resin composition.
- semiconductor devices have been rapidly becoming smaller and thinner. For example, there is a demand for thinner devices in order to increase the processing speed and reduce costs of semiconductor devices.
- Display devices using ⁇ LEDs have also been proposed, and there is a demand for further miniaturization and thinning in order to increase the resolution of display devices and reduce the cost of ⁇ LED chips.
- these semiconductor devices are generally manufactured through heat treatment processes such as solder reflow and mechanical processes such as thinning processes. Therefore, the adhesives used in these devices and parts must not only be thin, but also not peel or produce voids during or after the heat treatment and mechanical processes of the above devices.
- Patent Document 1 As adhesives for use in these semiconductor devices, for example, technology has been proposed in which the glass transition temperature of polyimide resin is designed to be 40°C or less to improve adhesion (Patent Document 1), and technology has been proposed in which crosslinkable groups are introduced into silicone-modified polyimide resin to impart heat resistance (Patent Document 2). Furthermore, technology has been proposed in which the glass transition temperature of polyimide resin is designed to be 300°C or more to improve heat resistance and dimensional stability (Patent Document 3).
- the resin compositions of the inventions described in Patent Documents 1 and 2 contain a large amount of silicone components, so they can bond devices at low temperatures.
- They contain a large amount of flexible silicone components they have the problem of low dimensional stability.
- warping occurs when the device substrate and the support substrate are bonded together, and when the device is made extremely thin, the adhesive layer twists, causing the device to be damaged without being thinned uniformly.
- there are problems such as the device being misaligned due to dimensional changes in the adhesive during heat treatment after the device is bonded together.
- the invention described in Patent Document 3 does not contain a component that imparts adhesiveness, so it has the problem that it cannot be applied to semiconductor devices that are laminated by bonding substrates together.
- Patent Documents 1 to 3 all have the problem that peeling is likely to occur when the adhesive layer is made thin, so the adhesive layer must be made thick, and as a result, the thickness of the adhesive layer affects the thickness of the device. Therefore, the technology of the present invention has been discovered that solves the problems of the conventional technology as described above and can achieve extremely thin devices.
- a resin composition comprising a resin (A) having at least one structural unit selected from a structural unit represented by formula (1) and a structural unit represented by formula (2), and a solvent, With respect to 100 mol % in total of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A), the resin (A) contains at least one of an acid dianhydride residue (A1) having a structure represented by formula (3) and a diamine residue (A2) having a structure represented by formula (4) in a total amount of 10 mol % or more and 40 mol % or less, The resin (A) contains 1.0 mol % or more and 20 mol % or less of a diamine residue (A3) having a structure represented by formula (5), A resin composition, wherein a ratio of all Si atoms contained in the resin (A) is 0.5 parts by mass or more and 5.0 parts by mass or less per
- X1 and X2 each independently represent a tetravalent acid dianhydride residue having 4 to 50 carbon atoms
- Y1 and Y2 each independently represent a divalent diamine residue having 2 to 100 carbon atoms
- R1 and R2 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkylsilyl group having 1 to 10 carbon atoms, an alkali metal atom, an ammonium group, an imidazolium group, or a pyridinium group.
- R 3 to R 16 each independently represent a hydrogen atom, a monovalent organic group having 1 to 20 carbon atoms, a hydroxyl group, or a halogen atom.
- R 17 to R 20 each independently represent an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a phenyl group, or a phenoxy group.
- R 21 and R 22 each independently represent an alkylene group or a phenylene group having 1 to 30 carbon atoms.
- n represents an integer from 1 to 20.
- * 3a and * 3b represent a bonding site connected to an imide group in the structural unit represented by formula (1), or * 3a represents a bonding site connected to a carbon atom of an amide bond in the structural unit represented by formula (2), and * 3b represents a bonding site connected to a carbon atom of a carboxylic acid or a carboxylate ester in the structural unit represented by formula (2).
- * 4, and * 5 represents a bonding site connected to the nitrogen atom of the imide group in the structural unit represented by formula (1) or the amide bond in the structural unit represented by formula (2).
- R 23 represents an alkylene group having 5 to 10 carbon atoms.
- R 24 each independently represents an alkyl group having 1 to 5 carbon atoms.
- Z represents a hydrogen atom or a group represented by any one of the following formulas (8) to (14).
- R 25 to R 31 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group, or a halogen atom.
- * 8 to * 14 represent bonding sites with R 23 in formula (7).
- the resin composition of one embodiment of the present invention has excellent adhesion and can stably bond devices even when thin.
- the resin composition of one embodiment of the present invention has a low linear expansion coefficient, warping is small when substrates are bonded together, and even when heat treatment is performed after bonding, the resin composition has excellent dimensional stability and can reduce misalignment and peeling of bonded devices. Therefore, a semiconductor device containing a cured product of the resin composition of one embodiment of the present invention has excellent reliability even when the cured product is thinned and laminated.
- FIG. 1 is an enlarged cross-sectional view of a mounting portion of an LED element of a monolithic LED.
- FIG. 2 is an enlarged view of the monolithic LED element 1.
- FIG. 3A shows an example of step (3-a) in the manufacturing process of a monolithic LED display.
- FIG. 3B shows an example of step (3-b) in the manufacturing process of a monolithic LED display.
- FIG. 3C shows an example of step (3-c) in the manufacturing process of a monolithic LED display.
- FIG. 3D shows an example of step (3-d) in the manufacturing process of a monolithic LED display.
- FIG. 3E shows an example of step (3-e) in the manufacturing process of a monolithic LED display.
- FIG. 3A shows an example of step (3-a) in the manufacturing process of a monolithic LED display.
- FIG. 3B shows an example of step (3-b) in the manufacturing process of a monolithic LED display.
- FIG. 3C shows an example of step
- FIG. 3F shows an example of step (3-f) in the manufacturing process of a monolithic LED display.
- FIG. 3G shows an example of step (3-g) in the manufacturing process of a monolithic LED display.
- FIG. 3H shows an example of step (3-h) in the manufacturing process of a monolithic LED display.
- FIG. 3I shows an example of step (3-i) in the manufacturing process of a monolithic LED display.
- FIG. 3J shows an example of step (3-j) in the manufacturing process of a monolithic LED display.
- FIG. 3K shows an example of step (3-k) in the manufacturing process of a monolithic LED display.
- the resin composition according to one aspect of the present invention comprises: A resin composition comprising a resin (A) having at least one structural unit selected from a structural unit represented by formula (1) and a structural unit represented by formula (2), and a solvent, With respect to 100 mol % in total of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A), the resin (A) contains at least one of an acid dianhydride residue (A1) having a structure represented by formula (3) and a diamine residue (A2) having a structure represented by formula (4) in a total amount of 10 mol % or more and 40 mol % or less; The resin (A) contains 1.0 mol % or more and 20 mol % or less of a diamine residue (A3) having a structure represented by formula (5), The resin composition has a ratio of all Si atoms contained in the resin (A) of 0.5 parts by
- X1 and X2 each independently represent a tetravalent acid dianhydride residue having 4 to 50 carbon atoms
- Y1 and Y2 each independently represent a divalent diamine residue having 2 to 100 carbon atoms
- R1 and R2 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkylsilyl group having 1 to 10 carbon atoms, an alkali metal atom, an ammonium group, an imidazolium group, or a pyridinium group.
- R 3 to R 16 each independently represent a hydrogen atom, a monovalent organic group having 1 to 20 carbon atoms, a hydroxyl group, or a halogen atom.
- R 17 to R 20 each independently represent an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a phenyl group, or a phenoxy group.
- R 21 and R 22 each independently represent an alkylene group or a phenylene group having 1 to 30 carbon atoms.
- n represents an integer of 1 to 20.
- * 3a and * 3b represent a bonding site connected to an imide group in the structural unit represented by formula (1) above, or * 3a represents a bonding site connected to a carbon atom of an amide bond in the structural unit represented by formula (2) above, and * 3b represents a bonding site connected to a carbon atom of a carboxylic acid or a carboxylate in the structural unit represented by formula (2) above.
- * 4 and * 5 represent bonding sites connecting to the nitrogen atom of the imide group in the structural unit represented by formula (1) or the amide bond in the structural unit represented by formula (2).
- the acid dianhydride residue (A1) having a structure represented by formula (3) (hereinafter also referred to as “acid dianhydride residue (A1)") and the diamine residue (A2) having a structure represented by formula (4) (hereinafter also referred to as “diamine residue (A2)") are residues of monomers having a biphenyl skeleton, and by containing at least one of them, a rigid structure can be introduced into the resin (A).
- the resin (A) contained in the resin composition contains at least one of the acid dianhydride residue (A1) and the diamine residue (A2) in a total amount of 10 mol % or more and 40 mol % or less with respect to the total of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A), which is 100 mol %.
- the resin (A) contained in the resin composition contains at least one of the acid dianhydride residue (A1) and the diamine residue (A2) in a total amount of 10 mol% or more relative to the total 100 mol% of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A), and when the resin composition is cured by heat treatment, the cured product has a low linear expansion coefficient and is less susceptible to thermal deformation. Therefore, when a substrate or a device is bonded together, or when a device substrate is bonded together to thin it, warping of the device substrate and twisting of the film to damage the device substrate can be prevented.
- a more preferable range of the total amount of the acid dianhydride residue (A1) and the diamine residue (A2) is 15 mol% or more relative to the total 100 mol% of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A). This further reduces the linear expansion coefficient of the formed cured material, making it possible to suppress warping of the laminate even in configurations in which multiple cured materials are stacked.
- the acid dianhydride constituting the acid dianhydride residue (A1) may contain residues of known acid dianhydrides. Specific examples include 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2'dimethyl-3,3',4,4'-biphenyltetracarboxylic dianhydride, and 5,5'dimethyl-3,3',4,4'-biphenyltetracarboxylic dianhydride. Among these, 3,3',4,4'-biphenyltetracarboxylic dianhydride is particularly preferred from the viewpoint of ease of availability.
- Diamines constituting the diamine residue (A2) include 4,4'-biphenyldiamine, 2,2'-dimethylbiphenyl-4,4'-diamine, 4,4'-diamino-3,3',5,5'-tetramethylbiphenyl, 4,4'-diamino-3,3'-dimethylbiphenyl, 2,2'-benzidine disulfonic acid, 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl, 4,4'-diamino-3,3'-diethylbiphenyl dihydrochloride, octafluorobenzidine, and 4,4'-diamino-3,3'-dimethoxybiphenyl.
- the diamine residue (A2) is a diamine residue having a structure represented by the following formula (6).
- the effect of the methyl group is that it is possible to improve the solubility in a solvent while maintaining the rigidity of the resin (A). This allows a smooth coating film to be obtained, and it is possible to further suppress poor lamination caused by poor in-plane uniformity of the coating film during the substrate lamination process.
- * 6 represents a bonding site connecting to the nitrogen atom of the imide group in the structural unit represented by formula (1) above or the amide bond in the structural unit represented by formula (2) above.
- the diamine residue (A3) having the structure represented by formula (5) (hereinafter also referred to as “diamine residue (A3)”) is a flexible diamine residue having a siloxane bond.
- R 17 to R 20 each independently represent an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a phenyl group, or a phenoxy group.
- R 21 and R 22 may be the same or different, and each represent an alkylene group or a phenylene group having 1 to 30 carbon atoms.
- n is an integer of 1 to 20.
- the diamine residue (A3) has a silicone structure, and the resin composition can obtain high adhesiveness.
- n is 20 or less, compatibility with other monomers is improved when polymerizing the resin (A), and polymerization of the resin becomes easy.
- a more preferable range of n is 10 or less, and this allows the silicone structure-containing moiety to be dispersed and present in the resin (A), thereby obtaining uniform adhesiveness in the coating film.
- the resin (A) contained in the resin composition contains diamine residues (A3) in an amount of 1.0 mol % or more and 20 mol % or less relative to the total of 100 mol % of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A).
- the resin (A) contained in the resin composition contains 1.0 mol% or more of diamine residue (A3) relative to the total of 100 mol% of the acid dianhydride residues (X1) and (X2) and diamine residues (Y1) and (Y2) contained in the resin (A), thereby imparting adhesiveness to the resin composition (A).
- a more preferred range of the content of diamine residue (A3) is 2.0 mol% or more relative to the total of 100 mol% of the acid dianhydride residues (X1) and (X2) and diamine residues (Y1) and (Y2) contained in the resin (A). This allows the diamine residue (A3), which is a component involved in adhesion, to be uniformly present in the resin (A). Therefore, in the process of bonding the substrates, uneven adhesion is less likely to occur, and adhesion failure can be reduced, particularly when bonding a thin film of the resin composition is performed.
- the diamine residue (A3) is contained in an amount of 20 mol% or less relative to the total of 100 mol% of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A). This improves heat resistance when the substrates are heated after bonding, thereby suppressing clouding and peeling of the film caused by decomposition gas.
- a more preferred range of the diamine residue (A3) is 17 mol% or less relative to the total of 100 mol% of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A). This prevents excessive softening of the adhesive layer during heat treatment, and provides excellent dimensional stability during heat treatment.
- n may be a single value or may be a mixture of multiple values of n, so n in formula (5) represents an average value.
- the diamine constituting the diamine residue (A3) is preferably tetramethyl-1,3-bis(3-aminopropyl)disiloxane, ⁇ , ⁇ -bis(3-aminopropyl)polydimethylsiloxane, or a combination thereof.
- Preferred combinations of the acid dianhydride constituting the acid dianhydride residue (A1), the diamine constituting the diamine residue (A2), and the diamine constituting the diamine residue (A3) include a combination of 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2'-dimethylbiphenyl-4,4'-diamine, and tetramethyl-1,3-bis(3-aminopropyl)disiloxane, and a combination of 3,3',4,4'-biphenyltetracarboxylic dianhydride, 4,4'-diamino-3,3'-dimethylbiphenyl, and ⁇ , ⁇ -bis(3-aminopropyl)polydimethylsiloxane.
- Resin (A) contains Si atoms in an amount of 0.5 parts by mass or more and 5.0 parts by mass or less per 100 parts by mass of resin (A).
- resin (A) contains Si atoms in an amount of 0.5 parts by mass or more, it is possible to bond the entire surface of the substrate and the device substrate.
- a more preferable content of Si atoms is 2.0 parts by mass or more per 100 parts by mass of resin (A).
- resin (A) contains Si atoms in this range, the adhesiveness is further improved, so that it is possible to suppress the bonding of the substrate in a thin film and the peeling after the device is singulated.
- resin (A) contains 5.0 parts by mass or less of Si atoms per 100 parts by mass of resin (A), it is possible to maintain high heat resistance of resin (A), so that it is possible to reduce the peeling of the substrate and the generation of voids due to degassing when the bonded substrate is heat-treated.
- a more preferable range of the content of Si atoms is 4.0 parts by mass or less per 100 parts by mass of resin (A). This allows both adhesion and dimensional stability to be achieved, allowing substrates to be bonded together without peeling or warping.
- the proportion of Si atoms in resin (A) can be determined by elemental analysis of resin (A).
- the Si atoms contained in the resin (A) may be derived from a diamine residue (A3) or from a monomer having a silsesquioxane structure.
- the resin (A) contains a diamine residue (A3), it is possible to impart uniform adhesiveness to the resin composition.
- the resin (A) may have a monomer residue other than the acid dianhydride residue (A1), the diamine residue (A2), and the diamine residue (A3).
- monomer residues include residues of monomers having a silsesquioxane structure.
- the acid dianhydride residue other than the acid dianhydride residue (A1) may contain residues of known acid dianhydrides, and preferably contains residues of aromatic tetracarboxylic acid dianhydrides.
- Specific examples of the residue of aromatic tetracarboxylic dianhydride include pyromellitic dianhydride, 2,3,3',4'-biphenyl tetracarboxylic dianhydride, 2,2',3,3'-biphenyl tetracarboxylic dianhydride, 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, 2,3,3',4'-diphenyl ether tetracarboxylic dianhydride, 2,2',3,3'-diphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 2,2',3,3'-benzoph
- resin (A) may contain a residue of a tetracarboxylic dianhydride having an aliphatic ring as an acid dianhydride residue other than the acid dianhydride residue (A1), to the extent that the heat resistance of resin (A) is not impaired.
- Resin (A) may contain
- resin (A) may contain residues of known diamines as diamine residues other than diamine residues (A2) and diamine residues (A3).
- diamines include p-phenylenediamine, m-phenylenediamine, 2,5-diaminotoluene, 2,4-diaminotoluene, 3,5-diaminobenzoic acid, 2,6-diaminobenzoic acid, 2-methoxy-1,4-phenylenediamine, 4,4'-diaminobenzanilide, 3,4'-diaminobenzanilide, 3,3'-diaminobenzanilide, 3,3'-dimethyl-4,4'-diaminobenzanilide, 9,9-bis(4-aminophenyl)fluorene, 9,9-bis(3-aminophenyl)fluorene, 9,9-bis(3-methyl-4-aminophenyl)fluorene
- the molecular weight of resin (A) can be adjusted by using equimolar amounts of the acid dianhydride component and the diamine component used in the synthesis, or by using an excess of either one. Either the acid dianhydride component or the diamine component can be used in excess, and the polymer chain ends can be blocked with an end-capping agent such as an acid component or an amine component. Dicarboxylic acids or their anhydrides are preferably used as end-capping agents for the acid component, and monoamines are preferably used as end-capping agents for the amine component. In this case, it is preferable to use equimolar amounts of the acid equivalent of the tetracarboxylic acid component, including the end-capping agent for the acid component or amine component, and the amine equivalent of the diamine component.
- the monoamines that can be used as the terminal blocking agent for the amine component can be any known monoamine, of which aniline, 5-amino-8-hydroxyquinoline, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 3-amino-4,6-dihydroxypyrimidine, 3-aminophenol, 4-aminophenol, etc. are preferred. Two or more of these may be used as the terminal blocking agent for the amine component.
- terminal blocking agent for the acid component compounds such as monocarboxylic acid, monoacid chloride compound, monoactive ester compound, acid anhydrides such as phthalic anhydride, maleic anhydride, nadic anhydride, cyclohexanedicarboxylic anhydride, monocarboxylic acids such as 3-carboxyphenol, 1-hydroxy-6-carboxynaphthalene, and monoacid chloride compounds in which the carboxyl group of these is acid chloride, monoacid chloride compounds in which only one carboxyl group of dicarboxylic acids such as terephthalic acid, phthalic acid, maleic acid, and the like is acid chloride, and active ester compounds obtained by reacting monoacid chloride compounds with N-hydroxybenzotriazole, imidazole, or N-hydroxy-5-norbornene-2,3-dicarboximide are preferred. Two or more of these may be used as the terminal blocking agent for the acid component.
- the weight average molecular weight of the resin (A) is preferably 5000 or more and 50000 or less.
- the weight average molecular weight of the resin (A) is preferably 5000 or more from the viewpoint of heat resistance, more preferably 8000 or more from the viewpoint of reliability when used permanently as an adhesive in a device, preferably 50000 or less from the viewpoint of viscosity of the resin composition when handling film formation and varnish, and more preferably 30000 or less from the viewpoint of ease of production of the resin (A).
- the weight average molecular weight of resin (A) can be calculated as a polystyrene equivalent value by performing gel permeation chromatography (GPC) analysis on a solution in which resin (A) is dissolved in N-methyl-2-pyrrolidone to give a resin concentration of 0.1% by weight.
- GPC gel permeation chromatography
- the proportion of F atoms contained in resin (A) is preferably small from the viewpoint of adhesion, and is preferably 2.0 parts by mass or less per 100 parts by mass of resin (A). This allows for high adhesion to the substrate. More preferably, the content of F atoms is 0.2 parts by mass or less per 100 parts by mass of resin (A). This allows for high adhesion when the resin layer is made thin.
- the molar ratio of the dianhydride component/diamine component of resin (A) can be adjusted as appropriate so that the resin composition containing resin (A) is in a range that is easy to use in coating, etc. It is common to adjust the molar ratio of the dianhydride component/diamine component to a range of 100/100 to 100/95, or 100/100 to 95/100. If the molar ratio of the dianhydride component/diamine component of resin (A) is outside the above range, the molecular weight of resin (A) will decrease, and the mechanical strength of the formed film will decrease. This may result in uneven adhesion, so it is preferable to adjust the molar ratio within a range in which the adhesion is stable.
- the resin (A) may be a polyimide precursor that undergoes ring closure upon heating to become a polyimide, a polyimide that has undergone ring closure upon heating, or a polyimide precursor in which part of the resin has undergone ring closure upon heating.
- polymerizing resin (A) there are no particular limitations on the method for polymerizing resin (A).
- polyamic acid which is a polyimide precursor
- tetracarboxylic dianhydride and diamine are stirred in an organic solvent at 0 to 100°C for 1 to 100 hours to obtain a polyamic acid resin solution.
- resin (A) is soluble in an organic solvent, after polymerization of polyamic acid, the temperature is raised to 120 to 300°C and stirred for 1 to 100 hours to convert it to polyimide, and a solution of resin (A) is obtained.
- toluene, o-xylene, m-xylene, p-xylene, etc. may be added to the reaction solution, and the water produced by the imidization reaction may be removed by azeotroping with these solvents.
- the resin composition of the present embodiment contains a solvent.
- a solvent By including a solvent, the viscosity of the resin composition can be adjusted, and the thickness of the cured product described later can be adjusted.
- the content of the solvent is preferably 100 parts by mass or more and 2000 parts by mass or less per 100 parts by mass of the resin (A), and can be selected according to the desired film thickness.
- the solvent used in the resin composition of the present embodiment the solvent used in the polymerization may be used as it is, or another solvent may be added thereto to form a mixed solvent.
- the polymerization solvent may be removed from the polymerization liquid of the polymerized resin (A), and another solvent and the resin (A) may be mixed to form a resin composition.
- the solvent include polar aprotic solvents such as gamma-butyrolactone, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-propyl ether, diethylene glycol mono-n-butyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol ethers such as ethylene glycol mono-n-propyl ether, propylene glycol mono-n-butyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, dipropylene glycol glycol
- N-methylpyrrolidone N-dimethylacetamide, N-diethylacetamide, cyclohexanone, and ethyl lactate are preferably used.
- the solvent may be used alone or in combination with two or more kinds, and is not limited to the above-mentioned solvents as long as it is compatible with the resin (A).
- the viscosity of the solvent is 1.8 mPa ⁇ s or more and 3.1 mPa ⁇ s or less.
- a solvent viscosity of 1.8 mPa ⁇ s or more it is possible to suppress shrinkage of the coating film at the edges of the substrate and wrap around to the back surface of the substrate when the resin composition is applied to the substrate, and by making the film thickness at the edges uniform, it is possible to improve adhesion at the edges and also suppress transportation errors when passing through the process.
- a solvent viscosity of 3.1 mPa or less it is possible to increase the in-plane uniformity of the coating film.
- solvents with a viscosity of 1.8 mPa ⁇ s or more and 3.1 mPa ⁇ s or less examples include diacetone alcohol (viscosity: 2.90 mPa ⁇ s), cyclohexanone (viscosity: 1.97 mPa ⁇ s), ethyl lactate (2.44 mPa ⁇ s), dimethylimidazolidinone (viscosity: 2.63 mPa ⁇ s), and 3-methoxy-N,N-dimethylpropanamide (viscosity: 2.04 mPa ⁇ s).
- the resin composition of the present embodiment preferably contains a silane coupling agent.
- the silane coupling agent is preferably added at a temperature of room temperature to 50° C. after polymerization of the resin (A).
- the preferred content of the silane coupling agent in the resin composition is preferably 1.0 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the resin (A).
- the adhesiveness to the substrate can be improved.
- the resin composition contains 3.0 parts by mass or more of the silane coupling agent with respect to 100 parts by mass of the resin (A). This makes it possible to suppress peeling of the device substrate or the singulated substrate even when the process of thinning or dicing the device is performed after the substrates are bonded together.
- a more preferred content of the silane coupling agent in the resin composition is 7.0 parts by mass or less relative to 100 parts by mass of the resin (A).
- silane coupling agent examples include vinyltrimethoxysilane, vinyltriethoxysilane, epoxycyclohexylethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 7-octenyltrimethoxysilane, 8-glycidoxyoctyltrimethoxysilane, 8-methacryloxyoctyltrimethoxysilane, and N-2-(aminoethyl)-8-aminooctyltrimethoxysilane.
- R 23 represents an alkylene group having 5 to 10 carbon atoms.
- R 24 each independently represents an alkyl group having 1 to 5 carbon atoms.
- Z represents a hydrogen atom or a group represented by any one of the following formulas (8) to (14).
- Silane coupling agents having a structure represented by formula (8) include 8-glycidoxyoctyltrimethoxysilane, 6-glycidoxyhexyltrimethoxysilane, etc.
- Silane coupling agents having a structure represented by formula (9) include 7-octenyltrimethoxysilane, 7-octenyltriethoxysilane, etc.
- Silane coupling agents having a structure represented by formula (10) include 8-methacryloxyoctyltrimethoxysilane.
- Silane coupling agents having a structure represented by formula (11) include N-2-(aminoethyl)-8-aminooctyltrimethoxysilane, N-2-(aminoethyl)-6-aminohexyltrimethoxysilane, etc.
- Silane coupling agents having a structure represented by formula (12) include 1-(6-(trimethoxysilyl)hexyl)urea), etc.
- Silane coupling agents having a structure represented by formula (13) include 1-(6-(trimethoxysilyl)hexyl)thiourea), etc.
- An example of a silane coupling agent having a structure represented by formula (14) is 8-phenyloctyltrimethoxysilane.
- the silane coupling agent containing the compound represented by formula (7) has good compatibility with resin (A) and has a higher adhesion improving effect, so that peeling can be prevented even when the substrate after bonding is subjected to a heat treatment of 250°C or more.
- the preferred amount of the silane coupling agent containing the compound represented by formula (7) to be added is the same as the preferred amount of the silane coupling agent described above.
- the resin composition of the present embodiment may contain inorganic particles from the viewpoint of improving dimensional stability and heat resistance.
- the content of the inorganic particles in the resin composition is preferably 2.0 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the resin (A).
- the content of the inorganic particles in the resin composition is 2.0 parts by mass or more with respect to 100 parts by mass of the resin (A)
- an effect of improving dimensional stability is obtained.
- the content of the inorganic particles in the resin composition is 10 parts by mass or less with respect to 100 parts by mass of the resin (A)
- the adhesiveness of the resin composition is maintained.
- examples of inorganic particles include silica, alumina, titanium oxide, quartz powder, magnesium carbonate, potassium carbonate, barium sulfate, mica, talc, etc.
- silica particles are preferable from the viewpoint of heat resistance.
- the resin composition of the present embodiment may contain a crosslinking agent.
- a crosslinking agent By containing a crosslinking agent, the chemical resistance and heat resistance are improved after the resin composition is cured, and the processability and reliability of the device are improved.
- a known crosslinking agent can be used, and an epoxy-based crosslinking agent, an acrylic-based crosslinking agent, a methylol-based crosslinking agent, or the like can be selected.
- the resin composition of the present embodiment may contain a resin other than the resin (A) within a range that does not impair the effects of the present invention.
- a surfactant may be added for the purpose of improving properties such as adhesion, heat resistance, coatability, and storage stability.
- the other resins and surfactants may be added during or after polymerization of the resin (A).
- Examples of other resins include acrylic resins, epoxy resins, polystyrene resins, novolac resins, polybenzoxazole resins, silicone resins, etc.
- Examples of surfactants include silane-based surfactants, acrylic-based surfactants, and fluorine-based surfactants.
- the curing temperature and curing time are the temperature and time required to volatilize the solvent contained in the resin composition and to make the resin (A) into a film that does not flow at room temperature. Specifically, the temperature is 100°C to 300°C, and the time is several minutes to several hours.
- the cured product may be a film-like cured product made by forming a coating film from the resin composition.
- the thickness of the cured product can be made constant, and unevenness can be eliminated in the subsequent formation of a laminate and in the subsequent bonding to a device substrate.
- a method for forming the cured product into a film can be exemplified by a method in which the resin composition is applied to a substrate or the like, followed by the above-mentioned heat treatment.
- a known method can be selected as a method for applying the resin composition, and examples of such methods include rotary application using a spinner, spray application, roll coating, screen printing, blade coater, die coater, calendar coater, meniscus coater, bar coater, roll coater, comma roll coater, gravure coater, screen coater, and slit die coater.
- the glass transition temperature of the cured product is preferably 150°C or higher from the viewpoint of dimensional stability during heat treatment, and is preferably 260°C or lower from the viewpoint of ease of lamination.
- the glass transition temperature can be measured using a differential scanning calorimeter (DSC) or thermomechanical analysis (TMA). A more detailed method for measuring the glass transition temperature is described in the examples below.
- the coefficient of linear thermal expansion (CTE) of the cured product is preferably 30 ppm/K or more from the viewpoint of adhesion, and is preferably 100 ppm/K or less from the viewpoint of reducing warping when bonding a device or a substrate and peeling caused by warping.
- the coefficient of linear thermal expansion can be calculated, for example, according to the following formula (X), as the ratio of the change in sample length from a temperature 80° C. lower to a temperature 30° C. lower than the glass transition temperature of each cured product.
- thermomechanical analysis A more detailed method for measuring the linear thermal expansion coefficient is described in the Examples section below.
- the 1% weight loss temperature of the cured product is preferably 300° C. or higher and 600° C. or lower, from the viewpoint of heat resistance required in processes using the cured product.
- the 1% weight loss temperature is measured using a thermogravimetric analyzer by holding the sample at 120° C. for 30 minutes and then increasing the temperature to 500° C. at a rate of 5° C./min.
- the laminate of this embodiment is preferably one in which the cured product is laminated on a substrate.
- the substrate include inorganic substrates, organic substrates, and organic films such as films.
- substrates such as silicon, alkali glass, non-alkali glass, borosilicate glass, sapphire, quartz, and ceramics, II-VI group compound semiconductors such as ZnS and ZnCe, III-V group compound semiconductors such as GaN, InP, GaAs, AlN, and GaAlAs, IV-IV group compound semiconductors such as SiC, substrates containing oxide semiconductors such as LT, LN, and IGZO, organic substrates and films such as PET, aramid, polyester, polypropylene, cycloolefin, and polyimide, and combinations of these, as well as those in which circuits, patterns, and elements are formed.
- a method for forming a cured product on a substrate a method for forming a film-like cured product can be used.
- the laminate may be configured by bonding the above-mentioned substrates together with the cured product, or by bonding individualized elements to the above-mentioned laminate.
- the substrates bonded together with the cured product may be the same or different, and depending on the application, device substrates may be bonded together, or a device substrate may be bonded to a support substrate that protects it.
- a laminate in which substrates are bonded together can be created by bonding another substrate to the exposed surface of the cured product of the laminate in which the cured product is laminated on the substrate.
- Examples of bonding methods include a method of bonding using a press, a roll laminator, etc., and when laminating individualized elements, a flip chip bonder can also be used.
- the substrates When bonding, the substrates may be heated and bonded as necessary.
- the temperature at this time is preferably 50°C or higher and 250°C or lower, and the more preferable bonding temperature is the glass transition temperature of the resin (A) or higher.
- the pressure bonding temperature is preferably 200°C or less. This can suppress damage to the device substrate.
- the pressure during compression is preferably 0.1 MPa or more and 5.0 MPa or less, and more preferably 0.2 MPa or more and 3.0 MPa or less.
- Compression bonding may be performed in air or nitrogen. It is preferable to perform the compression bonding under reduced pressure conditions or in a vacuum, as this can reduce the entrapment of air during compression bonding.
- the laminate may further have multiple layers made of a cured product.
- a laminate having multiple layers made of a cured product can be produced by repeating a process of forming a further cured product on one side of the laminate in which the above-mentioned substrates are bonded together, or the laminate in which the substrate and the singulated element are bonded together, and then pressing the surface on which the cured product is exposed to another substrate or singulated element. It can also be produced by repeatedly pressing one side of a laminate in which substrates are bonded together, or the laminate in which the substrate and the singulated element are bonded together, to the surface on which the cured product is exposed of a laminate in which a cured film is formed on another substrate or singulated element.
- the thickness of the cured product in the laminate is preferably 0.5 ⁇ m or more and 8.0 ⁇ m or less.
- the thickness of the cured product in the laminate is preferably 0.5 ⁇ m or more, which allows the substrates to be stably bonded together. More preferably, the thickness of the cured product is 1.0 ⁇ m or more, which allows the device to go through the thinning heat treatment process after bonding without damage or peeling.
- the thickness of the cured product is preferably 8.0 ⁇ m or less, which reduces the effect of the adhesive thickness on thin devices. More preferably, the thickness is 5.0 ⁇ m or less, which reduces warping of the laminate.
- the thickness of the cured film can be measured using a scanning electron microscope, optical film thickness gauge, step gauge, laser microscope, etc.
- the laminate preferably has a compound semiconductor layer, and such a laminate can be applied to various semiconductor devices such as high-frequency devices, high-output devices, laser diodes, lighting using light-emitting diodes, and displays.
- the compound semiconductor layer is a layer made of a compound semiconductor. Examples of compound semiconductors include, but are not limited to, those exemplified in the description of the laminate above.
- This embodiment is a semiconductor device having the laminate.
- a semiconductor device having a semiconductor element will be described with reference to the drawings, taking a display using a monolithic LED element as an example.
- Fig. 1 is an enlarged cross-sectional view of the mounting portion of the LED element of a monolithic LED.
- Fig. 1 shows a state in which a monolithic LED element 1 is mounted on a circuit board 2 so as to be conductive with the circuit board 2.
- a first LED layer 10 in which a first n-type GaN layer 111, a first light-emitting layer 112, a first p-type GaN layer 113, and a first transparent electrode 114 are formed in this order on a first sapphire substrate 110, is laminated with a second LED layer 20, in which a second n-type GaN layer 121, a second light-emitting layer 122, a second p-type GaN layer 123, and a second transparent electrode 124 are formed in this order, via a second adhesive layer 220 made of the cured product of this embodiment at the interface between the first transparent electrode 114 and the second transparent electrode 124.
- the second LED layer is laminated with a third LED layer 30 in which a third n-type GaN layer 131, a third light-emitting layer 132, a third p-type GaN layer 133, and a third transparent electrode 134 are formed in this order, and a third adhesive layer 230 made of the cured product of this embodiment is laminated at the interface between the second n-type GaN layer 121 and the third transparent electrode 134.
- each layer is electrically connected by an electrode 320, and the parts other than the connected layers are insulated by a passivation layer 310.
- the laminate using the cured product of this embodiment has excellent dimensional stability, so that even when a laminate having such a large number of layers is formed, it does not warp or peel off, and a highly reliable device can be created.
- the present embodiment is a method for manufacturing a semiconductor device using the laminate of the present embodiment, characterized in that it includes at least one of a step of thinning the laminate and a step of singulating the laminate.
- the method for manufacturing a semiconductor device may also include a step of thinning the device.
- Figures 3A to 3K show an example of the manufacturing process for the monolithic LED display shown in Figure 1.
- a first n-type GaN layer 111, a first light-emitting layer 112, and a first p-type GaN layer 113 are epitaxially grown in this order on a first sapphire substrate 110 using a known method.
- ITO is formed by deposition on the surface of the first p-type GaN layer 113 as a first transparent electrode 114, and a laminate is prepared in which the first LED layer 10 is laminated on the first sapphire substrate 110.
- an electrode via is formed from the first transparent electrode 114 side to the first n-type GaN layer 111.
- a known method can be used to form the via, and a dry etching method can be applied. This is step (3-a).
- the second LED layer 20 is formed on the second sapphire substrate 120 in the same manner as described above, and the second adhesive layer 220 made of the cured product of this embodiment is formed on the surface of the second transparent electrode 124.
- the surface of the first transparent electrode 114 of the first LED layer 10 and the surface of the second adhesive layer 220 are brought face to face, and the two laminates are bonded together.
- a known bonding device can be used for bonding, and it is particularly preferable to use a wafer bonder and perform the bonding while heating under reduced pressure conditions. This is step (3-b).
- the second sapphire substrate 120 is removed. Removal methods include mechanical peeling by polishing and peeling by laser, with peeling by laser being preferred in terms of processing speed and reuse of the sapphire substrate.
- peeling the sapphire substrate with a laser a laser with a wavelength that penetrates the sapphire substrate is irradiated from the surface of the sapphire substrate opposite the surface in contact with the n-type GaN layer, and the n-type GaN layer is ablated at the interface between the sapphire substrate and the n-type GaN layer, thereby peeling it off. Examples of laser wavelengths for peeling the sapphire substrate include 248 nm and 266 nm. This is step (3-c).
- step (3-d) vias are created from the second n-type GaN layer 121 side.
- the vias are created so as to reach the vias formed in step (3-a), the first transparent electrode 114, and the second transparent electrode 124, respectively. This is referred to as step (3-d).
- step (3-e) is step (3-e).
- step (3-f) the first sapphire substrate 110 of the laminate is thinned by polishing, and then the third sapphire substrate 130 is peeled off and removed. This is step (3-f).
- vias are formed from the surface of the third n-type GaN layer 131.
- the vias are formed so as to reach the already formed vias, the second n-type GaN layer 121, and the third transparent electrode 134. This is step (3-g).
- a passivation layer 310 is formed on the surface of the third n-type GaN layer 131 and on the side surfaces of each via.
- the passivation layer can be formed by a known method, and can be formed by sputtering an inorganic material such as SiO2 using a resist or a metal mask. This is referred to as step (3-h).
- the inside of the via and the conductive portion with the circuit board 2 are filled with a metal to be used as an electrode by plating or the like to create the electrode 320. It is preferable to use Au or an alloy thereof as the electrode material. This is step (3-i).
- the completed LED device is then singulated to the size of the element. It is preferable to singulate using a mask, such as dry etching. This is referred to as step (3-j).
- the obtained LED element is mounted on the circuit board 2.
- Known devices can be used for mounting, including a method of individually mounting the LED elements at the desired positions on the circuit board using a flip chip bonder, a method of mounting multiple LED elements at once using a stamp method, and a laser transfer method in which the LED element is temporarily attached to the exposed surface of a laser-transparent substrate on which another transfer material has been laminated, and then a laser is irradiated from the laser-transparent substrate side to mount it at the desired position. This is process (3-k).
- a resin composition comprising a resin (A) having at least one structural unit selected from a structural unit represented by formula (1) and a structural unit represented by formula (2), and a solvent, With respect to 100 mol % in total of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A), the resin (A) contains at least one of an acid dianhydride residue (A1) having a structure represented by formula (3) and a diamine residue (A2) having a structure represented by formula (4) in a total amount of 10 mol % or more and 40 mol % or less, The resin (A) contains 1.0 mol % or more and 20 mol % or less of a diamine residue (A3) having a structure represented by formula (5), A resin composition, wherein a ratio of all Si atoms contained in the resin (A) is 0.5 parts by mass or more and 5.0 parts by mass or less per 100 parts by mass
- X1 and X2 each independently represent a tetravalent acid dianhydride residue having 4 to 50 carbon atoms
- Y1 and Y2 each independently represent a divalent diamine residue having 2 to 100 carbon atoms
- R1 and R2 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkylsilyl group having 1 to 10 carbon atoms, an alkali metal atom, an ammonium group, an imidazolium group, or a pyridinium group.
- R 3 to R 16 each independently represent a hydrogen atom, a monovalent organic group having 1 to 20 carbon atoms, a hydroxyl group, or a halogen atom.
- R 17 to R 20 each independently represent an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a phenyl group, or a phenoxy group.
- R 21 and R 22 each independently represent an alkylene group or a phenylene group having 1 to 30 carbon atoms.
- n represents an integer from 1 to 20.
- * 3a and * 3b represent a bonding site connected to an imide group in the structural unit represented by formula (1), or * 3a represents a bonding site connected to a carbon atom of an amide bond in the structural unit represented by formula (2), and * 3b represents a bonding site connected to a carbon atom of a carboxylic acid or a carboxylate ester in the structural unit represented by formula (2).
- * 4, and * 5 represents a bonding site connected to the nitrogen atom of the imide group in the structural unit represented by formula (1) or the amide bond in the structural unit represented by formula (2).
- * 6 represents a bonding site connected to the nitrogen atom of the imide group in the structural unit represented by formula (1) or the amide bond in the structural unit represented by formula (2).
- ⁇ 7> The resin composition according to any one of the above ⁇ 1> to ⁇ 6>, further comprising inorganic particles.
- ⁇ 8> A cured product obtained by curing the resin composition according to any one of ⁇ 1> to ⁇ 7> above.
- ⁇ 9> A laminate having the cured product according to the above item ⁇ 8>.
- ⁇ 10> The laminate according to the above item ⁇ 9>, wherein the thickness of the cured product is 0.5 ⁇ m or more and 8.0 ⁇ m or less.
- ⁇ 11> The laminate according to the above item ⁇ 9> or ⁇ 10>, wherein the laminate has a plurality of layers made of the cured product.
- a diamine that gives the structure of diamine residue (A2) after polymerization is 1.
- m-TB 2,2'-dimethyl-4,4'-diaminobiphenyl.
- LP-7100 Tetramethyl-1,3-bis(3-aminopropyl)disiloxane.
- n in formula (5) is 1.
- APPS2 ⁇ , ⁇ -bis(3-aminopropyl)polydimethylsiloxane.
- the number average molecular weight is 860, and the average of n in formula (5) is 9.
- DDS 3,3'-diaminodiphenyl sulfone (manufactured by Konishi Chemical Industry Co., Ltd.)
- BAHF 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (manufactured by Merck Electronics Co., Ltd.)
- NMP N-methylpyrrolidone.
- Solvent used in polymerization and compounding (Mitsubishi Chemical Corporation, viscosity: 1.70 mPa ⁇ s)
- CHN Cyclohexanone. Solvent used in polymerization and blending.
- KBM-5803 8-methacryloxyoctyltrimethoxysilane.
- KBM-6803 N-2-(aminoethyl)-8-aminooctyltrimethoxysilane.
- Examples 1 to 37 and Comparative Examples 1 to 6 The polyimide/polyamic acid copolymer polymerization solutions obtained in Production Examples 1 to 27 were mixed and stirred with a silane coupling agent, inorganic particles, and a solvent according to the contents of Tables 4 to 6 to prepare resin compositions 1 to 43. The resin compositions were filtered through a PTFE filter with a pore size of 0.5 ⁇ m. Using these resin compositions, evaluation samples were prepared by the above-mentioned method, and various evaluations were performed. The evaluation results are shown in Tables 7 to 9.
- Example 1 the resin (A) contains at least one of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) in a total amount of 100 mol % relative to the total amount of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A), and therefore the linear thermal expansion coefficient could be made lower than that of Comparative Example 1.
- the warping of the substrate due to heat treatment could be reduced, and peeling of the laminate after heat treatment could be reduced.
- Example 7 contains at least one of the acid dianhydride residue (A1) and the diamine residue (A2) in a total amount of 15 mol % or more, the coefficient of linear thermal expansion is further reduced, and peeling of the laminate after heat treatment can be further improved.
- Example 2 the resin (A) contains at least one of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) in a total amount of 40 mol % or less relative to 100 mol % of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A), and therefore the glass transition temperature could be made to be an appropriate value compared to Comparative Example 2. As a result, the initial adhesiveness of the laminate could be improved.
- Example 8 the total content of at least one of the acid dianhydride residue (A1) and the diamine residue (A2) was set to 30 mol % or less, thereby further improving the initial adhesion of the laminate, and in particular significantly improving the adhesion of the thin film.
- Example 3 the ratio of all Si atoms contained in the resin (A) was 0.5 parts by mass or more per 100 parts by mass of the resin (A), so that the laminate was easier to attach to the entire surface of the substrate compared to Comparative Example 3.
- Example 9 the ratio of all Si atoms contained in the resin (A) was 2.0 parts by mass or more per 100 parts by mass of the resin (A), and therefore the initial adhesion of the laminate was further improved.
- Example 4 the ratio of all Si atoms contained in the resin (A) was 5.0 parts by mass or less relative to 100 parts by mass of the resin (A), and therefore the thermal stability was excellent and the 1% weight loss temperature was improved compared to Comparative Example 4. As a result, when the laminate was heat-treated, clouding and peeling due to decomposition of the Si component could be suppressed. In Example 10, the ratio of all Si atoms contained in the resin (A) was 4.0 parts by mass or less per 100 parts by mass of the resin (A), and therefore the coefficient of linear thermal expansion was further reduced, thereby improving the adhesion of the laminate after heat treatment.
- Example 5 the resin (A) contains 1.0 mol % or more of the diamine residue (A3) relative to the total of 100 mol % of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A). Therefore, the Si component involved in adhesion is distributed throughout the cured product. As a result, the initial adhesion of the laminate was improved compared to Comparative Example 5.
- the resin (A) contains 2.0 mol % or more of the diamine residue (A3) relative to the total of 100 mol % of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A). Therefore, the Si component is more uniformly distributed, and the adhesion of the laminate near the outer periphery of the substrate can be further improved.
- Example 6 the resin (A) contains 20 mol % or less of the diamine residue (A3) relative to the total of 100 mol % of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A). Therefore, the heat resistance was improved, and unlike Comparative Example 6, clouding of the film caused by decomposition gases during heat treatment of the laminate could be suppressed.
- the resin (A) contains 17 mol% or less of the diamine residue (A3) relative to the total of 100 mol% of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A), so that the linear thermal expansion coefficient and the glass transition temperature were optimized and excessive softening of the film during heat treatment could be suppressed. As a result, the adhesion of the laminate after heat treatment could be greatly improved.
- Example 29 has m-TB represented by formula (6) as the diamine residue (A2), and therefore the stability of the polymer in the varnish can be improved and the thickness uniformity of the coating film can be improved compared to Example 11. As a result, the adhesiveness, particularly in thin films, can be improved.
- Example 31 the solvent constituting the resin element was CHN having a viscosity of 1.8 mPa ⁇ s or more, and the edge coating property when forming a coating film was improved. As a result, the adhesion of the laminate, especially in the thin film, was improved compared to Examples 11 and 30.
- Example 33 and 34 In Examples 33 and 34, the use of DAA or DMI, which has a viscosity of 3.1 mPa ⁇ s or less, as the solvent constituting the resin component improved the applicability when forming a coating film. As a result, the adhesion of the laminate was improved compared to Examples 11 and 30.
- Example 35 has m-TB represented by formula (6) as the diamine residue (A2), and therefore the stability of the polymer in the varnish can be improved and the thickness uniformity of the coating film can be improved compared to Examples 11 and 34. As a result, the adhesiveness, particularly in thin films, can be improved.
- DMI which has a viscosity of 1.8 mPa ⁇ s or more
- Example 13 the diamine residue (A2) contained 2,2'-dimethyl-4,4'-diaminobiphenyl, which has the structure of formula (6), and thus both the initial adhesion of the laminate and the adhesion after heat treatment were improved compared to Example 12.
- the number of repeating units n of the diamine residue (A3) was 1, both the heat resistance and the adhesiveness were improved compared to Example 29.
- Example 14 to 18 the resin composition contained a silane coupling agent, and thus the initial adhesion of the laminate was improved compared to Example 12. Similarly, in Example 23, the initial adhesion of the laminate was improved compared to Example 13, particularly in the case of a thin film.
- Example 19 to 22 and 24 the resin composition contained a silane coupling agent represented by formula (7), and the initial adhesion of the laminate and the adhesion after heat treatment were further improved compared to Example 17.
- Examples 25 to 27 In Examples 25 to 27, the resin composition contained inorganic particles, and thus the coefficient of linear thermal expansion was lower than in Examples 12 and 13, and the decrease in adhesion due to heat treatment of the laminate was significantly reduced.
- Example 28 the resin composition contains both the silane coupling agent represented by formula (7) and inorganic particles, so that peeling due to insufficient adhesion and peeling during heat treatment due to warping of the substrate can be efficiently suppressed. As a result, compared with Example 24, peeling of the laminate after heat treatment can be further reduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
本発明は、樹脂組成物、硬化物、積層体、半導体装置および半導体装置の製造方法に関する。より詳しくは、半導体デバイスの薄化に好適に用いられる樹脂組成物、およびそれを用いた硬化物、積層体、半導体装置、および半導体装置の製造方法に関する。 The present invention relates to a resin composition, a cured product, a laminate, a semiconductor device, and a method for manufacturing a semiconductor device. More specifically, the present invention relates to a resin composition that is suitable for thinning semiconductor devices, and a cured product, a laminate, a semiconductor device, and a method for manufacturing a semiconductor device that use the resin composition.
近年、半導体装置において、小型化および薄膜化が急速に進んでいる。例えば、半導体デバイスの処理速度向上や低コスト化の観点からデバイスの薄膜化が要求されている。また、μLEDを用いた表示用の装置が提案されており、表示用装置の高解像度化、μLEDチップのコスト削減の観点から、更なる小型化、薄膜化要求がある。照明などに用いる場合、デザイン性や低コスト化の観点からさらなる薄膜化が要求されている。また、これらの半導体装置は、はんだリフローなどの熱処理工程や、薄化工程などの機械的工程を経て、製造されることが一般的である。そのため、これらの装置および部品に用いる接着剤には、接着剤自体が薄いことに加え、上記装置の熱処理および機械的工程の工程中および工程後に、剥がれやボイドなどが発生しないことが必要である。 In recent years, semiconductor devices have been rapidly becoming smaller and thinner. For example, there is a demand for thinner devices in order to increase the processing speed and reduce costs of semiconductor devices. Display devices using μLEDs have also been proposed, and there is a demand for further miniaturization and thinning in order to increase the resolution of display devices and reduce the cost of μLED chips. When used for lighting, etc., there is a demand for further thinning in terms of design and cost reduction. In addition, these semiconductor devices are generally manufactured through heat treatment processes such as solder reflow and mechanical processes such as thinning processes. Therefore, the adhesives used in these devices and parts must not only be thin, but also not peel or produce voids during or after the heat treatment and mechanical processes of the above devices.
これら半導体装置等に用いられる接着剤として、例えばポリイミド系樹脂のガラス転移温度を40℃以下に設計し接着性を向上させた技術(特許文献1)や、シリコーン変性ポリイミド樹脂に架橋性基を導入し、耐熱性を付与した技術(特許文献2)も提案されている。さらに、ポリイミド系樹脂のガラス転移温度を300℃以上に設計し、耐熱性及び寸法安定性を向上させた技術も提案されている(特許文献3)。 As adhesives for use in these semiconductor devices, for example, technology has been proposed in which the glass transition temperature of polyimide resin is designed to be 40°C or less to improve adhesion (Patent Document 1), and technology has been proposed in which crosslinkable groups are introduced into silicone-modified polyimide resin to impart heat resistance (Patent Document 2). Furthermore, technology has been proposed in which the glass transition temperature of polyimide resin is designed to be 300°C or more to improve heat resistance and dimensional stability (Patent Document 3).
特許文献1および2に記載の発明の樹脂組成物は、シリコーン成分を多く含むため、デバイスを低温で接着することができる。一方で柔軟なシリコーン成分を多く含むことから、寸法安定性が低いという課題があった。このため、デバイス基板と支持基板の貼り合わせ時に反りが生じたり、デバイスを極薄化する際に、接着層が撚れ、デバイスが均一に薄化されず破損することがあった。また、デバイスの貼り合わせ後の熱処理において、接着剤が寸法変化することによりデバイスの位置ずれが起きるなどの問題もあった。特許文献3に記載の発明は、接着性を付与する成分が含まれないため、基板同士を貼り合わせて積層する手法の半導体装置には適用できないという課題があった。また、これら特許文献1~3に記載の発明は、いずれも接着層の膜厚を薄くすると剥がれが生じやすくなるため、接着層を厚くする必要があり、結果として接着層の厚さがデバイスの厚さに影響を与えるという課題もあった。そこで、上記のような従来技術の問題点を解決し、デバイスの極薄化を実現できる本発明の技術を見出した。
The resin compositions of the inventions described in
上記課題を解決するため、本発明は下記の構成を有する。
[1]
式(1)で表される構造単位および式(2)で表される構造単位のうち、少なくとも1つの構造単位を有する樹脂(A)と、溶剤とを含有する樹脂組成物であって、
前記樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対し、
前記樹脂(A)が、式(3)で表される構造を有する酸二無水物残基(A1)および式(4)で表される構造を有するジアミン残基(A2)の少なくとも1つを、合計で10モル%以上、40モル%以下含有し、
前記樹脂(A)が、式(5)で表される構造を有するジアミン残基(A3)を1.0モル%以上、20モル%以下含有し、
前記樹脂(A)に含有される全Si原子の割合が、前記樹脂(A)100質量部に対し、0.5質量部以上、5.0質量部以下である、樹脂組成物。
In order to solve the above problems, the present invention has the following configuration.
[1]
A resin composition comprising a resin (A) having at least one structural unit selected from a structural unit represented by formula (1) and a structural unit represented by formula (2), and a solvent,
With respect to 100 mol % in total of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A),
the resin (A) contains at least one of an acid dianhydride residue (A1) having a structure represented by formula (3) and a diamine residue (A2) having a structure represented by formula (4) in a total amount of 10 mol % or more and 40 mol % or less,
The resin (A) contains 1.0 mol % or more and 20 mol % or less of a diamine residue (A3) having a structure represented by formula (5),
A resin composition, wherein a ratio of all Si atoms contained in the resin (A) is 0.5 parts by mass or more and 5.0 parts by mass or less per 100 parts by mass of the resin (A).
(式(1)および式(2)中、X1およびX2は、それぞれ独立に、炭素数4以上50以下の4価の酸二無水物残基を示し、Y1およびY2は、それぞれ独立に、炭素数2以上100以下の2価のジアミン残基を示す。R1およびR2は、それぞれ独立に、水素原子、炭素数1~10の炭化水素基、炭素数1~10のアルキルシリル基、アルカリ金属原子、アンモニウム基、イミダゾリウム基またはピリジニウム基を示す。) (In formula (1) and formula (2), X1 and X2 each independently represent a tetravalent acid dianhydride residue having 4 to 50 carbon atoms, Y1 and Y2 each independently represent a divalent diamine residue having 2 to 100 carbon atoms, and R1 and R2 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkylsilyl group having 1 to 10 carbon atoms, an alkali metal atom, an ammonium group, an imidazolium group, or a pyridinium group.)
(式(3)~式(5)中、R3~R16は、それぞれ独立に、水素原子または炭素数1~20の1価の有機基、水酸基、およびハロゲン原子のいずれかを示す。R17~R20は、それぞれ独立に、炭素数1~30のアルキル基、炭素数1~30のアルコキシ基、フェニル基またはフェノキシ基を示す。R21およびR22は、それぞれ独立に、炭素数1~30のアルキレン基またはフェニレン基を示す。nは1~20の整数を示す。*3aおよび*3bは、前記式(1)で表される構造単位におけるイミド基につながる結合部位を表すか、または、*3aは、前記式(2)で表される構造単位における、アミド結合の炭素原子につながる結合部位を示し、*3bは前記式(2)で表される構造単位における、カルボン酸もしくはカルボン酸エステルの炭素原子につながる結合部位を示す。*4、および*5は、前記式(1)で表される構造単位におけるイミド基または前記式(2)で表される構造単位におけるアミド結合の窒素原子につながる結合部位を表す。) (In formulas (3) to (5), R 3 to R 16 each independently represent a hydrogen atom, a monovalent organic group having 1 to 20 carbon atoms, a hydroxyl group, or a halogen atom. R 17 to R 20 each independently represent an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a phenyl group, or a phenoxy group. R 21 and R 22 each independently represent an alkylene group or a phenylene group having 1 to 30 carbon atoms. n represents an integer from 1 to 20. * 3a and * 3b represent a bonding site connected to an imide group in the structural unit represented by formula (1), or * 3a represents a bonding site connected to a carbon atom of an amide bond in the structural unit represented by formula (2), and * 3b represents a bonding site connected to a carbon atom of a carboxylic acid or a carboxylate ester in the structural unit represented by formula (2). * 4, and * 5 represents a bonding site connected to the nitrogen atom of the imide group in the structural unit represented by formula (1) or the amide bond in the structural unit represented by formula (2).
[2]
前記ジアミン残基(A2)が、式(6)で表される構造を有するジアミン残基である、上記[1]に記載の樹脂組成物。
[2]
The resin composition according to the above-mentioned [1], wherein the diamine residue (A2) is a diamine residue having a structure represented by formula (6).
(式(6)中、*6は、前記式(1)で表される構造単位におけるイミド基または前記式(2)で表される構造単位におけるアミド結合の窒素原子につながる結合部位を示す。) (In formula (6), * 6 represents a bonding site connected to the nitrogen atom of the imide group in the structural unit represented by formula (1) or the amide bond in the structural unit represented by formula (2).)
[3]
前記ジアミン残基(A3)において、前記式(5)のnが1である、上記[1]に記載の樹脂組成物。
[3]
The resin composition according to the above [1], wherein in the diamine residue (A3), n in the formula (5) is 1.
[4]
前記樹脂組成物に含まれる溶剤が、粘度が1.8mPa・s以上、3.1mPa・s以下の溶剤である、上記[1]に記載の樹脂組成物。
[4]
The resin composition according to the above-mentioned [1], wherein the solvent contained in the resin composition has a viscosity of 1.8 mPa·s or more and 3.1 mPa·s or less.
[5]
さらにシランカップリング剤を含有する、上記[1]または[2]に記載の樹脂組成物。
[5]
The resin composition according to the above [1] or [2], further comprising a silane coupling agent.
[6]
前記シランカップリング剤が式(7)で表される化合物を含有する、上記[5]に記載の樹脂組成物。
[6]
The resin composition according to the above [5], wherein the silane coupling agent contains a compound represented by formula (7).
(式(7)中、R23は、炭素数5~10のアルキレン基を示す。R24は、それぞれ独立に、炭素数1~5のアルキル基を示す。Zは、水素原子、または下記式(8)~(14)のいずれかで表される基を示す。) (In formula (7), R 23 represents an alkylene group having 5 to 10 carbon atoms. R 24 each independently represents an alkyl group having 1 to 5 carbon atoms. Z represents a hydrogen atom or a group represented by any one of the following formulas (8) to (14).)
(式(8)~式(14)中、R25~R31は、それぞれ独立に、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、水酸基またはハロゲン原子のいずれかを示す。*8~*14は式(7)におけるR23との結合部位を表す。) (In formulas (8) to (14), R 25 to R 31 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group, or a halogen atom. * 8 to * 14 represent bonding sites with R 23 in formula (7).)
[7]
さらに無機粒子を含有する、上記[1]または[2]に記載の樹脂組成物。
[8]
上記[1]~[4]のいずれか1つの樹脂組成物を硬化した硬化物。
[9]
上記[8]に記載の硬化物を有する積層体。
[10]
前記硬化物の厚さが0.5μm以上、8.0μm以下である、上記[9]に記載の積層体。
[11]
前記積層体が、前記硬化物からなる層を複数有する、上記[10]に記載の積層体。
[12]
前記積層体が、化合物半導体層を有する、上記[10]に記載の積層体。
[13]
上記[10]に記載の積層体を有する半導体装置。
[14]
上記[10]に記載の積層体を薄く加工する工程および上記[10]に記載の積層体を個片化する工程のうち、少なくとも一方の工程を含む、半導体装置の製造方法。
[7]
The resin composition according to the above [1] or [2], further comprising inorganic particles.
[8]
A cured product obtained by curing any one of the resin compositions [1] to [4] above.
[9]
A laminate having the cured product according to the above item [8].
[10]
The laminate according to the above-mentioned [9], wherein the thickness of the cured product is 0.5 μm or more and 8.0 μm or less.
[11]
The laminate according to the above-mentioned [10], which has a plurality of layers made of the cured product.
[12]
The laminate according to the above-mentioned [10], which has a compound semiconductor layer.
[13]
A semiconductor device comprising the stack according to [10] above.
[14]
A method for manufacturing a semiconductor device, comprising at least one of a step of thinning the laminate described in [10] above and a step of singulating the laminate described in [10] above.
本発明の一態様の樹脂組成物は接着性に優れ、薄膜でもデバイスを安定して接着することができる。また、本発明の一態様の樹脂組成物は低い線膨張係数を有するため、基板を張り合わせた際のそりが小さく、接着後に熱処理がある場合も寸法安定性に優れ、接着したデバイスのずれや剥がれを低減できる。そのため、本発明の一態様の樹脂組成物の硬化物を含む半導体装置は、上記硬化物を薄膜化して積層した場合でも信頼性に優れる。 The resin composition of one embodiment of the present invention has excellent adhesion and can stably bond devices even when thin. In addition, since the resin composition of one embodiment of the present invention has a low linear expansion coefficient, warping is small when substrates are bonded together, and even when heat treatment is performed after bonding, the resin composition has excellent dimensional stability and can reduce misalignment and peeling of bonded devices. Therefore, a semiconductor device containing a cured product of the resin composition of one embodiment of the present invention has excellent reliability even when the cured product is thinned and laminated.
[樹脂組成物]
本発明の一態様(以下、「本実施形態」とも称する。)の樹脂組成物は、
式(1)で表される構造単位および式(2)で表される構造単位のうち、少なくとも1つの構造単位を有する樹脂(A)と、溶剤とを含有する樹脂組成物であって、
上記樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対し、
上記樹脂(A)が、式(3)で表される構造を有する酸二無水物残基(A1)および式(4)で表される構造を有するジアミン残基(A2)の少なくとも1つを、合計で10モル%以上、40モル%以下含有し、
上記樹脂(A)が、式(5)で表される構造を有するジアミン残基(A3)を1.0モル%以上、20モル%以下含有し、
上記樹脂(A)に含有される全Si原子の割合が、上記樹脂(A)100質量部に対し、0.5質量部以上、5.0質量部以下である、樹脂組成物である。
[Resin composition]
The resin composition according to one aspect of the present invention (hereinafter also referred to as "the present embodiment") comprises:
A resin composition comprising a resin (A) having at least one structural unit selected from a structural unit represented by formula (1) and a structural unit represented by formula (2), and a solvent,
With respect to 100 mol % in total of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A),
the resin (A) contains at least one of an acid dianhydride residue (A1) having a structure represented by formula (3) and a diamine residue (A2) having a structure represented by formula (4) in a total amount of 10 mol % or more and 40 mol % or less;
The resin (A) contains 1.0 mol % or more and 20 mol % or less of a diamine residue (A3) having a structure represented by formula (5),
The resin composition has a ratio of all Si atoms contained in the resin (A) of 0.5 parts by mass or more and 5.0 parts by mass or less per 100 parts by mass of the resin (A).
式(1)および式(2)中、X1およびX2は、それぞれ独立に、炭素数4以上50以下の4価の酸二無水物残基を示し、Y1およびY2は、それぞれ独立に、炭素数2以上100以下の2価のジアミン残基を示す。R1およびR2は、それぞれ独立に、水素原子、炭素数1~10の炭化水素基、炭素数1~10のアルキルシリル基、アルカリ金属原子、アンモニウム基、イミダゾリウム基またはピリジニウム基を示す。 In formula (1) and formula (2), X1 and X2 each independently represent a tetravalent acid dianhydride residue having 4 to 50 carbon atoms, and Y1 and Y2 each independently represent a divalent diamine residue having 2 to 100 carbon atoms. R1 and R2 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkylsilyl group having 1 to 10 carbon atoms, an alkali metal atom, an ammonium group, an imidazolium group, or a pyridinium group.
式(3)~式(5)中、R3~R16は、それぞれ独立に、水素原子または炭素数1~20の1価の有機基、水酸基、およびハロゲン原子のいずれかを示す。R17~R20は、それぞれ独立に、炭素数1~30のアルキル基、炭素数1~30のアルコキシ基、フェニル基またはフェノキシ基を示す。R21およびR22は、それぞれ独立に、炭素数1~30のアルキレン基またはフェニレン基を示す。nは1~20の整数を示す。*3aおよび*3bは、上記式(1)で表される構造単位におけるイミド基につながる結合部位を表すか、または、*3aは、前記式(2)で表される構造単位における、アミド結合の炭素原子につながる結合部位を示し、*3bは上記式(2)で表される構造単位における、カルボン酸もしくはカルボン酸エステルの炭素原子につながる結合部位を示す。*4、および*5は、前記式(1)で表される構造単位におけるイミド基または前記式(2)で表される構造単位におけるアミド結合の窒素原子につながる結合部位を表す。 In formulas (3) to (5), R 3 to R 16 each independently represent a hydrogen atom, a monovalent organic group having 1 to 20 carbon atoms, a hydroxyl group, or a halogen atom. R 17 to R 20 each independently represent an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a phenyl group, or a phenoxy group. R 21 and R 22 each independently represent an alkylene group or a phenylene group having 1 to 30 carbon atoms. n represents an integer of 1 to 20. * 3a and * 3b represent a bonding site connected to an imide group in the structural unit represented by formula (1) above, or * 3a represents a bonding site connected to a carbon atom of an amide bond in the structural unit represented by formula (2) above, and * 3b represents a bonding site connected to a carbon atom of a carboxylic acid or a carboxylate in the structural unit represented by formula (2) above. * 4 and * 5 represent bonding sites connecting to the nitrogen atom of the imide group in the structural unit represented by formula (1) or the amide bond in the structural unit represented by formula (2).
(樹脂(A))
式(3)で表される構造を有する酸二無水物残基(A1)(以降、「酸二無水物残基(A1)」とも称する。)および式(4)で表される構造を有するジアミン残基(A2)(以降、「ジアミン残基(A2)」とも称する。)はビフェニル骨格を有するモノマーの残基であり、これらのうち少なくとも1つを含有することで、樹脂(A)に剛直な構造を導入することができる。樹脂組成物に含まれる樹脂(A)が、酸二無水物残基(A1)およびジアミン残基(A2)の少なくとも1つを、樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対して、合計で10モル%以上、40モル%以下含有する。
(Resin (A))
The acid dianhydride residue (A1) having a structure represented by formula (3) (hereinafter also referred to as "acid dianhydride residue (A1)") and the diamine residue (A2) having a structure represented by formula (4) (hereinafter also referred to as "diamine residue (A2)") are residues of monomers having a biphenyl skeleton, and by containing at least one of them, a rigid structure can be introduced into the resin (A). The resin (A) contained in the resin composition contains at least one of the acid dianhydride residue (A1) and the diamine residue (A2) in a total amount of 10 mol % or more and 40 mol % or less with respect to the total of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A), which is 100 mol %.
樹脂組成物に含まれる樹脂(A)が、酸二無水物残基(A1)およびジアミン残基(A2)の少なくとも1つを、樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対して、合計で10モル%以上含むことで、樹脂組成物を熱処理して硬化させた際、線膨張係数が低く、熱変形しにくい硬化物となる。このため、基板やデバイスを貼り合わせた際や、デバイス基板を貼り合わせて薄化する際に、デバイス基板のそりや、膜が撚れてデバイス基板が破損することを防ぐことができる。酸二無水物残基(A1)およびジアミン残基(A2)の合計量の更に好ましい範囲は、樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対して、15モル%以上である。これにより、成膜された硬化物の線膨張係数がさらに低くなり、複数の硬化物を積層したような構成においても積層体のそりを抑制することができる。 The resin (A) contained in the resin composition contains at least one of the acid dianhydride residue (A1) and the diamine residue (A2) in a total amount of 10 mol% or more relative to the total 100 mol% of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A), and when the resin composition is cured by heat treatment, the cured product has a low linear expansion coefficient and is less susceptible to thermal deformation. Therefore, when a substrate or a device is bonded together, or when a device substrate is bonded together to thin it, warping of the device substrate and twisting of the film to damage the device substrate can be prevented. A more preferable range of the total amount of the acid dianhydride residue (A1) and the diamine residue (A2) is 15 mol% or more relative to the total 100 mol% of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A). This further reduces the linear expansion coefficient of the formed cured material, making it possible to suppress warping of the laminate even in configurations in which multiple cured materials are stacked.
また、樹脂組成物に含まれる樹脂(A)が、酸二無水物残基(A1)およびジアミン残基(A2)の少なくとも1つを、樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対して、合計40モル%以下含むことで、樹脂組成物を硬化させた硬化物のガラス転移温度を適切な範囲に調整できる。これにより、基板をデバイスに影響のない温度で熱貼合することができる。酸二無水物残基(A1)およびジアミン残基(A2)の合計量のさらに好ましい範囲は、樹脂(A)中の全モノマー残基100モル%に対して、30モル%以下である。これにより、均一な貼合ができるようになる。 In addition, by having the resin (A) contained in the resin composition contain at least one of the acid dianhydride residue (A1) and the diamine residue (A2) in a total amount of 40 mol % or less relative to the total of 100 mol % of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A), the glass transition temperature of the cured product obtained by curing the resin composition can be adjusted to an appropriate range. This allows the substrate to be thermally laminated at a temperature that does not affect the device. A more preferable range for the total amount of the acid dianhydride residues (A1) and the diamine residues (A2) is 30 mol % or less relative to 100 mol % of all monomer residues in the resin (A). This allows uniform lamination.
酸二無水物残基(A1)を構成する酸二無水物としては、公知の酸二無水物の残基を含有することができる。具体例としては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’ジメチル-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、5,5’ジメチル-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物などが挙げられる。なかでも入手のしやすさの観点から3,3’,4,4’-ビフェニルテトラカルボン酸二無水物であることが特に好ましい。 The acid dianhydride constituting the acid dianhydride residue (A1) may contain residues of known acid dianhydrides. Specific examples include 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2'dimethyl-3,3',4,4'-biphenyltetracarboxylic dianhydride, and 5,5'dimethyl-3,3',4,4'-biphenyltetracarboxylic dianhydride. Among these, 3,3',4,4'-biphenyltetracarboxylic dianhydride is particularly preferred from the viewpoint of ease of availability.
また、ジアミン残基(A2)を構成するジアミンとしては、4,4’-ビフェニルジアミン、2,2’-ジメチルビフェニル-4,4’-ジアミン、4,4’-ジアミノ-3,3’,5,5’-テトラメチルビフェニル、4,4’-ジアミノ-3,3’-ジメチルビフェニル、2,2’-ベンジジンジスルホン酸、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、4,4’-ジアミノ-3,3’-ジエチルビフェニル二塩酸塩、オクタフルオロベンジジン、4,4’-ジアミノ-3,3’-ジメトキシビフェニルなどが挙げられる。樹脂(A)をより剛直な構造とできることから、4,4’-ビフェニルジアミン、2,2’-ジメチルビフェニル-4,4’-ジアミン、4,4’-ジアミノ-3,3’,5,5’-テトラメチルビフェニル、4,4’-ジアミノ-3,3’-ジメチルビフェニルなどの、水素もしくはメチル基を置換基として有するものが好ましい。 Diamines constituting the diamine residue (A2) include 4,4'-biphenyldiamine, 2,2'-dimethylbiphenyl-4,4'-diamine, 4,4'-diamino-3,3',5,5'-tetramethylbiphenyl, 4,4'-diamino-3,3'-dimethylbiphenyl, 2,2'-benzidine disulfonic acid, 4,4'-diamino-2,2'-bis(trifluoromethyl)biphenyl, 4,4'-diamino-3,3'-diethylbiphenyl dihydrochloride, octafluorobenzidine, and 4,4'-diamino-3,3'-dimethoxybiphenyl. Since this gives the resin (A) a more rigid structure, those having hydrogen or a methyl group as a substituent, such as 4,4'-biphenyldiamine, 2,2'-dimethylbiphenyl-4,4'-diamine, 4,4'-diamino-3,3',5,5'-tetramethylbiphenyl, and 4,4'-diamino-3,3'-dimethylbiphenyl, are preferred.
なかでも、ジアミン残基(A2)が、下記式(6)で表される構造を有するジアミン残基であることが特に好ましい。メチル基の効果により、樹脂(A)の剛直性を保持しながら溶剤に対する溶解性を向上できる。これにより、平滑な塗布膜が得られ、基板の貼り合わせ工程において、塗布膜の面内均一性不良に起因する貼合不良をより抑制できる。 Among these, it is particularly preferable that the diamine residue (A2) is a diamine residue having a structure represented by the following formula (6). The effect of the methyl group is that it is possible to improve the solubility in a solvent while maintaining the rigidity of the resin (A). This allows a smooth coating film to be obtained, and it is possible to further suppress poor lamination caused by poor in-plane uniformity of the coating film during the substrate lamination process.
式(6)中、*6は、上記式(1)で表される構造単位におけるイミド基または上記式(2)で表される構造単位におけるアミド結合の窒素原子につながる結合部位を示す。 In formula (6), * 6 represents a bonding site connecting to the nitrogen atom of the imide group in the structural unit represented by formula (1) above or the amide bond in the structural unit represented by formula (2) above.
式(6)で表される構造を有するジアミン残基を構成するジアミンとしては、2,2’-ジメチルビフェニル-4,4’-ジアミンが挙げられる。 An example of a diamine that constitutes a diamine residue having the structure represented by formula (6) is 2,2'-dimethylbiphenyl-4,4'-diamine.
また、式(5)で表される構造を有するジアミン残基(A3)(以降、「ジアミン残基(A3)」とも称する。)は、シロキサン結合を有する柔軟なジアミン残基である。 The diamine residue (A3) having the structure represented by formula (5) (hereinafter also referred to as "diamine residue (A3)") is a flexible diamine residue having a siloxane bond.
式(5)において、R17~R20は、それぞれ独立に、炭素数1~30のアルキル基、炭素数1~30のアルコキシ基、フェニル基またはフェノキシ基を表す。R21およびR22はそれぞれ同一または異なっていてよく、炭素数1~30のアルキレン基またはフェニレン基を表す。nは1以上20以下の整数である。nが1以上であることでジアミン残基(A3)がシリコーン構造を有することとなり、樹脂組成物は高い接着性を得られる。また、nが20以下であることによって、樹脂(A)を重合する際に、他のモノマーとの相溶性が向上し、樹脂の重合が容易になる。さらに好ましいnの範囲は10以下であり、これによって、樹脂(A)中で、シリコーン構造を有する部位を分散して存在させることができるために、塗膜において均一な接着性が得られる。 In formula (5), R 17 to R 20 each independently represent an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a phenyl group, or a phenoxy group. R 21 and R 22 may be the same or different, and each represent an alkylene group or a phenylene group having 1 to 30 carbon atoms. n is an integer of 1 to 20. When n is 1 or more, the diamine residue (A3) has a silicone structure, and the resin composition can obtain high adhesiveness. When n is 20 or less, compatibility with other monomers is improved when polymerizing the resin (A), and polymerization of the resin becomes easy. A more preferable range of n is 10 or less, and this allows the silicone structure-containing moiety to be dispersed and present in the resin (A), thereby obtaining uniform adhesiveness in the coating film.
ジアミン残基(A3)において、式(5)の繰り返し単位nはn=1であることが好ましい。n=1であることで、膜の剛直性を損なわずに接着性を付与することができるため、従来の接着剤に付与することが難しい寸法安定性を大幅に向上することができる。 In the diamine residue (A3), the repeating unit n in formula (5) is preferably n = 1. By setting n = 1, it is possible to impart adhesiveness without impairing the rigidity of the film, thereby significantly improving dimensional stability, which is difficult to achieve with conventional adhesives.
樹脂組成物に含まれる樹脂(A)が、ジアミン残基(A3)を、樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対して、1.0モル%以上、20モル%以下含有する。 The resin (A) contained in the resin composition contains diamine residues (A3) in an amount of 1.0 mol % or more and 20 mol % or less relative to the total of 100 mol % of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A).
樹脂組成物に含まれる樹脂(A)が、ジアミン残基(A3)を、樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対して、1.0モル%以上含有することで、樹脂組成物(A)に接着性を付与できる。ジアミン残基(A3)のさらに好ましい含有量の範囲は、樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対して、2.0モル%以上である。これにより、接着に関わる成分であるジアミン残基(A3)が、樹脂(A)中に均一に存在できる。このため、基板の貼り合わせ工程において、接着ムラが生じにくく、特に樹脂組成物を薄膜で貼り合わせを行う際の接着不良を低減できる。 The resin (A) contained in the resin composition contains 1.0 mol% or more of diamine residue (A3) relative to the total of 100 mol% of the acid dianhydride residues (X1) and (X2) and diamine residues (Y1) and (Y2) contained in the resin (A), thereby imparting adhesiveness to the resin composition (A). A more preferred range of the content of diamine residue (A3) is 2.0 mol% or more relative to the total of 100 mol% of the acid dianhydride residues (X1) and (X2) and diamine residues (Y1) and (Y2) contained in the resin (A). This allows the diamine residue (A3), which is a component involved in adhesion, to be uniformly present in the resin (A). Therefore, in the process of bonding the substrates, uneven adhesion is less likely to occur, and adhesion failure can be reduced, particularly when bonding a thin film of the resin composition is performed.
樹脂組成物に含まれる樹脂(A)において、ジアミン残基(A3)は、樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対して、20モル%以下含まれる。これにより、貼り合わせ後に基板を加熱した場合に、耐熱性が向上することから、分解ガスに起因する膜の白濁や剥がれを抑制できる。ジアミン残基(A3)のさらに好ましい範囲は、樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対して、17モル%以下である。これにより、熱処理時の接着層の過剰な軟化を防ぎ、熱処理時の寸法安定性に優れる。 In the resin (A) contained in the resin composition, the diamine residue (A3) is contained in an amount of 20 mol% or less relative to the total of 100 mol% of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A). This improves heat resistance when the substrates are heated after bonding, thereby suppressing clouding and peeling of the film caused by decomposition gas. A more preferred range of the diamine residue (A3) is 17 mol% or less relative to the total of 100 mol% of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A). This prevents excessive softening of the adhesive layer during heat treatment, and provides excellent dimensional stability during heat treatment.
ジアミン残基(A3)を構成するジアミンとして、n=1のジアミンとしてテトラメチル-1,3-ビス(3-アミノプロピル)ジシロキサン、nが2以上のジアミンとして、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン、α,ω-ビス(3-アミノプロピル)ポリジエチルシロキサン、α,ω-ビス(3-アミノプロピル)ポリジプロピルシロキサン、α,ω-ビス(3-アミノプロピル)ポリジブチルシロキサン、α,ω-ビス(3-アミノプロピル)ポリジフェノキシシロキサン、α,ω-ビス(2-アミノエチル)ポリジメチルシロキサン、α,ω-ビス(2-アミノエチル)ポリジフェノキシシロキサン、α,ω-ビス(4-アミノブチル)ポリジメチルシロキサン、α,ω-ビス(4-アミノブチル)ポリジフェノキシシロキサン、α,ω-ビス(5-アミノペンチル)ポリジメチルシロキサン、α,ω-ビス(5-アミノペンチル)ポリジフェノキシシロキサン、α,ω-ビス(4-アミノフェニル)ポリジメチルシロキサン、α,ω-ビス(4-アミノフェニル)ポリジフェノキシシロキサンなどが挙げられる。nは単一の値であることもあれば、nの値が複数種類を混合している場合があるので、式(5)におけるnは平均値を表す。入手のしやすさ、樹脂(A)の剛直性を損なわずに接着性を効率的に付与できる観点から、ジアミン残基(A3)を構成するジアミンは、テトラメチル-1,3-ビス(3-アミノプロピル)ジシロキサンや、α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン、またこれらの組み合わせであることが好ましい。 Diamines constituting the diamine residue (A3) include tetramethyl-1,3-bis(3-aminopropyl)disiloxane as a diamine with n=1, and α,ω-bis(3-aminopropyl)polydimethylsiloxane, α,ω-bis(3-aminopropyl)polydiethylsiloxane, α,ω-bis(3-aminopropyl)polydipropylsiloxane, α,ω-bis(3-aminopropyl)polydibutylsiloxane, α,ω-bis(3-aminopropyl)polydiphenoxysiloxane, and α,ω-bis( Examples of such polydimethylsiloxanes include α,ω-bis(2-aminoethyl)polydiphenoxysiloxane, α,ω-bis(4-aminobutyl)polydimethylsiloxane, α,ω-bis(4-aminobutyl)polydiphenoxysiloxane, α,ω-bis(5-aminopentyl)polydimethylsiloxane, α,ω-bis(5-aminopentyl)polydiphenoxysiloxane, α,ω-bis(4-aminophenyl)polydimethylsiloxane, and α,ω-bis(4-aminophenyl)polydiphenoxysiloxane. n may be a single value or may be a mixture of multiple values of n, so n in formula (5) represents an average value. From the viewpoints of ease of availability and efficient imparting of adhesiveness without impairing the rigidity of the resin (A), the diamine constituting the diamine residue (A3) is preferably tetramethyl-1,3-bis(3-aminopropyl)disiloxane, α,ω-bis(3-aminopropyl)polydimethylsiloxane, or a combination thereof.
酸二無水物残基(A1)を構成する酸二無水物、ジアミン残基(A2)を構成するジアミン、及びジアミン残基(A3)を構成するジアミンの好ましい組み合わせとしては、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’-ジメチルビフェニル-4,4’-ジアミン及びテトラメチル-1,3-ビス(3-アミノプロピル)ジシロキサンの組み合わせ、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、4,4’-ジアミノ-3,3’-ジメチルビフェニル及びα,ω-ビス(3-アミノプロピル)ポリジメチルシロキサンの組み合わせ等が挙げられる。 Preferred combinations of the acid dianhydride constituting the acid dianhydride residue (A1), the diamine constituting the diamine residue (A2), and the diamine constituting the diamine residue (A3) include a combination of 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,2'-dimethylbiphenyl-4,4'-diamine, and tetramethyl-1,3-bis(3-aminopropyl)disiloxane, and a combination of 3,3',4,4'-biphenyltetracarboxylic dianhydride, 4,4'-diamino-3,3'-dimethylbiphenyl, and α,ω-bis(3-aminopropyl)polydimethylsiloxane.
樹脂(A)中にはSi原子が、樹脂(A)100質量部に対して、0.5質量部以上、5.0質量部以下含まれる。樹脂(A)にSi原子が0.5質量部以上含まれることにより、基板とデバイス基板を全面で貼り合わせることが可能となる。Si原子のさらに好ましい含有量は、樹脂(A)100質量部に対して、2.0質量部以上である。樹脂(A)がSi原子をこの範囲で含有することで、接着性がさらに向上することから、薄膜での基板の貼合や、さらにデバイスの個片化後の剥がれを抑制できる。また、樹脂(A)100質量部に対してSi原子が5.0質量部以下含まれることにより、樹脂(A)の耐熱性を高く保つことが出きるため、貼合基板を熱処理した場合の脱ガスに由来する基板の剥がれやボイドの発生を低減できる。Si原子の含有量のさらに好ましい範囲は、樹脂(A)100質量部に対して4.0質量部以下である。これにより、接着性と寸法安定性を両立できることから剥がれや反りなく基板同士を貼合できる。樹脂(A)中のSi原子の割合は、樹脂(A)を元素分析することによって判断できる。 Resin (A) contains Si atoms in an amount of 0.5 parts by mass or more and 5.0 parts by mass or less per 100 parts by mass of resin (A). When resin (A) contains Si atoms in an amount of 0.5 parts by mass or more, it is possible to bond the entire surface of the substrate and the device substrate. A more preferable content of Si atoms is 2.0 parts by mass or more per 100 parts by mass of resin (A). When resin (A) contains Si atoms in this range, the adhesiveness is further improved, so that it is possible to suppress the bonding of the substrate in a thin film and the peeling after the device is singulated. In addition, when resin (A) contains 5.0 parts by mass or less of Si atoms per 100 parts by mass of resin (A), it is possible to maintain high heat resistance of resin (A), so that it is possible to reduce the peeling of the substrate and the generation of voids due to degassing when the bonded substrate is heat-treated. A more preferable range of the content of Si atoms is 4.0 parts by mass or less per 100 parts by mass of resin (A). This allows both adhesion and dimensional stability to be achieved, allowing substrates to be bonded together without peeling or warping. The proportion of Si atoms in resin (A) can be determined by elemental analysis of resin (A).
樹脂(A)に含まれるSi原子は、ジアミン残基(A3)に由来するものや、シルセスキオキサン構造を有するモノマーに由来するものなどが挙げられる。樹脂(A)がジアミン残基(A3)を含有することで、樹脂組成物に均一な接着性を付与できる。 The Si atoms contained in the resin (A) may be derived from a diamine residue (A3) or from a monomer having a silsesquioxane structure. When the resin (A) contains a diamine residue (A3), it is possible to impart uniform adhesiveness to the resin composition.
さらに樹脂(A)は、酸二無水物残基(A1)、ジアミン残基(A2)、およびジアミン残基(A3)以外のモノマー残基を有していてもよい。そのようなモノマー残基として、例えば、シルセスキオキサン構造を有するモノマーの残基が挙げられる。 Furthermore, the resin (A) may have a monomer residue other than the acid dianhydride residue (A1), the diamine residue (A2), and the diamine residue (A3). Examples of such monomer residues include residues of monomers having a silsesquioxane structure.
酸二無水残基(A1)以外の酸二無水物残基としては、公知の酸二無水物の残基を含有することができ、好ましくは、芳香族テトラカルボン酸二無水物の残基を含む。芳香族テトラカルボン酸二無水物の残基の具体例としては、ピロメリット酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、2,3,3’,4’-ジフェニルエーテルテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,3,3’,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホキシドテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルフィドテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルメチレンテトラカルボン酸二無水物、4,4’-イソプロピリデンジフタル酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,3”,4,4”-パラターフェニルテトラカルボン酸二無水物、3,3”,4,4”-メタターフェニルテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物の残基などが挙げられる。上記芳香族テトラカルボン酸二無水物の残基は1種類のみを含有してもよく、2種以上含有してもよい。 The acid dianhydride residue other than the acid dianhydride residue (A1) may contain residues of known acid dianhydrides, and preferably contains residues of aromatic tetracarboxylic acid dianhydrides. Specific examples of the residue of aromatic tetracarboxylic dianhydride include pyromellitic dianhydride, 2,3,3',4'-biphenyl tetracarboxylic dianhydride, 2,2',3,3'-biphenyl tetracarboxylic dianhydride, 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride, 2,3,3',4'-diphenyl ether tetracarboxylic dianhydride, 2,2',3,3'-diphenyl ether tetracarboxylic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 2,2',3,3'-benzophenone tetracarboxylic dianhydride, 2,3,3',4'-benzophenone tetracarboxylic dianhydride, 3,3',4,4'-diphenyl sulfone tetracarboxylic dianhydride, 2,3,3',4'-diphenyl sulfone tetracarboxylic dianhydride, 3,3',4,4'-diphenyl sulfoxide tetracarboxylic dianhydride, 3,3',4 ,4'-diphenylsulfide tetracarboxylic dianhydride, 3,3',4,4'-diphenylmethylene tetracarboxylic dianhydride, 4,4'-isopropylidenediphthalic dianhydride, 4,4'-(hexafluoroisopropylidene)diphthalic dianhydride, 3,4,9,10-perylene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 1 , 2,5,6-naphthalenetetracarboxylic dianhydride, 3,3",4,4"-para-terphenyltetracarboxylic dianhydride, 3,3",4,4"-meta-terphenyltetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride, 1,2,7,8-phenanthrenetetracarboxylic dianhydride, 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride residues, etc. may be included. The above aromatic tetracarboxylic dianhydride residues may contain only one type, or may contain two or more types.
また、樹脂(A)の耐熱性を損なわない程度に、樹脂(A)に、酸二無水残基(A1)以外の酸二無水物残基として、脂肪族環を持つテトラカルボン酸二無水物の残基を含有させることができる。脂肪族環を持つテトラカルボン酸二無水物の残基の具体例としては、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,3,5-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-ビシクロヘキセンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-C]フラン-1,3-ジオンの残基、ダブルデッカーシルセスキオキサン脂環式酸二無水物などが挙げられる。樹脂(A)は、上記テトラカルボン酸二無水物の残基を1種類のみ含有してもよく、2種以上を含有してもよい。 In addition, resin (A) may contain a residue of a tetracarboxylic dianhydride having an aliphatic ring as an acid dianhydride residue other than the acid dianhydride residue (A1), to the extent that the heat resistance of resin (A) is not impaired. Specific examples of the residue of a tetracarboxylic dianhydride having an aliphatic ring include 2,3,5-tricarboxycyclopentylacetic dianhydride, 1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,2,3,4-cyclopentane tetracarboxylic dianhydride, 1,2,3,5-cyclopentane tetracarboxylic dianhydride, 1,2,4,5-bicyclohexene tetracarboxylic dianhydride, 1,2,4,5-cyclohexane tetracarboxylic dianhydride, 1,3,3a,4,5,9b-hexahydro-5-(tetrahydro-2,5-dioxo-3-furanyl)-naphtho[1,2-C]furan-1,3-dione residue, and double-decker silsesquioxane alicyclic acid dianhydride. Resin (A) may contain only one type of the above tetracarboxylic dianhydride residue, or may contain two or more types.
また、樹脂(A)は、ジアミン残基(A2)およびジアミン残基(A3)以外のジアミン残基として、公知のジアミンの残基を含有することができる。ジアミンの具体例としては、p-フェニレンジアミン、m-フェニレンジアミン、2,5-ジアミノトルエン、2,4-ジアミノトルエン、3,5-ジアミノ安息香酸、2,6-ジアミノ安息香酸、2-メトキシ-1,4-フェニレンジアミン、4,4’-ジアミノベンズアニリド、3,4’-ジアミノベンズアニリド、3,3’-ジアミノベンズアニリド、3,3’-ジメチル-4,4’-ジアミノベンズアニリド、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(3-アミノフェニル)フルオレン、9,9-ビス(3-メチル-4-アミノフェニル)フルオレン、9,9-ビス(3,5-ジメチル-4-アミノフェニル)フルオレン、9,9-ビス(3-メトキシ-4-アミノフェニル)フルオレン、9,9-ビス(4-アミノフェニル)フルオレン-4-カルボン酸、9,9-ビス(4-アミノフェニル)フルオレン-4-メチル、9,9-ビス(4-アミノフェニル)フルオレン-4-メトキシ、9,9-ビス(4-アミノフェニル)フルオレン-4-エチル、9,9-ビス(4-アミノフェニル)フルオレン-4-スルホン、9,9-ビス(4-アミノフェニル)フルオレン-3-カルボン酸、9,9-ビス(4-アミノフェニル)フルオレン-3-メチル、1,3-ジアミノシクロヘキサン、2,2’-ジメチルベンジジン、3,3’-ジメチルベンジジン、3,3’-ジメトキシベンジジン、2,4-ジアミノピリジン、2,6-ジアミノピリジン、1,5-ジアミノナフタレン、2,7-ジアミノフルオレン、p-アミノベンジルアミン、m-アミノベンジルアミン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルサルファイド、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(4-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、3,3’-メチレンビス(シクロヘキシルアミン)、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルメタン、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシル、2,2-ビス(3-アミノ-4ヒドロキシフェニル)ヘキサフルオロプロパンなどが挙げられる。樹脂(A)は、上記ジアミン残基を単独で含有してもよく、2種以上を含有してもよい。 In addition, resin (A) may contain residues of known diamines as diamine residues other than diamine residues (A2) and diamine residues (A3). Specific examples of diamines include p-phenylenediamine, m-phenylenediamine, 2,5-diaminotoluene, 2,4-diaminotoluene, 3,5-diaminobenzoic acid, 2,6-diaminobenzoic acid, 2-methoxy-1,4-phenylenediamine, 4,4'-diaminobenzanilide, 3,4'-diaminobenzanilide, 3,3'-diaminobenzanilide, 3,3'-dimethyl-4,4'-diaminobenzanilide, 9,9-bis(4-aminophenyl)fluorene, 9,9-bis(3-aminophenyl)fluorene, 9,9-bis(3-methyl-4-aminophenyl)fluorene, 9,9-bis(3,5-dimethyl-4-aminophenyl)fluorene, 9,9-bis(3-methoxy-4-aminophenyl)fluorene, 9,9-bis(4-aminophenyl)fluorene-4-carboxylic acid, 9,9-bis (4-aminophenyl)fluorene-4-methyl, 9,9-bis(4-aminophenyl)fluorene-4-methoxy, 9,9-bis(4-aminophenyl)fluorene-4-ethyl, 9,9-bis(4-aminophenyl)fluorene-4-sulfone, 9,9-bis(4-aminophenyl)fluorene-3-carboxylic acid, 9,9-bis(4-aminophenyl)fluorene-3-methyl, 1,3-diaminocyclohexane, 2,2'-dimethylbenzidine, 3,3'-dimethylbenzidine, 3,3'-dimethoxybenzidine, 2,4-diaminopyridine, 2,6-diaminopyridine, 1,5-diaminonaphthalene, 2,7-diaminofluorene, p-aminobenzylamine, m-aminobenzylamine, 4,4'-bis(4-aminophenoxy)biphenyl, 4,4'-diaminodiphenyl ether, 3,3'- Diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl methane, 4,4'-diaminodiphenyl methane, 4,4'-diaminodiphenyl sulfide, 3,3'-diaminobenzophenone, 3,4'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,3'-dimethyl-4,4'-diaminodiphenyl methane, 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 1,4-bis(3-aminophenoxy)benzene, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(3-aminophenoxy)phenyl]propane, bis [4-(4-aminophenoxy)phenyl]methane, bis[4-(3-aminophenoxy)phenyl]methane, bis[4-(4-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy)phenyl]ether, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 1,4-diaminocyclohexane, 4,4'-methylenebis(cyclohexylamine), 3,3'-methylenebis(cyclohexylamine), 4,4'-diamino-3,3'-dimethyldicyclohexylmethane, 4,4'-diamino-3,3'-dimethyldicyclohexyl, 2,2-bis(3-amino-4 hydroxyphenyl)hexafluoropropane, and the like. Resin (A) may contain the above diamine residue alone or two or more kinds.
樹脂(A)の分子量の調整は、合成に用いる酸二無水物成分およびジアミン成分を等モルにする、またはいずれかを過剰にすることにより行うことができる。酸二無水物成分またはジアミン成分のどちらかを過剰とし、ポリマー鎖末端を酸成分またはアミン成分などの末端封止剤で封止することもできる。酸成分の末端封止剤としてはジカルボン酸またはその無水物が好ましく用いられ、アミン成分の末端封止剤としてはモノアミンが好ましく用いられる。このとき、酸成分またはアミン成分の末端封止剤を含めたテトラカルボン酸成分の酸当量とジアミン成分のアミン当量を等モルにすることが好ましい。 The molecular weight of resin (A) can be adjusted by using equimolar amounts of the acid dianhydride component and the diamine component used in the synthesis, or by using an excess of either one. Either the acid dianhydride component or the diamine component can be used in excess, and the polymer chain ends can be blocked with an end-capping agent such as an acid component or an amine component. Dicarboxylic acids or their anhydrides are preferably used as end-capping agents for the acid component, and monoamines are preferably used as end-capping agents for the amine component. In this case, it is preferable to use equimolar amounts of the acid equivalent of the tetracarboxylic acid component, including the end-capping agent for the acid component or amine component, and the amine equivalent of the diamine component.
アミン成分の末端封止剤として使用できる、モノアミンは公知のものを用いることができ、その中でも、アニリン、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、3-アミノ-4,6-ジヒドロキシピリミジン、3-アミノフェノール、4-アミノフェノール、などが好ましい。アミン成分の末端封止剤は、これらを2種以上用いてもよい。 The monoamines that can be used as the terminal blocking agent for the amine component can be any known monoamine, of which aniline, 5-amino-8-hydroxyquinoline, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 3-amino-4,6-dihydroxypyrimidine, 3-aminophenol, 4-aminophenol, etc. are preferred. Two or more of these may be used as the terminal blocking agent for the amine component.
また、酸成分の末端封止剤としては、モノカルボン酸、モノ酸クロリド化合物、モノ活性エステル化合物などの化合物、無水フタル酸、無水マレイン酸、ナジック酸無水物、シクロヘキサンジカルボン酸無水物などの酸無水物、3-カルボキシフェノール、1-ヒドロキシ-6-カルボキシナフタレンなどのモノカルボン酸類およびこれらのカルボキシル基が酸クロリド化したモノ酸クロリド化合物、テレフタル酸、フタル酸、マレインなどのジカルボン酸類の一方のカルボキシル基だけが酸クロリド化したモノ酸クロリド化合物、モノ酸クロリド化合物とN-ヒドロキシベンゾトリアゾールやイミダゾール、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドとの反応により得られる活性エステル化合物などが好ましい。酸成分の末端封止剤は、これらを2種以上用いてもよい。 Furthermore, as the terminal blocking agent for the acid component, compounds such as monocarboxylic acid, monoacid chloride compound, monoactive ester compound, acid anhydrides such as phthalic anhydride, maleic anhydride, nadic anhydride, cyclohexanedicarboxylic anhydride, monocarboxylic acids such as 3-carboxyphenol, 1-hydroxy-6-carboxynaphthalene, and monoacid chloride compounds in which the carboxyl group of these is acid chloride, monoacid chloride compounds in which only one carboxyl group of dicarboxylic acids such as terephthalic acid, phthalic acid, maleic acid, and the like is acid chloride, and active ester compounds obtained by reacting monoacid chloride compounds with N-hydroxybenzotriazole, imidazole, or N-hydroxy-5-norbornene-2,3-dicarboximide are preferred. Two or more of these may be used as the terminal blocking agent for the acid component.
樹脂(A)の重量平均分子量は、5000以上、50000以下が好ましい。樹脂(A)の重量平均分子量は、耐熱性の観点から、5000以上が好ましく、接着剤としてデバイスに永久的に使用される際の信頼性の観点から8000以上がより好ましく、成膜やワニスを取り扱う際の樹脂組成物の粘度の観点から、50000以下が好ましく、樹脂(A)の製造の容易性の観点から30000以下がより好ましい。
ここで、樹脂(A)の重量平均分子量は、樹脂(A)をN-メチル-2-ピロリドンに溶解した樹脂濃度0.1重量%の溶液について、ゲル浸透クロマトグラフィー(GPC)分析を行うことにより、ポリスチレン換算値として算出できる。
The weight average molecular weight of the resin (A) is preferably 5000 or more and 50000 or less. The weight average molecular weight of the resin (A) is preferably 5000 or more from the viewpoint of heat resistance, more preferably 8000 or more from the viewpoint of reliability when used permanently as an adhesive in a device, preferably 50000 or less from the viewpoint of viscosity of the resin composition when handling film formation and varnish, and more preferably 30000 or less from the viewpoint of ease of production of the resin (A).
Here, the weight average molecular weight of resin (A) can be calculated as a polystyrene equivalent value by performing gel permeation chromatography (GPC) analysis on a solution in which resin (A) is dissolved in N-methyl-2-pyrrolidone to give a resin concentration of 0.1% by weight.
また、樹脂(A)に含まれるF原子の割合は、接着性の観点から少ないほうが好ましく、樹脂(A)100質量部に対して2.0質量部以下であることが好ましい。これにより基板との接着性を高くすることができる。より好ましくは樹脂(A)100質量部に対してF原子の含有割合は0.2質量部以下である。これにより、樹脂層を薄膜化した際の接着性を高くすることができる。 In addition, the proportion of F atoms contained in resin (A) is preferably small from the viewpoint of adhesion, and is preferably 2.0 parts by mass or less per 100 parts by mass of resin (A). This allows for high adhesion to the substrate. More preferably, the content of F atoms is 0.2 parts by mass or less per 100 parts by mass of resin (A). This allows for high adhesion when the resin layer is made thin.
樹脂(A)の酸二無水物成分/ジアミン成分のモル比は、樹脂(A)を含有する樹脂組成物が塗工等において使用し易い範囲になるように、適宜調整することができ、100/100~100/95、あるいは100/100~95/100の範囲で酸二無水物成分/ジアミン成分のモル比を調整することが一般的である。樹脂(A)の酸二無水物成分/ジアミン成分のモル比を上記範囲外にすると、樹脂(A)の分子量が低下し、形成した膜の機械的強度が低くなる。これにより接着力にムラがでる場合があるので、接着力が安定する範囲でモル比を調整することが好ましい。 The molar ratio of the dianhydride component/diamine component of resin (A) can be adjusted as appropriate so that the resin composition containing resin (A) is in a range that is easy to use in coating, etc. It is common to adjust the molar ratio of the dianhydride component/diamine component to a range of 100/100 to 100/95, or 100/100 to 95/100. If the molar ratio of the dianhydride component/diamine component of resin (A) is outside the above range, the molecular weight of resin (A) will decrease, and the mechanical strength of the formed film will decrease. This may result in uneven adhesion, so it is preferable to adjust the molar ratio within a range in which the adhesion is stable.
樹脂(A)は、加熱により閉環しポリイミドとなるポリイミド前駆体であっても、加熱により閉環したポリイミドであっても、樹脂の一部が加熱により閉環したポリイミド前駆体であってもよい。 The resin (A) may be a polyimide precursor that undergoes ring closure upon heating to become a polyimide, a polyimide that has undergone ring closure upon heating, or a polyimide precursor in which part of the resin has undergone ring closure upon heating.
樹脂(A)を重合する方法には特に制限は無い。例えば、ポリイミド前駆体であるポリアミド酸を重合する時は、テトラカルボン酸二無水物とジアミンを有機溶剤中、0~100℃で1~100時間撹拌してポリアミド酸樹脂溶液を得る。樹脂(A)が有機溶媒に可溶性となる場合には、ポリアミド酸を重合後、そのまま温度を120~300℃に上げて1~100時間撹拌し、ポリイミドに変換し、樹脂(A)の溶液を得る。この時、トルエン、o-キシレン、m-キシレン、p-キシレンなどを反応溶液中に添加し、イミド化反応で出る水をこれら溶剤と共沸させて除去しても良い。 There are no particular limitations on the method for polymerizing resin (A). For example, when polymerizing polyamic acid, which is a polyimide precursor, tetracarboxylic dianhydride and diamine are stirred in an organic solvent at 0 to 100°C for 1 to 100 hours to obtain a polyamic acid resin solution. If resin (A) is soluble in an organic solvent, after polymerization of polyamic acid, the temperature is raised to 120 to 300°C and stirred for 1 to 100 hours to convert it to polyimide, and a solution of resin (A) is obtained. At this time, toluene, o-xylene, m-xylene, p-xylene, etc. may be added to the reaction solution, and the water produced by the imidization reaction may be removed by azeotroping with these solvents.
(溶剤)
本実施形態の樹脂組成物は、溶剤を含有する。溶剤を含有させることで、樹脂組成物の粘度を調整することができ、後述する硬化物の厚さを調整することができる。溶剤の含有量は樹脂(A)100質量部に対して100質量部以上2000質量部以下が好ましく、目的とする膜厚に合わせて選択できる。本実施形態の樹脂組成物に用いる溶剤としては、重合に使用した溶剤をそのまま用いてもよいし、そこにさらに別の溶剤を加えて混合溶剤としてもかまわない。また、重合した樹脂(A)の重合液から重合溶剤を除去し、別の溶剤と樹脂(A)を混合し樹脂組成物としてもよい。溶剤としては、具体的には、ガンマブチロラクトンなどの極性の非プロトン性溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-プロピルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-n-ブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、アセトン、メチルエチルケトン、ジイソブチルケトン、シクロヘキサノン、シクロペンタノン、2-ヘプタノン、3-ヘプタノン、ジアセトンアルコールなどのケトン類、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、酢酸エチル、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、ぎ酸n-ペンチル、酢酸i-ペンチル、プロピオン酸n-ブチル、酪酸エチル、酪酸n-プロピル、酪酸i-プロピル、酪酸n-ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸n-プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸エチルなどのエステル類、トルエン、キシレンなどの芳香族炭化水素類、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-ジエチルアセトアミドなどのアミド類が挙げられる。なかでも、N-メチルピロリドン、N-ジメチルアセトアミド、N-ジエチルアセトアミド、シクロヘキサノン、乳酸エチルなどが好ましく用いられる。溶剤は、単独または2種類以上使用することができ、樹脂(A)との相溶が可能であれば上記の溶剤に限定されない。
(solvent)
The resin composition of the present embodiment contains a solvent. By including a solvent, the viscosity of the resin composition can be adjusted, and the thickness of the cured product described later can be adjusted. The content of the solvent is preferably 100 parts by mass or more and 2000 parts by mass or less per 100 parts by mass of the resin (A), and can be selected according to the desired film thickness. As the solvent used in the resin composition of the present embodiment, the solvent used in the polymerization may be used as it is, or another solvent may be added thereto to form a mixed solvent. In addition, the polymerization solvent may be removed from the polymerization liquid of the polymerized resin (A), and another solvent and the resin (A) may be mixed to form a resin composition. Specific examples of the solvent include polar aprotic solvents such as gamma-butyrolactone, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-propyl ether, diethylene glycol mono-n-butyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol ethers such as ethylene glycol mono-n-propyl ether, propylene glycol mono-n-butyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, dipropylene glycol mono-n-butyl ether, tripropylene glycol monomethyl ether, tripropylene glycol monoethyl ether, tetrahydrofuran, and dioxane; ketones such as acetone, methyl ethyl ketone, diisobutyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, and diacetone alcohol; Ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ethyl lactate, ethyl 2-hydroxy-2-methylpropionate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl acetate, 3-methyl-3-methylpropionate, Examples of the solvent include esters such as methoxybutyl acetate, 3-methyl-3-methoxybutyl propionate, ethyl acetate, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, n-pentyl formate, i-pentyl acetate, n-butyl propionate, ethyl butyrate, n-propyl butyrate, i-propyl butyrate, n-butyl butyrate, methyl pyruvate, ethyl pyruvate, n-propyl pyruvate, methyl acetoacetate, ethyl acetoacetate, and ethyl 2-oxobutanoate; aromatic hydrocarbons such as toluene and xylene; and amides such as N-methylpyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, and N-diethylacetamide. Among these, N-methylpyrrolidone, N-dimethylacetamide, N-diethylacetamide, cyclohexanone, and ethyl lactate are preferably used. The solvent may be used alone or in combination with two or more kinds, and is not limited to the above-mentioned solvents as long as it is compatible with the resin (A).
さらに溶剤の粘度が、1.8mPa・s以上、3.1mPa・s以下であることが好ましい。溶剤の粘度が1.8mPa・s以上であることによって、樹脂組成物を基板に塗布する際に、基板の端部での塗膜の収縮や基板裏面への回り込みを抑制することができ、端部の膜厚が均一になることで端部の接着性が向上し、また、工程通過時の搬送エラーなども抑制できる。また、溶剤の粘度が、3.1mPa以下であることによって、塗膜の面内均一性を高くすることができる。粘度が、1.8mP・s以上、3.1mPa・s以下の溶剤の一例としては、ダイアセトンアルコール(粘度:2.90mPa・s)、シクロヘキサノン(粘度:1.97mPa・s)、乳酸エチル(2.44mPa・s)、ジメチルイミダゾリジノン(粘度:2.63mPa・s)、3-メトキシ-N,N-ジメチルプロパンアミド(粘度:2.04mPa・s)などが挙げられる。 Furthermore, it is preferable that the viscosity of the solvent is 1.8 mPa·s or more and 3.1 mPa·s or less. By having a solvent viscosity of 1.8 mPa·s or more, it is possible to suppress shrinkage of the coating film at the edges of the substrate and wrap around to the back surface of the substrate when the resin composition is applied to the substrate, and by making the film thickness at the edges uniform, it is possible to improve adhesion at the edges and also suppress transportation errors when passing through the process. Furthermore, by having a solvent viscosity of 3.1 mPa or less, it is possible to increase the in-plane uniformity of the coating film. Examples of solvents with a viscosity of 1.8 mPa·s or more and 3.1 mPa·s or less include diacetone alcohol (viscosity: 2.90 mPa·s), cyclohexanone (viscosity: 1.97 mPa·s), ethyl lactate (2.44 mPa·s), dimethylimidazolidinone (viscosity: 2.63 mPa·s), and 3-methoxy-N,N-dimethylpropanamide (viscosity: 2.04 mPa·s).
(シランカップリング剤)
本実施形態の樹脂組成物は、シランカップリング剤を含有することが好ましい。シランカップリング剤は、樹脂(A)を重合後、室温~50℃の温度において添加することが好ましい。上記樹脂組成物がシランカップリング剤を含有することで、樹脂組成物の基板との接着性を向上できる。樹脂組成物におけるシランカップリング剤の好ましい含有量は、樹脂(A)100質量部に対して1.0質量部以上、10質量部以下であることが好ましい。樹脂組成物がシランカップリング剤を1.0質量部以上含有することにより、基板との接着性の向上効果が得られる。樹脂組成物は、樹脂(A)100質量部に対して、シランカップリング剤を3.0質量部以上含有することがさらに好ましい。これにより、基板を貼り合わせた後に、デバイスの薄膜化や個片化の工程を通した場合も、デバイス基板や個片化基板の剥がれを抑制することができる。また、樹脂組成物における、シランカップリング剤の含有量が樹脂(A)100質量部に対して10質量部以下であることにより、熱処理時シランカップリング剤に起因する脱ガスを抑制することができる。樹脂組成物における、シランカップリング剤のさらに好ましい含有量は、樹脂(A)100質量部に対して、7.0質量部以下である。シランカップリング剤をこの範囲で含有することにより、ワニスの保存安定性が向上する。シランカップリング剤の例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、エポキシシクロヘキシルエチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、7-オクテニルトリメトキシシラン、8-グリシドキシオクチルトリメトキシシラン、8-メタクリロキシオクチルトリメトキシシラン、N-2-(アミノエチル)-8-アミノオクチルトリメトキシシランなどが挙げられる。これらのシランカップリング剤は、単体で用いてもよいし2種類以上を組み合わせて使用しても構わない。シランカップリング剤は、式(7)で表される化合物を含有することがさらに好ましい。
(Silane coupling agent)
The resin composition of the present embodiment preferably contains a silane coupling agent. The silane coupling agent is preferably added at a temperature of room temperature to 50° C. after polymerization of the resin (A). By containing the silane coupling agent in the resin composition, the adhesiveness of the resin composition to the substrate can be improved. The preferred content of the silane coupling agent in the resin composition is preferably 1.0 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the resin (A). By containing 1.0 part by mass or more of the silane coupling agent in the resin composition, the adhesiveness to the substrate can be improved. It is more preferred that the resin composition contains 3.0 parts by mass or more of the silane coupling agent with respect to 100 parts by mass of the resin (A). This makes it possible to suppress peeling of the device substrate or the singulated substrate even when the process of thinning or dicing the device is performed after the substrates are bonded together. In addition, by containing 10 parts by mass or less of the silane coupling agent in the resin composition with respect to 100 parts by mass of the resin (A), it is possible to suppress degassing caused by the silane coupling agent during heat treatment. A more preferred content of the silane coupling agent in the resin composition is 7.0 parts by mass or less relative to 100 parts by mass of the resin (A). By containing the silane coupling agent in this range, the storage stability of the varnish is improved. Examples of the silane coupling agent include vinyltrimethoxysilane, vinyltriethoxysilane, epoxycyclohexylethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 7-octenyltrimethoxysilane, 8-glycidoxyoctyltrimethoxysilane, 8-methacryloxyoctyltrimethoxysilane, and N-2-(aminoethyl)-8-aminooctyltrimethoxysilane. These silane coupling agents may be used alone or in combination of two or more. The silane coupling agent more preferably contains a compound represented by formula (7).
式(7)中、R23は、炭素数5~10のアルキレン基を示す。R24は、それぞれ独立に、炭素数1~5のアルキル基を示す。Zは、水素原子、または下記式(8)~(14)のいずれかで表される基を示す。 In formula (7), R 23 represents an alkylene group having 5 to 10 carbon atoms. R 24 each independently represents an alkyl group having 1 to 5 carbon atoms. Z represents a hydrogen atom or a group represented by any one of the following formulas (8) to (14).
式(8)~式(14)中、R25~R31は、それぞれ独立に、水素原子、炭素数1~5のアルキル基、炭素数1~5のアルコキシ基、水酸基またはハロゲン原子のいずれかを示す。*8~*14は式(7)におけるR23との結合部位を表す。 In formulas (8) to (14), R 25 to R 31 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, a hydroxyl group, or a halogen atom. * 8 to * 14 represent bonding sites with R 23 in formula (7).
式(8)で表される構造を有するシランカップリング剤としては、8-グリシドキシオクチルトリメトキシシラン、6-グリシドキシヘキシルトリメトキシシラン等が挙げられる。式(9)で表される構造を有するシランカップリング剤としては、7-オクテニルトリメトキシシラン、7-オクテニルトリエトキシシラン等が挙げられる。式(10)で表される構造を有するシランカップリング剤としては、8-メタクリロキシオクチルトリメトキシシランが挙げられる。式(11)で表される構造を有するシランカップリング剤としては、N-2-(アミノエチル)-8-アミノオクチルトリメトキシシラン、N-2-(アミノエチル)-6-アミノヘキシルトリメトキシシラン等が挙げられる。式(12)で表される構造を有するシランカップリング剤としては、1-(6-(トリメトキシシリル)ヘキシル)ウレア)等が挙げられる。式(13)で表される構造を有するシランカップリング剤としては、1-(6-(トリメトキシシリル)ヘキシル)チオウレア)等が挙げられる。式(14)で表される構造を有するシランカップリング剤としては、8-フェニルオクチルトリメトキシシラン等が挙げられる。 Silane coupling agents having a structure represented by formula (8) include 8-glycidoxyoctyltrimethoxysilane, 6-glycidoxyhexyltrimethoxysilane, etc. Silane coupling agents having a structure represented by formula (9) include 7-octenyltrimethoxysilane, 7-octenyltriethoxysilane, etc. Silane coupling agents having a structure represented by formula (10) include 8-methacryloxyoctyltrimethoxysilane. Silane coupling agents having a structure represented by formula (11) include N-2-(aminoethyl)-8-aminooctyltrimethoxysilane, N-2-(aminoethyl)-6-aminohexyltrimethoxysilane, etc. Silane coupling agents having a structure represented by formula (12) include 1-(6-(trimethoxysilyl)hexyl)urea), etc. Silane coupling agents having a structure represented by formula (13) include 1-(6-(trimethoxysilyl)hexyl)thiourea), etc. An example of a silane coupling agent having a structure represented by formula (14) is 8-phenyloctyltrimethoxysilane.
式(7)で表される化合物を含有するシランカップリング剤は、樹脂(A)との相溶性がよく、密着性向上効果がより高いため、貼り合わせ後の基板に250℃以上の熱処理を加えた場合も、剥がれを防ぐことができる。式(7)で表される化合物を含有するシランカップリング剤の好ましい添加量は、上述のシランカップリング剤の好ましい添加量と同様である。 The silane coupling agent containing the compound represented by formula (7) has good compatibility with resin (A) and has a higher adhesion improving effect, so that peeling can be prevented even when the substrate after bonding is subjected to a heat treatment of 250°C or more. The preferred amount of the silane coupling agent containing the compound represented by formula (7) to be added is the same as the preferred amount of the silane coupling agent described above.
(無機粒子)
本実施形態の樹脂組成物は、寸法安定性及び耐熱性の向上の観点から無機粒子を含有しても良い。樹脂組成物における、無機粒子の含有量は、樹脂(A)100質量部に対し、2.0質量部以上、10質量部以下であることが好ましい。樹脂組成物における、無機粒子の含有量が、樹脂(A)100質量部に対し、2.0質量部以上であることで、寸法安定性の向上効果が得られる。樹脂組成物における、無機粒子の含有量が樹脂(A)100質量部に対して10質量部以下であることによって、樹脂組成物の接着性が保たれる。無機粒子の例としては、シリカ、アルミナ、酸化チタン、石英粉、炭酸マグネシウム、炭酸カリウム、硫酸バリウム、マイカ、タルクなどが挙げられる。特に耐熱性と観点からシリカ粒子であることが好ましい。
(Inorganic particles)
The resin composition of the present embodiment may contain inorganic particles from the viewpoint of improving dimensional stability and heat resistance. The content of the inorganic particles in the resin composition is preferably 2.0 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the resin (A). When the content of the inorganic particles in the resin composition is 2.0 parts by mass or more with respect to 100 parts by mass of the resin (A), an effect of improving dimensional stability is obtained. When the content of the inorganic particles in the resin composition is 10 parts by mass or less with respect to 100 parts by mass of the resin (A), the adhesiveness of the resin composition is maintained. Examples of inorganic particles include silica, alumina, titanium oxide, quartz powder, magnesium carbonate, potassium carbonate, barium sulfate, mica, talc, etc. In particular, silica particles are preferable from the viewpoint of heat resistance.
(架橋剤)
本実施形態の樹脂組成物は、架橋剤を含有してもよい。架橋剤を含有することで、樹脂組成物を硬化した後に耐薬品性や耐熱性が向上し、デバイスの工程通過性や信頼性が向上する。架橋剤としては、公知の架橋剤を用いることができ、エポキシ系架橋剤、アクリル系架橋剤、メチロール系架橋剤などを選択することができる。
(Crosslinking Agent)
The resin composition of the present embodiment may contain a crosslinking agent. By containing a crosslinking agent, the chemical resistance and heat resistance are improved after the resin composition is cured, and the processability and reliability of the device are improved. As the crosslinking agent, a known crosslinking agent can be used, and an epoxy-based crosslinking agent, an acrylic-based crosslinking agent, a methylol-based crosslinking agent, or the like can be selected.
(樹脂(A)以外の樹脂)
本実施形態の樹脂組成物は、本発明の効果を損なわない範囲で樹脂(A)以外の樹脂を含有してもよい。また、粘着性、耐熱性、塗工性、保存安定性などの特性を改良する目的で界面活性剤を添加してもよい。また、その他の樹脂、界面活性剤は樹脂(A)の重合時に添加してもよく、重合後に添加してもよい。
(Resins other than resin (A))
The resin composition of the present embodiment may contain a resin other than the resin (A) within a range that does not impair the effects of the present invention. In addition, a surfactant may be added for the purpose of improving properties such as adhesion, heat resistance, coatability, and storage stability. In addition, the other resins and surfactants may be added during or after polymerization of the resin (A).
その他の樹脂としては、アクリル樹脂、エポキシ樹脂、ポリスチレン樹脂、ノボラック樹脂、ポリベンゾオキサゾール樹脂、シリコーン樹脂などが挙げられる。また、界面活性剤としては、シラン系界面活性剤、アクリル系界面活性剤、フッ素系界面活性剤などが挙げられる。
[硬化物]
次に本実施形態の硬化物について説明する。
樹脂組成物の硬化物は、樹脂組成物を硬化することで得られ、樹脂組成物を熱処理して硬化することが好ましい。樹脂(A)がポリアミド酸樹脂の場合、熱処理によって、ポリイミドに変換することができる。熱処理には、オーブン、ホットプレート、赤外線などを使用することができる。また、硬化温度および硬化時間は、樹脂組成物に含まれる溶剤を揮発させ、かつ、樹脂(A)を室温において流動しない膜とするのに必要な温度および時間である。具体的には100℃~300℃で、時間は数分~数時間である。
Examples of other resins include acrylic resins, epoxy resins, polystyrene resins, novolac resins, polybenzoxazole resins, silicone resins, etc. Examples of surfactants include silane-based surfactants, acrylic-based surfactants, and fluorine-based surfactants.
[Cured product]
Next, the cured product of this embodiment will be described.
The cured product of the resin composition is obtained by curing the resin composition, and it is preferable to cure the resin composition by heat treatment. When the resin (A) is a polyamic acid resin, it can be converted to polyimide by heat treatment. For the heat treatment, an oven, a hot plate, infrared rays, etc. can be used. The curing temperature and curing time are the temperature and time required to volatilize the solvent contained in the resin composition and to make the resin (A) into a film that does not flow at room temperature. Specifically, the temperature is 100°C to 300°C, and the time is several minutes to several hours.
硬化物は、樹脂組成物を成膜して塗布膜としたものから作成した膜状の硬化物でも構わない。膜状の硬化物とすることで、硬化物の厚さを一定にすることができ、以降の積層体の形成やデバイス基板との貼り合わせにおけるムラをなくすことができる。硬化物を膜状に形成する方法としては、樹脂組成物を基板などへ塗布し、その後上述の熱処理行う方法が挙げられる。樹脂組成物の塗布の方法としては、公知の方法を選択でき、スピンナーを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター、バーコーター、ロールコーター、コンマロールコーター、グラビアコーター、スクリーンコーター、スリットダイコーターなどの方法が挙げられる。 The cured product may be a film-like cured product made by forming a coating film from the resin composition. By forming the cured product into a film, the thickness of the cured product can be made constant, and unevenness can be eliminated in the subsequent formation of a laminate and in the subsequent bonding to a device substrate. A method for forming the cured product into a film can be exemplified by a method in which the resin composition is applied to a substrate or the like, followed by the above-mentioned heat treatment. A known method can be selected as a method for applying the resin composition, and examples of such methods include rotary application using a spinner, spray application, roll coating, screen printing, blade coater, die coater, calendar coater, meniscus coater, bar coater, roll coater, comma roll coater, gravure coater, screen coater, and slit die coater.
上記硬化物のガラス転移温度は、熱処理時の寸法安定性の観点から、150℃以上が好ましく、貼り合わせの容易性の観点から260℃以下であることが好ましい。ガラス転移温度は、示差走査熱量計(DSC)や熱機械分析(TMA)を用いて測定することができる。ガラス転移温度のより詳細な測定方法は、後述の実施例に記載の通りである。 The glass transition temperature of the cured product is preferably 150°C or higher from the viewpoint of dimensional stability during heat treatment, and is preferably 260°C or lower from the viewpoint of ease of lamination. The glass transition temperature can be measured using a differential scanning calorimeter (DSC) or thermomechanical analysis (TMA). A more detailed method for measuring the glass transition temperature is described in the examples below.
上記硬化物の熱線膨張率(CTE)は、接着性の観点から、30ppm/K以上が好ましく、デバイスや基板を貼り合わせた際のそりや、そりに起因する剥がれを低減する観点から100ppm/K以下であることが好ましい。熱線膨張率は、例えば、下記式(X)に従い、各硬化物のガラス転移温度より80℃低い温度から30℃低い温度におけるサンプル長の変化量の割合として計算しうる。
CTE(1/K)=((Tg-30℃でのサンプル長(m))-(Tg-80℃でのサンプル長(m))/(測定前のサンプル長(m)×50(K))・・・式(X)
The coefficient of linear thermal expansion (CTE) of the cured product is preferably 30 ppm/K or more from the viewpoint of adhesion, and is preferably 100 ppm/K or less from the viewpoint of reducing warping when bonding a device or a substrate and peeling caused by warping. The coefficient of linear thermal expansion can be calculated, for example, according to the following formula (X), as the ratio of the change in sample length from a temperature 80° C. lower to a
CTE (1/K) = ((sample length (m) at Tg-30 ° C)) - (sample length (m) at Tg-80 ° C)) / (sample length (m) before measurement × 50 (K)) ... formula (X)
サンプル長の温度による変化量は熱機械分析(TMA)を用いて測定することができる。線熱膨張率のより詳細な測定方法は、後述の実施例に記載の通りである。 The change in sample length due to temperature can be measured using thermomechanical analysis (TMA). A more detailed method for measuring the linear thermal expansion coefficient is described in the Examples section below.
上記硬化物の1%重量減少温度は、硬化物を使用したプロセスで必要とされる耐熱性の観点から、300℃以上、600℃以下であることが好ましい。
1%重量減少温度は、熱重量測定装置を用いて測定する。この際、120℃で30分保持した後、昇温速度5℃/分で500℃まで昇温して求められる値とする。
The 1% weight loss temperature of the cured product is preferably 300° C. or higher and 600° C. or lower, from the viewpoint of heat resistance required in processes using the cured product.
The 1% weight loss temperature is measured using a thermogravimetric analyzer by holding the sample at 120° C. for 30 minutes and then increasing the temperature to 500° C. at a rate of 5° C./min.
[積層体]
次に、上記硬化物を有する積層体について説明する。本実施形態の積層体は、上記硬化物が基材に積層されたものであることが好ましい。基材として、具体的には、無機基板、有機基板、フィルムなどの有機膜が挙げられ、より具体的には、シリコン、アルカリガラス、無アルカリガラス、ほうケイ酸ガラス、サファイヤ、石英、セラミックなどの基板、ZnS、ZnCeなどのII-VI族化合物半導体、GaN、InP、GaAs、AlN、GaAlAsなどのIII-V族化合物半導体、SiCなどのIV-IV族化合物半導体、LT、LN、IGZOなどの酸化物半導体を含む基板、PETやアラミド、ポリエステル、ポリプロピレン、シクロオレフィン、ポリイミドなどの有機系の基板やフィルムなどが挙げられ、これらを組み合わされたもの、さらに回路やパターン、素子が形成されたものも含む。基材への硬化物の形成方法としては、膜状の硬化物の形成方法を使用することができる。
[Laminate]
Next, a laminate having the cured product will be described. The laminate of this embodiment is preferably one in which the cured product is laminated on a substrate. Specific examples of the substrate include inorganic substrates, organic substrates, and organic films such as films. More specifically, substrates such as silicon, alkali glass, non-alkali glass, borosilicate glass, sapphire, quartz, and ceramics, II-VI group compound semiconductors such as ZnS and ZnCe, III-V group compound semiconductors such as GaN, InP, GaAs, AlN, and GaAlAs, IV-IV group compound semiconductors such as SiC, substrates containing oxide semiconductors such as LT, LN, and IGZO, organic substrates and films such as PET, aramid, polyester, polypropylene, cycloolefin, and polyimide, and combinations of these, as well as those in which circuits, patterns, and elements are formed. As a method for forming a cured product on a substrate, a method for forming a film-like cured product can be used.
本実施形態の硬化物は仮接着剤や永久接着剤として使用できるため、積層体は、上述の基材同士を硬化物で貼り合わせた構成や、上述の積層体に個片化された素子が貼り合わされた構成であってもよい。硬化物により貼り合わされる基材は同じでも異なっていても構わず、用途に応じて、デバイス基板同士を貼り合わせることも、デバイス基板とそれを保護するサポート基板を貼り合わせることもできる。基材同士を貼りあわせた積層体は、前述の基材の上に硬化物が積層された状態の積層体の硬化物が露出した面に、別の基材を貼り合わせることで作成できる。貼り合わせの方法としては、プレス、ロールラミネータ等を用いて圧着させる方法が挙げられ、個片化された素子を積層する場合には、フリップチップボンダーを使用することも可能である。貼り合わせを行う際は、必要に応じて加熱して圧着しても良い。この時の温度は50℃以上、250℃以下が好ましく、さらに好ましい圧着温度は樹脂(A)のガラス転移温度以上である。圧着温度を樹脂(A)のガラス転移温度以上とすることで、樹脂(A)の粘着性が向上するため、基材同士を均一に貼り合わせることができる。また、圧着温度は200℃以下であることが好ましい。これにより、デバイス基板へのダメージを抑制することができる。また、圧着する際の圧力は0.1MPa以上5.0MPa以下が好ましく、より好ましくは0.2MPa以上3.0MPa以下である。圧着は空気中でも良く、窒素中で実施しても良い。圧着時の空気の噛みこみを低減できるため、減圧条件下もしくは真空中で実施することが好ましい。 Since the cured product of this embodiment can be used as a temporary adhesive or a permanent adhesive, the laminate may be configured by bonding the above-mentioned substrates together with the cured product, or by bonding individualized elements to the above-mentioned laminate. The substrates bonded together with the cured product may be the same or different, and depending on the application, device substrates may be bonded together, or a device substrate may be bonded to a support substrate that protects it. A laminate in which substrates are bonded together can be created by bonding another substrate to the exposed surface of the cured product of the laminate in which the cured product is laminated on the substrate. Examples of bonding methods include a method of bonding using a press, a roll laminator, etc., and when laminating individualized elements, a flip chip bonder can also be used. When bonding, the substrates may be heated and bonded as necessary. The temperature at this time is preferably 50°C or higher and 250°C or lower, and the more preferable bonding temperature is the glass transition temperature of the resin (A) or higher. By setting the bonding temperature to the glass transition temperature of the resin (A) or higher, the adhesiveness of the resin (A) is improved, so that the substrates can be bonded together evenly. In addition, the pressure bonding temperature is preferably 200°C or less. This can suppress damage to the device substrate. In addition, the pressure during compression is preferably 0.1 MPa or more and 5.0 MPa or less, and more preferably 0.2 MPa or more and 3.0 MPa or less. Compression bonding may be performed in air or nitrogen. It is preferable to perform the compression bonding under reduced pressure conditions or in a vacuum, as this can reduce the entrapment of air during compression bonding.
さらに積層体は硬化物からなる層を複数有していてもよい。硬化物からなる層を複数有する積層体は、上述の基材同士を貼りあわせた積層体、または基材と個片化された素子を貼り合わせた積層体の、一方の面にさらに硬化物を形成し、硬化物が露出した面と、別の基材または個片化された素子を圧着する等工程を繰り返すことで作成できる。また、基材同士を貼り合わせた積層体、または基材と個片化された素子を貼り合わせた積層体の、一方の面と、別途、別の基材または個片化された素子に硬化膜を形成した積層体の硬化物が露出した面を圧着し、これを繰り返すことでも作成できる。 The laminate may further have multiple layers made of a cured product. A laminate having multiple layers made of a cured product can be produced by repeating a process of forming a further cured product on one side of the laminate in which the above-mentioned substrates are bonded together, or the laminate in which the substrate and the singulated element are bonded together, and then pressing the surface on which the cured product is exposed to another substrate or singulated element. It can also be produced by repeatedly pressing one side of a laminate in which substrates are bonded together, or the laminate in which the substrate and the singulated element are bonded together, to the surface on which the cured product is exposed of a laminate in which a cured film is formed on another substrate or singulated element.
積層体における硬化物の厚さは0.5μm以上、8.0μm以下が好ましい。積層体における硬化物の厚さは0.5μm以上であることが好ましく、これにより、基材を安定して貼り合わせることが可能となる。さらに好ましくは、硬化物の厚さは1.0μm以上であり、貼り合わせ後に薄化な熱処理の工程において、デバイスの破損や剥がれを生じさせず工程を通すことができる。また、硬化物の厚さは8.0μm以下が好ましく、薄型デバイスにおける接着剤の厚さの影響を小さくできる。さらに好ましくは5.0μm以下であり、これにより、積層体のそりを低減できる。硬化膜の膜厚は、走査型電子顕微鏡や光学式膜厚計、段差計、レーザー顕微鏡などで測定することができる。 The thickness of the cured product in the laminate is preferably 0.5 μm or more and 8.0 μm or less. The thickness of the cured product in the laminate is preferably 0.5 μm or more, which allows the substrates to be stably bonded together. More preferably, the thickness of the cured product is 1.0 μm or more, which allows the device to go through the thinning heat treatment process after bonding without damage or peeling. In addition, the thickness of the cured product is preferably 8.0 μm or less, which reduces the effect of the adhesive thickness on thin devices. More preferably, the thickness is 5.0 μm or less, which reduces warping of the laminate. The thickness of the cured film can be measured using a scanning electron microscope, optical film thickness gauge, step gauge, laser microscope, etc.
積層体は化合物半導体層を有することが好ましく、このような積層体は、高周波デバイス、高出力デバイス、レーザーダイオード、発光ダイオードを用いた照明、ディスプレイといった様々な半導体装置への適用が可能となる。化合物半導体層は、化合物半導体からなる層である。化合物半導体の例としては、前述の積層体の説明で例示したものが挙げられるが、これに限らない。 The laminate preferably has a compound semiconductor layer, and such a laminate can be applied to various semiconductor devices such as high-frequency devices, high-output devices, laser diodes, lighting using light-emitting diodes, and displays. The compound semiconductor layer is a layer made of a compound semiconductor. Examples of compound semiconductors include, but are not limited to, those exemplified in the description of the laminate above.
[半導体装置]
本実施形態は、上記積層体を有する半導体装置である。本実施形態の積層体を使用する応用例として、半導体素子を有する半導体装置について、モノリシック型のLED素子を用いたディスプレイを例に取り、図面を用いて説明する。図1は、モノリシック型LEDのLED素子の実装部分の拡大断面図である。図1は回路基板2上、モノリシック型LED素子1が、回路基板2と導通を取るように実装されている様子を表す。
[Semiconductor device]
This embodiment is a semiconductor device having the laminate. As an application example of the laminate of this embodiment, a semiconductor device having a semiconductor element will be described with reference to the drawings, taking a display using a monolithic LED element as an example. Fig. 1 is an enlarged cross-sectional view of the mounting portion of the LED element of a monolithic LED. Fig. 1 shows a state in which a
次に、図2にモノリシック型LED素子1の拡大図を示す。第一サファイヤ基板110上に、第一n型GaN層111、第一発光層112、第一p型GaN層113、第一透明電極114があらかじめこの順に形成された第一LED層10が、第二n型GaN層121、第二発光層122、第二p型GaN層123、第二透明電極124がこの順に形成された第二LED層20と第一透明電極114および第二透明電極124の界面で本実施形態の硬化物からなる第二接着層220を介して積層されている。透明電極にはITOなどを用いることができる。さらに第二LED層は第三n型GaN層131、第三発光層132、第三p型GaN層133、第三透明電極134がこの順で形成された第三LED層30と、第二n型GaN層121と第三透明電極134の界面で、本実施形態の硬化物からなる第三接着層230を介して積層されている。さらにそれぞれの層は、電極320にて導通がとられており、接続する層以外の部分はパッシベーション層310で絶縁されている。本実施形態の硬化物を用いた積層体は、寸法安定性に優れるため、このような、多くの層を有する積層体とした場合も反りや剥がれを起こさず、信頼性の高いデバイスを作成することができる。
2 shows an enlarged view of the
本実施形態は、本実施形態の積層体を用いる半導体装置の製造方法であって、積層体を薄く加工する工程および前記積層体を個片化する工程の少なくとも一つを含むことを特徴とする半導体装置の製造方法である。上記半導体装置の製造方法は、上記デバイスを薄く加工する工程を有していてもよい。 The present embodiment is a method for manufacturing a semiconductor device using the laminate of the present embodiment, characterized in that it includes at least one of a step of thinning the laminate and a step of singulating the laminate. The method for manufacturing a semiconductor device may also include a step of thinning the device.
半導体装置の製造方法について、モノリシック型LED素子の作成方法を例として図面を用いて説明する。図3A~図3Kは、図1で示したモノリシックLEDディスプレイの製造工程の一例を示している。 As for the manufacturing method of a semiconductor device, the method of creating a monolithic LED element will be explained using drawings as an example. Figures 3A to 3K show an example of the manufacturing process for the monolithic LED display shown in Figure 1.
まず、図3Aに示すように、第一サファイヤ基板110に第一n型GaN層111、第一発光層112、第一p型GaN層113を公知の方法を用いて順にエピタキシャル成長させたを作成する。さらに、第一p型GaN層113の表面に第一透明電極114としてITOを蒸着により形成し、第一サファイヤ基板110上に第一LED層10が積層された積層体を準備する。さらに、第一透明電極114側から第一n型GaN層111に到達するまで電極用のビアを形成する。ビアの形成には公知の方法を用いることができ、ドライエッチング法などが適用できる。以上を工程(3-a)とする。
First, as shown in FIG. 3A, a first n-
次に、図3Bに示すように、第二サファイヤ基板120の上に前述と同様の方法で、第二LED層20を形成し、第二透明電極124の表面に、本実施形態の硬化物からなる第二接着層220を形成する。次に前述の第一LED層10の第一透明電極114の表面と第二接着層220の面を向かい合わせ、2つの積層体を貼り合わせる。貼り合わせには、公知の貼り合わせ装置を用いることができ、特にウエハボンダーを用い、減圧条件下で加熱しながら行うことが好ましい。以上を工程(3-b)とする。
Next, as shown in FIG. 3B, the
次に、図3Cに示すように、第二サファイヤ基板120を除去する。除去の方法には、研磨による機械的な剥離、レーザーによる剥離が挙げられ、処理速度の点、サファイヤ基板の再利用の点からレーザーによる剥離が好ましい。レーザーでサファイヤ基板の剥離を行う際はサファイヤ基板のn型GaN層と接する面とは反対の面から、サファイヤ基板を透過する波長のレーザーを照射し、サファイヤ基板とn型GaN層の界面でn型GaN層をアブレーションすることで剥離する。サファイヤ基板を剥離するレーザー波長としては、248nm、266nmなどが挙げられる。以上を工程(3-c)とする。
Next, as shown in FIG. 3C, the
次に、図3Dに示すように、第二n型GaN層121側からビアを作成する。ビアはそれぞれ、工程(3-a)で形成したビア、第一透明電極114、および第二透明電極124に達するように作成する。以上を工程(3-d)とする。
Next, as shown in FIG. 3D, vias are created from the second n-
さらに、図3Eに示すように、工程(3-b)と同様の方法で作成した、第三サファイヤ基板130、第三LED層30、本実施形態の硬化物からなる第三接着層230を順に積層した積層体を、工程(3-d)で作成した積層体の第二n型GaN層121と第三接着層230の面で貼り合わせ、第一LED層10~第三LED層30が積層された積層体を得る。以上を工程(3-e)とする。
Furthermore, as shown in FIG. 3E, a laminate produced in the same manner as in step (3-b), in which a
次に、図3Fに示すように、積層体の第一サファイヤ基板110を研磨処理により薄化し、その後、第三サファイヤ基板130を剥離除去する。以上を工程(3-f)とする。
Next, as shown in FIG. 3F, the
次に、図3Gに示すように、第三n型GaN層131の面からビアを形成する。ビアはそれぞれ、すでに形成済みのビア、第二n型GaN層121、第三透明電極134に到達するように形成する。以上を工程(3-g)とする。
Next, as shown in FIG. 3G, vias are formed from the surface of the third n-
次に、図3Hに示すように、第三n型GaN層131の表面および各ビアの側面にパッシベーション層310を作成する。パッシベーション層は公知の方法で作成することができ、SiO2などの無機材料をレジストやメタルマスクを使用して、スパッタリング法などを用いて作成できる。以上を工程(3-h)とする。
Next, as shown in Fig. 3H, a
図3Iに示すように、ビア内部および、回路基板2との導通部にメッキ法などを用いて、電極となる金属を充填し、電極320を作成する。電極材料としては、Auやその合金を用いることが好ましい。以上を工程(3-i)とする。
As shown in FIG. 3I, the inside of the via and the conductive portion with the
図3Jに示すように、その後出来上がったLEDデバイスは、素子の大きさとなるように個片化処理を行う。個片化はドライエッチング法などを用い、マスクを用いて行うことが好ましい。以上を工程(3-j)とする。 As shown in Figure 3J, the completed LED device is then singulated to the size of the element. It is preferable to singulate using a mask, such as dry etching. This is referred to as step (3-j).
最後に、図3Kに示すように、得られたLED素子を回路基板2へ実装する。実装には公知の装置を用いることができ、フリップチップボンダーなどを用いてLED素子を回路基板の所望の位置へ個別に実装する方法や、スタンプ法を用いて、複数のLED素子を一括で実装する方法、別の転写材が積層されたレーザー透過性基板の転写材が露出した面にLED素子をいったん仮接着し、その後、レーザー透過性基板側からレーザーを照射して、所望の位置に実装するレーザー転写法などが挙げられる。以上を工程(3-k)とする。
Finally, as shown in FIG. 3K, the obtained LED element is mounted on the
以上のように、本明細書には以下の内容が開示されている。
<1>
式(1)で表される構造単位および式(2)で表される構造単位のうち、少なくとも1つの構造単位を有する樹脂(A)と、溶剤とを含有する樹脂組成物であって、
前記樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対し、
前記樹脂(A)が、式(3)で表される構造を有する酸二無水物残基(A1)および式(4)で表される構造を有するジアミン残基(A2)の少なくとも1つを、合計で10モル%以上、40モル%以下含有し、
前記樹脂(A)が、式(5)で表される構造を有するジアミン残基(A3)を1.0モル%以上、20モル%以下含有し、
前記樹脂(A)に含有される全Si原子の割合が、前記樹脂(A)100質量部に対し、0.5質量部以上、5.0質量部以下である、樹脂組成物。
As described above, this specification discloses the following:
<1>
A resin composition comprising a resin (A) having at least one structural unit selected from a structural unit represented by formula (1) and a structural unit represented by formula (2), and a solvent,
With respect to 100 mol % in total of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A),
the resin (A) contains at least one of an acid dianhydride residue (A1) having a structure represented by formula (3) and a diamine residue (A2) having a structure represented by formula (4) in a total amount of 10 mol % or more and 40 mol % or less,
The resin (A) contains 1.0 mol % or more and 20 mol % or less of a diamine residue (A3) having a structure represented by formula (5),
A resin composition, wherein a ratio of all Si atoms contained in the resin (A) is 0.5 parts by mass or more and 5.0 parts by mass or less per 100 parts by mass of the resin (A).
(式(1)および式(2)中、X1およびX2は、それぞれ独立に、炭素数4以上50以下の4価の酸二無水物残基を示し、Y1およびY2は、それぞれ独立に、炭素数2以上100以下の2価のジアミン残基を示す。R1およびR2は、それぞれ独立に、水素原子、炭素数1~10の炭化水素基、炭素数1~10のアルキルシリル基、アルカリ金属原子、アンモニウム基、イミダゾリウム基またはピリジニウム基を示す。) (In formula (1) and formula (2), X1 and X2 each independently represent a tetravalent acid dianhydride residue having 4 to 50 carbon atoms, Y1 and Y2 each independently represent a divalent diamine residue having 2 to 100 carbon atoms, and R1 and R2 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an alkylsilyl group having 1 to 10 carbon atoms, an alkali metal atom, an ammonium group, an imidazolium group, or a pyridinium group.)
(式(3)~式(5)中、R3~R16は、それぞれ独立に、水素原子または炭素数1~20の1価の有機基、水酸基、およびハロゲン原子のいずれかを示す。R17~R20は、それぞれ独立に、炭素数1~30のアルキル基、炭素数1~30のアルコキシ基、フェニル基またはフェノキシ基を示す。R21およびR22は、それぞれ独立に、炭素数1~30のアルキレン基またはフェニレン基を示す。nは1~20の整数を示す。*3aおよび*3bは、前記式(1)で表される構造単位におけるイミド基につながる結合部位を表すか、または、*3aは、前記式(2)で表される構造単位における、アミド結合の炭素原子につながる結合部位を示し、*3bは前記式(2)で表される構造単位における、カルボン酸もしくはカルボン酸エステルの炭素原子につながる結合部位を示す。*4、および*5は、前記式(1)で表される構造単位におけるイミド基または前記式(2)で表される構造単位におけるアミド結合の窒素原子につながる結合部位を表す。) (In formulas (3) to (5), R 3 to R 16 each independently represent a hydrogen atom, a monovalent organic group having 1 to 20 carbon atoms, a hydroxyl group, or a halogen atom. R 17 to R 20 each independently represent an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a phenyl group, or a phenoxy group. R 21 and R 22 each independently represent an alkylene group or a phenylene group having 1 to 30 carbon atoms. n represents an integer from 1 to 20. * 3a and * 3b represent a bonding site connected to an imide group in the structural unit represented by formula (1), or * 3a represents a bonding site connected to a carbon atom of an amide bond in the structural unit represented by formula (2), and * 3b represents a bonding site connected to a carbon atom of a carboxylic acid or a carboxylate ester in the structural unit represented by formula (2). * 4, and * 5 represents a bonding site connected to the nitrogen atom of the imide group in the structural unit represented by formula (1) or the amide bond in the structural unit represented by formula (2).
<2>
前記ジアミン残基(A2)が、式(6)で表される構造を有するジアミン残基である、上記<1>に記載の樹脂組成物。
<2>
The resin composition according to the above <1>, wherein the diamine residue (A2) is a diamine residue having a structure represented by formula (6).
(式(6)中、*6は、前記式(1)で表される構造単位におけるイミド基または前記式(2)で表される構造単位におけるアミド結合の窒素原子につながる結合部位を示す。) (In formula (6), * 6 represents a bonding site connected to the nitrogen atom of the imide group in the structural unit represented by formula (1) or the amide bond in the structural unit represented by formula (2).)
<3>
前記ジアミン残基(A3)において、前記式(5)のnが1である、上記<1>に記載の樹脂組成物。
<3>
The resin composition according to <1> above, wherein in the diamine residue (A3), n in the formula (5) is 1.
<4>
前記樹脂組成物に含まれる溶剤が、粘度が1.8mPa・s以上、3.1mPa・s以下の溶剤である、上記<1>に記載の樹脂組成物。
<4>
The resin composition according to <1> above, wherein the solvent contained in the resin composition has a viscosity of 1.8 mPa·s or more and 3.1 mPa·s or less.
<5>
さらにシランカップリング剤を含有する、上記<1>または<2>に記載の樹脂組成物。
<5>
The resin composition according to the above item <1> or <2>, further comprising a silane coupling agent.
<6>
前記シランカップリング剤が式(7)で表される化合物を含有する、上記<5>に記載の樹脂組成物。
<6>
The resin composition according to <5> above, wherein the silane coupling agent contains a compound represented by formula (7):
(式(7)中、R23は、炭素数5~10のアルキレン基を示す。R24は、それぞれ独立に、炭素数1~5のアルキル基を示す。Zは、水素原子、または下記式(8)~(14)のいずれかで表される基を示す。) (In formula (7), R 23 represents an alkylene group having 5 to 10 carbon atoms. R 24 each independently represents an alkyl group having 1 to 5 carbon atoms. Z represents a hydrogen atom or a group represented by any one of the following formulas (8) to (14).)
<7>
さらに無機粒子を含有する、上記<1>~<6>のいずれか1つに記載の樹脂組成物。
<8>
上記<1>~<7>のいずれか1つに記載の樹脂組成物を硬化した硬化物。
<9>
上記<8>に記載の硬化物を有する積層体。
<10>
前記硬化物の厚さが0.5μm以上、8.0μm以下である、上記<9>に記載の積層体。
<11>
前記積層体が、前記硬化物からなる層を複数有する、上記<9>又は<10>に記載の積層体。
<12>
前記積層体が、化合物半導体層を有する、上記<7>~<9>のいずれか1つに記載の積層体。
<13>
上記<9>~<11>のいずれか1つに記載の積層体を有する半導体装置。
<14>
上記<9>~<11>のいずれか1つに記載の積層体を薄く加工する工程および上記<9>~<11>のいずれか1つに記載の積層体を個片化する工程のうち、少なくとも一方の工程を含む、半導体装置の製造方法。
<7>
The resin composition according to any one of the above <1> to <6>, further comprising inorganic particles.
<8>
A cured product obtained by curing the resin composition according to any one of <1> to <7> above.
<9>
A laminate having the cured product according to the above item <8>.
<10>
The laminate according to the above item <9>, wherein the thickness of the cured product is 0.5 μm or more and 8.0 μm or less.
<11>
The laminate according to the above item <9> or <10>, wherein the laminate has a plurality of layers made of the cured product.
<12>
The laminate according to any one of <7> to <9> above, wherein the laminate has a compound semiconductor layer.
<13>
A semiconductor device comprising the laminate according to any one of items <9> to <11> above.
<14>
A method for manufacturing a semiconductor device, comprising at least one of a step of thinning the laminate described in any one of <9> to <11> above and a step of singulating the laminate described in any one of <9> to <11> above.
以下、実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。 The present invention will be explained below with reference to examples, but the present invention is not limited to these examples.
<評価方法>
(1)ガラス転移温度および熱線膨張率の測定
下記製造例で得られた樹脂組成物1~43を、厚さ18μmの電解銅箔の光沢面に硬化後の厚さ10μmになるようにバーコーターで塗布後、80℃で10分乾燥し、さらに窒素雰囲気下250℃で30分熱処理を行うことで樹脂を硬化し、樹脂積層銅箔を得た。次に得られた樹脂積層銅箔の銅箔を塩化第2鉄溶液で全面エッチングし、樹脂組成物の硬化物単膜を得た。
得られた硬化物単膜を1.5cm×3cmの長さに切り出し、膜を巻いて、直径2mm、長さ1.5cmの筒状のサンプルを作成した。このサンプルを熱分析装置TMA/SS6600(株式会社日立ハイテクサイエンス製)にて、押し込みモードで測定した。得られたTMA曲線の変曲点からガラス転移温度を計算した。また、熱線膨張率(CTE)は、下記式(X)に従い、各硬化物のガラス転移温度より80℃低い温度から30℃低い温度におけるサンプル長の変化量の割合として計算した。
CTE(1/K)=((Tg-30℃でのサンプル長(m))-(Tg-80℃でのサンプル長(m))/(測定前のサンプル長(m)×50(K))・・・式(X)
<Evaluation method>
(1) Measurement of glass transition temperature and linear thermal expansion
The obtained cured single film was cut into a length of 1.5 cm x 3 cm, and the film was rolled up to prepare a cylindrical sample with a diameter of 2 mm and a length of 1.5 cm. This sample was measured in indentation mode using a thermal analyzer TMA/SS6600 (manufactured by Hitachi High-Tech Science Co., Ltd.). The glass transition temperature was calculated from the inflection point of the obtained TMA curve. In addition, the coefficient of linear thermal expansion (CTE) was calculated as the ratio of the change in sample length from a temperature 80°C lower to a
CTE (1/K) = ((sample length (m) at Tg-30 ° C)) - (sample length (m) at Tg-80 ° C)) / (sample length (m) before measurement × 50 (K)) ... formula (X)
(2)熱分解温度の測定
ガラス転移温度および熱線膨張率の測定で用いた硬化膜の単膜、約15mgをアルミ製標準容器に詰め、熱重量分析装置(株式会社島津製作所製、TGA-50)を用いて測定した。測定条件は、120℃で30分保持した後、昇温速度5℃/分で500℃まで昇温した。得られた重量減少曲線から重量が1%減少する温度を読み出し、この温度を1%重量減少温度とした。
(2) Measurement of thermal decomposition temperature Approximately 15 mg of the single film of the cured film used in the measurement of glass transition temperature and linear thermal expansion coefficient was packed into a standard aluminum container and measured using a thermogravimetric analyzer (TGA-50, manufactured by Shimadzu Corporation). The measurement conditions were as follows: after holding at 120°C for 30 minutes, the temperature was raised to 500°C at a heating rate of 5°C/min. The temperature at which the weight was reduced by 1% was read from the obtained weight loss curve, and this temperature was defined as the 1% weight loss temperature.
(3)積層体の接着性の評価
厚さ500μmの4インチシリコン基板の上に、樹脂組成物1~43を、硬化後の厚さが8μmになるようにスピンコーターで回転数を調整して塗布し、120℃で3分熱処理して乾燥した後、250℃で30分熱処理を行い、樹脂を硬化させた。次に、4インチガラス基板(コーニングジャパン株式会社製、製品名:EX-G)を重ねて、上板、下板をそれぞれ200℃に設定した真空ボンダー(ミカドテクノス株式会社製)を用い、1.0MPaの圧力で5分間圧着し、ガラス基板とシリコン基板の間に硬化物が形成された積層体を得た。
また樹脂組成物1~43を必要に応じて溶剤で希釈し、4インチシリコン基板に硬化後膜厚が2.0μmとなるようにスピンコーターにて塗布し、前述の硬化物膜厚8.0μmの積層体の作成方法と同様の方法で硬化物膜厚が2.0μmの積層体を作成した。
これらの積層体をガラス基板側から確認し、目視にて接着面積を確認した。基板面積に対して90%以上の面積を貼合できているものを評価A、同様に、80%以上、90%未満のものを評価B、70%以上、80%未満のものを評価C、50%以上、70%未満のものを評価D、50%未満のものを評価Eとした。
(3) Evaluation of adhesion of
Furthermore,
These laminates were checked from the glass substrate side, and the adhesion areas were visually confirmed. Those in which 90% or more of the substrate area was bonded were rated A, those in which 80% or more but less than 90% was bonded were rated B, those in which 70% or more but less than 80% was bonded were rated C, those in which 50% or more but less than 70% was bonded were rated D, and those in which less than 50% was bonded were rated E.
(4)積層体の耐熱性の評価
積層体の接着性の評価にて作成した、硬化物膜厚2.0μmの積層体について、300℃に加熱したホットプレートにシリコン基板面がホットプレートに接するように静置し、3分加熱した。その後、積層体をトレーに移し、室温まで冷却した後、(3)と同じ評価方法で貼合面積を評価した。
(4) Evaluation of heat resistance of laminate The laminate with a cured film thickness of 2.0 μm prepared in the evaluation of the adhesiveness of the laminate was placed on a hot plate heated to 300° C. with the silicon substrate surface in contact with the hot plate and heated for 3 minutes. Thereafter, the laminate was transferred to a tray and cooled to room temperature, and then the bonding area was evaluated using the same evaluation method as in (3).
以下の製造に用いた酸二無水物、ジアミン、添加剤および溶剤略記号の名称は下記の通りである。
BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物。重合後、酸二無水物残基(A1)の構造を与える酸二無水物。(三菱ケミカル株式会社製)
PMDA:ピロメリット酸二無水物(株式会社ダイセル製)
BSAA:2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物(SHPPジャパン合同会社製)
6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(メルク株式会社製)。
ODPA:3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物。(東邦化学工業株式会社製)
ベンジジン:4,4’-ジアミノビフェニル。重合後、ジアミン残基(A2)の構造を与えるジアミン。(東京化成工業株式会社製)
m-TB:2,2’-ジメチル-4,4’-ジアミノビフェニル。重合後、式(6)で表される構造を有するジアミン残基(A2)を与えるジアミン。(和歌山精化工業株式会社製)
LP-7100:テトラメチル-1,3-ビス(3-アミノプロピル)ジシロキサン。Si原子を有し、重合後にジアミン残基(A3)の構造を与えるジアミン。式(5)のnは1である。(製品名:信越化学工業株式会社製)
APPS2:α,ω-ビス(3-アミノプロピル)ポリジメチルシロキサン。Si原子を有し、重合後にジアミン残基(A3)の構造を与えるジアミン。数平均分子量は860であり、式(5)のnの平均は9である。
DDS:3,3’-ジアミノジフェニルスルホン。(小西化学工業株式会社製)
BAHF:2,2-ビス(3-アミノ-4ヒドロキシフェニル)ヘキサフルオロプロパン。(メルクエレクトロニクス株式会社製)
NMP:N-メチルピロリドン。重合、調合に使用する溶剤。(三菱ケミカル株式会社製、粘度:1.70mPa・s)
CHN:シクロヘキサノン。重合、調合に使用する溶剤。(東洋合成工業株式会社製、粘度:1.97mPa.s)
DMI:ジメチルイミダゾリジノン。重合、調合に使用する溶剤。(富士フィルム和光株式会社製、粘度:2.63mP・s)。
DAA:ジアセトンアルコール。重合、調合に使用する溶剤。(東京化成工業株式会社製、粘度:2.90mPa・s)
DPM:ジプロピレングリコールモノメチルエーテル。重合、調合に使用する溶剤。(東京化成工業株式会社製、粘度:3.47mP・s)
KBM-403:3-グリシドキシプロピルトリメトキシシラン。シランカップリング剤。(製品名:信越化学工業株式会社製)
KBM-1083:7-オクテニルトリメトキシシラン。式(9)で表される構造を有するシランカップリング剤。(製品名:信越化学工業株式会社製)
KBM-4803:8-グリシドキシオクチルトリメトキシシラン。式(8)に該当するシランカップリング剤。(製品名:信越化学工業株式会社製)
KBM-5803:8-メタクリロキシオクチルトリメトキシシラン。式(10)で表される構造を有するシランカップリング剤。(製品名:信越化学工業株式会社製)
KBM-6803:N-2-(アミノエチル)-8-アミノオクチルトリメトキシシラン。式(11)で表される構造を有するシランカップリング剤。(製品名:信越化学工業株式会社製)
MEK-EC-2030Y:メチルエチルケトン分散オルガノシリカゾル(SiO2濃度30wt%)(製品名;日産化学株式会社製)
The names of the abbreviations for the acid dianhydrides, diamines, additives and solvents used in the following preparations are as follows.
BPDA: 3,3',4,4'-biphenyltetracarboxylic dianhydride. An acid dianhydride that gives the structure of an acid dianhydride residue (A1) after polymerization. (Mitsubishi Chemical Corporation)
PMDA: Pyromellitic dianhydride (manufactured by Daicel Corporation)
BSAA: 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride (manufactured by SHPP Japan LLC)
6FDA: 4,4'-(hexafluoroisopropylidene)diphthalic dianhydride (Merck Ltd.).
ODPA: 3,3',4,4'-diphenyl ether tetracarboxylic dianhydride (manufactured by Toho Chemical Industry Co., Ltd.)
Benzidine: 4,4'-diaminobiphenyl. A diamine that gives the structure of diamine residue (A2) after polymerization. (Manufactured by Tokyo Chemical Industry Co., Ltd.)
m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl. A diamine that, after polymerization, gives a diamine residue (A2) having a structure represented by formula (6). (Manufactured by Wakayama Seika Kogyo Co., Ltd.)
LP-7100: Tetramethyl-1,3-bis(3-aminopropyl)disiloxane. A diamine having a silicon atom that gives the structure of diamine residue (A3) after polymerization. n in formula (5) is 1. (Product name: manufactured by Shin-Etsu Chemical Co., Ltd.)
APPS2: α,ω-bis(3-aminopropyl)polydimethylsiloxane. A diamine having a Si atom and giving the structure of diamine residue (A3) after polymerization. The number average molecular weight is 860, and the average of n in formula (5) is 9.
DDS: 3,3'-diaminodiphenyl sulfone (manufactured by Konishi Chemical Industry Co., Ltd.)
BAHF: 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (manufactured by Merck Electronics Co., Ltd.)
NMP: N-methylpyrrolidone. Solvent used in polymerization and compounding. (Mitsubishi Chemical Corporation, viscosity: 1.70 mPa·s)
CHN: Cyclohexanone. Solvent used in polymerization and blending. (Manufactured by Toyo Gosei Co., Ltd., viscosity: 1.97 mPa.s)
DMI: Dimethylimidazolidinone. Solvent used in polymerization and preparation. (Manufactured by Fujifilm Wako Co., Ltd., viscosity: 2.63 mP·s).
DAA: Diacetone alcohol. Solvent used in polymerization and preparation. (Tokyo Chemical Industry Co., Ltd., viscosity: 2.90 mPa s)
DPM: Dipropylene glycol monomethyl ether. Solvent used in polymerization and blending. (Tokyo Chemical Industry Co., Ltd., viscosity: 3.47 mP·s)
KBM-403: 3-glycidoxypropyltrimethoxysilane. Silane coupling agent. (Product name: manufactured by Shin-Etsu Chemical Co., Ltd.)
KBM-1083: 7-octenyltrimethoxysilane. A silane coupling agent having a structure represented by formula (9). (Product name: manufactured by Shin-Etsu Chemical Co., Ltd.)
KBM-4803: 8-glycidoxyoctyltrimethoxysilane. A silane coupling agent represented by formula (8). (Product name: manufactured by Shin-Etsu Chemical Co., Ltd.)
KBM-5803: 8-methacryloxyoctyltrimethoxysilane. A silane coupling agent having a structure represented by formula (10). (Product name: manufactured by Shin-Etsu Chemical Co., Ltd.)
KBM-6803: N-2-(aminoethyl)-8-aminooctyltrimethoxysilane. A silane coupling agent having a structure represented by formula (11). (Product name: manufactured by Shin-Etsu Chemical Co., Ltd.)
MEK-EC-2030Y: Organosilica sol dispersed in methyl ethyl ketone ( SiO2
<製造例1>
温度計、乾燥窒素導入口、温水・冷却水による加熱・冷却装置、および、撹拌装置を付した反応釜に、562.7gのNMPとともに、ジアミン成分である、18.5gのLP-7100、80.7gのDDS、36.6gのBAHFを溶解させた。その後酸二無水物成分である22.7gのBPDAと131.8gのODPAを加え、60℃で4時間撹拌し、その後130℃で2時間反応させた。重合終了後、NMPを添加して固形分30重量%になるよう濃度を調整し、ポリイミド/ポリアミド酸共重合体の重合溶液であるPI-1を作製した。
<Production Example 1>
In a reaction vessel equipped with a thermometer, a dry nitrogen inlet, a heating/cooling device using hot water/cooling water, and a stirrer, 18.5 g of LP-7100, 80.7 g of DDS, and 36.6 g of BAHF, which are diamine components, were dissolved together with 562.7 g of NMP. Then, 22.7 g of BPDA and 131.8 g of ODPA, which are acid dianhydride components, were added, and the mixture was stirred at 60° C. for 4 hours, and then reacted at 130° C. for 2 hours. After the polymerization was completed, NMP was added to adjust the concentration to 30% by weight of solids, and PI-1, which is a polymerization solution of polyimide/polyamic acid copolymer, was prepared.
<製造例2~27>
酸無水物、ジアミンおよび溶剤を表1~3に示す組成と添加量に変更したこと以外は、実施例1と同様の方法でポリイミド/ポリアミド酸共重合体の重合溶液であるPI-2~27を作製した。
<Production Examples 2 to 27>
Polymerization solutions of polyimide/polyamic acid copolymers PI-2 to PI-27 were prepared in the same manner as in Example 1, except that the acid anhydride, diamine, and solvent were changed to the compositions and amounts added shown in Tables 1 to 3.
<実施例1~37、比較例1~6>
製造例1~27で得られたポリイミド/ポリアミド酸共重合体の重合溶液に、表4~6の内容に従ってシランカップリング剤、無機粒子および溶剤を混合・撹拌し、樹脂組成物1~43を作成した。樹脂組成物は孔径0.5μmのPTFEフィルターでろ過を行った。これらの樹脂組成物を用い、前述の方法で評価用サンプルを作製し、各種評価を行った。評価結果を表7~9に示す。
<Examples 1 to 37 and Comparative Examples 1 to 6>
The polyimide/polyamic acid copolymer polymerization solutions obtained in Production Examples 1 to 27 were mixed and stirred with a silane coupling agent, inorganic particles, and a solvent according to the contents of Tables 4 to 6 to prepare
[比較例1、実施例1および7]
実施例1は、樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対し、樹脂(A)が、酸二無水物残基(A1)およびジアミン残基(A2)の少なくとも1つを、合計で10モル%以上含有するため、比較例1と比較して、熱線膨張率を低くすることができた。それにより、熱処理による基板のそりを低減できたことで、積層体の熱処理後の剥がれを低減できた。
また、実施例7は、酸二無水物残基(A1)およびジアミン残基(A2)の少なくとも1つを、合計で15モル%以上含有するため、さらに熱線膨張率が下がり、熱処理後の積層体の剥がれをより改善できた。
[Comparative Example 1, Examples 1 and 7]
In Example 1, the resin (A) contains at least one of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) in a total amount of 100 mol % relative to the total amount of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A), and therefore the linear thermal expansion coefficient could be made lower than that of Comparative Example 1. As a result, the warping of the substrate due to heat treatment could be reduced, and peeling of the laminate after heat treatment could be reduced.
In addition, since Example 7 contains at least one of the acid dianhydride residue (A1) and the diamine residue (A2) in a total amount of 15 mol % or more, the coefficient of linear thermal expansion is further reduced, and peeling of the laminate after heat treatment can be further improved.
[比較例2、実施例2および8]
実施例2は、樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対し、樹脂(A)が、酸二無水物残基(A1)およびジアミン残基(A2)の少なくとも1つを、合計で40モル%以下含有するため、比較例2と比較して、ガラス転移温度を適切な値とすることができた。それにより、積層体の初期の接着性を良好にできた。
また、実施例8においては、酸二無水物残基(A1)およびジアミン残基(A2)の少なくとも1つを、合計で30モル%以下とすることで、さらに積層体の初期の接着性を向上させ、特に薄膜での接着性を大きく向上させることができた。
[Comparative Example 2, Examples 2 and 8]
In Example 2, the resin (A) contains at least one of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) in a total amount of 40 mol % or less relative to 100 mol % of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A), and therefore the glass transition temperature could be made to be an appropriate value compared to Comparative Example 2. As a result, the initial adhesiveness of the laminate could be improved.
In Example 8, the total content of at least one of the acid dianhydride residue (A1) and the diamine residue (A2) was set to 30 mol % or less, thereby further improving the initial adhesion of the laminate, and in particular significantly improving the adhesion of the thin film.
[比較例3、実施例3および9]
実施例3は、樹脂(A)に含有される全Si原子の割合が、樹脂(A)100質量部に対し、0.5質量部以上であるため、比較例3と比較して、積層体において、基板全面の貼り付けが容易となった。
また、実施例9は、樹脂(A)に含有される全Si原子の割合が、樹脂(A)100質量部に対し、2.0質量部以上であるため、さらに積層体の初期の接着性を向上させることができた。
[Comparative Example 3, Examples 3 and 9]
In Example 3, the ratio of all Si atoms contained in the resin (A) was 0.5 parts by mass or more per 100 parts by mass of the resin (A), so that the laminate was easier to attach to the entire surface of the substrate compared to Comparative Example 3.
In addition, in Example 9, the ratio of all Si atoms contained in the resin (A) was 2.0 parts by mass or more per 100 parts by mass of the resin (A), and therefore the initial adhesion of the laminate was further improved.
[比較例4、実施例4および10]
実施例4は、樹脂(A)に含有される全Si原子の割合が、樹脂(A)100質量部に対し、5.0質量部以下であるため、比較例4と比較して、熱安定性に優れ、1%重量減少温度が向上した。その結果、積層体を熱処理した際に、Si成分の分解による白濁や剥がれを抑制できた。
実施例10は、樹脂(A)に含有される全Si原子の割合が、樹脂(A)100質量部に対し、4.0質量部以下であるため、さらに熱線膨張率が下がり、熱処理後の積層体の接着性を向上させることができた。
[Comparative Example 4, Examples 4 and 10]
In Example 4, the ratio of all Si atoms contained in the resin (A) was 5.0 parts by mass or less relative to 100 parts by mass of the resin (A), and therefore the thermal stability was excellent and the 1% weight loss temperature was improved compared to Comparative Example 4. As a result, when the laminate was heat-treated, clouding and peeling due to decomposition of the Si component could be suppressed.
In Example 10, the ratio of all Si atoms contained in the resin (A) was 4.0 parts by mass or less per 100 parts by mass of the resin (A), and therefore the coefficient of linear thermal expansion was further reduced, thereby improving the adhesion of the laminate after heat treatment.
[比較例5、実施例5および11、30、32]
実施例5は、樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対し、樹脂(A)が、ジアミン残基(A3)を1.0モル%以上含有するため、接着に関与するSi成分が硬化物全体に分布するため、比較例5と比較して、積層体の初期の接着性を向上させることできた。
さらに、実施例11、30、32は、樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対し、樹脂(A)が、ジアミン残基(A3)を2.0モル%以上含有するため、Si成分がより均一に分布するため、積層体の基板の外周付近の接着性をより高めることができた。
[Comparative Example 5, Examples 5, 11, 30, and 32]
In Example 5, the resin (A) contains 1.0 mol % or more of the diamine residue (A3) relative to the total of 100 mol % of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A). Therefore, the Si component involved in adhesion is distributed throughout the cured product. As a result, the initial adhesion of the laminate was improved compared to Comparative Example 5.
Furthermore, in Examples 11, 30, and 32, the resin (A) contains 2.0 mol % or more of the diamine residue (A3) relative to the total of 100 mol % of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A). Therefore, the Si component is more uniformly distributed, and the adhesion of the laminate near the outer periphery of the substrate can be further improved.
[比較例6、実施例6、12、13]
実施例6は樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対し、樹脂(A)が、ジアミン残基(A3)を20モル%以下含有するため、耐熱性が向上し、比較例6とは異なり、積層体の熱処理において、分解ガスに起因する膜の白濁を抑制できた。
また、実施例12および13は、樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対し、樹脂(A)が、ジアミン残基(A3)を17モル%以下含有するため、熱線膨張率およびガラス転移温度が最適化され、熱処理における膜の過剰な軟化を抑制できた。その結果、熱処理後の積層体の接着性を大きく向上できた。
[Comparative Example 6, Examples 6, 12, and 13]
In Example 6, the resin (A) contains 20 mol % or less of the diamine residue (A3) relative to the total of 100 mol % of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A). Therefore, the heat resistance was improved, and unlike Comparative Example 6, clouding of the film caused by decomposition gases during heat treatment of the laminate could be suppressed.
In addition, in Examples 12 and 13, the resin (A) contains 17 mol% or less of the diamine residue (A3) relative to the total of 100 mol% of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A), so that the linear thermal expansion coefficient and the glass transition temperature were optimized and excessive softening of the film during heat treatment could be suppressed. As a result, the adhesion of the laminate after heat treatment could be greatly improved.
[実施例29]
実施例29はジアミン残基(A2)として、式(6)で表されるm-TBを有することで、実施例11と比較して、ポリマーのワニス中での安定性を向上でき、塗膜の膜厚均一性を向上できた。その結果、特に薄膜での接着性を向上させることができた。
[Example 29]
Example 29 has m-TB represented by formula (6) as the diamine residue (A2), and therefore the stability of the polymer in the varnish can be improved and the thickness uniformity of the coating film can be improved compared to Example 11. As a result, the adhesiveness, particularly in thin films, can be improved.
[実施例31]
実施例31は樹脂素子物を構成する溶剤を粘度が1.8mPa・s以上であるCHNのみとすることで、塗膜を作成する際のエッジの塗布性を改善できた。それにより、実施例11および30と比較して、特に薄化膜での積層体の接着性を向上させることができた。
[Example 31]
In Example 31, the solvent constituting the resin element was CHN having a viscosity of 1.8 mPa·s or more, and the edge coating property when forming a coating film was improved. As a result, the adhesion of the laminate, especially in the thin film, was improved compared to Examples 11 and 30.
[実施例33および34]
実施例33および34では、樹脂素子物を構成する溶剤を粘度が3.1mPa・s以下であるDAA、DMIを使用することで、塗膜を作成する際の塗布性を改善できた。それにより、実施例11および30と比較して、積層体の接着性を向上させることができた。
[Examples 33 and 34]
In Examples 33 and 34, the use of DAA or DMI, which has a viscosity of 3.1 mPa·s or less, as the solvent constituting the resin component improved the applicability when forming a coating film. As a result, the adhesion of the laminate was improved compared to Examples 11 and 30.
[実施例35]
実施例35は、ジアミン残基(A2)として式(6)で表されるm-TBを有することで、実施例11および34と比較して、ポリマーのワニス中での安定性を向上でき、塗膜の膜厚均一性を向上できた。その結果、特に薄膜での接着性を向上させることができた。
[Example 35]
Example 35 has m-TB represented by formula (6) as the diamine residue (A2), and therefore the stability of the polymer in the varnish can be improved and the thickness uniformity of the coating film can be improved compared to Examples 11 and 34. As a result, the adhesiveness, particularly in thin films, can be improved.
[実施例36]
実施例36は、ジアミン残基(A3)として、繰り返し単位数n=1であるLP-7100を有することで、実施例33および34と比較して耐熱性を改善できた。その結果、熱処理後の積層体の接着性を大きく向上できた。
[Example 36]
Example 36 had LP-7100, which has a repeating unit number n=1 as the diamine residue (A3), and thus had improved heat resistance compared to Examples 33 and 34. As a result, the adhesiveness of the laminate after heat treatment was greatly improved.
[実施例37]
実施例37は、ジアミン残基(A2)として式(6)で表されるm-TBを有し、さらにジアミン残基(A3)として、繰り返し単位数n=1であるLP-7100を有することで、実施例35および36と比較して、塗膜の面内均一性と耐熱性を向上できた。その結果、積層体の接着性及び熱処理後の積層体の接着性を向上できた。
また、樹脂素子物を構成する溶剤を粘度が1.8mPa・s以上であるDMIを使用することで、実施例13と比較して、塗膜端部の膜厚均一性を向上できた。その結果、特に薄膜での接着性を向上できた。
[Example 37]
Example 37 had m-TB represented by formula (6) as the diamine residue (A2) and further had LP-7100 with a repeating unit number n=1 as the diamine residue (A3), and thus was able to improve the in-plane uniformity and heat resistance of the coating film compared to Examples 35 and 36. As a result, the adhesion of the laminate and the adhesion of the laminate after heat treatment were improved.
In addition, by using DMI, which has a viscosity of 1.8 mPa·s or more, as the solvent constituting the resin element, the film thickness uniformity at the end of the coating film could be improved compared to Example 13. As a result, the adhesiveness, especially in thin films, could be improved.
[実施例13]
実施例13は、ジアミン残基(A2)として、式(6)の構造である、2,2’-ジメチル-4,4’-ジアミノビフェニルを含有することで、実施例12と比較して、積層体の初期の接着性および熱処理後の接着性のどちらも向上させることができた。
また、ジアミン残基(A3)の繰り返し単位数nが1であることによって、実施例29と比較して、耐熱性及び接着性のどちらも向上させることができた。
[Example 13]
In Example 13, the diamine residue (A2) contained 2,2'-dimethyl-4,4'-diaminobiphenyl, which has the structure of formula (6), and thus both the initial adhesion of the laminate and the adhesion after heat treatment were improved compared to Example 12.
In addition, since the number of repeating units n of the diamine residue (A3) was 1, both the heat resistance and the adhesiveness were improved compared to Example 29.
[実施例14~18および23]
実施例14~18は、樹脂組成物がシランカップリング剤を含有することで、実施例12と比較して特に積層体の初期の接着性を向上させることができた。また、実施例23も同様に、実施例13と比較して特に薄膜での積層体の初期の接着性を向上させることができた。
[Examples 14 to 18 and 23]
In Examples 14 to 18, the resin composition contained a silane coupling agent, and thus the initial adhesion of the laminate was improved compared to Example 12. Similarly, in Example 23, the initial adhesion of the laminate was improved compared to Example 13, particularly in the case of a thin film.
[実施例19~22および24]
実施例19~22および24は、樹脂組成物が式(7)で表されるシランカップリング剤を含有することで、実施例17と比較して積層体の初期の接着性及び熱処理後の接着性をさらに向上させることができた。
[Examples 19 to 22 and 24]
In Examples 19 to 22 and 24, the resin composition contained a silane coupling agent represented by formula (7), and the initial adhesion of the laminate and the adhesion after heat treatment were further improved compared to Example 17.
[実施例25~27]
実施例25~27は、樹脂組成物が無機粒子を含有することで、実施例12および13と比較して、熱線膨張率が下がり、積層体の熱処理による接着性の低下を大幅に低減できた。
[Examples 25 to 27]
In Examples 25 to 27, the resin composition contained inorganic particles, and thus the coefficient of linear thermal expansion was lower than in Examples 12 and 13, and the decrease in adhesion due to heat treatment of the laminate was significantly reduced.
[実施例28]
実施例28は、樹脂組成物が式(7)で表されるシランカップリング剤および無機粒子の両方を含有することで、接着性の不足による剥がれと基板のそりに由来する熱処理時の剥がれの両方を効率よく抑制することができた。その結果、実施例24と比較して、熱処理後の積層体の剥がれをさらに低減できた。
[Example 28]
In Example 28, the resin composition contains both the silane coupling agent represented by formula (7) and inorganic particles, so that peeling due to insufficient adhesion and peeling during heat treatment due to warping of the substrate can be efficiently suppressed. As a result, compared with Example 24, peeling of the laminate after heat treatment can be further reduced.
本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2023年3月29日付けで出願された日本特許出願(特願2023-054038)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。 Although the present invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the present invention. This application is based on a Japanese patent application (Patent Application No. 2023-054038) filed on March 29, 2023, and is incorporated by reference in its entirety. In addition, all references cited herein are incorporated in their entirety.
1 モノリシック型LED素子
2 回路基板
10 第一LED層
20 第二LED層
30 第三LED層
110 第一サファイヤ基板
111 第一n型GaN層
112 第一発光層
113 第一p型GaN層
114 第一透明電極
120 第二サファイヤ基板
121 第二n型GaN層
122 第二発光層
123 第二p型GaN層
124 第二透明電極
130 第三サファイヤ基板
131 第三n型GaN層
132 第三発光層
133 第三p型GaN層
134 第三透明電極
220 第二接着層
230 第三接着層
310 パッシベーション層
320 電極
1
Claims (14)
前記樹脂(A)に含まれる、酸二無水物残基(X1)および(X2)並びにジアミン残基(Y1)および(Y2)の合計100モル%に対し、
前記樹脂(A)が、式(3)で表される構造を有する酸二無水物残基(A1)および式(4)で表される構造を有するジアミン残基(A2)の少なくとも1つを、合計で10モル%以上、40モル%以下含有し、
前記樹脂(A)が、式(5)で表される構造を有するジアミン残基(A3)を1.0モル%以上、20モル%以下含有し、
前記樹脂(A)に含有される全Si原子の割合が、前記樹脂(A)100質量部に対し、0.5質量部以上、5.0質量部以下である、樹脂組成物。
(式(3)~式(5)中、R3~R16は、それぞれ独立に、水素原子または炭素数1~20の1価の有機基、水酸基、およびハロゲン原子のいずれかを示す。R17~R20は、それぞれ独立に、炭素数1~30のアルキル基、炭素数1~30のアルコキシ基、フェニル基またはフェノキシ基を示す。R21およびR22は、それぞれ独立に、炭素数1~30のアルキレン基またはフェニレン基を示す。nは1~20の整数を示す。*3aおよび*3bは、前記式(1)で表される構造単位におけるイミド基につながる結合部位を表すか、または、*3aは、前記式(2)で表される構造単位における、アミド結合の炭素原子につながる結合部位を示し、*3bは前記式(2)で表される構造単位における、カルボン酸もしくはカルボン酸エステルの炭素原子につながる結合部位を示す。*4、および*5は、前記式(1)で表される構造単位におけるイミド基または前記式(2)で表される構造単位におけるアミド結合の窒素原子につながる結合部位を表す。) A resin composition comprising a resin (A) having at least one structural unit selected from a structural unit represented by formula (1) and a structural unit represented by formula (2), and a solvent,
With respect to 100 mol % in total of the acid dianhydride residues (X1) and (X2) and the diamine residues (Y1) and (Y2) contained in the resin (A),
the resin (A) contains at least one of an acid dianhydride residue (A1) having a structure represented by formula (3) and a diamine residue (A2) having a structure represented by formula (4) in a total amount of 10 mol % or more and 40 mol % or less,
The resin (A) contains 1.0 mol % or more and 20 mol % or less of a diamine residue (A3) having a structure represented by formula (5),
A resin composition, wherein a ratio of all Si atoms contained in the resin (A) is 0.5 parts by mass or more and 5.0 parts by mass or less per 100 parts by mass of the resin (A).
(In formulas (3) to (5), R 3 to R 16 each independently represent a hydrogen atom, a monovalent organic group having 1 to 20 carbon atoms, a hydroxyl group, or a halogen atom. R 17 to R 20 each independently represent an alkyl group having 1 to 30 carbon atoms, an alkoxy group having 1 to 30 carbon atoms, a phenyl group, or a phenoxy group. R 21 and R 22 each independently represent an alkylene group or a phenylene group having 1 to 30 carbon atoms. n represents an integer from 1 to 20. * 3a and * 3b represent a bonding site connected to an imide group in the structural unit represented by formula (1), or * 3a represents a bonding site connected to a carbon atom of an amide bond in the structural unit represented by formula (2), and * 3b represents a bonding site connected to a carbon atom of a carboxylic acid or a carboxylate ester in the structural unit represented by formula (2). * 4, and * 5 represents a bonding site connected to the nitrogen atom of the imide group in the structural unit represented by formula (1) or the amide bond in the structural unit represented by formula (2).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-054038 | 2023-03-29 | ||
JP2023054038 | 2023-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024204181A1 true WO2024204181A1 (en) | 2024-10-03 |
Family
ID=92906654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/011922 WO2024204181A1 (en) | 2023-03-29 | 2024-03-26 | Resin composition, cured product, laminate, semiconductor device, and method for producing semiconductor device |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202442762A (en) |
WO (1) | WO2024204181A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020002196A (en) * | 2018-06-26 | 2020-01-09 | 大日本印刷株式会社 | Polyimide film, layered body, surface material for display, touch panel member, liquid crystal display device, and organic electroluminescent display device |
WO2020100904A1 (en) * | 2018-11-16 | 2020-05-22 | 三菱瓦斯化学株式会社 | Polyimide resin, varnish, and polyimide film |
WO2020241523A1 (en) * | 2019-05-24 | 2020-12-03 | 旭化成株式会社 | Polyimide precursor and polyimide resin composition |
-
2024
- 2024-03-26 WO PCT/JP2024/011922 patent/WO2024204181A1/en active Application Filing
- 2024-03-28 TW TW113111680A patent/TW202442762A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020002196A (en) * | 2018-06-26 | 2020-01-09 | 大日本印刷株式会社 | Polyimide film, layered body, surface material for display, touch panel member, liquid crystal display device, and organic electroluminescent display device |
WO2020100904A1 (en) * | 2018-11-16 | 2020-05-22 | 三菱瓦斯化学株式会社 | Polyimide resin, varnish, and polyimide film |
WO2020241523A1 (en) * | 2019-05-24 | 2020-12-03 | 旭化成株式会社 | Polyimide precursor and polyimide resin composition |
Non-Patent Citations (1)
Title |
---|
ANONYMOUS: "Modified Silicone Oil: Both ends/amino modified (Reactive silicone oil)", SHIN-ETSU SILICONE, 12 June 2024 (2024-06-12), XP009557859, Retrieved from the Internet <URL:https://www.silicone.jp/products/type/oil/detail/search/deg17.shtml> * |
Also Published As
Publication number | Publication date |
---|---|
TW202442762A (en) | 2024-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102260081B1 (en) | Adhesive for temporary bonding, adhesive layer, method for manufacturing wafer work piece and semiconductor device using same, polyimide copolymer, polyimide mixed resin, and resin composition | |
KR101463367B1 (en) | Photosensitive resin composition, photosensitive resin composition film, and semiconductor device using the photosensitive resin composition or the photosensitive resin composition film | |
CN108138013B (en) | Laminate film for temporary bonding, substrate-processed body using laminate film for temporary bonding, method for manufacturing laminated substrate-processed body, and method for manufacturing semiconductor device using same | |
CN108603028B (en) | Resin composition, resin layer, temporary adhesive, laminated film, wafer processed body, and application thereof | |
TWI652286B (en) | Polyimine resin composition and laminated film, and manufacturing method of semiconductor device | |
US9716026B2 (en) | Resin composition, cured film, laminated film, and method for manufacturing semiconductor device | |
WO2015053132A1 (en) | Element-processing layered structure, method for manufacturing element-processing layered structure, and method for manufacturing thin element using same | |
JP2012251080A (en) | Novel polyimide and its use | |
JP2017141317A (en) | Temporarily stuck resin composition, resin layer, permanent adhesive, temporarily stuck adhesive, wafer processed body, and method for manufacturing semiconductor device using them | |
WO2024204181A1 (en) | Resin composition, cured product, laminate, semiconductor device, and method for producing semiconductor device | |
JP7183840B2 (en) | Adhesive composition for temporary attachment and method for producing semiconductor electronic component using the same | |
JP2019131704A (en) | Resin composition for temporary protective film, and manufacturing method of semiconductor electronic component using the same | |
CN114957660B (en) | Polyimide resin composition, polyimide resin adhesive layer, laminate, and method for producing electronic component | |
WO2024204336A1 (en) | Resin composition, cured article, substrate with cured article, laminate, and method for manufacturing semiconductor device | |
TW202142599A (en) | Polyimide precursor composition and polyimide film/substrate laminate | |
WO2024225363A1 (en) | Laminate, method for manufacturing laminate, and method for manufacturing semiconductor device | |
TW202233722A (en) | Polyimide resin composition, polyimide resin adhesive layer, laminate, and manufacturing method of electronic component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2024522337 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24780293 Country of ref document: EP Kind code of ref document: A1 |