[go: up one dir, main page]

WO2024203857A1 - Control device, discharge device, refrigeration cycle device, control method, and program - Google Patents

Control device, discharge device, refrigeration cycle device, control method, and program Download PDF

Info

Publication number
WO2024203857A1
WO2024203857A1 PCT/JP2024/011312 JP2024011312W WO2024203857A1 WO 2024203857 A1 WO2024203857 A1 WO 2024203857A1 JP 2024011312 W JP2024011312 W JP 2024011312W WO 2024203857 A1 WO2024203857 A1 WO 2024203857A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
compressor
state
drive circuit
voltage
Prior art date
Application number
PCT/JP2024/011312
Other languages
French (fr)
Japanese (ja)
Inventor
寛規 角山
宣明 長尾
直毅 林
任彦 橋元
晃 鶸田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024203857A1 publication Critical patent/WO2024203857A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • This disclosure relates to a control device, a discharge device, a refrigeration cycle device, a control method, and a program.
  • Patent Document 1 discloses 1,1,2-trifluoroethylene (HFO1123) as a working fluid with a lower GWP than R410A.
  • Patent Document 2 discloses 1,2-difluoroethylene (HFO1132) as a working fluid with a lower GWP than R410A.
  • HFO1123 and HFO1132 have a smaller GWP than R410A, but this makes them less stable than R410A.
  • the generation of radicals can cause disproportionation reactions of HFO1123 or HFO1132, which can cause HFO1123 and HFO1132 to change into different compounds.
  • Patent document 3 states that "disproportionation reactions occur when high energy is added to the refrigerant in an environment where the refrigerant is excessively high temperature and pressure (particularly inside a compressor), or when excessive collisions between the refrigerant molecules and electrons occur due to discharges such as layer shorts.”
  • Patent document 3 states, "This disclosure prevents high energy from being added to the refrigerant in the compressor, or prevents excessive collisions between refrigerant molecules and electrons in the discharge space, thereby suppressing the occurrence of disproportionation reactions. This provides a highly reliable refrigeration cycle device that uses a working medium containing an ethylene-based fluorohydrocarbon having a double bond.”
  • the refrigeration cycle apparatus described in Patent Document 3 has a protection device that at least one of stops the supply of power to the compressor and reduces the rotation speed of the compressor in at least one of the following cases: when the current value of the input current to the compressor motor exceeds a first predetermined value that is set to be three times or more the maximum current value during normal operation other than at the start of the compressor; when the current value of the input current to the compressor motor exceeds a second predetermined value that is set to be twice or more the current value at the start of the compressor; and when the number of discharge electrons in the discharge space, calculated based on the amount of change in the current value of the input current to the compressor motor, exceeds a third predetermined value that is set to be 1.0 x 1019 electrons/second or more.
  • the refrigeration cycle device disclosed in Patent Document 1 detects signs of a disproportionation reaction using the current value of the input current to the compressor motor, and suppresses the disproportionation reaction by using a protective device to either stop the power supply to the compressor or reduce the compressor rotation speed.
  • the present disclosure provides a control device, discharge device, refrigeration cycle device, control method, and program that can reduce the possibility of abnormal phenomena occurring due to residual energy when the compressor is stopped, and enable improved suppression of disproportionation reactions.
  • a control device controls a compressor of a refrigeration cycle circuit in which a working medium circulates.
  • the control device includes a drive circuit that drives the compressor, and a discharge device that can switch between a first state in which a connection line between the drive circuit and the compressor is separated from a reference potential, and a second state in which the connection line is connected to the reference potential.
  • the discharge device is connected to a connection line between a compressor of a refrigeration cycle circuit in which a working medium circulates and a drive circuit that drives the compressor, and is configured to be switchable between a first state in which the connection line is isolated from a reference potential and a second state in which the connection line is connected to the reference potential.
  • the refrigeration cycle device includes the above-mentioned control device and the above-mentioned refrigeration cycle circuit.
  • the control method is a control method executed by a control device that controls a compressor of a refrigeration cycle circuit in which a working medium circulates.
  • the control device includes a drive circuit that drives the compressor, and a discharge device that can switch between a first state in which a connection line between the drive circuit and the compressor is separated from a reference potential, and a second state in which the connection line is connected to the reference potential.
  • the control method stops the operation of the drive circuit and switches the discharge device to the second state in response to detection of an abnormality in at least one of the compressor and the drive circuit.
  • the program according to one aspect of the present disclosure is a program executed by a computer system provided in a control device that controls a compressor of a refrigeration cycle circuit in which a working medium circulates.
  • the control device includes a drive circuit that drives the compressor, and a discharge device that can switch between a first state in which a connection line between the drive circuit and the compressor is separated from a reference potential, and a second state in which the connection line is connected to the reference potential.
  • the program causes the computer system to stop operation of the drive circuit and switch the discharge device to the second state in response to detection of an abnormality in at least one of the compressor and the drive circuit.
  • the aspects of the present disclosure can reduce the possibility of abnormal phenomena occurring due to residual energy when the compressor is stopped, and enable improved suppression of disproportionation reactions.
  • Block diagram of a refrigeration cycle device is a schematic diagram of a compressor and a control device of a refrigeration cycle device according to an embodiment; Schematic circuit diagram of a discharge device of a refrigeration cycle device according to an embodiment. 1 is a waveform diagram of a voltage of a smoothing circuit of a drive circuit of a control device according to an embodiment of the present invention; 1 is a part of a flowchart of the operation of a control device according to an embodiment. 1 is a part of a flowchart of the operation of a control device according to an embodiment. 1 is a part of a flowchart of the operation of a control device according to an embodiment. 1 is a part of a flowchart of the operation of a control device according to an embodiment. 1 is a part of a flowchart of the operation of a control device according to an embodiment. 1 is a part of a flowchart of the operation of a control device according to an embodiment. 1 is a part of a flowchart of the operation of a control device according to
  • prefixes such as “first” and “second” are added to the names of the components.
  • the prefixes such as “first” and “second” may be omitted in consideration of readability of the text.
  • 1.1 Configuration 1 is a block diagram of a refrigeration cycle apparatus 1 according to the present embodiment.
  • the refrigeration cycle apparatus 1 constitutes, for example, an air conditioner capable of cooling operation and heating operation.
  • the refrigeration cycle apparatus 1 includes a refrigeration cycle circuit 2 and a control device 3.
  • the refrigeration cycle circuit 2 constitutes a flow path through which the working medium circulates.
  • the working medium contains an ethylene-based fluoroolefin as a refrigerant component.
  • the ethylene-based fluoroolefin may be an ethylene-based fluoroolefin that undergoes a disproportionation reaction.
  • Examples of the ethylene-based fluoroolefin that undergoes a disproportionation reaction include 1,1,2-trifluoroethylene (HFO1123), trans-1,2-difluoroethylene (HFO1132(E)), cis-1,2-difluoroethylene (HFO-1132(Z)), 1,1-difluoroethylene (HFO-1132a), tetrafluoroethylene (CF 2 ⁇ CF 2 , FO1114), and monofluoroethylene (HFO-1141).
  • the working medium may contain multiple types of refrigerant components.
  • the working medium may contain an ethylene-based fluoroolefin as a main refrigerant component and a compound other than an ethylene-based fluoroolefin as a secondary refrigerant component.
  • secondary refrigerant components include hydrofluorocarbons (HFCs), hydrofluoroolefins (HFOs), saturated hydrocarbons, carbon dioxide, etc.
  • hydrofluorocarbons examples include difluoromethane, difluoroethane, trifluoroethane, tetrafluoroethane, pentafluoroethane, pentafluorobutane, heptafluorocyclopentane, etc.
  • hydrofluoroolefins examples include monofluoropropene, trifluoropropene, tetrafluoropropene, pentafluoropropene, hexafluorobutene, etc.
  • saturated hydrocarbons examples include ethane, n-propane, cyclopropane, n-butane, cyclobutane, isobutane (2-methylpropane), methylcyclopropane, n-pentane, isopentane (2-methylbutane), neopentane (2,2-dimethylpropane), methylcyclobutane, etc.
  • the working fluid may further contain a disproportionation inhibitor that suppresses the disproportionation reaction of the ethylene-based fluoroolefin.
  • the disproportionation inhibitor include saturated hydrocarbons or haloalkanes.
  • saturated hydrocarbons include ethane, n-propane, cyclopropane, n-butane, cyclobutane, isobutane (2-methylpropane), methylcyclopropane, n-pentane, isopentane (2-methylbutane), neopentane (2,2-dimethylpropane), methylcyclobutane, and the like.
  • n-propane is preferred.
  • haloalkanes examples include haloalkanes having 1 or 2 carbon atoms.
  • haloalkanes having one carbon atom examples include (mono)iodomethane ( CH3I ), diiodomethane ( CH2I2 ), dibromomethane ( CH2Br2 ), bromomethane (CH3Br), dichloromethane ( CH2Cl2 ) , chloroiodomethane ( CH2ClI ), dibromochloromethane (CHBr2Cl), tetraiodomethane ( CI4 ), carbon tetrabromide ( CBr4 ), bromotrichloromethane ( CBrCl3 ) , dibromodichloromethane (CBr2Cl2), tribromofluoromethane ( CBr3F ), fluorodiiodomethane (CHFI2) ,
  • haloalkanes having 2 carbon atoms examples include 1,1,1-trifluoro-2-iodoethane (CF 3 CH 2 I), monoiodoethane (CH 3 CH 2 I), monobromoethane (CH 3 CH 2 Br ), 1,1,1-triiodoethane (CH 3 CI 3 ), etc.
  • the working fluid may contain one or more types of haloalkanes having 1 or 2 carbon atoms. In other words, only one type of haloalkane having 1 or 2 carbon atoms may be used, or two or more types may be used in appropriate combination.
  • a pressure sensor (GC61 manufactured by Nagano Keiki Co., Ltd.) was attached to a sealed pressure vessel (stainless steel sealed vessel, internal volume 50 mL) to measure the internal pressure in the pressure vessel, a thermocouple (PL thermocouple ground PL-18-K-A 4-T manufactured by Conax Technologies) to measure the internal temperature in the pressure vessel, and a discharge device to generate a discharge in the pressure vessel.
  • a gas cylinder of 1,1,2-trifluoroethylene was connected so that the pressure could be adjusted.
  • a mantle heater was installed to heat the entire pressure vessel, and a ribbon heater (flexible ribbon heater 1 m, 200 W manufactured by Tokyo Institute of Technology Co., Ltd.) was installed to heat the piping as well. This constructed an experimental system for the disproportionation reaction.
  • Table 1 shows whether or not a disproportionation reaction occurs when the working medium is 1,1,2-trifluoroethylene alone, a mixed gas adjusted to have a 1,1,2-trifluoroethylene content of 80 mass% and an n-propane content of 20 mass%, a mixed gas adjusted to have a 1,1,2-trifluoroethylene content of 91.5 mass%, an n-propane content of 7.5 mass%, and a difluoroiodomethane content of 1.0 mass%, and a mixed gas adjusted to have a 1,1,2-trifluoroethylene content of 69.5 mass%, a difluoromethane content of 22 mass%, an n-propane content of 7.5 mass%, and a difluoroiodomethane content of 1.0 mass%.
  • the pressure was adjusted to 2 MPa in Examples 1 and 2, and 6 MPa in Examples 3 to 5.
  • the stored energy in Table 1 is electrostatic energy stored in a capacitor section installed inside the discharge device.
  • the number of discharges is the number of times discharged at regular intervals under the conditions in question, and if a disproportionation reaction was observed after that number of discharges, the disproportionation reaction was recorded as "Yes,” and if no disproportionation reaction was observed, it was recorded as "No.”
  • Example 1 As can be seen from Table 1, no disproportionation reaction was observed in Example 1. Therefore, disproportionation reactions do not occur due to minor discharges with small stored energy. When the stored energy was large, as shown in Example 2 in Table 1, a disproportionation reaction was observed after two consecutive discharges. Therefore, the presence or absence of a disproportionation reaction depends on the amount of stored energy, i.e., the amount of energy consumed for discharge. This shows that in order to suppress disproportionation reactions, it is preferable to reduce the energy of the discharge that flows instantaneously for periods of microseconds to sub-milliseconds, which are generally seen in discharge phenomena.
  • Example 3 uses a larger stored energy than Example 2, in which disproportionation was observed in 1,1,2-trifluoroethylene alone. Therefore, it was confirmed that in a working medium containing n-propane as a disproportionation inhibitor, that is, even when the stored energy is increased by the disproportionation inhibitor, the possibility of a disproportionation reaction occurring in a small, minor discharge is extremely low. This shows that in order to suppress disproportionation reactions in a working medium of a mixed gas containing a disproportionation inhibitor, it is preferable to keep the discharge in a minor state, that is, to detect it early and suppress the disproportionation reaction.
  • Example 4 uses a larger stored energy than Example 2, in which disproportionation was observed in 1,1,2-trifluoroethylene alone. Therefore, it was confirmed that in a working medium containing difluoroiodomethane as a disproportionation inhibitor other than n-propane, that is, in the case where the stored energy is increased by two or more disproportionation inhibitors, the possibility of a disproportionation reaction occurring in a small, minor discharge is extremely low.
  • Example 5 uses a larger stored energy than Example 2, in which disproportionation was confirmed in 1,1,2-trifluoroethylene alone. Therefore, it was confirmed that the stored energy is increased by two or more disproportionation inhibitors, and that even in a working medium containing a secondary refrigerant component that does not cause disproportionation, the possibility of a disproportionation reaction occurring in a small, minor discharge is extremely low.
  • the refrigeration cycle circuit 2 includes a compressor 4, a first heat exchanger 5, an expansion valve 6, a second heat exchanger 7, and a four-way valve 8.
  • the refrigeration cycle device 1 includes an outdoor unit 1a and an indoor unit 1b.
  • the outdoor unit 1a includes a control device 3, a compressor 4, a first heat exchanger 5, an expansion valve 6, and a four-way valve 8.
  • the outdoor unit 1a further includes a first blower 5a for promoting heat exchange in the first heat exchanger 5.
  • the indoor unit 1b includes a second heat exchanger 7.
  • the indoor unit 1b further includes a second blower 7a for promoting heat exchange in the second heat exchanger 7.
  • the compressor 4 compresses the working medium to increase the pressure of the working medium.
  • the compressor 4 will be described in detail later.
  • the first heat exchanger 5 and the second heat exchanger 7 exchange heat between the working medium circulating through the refrigeration cycle circuit 2 and external air (e.g., outside air or room air).
  • the expansion valve 6 adjusts the pressure (evaporation pressure) of the working medium and the flow rate of the working medium.
  • the four-way valve 8 switches the direction of the working medium circulating through the refrigeration cycle circuit 2 between a first direction corresponding to cooling operation and a second direction corresponding to heating operation.
  • the first direction is the direction in which the working medium circulates through the refrigeration cycle circuit 2, in the order of the compressor 4, the first heat exchanger 5, the expansion valve 6, and the second heat exchanger 7, as shown by the solid arrow A1 in Figure 1.
  • the compressor 4 compresses and discharges the gaseous working medium, which is then sent to the first heat exchanger 5 via the four-way valve 8.
  • the first heat exchanger 5 exchanges heat between the outside air and the gaseous working medium, causing the gaseous working medium to condense and become liquefied.
  • the liquid working medium is decompressed by the expansion valve 6 and sent to the second heat exchanger 7.
  • heat exchange occurs between the liquid working medium and the indoor air, causing the gaseous working medium to evaporate and become a gaseous working medium.
  • the gaseous working medium returns to the compressor 4 via the four-way valve 8.
  • the first heat exchanger 5 functions as a condenser
  • the second heat exchanger 7 functions as an evaporator. Therefore, during cooling, the indoor unit 1b blows air cooled by heat exchange in the second heat exchanger 7 into the room.
  • the second direction is the direction in which the working medium circulates through the refrigeration cycle circuit 2, in the order of the compressor 4, the second heat exchanger 7, the expansion valve 6, and the first heat exchanger 5, as shown by the dashed arrow A2 in Figure 1.
  • the compressor 4 compresses and discharges the gaseous working medium, which is then sent to the second heat exchanger 7 via the four-way valve 8.
  • the second heat exchanger 7 exchanges heat between the indoor air and the gaseous working medium, causing the gaseous working medium to condense and become liquefied.
  • the liquid working medium is decompressed by the expansion valve 6 and sent to the first heat exchanger 5.
  • heat exchange occurs between the liquid working medium and the outside air, causing the gaseous working medium to evaporate and become a gaseous working medium.
  • the gaseous working medium returns to the compressor 4 via the four-way valve 8.
  • the first heat exchanger 5 functions as an evaporator
  • the second heat exchanger 7 functions as a condenser. Therefore, during heating, the indoor unit 1b blows air warmed by heat exchange in the second heat exchanger 7 into the room.
  • the control device 3 controls the compressor 4 of the refrigeration cycle circuit 2.
  • Figure 2 is a schematic diagram of the compressor 4 and the control device 3.
  • the compressor 4 is, for example, a hermetic compressor.
  • the compressor 4 may be of a rotary type, a scroll type, or any other known type.
  • the compressor 4 includes a hermetic container 40, a compression mechanism 41, and an electric motor 42.
  • the sealed container 40 forms a flow path for the working medium 20.
  • the sealed container 40 has a suction pipe 401 and a discharge pipe 402.
  • the working medium 20 is sucked into the sealed container 40 from the suction pipe 401, compressed by the compression mechanism 41, and then discharged from the discharge pipe 402 to the outside of the sealed container 40.
  • the inside of the sealed container 40 is filled with high-temperature, high-pressure working medium 20 and lubricating oil.
  • the bottom of the sealed container 40 forms an oil storage section that stores a mixture of the working medium 20 and lubricating oil.
  • the compression mechanism 41 is located inside the sealed container 40 and compresses the working medium.
  • the compression mechanism 41 may have a conventionally known configuration.
  • the compression mechanism 41 has, for example, a cylinder that forms a compression chamber, a rolling piston that is disposed in the compression chamber inside the cylinder, and a crankshaft that is connected to the rolling piston.
  • the electric motor 42 is located inside the sealed container 40 and operates the compression mechanism 41.
  • the electric motor 42 is, for example, a brushless motor (three-phase brushless motor).
  • the electric motor 42 includes, for example, a rotor fixed to the crankshaft of the compression mechanism 41 and a stator provided around the rotor.
  • the stator is, for example, configured by concentrating or dispersing a stator winding (magnet wire, etc.) around a stator core (electromagnetic steel plate, etc.) with an insulating material such as insulating paper interposed between the stator winding.
  • the stator winding is covered with an insulating material. Examples of insulating materials include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), aramid polymer, polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), etc.
  • the compressor 4 may be equipped with an accumulator to prevent liquid compression in the compression chamber of the compression mechanism 41.
  • the accumulator separates the working medium into a gaseous working medium and a liquid working medium, and guides only the gaseous working medium from the suction pipe 401 into the inside of the sealed container 40.
  • the control device 3 includes a drive circuit 31, a state detection circuit 32, a first protection device 33, a second protection device 34, a control circuit 35, and a discharge device 36.
  • the drive circuit 31 drives the electric motor 42 based on the input power from the power source 10.
  • the power source 10 is an AC power source
  • the input power is AC power.
  • the drive circuit 31 includes a converter circuit 311 and an inverter circuit 312.
  • the converter circuit 311 outputs DC output power based on the input power from the power source 10 so that the voltage becomes a first voltage. In other words, the converter circuit 311 converts the input power into DC output power so that the voltage of the DC output power becomes the first voltage.
  • the first voltage corresponds to the rated voltage of the drive circuit 31.
  • the converter circuit 311 includes a rectifier circuit 311a and a smoothing circuit 311b.
  • the rectifier circuit 311a is a diode bridge composed of multiple diodes D1 to D4.
  • the power source 10 is connected between the input terminals of the rectifier circuit 311a (the connection point of diodes D1, D2, and the connection point of diodes D3, D4), and the smoothing circuit 311b is connected between the output terminals of the rectifier circuit 311a (the connection point of diodes D1, D3, and the connection point of diodes D2, D4).
  • the smoothing circuit 311b smoothes and outputs the voltage between the output terminals of the rectifier circuit 311a.
  • the smoothing circuit 311b sets the voltage of the DC output power to a first voltage.
  • the smoothing circuit 311b includes a series circuit of an inductor L1 and smoothing capacitors C1 and C2.
  • the connection point between the inductor L1 and the smoothing capacitor C1 is the first output point P1 that outputs a voltage corresponding to the first voltage.
  • the connection point between the connection point of the diodes D2 and D4 and the smoothing capacitor C2 is the second output point P2 that outputs a voltage lower than the voltage at the first output point P1.
  • the connection point between the smoothing capacitor C1 and the smoothing capacitor C2 is the third output point P3 that outputs a voltage between the voltage at the first output point P1 and the voltage at the second output point P2.
  • the first output point P1 is a high voltage point
  • the second output point P2 is a low voltage point
  • the third output point P3 is an intermediate voltage point.
  • the smoothing capacitors C1 and C2 have the same capacitance.
  • the voltage between the voltage at the first output point P1 and the voltage at the third output point P3 is equal to the voltage between the voltage at the second output point P2 and the voltage at the third output point P3. If the voltage between the first output point P1 and the second output point P2 (which corresponds to the first voltage) is E, the voltage between the first output point P1 and the third output point P3 is E/2, and similarly, the voltage between the second output point P2 and the third output point P3 is E/2. This allows the drive circuit 31 to provide five levels of voltage: E, E/2, 0, -E/2, and -E.
  • the inverter circuit 312 outputs AC output power to the motor 42 based on the DC output power from the converter circuit 311.
  • the AC output power is three-phase AC power.
  • the inverter circuit 312 includes a plurality of semiconductor switching elements U1 to U4, V1 to V4, and W1 to W4.
  • the semiconductor switching elements U1 to U4, V1 to V4, and W1 to W4 are, for example, transistors.
  • the semiconductor switching elements U1 to U4, V1 to V4, and W1 to W4 each form a series circuit and are connected between the first output point P1 and the second output point P2.
  • connection point of the semiconductor switching elements U1 and U2, the connection point of the semiconductor switching elements V1 and V2, and the connection point of the semiconductor switching elements W1 and W2 are connected to the third output point P3 via diodes D5, D7, and D9, respectively.
  • the anodes of diodes D5, D7, and D9 are connected to the third output point P3, and the cathodes of diodes D5, D7, and D9 are connected to the connection point of semiconductor switching elements U1 and U2, the connection point of semiconductor switching elements V1 and V2, and the connection point of semiconductor switching elements W1 and W2, respectively.
  • connection point of the semiconductor switching elements U2, U3 constitutes the U-phase output terminal Pu, which is connected to the U-phase input terminal of the motor 42.
  • the connection point of the semiconductor switching elements V2, V3 constitutes the V-phase output terminal Pv, which is connected to the V-phase input terminal of the motor 42.
  • the connection point of the semiconductor switching elements W2, W3 constitutes the W-phase output terminal Pw, which is connected to the W-phase input terminal of the motor 42.
  • connection point of the semiconductor switching elements U3 and U4, the connection point of the semiconductor switching elements V3 and V4, and the connection point of the semiconductor switching elements W3 and W4 are connected to the third output point P3 via diodes D6, D8, and D10, respectively.
  • the cathodes of diodes D6, D8, and D10 are connected to the third output point P3, and the anodes of diodes D6, D8, and D10 are connected to the connection point of semiconductor switching elements U3 and U4, the connection point of semiconductor switching elements V3 and V4, and the connection point of semiconductor switching elements W3 and W4, respectively.
  • the semiconductor switching elements U1, U2, V1, V2, W1, and W2 constitute a first semiconductor switching element group connected between the first output point P1 and the motor 42.
  • the semiconductor switching elements U1 and U2 constitute a U-phase first semiconductor switching element group connected between the first output point P1 and the U-phase input terminal of the motor 42.
  • the semiconductor switching elements V1 and V2 constitute a V-phase first semiconductor switching element group connected between the first output point P1 and the V-phase input terminal of the motor 42.
  • the semiconductor switching elements W1 and W2 constitute a W-phase first semiconductor switching element group connected between the first output point P1 and the W-phase input terminal of the motor 42.
  • the semiconductor switching elements U3, U4, V3, V4, W3, and W4 constitute a second semiconductor switching element group connected between the second output point P2 and the motor 42.
  • the semiconductor switching elements U3 and U4 constitute a U-phase second semiconductor switching element group connected between the second output point P2 and the U-phase input terminal of the motor 42.
  • the semiconductor switching elements V3 and V4 constitute a V-phase second semiconductor switching element group connected between the second output point P2 and the V-phase input terminal of the motor 42.
  • the semiconductor switching elements W3 and W4 constitute a W-phase second semiconductor switching element group connected between the second output point P2 and the W-phase input terminal of the motor 42.
  • the semiconductor switching elements U2, U3, V2, V3, W2, and W3 constitute a third semiconductor switching element group connected between the third output point P3 and the motor 42.
  • the semiconductor switching elements U2 and U3 constitute a U-phase third semiconductor switching element group connected between the third output point P3 and the U-phase input terminal of the motor 42.
  • the semiconductor switching elements V2 and V3 constitute a V-phase third semiconductor switching element group connected between the third output point P3 and the V-phase input terminal of the motor 42.
  • the semiconductor switching elements W2 and W3 constitute a W-phase third semiconductor switching element group connected between the third output point P3 and the W-phase input terminal of the motor 42.
  • the converter circuit 311 has a plurality of output points including the first to third output points P1 to P3.
  • the inverter circuit 312 has a plurality of semiconductor switching element groups including a first semiconductor switching element group (semiconductor switching elements U1, U2, V1, V2, W1, W2) connected between the first output point P1 and the motor 42, a second semiconductor switching element group (semiconductor switching elements U3, U4, V3, V4, W3, W4) connected between the second output point P2 and the motor 42, and a third semiconductor switching element group (semiconductor switching elements U2, U3, V2, V3, W2, W3) connected between the third output point P3 and the motor 42.
  • the drive circuit 31 is a so-called multilevel inverter, in particular a three-level inverter.
  • the inverter circuit 312 is connected to the electric motor 42 by connection lines Lu, Lv, and Lw.
  • the connection lines Lu, Lv, and Lw are connection lines for the U, V, and W phases, respectively.
  • the connection lines Lu, Lv, and Lw connect the U-phase, V-phase, and W-phase output terminals Pu, Pv, and Pw of the inverter circuit 312 to the U-phase, V-phase, and W-phase input terminals of the electric motor 42, respectively.
  • the state detection circuit 32 detects the state of the drive circuit 31.
  • the state of the drive circuit 31 is the voltage of the DC output power of the converter circuit 311.
  • the state detection circuit 32 is a voltage detector that detects the DC output power of the converter circuit 311 and outputs a detection voltage indicating the voltage of the DC output power.
  • the state detection circuit 32 includes a voltage divider circuit connected between the output terminals of the smoothing circuit 311b of the converter circuit 311, that is, between the first output point P1 and the second output point P2, and outputs a detection voltage based on the voltage obtained from the voltage divider circuit.
  • the state detection circuit 32 may also output a detection voltage based on the output of the voltage divider circuit and the differential amplifier.
  • the non-inverting input terminal and the inverting input terminal of the differential amplifier are connected to both ends of the resistor of the voltage divider circuit, respectively, and the differential amplifier can output the voltage across the resistor as a detection voltage.
  • the position where the state detection circuit 32 is connected to the drive circuit 31 is not particularly limited, and may be any position where the DC output power of the converter circuit 311 can be detected.
  • the position where the DC output power of the converter circuit 311 can be detected is not limited to within the converter circuit 311, but may be a position within the inverter circuit 312 that is equivalent in circuit terms to the first output point P1 and the second output point P2.
  • the voltage divider circuit can have a conventionally known configuration, so a detailed description will be omitted.
  • the first protection device 33 is provided to stop the output of AC output power.
  • the first protection device 33 includes switches Su, Sv, and Sw interposed between the drive circuit 31 and the motor 42.
  • the switches Su, Sv, and Sw are connected between the U-phase, V-phase, and W-phase input terminals of the motor 42 and the U-phase output terminals Pu, Pv, and Pw, respectively.
  • the switches Su, Sv, and Sw may be controllable switches such as semiconductor switches and electromagnetic relays.
  • the first protection device 33 When the switches Su, Sv, and Sw are closed in the on state, the first protection device 33 enables the output of AC output power from the drive circuit 31 to the motor 42, and when the switches Su, Sv, and Sw are open in the off state, the first protection device 33 stops the output of AC output power from the drive circuit 31 to the motor 42.
  • the second protection device 34 is provided to stop the input of input power.
  • the second protection device 34 includes switches S1 and S2 interposed between the drive circuit 31 and the power source 10.
  • the switches S1 and S2 are respectively connected between the input terminal of the rectifier circuit 311a and the power source 10.
  • the switches S1 and S2 may be, for example, a controllable switch such as a semiconductor switch or an electromagnetic relay.
  • the discharge device 36 is connected to the connection lines Lu, Lv, and Lw between the inverter circuit 312 and the motor 42.
  • the discharge device 36 can be switched between a first state in which the connection lines Lu, Lv, and Lw between the inverter circuit 312 and the motor 42 are separated from the reference potential, and a second state in which the connection lines Lu, Lv, and Lw are connected to the reference potential.
  • the discharge device 36 When the discharge device 36 is in the first state, the discharge device 36 does not have any particular effect on the motor 42.
  • the connection lines Lu, Lv, and Lw are connected to the reference potential, so that the energy stored in the windings of the motor 42 can be released.
  • the reference potential exists outside the drive circuit 31.
  • the reference potential existing outside the drive circuit 31 means that the reference potential and the drive circuit 31 are electrically independent.
  • An example of a reference potential existing outside the drive circuit 31 is the ground.
  • the reference potential is provided by the ground. That is, the discharge device 36 can release the energy remaining when the compressor 4 is stopped, that is, when the motor 42 is stopped. If energy remains in the motor 42, there is a concern that such residual energy may cause abnormal phenomena such as discharge phenomena in the motor 42.
  • the discharge device 36 enables the release of the energy remaining in the motor 42, so that the possibility of occurrence of abnormal phenomena caused by such residual energy can be reduced, and the suppression of disproportionation reactions can be improved.
  • connection lines Lu, Lv, and Lw are shorted, energy remains in the drive circuit 31. Therefore, by connecting the connection lines Lu, Lv, and Lw to ground, the energy remaining in the drive circuit 31 is released to the outside of the drive circuit 31.
  • Fig. 3 is a schematic circuit diagram of the discharge device 36.
  • the discharge device 36 includes a plurality of series circuits 361-363 that are connected between a plurality of connection lines Lu, Lv, Lw that respectively correspond to a plurality of phases of the AC output power and a ground that provides a reference potential.
  • the series circuits 361, 362, 363 are U-, V-, and W-phase series circuits of switches SW31, SW32, SW33 and resistors R31, R32, R33 that are connected between the connection lines Lu, Lv, Lw, and ground, respectively.
  • the switches SW31, SW32, and SW33 are controllable switches.
  • the switches SW31, SW32, and SW33 are configured as 3PST switches that can operate in conjunction with each other.
  • the switches SW31, SW32, and SW33 may be SPST switches that can operate independently.
  • Examples of the switches SW31, SW32, and SW33 include mechanical contact switches such as electromagnetic relays and non-contact switches such as transistors.
  • the first terminals of the switches SW31, SW32, and SW33 are connected to the connection lines Lu, Lv, and Lw, respectively, and the second terminals of the switches SW31, SW32, and SW33 are connected to ground via resistors R31, R32, and R33, respectively.
  • the resistance values of the resistors R31, R32, and R33 are not particularly limited, but are, for example, 1 k ⁇ .
  • the first state of the discharge device 36 is a state in which the switches SW31, SW32, and SW33 are off.
  • the second state of the discharge device 36 is a state in which the switches SW31, SW32, and SW33 are on.
  • the control circuit 35 may be realized by, for example, a computer system including at least one processor (microprocessor) and one or more memories.
  • the computer system may include one or more A/D converters.
  • the one or more A/D converters are used to convert the detection voltage from the state detection circuit 32 from analog to digital format.
  • the control circuit 35 controls the drive circuit 31, the first protection device 33, the second protection device 34, and the discharge device 36.
  • the control circuit 35 executes PWM control of a group of multiple semiconductor switching elements of the inverter circuit 312 of the drive circuit 31 so that the drive circuit 31 operates the electric motor 42.
  • control circuit 35 controls the switching of the multiple semiconductor switching elements U1 to U4, V1 to V4, and W1 to W4 of the inverter circuit 312 of the drive circuit 31 so that the inverter circuit 312 supplies AC output power (three-phase AC power) to the electric motor 42 based on the DC output power from the smoothing circuit 311b.
  • the semiconductor switching elements U1 to U4 have a first state in which the semiconductor switching elements U1 and U2 are on and the semiconductor switching elements U3 and U4 are off, a second state in which the semiconductor switching elements U3 and U4 are on and the semiconductor switching elements U1 and U2 are off, and a third state in which the semiconductor switching elements U2 and U3 are on and the semiconductor switching elements U1 and U4 are off.
  • the voltage at the U-phase output terminal Pu is E/2 in the first state, -E/2 in the second state, and 0 in the third state.
  • the semiconductor switching elements V1 to V4 There are three states for the semiconductor switching elements V1 to V4: a first state in which the semiconductor switching elements V1 and V2 are on and the semiconductor switching elements V3 and V4 are off; a second state in which the semiconductor switching elements V3 and V4 are on and the semiconductor switching elements V1 and V2 are off; and a third state in which the semiconductor switching elements V2 and V3 are on and the semiconductor switching elements V1 and V4 are off.
  • the voltage at the V-phase output terminal Pv is E/2 in the first state, -E/2 in the second state, and 0 in the third state.
  • the semiconductor switching elements W1 to W4 have a first state in which the semiconductor switching elements W1 and W2 are on and the semiconductor switching elements W3 and W4 are off, a second state in which the semiconductor switching elements W3 and W4 are on and the semiconductor switching elements W1 and W2 are off, and a third state in which the semiconductor switching elements W2 and W3 are on and the semiconductor switching elements W1 and W4 are off.
  • the voltage at the W-phase output terminal Pw is E/2 in the first state, -E/2 in the second state, and 0 in the third state.
  • the drive circuit 31 can provide five voltage levels: E, E/2, 0, -E/2, and -E.
  • the control circuit 35 controls the switching of the semiconductor switching elements U1-U4, V1-V4, W1-W4 of the inverter circuit 312 of the drive circuit 31 based on, for example, U-phase, V-phase, and W-phase output voltage command values corresponding to the sine wave AC voltages of the U-phase, V-phase, and W-phase of the three-phase AC, respectively, and the first and second carrier triangular waves.
  • the value of the first carrier triangular wave is 0 or more, and the value of the second carrier triangular wave is 0 or less.
  • the drive circuit 31 can provide five levels of voltage: E, E/2, 0, -E/2, and -E, so that the voltage between the U-phase input terminal and the V-phase input terminal of the motor 42, the voltage between the V-phase input terminal and the W-phase input terminal of the motor 42, and the voltage between the W-phase input terminal and the U-phase input terminal of the motor 42 can each be made closer to a sine wave.
  • the control circuit 35 further executes processing to suppress the disproportionation reaction of the working medium 20 circulating through the refrigeration cycle circuit 2 based on the detected voltage from the state detection circuit 32.
  • the causes of the disproportionation reaction of the working medium 20 are thought to be heat and radicals. For example, when radicals are generated under high temperature and pressure, the disproportionation reaction of the working medium 20 is thought to proceed. Radicals may be generated, for example, by a discharge phenomenon that may occur when some abnormality occurs in the compressor 4 or the drive circuit 31.
  • FIG. 4 is a waveform diagram of the voltage of the DC output power of the converter circuit 311.
  • the voltage of the DC output current gradually decreases at times t11 to t12, t21 to t22, t31 to 32, t41 to t42, and t51 to 52, but this voltage decrease is due to the switching of the semiconductor switching elements U1 to U4, V1 to V4, and W1 to W4 of the inverter circuit 312.
  • the switching frequency of the inverter circuit 312 is, for example, 1.0 kHz to 5.0 kHz
  • the time between time t11 and time t21 is about 0.2 to 1.0 ms.
  • a sudden drop in the voltage of the DC output current is observed, which is thought to be due to the occurrence of a discharge phenomenon.
  • control circuit 35 determines whether a discharge phenomenon has occurred based on the detected voltage from the state detection circuit 32, and if it determines that a discharge phenomenon has occurred, it stops or limits the operation of the drive circuit 31 to suppress the disproportionation reaction of the working medium circulating through the refrigeration cycle circuit 2.
  • the control device 3 detects the signs of a disproportionation reaction based on the changes occurring in the DC output power (voltage of the smoothing circuit 311b) inside the drive circuit 31, not on the changes occurring in the current actually flowing from the drive circuit 31 to the motor 42.
  • the time scale of the discharge phenomenon is shorter than the time scale of smoothing (rectification) in the drive circuit 31.
  • the time scale of the discharge phenomenon is on the order of ⁇ s. Therefore, it is possible to determine whether a discharge phenomenon is occurring based on the DC output power inside the drive circuit 31.
  • the measurement of the DC output power (voltage of the smoothing circuit 311b) inside the drive circuit 31 can be performed in a shorter time and at a shorter cycle than the measurement of the current actually flowing from the drive circuit 31 to the motor 42. This enables the earlier detection of the signs of a disproportionation reaction of the working medium 20. If the signs of a disproportionation reaction of the working medium 20 can be detected earlier in this way, the disproportionation reaction can be suppressed earlier, thereby improving the suppression of the disproportionation reaction.
  • the control circuit 35 stops or limits the operation of the drive circuit 31 when the detected voltage falls below a second voltage that is equal to or lower than the first voltage.
  • the second voltage is set to determine whether a discharge phenomenon has occurred, which may occur when some abnormality occurs in the compressor 4 or the drive circuit 31. Referring to FIG. 4, if the normal voltage (first voltage) of the DC output current is E, it has been observed that the voltage of the DC output current becomes 0.8E or less, or even 0.3E or less, due to a discharge phenomenon. From this point of view, it is preferable that the second voltage is 0.3 times or more and 0.8 times or less than the first voltage. In this embodiment, the second voltage is 0.8 times the first voltage.
  • the operation of the drive circuit 31 can be stopped by either stopping the output of AC output power, stopping the output of DC output power, or stopping the input of input power.
  • the operation of the drive circuit 31 can be restricted by lowering the set value of the amplitude of the AC output power, or lowering the set value of the frequency of the AC output power.
  • control circuit 35 sets the first protection device 33 to the OFF state to electrically isolate the electric motor 42 from the drive circuit 31 and stop the output of AC output power.
  • the control circuit 35 sets the first protection device 33 to the ON state to connect the electric motor 42 to the drive circuit 31.
  • the control circuit 35 controls the drive circuit 31 to lower the set value of the amplitude of the AC output power.
  • the drive circuit 31 can provide five levels of voltage: E, E/2, 0, -E/2, and -E, so the set value of the amplitude of the AC output power is changed from E to E/2.
  • the rotation speed of the motor 42 is lower than when the set value of the amplitude of the AC output power is E.
  • control circuit 35 sets the second protection device 34 to the OFF state to electrically isolate the power source 10 from the drive circuit 31 and stop the output of AC output power.
  • the control circuit 35 sets the second protection device 34 to the ON state to connect the power source 10 to the drive circuit 31.
  • the control circuit 35 stops or limits the operation of the drive circuit 31 in different ways depending on the number of times the detected voltage falls below the second voltage.
  • the control circuit 35 executes processing that suppresses the disproportionation reaction to a higher degree as the number of times the detected voltage falls below the second voltage increases. This enables the control device 3 to suppress the disproportionation reaction even when relatively minor discharge phenomena occur consecutively within a short period of time. For example, it is possible to prevent disproportionation reactions from being induced beyond a predetermined energy due to consecutive occurrences of low-energy abnormal states (discharges), thereby improving the safety of using the working medium 20.
  • the control circuit 35 stops or limits the operation of the drive circuit 31 in different ways depending on the time difference between the first time when the detected voltage first becomes less than the second voltage and the second time when the detected voltage next becomes less than the second voltage.
  • the control circuit 35 executes processing that suppresses the disproportionation reaction to a higher degree the shorter the time difference. This enables the control device 3 to suppress the disproportionation reaction even when relatively minor discharge phenomena occur consecutively within a short period of time. This prevents, for example, a disproportionation reaction from being induced beyond a predetermined energy due to consecutive occurrences of low-energy abnormal states (discharges), improving the safety of using the working medium 20.
  • the process for suppressing the disproportionation reaction includes, for example, the first process to the third process.
  • the first process is a process for stopping the output of AC output power and resuming the output of AC output power after a standby time has elapsed.
  • the second process is a process for stopping the output of AC output power and operating with a lower set value of the amplitude of the AC output power after a standby time has elapsed.
  • the third process is a process for stopping the output of AC output power and stopping the input of input power.
  • the degree of suppression of the disproportionation reaction increases in the order of the third process, the second process, and the first process. In the first or second process, the longer the standby time, the higher the degree of suppression of the disproportionation reaction.
  • the control circuit 35 switches the discharge device 36 to the second state.
  • the control circuit 35 switches the discharge device 36 to the first state. This makes it possible to release the energy remaining when the compressor 4 is stopped.
  • the control circuit 35 outputs AC output power to the motor 42 based on the input power of the power source 10 via the drive circuit 31 to drive the compressor 4.
  • the control circuit 35 sets the number of abnormalities to 0 (S10).
  • the number of abnormalities indicates the number of times the detected voltage is less than the second voltage.
  • the number of abnormalities is an indicator of the likelihood of a disproportionation reaction occurring.
  • the control circuit 35 acquires the detection voltage from the state detection circuit 32 (S11). The control circuit 35 determines whether the detection voltage is less than the second voltage (S12).
  • the control circuit 35 determines whether the detected voltage is less than the second voltage at a predetermined period. It is preferable that the predetermined period here is shorter than the period corresponding to the reference frequency of the inverter circuit 312 (e.g., 1000 to 5000 Hz).
  • step S12 if the detected voltage is less than the second voltage (S12: YES), the control circuit 35 adds 1 to the number of abnormalities (S13) and determines whether the number of abnormalities is 1 or less (S14).
  • step S14 if the number of abnormalities is 1 or less (S14: YES), the control circuit 35 sets the first protection device 33 to the OFF state to stop the output of AC output power, and switches the discharge device 36 to the second state (S15).
  • the control circuit 35 determines whether a first standby time has elapsed since the output of AC output power was stopped (S16).
  • the first standby time is, for example, 1 s.
  • the control circuit 35 sets the first protection device 33 to the ON state to resume the output of AC output power, and switches the discharge device 36 to the first state (S17), thereby resuming operation of the compressor 4 (S18). Thereafter, the process returns to step S11.
  • the control circuit 35 stops the output of the AC output power and switches the discharge device 36 to the second state, and when the first standby time has elapsed since the output of the AC output power was stopped, the control circuit 35 resumes the output of the AC output power and switches the discharge device 36 to the first state.
  • step S14 if the number of abnormalities is not 1 or less (S14: NO), referring to FIG. 6, the control circuit 35 determines whether the time difference between the first time when the detected voltage first becomes less than the second voltage and the second time when the detected voltage next becomes less than the second voltage is within a first predetermined time (step S19).
  • the shortness of the time difference is an indicator of the likelihood of a disproportionation reaction occurring.
  • the first predetermined time is, for example, about 100 times the period corresponding to the reference frequency of the inverter circuit 312, and is about 20 to 100 ms.
  • step S19 if the time difference is within the first predetermined time (step S19: YES), the control circuit 35 sets the first protection device 33 to the OFF state to stop the output of AC output power, and switches the discharge device 36 to the second state (S20). The control circuit 35 sets the second protection device 34 to the OFF state to stop the input of input power (S21). The control circuit 35 outputs a first abnormality notification (S22).
  • the first abnormality notification indicates that an abnormality has occurred in the refrigeration cycle device 1 that is highly likely to cause a disproportionation reaction.
  • the first abnormality notification is output to, for example, the control circuit of the indoor unit 1b and a remote controller. After this, the control circuit 35 stops the operation of the compressor 4 (S23).
  • the control circuit 35 stops the output of the AC output power, switches the discharge device 36 to the second state (S20), and stops the input of the input power (S21).
  • step S19 determines whether the time difference is within a second predetermined time that is longer than the first predetermined time (step S24).
  • the second predetermined time is, for example, about 1000 times the period corresponding to the reference frequency of the inverter circuit 312, and is about 200 ms to 1 s.
  • step S24 if the time difference is within the second predetermined time (step S24: YES), the control circuit 35 sets the first protection device 33 to the off state to stop the output of the AC output power, and switches the discharge device 36 to the second state (S25).
  • the control circuit 35 changes the switching control of the semiconductor switching element of the drive circuit 31 so that the set value of the amplitude of the AC output power decreases from E to E/2 (S26).
  • the control circuit 35 outputs a second abnormality notification (S27).
  • the second abnormality notification indicates that an abnormality that is likely to cause a disproportionation reaction has occurred in the refrigeration cycle device 1.
  • the second abnormality notification is output to, for example, the control circuit and remote controller of the indoor unit 1b.
  • the control circuit 35 determines whether a fourth waiting time has elapsed since the output of the AC output power was stopped (S28).
  • the fourth waiting time is longer than the first waiting time.
  • the fourth waiting time is, for example, 60 seconds.
  • the control circuit 35 switches the discharge device 36 to the first state and sets the first protection device 33 to the on state to resume the output of the AC output power (S29), thereby resuming the operation of the compressor 4 (S30). In this case, the set value of the amplitude of the AC output power remains lowered from E to E/2.
  • the control circuit 35 stops the output of the AC output power, switches the discharge device 36 to the second state (S25), and lowers the set value of the amplitude of the AC output power (S26).
  • the control circuit 35 switches the discharge device 36 to the first state and resumes the output of the AC output power while keeping the set value of the amplitude of the AC output power lowered (S29).
  • control circuit 35 acquires the detection voltage from the state detection circuit 32 (S31). The control circuit 35 determines whether the detection voltage is less than the second voltage (S32).
  • step S32 If the detected voltage is less than the second voltage in step S32 (S32: YES), proceed to step S20 in FIG. 6.
  • step S32 if the detected voltage is not less than the second voltage (S32: NO), the control circuit 35 determines whether the second monitoring time has elapsed since the compressor 4 restarted operating (S33).
  • step S33 if the second monitoring time has elapsed since the compressor 4 restarted operating (S33: YES), the control circuit 35 cancels the reduction in the set value of the amplitude of the AC output power, returns the set value of the amplitude of the AC output power to E (S34), and proceeds to step S11 in FIG. 5.
  • step S33 if the second monitoring time has not elapsed since the compressor 4 restarted operation (S33: NO), the process returns to step S31.
  • steps S31 to S33 if the detected voltage falls below the second voltage between the time when compressor 4 restarts operation and the time when the second monitoring time has elapsed, the process proceeds to step S20 in FIG. 6, and if the detected voltage does not fall below the second voltage between the time when compressor 4 restarts operation and the time when the second monitoring time has elapsed, the process proceeds to step S34.
  • the control circuit 35 cancels the reduction in the set value of the amplitude of the AC output power (S34). If the detected voltage becomes less than the second voltage before the second monitoring time has elapsed after the output of the AC output power is resumed after the fourth waiting time has elapsed (S29) (YES in S32), the control circuit 35 stops the output of the AC output power, switches the discharge device 36 to the second state (S20), and stops the input of the input power (S21).
  • step S35 the control circuit 35 determines whether the time difference is within a third predetermined time that is longer than the second predetermined time (step S35).
  • the third predetermined time is, for example, about 10,000 times the period corresponding to the reference frequency of the inverter circuit 312, and is about 2 s to 10 s.
  • step S35 if the time difference is not within the third predetermined time (step S35: NO), the process returns to step S10, and the control circuit 35 sets the number of abnormalities to 0 (see FIG. 5). In other words, if a sufficient amount of time has passed since the detection of the abnormality, the possibility of a discharge phenomenon occurring is considered to be low, so the number of abnormalities is reset to 0.
  • step S35 if the time difference is within the third predetermined time (step S35: YES), the control circuit 35 determines whether the number of abnormalities is 2 or less (S36).
  • step S36 if the number of abnormalities is 2 or less (S36: YES), the control circuit 35 sets the first protection device 33 to the off state to stop the output of the AC output power, and switches the discharge device 36 to the second state (S37).
  • the control circuit 35 outputs a third abnormality notification (S38).
  • the third abnormality notification indicates that an abnormality that may cause a disproportionation reaction has occurred in the refrigeration cycle device 1.
  • the third abnormality notification is output, for example, to the control circuit of the indoor unit 1b and a remote controller.
  • the control circuit 35 determines whether a second standby time has elapsed since the output of the AC output power was stopped (S39). The second standby time is longer than the first standby time.
  • the second standby time is, for example, 10 s.
  • the control circuit 35 switches the discharge device 36 to the first state, sets the first protection device 33 to the on state, and resumes the output of the AC output power (S40), thereby resuming the operation of the compressor 4 (S41). After that, return to step S11.
  • the control circuit 35 stops the output of the AC output power and switches the discharge device 36 to the second state.
  • the control circuit 35 switches the discharge device 36 to the first state and resumes the output of the AC output power (S40).
  • step S36 if the number of abnormalities is not two or less (S36: NO), that is, if the number of abnormalities is three or more, the control circuit 35 sets the first protection device 33 to the off state to stop the output of AC output power, and switches the discharge device 36 to the second state (S42).
  • the control circuit 35 changes the switching control of the semiconductor switching element of the drive circuit 31 so that the set value of the amplitude of the AC output power is reduced from E to E/2 (S43).
  • the control circuit 35 outputs a second abnormality notification (S44).
  • the control circuit 35 determines whether the third waiting time has elapsed since the output of the AC output power was stopped (S45).
  • the third waiting time is longer than the second waiting time.
  • the third waiting time is, for example, 60 seconds.
  • the control circuit 35 switches the discharge device 36 to the first state and sets the first protection device 33 to the on state to resume the output of the AC output power (S46), thereby resuming the operation of the compressor 4 (S47). In this case, the set value of the amplitude of the AC output power remains lowered from E to E/2.
  • the control circuit 35 stops the output of the AC output power, switches the discharge device 36 to the second state (S42), and lowers the set value of the amplitude of the AC output power (S43).
  • the control circuit 35 switches the discharge device 36 to the first state and resumes the output of the AC output power while keeping the set value of the amplitude of the AC output power lowered (S47).
  • control circuit 35 acquires the detection voltage from the state detection circuit 32 (S48). The control circuit 35 determines whether the detection voltage is less than the second voltage (S49).
  • step S49 If the detected voltage is less than the second voltage in step S49 (S49: YES), proceed to step S20 in FIG. 6.
  • step S49 if the detected voltage is not less than the second voltage (S49: NO), the control circuit 35 determines whether the first monitoring time has elapsed since the compressor 4 restarted operating (S50).
  • the first monitoring time may be the same as or different from the second monitoring time in step S33.
  • step S50 if the first monitoring time has elapsed since the compressor 4 restarted operating (S50: YES), the control circuit 35 cancels the reduction in the set value of the amplitude of the AC output power, returns the set value of the amplitude of the AC output power to E (S51), and proceeds to step S11 in FIG. 5.
  • step S50 if the first monitoring time has not elapsed since the compressor 4 restarted operation (S50: NO), the process returns to step S48.
  • steps S48 to S50 if the detected voltage becomes less than the second voltage between the time when the compressor 4 restarts operation and the time when the first monitoring time has elapsed, the process proceeds to step S20 in FIG. 6, and if the detected voltage does not become less than the second voltage between the time when the compressor 4 restarts operation and the time when the first monitoring time has elapsed, the process proceeds to step S51.
  • the control circuit 35 cancels the reduction in the set value of the amplitude of the AC output power (S51). If the detected voltage becomes less than the second voltage before the first monitoring time has elapsed after the output of the AC output power is resumed after the third waiting time has elapsed (S47) (YES in S49), the control circuit 35 stops the output of the AC output power, switches the discharge device 36 to the second state (S20), and stops the input of the input power (S21).
  • the control circuit 35 stops the operation of the drive circuit 31 when an abnormality occurs, such as when a discharge phenomenon occurs. This reduces the possibility of abnormalities such as discharge phenomena occurring continuously. Furthermore, the control circuit 35 connects the connection lines Lu, Lv, and Lw, which are the current paths between the inverter circuit 312 and the electric motor 42, to a reference potential by the discharge device 36. This makes it possible to release the energy stored in the electric motor 42 by driving the compressor 4. This reduces the possibility of abnormal phenomena occurring due to residual energy when the electric motor 42 of the compressor 4 is stopped, and makes it possible to improve the suppression of disproportionation reactions.
  • the control device 3 described above controls the compressor 4 of the refrigeration cycle circuit 2 in which the working medium 20 circulates.
  • the control device 3 includes a drive circuit 31 that drives the compressor 4, and a discharge device 36 that can switch between a first state in which the connection lines Lu, Lv, and Lw between the drive circuit 31 and the compressor 4 are separated from a reference potential and a second state in which the connection lines Lu, Lv, and Lw are connected to the reference potential.
  • This configuration can reduce the possibility of an abnormal phenomenon occurring due to residual energy when the compressor 4 is stopped, and enables improved suppression of the disproportionation reaction.
  • the reference potential exists outside the drive circuit 31. This configuration allows the remaining energy when the compressor 4 is stopped to be released outside the drive circuit 31.
  • the reference potential is provided by the ground. This configuration allows the remaining energy to be released outside the drive circuit 31 when the compressor 4 is stopped.
  • the control device 3 further includes a control circuit 35 that controls the drive circuit 31 and the discharge device 36.
  • the control circuit 35 stops the operation of the drive circuit 31 and switches the discharge device 36 to the second state. This configuration can reduce the possibility of abnormal phenomena occurring due to residual energy when the compressor 4 is stopped, and enables improved suppression of the disproportionation reaction.
  • control circuit 35 switches the discharge device 36 to the first state when the operation of the drive circuit 31 is released from the stopped state.
  • This configuration can shorten the time difference between the release of the operation of the drive circuit 31 and the switching of the discharge device 36 to the first state, and can shorten the stop time of the compressor 4.
  • the discharge device 36 has series circuits 361, 362, 363 consisting of switches SW31, SW32, SW33 and resistors R31, R32, R33.
  • the series circuits 361, 362, 363 are connected between the connection lines Lu, Lv, Lw and the reference potential.
  • the first state is a state in which the switches SW31, SW32, SW33 are off.
  • the second state is a state in which the switches SW31, SW32, SW33 are on. This configuration can reduce the possibility of abnormal phenomena occurring due to residual energy when the compressor 4 is stopped, and enables improved suppression of the disproportionation reaction.
  • the resistance of resistors R31, R32, and R33 is 1 k ⁇ . This configuration can reduce the possibility of abnormal phenomena occurring due to residual energy when the compressor 4 is stopped, and enables improved suppression of disproportionation reactions.
  • connection lines Lu, Lv, Lw include a plurality of connection lines Lu, Lv, Lw that respectively correspond to the three phases of the AC output power.
  • the discharge device 36 has a plurality of series circuits 361, 362, 363 that are respectively connected between the plurality of connection lines Lu, Lv, Lw and the reference potential. This configuration can reduce the possibility of abnormal phenomena occurring due to residual energy when the compressor 4 is stopped, and enables improved suppression of the disproportionation reaction.
  • the control device 3 further includes a state detection circuit 32 that detects the state of at least one of the compressor 4 and the drive circuit 31.
  • the drive circuit 31 includes a converter circuit 311 that outputs DC output power based on the input power from the power source 10 so that the voltage of the DC output power becomes a first voltage, and an inverter circuit 312 that outputs AC output power to the compressor 4 based on the DC output power.
  • the state detection circuit 32 detects the DC output power and outputs a detection voltage indicating the voltage of the DC output power. When the detection voltage becomes less than a second voltage that is equal to or less than the first voltage, the control circuit 35 stops the operation of the drive circuit 31 and switches the discharge device 36 to the second state. This configuration can reduce the possibility of an abnormal phenomenon occurring due to the energy remaining when the compressor 4 is stopped, and enables improved suppression of the disproportionation reaction.
  • the second voltage is 0.3 to 0.8 times the first voltage. This configuration enables early detection of signs of a disproportionation reaction in the working medium 20 and improves suppression of the disproportionation reaction.
  • the discharge device 36 described above is connected to the connection lines Lu, Lv, and Lw between the compressor 4 of the refrigeration cycle circuit 2 in which the working medium 20 circulates and the drive circuit 31 that drives the compressor 4, and is configured to be switchable between a first state in which the connection lines Lu, Lv, and Lw are isolated from the reference potential, and a second state in which the connection lines Lu, Lv, and Lw are connected to the reference potential.
  • This configuration can reduce the possibility of abnormal phenomena occurring due to residual energy when the compressor 4 is stopped, and enables improved suppression of the disproportionation reaction.
  • the refrigeration cycle device 1 described above includes a control device 3 and a refrigeration cycle circuit 2. This configuration can reduce the possibility of abnormal phenomena occurring due to residual energy when the compressor 4 is stopped, and enables improved suppression of disproportionation reactions.
  • the working medium contains an ethylene-based fluoroolefin. This configuration allows for improved suppression of the disproportionation reaction of the working medium 20.
  • the ethylene-based fluoroolefin is 1,1,2-trifluoroethylene, trans-1,2-difluoroethylene, cis-1,2-difluoroethylene, 1,1-difluoroethylene, tetrafluoroethylene, or monofluoroethylene. This configuration enables improved suppression of the disproportionation reaction of the working medium 20.
  • the working medium 20 further contains difluoromethane. This configuration enables improved suppression of the disproportionation reaction of the working medium 20.
  • the working medium 20 further contains saturated hydrocarbons. This configuration enables improved suppression of the disproportionation reaction of the working medium 20.
  • the working medium 20 contains a haloalkane having one or two carbon atoms as a disproportionation inhibitor that suppresses the disproportionation reaction of ethylene-based fluoroolefins. This configuration enables improved suppression of the disproportionation reaction of the working medium 20.
  • the saturated hydrocarbons include n-propane. This configuration allows for improved suppression of the disproportionation reaction of the working medium 20.
  • the control device 3 described above can be said to execute the following control method.
  • the control method is executed by the control device 3 that controls the compressor 4 of the refrigeration cycle circuit 2 in which the working medium 20 circulates.
  • the control device 3 includes a drive circuit 31 that drives the compressor 4, and a discharge device 36 that can switch between a first state in which the connection lines Lu, Lv, and Lw between the drive circuit 31 and the compressor 4 are separated from a reference potential, and a second state in which the connection lines Lu, Lv, and Lw are connected to the reference potential.
  • the control method stops the operation of the drive circuit 31 and switches the discharge device 36 to the second state in response to detection of an abnormality in at least one of the compressor 4 and the drive circuit 31. This configuration can reduce the possibility of an abnormal phenomenon occurring due to the energy remaining when the compressor 4 is stopped, and enables improved suppression of the disproportionation reaction.
  • the control method executed by the control device 3 can be realized by a computer system executing a program.
  • This program is executed by a computer system included in the control device 3 that controls the compressor 4 of the refrigeration cycle circuit 2 in which the working medium 20 circulates.
  • the control device 3 includes a drive circuit 31 that drives the compressor 4, and a discharge device 36 that can switch between a first state in which the connection lines Lu, Lv, and Lw between the drive circuit 31 and the compressor 4 are separated from a reference potential, and a second state in which the connection lines Lu, Lv, and Lw are connected to the reference potential.
  • the program causes the computer system to stop the operation of the drive circuit 31 and switch the discharge device 36 to the second state in response to detection of an abnormality in at least one of the compressor 4 and the drive circuit 31. This configuration can reduce the possibility of an abnormal phenomenon occurring due to the energy remaining when the compressor 4 is stopped, and enables improved suppression of the disproportionation reaction.
  • the discharge device 36 is not necessarily limited to a configuration in which multiple connection lines Lu, Lv, and Lw can be connected to a reference potential, but only needs to be able to connect at least one of the multiple connection lines Lu, Lv, and Lw to a reference potential.
  • stopping the operation of the drive circuit 31 may include one or more of stopping the output of AC output power, stopping the output of DC output power, or stopping the input of input power.
  • Restricting the operation of the drive circuit 31 may include one or more of reducing the set value of the amplitude of the AC output power, or reducing the set value of the frequency of the AC output power.
  • control circuit 35 may gradually stop and decelerate the electric motor 42. As one example, the control circuit 35 may gradually reduce the effective value of the AC output power supplied to the electric motor 42 by gradually reducing at least one of the amplitude and frequency of the AC output power.
  • control circuit 35 is not necessarily limited to the operations shown in the flowcharts shown in Figures 5 to 10.
  • the flowcharts shown in Figures 5 to 10 are merely examples.
  • the processes of steps S19 to S23 i.e., the processes of stopping the output of AC output power and stopping the input of input power
  • the processes of steps S24 to S28 i.e., the processes of stopping the output of AC output power and lowering the set value of the amplitude of the AC output power after the standby time has elapsed
  • the processes of steps S29 to S34, steps S35 to S41, or steps S42 to S51 are not essential.
  • the control circuit 35 does not necessarily have to stop or limit the operation of the drive circuit 31 in a different manner depending on the time difference between the first time when the detected voltage first becomes less than the second voltage and the second time when the detected voltage next becomes less than the second voltage, or the number of times the detected voltage becomes less than the second voltage.
  • the first protection device 33 is not limited to a circuit configuration including switches Su, Sv, and Sw, and may include a circuit configuration that adjusts the magnitude of the AC output power output from the drive circuit 31 to the electric motor 42, for example, the magnitude of the voltage.
  • the first protection device 33 may be disposed within the drive circuit 31.
  • the second protection device 34 is not limited to a circuit configuration including switches S1 and S2, and may include a circuit configuration that adjusts the magnitude of the input power input from the power source 10 to the drive circuit 31, for example, the magnitude of the voltage.
  • the second protection device 34 may be disposed within the drive circuit 31.
  • the control device 3 does not necessarily have to include both the first protection device 33 and the second protection device 34, and may include either the first protection device 33 or the second protection device 34, and if the drive circuit 31 has a function of adjusting the AC output power, the first and second protection devices 33, 34 can be omitted.
  • the control circuit 35 may stop the output of AC output power to the motor 42 by turning on the semiconductor switching elements V1 to V4 of the inverter circuit 312 and turning off the remaining semiconductor switching elements U1 to U4, W1 to W4.
  • the first protection device 33 may be omitted.
  • FIG. 11 shows a modified control device 3A.
  • the control device 3A includes a third protection device 37.
  • the third protection device 37 is provided to stop the output of DC output power.
  • the third protection device 37 includes switches S3, S4, and S5 interposed between the converter circuit 311 and the inverter circuit 312 of the drive circuit 31.
  • the switch S3 is commonly connected between the first output point P1 and the semiconductor switching elements U1, V1, and W1.
  • the switch S4 is commonly connected between the second output point P2 and the semiconductor switching elements U4, V4, and W4.
  • the switch S5 is commonly connected between the third output point P3 and the connection point between the diodes D5 and D6, the connection point between the diodes D7 and D8, and the connection point between the diodes D9 and D10.
  • the switches S3, S4, and S5 may be controllable switches such as semiconductor switches and electromagnetic relays.
  • the third protection device 37 allows the output of DC output power from the converter circuit 311 to the inverter circuit 312 when the switches S3, S4, and S5 are closed in the on state, and stops the output of DC output power from the converter circuit 311 to the inverter circuit 312 when the switches S3, S4, and S5 are open in the off state.
  • the safety level increases in the order of stopping the input power, stopping the output of DC output power, and stopping the output of AC output power. Therefore, after the operation of the first protection device 33, the third protection device 37 may be operated before the second protection device 34 is operated. Note that if the third protection device 37 is present, the second protection device 34 may be omitted.
  • the third protection device 37 is not limited to a circuit configuration including switches S3, S4, and S5, but may include a circuit configuration that adjusts the magnitude of the DC output power output from the converter circuit 311 to the inverter circuit 312, for example, the magnitude of the voltage.
  • the state detection circuit 32 is not limited to a configuration that detects the voltage value of the DC output power of the converter circuit 311.
  • the state detection circuit 32 may be configured to detect the state of at least one of the compressor 4 and the drive circuit 31.
  • the state of the drive circuit 31 may be the current value of the current flowing through the drive circuit 31.
  • the current value of the current flowing through the drive circuit 31 may include at least one of the current values of the output AC current of the U-phase, V-phase, and W-phase legs of the drive circuit 31.
  • the abnormality of the drive circuit 31 is a current abnormality.
  • the control circuit 35 may detect the current abnormality in response to the current value of the current flowing through the drive circuit 31 detected by the state detection circuit 32 exceeding a predetermined current value.
  • the current value of the current flowing through the drive circuit 31 may include the current value of the DC current flowing between the converter circuit 311 and the inverter circuit 312 of the drive circuit 31.
  • control circuit 35 may determine that a current abnormality has occurred in the drive circuit 31 if the current value of the DC current flowing between the converter circuit 311 and the inverter circuit 312 of the drive circuit 31 exceeds a predetermined current value.
  • control circuit 35 determines that a current abnormality has occurred in the drive circuit 31 (i.e., when a current abnormality in the drive circuit 31 is detected), it may stop or limit the operation of the drive circuit 31.
  • the state of the compressor 4 may include at least one of the phase current of the compressor 4 and the rotation speed of the motor 42 of the compressor 4.
  • the current value of the phase current of the compressor 4 may include the current values of the U-phase, V-phase, and W-phase currents.
  • the abnormality of the compressor 4 may include an abnormality related to a layer short of the compressor 4.
  • An abnormality related to a layer short of the compressor 4 may include the layer short of the compressor 4 itself, an abnormality that may cause a layer short of the compressor 4, and an abnormality that may be caused by a layer short of the compressor 4.
  • Specific examples of abnormalities related to a layer short of the compressor 4 include a layer short of the compressor 4, a leakage current of the compressor 4, and an open-phase operation of the compressor 4.
  • the control circuit 35 may determine whether an abnormality of the compressor 4 has occurred based on the state of the compressor 4 detected by the state detection circuit 32. For example, if an imbalance in the phase currents of the compressor 4 occurs, the control circuit 35 may determine that an abnormality related to a layer short in the compressor 4 has occurred. Also, if a deviation in the rotation speed of the motor 42 of the compressor 4 occurs, there is a possibility that an abnormality related to a layer short in the compressor 4 has occurred. When the control circuit 35 determines that an abnormality related to a layer short has occurred in the compressor 4 (i.e., when an abnormality related to a layer short in the compressor 4 is detected), it may stop or limit the operation of the drive circuit 31.
  • the power source 10 may be any of a variety of AC power sources, particularly a commercial power source.
  • the voltage and frequency of the commercial power source vary depending on the country, the drive circuit 31 may be configured to be capable of driving the electric motor 42 using any of a variety of commercial power sources.
  • the drive circuit 31 can be configured to supply AC output power corresponding to the type of the electric motor 42, etc.
  • the AC output power is not limited to three-phase AC power, and can be single-phase AC power.
  • the converter circuit 311 may have a plurality of third output points.
  • the plurality of third output points may output different voltages.
  • the inverter circuit 312 may have a plurality of third semiconductor switching element groups respectively connected between the plurality of third output points and the motor 42. If the total number of the first output point P1, the second output point P2, and the plurality of third output points P3 is n, the drive circuit 31 can provide a voltage of (2 ⁇ n-1) levels. By increasing n, the voltage waveform applied to the motor 42 by the drive circuit 31 can be made closer to a sine wave.
  • the circuit configuration of the inverter circuit 312 is not limited to the circuit configuration in FIG. 2.
  • the circuit configuration of the inverter circuit 312 in FIG. 2 is a so-called NPC (Neutral-Point-Clamped) type, but may be an A-NPC (Advanced-NPC) type.
  • the inverter circuit 312 only needs to have a plurality of semiconductor switching element groups that are respectively connected between a plurality of output points with different voltages and the electric motor.
  • the plurality of semiconductor switching elements that make up the plurality of semiconductor switching element groups may include semiconductor switching elements that are included in common to two or more semiconductor switching element groups.
  • the refrigeration cycle device is not limited to an air conditioner (so-called room air conditioner (RAC)) configured with one indoor unit connected to one outdoor unit.
  • the refrigeration cycle device may be an air conditioner (so-called package air conditioner (PAC), building multi air conditioner (VRF)) configured with multiple indoor units connected to one or multiple outdoor units.
  • the refrigeration cycle device is not limited to an air conditioner, and may be a refrigeration or cooling device such as a refrigerator or freezer.
  • the abnormality notifications such as the first to third abnormality notifications may be issued directly or indirectly.
  • Direct issuing is when the air conditioner outputs the abnormality notification directly using the outdoor unit 1a, indoor unit 1b, or remote controller, etc.
  • the abnormality notification may be output using light from a light source device (LED, red light, warning indicator lamp, etc.) provided on the outdoor unit 1a, indoor unit 1b, or remote controller of the air conditioner, sound from a sound generating device (speaker, buzzer, alarm, sound generator, alarm, etc.), or visual display (message display, backlight flashing, etc.) by a display device (display, display panel, etc.).
  • Indirect issuing is when the abnormality notification is output and/or stored outside the air conditioner via a communication network such as the Internet or a server.
  • Indirect notifications include push notifications (notifications to mobile phones and smartphones), notifications to voice assistants (Alexa Echo, Google Home, etc.), automatic notifications to manufacturers or maintenance companies, sending messages to monitoring equipment of management companies, notifications to service centers, etc., notifications to fire engines or security companies, and saving the abnormality history in a storage device.
  • control device 3 may acquire various index values (state values) when diagnosing an abnormality in the refrigeration cycle circuit 2.
  • index values used in diagnosing an abnormality in the refrigeration cycle circuit 2 include suction pressure/evaporation saturation temperature, discharge pressure/condensation saturation temperature, suction gas refrigerant temperature, discharge gas refrigerant temperature, condenser outlet refrigerant temperature, evaporator inlet refrigerant temperature, evaporator outlet refrigerant temperature, load side blown air temperature, receiver liquid level, number of discharge precursor detections, number of state switches of the discharge device 36, number of warnings issued, number of operation restrictions, and number of operation stops.
  • the results of the diagnosis by the control device 3 are preferably stored in the internal memory of the control device 3 or an external server or the like for a predetermined period (e.g., 1 to 3 years) or more.
  • the history of abnormality notifications by the control device 3 is preferably stored in the internal memory of the control device 3 or an external server or the like for a predetermined period (e.g., 1 to 3 years) or more.
  • a control device for controlling a compressor of a refrigeration cycle circuit in which a working medium circulates includes: A drive circuit for driving the compressor; a discharge device capable of switching between a first state in which a connection line between the drive circuit and the compressor is separated from a reference potential and a second state in which the connection line is connected to the reference potential; Equipped with Control device.
  • a control circuit for controlling the drive circuit and the discharge device is further provided.
  • the control circuit stops the operation of the drive circuit and switches the discharge device to the second state in response to detection of an abnormality in at least one of the compressor and the drive circuit.
  • the control device according to any one of aspects 1 to 3.
  • the discharge device includes a series circuit of a switch and a resistor, the series circuit is connected between the connection line and the reference potential; the first state is a state in which the switch is off, The second state is a state in which the switch is on.
  • the control device according to any one of aspects 1 to 5.
  • connection lines include a plurality of connection lines respectively corresponding to three phases of AC output power
  • the discharge device has a plurality of the series circuits respectively connected between the plurality of connection lines and the reference potential.
  • the control device according to any one of aspects 4 to 7.
  • a state detection circuit for detecting a state of at least one of the compressor and the drive circuit includes a converter circuit that outputs DC output power based on input power from a power source so that a voltage of the DC output power becomes a first voltage, and an inverter circuit that outputs AC output power to the compressor based on the DC output power, the state detection circuit detects the DC output power and outputs a detection voltage indicative of a voltage of the DC output power; When the detection voltage becomes less than a second voltage that is equal to or less than the first voltage, the control circuit stops the operation of the drive circuit and switches the discharge device to the second state.
  • the second voltage is 0.3 to 0.8 times the first voltage.
  • the compressor includes: A sealed container that forms a flow path of the working medium; a compression mechanism located within the sealed container and configured to compress the working medium; an electric motor located within the sealed container for operating the compression mechanism; Equipped with The inverter circuit outputs the AC output power to the electric motor, The connecting line is between the inverter circuit and the electric motor.
  • the control device according to any one of aspects 1 to 10.
  • the compressor is connected to a connection line between a compressor of a refrigeration cycle circuit in which a working medium circulates and a drive circuit that drives the compressor, and is configured to be switchable between a first state in which the connection line is separated from a reference potential and a second state in which the connection line is connected to the reference potential; Discharge device.
  • a control device according to any one of aspects 1 to 11; The refrigeration cycle circuit; Equipped with Refrigeration cycle equipment.
  • the working medium comprises an ethylene-based fluoroolefin;
  • the refrigeration cycle apparatus of aspect 13 comprises an ethylene-based fluoroolefin;
  • the ethylenic fluoroolefin is 1,1,2-trifluoroethylene, trans-1,2-difluoroethylene, cis-1,2-difluoroethylene, 1,1-difluoroethylene, tetrafluoroethylene, or monofluoroethylene;
  • the refrigeration cycle apparatus of aspect 14 is 1,1,2-trifluoroethylene, trans-1,2-difluoroethylene, cis-1,2-difluoroethylene, 1,1-difluoroethylene, tetrafluoroethylene, or monofluoroethylene;
  • the working medium further comprises difluoromethane.
  • the refrigeration cycle apparatus of aspect 14 is configured to control the refrigeration cycle apparatus of aspect 14.
  • the working medium further comprises a saturated hydrocarbon.
  • the working fluid contains a haloalkane having 1 or 2 carbon atoms as a disproportionation inhibitor for suppressing the disproportionation reaction of the ethylenic fluoroolefin.
  • the saturated hydrocarbons include n-propane.
  • a control method executed by a control device that controls a compressor of a refrigeration cycle circuit in which a working medium circulates comprising: The control device includes: A drive circuit for driving the compressor; a discharge device capable of switching between a first state in which a connection line between the drive circuit and the compressor is separated from a reference potential and a second state in which the connection line is connected to the reference potential; Equipped with The control method includes stopping the operation of the drive circuit and switching the discharge device to the second state in response to detection of an abnormality in at least one of the compressor and the drive circuit. Control methods.
  • a program executed by a computer system provided in a control device that controls a compressor of a refrigeration cycle circuit in which a working medium circulates includes: A drive circuit for driving the compressor; a discharge device capable of switching between a first state in which a connection line between the drive circuit and the compressor is separated from a reference potential and a second state in which the connection line is connected to the reference potential; Equipped with The program causes the computer system to stop operation of the drive circuit and switch the discharge device to the second state in response to detection of an abnormality in at least one of the compressor and the drive circuit. program.
  • Aspects 2 to 11 and aspects 14 to 19 are optional elements and are not required. Aspects 2 to 11 and aspects 14 to 19 can be appropriately combined with aspect 12, 20, or 21.
  • the present disclosure is applicable to a control device, a discharge device, a refrigeration cycle device, a control method, and a program. Specifically, the present disclosure is applicable to a control device for a refrigeration cycle circuit in which the working medium contains an ethylene-based fluoroolefin as a refrigerant component, a discharge device, a refrigeration cycle device including the refrigeration cycle circuit and the control device, a control method executed by the control device, and a program (computer program) used in the control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Provided are a control device, a discharge device, a refrigeration cycle device, a control method, and a program with which it is possible to reduce the possibility of occurrence of an abnormal phenomenon caused by energy remaining when a compressor is stopped and to improve the suppression of disproportionation reaction. A control device (3) controls the compressor (4) of a refrigeration cycle circuit in which a working medium circulates. The control device (3) comprises: a drive circuit (31) that drives the compressor (4); and a discharge device (36) that is connected between the drive circuit (31) and the compressor (4) and is capable of switching between a first state in which connection lines (Lu, Lv, Lw) are separated from a reference potential and a second state in which the connection lines (Lu, Lv, Lw) are connected to the reference potential.

Description

制御装置、放流装置、冷凍サイクル装置、制御方法、プログラムCONTROL DEVICE, DISINFECTION DEVICE, REFRIGERATION CYCLE DEVICE, CONTROL METHOD, AND PROGRAM

 本開示は、制御装置、放流装置、冷凍サイクル装置、制御方法、及び、プログラムに関する。 This disclosure relates to a control device, a discharge device, a refrigeration cycle device, a control method, and a program.

 従来から、冷凍サイクル装置用の作動媒体(熱媒体、冷媒)としては、R410Aが多く用いられている。しかしながら、R410Aの地球温暖化係数(Global Warming Potential:GWP)は2090と大きい。そのため、地球温暖化防止の観点から、よりGWPが小さい作動媒体の研究開発が行われている。特許文献1は、R410AよりもGWPが小さい作動媒体として、1,1,2-トリフルオロエチレン(HFO1123)を開示する。特許文献2は、R410AよりもGWPが小さい作動媒体として、1,2-ジフルオロエチレン(HFO1132)を開示する。 Traditionally, R410A has been widely used as a working fluid (heat medium, refrigerant) for refrigeration cycle equipment. However, the global warming potential (GWP) of R410A is high at 2090. Therefore, from the perspective of preventing global warming, research and development is being conducted on working fluids with lower GWP. Patent Document 1 discloses 1,1,2-trifluoroethylene (HFO1123) as a working fluid with a lower GWP than R410A. Patent Document 2 discloses 1,2-difluoroethylene (HFO1132) as a working fluid with a lower GWP than R410A.

 HFO1123及びHFO1132は、R410AよりもGWPが小さいが、それによって、R410Aよりも安定性が低い。例えば、ラジカルの発生により、HFO1123又はHFO1132の不均化反応が進行し、HFO1123及びHFO1132が別の化合物に変化する可能性がある。 HFO1123 and HFO1132 have a smaller GWP than R410A, but this makes them less stable than R410A. For example, the generation of radicals can cause disproportionation reactions of HFO1123 or HFO1132, which can cause HFO1123 and HFO1132 to change into different compounds.

 特許文献3には、「不均化反応は、冷媒が過度に高温高圧となった雰囲気の下で(特に、圧縮機内において)、冷媒に高エネルギが付加され、又は、レイヤーショート等での放電により冷媒分子と電子との過剰な衝突が発生すると、これらが起点となって発生する。」と記載されている。 Patent document 3 states that "disproportionation reactions occur when high energy is added to the refrigerant in an environment where the refrigerant is excessively high temperature and pressure (particularly inside a compressor), or when excessive collisions between the refrigerant molecules and electrons occur due to discharges such as layer shorts."

 特許文献3には、「本開示は、圧縮機内の冷媒に高エネルギが付加されることを防止し、又は、放電空間での冷媒分子と電子との過剰な衝突を防止して、不均化反応の発生を抑制する。これにより、二重結合を有するエチレン系フッ化炭化水素を含む作動媒体を用いた、信頼性の高い冷凍サイクル装置を提供する。」と記載されている。 Patent document 3 states, "This disclosure prevents high energy from being added to the refrigerant in the compressor, or prevents excessive collisions between refrigerant molecules and electrons in the discharge space, thereby suppressing the occurrence of disproportionation reactions. This provides a highly reliable refrigeration cycle device that uses a working medium containing an ethylene-based fluorohydrocarbon having a double bond."

 特許文献3に記載の冷凍サイクル装置は、圧縮機の電動機の入力電流の電流値が、圧縮機の始動時以外の通常運転時における最大電流値の3倍以上に設定された第1の所定値を超えた場合、圧縮機の電動機の入力電流の電流値が、圧縮機の始動時における電流値の2倍以上に設定された第2の所定値を超えた場合、及び、圧縮機の電動機の入力電流の電流値の変化量に基づいて算出された、放電空間での放電電子数が、1.0×1019個/秒以上に設定された第3の所定値を超えた場合、の少なくともいずれかの場合に、圧縮機への電力供給の停止、及び、圧縮機の回転数の低下、の少なくともいずれかを行う防護装置を有する。 The refrigeration cycle apparatus described in Patent Document 3 has a protection device that at least one of stops the supply of power to the compressor and reduces the rotation speed of the compressor in at least one of the following cases: when the current value of the input current to the compressor motor exceeds a first predetermined value that is set to be three times or more the maximum current value during normal operation other than at the start of the compressor; when the current value of the input current to the compressor motor exceeds a second predetermined value that is set to be twice or more the current value at the start of the compressor; and when the number of discharge electrons in the discharge space, calculated based on the amount of change in the current value of the input current to the compressor motor, exceeds a third predetermined value that is set to be 1.0 x 1019 electrons/second or more.

国際公開第2012/157764号International Publication No. 2012/157764 国際公開第2012/157765号International Publication No. 2012/157765 国際公開第2019/172008号International Publication No. 2019/172008

 特許文献1に開示された冷凍サイクル装置は、圧縮機の電動機の入力電流の電流値を用いて不均化反応の予兆を検出し、防護装置により、圧縮機への電力供給の停止、及び、圧縮機の回転数の低下、の少なくともいずれかを行うことで不均化反応を抑制する。 The refrigeration cycle device disclosed in Patent Document 1 detects signs of a disproportionation reaction using the current value of the input current to the compressor motor, and suppresses the disproportionation reaction by using a protective device to either stop the power supply to the compressor or reduce the compressor rotation speed.

 本開示は、圧縮機の停止時に残留するエネルギに起因する異常現象の発生の可能性を低減でき、不均化反応の抑制の向上を可能にする制御装置、放流装置、冷凍サイクル装置、制御方法、及び、プログラムを提供する。 The present disclosure provides a control device, discharge device, refrigeration cycle device, control method, and program that can reduce the possibility of abnormal phenomena occurring due to residual energy when the compressor is stopped, and enable improved suppression of disproportionation reactions.

 本開示の一態様にかかる制御装置は、作動媒体が循環する冷凍サイクル回路の圧縮機を制御する。制御装置は、圧縮機を駆動する駆動回路と、駆動回路と圧縮機との間の接続線を基準電位から分離する第1状態と、接続線を基準電位に接続する第2状態とを切り替え可能な放流装置と、を備える。 A control device according to one aspect of the present disclosure controls a compressor of a refrigeration cycle circuit in which a working medium circulates. The control device includes a drive circuit that drives the compressor, and a discharge device that can switch between a first state in which a connection line between the drive circuit and the compressor is separated from a reference potential, and a second state in which the connection line is connected to the reference potential.

 本開示の一態様にかかる放流装置は、作動媒体が循環する冷凍サイクル回路の圧縮機と圧縮機を駆動する駆動回路との間の接続線に接続され、接続線を基準電位から分離する第1状態と、接続線を基準電位に接続する第2状態とを切り替え可能に構成される。 The discharge device according to one aspect of the present disclosure is connected to a connection line between a compressor of a refrigeration cycle circuit in which a working medium circulates and a drive circuit that drives the compressor, and is configured to be switchable between a first state in which the connection line is isolated from a reference potential and a second state in which the connection line is connected to the reference potential.

 本開示の一態様にかかる冷凍サイクル装置は、上記の制御装置と、上記の冷凍サイクル回路と、を備える。 The refrigeration cycle device according to one aspect of the present disclosure includes the above-mentioned control device and the above-mentioned refrigeration cycle circuit.

 本開示の一態様にかかる制御方法は、作動媒体が循環する冷凍サイクル回路の圧縮機を制御する制御装置で実行される制御方法である。制御装置は、圧縮機を駆動する駆動回路と、駆動回路と圧縮機との間の接続線を基準電位から分離する第1状態と、接続線を基準電位に接続する第2状態とを切り替え可能な放流装置と、を備える。制御方法は、圧縮機と駆動回路との少なくとも一方の異常の検出に応じて、駆動回路の動作の停止と、放流装置の第2状態への切り替えと、を行う。 The control method according to one aspect of the present disclosure is a control method executed by a control device that controls a compressor of a refrigeration cycle circuit in which a working medium circulates. The control device includes a drive circuit that drives the compressor, and a discharge device that can switch between a first state in which a connection line between the drive circuit and the compressor is separated from a reference potential, and a second state in which the connection line is connected to the reference potential. The control method stops the operation of the drive circuit and switches the discharge device to the second state in response to detection of an abnormality in at least one of the compressor and the drive circuit.

 本開示の一態様にかかるプログラムは、作動媒体が循環する冷凍サイクル回路の圧縮機を制御する制御装置が備えるコンピュータシステムで実行されるプログラムである。制御装置は、圧縮機を駆動する駆動回路と、駆動回路と圧縮機との間の接続線を基準電位から分離する第1状態と、接続線を基準電位に接続する第2状態とを切り替え可能な放流装置と、を備える。プログラムは、コンピュータシステムに、圧縮機と駆動回路との少なくとも一方の異常の検出に応じて、駆動回路の動作の停止と、放流装置の第2状態への切り替えと、を行わせる。 The program according to one aspect of the present disclosure is a program executed by a computer system provided in a control device that controls a compressor of a refrigeration cycle circuit in which a working medium circulates. The control device includes a drive circuit that drives the compressor, and a discharge device that can switch between a first state in which a connection line between the drive circuit and the compressor is separated from a reference potential, and a second state in which the connection line is connected to the reference potential. The program causes the computer system to stop operation of the drive circuit and switch the discharge device to the second state in response to detection of an abnormality in at least one of the compressor and the drive circuit.

 本開示の態様は、圧縮機の停止時に残留するエネルギに起因する異常現象の発生の可能性を低減でき、不均化反応の抑制の向上を可能にする。 The aspects of the present disclosure can reduce the possibility of abnormal phenomena occurring due to residual energy when the compressor is stopped, and enable improved suppression of disproportionation reactions.

実施の形態にかかる冷凍サイクル装置のブロック図Block diagram of a refrigeration cycle device according to an embodiment. 実施の形態にかかる冷凍サイクル装置の圧縮機及び制御装置の概略図1 is a schematic diagram of a compressor and a control device of a refrigeration cycle device according to an embodiment; 実施の形態にかかる冷凍サイクル装置の放流装置の概略回路図Schematic circuit diagram of a discharge device of a refrigeration cycle device according to an embodiment. 実施の形態にかかる制御装置の駆動回路の平滑回路の電圧の波形図1 is a waveform diagram of a voltage of a smoothing circuit of a drive circuit of a control device according to an embodiment of the present invention; 実施の形態にかかる制御装置の動作のフローチャートの一部1 is a part of a flowchart of the operation of a control device according to an embodiment. 実施の形態にかかる制御装置の動作のフローチャートの一部1 is a part of a flowchart of the operation of a control device according to an embodiment. 実施の形態にかかる制御装置の動作のフローチャートの一部1 is a part of a flowchart of the operation of a control device according to an embodiment. 実施の形態にかかる制御装置の動作のフローチャートの一部1 is a part of a flowchart of the operation of a control device according to an embodiment. 実施の形態にかかる制御装置の動作のフローチャートの一部1 is a part of a flowchart of the operation of a control device according to an embodiment. 実施の形態にかかる制御装置の動作のフローチャートの一部1 is a part of a flowchart of the operation of a control device according to an embodiment. 変形例にかかる制御装置の概略図Schematic diagram of a control device according to a modified example.

 [1.実施の形態]
 以下、場合によって図面を参照しながら、本開示の実施の形態について説明する。ただし、以下の実施の形態は、本開示を説明するための例示であり、本開示を以下の内容(例えば、各構成要素の形状、寸法、配置等)に限定する趣旨ではない。上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。以下の実施の形態において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。また、各要素の寸法比率は図面に図示された比率に限られるものではない。
1. Embodiment
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings in some cases. However, the following embodiments are examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents (e.g., the shape, dimensions, arrangement, etc. of each component). Positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings unless otherwise specified. Each figure described in the following embodiments is a schematic diagram, and the size and thickness ratios of each component in each figure do not necessarily reflect the actual dimensional ratio. In addition, the dimensional ratios of each element are not limited to the ratios shown in the drawings.

 なお、以下の説明において、複数ある構成要素を互いに区別する必要がある場合には、「第1」、「第2」等の接頭辞を構成要素の名称に付すが、構成要素に付した符号により互いに区別可能である場合には、文章の読みやすさを考慮して、「第1」、「第2」等の接頭辞を省略する場合がある。 In the following description, when it is necessary to distinguish between multiple components, prefixes such as "first" and "second" are added to the names of the components. However, when the components can be distinguished from one another by the reference symbols attached to them, the prefixes such as "first" and "second" may be omitted in consideration of readability of the text.

 [1.1 構成]
 図1は、本実施の形態にかかる冷凍サイクル装置1のブロック図である。冷凍サイクル装置1は、例えば、冷房運転及び暖房運転が可能な空気調和器を構成する。冷凍サイクル装置1は、冷凍サイクル回路2と、制御装置3とを備える。
1.1 Configuration
1 is a block diagram of a refrigeration cycle apparatus 1 according to the present embodiment. The refrigeration cycle apparatus 1 constitutes, for example, an air conditioner capable of cooling operation and heating operation. The refrigeration cycle apparatus 1 includes a refrigeration cycle circuit 2 and a control device 3.

 冷凍サイクル回路2は、作動媒体が循環する流路を構成する。本実施の形態において、作動媒体は、冷媒成分として、エチレン系フルオロオレフィンを含む。エチレン系フルオロオレフィンは、不均化反応が生じるエチレン系フルオロオレフィンであるとよい。不均化反応が生じるエチレン系フルオロオレフィンの例としては、1,1,2-トリフルオロエチレン(HFO1123)、トランス-1,2-ジフルオロエチレン(HFO1132(E))、シス-1,2-ジフルオロエチレン(HFO-1132(Z))、1,1-ジフルオロエチレン(HFO-1132a)、テトラフルオロエチレン(CF=CF,FO1114)、モノフルオロエチレン(HFO-1141)が挙げられる。 The refrigeration cycle circuit 2 constitutes a flow path through which the working medium circulates. In this embodiment, the working medium contains an ethylene-based fluoroolefin as a refrigerant component. The ethylene-based fluoroolefin may be an ethylene-based fluoroolefin that undergoes a disproportionation reaction. Examples of the ethylene-based fluoroolefin that undergoes a disproportionation reaction include 1,1,2-trifluoroethylene (HFO1123), trans-1,2-difluoroethylene (HFO1132(E)), cis-1,2-difluoroethylene (HFO-1132(Z)), 1,1-difluoroethylene (HFO-1132a), tetrafluoroethylene (CF 2 ═CF 2 , FO1114), and monofluoroethylene (HFO-1141).

 作動媒体は、複数種類の冷媒成分を含んでよい。作動媒体は、エチレン系フルオロオレフィンを主冷媒成分として、エチレン系フルオロオレフィン以外の化合物を副冷媒成分として含んでもよい。副冷媒成分の例としては、ハイドロフルオロカーボン(HFC)、ハイドロフルオロオレフィン(HFO)、飽和炭化水素、二酸化炭素等が挙げられる。ハイドロフルオロカーボン(HFC)の例としては、ジフルオロメタン、ジフルオロエタン、トリフルオロエタン、テトラフルオロエタン、ペンタフルオロエタン、ペンタフルオロブタン、ヘプタフルオロシクロペンタン等が挙げられる。ハイドロフルオロオレフィン(HFO)の例としては、モノフルオロプロペン、トリフルオロプロペン、テトラフルオロプロペン、ペンタフルオロプロペン、ヘキサフルオロブテン等が挙げられる。飽和炭化水素の例としては、エタン、n-プロパン、シクロプロパン、n-ブタン、シクロブタン、イソブタン(2-メチルプロパン)、メチルシクロプロパン、n-ペンタン、イソペンタン(2-メチルブタン)、ネオペンタン(2,2-ジメチルプロパン)、メチルシクロブタン等が挙げられる。 The working medium may contain multiple types of refrigerant components. The working medium may contain an ethylene-based fluoroolefin as a main refrigerant component and a compound other than an ethylene-based fluoroolefin as a secondary refrigerant component. Examples of secondary refrigerant components include hydrofluorocarbons (HFCs), hydrofluoroolefins (HFOs), saturated hydrocarbons, carbon dioxide, etc. Examples of hydrofluorocarbons (HFCs) include difluoromethane, difluoroethane, trifluoroethane, tetrafluoroethane, pentafluoroethane, pentafluorobutane, heptafluorocyclopentane, etc. Examples of hydrofluoroolefins (HFOs) include monofluoropropene, trifluoropropene, tetrafluoropropene, pentafluoropropene, hexafluorobutene, etc. Examples of saturated hydrocarbons include ethane, n-propane, cyclopropane, n-butane, cyclobutane, isobutane (2-methylpropane), methylcyclopropane, n-pentane, isopentane (2-methylbutane), neopentane (2,2-dimethylpropane), methylcyclobutane, etc.

 作動媒体は、エチレン系フルオロオレフィンの不均化反応を抑制する不均化抑制剤を、更に含んでもよい。不均化抑制剤の例としては、飽和炭化水素又はハロアルカンが挙げられる。飽和炭化水素の例としては、エタン、n-プロパン、シクロプロパン、n-ブタン、シクロブタン、イソブタン(2-メチルプロパン)、メチルシクロプロパン、n-ペンタン、イソペンタン(2-メチルブタン)、ネオペンタン(2,2-ジメチルプロパン)、メチルシクロブタン等が挙げられる。上記の例においては、n-プロパンが好ましい。ハロアルカンの例としては、炭素数が1又は2のハロアルカンが挙げられる。炭素数が1のハロアルカン(すなわちハロメタン)の例としては、(モノ)ヨードメタン(CHI)、ジヨードメタン(CH)、ジブロモメタン(CHBr)、ブロモメタン(CHBr)、ジクロロメタン(CHCl)、クロロヨードメタン(CHClI)、ジブロモクロロメタン(CHBrCl)、四ヨウ化メタン(CI)、四臭化炭素(CBr)、ブロモトリクロロメタン(CBrCl)、ジブロモジクロロメタン(CBrCl)、トリブロモフルオロメタン(CBrF)、フルオロジヨードメタン(CHFI)、ジフルオロジヨードメタン(CF)、ジブロモジフルオロメタン(CBr)、トリフルオロヨードメタン(CFI)、ジフルオロヨードメタン(CHF2I)等が挙げられる。炭素数が2のハロアルカン(すなわちハロエタン)の例としては、1,1,1-トリフルオロ-2-ヨードエタン(CFCHI)、モノヨードエタン(CHCHI)、モノブロモエタン(CHCHBr)、1,1,1-トリヨードエタン(CHCI)等が挙げられる。作動媒体は、炭素数が1又は2のハロアルカンの1種類又は2種類以上を含んでよい。つまり、炭素数が1又は2のハロアルカンは、1種類のみが用いられてもよいし2種類以上が適宜組み合わせられて用いられてもよい。 The working fluid may further contain a disproportionation inhibitor that suppresses the disproportionation reaction of the ethylene-based fluoroolefin. Examples of the disproportionation inhibitor include saturated hydrocarbons or haloalkanes. Examples of saturated hydrocarbons include ethane, n-propane, cyclopropane, n-butane, cyclobutane, isobutane (2-methylpropane), methylcyclopropane, n-pentane, isopentane (2-methylbutane), neopentane (2,2-dimethylpropane), methylcyclobutane, and the like. In the above examples, n-propane is preferred. Examples of the haloalkane include haloalkanes having 1 or 2 carbon atoms. Examples of haloalkanes having one carbon atom (i.e., halomethanes) include (mono)iodomethane ( CH3I ), diiodomethane ( CH2I2 ), dibromomethane ( CH2Br2 ), bromomethane (CH3Br), dichloromethane ( CH2Cl2 ) , chloroiodomethane ( CH2ClI ), dibromochloromethane (CHBr2Cl), tetraiodomethane ( CI4 ), carbon tetrabromide ( CBr4 ), bromotrichloromethane ( CBrCl3 ) , dibromodichloromethane (CBr2Cl2), tribromofluoromethane ( CBr3F ), fluorodiiodomethane (CHFI2) , difluorodiiodomethane ( CF2I2 ), dibromodifluoromethane ( CBr2F2 ) . ), trifluoroiodomethane (CF 3 I), difluoroiodomethane (CHF 2 I), etc. Examples of haloalkanes having 2 carbon atoms (i.e., haloethanes) include 1,1,1-trifluoro-2-iodoethane (CF 3 CH 2 I), monoiodoethane (CH 3 CH 2 I), monobromoethane (CH 3 CH 2 Br ), 1,1,1-triiodoethane (CH 3 CI 3 ), etc. The working fluid may contain one or more types of haloalkanes having 1 or 2 carbon atoms. In other words, only one type of haloalkane having 1 or 2 carbon atoms may be used, or two or more types may be used in appropriate combination.

 ここで、1,1,2-トリフルオロエチレン(HFO1123)を含む作動媒体を用いて不均化反応の発生の有無を検証する実験を行った。不均化反応の実験においては、密閉型の耐圧容器(ステンレス密閉容器、内部容積50mL)に対して、当該耐圧容器内の内部圧力を測定する圧力センサ(長野計器株式会社製GC61)、当該耐圧容器内の内部温度を測定する熱電対(Conax Technologies製PL熱電対グランドPL-18-K-A 4-T)、並びに、当該耐圧容器内で放電を発生させるための放電装置を取り付けた。さらに、1,1,2-トリフルオロエチレンのガスボンベを圧力調整可能となるように接続した。そして、耐圧容器全体を加熱するためにマントルヒータを設置するとともに、配管部分も加熱できるようにリボンヒータ(株式会社東京技術研究所製フレキシブルリボンヒータ1m、200W)を設置した。これにより、不均化反応の実験系を構築した。 Here, an experiment was conducted to verify whether or not a disproportionation reaction occurs using a working fluid containing 1,1,2-trifluoroethylene (HFO1123). In the disproportionation reaction experiment, a pressure sensor (GC61 manufactured by Nagano Keiki Co., Ltd.) was attached to a sealed pressure vessel (stainless steel sealed vessel, internal volume 50 mL) to measure the internal pressure in the pressure vessel, a thermocouple (PL thermocouple ground PL-18-K-A 4-T manufactured by Conax Technologies) to measure the internal temperature in the pressure vessel, and a discharge device to generate a discharge in the pressure vessel. In addition, a gas cylinder of 1,1,2-trifluoroethylene was connected so that the pressure could be adjusted. A mantle heater was installed to heat the entire pressure vessel, and a ribbon heater (flexible ribbon heater 1 m, 200 W manufactured by Tokyo Institute of Technology Co., Ltd.) was installed to heat the piping as well. This constructed an experimental system for the disproportionation reaction.

 下表1は、1,1,2-トリフルオロエチレン単体、および1,1,2-トリフルオロエチレンの含有量が80質量%、n‐プロパンの含有量が20質量%となるように調整した混合ガス、および1,1,2-トリフルオロエチレンの含有量が91.5質量%、n‐プロパンの含有量が7.5質量%、ジフルオロヨードメタンの含有量が1.0質量%となるように調整した混合ガス、および1,1,2-トリフルオロエチレンの含有量が69.5質量%、ジフルオロメタンの含有量が22質量%、n‐プロパンの含有量が7.5質量%、ジフルオロヨードメタンの含有量が1.0質量%となるように調整した混合ガスを作動媒体とした場合の、不均化反応の発生の有無を示す。例1~2は圧力が2MPa、例3~5は圧力が6MPaになる様に調整した。表1における蓄積エネルギは、放電装置の内部に設置したキャパシタ部に蓄積した静電エネルギである。放電回数は、当該条件で一定間隔で放電した回数であり、その回数後に不均化反応を示した場合には、不均化反応の有無に“有”と記載、不均化反応が見られない場合には“無”と記載した。 Table 1 below shows whether or not a disproportionation reaction occurs when the working medium is 1,1,2-trifluoroethylene alone, a mixed gas adjusted to have a 1,1,2-trifluoroethylene content of 80 mass% and an n-propane content of 20 mass%, a mixed gas adjusted to have a 1,1,2-trifluoroethylene content of 91.5 mass%, an n-propane content of 7.5 mass%, and a difluoroiodomethane content of 1.0 mass%, and a mixed gas adjusted to have a 1,1,2-trifluoroethylene content of 69.5 mass%, a difluoromethane content of 22 mass%, an n-propane content of 7.5 mass%, and a difluoroiodomethane content of 1.0 mass%. The pressure was adjusted to 2 MPa in Examples 1 and 2, and 6 MPa in Examples 3 to 5. The stored energy in Table 1 is electrostatic energy stored in a capacitor section installed inside the discharge device. The number of discharges is the number of times discharged at regular intervals under the conditions in question, and if a disproportionation reaction was observed after that number of discharges, the disproportionation reaction was recorded as "Yes," and if no disproportionation reaction was observed, it was recorded as "No."

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 表1から、例1においては不均化反応が確認されていない。したがって、蓄積エネルギの小さい軽微な放電によっては不均化反応が起こらない。表1の例2に示す蓄積エネルギが大きい場合には、2回の連続放電の後に不均化反応を示す結果が得られた。したがって、蓄積エネルギの大小、すなわち放電に費やすエネルギの大小によって不均化反応の有無に違いが生じる。不均化反応を抑制するには、放電現象で一般にみられるマイクロ秒からサブミリ秒程度の瞬間的に流れる放電のエネルギを低下させることが好ましいことを示している。 As can be seen from Table 1, no disproportionation reaction was observed in Example 1. Therefore, disproportionation reactions do not occur due to minor discharges with small stored energy. When the stored energy was large, as shown in Example 2 in Table 1, a disproportionation reaction was observed after two consecutive discharges. Therefore, the presence or absence of a disproportionation reaction depends on the amount of stored energy, i.e., the amount of energy consumed for discharge. This shows that in order to suppress disproportionation reactions, it is preferable to reduce the energy of the discharge that flows instantaneously for periods of microseconds to sub-milliseconds, which are generally seen in discharge phenomena.

 表1から、例3においては、不均化抑制剤としてn―プロパンを含んだ混合ガスの作動媒体で不均化反応が確認されていない。例3は、1,1,2―トリフルオロエチレン単体において不均化が確認された例2に比べて大きな蓄積エネルギを用いている。したがって、不均化抑制剤としてn―プロパンを含んだ作動媒体において、すなわち不均化抑制剤によって蓄積エネルギが高められている場合においても、小さい軽微な放電においては不均化反応が発生する可能性が非常に低いことが確認された。これは、不均化抑制剤を含んだ混合ガスの作動媒体において不均化反応を抑制するには、軽微な放電状態にとどめる、すなわち早期に検知して、不均化反応の抑制をすることが好ましいことを示している。 From Table 1, in Example 3, no disproportionation reaction was observed in the working medium of a mixed gas containing n-propane as a disproportionation inhibitor. Example 3 uses a larger stored energy than Example 2, in which disproportionation was observed in 1,1,2-trifluoroethylene alone. Therefore, it was confirmed that in a working medium containing n-propane as a disproportionation inhibitor, that is, even when the stored energy is increased by the disproportionation inhibitor, the possibility of a disproportionation reaction occurring in a small, minor discharge is extremely low. This shows that in order to suppress disproportionation reactions in a working medium of a mixed gas containing a disproportionation inhibitor, it is preferable to keep the discharge in a minor state, that is, to detect it early and suppress the disproportionation reaction.

 表1から、例4においては、不均化抑制剤としてn―プロパンとジフルオロヨードメタンを含んだ混合ガスの作動媒体で不均化反応が確認されていない。例4は、1,1,2―トリフルオロエチレン単体において不均化が確認された例2に比べて大きな蓄積エネルギを用いている。したがって、不均化抑制剤としてn―プロパンと異なる不均化抑制剤としてジフルオロヨードメタンを含んだ作動媒体において、すなわち2つ以上の不均化抑制剤によって蓄積エネルギが高められている場合においても、小さい軽微な放電においては不均化反応が発生する可能性が非常に低いことが確認された。これは、2つ以上の不均化抑制剤を含んだ混合ガスの作動媒体において不均化反応を抑制するには、軽微な放電状態にとどめる、すなわち早期に検知して、不均化反応の抑制をすることが好ましいことを示している。 From Table 1, in Example 4, no disproportionation reaction was observed in the working medium of a mixed gas containing n-propane and difluoroiodomethane as disproportionation inhibitors. Example 4 uses a larger stored energy than Example 2, in which disproportionation was observed in 1,1,2-trifluoroethylene alone. Therefore, it was confirmed that in a working medium containing difluoroiodomethane as a disproportionation inhibitor other than n-propane, that is, in the case where the stored energy is increased by two or more disproportionation inhibitors, the possibility of a disproportionation reaction occurring in a small, minor discharge is extremely low. This shows that in order to suppress a disproportionation reaction in a working medium of a mixed gas containing two or more disproportionation inhibitors, it is preferable to keep the discharge in a minor state, that is, to detect it early and suppress the disproportionation reaction.

 表1から、例5においては、不均化抑制剤としてn―プロパンと異なる不均化抑制剤としてジフルオロメタンと副冷媒成分としてジフルオロヨードメタンとを含んだ混合ガスの作動媒体で不均化反応が確認されていない。例5は、1,1,2―トリフルオロエチレン単体において不均化が確認された例2に比べて大きな蓄積エネルギを用いている。したがって、2つ以上の不均化抑制剤によって蓄積エネルギが高められ、不均化を発生しない副冷媒成分を含む作用媒体においても、小さい軽微な放電においては不均化反応が発生する可能性が非常に低いことが確認された。これは、2つ以上の不均化抑制剤を含み、1種類以上の副冷媒を含む混合ガスの作動媒体において不均化反応を抑制するには、軽微な放電状態にとどめる、すなわち早期に検知して、不均化反応の抑制をすることが好ましいことを示している。 From Table 1, in Example 5, no disproportionation reaction was confirmed in the working medium of a mixed gas containing difluoromethane as a disproportionation inhibitor different from n-propane and difluoroiodomethane as a secondary refrigerant component. Example 5 uses a larger stored energy than Example 2, in which disproportionation was confirmed in 1,1,2-trifluoroethylene alone. Therefore, it was confirmed that the stored energy is increased by two or more disproportionation inhibitors, and that even in a working medium containing a secondary refrigerant component that does not cause disproportionation, the possibility of a disproportionation reaction occurring in a small, minor discharge is extremely low. This shows that in order to suppress a disproportionation reaction in a working medium of a mixed gas containing two or more disproportionation inhibitors and one or more secondary refrigerants, it is preferable to keep the discharge in a minor state, that is, to detect it early and suppress the disproportionation reaction.

 発明者らは不均化反応の機構について鋭意検討した結果、エチレン系フルオロオレフィンについてはほぼ共通の反応経路で分解が進行すること、生成するラジカル種は同一でありその組成が変化するだけであること、その熱分解温度がほぼ同程度であることを突き止めた。すなわち、1,1,2―トリフルオロエチレン以外のエチレン系フルオロオレフィンにおいても、軽微な放電において少量のラジカルが発生し、それが断続的に複数回起きるだけは不均化反応にならず、大きなエネルギの放電によって多量のラジカルが生成した場合にのみ不均化反応が進行するといえる。 After extensive research into the mechanism of disproportionation reactions, the inventors have found that the decomposition of ethylene-based fluoroolefins proceeds along an almost common reaction pathway, that the radical species generated are the same, with only the composition changing, and that the thermal decomposition temperatures are almost the same. In other words, even with ethylene-based fluoroolefins other than 1,1,2-trifluoroethylene, a disproportionation reaction does not occur if a small amount of radicals are generated by a slight discharge and this occurs intermittently multiple times, but the disproportionation reaction proceeds only when a large amount of radicals are generated by a large-energy discharge.

 冷凍サイクル回路2は、圧縮機4と、第1熱交換器5と、膨張弁6と、第2熱交換器7と、四方弁8とを備える。 The refrigeration cycle circuit 2 includes a compressor 4, a first heat exchanger 5, an expansion valve 6, a second heat exchanger 7, and a four-way valve 8.

 冷凍サイクル装置1は、室外機1aと、室内機1bとを含む。室外機1aは、制御装置3と、圧縮機4と、第1熱交換器5と、膨張弁6と、四方弁8とを含む。室外機1aは、更に、第1熱交換器5での熱交換を促進するための第1送風機5aを備える。室内機1bは、第2熱交換器7を含む。室内機1bは、更に、第2熱交換器7での熱交換を促進するための第2送風機7aを備える。 The refrigeration cycle device 1 includes an outdoor unit 1a and an indoor unit 1b. The outdoor unit 1a includes a control device 3, a compressor 4, a first heat exchanger 5, an expansion valve 6, and a four-way valve 8. The outdoor unit 1a further includes a first blower 5a for promoting heat exchange in the first heat exchanger 5. The indoor unit 1b includes a second heat exchanger 7. The indoor unit 1b further includes a second blower 7a for promoting heat exchange in the second heat exchanger 7.

 冷凍サイクル回路2において、圧縮機4は、作動媒体を圧縮し、作動媒体の圧力を高くする。圧縮機4については後に詳しく説明する。第1熱交換器5及び第2熱交換器7は、冷凍サイクル回路2を循環する作動媒体と外部の空気(例えば、外気又は室内空気)との間で熱交換を行う。膨張弁6は、作動媒体の圧力(蒸発圧力)の調整及び作動媒体の流量の調整を行う。四方弁8は、冷凍サイクル回路2を循環する作動媒体の方向を、冷房運転に対応する第1方向と、暖房運転に対応する第2方向とで切り替える。 In the refrigeration cycle circuit 2, the compressor 4 compresses the working medium to increase the pressure of the working medium. The compressor 4 will be described in detail later. The first heat exchanger 5 and the second heat exchanger 7 exchange heat between the working medium circulating through the refrigeration cycle circuit 2 and external air (e.g., outside air or room air). The expansion valve 6 adjusts the pressure (evaporation pressure) of the working medium and the flow rate of the working medium. The four-way valve 8 switches the direction of the working medium circulating through the refrigeration cycle circuit 2 between a first direction corresponding to cooling operation and a second direction corresponding to heating operation.

 本実施の形態において、第1方向は、図1において実線の矢印A1で示すように、作動媒体が、冷凍サイクル回路2を、圧縮機4、第1熱交換器5、膨張弁6、第2熱交換器7の順に循環する方向である。 In this embodiment, the first direction is the direction in which the working medium circulates through the refrigeration cycle circuit 2, in the order of the compressor 4, the first heat exchanger 5, the expansion valve 6, and the second heat exchanger 7, as shown by the solid arrow A1 in Figure 1.

 冷房運転では、圧縮機4はガス状の作動媒体を圧縮して吐出し、これによりガス状の作動媒体は四方弁8を介して第1熱交換器5に送出される。第1熱交換器5は外気とガス状の作動媒体との熱交換を行い、ガス状の作動媒体は凝縮して液化する。液状の作動媒体は膨張弁6により減圧され、第2熱交換器7に送出される。第2熱交換器7では、液状の作動媒体と室内空気との熱交換を行い、ガス状の作動媒体が蒸発してガス状の作動媒体となる。ガス状の作動媒体は、四方弁8を介して圧縮機4に戻る。冷房運転において、第1熱交換器5が凝縮器として機能し、第2熱交換器7が蒸発器として機能する。したがって、室内機1bは、冷房時には第2熱交換器7での熱交換により冷却された空気を室内に送風する。 In cooling operation, the compressor 4 compresses and discharges the gaseous working medium, which is then sent to the first heat exchanger 5 via the four-way valve 8. The first heat exchanger 5 exchanges heat between the outside air and the gaseous working medium, causing the gaseous working medium to condense and become liquefied. The liquid working medium is decompressed by the expansion valve 6 and sent to the second heat exchanger 7. In the second heat exchanger 7, heat exchange occurs between the liquid working medium and the indoor air, causing the gaseous working medium to evaporate and become a gaseous working medium. The gaseous working medium returns to the compressor 4 via the four-way valve 8. In cooling operation, the first heat exchanger 5 functions as a condenser, and the second heat exchanger 7 functions as an evaporator. Therefore, during cooling, the indoor unit 1b blows air cooled by heat exchange in the second heat exchanger 7 into the room.

 本実施の形態において、第2方向は、図1において破線の矢印A2で示すように、作動媒体が、冷凍サイクル回路2を、圧縮機4、第2熱交換器7、膨張弁6、第1熱交換器5の順に循環する方向である。 In this embodiment, the second direction is the direction in which the working medium circulates through the refrigeration cycle circuit 2, in the order of the compressor 4, the second heat exchanger 7, the expansion valve 6, and the first heat exchanger 5, as shown by the dashed arrow A2 in Figure 1.

 暖房運転では、圧縮機4はガス状の作動媒体を圧縮して吐出し、これによりガス状の作動媒体は四方弁8を介して第2熱交換器7に送出される。第2熱交換器7は室内空気とガス状の作動媒体との熱交換を行い、ガス状の作動媒体は凝縮して液化する。液状の作動媒体は膨張弁6により減圧され、第1熱交換器5に送出される。第1熱交換器5では、液状の作動媒体と外気との熱交換を行い、ガス状の作動媒体が蒸発してガス状の作動媒体となる。ガス状の作動媒体は、四方弁8を介して圧縮機4に戻る。暖房運転において、第1熱交換器5が蒸発器として機能し、第2熱交換器7が凝縮器として機能する。したがって、室内機1bは、暖房時には第2熱交換器7での熱交換により暖められた空気を室内に送風する。 In heating operation, the compressor 4 compresses and discharges the gaseous working medium, which is then sent to the second heat exchanger 7 via the four-way valve 8. The second heat exchanger 7 exchanges heat between the indoor air and the gaseous working medium, causing the gaseous working medium to condense and become liquefied. The liquid working medium is decompressed by the expansion valve 6 and sent to the first heat exchanger 5. In the first heat exchanger 5, heat exchange occurs between the liquid working medium and the outside air, causing the gaseous working medium to evaporate and become a gaseous working medium. The gaseous working medium returns to the compressor 4 via the four-way valve 8. In heating operation, the first heat exchanger 5 functions as an evaporator, and the second heat exchanger 7 functions as a condenser. Therefore, during heating, the indoor unit 1b blows air warmed by heat exchange in the second heat exchanger 7 into the room.

 制御装置3は、冷凍サイクル回路2の圧縮機4を制御する。図2は、圧縮機4及び制御装置3の概略図である。 The control device 3 controls the compressor 4 of the refrigeration cycle circuit 2. Figure 2 is a schematic diagram of the compressor 4 and the control device 3.

 圧縮機4は、例えば、密閉圧縮機である。圧縮機4は、ロータリ式、スクロール式、又はその他の周知の方式であってよい。圧縮機4は、密閉容器40と、圧縮機構41と、電動機42とを備える。 The compressor 4 is, for example, a hermetic compressor. The compressor 4 may be of a rotary type, a scroll type, or any other known type. The compressor 4 includes a hermetic container 40, a compression mechanism 41, and an electric motor 42.

 密閉容器40は、作動媒体20の流路を構成する。密閉容器40は、吸入管401及び吐出管402を有する。作動媒体20は、吸入管401から密閉容器40内に吸入され、圧縮機構41により圧縮された後に、吐出管402から密閉容器40外に吐出される。密閉容器40の内部は高温高圧の作動媒体20と潤滑油で満たされる。密閉容器40の底部は、作動媒体20と潤滑油との混合液を溜める貯油部を構成する。 The sealed container 40 forms a flow path for the working medium 20. The sealed container 40 has a suction pipe 401 and a discharge pipe 402. The working medium 20 is sucked into the sealed container 40 from the suction pipe 401, compressed by the compression mechanism 41, and then discharged from the discharge pipe 402 to the outside of the sealed container 40. The inside of the sealed container 40 is filled with high-temperature, high-pressure working medium 20 and lubricating oil. The bottom of the sealed container 40 forms an oil storage section that stores a mixture of the working medium 20 and lubricating oil.

 圧縮機構41は、密閉容器40内に位置し、作動媒体を圧縮する。圧縮機構41は、従来周知の構成であってよい。圧縮機構41は、例えば、圧縮室を形成するシリンダと、シリンダ内の圧縮室に配置したローリングピストンと、ローリングピストンに結合されるクランクシャフトとを有する。 The compression mechanism 41 is located inside the sealed container 40 and compresses the working medium. The compression mechanism 41 may have a conventionally known configuration. The compression mechanism 41 has, for example, a cylinder that forms a compression chamber, a rolling piston that is disposed in the compression chamber inside the cylinder, and a crankshaft that is connected to the rolling piston.

 電動機42は、密閉容器40内に位置し、圧縮機構41を動作させる。電動機42は、例えば、ブラシレスモータ(三相ブラシレスモータ)である。電動機42は、例えば、圧縮機構41のクランクシャフトに固定された回転子と、回転子の周囲に設けられた固定子とを備える。固定子は、例えば、固定子鉄心(電磁鋼板等)に絶縁紙等の絶縁部材を介して固定子巻線(マグネットワイヤ等)を集中又は分散巻し構成される。固定子巻線は絶縁部材によって被覆される。絶縁部材の例としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、アラミドポリマー、ポリフェニレンサルファイド(PPS)、ポリテトラフルオロエチレン(PTFE)等が挙げられる。 The electric motor 42 is located inside the sealed container 40 and operates the compression mechanism 41. The electric motor 42 is, for example, a brushless motor (three-phase brushless motor). The electric motor 42 includes, for example, a rotor fixed to the crankshaft of the compression mechanism 41 and a stator provided around the rotor. The stator is, for example, configured by concentrating or dispersing a stator winding (magnet wire, etc.) around a stator core (electromagnetic steel plate, etc.) with an insulating material such as insulating paper interposed between the stator winding. The stator winding is covered with an insulating material. Examples of insulating materials include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), aramid polymer, polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), etc.

 圧縮機4は、圧縮機構41の圧縮室での液圧縮を防止するためにアキュームレータを備えてよい。アキュームレータは、作動媒体をガス状の作動媒体と液状の作動媒体とに分離し、ガス状の作動媒体だけを吸入管401から密閉容器40の内部に導く。 The compressor 4 may be equipped with an accumulator to prevent liquid compression in the compression chamber of the compression mechanism 41. The accumulator separates the working medium into a gaseous working medium and a liquid working medium, and guides only the gaseous working medium from the suction pipe 401 into the inside of the sealed container 40.

 制御装置3は、駆動回路31と、状態検出回路32と、第1防護装置33と、第2防護装置34と、制御回路35と、放流装置36と、を備える。 The control device 3 includes a drive circuit 31, a state detection circuit 32, a first protection device 33, a second protection device 34, a control circuit 35, and a discharge device 36.

 駆動回路31は、電源10からの入力電力に基づいて電動機42を駆動する。本実施の形態において、電源10は交流電源であり、入力電力は交流電力である。駆動回路31は、コンバータ回路311と、インバータ回路312と、を含む。 The drive circuit 31 drives the electric motor 42 based on the input power from the power source 10. In this embodiment, the power source 10 is an AC power source, and the input power is AC power. The drive circuit 31 includes a converter circuit 311 and an inverter circuit 312.

 コンバータ回路311は、電源10からの入力電力に基づいて電圧が第1電圧となるように直流出力電力を出力する。つまり、コンバータ回路311は、直流出力電力の電圧が第1電圧となるように、入力電力を直流出力電力に変換する。第1電圧は、駆動回路31の定格電圧に対応する。 The converter circuit 311 outputs DC output power based on the input power from the power source 10 so that the voltage becomes a first voltage. In other words, the converter circuit 311 converts the input power into DC output power so that the voltage of the DC output power becomes the first voltage. The first voltage corresponds to the rated voltage of the drive circuit 31.

 コンバータ回路311は、整流回路311a及び平滑回路311bを含む。 The converter circuit 311 includes a rectifier circuit 311a and a smoothing circuit 311b.

 整流回路311aは、複数のダイオードD1~D4で構成されるダイオードブリッジである。整流回路311aの入力端子(ダイオードD1,D2の接続点、及び、ダイオードD3,D4の接続点)間に電源10が接続され、整流回路311aの出力端子(ダイオードD1,D3の接続点、及び、ダイオードD2,D4の接続点)間に平滑回路311bが接続される。 The rectifier circuit 311a is a diode bridge composed of multiple diodes D1 to D4. The power source 10 is connected between the input terminals of the rectifier circuit 311a (the connection point of diodes D1, D2, and the connection point of diodes D3, D4), and the smoothing circuit 311b is connected between the output terminals of the rectifier circuit 311a (the connection point of diodes D1, D3, and the connection point of diodes D2, D4).

 平滑回路311bは、整流回路311aの出力端子間の電圧を平滑して出力する。平滑回路311bにより、直流出力電力の電圧が第1電圧に設定される。平滑回路311bは、インダクタL1及び平滑コンデンサC1,C2の直列回路を備える。平滑回路311bでは、インダクタL1と平滑コンデンサC1との接続点が、第1電圧に対応する電圧を出力する第1出力点P1である。平滑回路311bでは、ダイオードD2,D4の接続点と平滑コンデンサC2との接続点が、第1出力点P1での電圧より低い電圧を出力する第2出力点P2である。平滑回路311bでは、平滑コンデンサC1と平滑コンデンサC2との接続点が、第1出力点P1での電圧と第2出力点P2での電圧との間の電圧を出力する第3出力点P3である。第1出力点P1、第2出力点P2及び第3出力点P3の関係においては、第1出力点P1は高電圧点、第2出力点P2は低電圧点、第3出力点P3は中間電圧点である。平滑回路311bにおいて、平滑コンデンサC1と平滑コンデンサC2とは静電容量が等しい。そのため、第1出力点P1での電圧と第3出力点P3での電圧との間の電圧と、第2出力点P2での電圧と第3出力点P3での電圧との間の電圧とは等しい。第1出力点P1と第2出力点P2との間の電圧(これは第1電圧に対応する)をEとすると、第1出力点P1と第3出力点P3との間の電圧はE/2であり、同様に、第2出力点P2と第3出力点P3との間の電圧はE/2である。これにより、駆動回路31は、E、E/2、0、-E/2、-Eの5レベルの電圧を与えることができる。 The smoothing circuit 311b smoothes and outputs the voltage between the output terminals of the rectifier circuit 311a. The smoothing circuit 311b sets the voltage of the DC output power to a first voltage. The smoothing circuit 311b includes a series circuit of an inductor L1 and smoothing capacitors C1 and C2. In the smoothing circuit 311b, the connection point between the inductor L1 and the smoothing capacitor C1 is the first output point P1 that outputs a voltage corresponding to the first voltage. In the smoothing circuit 311b, the connection point between the connection point of the diodes D2 and D4 and the smoothing capacitor C2 is the second output point P2 that outputs a voltage lower than the voltage at the first output point P1. In the smoothing circuit 311b, the connection point between the smoothing capacitor C1 and the smoothing capacitor C2 is the third output point P3 that outputs a voltage between the voltage at the first output point P1 and the voltage at the second output point P2. In the relationship between the first output point P1, the second output point P2, and the third output point P3, the first output point P1 is a high voltage point, the second output point P2 is a low voltage point, and the third output point P3 is an intermediate voltage point. In the smoothing circuit 311b, the smoothing capacitors C1 and C2 have the same capacitance. Therefore, the voltage between the voltage at the first output point P1 and the voltage at the third output point P3 is equal to the voltage between the voltage at the second output point P2 and the voltage at the third output point P3. If the voltage between the first output point P1 and the second output point P2 (which corresponds to the first voltage) is E, the voltage between the first output point P1 and the third output point P3 is E/2, and similarly, the voltage between the second output point P2 and the third output point P3 is E/2. This allows the drive circuit 31 to provide five levels of voltage: E, E/2, 0, -E/2, and -E.

 インバータ回路312は、コンバータ回路311からの直流出力電力に基づいて、電動機42に交流出力電力を出力する。本実施の形態では、交流出力電力は、三相交流電力である。インバータ回路312は、複数の半導体スイッチング素子U1~U4,V1~V4,W1~W4を備える。半導体スイッチング素子U1~U4,V1~V4,W1~W4は、例えば、トランジスタ等である。 The inverter circuit 312 outputs AC output power to the motor 42 based on the DC output power from the converter circuit 311. In this embodiment, the AC output power is three-phase AC power. The inverter circuit 312 includes a plurality of semiconductor switching elements U1 to U4, V1 to V4, and W1 to W4. The semiconductor switching elements U1 to U4, V1 to V4, and W1 to W4 are, for example, transistors.

 半導体スイッチング素子U1~U4、V1~V4、及び、W1~W4は、各々、直列回路を構成し、第1出力点P1と第2出力点P2との間に接続される。 The semiconductor switching elements U1 to U4, V1 to V4, and W1 to W4 each form a series circuit and are connected between the first output point P1 and the second output point P2.

 半導体スイッチング素子U1,U2の接続点、半導体スイッチング素子V1,V2の接続点及び半導体スイッチング素子W1,W2の接続点は、ダイオードD5、ダイオードD7及びダイオードD9を介して第3出力点P3に、それぞれ接続される。 The connection point of the semiconductor switching elements U1 and U2, the connection point of the semiconductor switching elements V1 and V2, and the connection point of the semiconductor switching elements W1 and W2 are connected to the third output point P3 via diodes D5, D7, and D9, respectively.

 ダイオードD5,D7,D9のアノードは第3出力点P3に接続され、ダイオードD5,D7,D9のカソードは半導体スイッチング素子U1,U2の接続点、半導体スイッチング素子V1,V2の接続点及び半導体スイッチング素子W1,W2の接続点にそれぞれ接続される。 The anodes of diodes D5, D7, and D9 are connected to the third output point P3, and the cathodes of diodes D5, D7, and D9 are connected to the connection point of semiconductor switching elements U1 and U2, the connection point of semiconductor switching elements V1 and V2, and the connection point of semiconductor switching elements W1 and W2, respectively.

 半導体スイッチング素子U2,U3の接続点は、電動機42のU相の入力端子に接続されるU相出力端子Puを構成する。半導体スイッチング素子V2,V3の接続点は、電動機42のV相の入力端子に接続されるV相出力端子Pvを構成する。半導体スイッチング素子W2,W3の接続点は、電動機42のW相の入力端子に接続されるW相出力端子Pwを構成する。 The connection point of the semiconductor switching elements U2, U3 constitutes the U-phase output terminal Pu, which is connected to the U-phase input terminal of the motor 42. The connection point of the semiconductor switching elements V2, V3 constitutes the V-phase output terminal Pv, which is connected to the V-phase input terminal of the motor 42. The connection point of the semiconductor switching elements W2, W3 constitutes the W-phase output terminal Pw, which is connected to the W-phase input terminal of the motor 42.

 半導体スイッチング素子U3,U4の接続点、半導体スイッチング素子V3,V4の接続点及び半導体スイッチング素子W3,W4の接続点は、ダイオードD6、ダイオードD8及びダイオードD10を介して第3出力点P3に、それぞれ接続される。 The connection point of the semiconductor switching elements U3 and U4, the connection point of the semiconductor switching elements V3 and V4, and the connection point of the semiconductor switching elements W3 and W4 are connected to the third output point P3 via diodes D6, D8, and D10, respectively.

 ダイオードD6,D8,D10のカソードは第3出力点P3に接続され、ダイオードD6,D8,D10のアノードは半導体スイッチング素子U3,U4の接続点、半導体スイッチング素子V3,V4の接続点及び半導体スイッチング素子W3,W4の接続点にそれぞれ接続される。 The cathodes of diodes D6, D8, and D10 are connected to the third output point P3, and the anodes of diodes D6, D8, and D10 are connected to the connection point of semiconductor switching elements U3 and U4, the connection point of semiconductor switching elements V3 and V4, and the connection point of semiconductor switching elements W3 and W4, respectively.

 インバータ回路312において、半導体スイッチング素子U1,U2,V1,V2,W1,W2は、第1出力点P1と電動機42との間に接続される第1半導体スイッチング素子群を構成する。特に、半導体スイッチング素子U1,U2は、第1出力点P1と電動機42のU相入力端子との間に接続されるU相第1半導体スイッチング素子群を構成する。半導体スイッチング素子V1,V2は、第1出力点P1と電動機42のV相入力端子との間に接続されるV相第1半導体スイッチング素子群を構成する。半導体スイッチング素子W1,W2は、第1出力点P1と電動機42のW相入力端子との間に接続されるW相第1半導体スイッチング素子群を構成する。 In the inverter circuit 312, the semiconductor switching elements U1, U2, V1, V2, W1, and W2 constitute a first semiconductor switching element group connected between the first output point P1 and the motor 42. In particular, the semiconductor switching elements U1 and U2 constitute a U-phase first semiconductor switching element group connected between the first output point P1 and the U-phase input terminal of the motor 42. The semiconductor switching elements V1 and V2 constitute a V-phase first semiconductor switching element group connected between the first output point P1 and the V-phase input terminal of the motor 42. The semiconductor switching elements W1 and W2 constitute a W-phase first semiconductor switching element group connected between the first output point P1 and the W-phase input terminal of the motor 42.

 半導体スイッチング素子U3,U4,V3,V4,W3,W4は、第2出力点P2と電動機42との間に接続される第2半導体スイッチング素子群を構成する。特に、半導体スイッチング素子U3,U4は、第2出力点P2と電動機42のU相入力端子との間に接続されるU相第2半導体スイッチング素子群を構成する。半導体スイッチング素子V3,V4は、第2出力点P2と電動機42のV相入力端子との間に接続されるV相第2半導体スイッチング素子群を構成する。半導体スイッチング素子W3,W4は、第2出力点P2と電動機42のW相入力端子との間に接続されるW相第2半導体スイッチング素子群を構成する。 The semiconductor switching elements U3, U4, V3, V4, W3, and W4 constitute a second semiconductor switching element group connected between the second output point P2 and the motor 42. In particular, the semiconductor switching elements U3 and U4 constitute a U-phase second semiconductor switching element group connected between the second output point P2 and the U-phase input terminal of the motor 42. The semiconductor switching elements V3 and V4 constitute a V-phase second semiconductor switching element group connected between the second output point P2 and the V-phase input terminal of the motor 42. The semiconductor switching elements W3 and W4 constitute a W-phase second semiconductor switching element group connected between the second output point P2 and the W-phase input terminal of the motor 42.

 半導体スイッチング素子U2,U3,V2,V3,W2,W3は、第3出力点P3と電動機42との間に接続される第3半導体スイッチング素子群を構成する。特に、半導体スイッチング素子U2,U3は、第3出力点P3と電動機42のU相入力端子との間に接続されるU相第3半導体スイッチング素子群を構成する。半導体スイッチング素子V2,V3は、第3出力点P3と電動機42のV相入力端子との間に接続されるV相第3半導体スイッチング素子群を構成する。半導体スイッチング素子W2,W3は、第3出力点P3と電動機42のW相入力端子との間に接続されるW相第3半導体スイッチング素子群を構成する。 The semiconductor switching elements U2, U3, V2, V3, W2, and W3 constitute a third semiconductor switching element group connected between the third output point P3 and the motor 42. In particular, the semiconductor switching elements U2 and U3 constitute a U-phase third semiconductor switching element group connected between the third output point P3 and the U-phase input terminal of the motor 42. The semiconductor switching elements V2 and V3 constitute a V-phase third semiconductor switching element group connected between the third output point P3 and the V-phase input terminal of the motor 42. The semiconductor switching elements W2 and W3 constitute a W-phase third semiconductor switching element group connected between the third output point P3 and the W-phase input terminal of the motor 42.

 コンバータ回路311は、第1~第3出力点P1~P3を含む複数の出力点を有する。インバータ回路312は、第1出力点P1と電動機42との間に接続される第1半導体スイッチング素子群(半導体スイッチング素子U1,U2,V1,V2,W1,W2)と、第2出力点P2と電動機42との間に接続される第2半導体スイッチング素子群(半導体スイッチング素子U3,U4,V3,V4,W3,W4)と、第3出力点P3と電動機42との間に接続される第3半導体スイッチング素子群(半導体スイッチング素子U2,U3,V2,V3,W2,W3)とを含む複数の半導体スイッチング素子群を有する。駆動回路31は、いわゆるマルチレベルインバータ、特に、3レベルインバータである。 The converter circuit 311 has a plurality of output points including the first to third output points P1 to P3. The inverter circuit 312 has a plurality of semiconductor switching element groups including a first semiconductor switching element group (semiconductor switching elements U1, U2, V1, V2, W1, W2) connected between the first output point P1 and the motor 42, a second semiconductor switching element group (semiconductor switching elements U3, U4, V3, V4, W3, W4) connected between the second output point P2 and the motor 42, and a third semiconductor switching element group (semiconductor switching elements U2, U3, V2, V3, W2, W3) connected between the third output point P3 and the motor 42. The drive circuit 31 is a so-called multilevel inverter, in particular a three-level inverter.

 インバータ回路312は、接続線Lu,Lv,Lwにより、電動機42に接続される。接続線Lu,Lv.Lwは、それぞれU相、V相、W相の接続線である。接続線Lu,Lv,Lwは、インバータ回路312のU相、V相、W相出力端子Pu,Pv,Pwを電動機42のU相、V相、W相の入力端子にそれぞれ接続する。 The inverter circuit 312 is connected to the electric motor 42 by connection lines Lu, Lv, and Lw. The connection lines Lu, Lv, and Lw are connection lines for the U, V, and W phases, respectively. The connection lines Lu, Lv, and Lw connect the U-phase, V-phase, and W-phase output terminals Pu, Pv, and Pw of the inverter circuit 312 to the U-phase, V-phase, and W-phase input terminals of the electric motor 42, respectively.

 状態検出回路32は、駆動回路31の状態を検出する。駆動回路31の状態は、コンバータ回路311の直流出力電力の電圧である。本実施の形態において、状態検出回路32は、コンバータ回路311の直流出力電力を検出し、直流出力電力の電圧を示す検出電圧を出力する電圧検出器である。本実施の形態では、状態検出回路32は、コンバータ回路311の平滑回路311bの出力端間、つまり、第1出力点P1と第2出力点P2との間に接続される分圧回路を含み、分圧回路から得られる電圧に基づいて、検出電圧を出力する。また、状態検出回路32は、分圧回路及び差動アンプの出力に基づいて、検出電圧を出力してもよい。一例として、差動アンプの非反転入力端子及び反転入力端子は、分圧回路の抵抗の両端にそれぞれ接続され、差動アンプは、当該抵抗にかかる電圧を検出電圧として出力でき得る。差動アンプを用いることでフローティング状態の電位差を検出することができ、検出電圧の精度の向上が可能になる。状態検出回路32が駆動回路31に接続される位置は、特に限定されず、コンバータ回路311の直流出力電力を検出できる位置であればよい。コンバータ回路311の直流出力電力を検出できる位置は、コンバータ回路311内に限らず、インバータ回路312内において、第1出力点P1及び第2出力点P2それぞれと回路的に等価な位置であってよい。分圧回路は、従来周知の構成を採用できるから、詳細な説明は省略する。 The state detection circuit 32 detects the state of the drive circuit 31. The state of the drive circuit 31 is the voltage of the DC output power of the converter circuit 311. In this embodiment, the state detection circuit 32 is a voltage detector that detects the DC output power of the converter circuit 311 and outputs a detection voltage indicating the voltage of the DC output power. In this embodiment, the state detection circuit 32 includes a voltage divider circuit connected between the output terminals of the smoothing circuit 311b of the converter circuit 311, that is, between the first output point P1 and the second output point P2, and outputs a detection voltage based on the voltage obtained from the voltage divider circuit. The state detection circuit 32 may also output a detection voltage based on the output of the voltage divider circuit and the differential amplifier. As an example, the non-inverting input terminal and the inverting input terminal of the differential amplifier are connected to both ends of the resistor of the voltage divider circuit, respectively, and the differential amplifier can output the voltage across the resistor as a detection voltage. By using a differential amplifier, the potential difference in the floating state can be detected, and the accuracy of the detection voltage can be improved. The position where the state detection circuit 32 is connected to the drive circuit 31 is not particularly limited, and may be any position where the DC output power of the converter circuit 311 can be detected. The position where the DC output power of the converter circuit 311 can be detected is not limited to within the converter circuit 311, but may be a position within the inverter circuit 312 that is equivalent in circuit terms to the first output point P1 and the second output point P2. The voltage divider circuit can have a conventionally known configuration, so a detailed description will be omitted.

 第1防護装置33は、交流出力電力の出力を停止するために設けられる。第1防護装置33は、駆動回路31と電動機42との間に介在されるスイッチSu,Sv,Swを備える。スイッチSu,Sv,Swは、電動機42のU相、V相、W相の入力端子と、U相出力端子Pu,Pv,Pwとの間にそれぞれ接続される。スイッチSu,Sv,Swは、例えば、半導体スイッチ、電磁リレー等の制御可能なスイッチであればよい。第1防護装置33は、スイッチSu,Sv,Swが閉じているオン状態では、駆動回路31から電動機42への交流出力電力の出力を可能にし、スイッチSu,Sv,Swが開いているオフ状態では、駆動回路31から電動機42への交流出力電力の出力を停止する。 The first protection device 33 is provided to stop the output of AC output power. The first protection device 33 includes switches Su, Sv, and Sw interposed between the drive circuit 31 and the motor 42. The switches Su, Sv, and Sw are connected between the U-phase, V-phase, and W-phase input terminals of the motor 42 and the U-phase output terminals Pu, Pv, and Pw, respectively. The switches Su, Sv, and Sw may be controllable switches such as semiconductor switches and electromagnetic relays. When the switches Su, Sv, and Sw are closed in the on state, the first protection device 33 enables the output of AC output power from the drive circuit 31 to the motor 42, and when the switches Su, Sv, and Sw are open in the off state, the first protection device 33 stops the output of AC output power from the drive circuit 31 to the motor 42.

 第2防護装置34は、入力電力の入力を停止するために設けられる。第2防護装置34は、駆動回路31と電源10との間に介在されるスイッチS1,S2を備える。スイッチS1,S2は、整流回路311aの入力端子と電源10との間にそれぞれ接続される。スイッチS1,S2は、例えば、半導体スイッチ、電磁リレー等の制御可能なスイッチであればよい。第2防護装置34は、スイッチS1,S2が閉じているオン状態では、電源10から駆動回路31への入力電力の入力を可能にし、スイッチS1,S2が開いているオフ状態では、電源10から駆動回路31への入力電力の入力を停止する。 The second protection device 34 is provided to stop the input of input power. The second protection device 34 includes switches S1 and S2 interposed between the drive circuit 31 and the power source 10. The switches S1 and S2 are respectively connected between the input terminal of the rectifier circuit 311a and the power source 10. The switches S1 and S2 may be, for example, a controllable switch such as a semiconductor switch or an electromagnetic relay. When the switches S1 and S2 are in the on state where they are closed, the second protection device 34 allows the input of input power from the power source 10 to the drive circuit 31, and when the switches S1 and S2 are in the off state where they are open, the second protection device 34 stops the input of input power from the power source 10 to the drive circuit 31.

 放流装置36は、インバータ回路312と電動機42との間の接続線Lu,Lv,Lwに接続される。放流装置36は、インバータ回路312と電動機42との間の接続線Lu,Lv,Lwを基準電位から分離する第1状態と、接続線Lu,Lv,Lwを基準電位に接続する第2状態とを切り替え可能である。放流装置36が第1状態であれば、放流装置36は、電動機42に対して特に影響は及ぼさない。放流装置36が第2状態であれば、接続線Lu,Lv,Lwが基準電位に接続されるため、電動機42の巻線に蓄えられたエネルギを放出させることができる。基準電位は、駆動回路31外に存在する。ここで、基準電位が駆動回路31外に存在するとは、基準電位と駆動回路31とが、電気的に独立していることを意味する。駆動回路31外に存在する基準電位としては、グランドが挙げられる。本実施の形態では、基準電位は、グランドによって与えられる。つまり、放流装置36は、圧縮機4の停止時、つまり、電動機42の停止時に残留するエネルギを放出させることができる。電動機42にエネルギが残留していると、このような残留エネルギが電動機42において放電現象等の異常現象を引き起こす可能性が懸念される。放流装置36は、電動機42に残留するエネルギの放出を可能にするから、このような残留エネルギに起因する異常現象の発生の可能性を低減でき、不均化反応の抑制の向上を可能にする。また、接続線Lu,Lv,Lwの間をショートさせた場合は、エネルギが駆動回路31内に残留する。そのため、接続線Lu,Lv,Lwをグランドに接続することで、駆動回路31内に残留するエネルギを駆動回路31外に放出する。 The discharge device 36 is connected to the connection lines Lu, Lv, and Lw between the inverter circuit 312 and the motor 42. The discharge device 36 can be switched between a first state in which the connection lines Lu, Lv, and Lw between the inverter circuit 312 and the motor 42 are separated from the reference potential, and a second state in which the connection lines Lu, Lv, and Lw are connected to the reference potential. When the discharge device 36 is in the first state, the discharge device 36 does not have any particular effect on the motor 42. When the discharge device 36 is in the second state, the connection lines Lu, Lv, and Lw are connected to the reference potential, so that the energy stored in the windings of the motor 42 can be released. The reference potential exists outside the drive circuit 31. Here, the reference potential existing outside the drive circuit 31 means that the reference potential and the drive circuit 31 are electrically independent. An example of a reference potential existing outside the drive circuit 31 is the ground. In this embodiment, the reference potential is provided by the ground. That is, the discharge device 36 can release the energy remaining when the compressor 4 is stopped, that is, when the motor 42 is stopped. If energy remains in the motor 42, there is a concern that such residual energy may cause abnormal phenomena such as discharge phenomena in the motor 42. The discharge device 36 enables the release of the energy remaining in the motor 42, so that the possibility of occurrence of abnormal phenomena caused by such residual energy can be reduced, and the suppression of disproportionation reactions can be improved. In addition, if the connection lines Lu, Lv, and Lw are shorted, energy remains in the drive circuit 31. Therefore, by connecting the connection lines Lu, Lv, and Lw to ground, the energy remaining in the drive circuit 31 is released to the outside of the drive circuit 31.

 図3は、放流装置36の概略回路図である。放流装置36は、交流出力電力の複数の相にそれぞれ対応する複数の接続線Lu,Lv,Lwと、基準電位を与えるグランドとの間にそれぞれ接続される複数の直列回路361~363を備える。直列回路361,362,363は、それぞれ、接続線Lu,Lv,Lwとグランドとの間に接続される、スイッチSW31,SW32,SW33と抵抗R31,R32,R33とのU、V、W相の直列回路である。 Fig. 3 is a schematic circuit diagram of the discharge device 36. The discharge device 36 includes a plurality of series circuits 361-363 that are connected between a plurality of connection lines Lu, Lv, Lw that respectively correspond to a plurality of phases of the AC output power and a ground that provides a reference potential. The series circuits 361, 362, 363 are U-, V-, and W-phase series circuits of switches SW31, SW32, SW33 and resistors R31, R32, R33 that are connected between the connection lines Lu, Lv, Lw, and ground, respectively.

 スイッチSW31,SW32,SW33は、制御可能なスイッチである。例えば、スイッチSW31,SW32,SW33は、連動して動作可能な3PSTスイッチで構成される。スイッチSW31,SW32,SW33は、独立して動作可能なSPSTスイッチであってもよい。スイッチSW31,SW32,SW33の例としては、電磁リレー等の機械接点スイッチ、トランジスタ等の無接点スイッチが挙げられる。スイッチSW31,SW32,SW33の第1端子は、接続線Lu,Lv,Lwにそれぞれ接続され、スイッチSW31,SW32,SW33の第2端子は、抵抗R31,R32,R33を介してグランドにそれぞれ接続される。抵抗R31,R32,R33の抵抗値は、特に限定されないが、例えば、1kΩである。放流装置36の第1状態は、スイッチSW31,SW32,SW33がオフの状態である。放流装置36の第2状態は、スイッチSW31,SW32,SW33がオンの状態である。 The switches SW31, SW32, and SW33 are controllable switches. For example, the switches SW31, SW32, and SW33 are configured as 3PST switches that can operate in conjunction with each other. The switches SW31, SW32, and SW33 may be SPST switches that can operate independently. Examples of the switches SW31, SW32, and SW33 include mechanical contact switches such as electromagnetic relays and non-contact switches such as transistors. The first terminals of the switches SW31, SW32, and SW33 are connected to the connection lines Lu, Lv, and Lw, respectively, and the second terminals of the switches SW31, SW32, and SW33 are connected to ground via resistors R31, R32, and R33, respectively. The resistance values of the resistors R31, R32, and R33 are not particularly limited, but are, for example, 1 kΩ. The first state of the discharge device 36 is a state in which the switches SW31, SW32, and SW33 are off. The second state of the discharge device 36 is a state in which the switches SW31, SW32, and SW33 are on.

 制御回路35は、例えば、1以上のプロセッサ(マイクロプロセッサ)と1以上のメモリとを少なくとも含むコンピュータシステムにより実現され得る。コンピュータシステムは、1以上のA/Dコンバータを含んでいてもよい。例えば、1以上のA/Dコンバータは、状態検出回路32からの検出電圧をアナログ形式からデジタル形式に変換するために用いられる。制御回路35は、駆動回路31、第1防護装置33、第2防護装置34及び放流装置36を制御する。特に、制御回路35は、駆動回路31が電動機42を動作させるように駆動回路31のインバータ回路312の複数の半導体スイッチング素子群のPWM制御を実行する。より詳細には、制御回路35は、インバータ回路312が、平滑回路311bからの直流出力電力に基づいて、電動機42に交流出力電力(三相交流電力)を供給するように、駆動回路31のインバータ回路312の複数の半導体スイッチング素子U1~U4,V1~V4,W1~W4のスイッチングを制御する。 The control circuit 35 may be realized by, for example, a computer system including at least one processor (microprocessor) and one or more memories. The computer system may include one or more A/D converters. For example, the one or more A/D converters are used to convert the detection voltage from the state detection circuit 32 from analog to digital format. The control circuit 35 controls the drive circuit 31, the first protection device 33, the second protection device 34, and the discharge device 36. In particular, the control circuit 35 executes PWM control of a group of multiple semiconductor switching elements of the inverter circuit 312 of the drive circuit 31 so that the drive circuit 31 operates the electric motor 42. More specifically, the control circuit 35 controls the switching of the multiple semiconductor switching elements U1 to U4, V1 to V4, and W1 to W4 of the inverter circuit 312 of the drive circuit 31 so that the inverter circuit 312 supplies AC output power (three-phase AC power) to the electric motor 42 based on the DC output power from the smoothing circuit 311b.

 半導体スイッチング素子U1~U4については、半導体スイッチング素子U1,U2がオン、半導体スイッチング素子U3,U4がオフの第1状態と、半導体スイッチング素子U3,U4がオン、半導体スイッチング素子U1,U2がオフの第2状態と、半導体スイッチング素子U2,U3がオン、半導体スイッチング素子U1,U4がオフの第3状態とがある。U相出力端子Puの電圧は、第1状態ではE/2、第2状態では-E/2、第3状態では0となる。 The semiconductor switching elements U1 to U4 have a first state in which the semiconductor switching elements U1 and U2 are on and the semiconductor switching elements U3 and U4 are off, a second state in which the semiconductor switching elements U3 and U4 are on and the semiconductor switching elements U1 and U2 are off, and a third state in which the semiconductor switching elements U2 and U3 are on and the semiconductor switching elements U1 and U4 are off. The voltage at the U-phase output terminal Pu is E/2 in the first state, -E/2 in the second state, and 0 in the third state.

 半導体スイッチング素子V1~V4については、半導体スイッチング素子V1,V2がオン、半導体スイッチング素子V3,V4がオフの第1状態と、半導体スイッチング素子V3,V4がオン、半導体スイッチング素子V1,V2がオフの第2状態と、半導体スイッチング素子V2,V3がオン、半導体スイッチング素子V1,V4がオフの第3状態とがある。V相出力端子Pvの電圧は、第1状態ではE/2、第2状態では-E/2、第3状態では0となる。  There are three states for the semiconductor switching elements V1 to V4: a first state in which the semiconductor switching elements V1 and V2 are on and the semiconductor switching elements V3 and V4 are off; a second state in which the semiconductor switching elements V3 and V4 are on and the semiconductor switching elements V1 and V2 are off; and a third state in which the semiconductor switching elements V2 and V3 are on and the semiconductor switching elements V1 and V4 are off. The voltage at the V-phase output terminal Pv is E/2 in the first state, -E/2 in the second state, and 0 in the third state.

 半導体スイッチング素子W1~W4については、半導体スイッチング素子W1,W2がオン、半導体スイッチング素子W3,W4がオフの第1状態と、半導体スイッチング素子W3,W4がオン、半導体スイッチング素子W1,W2がオフの第2状態と、半導体スイッチング素子W2,W3がオン、半導体スイッチング素子W1,W4がオフの第3状態とがある。W相出力端子Pwの電圧は、第1状態ではE/2、第2状態では-E/2、第3状態では0となる。 The semiconductor switching elements W1 to W4 have a first state in which the semiconductor switching elements W1 and W2 are on and the semiconductor switching elements W3 and W4 are off, a second state in which the semiconductor switching elements W3 and W4 are on and the semiconductor switching elements W1 and W2 are off, and a third state in which the semiconductor switching elements W2 and W3 are on and the semiconductor switching elements W1 and W4 are off. The voltage at the W-phase output terminal Pw is E/2 in the first state, -E/2 in the second state, and 0 in the third state.

 このように、駆動回路31は、E、E/2、0、-E/2、-Eの5レベルの電圧を与えることができる。 In this way, the drive circuit 31 can provide five voltage levels: E, E/2, 0, -E/2, and -E.

 制御回路35は、例えば、三相交流のU相、V相及びW相の正弦波交流電圧にそれぞれ対応するU相、V相及びW相出力電圧指令値、並びに、第1及び第2キャリア三角波に基づいて、駆動回路31のインバータ回路312の半導体スイッチング素子U1~U4,V1~V4,W1~W4のスイッチングを制御する。第1キャリア三角波の値は0以上であり、第2キャリア三角波の値は0以下である。駆動回路31は、E、E/2、0、-E/2、-Eの5レベルの電圧を与えることができるため、電動機42のU相入力端子とV相入力端子との間の電圧、電動機42のV相入力端子とW相入力端子との間の電圧、及び、電動機42のW相入力端子とU相入力端子との間の電圧のそれぞれをより正弦波に近付けることができる。 The control circuit 35 controls the switching of the semiconductor switching elements U1-U4, V1-V4, W1-W4 of the inverter circuit 312 of the drive circuit 31 based on, for example, U-phase, V-phase, and W-phase output voltage command values corresponding to the sine wave AC voltages of the U-phase, V-phase, and W-phase of the three-phase AC, respectively, and the first and second carrier triangular waves. The value of the first carrier triangular wave is 0 or more, and the value of the second carrier triangular wave is 0 or less. The drive circuit 31 can provide five levels of voltage: E, E/2, 0, -E/2, and -E, so that the voltage between the U-phase input terminal and the V-phase input terminal of the motor 42, the voltage between the V-phase input terminal and the W-phase input terminal of the motor 42, and the voltage between the W-phase input terminal and the U-phase input terminal of the motor 42 can each be made closer to a sine wave.

 制御回路35は、さらに、状態検出回路32からの検出電圧に基づいて、冷凍サイクル回路2を循環する作動媒体20の不均化反応を抑制するための処理を実行する。 The control circuit 35 further executes processing to suppress the disproportionation reaction of the working medium 20 circulating through the refrigeration cycle circuit 2 based on the detected voltage from the state detection circuit 32.

 作動媒体20の不均化反応の要因は、熱とラジカルであると考えられる。例えば、高温高圧下でラジカルが生成された場合に、作動媒体20の不均化反応が進行すると考えられる。ラジカルは、例えば、圧縮機4又は駆動回路31で何らかの異常が発生した場合に生じ得る放電現象により生成される可能性がある。 The causes of the disproportionation reaction of the working medium 20 are thought to be heat and radicals. For example, when radicals are generated under high temperature and pressure, the disproportionation reaction of the working medium 20 is thought to proceed. Radicals may be generated, for example, by a discharge phenomenon that may occur when some abnormality occurs in the compressor 4 or the drive circuit 31.

 本発明者らは、圧縮機4において放電現象が発生した場合に、コンバータ回路311の直流出力電力の電圧、つまり、駆動回路31の平滑回路311bの電圧に急峻な変化が生じることを見出した。図4は、コンバータ回路311の直流出力電力の電圧の波形図である。図4では、時間t11~t12,t21~t22,t31~32,t41~t42,t51~52において直流出力電流の電圧が緩やかに低下しているが、この電圧の低下は、インバータ回路312の半導体スイッチング素子U1~U4,V1~V4,W1~W4のスイッチングによる。インバータ回路312のスイッチング周波数は、例えば、1.0kHz~5.0kHzである場合、時間t11と時間t21との間の時間は、約0.2~1.0ms程度である。ここで、時間t33において、直流出力電流の電圧の急峻な低下が見られ、これは、放電現象の発生に起因すると考えられる。 The inventors have found that when a discharge phenomenon occurs in the compressor 4, a sudden change occurs in the voltage of the DC output power of the converter circuit 311, that is, the voltage of the smoothing circuit 311b of the drive circuit 31. FIG. 4 is a waveform diagram of the voltage of the DC output power of the converter circuit 311. In FIG. 4, the voltage of the DC output current gradually decreases at times t11 to t12, t21 to t22, t31 to 32, t41 to t42, and t51 to 52, but this voltage decrease is due to the switching of the semiconductor switching elements U1 to U4, V1 to V4, and W1 to W4 of the inverter circuit 312. When the switching frequency of the inverter circuit 312 is, for example, 1.0 kHz to 5.0 kHz, the time between time t11 and time t21 is about 0.2 to 1.0 ms. Here, at time t33, a sudden drop in the voltage of the DC output current is observed, which is thought to be due to the occurrence of a discharge phenomenon.

 このような観点から、制御回路35は、状態検出回路32からの検出電圧に基づいて放電現象が生じたかどうかの判定をし、放電現象が生じていると判定した場合には、冷凍サイクル回路2を循環する作動媒体の不均化反応を抑制するため、駆動回路31の動作を停止又は制限する。 From this perspective, the control circuit 35 determines whether a discharge phenomenon has occurred based on the detected voltage from the state detection circuit 32, and if it determines that a discharge phenomenon has occurred, it stops or limits the operation of the drive circuit 31 to suppress the disproportionation reaction of the working medium circulating through the refrigeration cycle circuit 2.

 制御装置3では、駆動回路31から電動機42に実際に流れている電流に生じる変化ではなく、駆動回路31の内部の直流出力電力(平滑回路311bの電圧)に生じる変化に基づいて、不均化反応の予兆の検出を行う。放電現象の時間スケールは、駆動回路31での平滑化(整流化)の時間スケールより短い。例えば、放電現象の時間スケールは、μsオーダーである。そのため、駆動回路31の内部の直流出力電力により、放電現象が生じているかどうかを判定できる。そして、駆動回路31から電動機42に実際に流れている電流の計測よりも、駆動回路31の内部の直流出力電力(平滑回路311bの電圧)の計測のほうがより短時間、短周期で行える。これは、作動媒体20の不均化反応の予兆の検出の早期化を可能にする。このように作動媒体20の不均化反応の予兆をより早期に検出できれば、不均化反応の抑制をより早期に行うことできるから、不均化反応の抑制の向上が可能になる。 The control device 3 detects the signs of a disproportionation reaction based on the changes occurring in the DC output power (voltage of the smoothing circuit 311b) inside the drive circuit 31, not on the changes occurring in the current actually flowing from the drive circuit 31 to the motor 42. The time scale of the discharge phenomenon is shorter than the time scale of smoothing (rectification) in the drive circuit 31. For example, the time scale of the discharge phenomenon is on the order of μs. Therefore, it is possible to determine whether a discharge phenomenon is occurring based on the DC output power inside the drive circuit 31. Furthermore, the measurement of the DC output power (voltage of the smoothing circuit 311b) inside the drive circuit 31 can be performed in a shorter time and at a shorter cycle than the measurement of the current actually flowing from the drive circuit 31 to the motor 42. This enables the earlier detection of the signs of a disproportionation reaction of the working medium 20. If the signs of a disproportionation reaction of the working medium 20 can be detected earlier in this way, the disproportionation reaction can be suppressed earlier, thereby improving the suppression of the disproportionation reaction.

 本実施の形態では、制御回路35は、検出電圧が第1電圧以下の第2電圧未満になると駆動回路31の動作を停止又は制限する。第2電圧は、圧縮機4又は駆動回路31で何らかの異常が発生した場合に生じ得る放電現象が起きたかどうかを判定するために設定される。図4を参照すると、直流出力電流の通常時の電圧(第1電圧)をEとすれば、放電現象によって直流出力電流の電圧は、0.8E以下、さらには0.3E以下になることが観測された。この点から、第2電圧は、第1電圧の0.3倍以上0.8倍以下であることが好ましい。本実施の形態では、第2電圧は、第1電圧の0.8倍である。 In this embodiment, the control circuit 35 stops or limits the operation of the drive circuit 31 when the detected voltage falls below a second voltage that is equal to or lower than the first voltage. The second voltage is set to determine whether a discharge phenomenon has occurred, which may occur when some abnormality occurs in the compressor 4 or the drive circuit 31. Referring to FIG. 4, if the normal voltage (first voltage) of the DC output current is E, it has been observed that the voltage of the DC output current becomes 0.8E or less, or even 0.3E or less, due to a discharge phenomenon. From this point of view, it is preferable that the second voltage is 0.3 times or more and 0.8 times or less than the first voltage. In this embodiment, the second voltage is 0.8 times the first voltage.

 駆動回路31の動作の停止は、交流出力電力の出力の停止、直流出力電力の出力の停止、又は、入力電力の入力の停止のいずれかにより実現可能である。駆動回路31の動作の制限は、交流出力電力の振幅の設定値の低下、又は、交流出力電力の周波数の設定値の低下により実現可能である。 The operation of the drive circuit 31 can be stopped by either stopping the output of AC output power, stopping the output of DC output power, or stopping the input of input power. The operation of the drive circuit 31 can be restricted by lowering the set value of the amplitude of the AC output power, or lowering the set value of the frequency of the AC output power.

 本実施の形態では、制御回路35は、第1防護装置33をオフ状態に設定して電動機42を駆動回路31から電気的に分離し、交流出力電力の出力を停止させる。交流出力電力の出力を再開させる場合、制御回路35は、第1防護装置33をオン状態に設定して電動機42を駆動回路31に接続する。 In this embodiment, the control circuit 35 sets the first protection device 33 to the OFF state to electrically isolate the electric motor 42 from the drive circuit 31 and stop the output of AC output power. When the output of AC output power is to be resumed, the control circuit 35 sets the first protection device 33 to the ON state to connect the electric motor 42 to the drive circuit 31.

 本実施の形態では、制御回路35は、駆動回路31を制御して、交流出力電力の振幅の設定値を低下させる。本実施の形態では、駆動回路31は、E、E/2、0、-E/2、-Eの5レベルの電圧を与えることができるため、交流出力電力の振幅の設定値を、EからE/2に変更する。この場合、交流出力電力の振幅の設定値がEであるときよりも、電動機42の回転速度が低下する。 In this embodiment, the control circuit 35 controls the drive circuit 31 to lower the set value of the amplitude of the AC output power. In this embodiment, the drive circuit 31 can provide five levels of voltage: E, E/2, 0, -E/2, and -E, so the set value of the amplitude of the AC output power is changed from E to E/2. In this case, the rotation speed of the motor 42 is lower than when the set value of the amplitude of the AC output power is E.

 入力電力の入力を停止すると、結果として交流出力電力の出力が停止する。本実施の形態では、制御回路35は、第2防護装置34をオフ状態に設定して電源10を駆動回路31から電気的に分離し、交流出力電力の出力を停止させる。入力電力の入力を再開させる場合、制御回路35は、第2防護装置34をオン状態に設定して電源10を駆動回路31に接続する。 When the input of input power is stopped, the output of AC output power is stopped as a result. In this embodiment, the control circuit 35 sets the second protection device 34 to the OFF state to electrically isolate the power source 10 from the drive circuit 31 and stop the output of AC output power. When the input of input power is to be resumed, the control circuit 35 sets the second protection device 34 to the ON state to connect the power source 10 to the drive circuit 31.

 制御回路35は、検出電圧が第2電圧未満になった回数に応じて、異なる方法で駆動回路31の動作を停止又は制限する。特に、制御回路35は、検出電圧が第2電圧未満になった回数が増えるほど、不均化反応の抑制の度合いがより高い処理を実行する。これによって、制御装置3は、短時間に連続的に比較的軽微な放電現象が起きた場合であっても、不均化反応の抑制を可能にする。例えば、低エネルギの異常状態(放電)が連続的に起こることで所定のエネルギを超えて不均化反応が誘起されることを防止し、作動媒体20の利用の安全性を向上できる。 The control circuit 35 stops or limits the operation of the drive circuit 31 in different ways depending on the number of times the detected voltage falls below the second voltage. In particular, the control circuit 35 executes processing that suppresses the disproportionation reaction to a higher degree as the number of times the detected voltage falls below the second voltage increases. This enables the control device 3 to suppress the disproportionation reaction even when relatively minor discharge phenomena occur consecutively within a short period of time. For example, it is possible to prevent disproportionation reactions from being induced beyond a predetermined energy due to consecutive occurrences of low-energy abnormal states (discharges), thereby improving the safety of using the working medium 20.

 制御回路35は、最初に検出電圧が第2電圧未満になった第1時間と次に検出電圧が第2電圧未満になった第2時間との時間差に応じて、異なる方法で駆動回路31の動作を停止又は制限する。特に、制御回路35は、時間差が短いほど、不均化反応の抑制の度合いがより高い処理を実行する。これによって、制御装置3は、短時間に連続的に比較的軽微な放電現象が起きた場合であっても、不均化反応の抑制を可能にする。これによって、例えば、低エネルギの異常状態(放電)が連続的に起こることで所定のエネルギを超えて不均化反応が誘起されることを防止し、作動媒体20の利用の安全性を向上できる。 The control circuit 35 stops or limits the operation of the drive circuit 31 in different ways depending on the time difference between the first time when the detected voltage first becomes less than the second voltage and the second time when the detected voltage next becomes less than the second voltage. In particular, the control circuit 35 executes processing that suppresses the disproportionation reaction to a higher degree the shorter the time difference. This enables the control device 3 to suppress the disproportionation reaction even when relatively minor discharge phenomena occur consecutively within a short period of time. This prevents, for example, a disproportionation reaction from being induced beyond a predetermined energy due to consecutive occurrences of low-energy abnormal states (discharges), improving the safety of using the working medium 20.

 不均化反応を抑制するための処理は、例えば、第1処理~第3処理を含む。第1処理は、交流出力電力の出力を停止し、待機時間の経過後に交流出力電力の出力を再開する処理である。第2処理は、交流出力電力の出力を停止し、待機時間の経過後に交流出力電力の振幅の設定値を低下させて動作させる処理である。第3処理は、交流出力電力の出力を停止し、入力電力の入力を停止する処理である。第1処理~第3処理であれば、第3処理、第2処理、第1処理の順に、不均化反応の抑制の度合いが高い。第1処理又は第2処理においても、待機時間が長いほど、不均化反応の抑制の度合いが高い。 The process for suppressing the disproportionation reaction includes, for example, the first process to the third process. The first process is a process for stopping the output of AC output power and resuming the output of AC output power after a standby time has elapsed. The second process is a process for stopping the output of AC output power and operating with a lower set value of the amplitude of the AC output power after a standby time has elapsed. The third process is a process for stopping the output of AC output power and stopping the input of input power. In the first to third processes, the degree of suppression of the disproportionation reaction increases in the order of the third process, the second process, and the first process. In the first or second process, the longer the standby time, the higher the degree of suppression of the disproportionation reaction.

 制御回路35は、駆動回路31の動作を停止する場合には、放流装置36を第2状態に切り替える。制御回路35は、駆動回路31の動作の停止を解除する場合に、放流装置36を第1状態に切り替える。これによって、圧縮機4の停止時に残留するエネルギを放出させることができる。 When the operation of the drive circuit 31 is stopped, the control circuit 35 switches the discharge device 36 to the second state. When the operation of the drive circuit 31 is released from the stopped state, the control circuit 35 switches the discharge device 36 to the first state. This makes it possible to release the energy remaining when the compressor 4 is stopped.

 次に、制御装置3の制御回路35の動作の一例について図5~図10を参照して簡単に説明する。図5~図10の各々は制御装置3の制御回路35の動作のフローチャートの一部であり、図5~図10を組み合わせて一つのフローチャートが完成する。 Next, an example of the operation of the control circuit 35 of the control device 3 will be briefly described with reference to Figures 5 to 10. Each of Figures 5 to 10 is a part of a flowchart of the operation of the control circuit 35 of the control device 3, and Figures 5 to 10 are combined to complete one flowchart.

 図5を参照する。制御回路35は、駆動回路31により電源10の入力電力に基づいて交流出力電力を電動機42に出力し、圧縮機4を駆動させる。制御回路35は、異常回数を0に設定する(S10)。異常回数は、検出電圧が第2電圧未満となった回数を示す。異常回数の多さは不均化反応の発生の可能性の高さの指標となる。 Refer to FIG. 5. The control circuit 35 outputs AC output power to the motor 42 based on the input power of the power source 10 via the drive circuit 31 to drive the compressor 4. The control circuit 35 sets the number of abnormalities to 0 (S10). The number of abnormalities indicates the number of times the detected voltage is less than the second voltage. The number of abnormalities is an indicator of the likelihood of a disproportionation reaction occurring.

 制御回路35は、状態検出回路32から検出電圧を取得する(S11)。制御回路35は、検出電圧が第2電圧未満かどうかを判定する(S12)。 The control circuit 35 acquires the detection voltage from the state detection circuit 32 (S11). The control circuit 35 determines whether the detection voltage is less than the second voltage (S12).

 検出電圧が第2電圧未満でない場合(S12:NO)、ステップS10に戻る。ステップS11,S12により、制御回路35は、所定周期で検出電圧が第2電圧未満かどうかを判定する。ここでの所定周期は、インバータ回路312の基準周波数(例えば、1000~5000Hz)に対応する周期より短いことが好ましい。 If the detected voltage is not less than the second voltage (S12: NO), the process returns to step S10. In steps S11 and S12, the control circuit 35 determines whether the detected voltage is less than the second voltage at a predetermined period. It is preferable that the predetermined period here is shorter than the period corresponding to the reference frequency of the inverter circuit 312 (e.g., 1000 to 5000 Hz).

 ステップS12において、検出電圧が第2電圧未満である場合(S12:YES)、制御回路35は、異常回数を1加算し(S13)、異常回数が1以下かどうかを判定する(S14)。 In step S12, if the detected voltage is less than the second voltage (S12: YES), the control circuit 35 adds 1 to the number of abnormalities (S13) and determines whether the number of abnormalities is 1 or less (S14).

 ステップS14において、異常回数が1以下である場合(S14:YES)、制御回路35は、第1防護装置33をオフ状態に設定して交流出力電力の出力を停止させ、放流装置36を第2状態に切り替える(S15)。制御回路35は、交流出力電力の出力の停止から第1待機時間が経過したかどうかを判定する(S16)。第1待機時間は、例えば、1sである。第1待機時間が経過すると(S16:YES)、制御回路35は、第1防護装置33をオン状態に設定して交流出力電力の出力を再開させ、放流装置36を第1状態に切り替える(S17)、これによって、圧縮機4の運転を再開する(S18)。その後は、ステップS11に戻る。 In step S14, if the number of abnormalities is 1 or less (S14: YES), the control circuit 35 sets the first protection device 33 to the OFF state to stop the output of AC output power, and switches the discharge device 36 to the second state (S15). The control circuit 35 determines whether a first standby time has elapsed since the output of AC output power was stopped (S16). The first standby time is, for example, 1 s. When the first standby time has elapsed (S16: YES), the control circuit 35 sets the first protection device 33 to the ON state to resume the output of AC output power, and switches the discharge device 36 to the first state (S17), thereby resuming operation of the compressor 4 (S18). Thereafter, the process returns to step S11.

 このように、制御回路35は、検出電圧が第2電圧未満になると、交流出力電力の出力の停止と、放流装置36の第2状態への切り替えとを行い、交流出力電力の出力の停止から第1待機時間が経過すると、交流出力電力の出力の再開と、放流装置36の第1状態への切り替えとを行う。 In this way, when the detected voltage becomes less than the second voltage, the control circuit 35 stops the output of the AC output power and switches the discharge device 36 to the second state, and when the first standby time has elapsed since the output of the AC output power was stopped, the control circuit 35 resumes the output of the AC output power and switches the discharge device 36 to the first state.

 ステップS14において、異常回数が1以下でない場合(S14:NO)、図6を参照すると、制御回路35は、最初に検出電圧が第2電圧未満になった第1時間と次に検出電圧が第2電圧未満になった第2時間との時間差が第1所定時間以内かどうかを判定する(ステップS19)。時間差の短さは不均化反応の発生の可能性の高さの指標となる。第1所定時間は、例えば、インバータ回路312の基準周波数に対応する周期の100倍程度であり、20~100ms程度である。 In step S14, if the number of abnormalities is not 1 or less (S14: NO), referring to FIG. 6, the control circuit 35 determines whether the time difference between the first time when the detected voltage first becomes less than the second voltage and the second time when the detected voltage next becomes less than the second voltage is within a first predetermined time (step S19). The shortness of the time difference is an indicator of the likelihood of a disproportionation reaction occurring. The first predetermined time is, for example, about 100 times the period corresponding to the reference frequency of the inverter circuit 312, and is about 20 to 100 ms.

 ステップS19において、時間差が第1所定時間以内である場合(ステップS19:YES)、制御回路35は、第1防護装置33をオフ状態に設定して交流出力電力の出力を停止させ、放流装置36を第2状態に切り替える(S20)。制御回路35は、第2防護装置34をオフ状態に設定して入力電力の入力を停止させる(S21)。制御回路35は、第1異常通知を出力する(S22)。第1異常通知は、冷凍サイクル装置1において不均化反応が生じる可能性が非常に高い異常が起きていることを示す。第1異常通知は、例えば、室内機1bの制御回路及びリモートコントローラ等に出力される。この後、制御回路35は、圧縮機4の運転を停止する(S23)。 In step S19, if the time difference is within the first predetermined time (step S19: YES), the control circuit 35 sets the first protection device 33 to the OFF state to stop the output of AC output power, and switches the discharge device 36 to the second state (S20). The control circuit 35 sets the second protection device 34 to the OFF state to stop the input of input power (S21). The control circuit 35 outputs a first abnormality notification (S22). The first abnormality notification indicates that an abnormality has occurred in the refrigeration cycle device 1 that is highly likely to cause a disproportionation reaction. The first abnormality notification is output to, for example, the control circuit of the indoor unit 1b and a remote controller. After this, the control circuit 35 stops the operation of the compressor 4 (S23).

 このように、制御回路35は、第1待機時間の経過後の交流出力電力の出力の再開(S17)から所定時間(第1所定時間)が経過する前に検出電圧が第2電圧未満になると(S19:YES)、交流出力電力の出力の停止と、放流装置36の第2状態への切り替えとを行い(S20)、入力電力の入力を停止する(S21)。 In this way, if the detected voltage becomes less than the second voltage (S19: YES) before a predetermined time (first predetermined time) has elapsed since the output of the AC output power was resumed after the first standby time (S17), the control circuit 35 stops the output of the AC output power, switches the discharge device 36 to the second state (S20), and stops the input of the input power (S21).

 ステップS19において、時間差が第1所定時間以内でない場合(ステップS19:NO)、図7を参照すると、制御回路35は、時間差が、第1所定時間より長い第2所定時間以内かどうかを判定する(ステップS24)。第2所定時間は、例えば、インバータ回路312の基準周波数に対応する周期の1000倍程度であり、200ms~1s程度である。 If the time difference is not within the first predetermined time in step S19 (step S19: NO), referring to FIG. 7, the control circuit 35 determines whether the time difference is within a second predetermined time that is longer than the first predetermined time (step S24). The second predetermined time is, for example, about 1000 times the period corresponding to the reference frequency of the inverter circuit 312, and is about 200 ms to 1 s.

 ステップS24において、時間差が第2所定時間以内である場合(ステップS24:YES)、制御回路35は、第1防護装置33をオフ状態に設定して交流出力電力の出力を停止させ、放流装置36を第2状態に切り替える(S25)。制御回路35は、交流出力電力の振幅の設定値がEからE/2に低下するように駆動回路31の半導体スイッチング素子のスイッチング制御を変更する(S26)。制御回路35は、第2異常通知を出力する(S27)。第2異常通知は、冷凍サイクル装置1において不均化反応が生じる可能性が高い異常が起きていることを示す。第2異常通知は、例えば、室内機1bの制御回路及びリモートコントローラ等に出力される。 In step S24, if the time difference is within the second predetermined time (step S24: YES), the control circuit 35 sets the first protection device 33 to the off state to stop the output of the AC output power, and switches the discharge device 36 to the second state (S25). The control circuit 35 changes the switching control of the semiconductor switching element of the drive circuit 31 so that the set value of the amplitude of the AC output power decreases from E to E/2 (S26). The control circuit 35 outputs a second abnormality notification (S27). The second abnormality notification indicates that an abnormality that is likely to cause a disproportionation reaction has occurred in the refrigeration cycle device 1. The second abnormality notification is output to, for example, the control circuit and remote controller of the indoor unit 1b.

 制御回路35は、交流出力電力の出力の停止から第4待機時間が経過したかどうかを判定する(S28)。第4待機時間は、第1待機時間より長い。第4待機時間は、例えば、60sである。第4待機時間が経過すると(S28:YES)、図8に示すように、制御回路35は、放流装置36を第1状態に切り替え、第1防護装置33をオン状態に設定して交流出力電力の出力を再開させる(S29)、これによって、圧縮機4の運転を再開する(S30)。この場合、交流出力電力の振幅の設定値がEからE/2に低下したままである。 The control circuit 35 determines whether a fourth waiting time has elapsed since the output of the AC output power was stopped (S28). The fourth waiting time is longer than the first waiting time. The fourth waiting time is, for example, 60 seconds. When the fourth waiting time has elapsed (S28: YES), as shown in FIG. 8, the control circuit 35 switches the discharge device 36 to the first state and sets the first protection device 33 to the on state to resume the output of the AC output power (S29), thereby resuming the operation of the compressor 4 (S30). In this case, the set value of the amplitude of the AC output power remains lowered from E to E/2.

 このように、制御回路35は、第1待機時間の経過後の交流出力電力の出力の再開(S17)から所定時間(第2所定時間)が経過する前に検出電圧が第2電圧未満になると、交流出力電力の出力の停止と、放流装置36の第2状態への切り替えとを行い(S25)、交流出力電力の振幅の設定値を低下させる(S26)。制御回路35は、交流出力電力の出力の停止から第1待機時間より長い第4待機時間が経過すると、放流装置36を第1状態に切り替え、交流出力電力の振幅の設定値を低下させたままで交流出力電力の出力を再開する(S29)。 In this way, when the detected voltage becomes less than the second voltage before a predetermined time (second predetermined time) has elapsed since the resumption of output of the AC output power after the first standby time (S17), the control circuit 35 stops the output of the AC output power, switches the discharge device 36 to the second state (S25), and lowers the set value of the amplitude of the AC output power (S26). When a fourth standby time longer than the first standby time has elapsed since the stop of the output of the AC output power, the control circuit 35 switches the discharge device 36 to the first state and resumes the output of the AC output power while keeping the set value of the amplitude of the AC output power lowered (S29).

 その後、制御回路35は、状態検出回路32から検出電圧を取得する(S31)。制御回路35は、検出電圧が第2電圧未満かどうかを判定する(S32)。 Then, the control circuit 35 acquires the detection voltage from the state detection circuit 32 (S31). The control circuit 35 determines whether the detection voltage is less than the second voltage (S32).

 ステップS32において、検出電圧が第2電圧未満である場合(S32:YES)、図6のステップS20に進む。 If the detected voltage is less than the second voltage in step S32 (S32: YES), proceed to step S20 in FIG. 6.

 ステップS32において、検出電圧が第2電圧未満でない場合(S32:NO)、制御回路35は、圧縮機4の運転の再開から第2監視時間が経過したかどうかを判定する(S33)。 In step S32, if the detected voltage is not less than the second voltage (S32: NO), the control circuit 35 determines whether the second monitoring time has elapsed since the compressor 4 restarted operating (S33).

 ステップS33において、圧縮機4の運転の再開から第2監視時間が経過していれば(S33:YES)、制御回路35は、交流出力電力の振幅の設定値の低下を解除して、交流出力電力の振幅の設定値をEに戻して(S34)、図5のステップS11に進む。 In step S33, if the second monitoring time has elapsed since the compressor 4 restarted operating (S33: YES), the control circuit 35 cancels the reduction in the set value of the amplitude of the AC output power, returns the set value of the amplitude of the AC output power to E (S34), and proceeds to step S11 in FIG. 5.

 ステップS33において、圧縮機4の運転の再開から第2監視時間が経過していなければ(S33:NO)、ステップS31に戻る。 In step S33, if the second monitoring time has not elapsed since the compressor 4 restarted operation (S33: NO), the process returns to step S31.

 ステップS31~S33では、圧縮機4の運転の再開から第2監視時間が経過するまでに検出電圧が第2電圧未満になると、図6のステップS20に進み、圧縮機4の運転の再開から第2監視時間が経過するまでに検出電圧が第2電圧未満にならなければ、ステップS34に進むことになる。 In steps S31 to S33, if the detected voltage falls below the second voltage between the time when compressor 4 restarts operation and the time when the second monitoring time has elapsed, the process proceeds to step S20 in FIG. 6, and if the detected voltage does not fall below the second voltage between the time when compressor 4 restarts operation and the time when the second monitoring time has elapsed, the process proceeds to step S34.

 このように、制御回路35は、第4待機時間の経過後の交流出力電力の出力の再開(S29)から第2監視時間の間検出電圧が第2電圧未満にならなければ(S33:YES)、交流出力電力の振幅の設定値の低下を解除する(S34)。制御回路35は、第4待機時間の経過後の交流出力電力の出力の再開(S29)から第2監視時間の経過前に検出電圧が第2電圧未満になると(S32:YES)、交流出力電力の出力の停止と、放流装置36の第2状態への切り替えとを行い(S20)、入力電力の入力を停止する(S21)。 In this way, if the detected voltage does not become less than the second voltage during the second monitoring time from when the output of the AC output power is resumed after the fourth waiting time has elapsed (S29) (YES in S33), the control circuit 35 cancels the reduction in the set value of the amplitude of the AC output power (S34). If the detected voltage becomes less than the second voltage before the second monitoring time has elapsed after the output of the AC output power is resumed after the fourth waiting time has elapsed (S29) (YES in S32), the control circuit 35 stops the output of the AC output power, switches the discharge device 36 to the second state (S20), and stops the input of the input power (S21).

 図7に戻り、ステップS24で時間差が第2所定時間以内でない場合(ステップS24:NO)、図9を参照すると、制御回路35は、時間差が、第2所定時間より長い第3所定時間以内かどうかを判定する(ステップS35)。第3所定時間は、例えば、インバータ回路312の基準周波数に対応する周期の10000倍程度であり、2s~10s程度である。 Returning to FIG. 7, if the time difference is not within the second predetermined time in step S24 (step S24: NO), referring to FIG. 9, the control circuit 35 determines whether the time difference is within a third predetermined time that is longer than the second predetermined time (step S35). The third predetermined time is, for example, about 10,000 times the period corresponding to the reference frequency of the inverter circuit 312, and is about 2 s to 10 s.

 ステップS35において、時間差が第3所定時間以内でない場合(ステップS35:NO)、ステップS10に戻り、制御回路35は、異常回数を0に設定する(図5参照)。つまり、異常検知から、十分に時間が経過した場合には、放電現象の発生の可能性が低いと考えられるため、異常回数を0にリセットする。 In step S35, if the time difference is not within the third predetermined time (step S35: NO), the process returns to step S10, and the control circuit 35 sets the number of abnormalities to 0 (see FIG. 5). In other words, if a sufficient amount of time has passed since the detection of the abnormality, the possibility of a discharge phenomenon occurring is considered to be low, so the number of abnormalities is reset to 0.

 ステップS35において、時間差が第3所定時間以内である場合(ステップS35:YES)、制御回路35は、異常回数が2以下かどうかを判定する(S36)。 In step S35, if the time difference is within the third predetermined time (step S35: YES), the control circuit 35 determines whether the number of abnormalities is 2 or less (S36).

 ステップS36において、異常回数が2以下である場合(S36:YES)、制御回路35は、第1防護装置33をオフ状態に設定して交流出力電力の出力を停止させ、放流装置36を第2状態に切り替える(S37)。制御回路35は、第3異常通知を出力する(S38)。第3異常通知は、冷凍サイクル装置1において不均化反応が生じる可能性がある異常が起きていることを示す。第3異常通知は、例えば、室内機1bの制御回路及びリモートコントローラ等に出力される。制御回路35は、交流出力電力の出力の停止から第2待機時間が経過したかどうかを判定する(S39)。第2待機時間は、第1待機時間より長い。第2待機時間は、例えば、10sである。第2待機時間が経過すると(S39:YES)、制御回路35は、放流装置36を第1状態に切り替え、第1防護装置33をオン状態に設定して交流出力電力の出力を再開させ(S40)、これによって、圧縮機4の運転を再開する(S41)。その後は、ステップS11に戻る。 In step S36, if the number of abnormalities is 2 or less (S36: YES), the control circuit 35 sets the first protection device 33 to the off state to stop the output of the AC output power, and switches the discharge device 36 to the second state (S37). The control circuit 35 outputs a third abnormality notification (S38). The third abnormality notification indicates that an abnormality that may cause a disproportionation reaction has occurred in the refrigeration cycle device 1. The third abnormality notification is output, for example, to the control circuit of the indoor unit 1b and a remote controller. The control circuit 35 determines whether a second standby time has elapsed since the output of the AC output power was stopped (S39). The second standby time is longer than the first standby time. The second standby time is, for example, 10 s. When the second standby time has elapsed (S39: YES), the control circuit 35 switches the discharge device 36 to the first state, sets the first protection device 33 to the on state, and resumes the output of the AC output power (S40), thereby resuming the operation of the compressor 4 (S41). After that, return to step S11.

 このように、制御回路35は、第1待機時間の経過後の交流出力電力の出力の再開(S17)から所定時間(第3所定時間)が経過する前に検出電圧が第2電圧未満になると、交流出力電力の出力の停止と、放流装置36の第2状態への切り替えとを行う。制御回路35は、交流出力電力の出力の停止から第1待機時間より長い第2待機時間が経過すると放流装置36を第1状態に切り替え、交流出力電力の出力を再開する(S40)。 In this way, if the detected voltage becomes less than the second voltage before a predetermined time (third predetermined time) has elapsed since the resumption of the output of the AC output power after the first standby time has elapsed (S17), the control circuit 35 stops the output of the AC output power and switches the discharge device 36 to the second state. When a second standby time longer than the first standby time has elapsed since the output of the AC output power was stopped, the control circuit 35 switches the discharge device 36 to the first state and resumes the output of the AC output power (S40).

 ステップS36において、異常回数が2以下でない場合(S36:NO)、つまり、異常回数が3以上である場合、制御回路35は、第1防護装置33をオフ状態に設定して交流出力電力の出力を停止させ、放流装置36を第2状態に切り替える(S42)。制御回路35は、交流出力電力の振幅の設定値がEからE/2に低下するように駆動回路31の半導体スイッチング素子のスイッチング制御を変更する(S43)。制御回路35は、第2異常通知を出力する(S44)。 In step S36, if the number of abnormalities is not two or less (S36: NO), that is, if the number of abnormalities is three or more, the control circuit 35 sets the first protection device 33 to the off state to stop the output of AC output power, and switches the discharge device 36 to the second state (S42). The control circuit 35 changes the switching control of the semiconductor switching element of the drive circuit 31 so that the set value of the amplitude of the AC output power is reduced from E to E/2 (S43). The control circuit 35 outputs a second abnormality notification (S44).

 制御回路35は、交流出力電力の出力の停止から第3待機時間が経過したかどうかを判定する(S45)。第3待機時間は、第2待機時間より長い。第3待機時間は、例えば、60sである。第3待機時間が経過すると(S45:YES)、図10に示すように、制御回路35は、放流装置36を第1状態に切り替え、第1防護装置33をオン状態に設定して交流出力電力の出力を再開させる(S46)、これによって、圧縮機4の運転を再開する(S47)。この場合、交流出力電力の振幅の設定値がEからE/2に低下したままである。 The control circuit 35 determines whether the third waiting time has elapsed since the output of the AC output power was stopped (S45). The third waiting time is longer than the second waiting time. The third waiting time is, for example, 60 seconds. When the third waiting time has elapsed (S45: YES), as shown in FIG. 10, the control circuit 35 switches the discharge device 36 to the first state and sets the first protection device 33 to the on state to resume the output of the AC output power (S46), thereby resuming the operation of the compressor 4 (S47). In this case, the set value of the amplitude of the AC output power remains lowered from E to E/2.

 このように、制御回路35は、第2待機時間の経過後の交流出力電力の出力の再開(S40)から所定時間(第3所定時間)が経過する前に検出電圧が第2電圧未満になると、交流出力電力の出力の停止と、放流装置36の第2状態への切り替えとを行い(S42)、交流出力電力の振幅の設定値を低下させる(S43)。制御回路35は、交流出力電力の出力の停止から第2待機時間より長い第3待機時間が経過すると、放流装置36を第1状態に切り替え、交流出力電力の振幅の設定値を低下させたままで交流出力電力の出力を再開する(S47)。 In this way, when the detected voltage becomes less than the second voltage before a predetermined time (third predetermined time) has elapsed since the resumption of output of the AC output power after the second standby time (S40), the control circuit 35 stops the output of the AC output power, switches the discharge device 36 to the second state (S42), and lowers the set value of the amplitude of the AC output power (S43). When a third standby time longer than the second standby time has elapsed since the stop of the output of the AC output power, the control circuit 35 switches the discharge device 36 to the first state and resumes the output of the AC output power while keeping the set value of the amplitude of the AC output power lowered (S47).

 その後、制御回路35は、状態検出回路32から検出電圧を取得する(S48)。制御回路35は、検出電圧が第2電圧未満かどうかを判定する(S49)。 Then, the control circuit 35 acquires the detection voltage from the state detection circuit 32 (S48). The control circuit 35 determines whether the detection voltage is less than the second voltage (S49).

 ステップS49において、検出電圧が第2電圧未満である場合(S49:YES)、図6のステップS20に進む。 If the detected voltage is less than the second voltage in step S49 (S49: YES), proceed to step S20 in FIG. 6.

 ステップS49において、検出電圧が第2電圧未満でない場合(S49:NO)、制御回路35は、圧縮機4の運転の再開から第1監視時間が経過したかどうかを判定する(S50)。第1監視時間は、ステップS33の第2監視時間と同じであってもよいし、異なっていてもよい。 In step S49, if the detected voltage is not less than the second voltage (S49: NO), the control circuit 35 determines whether the first monitoring time has elapsed since the compressor 4 restarted operating (S50). The first monitoring time may be the same as or different from the second monitoring time in step S33.

 ステップS50において、圧縮機4の運転の再開から第1監視時間が経過していれば(S50:YES)、制御回路35は、交流出力電力の振幅の設定値の低下を解除して、交流出力電力の振幅の設定値をEに戻して(S51)、図5のステップS11に進む。 In step S50, if the first monitoring time has elapsed since the compressor 4 restarted operating (S50: YES), the control circuit 35 cancels the reduction in the set value of the amplitude of the AC output power, returns the set value of the amplitude of the AC output power to E (S51), and proceeds to step S11 in FIG. 5.

 ステップS50において、圧縮機4の運転の再開から第1監視時間が経過していなければ(S50:NO)、ステップS48に戻る。 In step S50, if the first monitoring time has not elapsed since the compressor 4 restarted operation (S50: NO), the process returns to step S48.

 ステップS48~S50では、圧縮機4の運転の再開から第1監視時間が経過するまでに検出電圧が第2電圧未満になると、図6のステップS20に進み、圧縮機4の運転の再開から第1監視時間が経過するまでに検出電圧が第2電圧未満にならなければ、ステップS51に進むことになる。 In steps S48 to S50, if the detected voltage becomes less than the second voltage between the time when the compressor 4 restarts operation and the time when the first monitoring time has elapsed, the process proceeds to step S20 in FIG. 6, and if the detected voltage does not become less than the second voltage between the time when the compressor 4 restarts operation and the time when the first monitoring time has elapsed, the process proceeds to step S51.

 このように、制御回路35は、第3待機時間の経過後の交流出力電力の出力の再開(S47)から第1監視時間の間検出電圧が第2電圧未満にならなければ(S50:YES)、交流出力電力の振幅の設定値の低下を解除する(S51)。制御回路35は、第3待機時間の経過後の交流出力電力の出力の再開(S47)から第1監視時間の経過前に検出電圧が第2電圧未満になると(S49:YES)、交流出力電力の出力の停止と、放流装置36の第2状態への切り替えとを行い(S20)、入力電力の入力を停止する(S21)。 In this way, if the detected voltage does not become less than the second voltage during the first monitoring time from when the output of the AC output power is resumed after the third waiting time has elapsed (S47) (YES in S50), the control circuit 35 cancels the reduction in the set value of the amplitude of the AC output power (S51). If the detected voltage becomes less than the second voltage before the first monitoring time has elapsed after the output of the AC output power is resumed after the third waiting time has elapsed (S47) (YES in S49), the control circuit 35 stops the output of the AC output power, switches the discharge device 36 to the second state (S20), and stops the input of the input power (S21).

 以上述べた制御装置3では、制御回路35が、放電現象の発生時等の異常時には、駆動回路31の動作を停止する。これによって、放電現象等の異常が継続的に発生する可能性が低減される。さらに、制御回路35は、放流装置36により、インバータ回路312と電動機42との間の電流経路である接続線Lu,Lv,Lwを基準電位に接続する。これによって、圧縮機4の駆動により電動機42に蓄えられたエネルギを放出させることができる。そのため、圧縮機4の電動機42の停止時に残留するエネルギに起因する異常現象の発生の可能性を低減でき、不均化反応の抑制の向上が可能になる。 In the control device 3 described above, the control circuit 35 stops the operation of the drive circuit 31 when an abnormality occurs, such as when a discharge phenomenon occurs. This reduces the possibility of abnormalities such as discharge phenomena occurring continuously. Furthermore, the control circuit 35 connects the connection lines Lu, Lv, and Lw, which are the current paths between the inverter circuit 312 and the electric motor 42, to a reference potential by the discharge device 36. This makes it possible to release the energy stored in the electric motor 42 by driving the compressor 4. This reduces the possibility of abnormal phenomena occurring due to residual energy when the electric motor 42 of the compressor 4 is stopped, and makes it possible to improve the suppression of disproportionation reactions.

 [1.2 効果等]
 以上述べた制御装置3は、作動媒体20が循環する冷凍サイクル回路2の圧縮機4を制御する。制御装置3は、圧縮機4を駆動する駆動回路31と、駆動回路31と圧縮機4との間の接続線Lu,Lv,Lwを基準電位から分離する第1状態と、接続線Lu,Lv,Lwを基準電位に接続する第2状態とを切り替え可能な放流装置36と、を備える。この構成は、圧縮機4の停止時に残留するエネルギに起因する異常現象の発生の可能性を低減でき、不均化反応の抑制の向上を可能にする。
[1.2 Effects, etc.]
The control device 3 described above controls the compressor 4 of the refrigeration cycle circuit 2 in which the working medium 20 circulates. The control device 3 includes a drive circuit 31 that drives the compressor 4, and a discharge device 36 that can switch between a first state in which the connection lines Lu, Lv, and Lw between the drive circuit 31 and the compressor 4 are separated from a reference potential and a second state in which the connection lines Lu, Lv, and Lw are connected to the reference potential. This configuration can reduce the possibility of an abnormal phenomenon occurring due to residual energy when the compressor 4 is stopped, and enables improved suppression of the disproportionation reaction.

 制御装置3において、基準電位は、駆動回路31外に存在する。この構成は、圧縮機4の停止時に残留するエネルギを駆動回路31外に放出できる。 In the control device 3, the reference potential exists outside the drive circuit 31. This configuration allows the remaining energy when the compressor 4 is stopped to be released outside the drive circuit 31.

 制御装置3において、基準電位は、グランドにより与えられる。この構成は、圧縮機4の停止時に残留するエネルギを駆動回路31外に放出できる。 In the control device 3, the reference potential is provided by the ground. This configuration allows the remaining energy to be released outside the drive circuit 31 when the compressor 4 is stopped.

 制御装置3は、駆動回路31及び放流装置36を制御する制御回路35を更に備える。制御回路35は、圧縮機4と駆動回路31との少なくとも一方の異常の検出に応じて、駆動回路31の動作の停止と、放流装置36の第2状態への切り替えと、を行う。この構成は、圧縮機4の停止時に残留するエネルギに起因する異常現象の発生の可能性を低減でき、不均化反応の抑制の向上を可能にする。 The control device 3 further includes a control circuit 35 that controls the drive circuit 31 and the discharge device 36. In response to detection of an abnormality in at least one of the compressor 4 and the drive circuit 31, the control circuit 35 stops the operation of the drive circuit 31 and switches the discharge device 36 to the second state. This configuration can reduce the possibility of abnormal phenomena occurring due to residual energy when the compressor 4 is stopped, and enables improved suppression of the disproportionation reaction.

 制御装置3において、制御回路35は、駆動回路31の動作の停止を解除する場合に、放流装置36を第1状態に切り替える。この構成は、駆動回路31の動作の停止の解除と放流装置36の第1状態への切り替えとの時間差を短くでき、圧縮機4の停止時間を短縮できる。 In the control device 3, the control circuit 35 switches the discharge device 36 to the first state when the operation of the drive circuit 31 is released from the stopped state. This configuration can shorten the time difference between the release of the operation of the drive circuit 31 and the switching of the discharge device 36 to the first state, and can shorten the stop time of the compressor 4.

 制御装置3において、放流装置36は、スイッチSW31,SW32,SW33と抵抗R31,R32,R33との直列回路361,362,363を有する。直列回路361,362,363は、接続線Lu,Lv,Lwと、基準電位との間に接続される。第1状態は、スイッチSW31,SW32,SW33がオフの状態である。第2状態は、スイッチSW31,SW32,SW33がオンの状態である。この構成は、圧縮機4の停止時に残留するエネルギに起因する異常現象の発生の可能性を低減でき、不均化反応の抑制の向上を可能にする。 In the control device 3, the discharge device 36 has series circuits 361, 362, 363 consisting of switches SW31, SW32, SW33 and resistors R31, R32, R33. The series circuits 361, 362, 363 are connected between the connection lines Lu, Lv, Lw and the reference potential. The first state is a state in which the switches SW31, SW32, SW33 are off. The second state is a state in which the switches SW31, SW32, SW33 are on. This configuration can reduce the possibility of abnormal phenomena occurring due to residual energy when the compressor 4 is stopped, and enables improved suppression of the disproportionation reaction.

 制御装置3において、抵抗R31,R32,R33の抵抗は、1kΩである。この構成は、圧縮機4の停止時に残留するエネルギに起因する異常現象の発生の可能性を低減でき、不均化反応の抑制の向上を可能にする。 In the control device 3, the resistance of resistors R31, R32, and R33 is 1 kΩ. This configuration can reduce the possibility of abnormal phenomena occurring due to residual energy when the compressor 4 is stopped, and enables improved suppression of disproportionation reactions.

 制御装置3において、接続線Lu,Lv,Lwは、交流出力電力の三相にそれぞれ対応する複数の接続線Lu,Lv,Lwを含む。放流装置36は、複数の接続線Lu,Lv,Lwと基準電位との間にそれぞれ接続される複数の直列回路361,362,363を有する。この構成は、圧縮機4の停止時に残留するエネルギに起因する異常現象の発生の可能性を低減でき、不均化反応の抑制の向上を可能にする。 In the control device 3, the connection lines Lu, Lv, Lw include a plurality of connection lines Lu, Lv, Lw that respectively correspond to the three phases of the AC output power. The discharge device 36 has a plurality of series circuits 361, 362, 363 that are respectively connected between the plurality of connection lines Lu, Lv, Lw and the reference potential. This configuration can reduce the possibility of abnormal phenomena occurring due to residual energy when the compressor 4 is stopped, and enables improved suppression of the disproportionation reaction.

 制御装置3は、圧縮機4と駆動回路31との少なくとも一方の状態を検出する状態検出回路32を更に備える。駆動回路31は、電源10からの入力電力に基づいて直流出力電力の電圧が第1電圧となるように直流出力電力を出力するコンバータ回路311及び直流出力電力に基づいて交流出力電力を圧縮機4に出力するインバータ回路312を含む。状態検出回路32は、直流出力電力を検出し、直流出力電力の電圧を示す検出電圧を出力する。制御回路35は、検出電圧が第1電圧以下の第2電圧未満になると、駆動回路31の動作の停止と、放流装置36の第2状態への切り替えと、を行う。この構成は、圧縮機4の停止時に残留するエネルギに起因する異常現象の発生の可能性を低減でき、不均化反応の抑制の向上を可能にする。 The control device 3 further includes a state detection circuit 32 that detects the state of at least one of the compressor 4 and the drive circuit 31. The drive circuit 31 includes a converter circuit 311 that outputs DC output power based on the input power from the power source 10 so that the voltage of the DC output power becomes a first voltage, and an inverter circuit 312 that outputs AC output power to the compressor 4 based on the DC output power. The state detection circuit 32 detects the DC output power and outputs a detection voltage indicating the voltage of the DC output power. When the detection voltage becomes less than a second voltage that is equal to or less than the first voltage, the control circuit 35 stops the operation of the drive circuit 31 and switches the discharge device 36 to the second state. This configuration can reduce the possibility of an abnormal phenomenon occurring due to the energy remaining when the compressor 4 is stopped, and enables improved suppression of the disproportionation reaction.

 制御装置3において、第2電圧は、第1電圧の0.3倍以上0.8倍以下である。この構成は、作動媒体20の不均化反応の予兆の検出の早期化を可能にし、不均化反応の抑制の向上を可能にする。 In the control device 3, the second voltage is 0.3 to 0.8 times the first voltage. This configuration enables early detection of signs of a disproportionation reaction in the working medium 20 and improves suppression of the disproportionation reaction.

 以上述べた放流装置36は、作動媒体20が循環する冷凍サイクル回路2の圧縮機4と圧縮機4を駆動する駆動回路31との間の接続線Lu,Lv,Lwに接続され、接続線Lu,Lv,Lwを基準電位から分離する第1状態と、接続線Lu,Lv,Lwを基準電位に接続する第2状態とを切り替え可能に構成される。この構成は、圧縮機4の停止時に残留するエネルギに起因する異常現象の発生の可能性を低減でき、不均化反応の抑制の向上を可能にする。 The discharge device 36 described above is connected to the connection lines Lu, Lv, and Lw between the compressor 4 of the refrigeration cycle circuit 2 in which the working medium 20 circulates and the drive circuit 31 that drives the compressor 4, and is configured to be switchable between a first state in which the connection lines Lu, Lv, and Lw are isolated from the reference potential, and a second state in which the connection lines Lu, Lv, and Lw are connected to the reference potential. This configuration can reduce the possibility of abnormal phenomena occurring due to residual energy when the compressor 4 is stopped, and enables improved suppression of the disproportionation reaction.

 以上述べた冷凍サイクル装置1は、制御装置3と、冷凍サイクル回路2と、を備える。この構成は、圧縮機4の停止時に残留するエネルギに起因する異常現象の発生の可能性を低減でき、不均化反応の抑制の向上を可能にする。 The refrigeration cycle device 1 described above includes a control device 3 and a refrigeration cycle circuit 2. This configuration can reduce the possibility of abnormal phenomena occurring due to residual energy when the compressor 4 is stopped, and enables improved suppression of disproportionation reactions.

 冷凍サイクル装置1において、作動媒体は、エチレン系フルオロオレフィンを含む。この構成は、作動媒体20の不均化反応の抑制の向上を可能にする。 In the refrigeration cycle device 1, the working medium contains an ethylene-based fluoroolefin. This configuration allows for improved suppression of the disproportionation reaction of the working medium 20.

 冷凍サイクル装置1において、エチレン系フルオロオレフィンは、1,1,2-トリフルオロエチレン、トランス-1,2-ジフルオロエチレン、シス-1,2-ジフルオロエチレン、1,1-ジフルオロエチレン、テトラフルオロエチレン、又は、モノフルオロエチレンである。この構成は、作動媒体20の不均化反応の抑制の向上を可能にする。 In the refrigeration cycle device 1, the ethylene-based fluoroolefin is 1,1,2-trifluoroethylene, trans-1,2-difluoroethylene, cis-1,2-difluoroethylene, 1,1-difluoroethylene, tetrafluoroethylene, or monofluoroethylene. This configuration enables improved suppression of the disproportionation reaction of the working medium 20.

 冷凍サイクル装置1において、作動媒体20は、ジフルオロメタンを更に含む。この構成は、作動媒体20の不均化反応の抑制の向上を可能にする。 In the refrigeration cycle device 1, the working medium 20 further contains difluoromethane. This configuration enables improved suppression of the disproportionation reaction of the working medium 20.

 冷凍サイクル装置1において、作動媒体20は、飽和炭化水素を更に含む。この構成は、作動媒体20の不均化反応の抑制の向上を可能にする。 In the refrigeration cycle device 1, the working medium 20 further contains saturated hydrocarbons. This configuration enables improved suppression of the disproportionation reaction of the working medium 20.

 冷凍サイクル装置1において、作動媒体20は、エチレン系フルオロオレフィンの不均化反応を抑制する不均化抑制剤として、炭素数が1又は2のハロアルカンを含む。この構成は、作動媒体20の不均化反応の抑制の向上を可能にする。 In the refrigeration cycle device 1, the working medium 20 contains a haloalkane having one or two carbon atoms as a disproportionation inhibitor that suppresses the disproportionation reaction of ethylene-based fluoroolefins. This configuration enables improved suppression of the disproportionation reaction of the working medium 20.

 冷凍サイクル装置1において、飽和炭化水素は、n-プロパンを含む。この構成は、作動媒体20の不均化反応の抑制の向上を可能にする。 In the refrigeration cycle device 1, the saturated hydrocarbons include n-propane. This configuration allows for improved suppression of the disproportionation reaction of the working medium 20.

 以上述べた制御装置3は、以下の制御方法を実行しているといえる。制御方法は、作動媒体20が循環する冷凍サイクル回路2の圧縮機4を制御する制御装置3で実行される。制御装置3は、圧縮機4を駆動する駆動回路31と、駆動回路31と圧縮機4との間の接続線Lu,Lv,Lwを基準電位から分離する第1状態と、接続線Lu,Lv,Lwを基準電位に接続する第2状態とを切り替え可能な放流装置36と、を備える。制御方法は、圧縮機4と駆動回路31との少なくとも一方の異常の検出に応じて、駆動回路31の動作の停止と、放流装置36の第2状態への切り替えと、を行う。この構成は、圧縮機4の停止時に残留するエネルギに起因する異常現象の発生の可能性を低減でき、不均化反応の抑制の向上を可能にする。 The control device 3 described above can be said to execute the following control method. The control method is executed by the control device 3 that controls the compressor 4 of the refrigeration cycle circuit 2 in which the working medium 20 circulates. The control device 3 includes a drive circuit 31 that drives the compressor 4, and a discharge device 36 that can switch between a first state in which the connection lines Lu, Lv, and Lw between the drive circuit 31 and the compressor 4 are separated from a reference potential, and a second state in which the connection lines Lu, Lv, and Lw are connected to the reference potential. The control method stops the operation of the drive circuit 31 and switches the discharge device 36 to the second state in response to detection of an abnormality in at least one of the compressor 4 and the drive circuit 31. This configuration can reduce the possibility of an abnormal phenomenon occurring due to the energy remaining when the compressor 4 is stopped, and enables improved suppression of the disproportionation reaction.

 制御装置3が実行する制御方法は、コンピュータシステムがプログラムを実行することにより実現され得る。このプログラムは、作動媒体20が循環する冷凍サイクル回路2の圧縮機4を制御する制御装置3が備えるコンピュータシステムで実行される。制御装置3は、圧縮機4を駆動する駆動回路31と、駆動回路31と圧縮機4との間の接続線Lu,Lv,Lwを基準電位から分離する第1状態と、接続線Lu,Lv,Lwを基準電位に接続する第2状態とを切り替え可能な放流装置36と、を備える。プログラムは、コンピュータシステムに、圧縮機4と駆動回路31との少なくとも一方の異常の検出に応じて、駆動回路31の動作の停止と、放流装置36の第2状態への切り替えと、を行わせる。この構成は、圧縮機4の停止時に残留するエネルギに起因する異常現象の発生の可能性を低減でき、不均化反応の抑制の向上を可能にする。 The control method executed by the control device 3 can be realized by a computer system executing a program. This program is executed by a computer system included in the control device 3 that controls the compressor 4 of the refrigeration cycle circuit 2 in which the working medium 20 circulates. The control device 3 includes a drive circuit 31 that drives the compressor 4, and a discharge device 36 that can switch between a first state in which the connection lines Lu, Lv, and Lw between the drive circuit 31 and the compressor 4 are separated from a reference potential, and a second state in which the connection lines Lu, Lv, and Lw are connected to the reference potential. The program causes the computer system to stop the operation of the drive circuit 31 and switch the discharge device 36 to the second state in response to detection of an abnormality in at least one of the compressor 4 and the drive circuit 31. This configuration can reduce the possibility of an abnormal phenomenon occurring due to the energy remaining when the compressor 4 is stopped, and enables improved suppression of the disproportionation reaction.

 [2.変形例]
 本開示の実施の形態は、上記実施の形態に限定されない。上記実施の形態は、本開示の課題を達成できれば、設計等に応じて種々の変更が可能である。以下に、上記実施の形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
2. Modifications
The embodiments of the present disclosure are not limited to the above-mentioned embodiments. The above-mentioned embodiments can be modified in various ways depending on the design, etc., as long as the object of the present disclosure can be achieved. Below, modified examples of the above-mentioned embodiments are listed. The modified examples described below can be applied in appropriate combination.

 一変形例において、放流装置36は、必ずしも、複数の接続線Lu,Lv,Lwを基準電位に接続できる構成に限定されず、複数の接続線Lu,Lv,Lwの少なくとも一つを基準電位に接続できればよい。 In one modified example, the discharge device 36 is not necessarily limited to a configuration in which multiple connection lines Lu, Lv, and Lw can be connected to a reference potential, but only needs to be able to connect at least one of the multiple connection lines Lu, Lv, and Lw to a reference potential.

 一変形例において、制御回路35において、駆動回路31の動作の停止は、交流出力電力の出力の停止、直流出力電力の出力の停止、又は、入力電力の入力の停止のいずれか1以上を含んでよい。駆動回路31の動作の制限は、交流出力電力の振幅の設定値の低下、又は、交流出力電力の周波数の設定値の低下のいずれか1以上を含んでよい。 In one modified example, in the control circuit 35, stopping the operation of the drive circuit 31 may include one or more of stopping the output of AC output power, stopping the output of DC output power, or stopping the input of input power. Restricting the operation of the drive circuit 31 may include one or more of reducing the set value of the amplitude of the AC output power, or reducing the set value of the frequency of the AC output power.

 一変形例において、制御回路35は、電動機42の停止・減速を段階的に実行してもよい。一例として、制御回路35は、交流出力電力の振幅又は周波数の少なくとも一方を段階的に低下させることで、電動機42に供給される交流出力電力の実効値を段階的に低下させてよい。 In one modified example, the control circuit 35 may gradually stop and decelerate the electric motor 42. As one example, the control circuit 35 may gradually reduce the effective value of the AC output power supplied to the electric motor 42 by gradually reducing at least one of the amplitude and frequency of the AC output power.

 一変形例において、制御回路35の動作は、必ずしも、図5~図10に示すフローチャートで示される動作に限定されない。図5~図10に示すフローチャートは、あくまでも、一例である。 In one modified example, the operation of the control circuit 35 is not necessarily limited to the operations shown in the flowcharts shown in Figures 5 to 10. The flowcharts shown in Figures 5 to 10 are merely examples.

 例えば、制御回路35の動作において、ステップS19~S23の処理、つまり、交流出力電力の出力を停止し、入力電力の入力を停止する処理は必須ではない。制御回路35の動作において、ステップS24~S28の処理、つまり、交流出力電力の出力を停止し、待機時間の経過後に交流出力電力の振幅の設定値を低下させて動作させる処理は必須ではない。同様に、制御回路35の動作において、ステップS29~S34の処理、ステップS35~S41の必須、又は、ステップS42~S51の処理は必須ではない。 For example, in the operation of the control circuit 35, the processes of steps S19 to S23, i.e., the processes of stopping the output of AC output power and stopping the input of input power, are not essential. In the operation of the control circuit 35, the processes of steps S24 to S28, i.e., the processes of stopping the output of AC output power and lowering the set value of the amplitude of the AC output power after the standby time has elapsed, are not essential. Similarly, in the operation of the control circuit 35, the processes of steps S29 to S34, steps S35 to S41, or steps S42 to S51 are not essential.

 制御回路35は、必ずしも、最初に検出電圧が第2電圧未満になった第1時間と次に検出電圧が第2電圧未満になった第2時間との時間差、又は、検出電圧が第2電圧未満になった回数に応じて、異なる方法で駆動回路31の動作の停止又は制限しなくてもよい。 The control circuit 35 does not necessarily have to stop or limit the operation of the drive circuit 31 in a different manner depending on the time difference between the first time when the detected voltage first becomes less than the second voltage and the second time when the detected voltage next becomes less than the second voltage, or the number of times the detected voltage becomes less than the second voltage.

 一変形例において、第1防護装置33は、スイッチSu,Sv,Swを備える回路構成に限定されず、駆動回路31から電動機42に出力される交流出力電力の大きさ、例えば、電圧の大きさを調整する回路構成を含んでよい。第1防護装置33は、駆動回路31内に配置されてよい。 In one modified example, the first protection device 33 is not limited to a circuit configuration including switches Su, Sv, and Sw, and may include a circuit configuration that adjusts the magnitude of the AC output power output from the drive circuit 31 to the electric motor 42, for example, the magnitude of the voltage. The first protection device 33 may be disposed within the drive circuit 31.

 一変形例において、第2防護装置34は、スイッチS1,S2を備える回路構成に限定されず、電源10から駆動回路31に入力される入力電力の大きさ、例えば、電圧の大きさを調整する回路構成を含んでよい。第2防護装置34は、駆動回路31内に配置されてよい。 In one modified example, the second protection device 34 is not limited to a circuit configuration including switches S1 and S2, and may include a circuit configuration that adjusts the magnitude of the input power input from the power source 10 to the drive circuit 31, for example, the magnitude of the voltage. The second protection device 34 may be disposed within the drive circuit 31.

 一変形例において、制御装置3は、必ずしも第1防護装置33と第2防護装置34との両方を含んでいる必要はなく、第1防護装置33と第2防護装置34との一方を含んでもよいし、駆動回路31が交流出力電力を調整する機能を有していれば、第1及び第2防護装置33,34は省略できる。例えば、制御回路35は、インバータ回路312の半導体スイッチング素子V1~V4をオン、残りの半導体スイッチング素子U1~U4,W1~W4をオフにすることで、電動機42への交流出力電力の出力を停止してよい。この場合、第1防護装置33は省略されてよい。 In one modified example, the control device 3 does not necessarily have to include both the first protection device 33 and the second protection device 34, and may include either the first protection device 33 or the second protection device 34, and if the drive circuit 31 has a function of adjusting the AC output power, the first and second protection devices 33, 34 can be omitted. For example, the control circuit 35 may stop the output of AC output power to the motor 42 by turning on the semiconductor switching elements V1 to V4 of the inverter circuit 312 and turning off the remaining semiconductor switching elements U1 to U4, W1 to W4. In this case, the first protection device 33 may be omitted.

 図11は、一変形例の制御装置3Aを示す。図11において、制御装置3Aは、第3防護装置37を備える。第3防護装置37は、直流出力電力の出力を停止するために設けられる。第3防護装置37は、駆動回路31のコンバータ回路311とインバータ回路312との間に介在されるスイッチS3,S4,S5を備える。スイッチS3は、第1出力点P1と、半導体スイッチング素子U1,V1,W1との間に共通に接続される。スイッチS4は、第2出力点P2と、半導体スイッチング素子U4,V4,W4との間に共通に接続される。スイッチS5は、第3出力点P3と、ダイオードD5,D6間の接続点、ダイオードD7,D8間の接続点、及び、ダイオードD9,D10間の接続点との間に共通に接続される。スイッチS3,S4,S5は、例えば、半導体スイッチ、電磁リレー等の制御可能なスイッチであればよい。第3防護装置37は、スイッチS3,S4,S5が閉じているオン状態では、コンバータ回路311からインバータ回路312への直流出力電力の出力を可能にし、スイッチS3,S4,S5が開いているオフ状態では、コンバータ回路311からインバータ回路312への直流出力電力の出力を停止する。 FIG. 11 shows a modified control device 3A. In FIG. 11, the control device 3A includes a third protection device 37. The third protection device 37 is provided to stop the output of DC output power. The third protection device 37 includes switches S3, S4, and S5 interposed between the converter circuit 311 and the inverter circuit 312 of the drive circuit 31. The switch S3 is commonly connected between the first output point P1 and the semiconductor switching elements U1, V1, and W1. The switch S4 is commonly connected between the second output point P2 and the semiconductor switching elements U4, V4, and W4. The switch S5 is commonly connected between the third output point P3 and the connection point between the diodes D5 and D6, the connection point between the diodes D7 and D8, and the connection point between the diodes D9 and D10. The switches S3, S4, and S5 may be controllable switches such as semiconductor switches and electromagnetic relays. The third protection device 37 allows the output of DC output power from the converter circuit 311 to the inverter circuit 312 when the switches S3, S4, and S5 are closed in the on state, and stops the output of DC output power from the converter circuit 311 to the inverter circuit 312 when the switches S3, S4, and S5 are open in the off state.

 圧縮機への電力の出力を停止する場合、入力電力の入力の停止、直流出力電力の出力の停止、交流出力電力の出力の停止は、この順番に、安全度が高い。そのため、第1防護装置33の動作後、第2防護装置34を動作させる前に、第3防護装置37を動作させてよい。なお、第3防護装置37がある場合には、第2防護装置34を省略してもよい。 When stopping the output of power to the compressor, the safety level increases in the order of stopping the input power, stopping the output of DC output power, and stopping the output of AC output power. Therefore, after the operation of the first protection device 33, the third protection device 37 may be operated before the second protection device 34 is operated. Note that if the third protection device 37 is present, the second protection device 34 may be omitted.

 一変形例において、第3防護装置37は、スイッチS3,S4,S5を備える回路構成に限定されず、コンバータ回路311からインバータ回路312に出力される直流出力電力の大きさ、例えば、電圧の大きさを調整する回路構成を含んでよい。 In one modified example, the third protection device 37 is not limited to a circuit configuration including switches S3, S4, and S5, but may include a circuit configuration that adjusts the magnitude of the DC output power output from the converter circuit 311 to the inverter circuit 312, for example, the magnitude of the voltage.

 一変形例において、状態検出回路32は、コンバータ回路311の直流出力電力の電圧値を検出する構成に限定されない。状態検出回路32は、圧縮機4と駆動回路31との少なくとも一方の状態を検出するように構成されてよい。 In one modified example, the state detection circuit 32 is not limited to a configuration that detects the voltage value of the DC output power of the converter circuit 311. The state detection circuit 32 may be configured to detect the state of at least one of the compressor 4 and the drive circuit 31.

 例えば、駆動回路31の状態は、駆動回路31に流れる電流の電流値であってよい。一例として、駆動回路31に流れる電流の電流値は、駆動回路31のU相、V相及びW相のレグの出力交流電流の電流値の少なくとも一つを含んでよい。この場合、駆動回路31の異常は、電流異常である。制御回路35は、状態検出回路32で検出された駆動回路31に流れる電流の電流値が所定電流値を超えたことに応答して、電流異常を検出してよい。別例として、駆動回路31に流れる電流の電流値は、駆動回路31のコンバータ回路311とインバータ回路312との間に流れる直流電流の電流値を含んでよい。この場合、制御回路35は、駆動回路31のコンバータ回路311とインバータ回路312との間に流れる直流電流の電流値が所定電流値を超えていれば、駆動回路31の電流異常が発生していると判定してよい。制御回路35は、駆動回路31の電流異常が発生していると判定すると(つまり、駆動回路31の電流異常を検出すると)、駆動回路31の動作を停止又は制限してよい。 For example, the state of the drive circuit 31 may be the current value of the current flowing through the drive circuit 31. As an example, the current value of the current flowing through the drive circuit 31 may include at least one of the current values of the output AC current of the U-phase, V-phase, and W-phase legs of the drive circuit 31. In this case, the abnormality of the drive circuit 31 is a current abnormality. The control circuit 35 may detect the current abnormality in response to the current value of the current flowing through the drive circuit 31 detected by the state detection circuit 32 exceeding a predetermined current value. As another example, the current value of the current flowing through the drive circuit 31 may include the current value of the DC current flowing between the converter circuit 311 and the inverter circuit 312 of the drive circuit 31. In this case, the control circuit 35 may determine that a current abnormality has occurred in the drive circuit 31 if the current value of the DC current flowing between the converter circuit 311 and the inverter circuit 312 of the drive circuit 31 exceeds a predetermined current value. When the control circuit 35 determines that a current abnormality has occurred in the drive circuit 31 (i.e., when a current abnormality in the drive circuit 31 is detected), it may stop or limit the operation of the drive circuit 31.

 例えば、圧縮機4の状態は、圧縮機4の相電流と圧縮機4の電動機42の回転数との少なくとも一方を含んでよい。圧縮機4の相電流の電流値は、U相、V相及びW相それぞれの電流の電流値を含み得る。この場合、圧縮機4の異常は、圧縮機4のレイヤーショート(layer short)に関連する異常を含み得る。圧縮機4のレイヤーショートに関連する異常は、圧縮機4のレイヤーショートそれ自体、圧縮機4のレイヤーショートを引き起こす可能性がある異常、及び、圧縮機4のレイヤーショートが引き起こす可能性がある異常を含み得る。圧縮機4のレイヤーショートに関連する異常の具体例としては、圧縮機4のレイヤーショート、圧縮機4の漏電、圧縮機4の欠相運転等が挙げられる。圧縮機4の相電流の不均衡が生じている場合には、圧縮機4のレイヤーショートに関連する異常が生じている可能性がある。制御回路35は、状態検出回路32で検出された圧縮機4の状態に基づいて、圧縮機4の異常が発生しているかどうかを判定してよい。例えば、制御回路35は、圧縮機4の相電流の不均衡が発生していれば、圧縮機4のレイヤーショートに関連する異常が発生していると判定してよい。また、圧縮機4の電動機42の回転数のずれが発生している場合には、圧縮機4のレイヤーショートに関連する異常が生じている可能性がある。制御回路35は、圧縮機4にレイヤーショートに関連する異常が発生していると判定すると(つまり、圧縮機4のレイヤーショートに関連する異常を検出すると)、駆動回路31の動作を停止又は制限してよい。 For example, the state of the compressor 4 may include at least one of the phase current of the compressor 4 and the rotation speed of the motor 42 of the compressor 4. The current value of the phase current of the compressor 4 may include the current values of the U-phase, V-phase, and W-phase currents. In this case, the abnormality of the compressor 4 may include an abnormality related to a layer short of the compressor 4. An abnormality related to a layer short of the compressor 4 may include the layer short of the compressor 4 itself, an abnormality that may cause a layer short of the compressor 4, and an abnormality that may be caused by a layer short of the compressor 4. Specific examples of abnormalities related to a layer short of the compressor 4 include a layer short of the compressor 4, a leakage current of the compressor 4, and an open-phase operation of the compressor 4. When an imbalance occurs in the phase currents of the compressor 4, an abnormality related to a layer short of the compressor 4 may occur. The control circuit 35 may determine whether an abnormality of the compressor 4 has occurred based on the state of the compressor 4 detected by the state detection circuit 32. For example, if an imbalance in the phase currents of the compressor 4 occurs, the control circuit 35 may determine that an abnormality related to a layer short in the compressor 4 has occurred. Also, if a deviation in the rotation speed of the motor 42 of the compressor 4 occurs, there is a possibility that an abnormality related to a layer short in the compressor 4 has occurred. When the control circuit 35 determines that an abnormality related to a layer short has occurred in the compressor 4 (i.e., when an abnormality related to a layer short in the compressor 4 is detected), it may stop or limit the operation of the drive circuit 31.

 一変形例において、電源10は、種々の交流電源、特に、商用電源であってよい。商用電源の電圧及び周波数は国等によって異なるが、駆動回路31は、種々の商用電源により電動機42を駆動可能に構成され得る。 In one variation, the power source 10 may be any of a variety of AC power sources, particularly a commercial power source. Although the voltage and frequency of the commercial power source vary depending on the country, the drive circuit 31 may be configured to be capable of driving the electric motor 42 using any of a variety of commercial power sources.

 一変形例において、駆動回路31は、電動機42の種類等に対応する交流出力電力を供給するように構成され得る。交流出力電力は、三相交流電力に限らず、単相交流電力であり得る。 In one modified example, the drive circuit 31 can be configured to supply AC output power corresponding to the type of the electric motor 42, etc. The AC output power is not limited to three-phase AC power, and can be single-phase AC power.

 一変形例において、コンバータ回路311は、複数の第3出力点を有してよい。複数の第3出力点は、互いに異なる電圧を出力し得る。インバータ回路312は、複数の第3出力点と電動機42との間にそれぞれ接続される複数の第3半導体スイッチング素子群を有してよい。第1出力点P1、第2出力点P2及び複数の第3出力点P3の合計数をnとすれば、駆動回路31は、(2×n-1)レベルの電圧を与えることができる。nを増やすことによって、駆動回路31により電動機42に印加される電圧波形を正弦波により近付けることができる。 In one modified example, the converter circuit 311 may have a plurality of third output points. The plurality of third output points may output different voltages. The inverter circuit 312 may have a plurality of third semiconductor switching element groups respectively connected between the plurality of third output points and the motor 42. If the total number of the first output point P1, the second output point P2, and the plurality of third output points P3 is n, the drive circuit 31 can provide a voltage of (2×n-1) levels. By increasing n, the voltage waveform applied to the motor 42 by the drive circuit 31 can be made closer to a sine wave.

 一変形例において、インバータ回路312の回路構成は、図2の回路構成に限定されない。図2のインバータ回路312の回路構成は、いわゆるNPC(Neutral-Point-Clamped)方式であるが、A-NPC(Advanced-NPC)方式であってもよい。インバータ回路312は、電圧が異なる複数の出力点と電動機との間にそれぞれ接続される複数の半導体スイッチング素子群を有しいればよい。複数の半導体スイッチング素子群を構成する複数の半導体スイッチング素子は、2以上の半導体スイッチング素子群に共通に含まれる半導体スイッチング素子を含んでよい。 In one modified example, the circuit configuration of the inverter circuit 312 is not limited to the circuit configuration in FIG. 2. The circuit configuration of the inverter circuit 312 in FIG. 2 is a so-called NPC (Neutral-Point-Clamped) type, but may be an A-NPC (Advanced-NPC) type. The inverter circuit 312 only needs to have a plurality of semiconductor switching element groups that are respectively connected between a plurality of output points with different voltages and the electric motor. The plurality of semiconductor switching elements that make up the plurality of semiconductor switching element groups may include semiconductor switching elements that are included in common to two or more semiconductor switching element groups.

 一変形例において、冷凍サイクル装置は、1台の室外機に1台の室内機が接続された構成の空気調和器(いわゆるルームエアコン(RAC))に限定されない。冷凍サイクル装置は、1又は複数の室外機に複数の室内機が接続された構成の空気調和器(いわゆるパッケージエアコン(PAC)、ビル用マルチエアコン(VRF))であってもよい。あるいは、冷凍サイクル装置は、空気調和器に限定されず、冷蔵庫又は冷凍庫等の冷凍又は冷蔵装置であってもよい。 In one modified example, the refrigeration cycle device is not limited to an air conditioner (so-called room air conditioner (RAC)) configured with one indoor unit connected to one outdoor unit. The refrigeration cycle device may be an air conditioner (so-called package air conditioner (PAC), building multi air conditioner (VRF)) configured with multiple indoor units connected to one or multiple outdoor units. Alternatively, the refrigeration cycle device is not limited to an air conditioner, and may be a refrigeration or cooling device such as a refrigerator or freezer.

 一変形例において、第1~第3異常通知等の異常通知は、直接発出又は間接発出されてよい。直接発出は、空気調和器が、直接的に、室外機1a、室内機1b、又はリモートコントローラ等を用いて出力することである。例えば、異常通知は、空気調和器の室外機1a、室内機1b、又はリモートコントローラに備えられた光源装置(LED、赤色灯、警告表示ランプ等)による光、音発生装置(スピーカ、ブザー、アラーム、発音器、警報機等)による音、又は表示装置(ディスプレイ、表示パネル等)による視覚表示(メッセージ表示、バックライト点滅等)を利用して出力されてよい。間接発出は、インターネット等の通信ネットワーク又はサーバを通じて、空気調和器の外部に出力及び/又は保存することである。間接発出は、プッシュ通知(携帯電話、スマートフォンへの通知)、音声アシスタント(Alexa echo、Google home等)への通知、メーカー又はメンテナンス会社への自動通報、管理会社の監視機器へのメッセージ送信、サービスセンタ等への通知、消防車又は警備会社等への通報、記憶装置の異常履歴への保存等が挙げられる。 In one variant, the abnormality notifications such as the first to third abnormality notifications may be issued directly or indirectly. Direct issuing is when the air conditioner outputs the abnormality notification directly using the outdoor unit 1a, indoor unit 1b, or remote controller, etc. For example, the abnormality notification may be output using light from a light source device (LED, red light, warning indicator lamp, etc.) provided on the outdoor unit 1a, indoor unit 1b, or remote controller of the air conditioner, sound from a sound generating device (speaker, buzzer, alarm, sound generator, alarm, etc.), or visual display (message display, backlight flashing, etc.) by a display device (display, display panel, etc.). Indirect issuing is when the abnormality notification is output and/or stored outside the air conditioner via a communication network such as the Internet or a server. Indirect notifications include push notifications (notifications to mobile phones and smartphones), notifications to voice assistants (Alexa Echo, Google Home, etc.), automatic notifications to manufacturers or maintenance companies, sending messages to monitoring equipment of management companies, notifications to service centers, etc., notifications to fire engines or security companies, and saving the abnormality history in a storage device.

 一変形例において、制御装置3は、冷凍サイクル回路2の異常の診断を実行するにあたっては、様々な指標値(状態値)を取得してよい。例えば、冷凍サイクル回路2の異常の 診断に用いられる指標値としては、吸入圧力/蒸発飽和温度、吐出圧力/凝集飽和温度、 吸入ガス冷媒温度、吐出ガス冷媒温度、凝縮器出口冷媒温度、蒸発器入口冷媒温度、蒸発 器出口冷媒温度、負荷側吹出空気温度、レシーバの液面高さ、放電予兆検知回数、放流装置36の状態切り替え回数、警告発出回数、運転制限回数、運転停止回数が挙げられる。なお、制御装置3による診断の結果は、制御装置3の内部のメモリ又は外部のサーバ等に所定期間(例えば1~3年)以上は保管されることが好ましい。また、制御装置3での異常通知の履歴も同様に、制御装置3の内部のメモリ又は外部のサーバ等に所定期間(例えば1~3年)以上は保管されることが好ましい。 In one modified example, the control device 3 may acquire various index values (state values) when diagnosing an abnormality in the refrigeration cycle circuit 2. For example, index values used in diagnosing an abnormality in the refrigeration cycle circuit 2 include suction pressure/evaporation saturation temperature, discharge pressure/condensation saturation temperature, suction gas refrigerant temperature, discharge gas refrigerant temperature, condenser outlet refrigerant temperature, evaporator inlet refrigerant temperature, evaporator outlet refrigerant temperature, load side blown air temperature, receiver liquid level, number of discharge precursor detections, number of state switches of the discharge device 36, number of warnings issued, number of operation restrictions, and number of operation stops. The results of the diagnosis by the control device 3 are preferably stored in the internal memory of the control device 3 or an external server or the like for a predetermined period (e.g., 1 to 3 years) or more. Similarly, the history of abnormality notifications by the control device 3 is preferably stored in the internal memory of the control device 3 or an external server or the like for a predetermined period (e.g., 1 to 3 years) or more.

 [3.態様]
 上記実施の形態及び変形例から明らかなように、本開示は、下記の態様を含む。
3. Aspects
As is apparent from the above embodiment and modifications, the present disclosure includes the following aspects.

 [態様1]
 作動媒体が循環する冷凍サイクル回路の圧縮機を制御する制御装置であって、
 前記制御装置は、
  前記圧縮機を駆動する駆動回路と、
  前記駆動回路と前記圧縮機との間の接続線を基準電位から分離する第1状態と、前記接続線を基準電位に接続する第2状態とを切り替え可能な放流装置と、
 を備える、
 制御装置。
[Aspect 1]
A control device for controlling a compressor of a refrigeration cycle circuit in which a working medium circulates,
The control device includes:
A drive circuit for driving the compressor;
a discharge device capable of switching between a first state in which a connection line between the drive circuit and the compressor is separated from a reference potential and a second state in which the connection line is connected to the reference potential;
Equipped with
Control device.

 [態様2]
 前記基準電位は、前記駆動回路外に存在する、
 態様1の制御装置。
[Aspect 2]
The reference potential exists outside the drive circuit.
The control device of aspect 1.

 [態様3]
 前記基準電位は、グランドにより与えられる、
 態様2の制御装置。
[Aspect 3]
The reference potential is provided by ground.
The control device of aspect 2.

 [態様4]
 前記駆動回路及び前記放流装置を制御する制御回路を更に備え、
 前記制御回路は、前記圧縮機と前記駆動回路との少なくとも一方の異常の検出に応じて、前記駆動回路の動作の停止と、前記放流装置の前記第2状態への切り替えと、を行う、
 態様1~3のいずれか一つの制御装置。
[Aspect 4]
A control circuit for controlling the drive circuit and the discharge device is further provided.
The control circuit stops the operation of the drive circuit and switches the discharge device to the second state in response to detection of an abnormality in at least one of the compressor and the drive circuit.
The control device according to any one of aspects 1 to 3.

 [態様5]
 前記制御回路は、前記駆動回路の動作の停止を解除する場合に、前記放流装置を前記第1状態に切り替える、
 態様4の制御装置。
[Aspect 5]
The control circuit switches the discharge device to the first state when the stop of the operation of the drive circuit is released.
The control device of aspect 4.

 [態様6]
 前記放流装置は、スイッチと抵抗との直列回路を有し、
 前記直列回路は、前記接続線と、前記基準電位との間に接続され、
 前記第1状態は、前記スイッチがオフの状態であり、
 前記第2状態は、前記スイッチがオンの状態である、
 態様1~5のいずれか一つの制御装置。
[Aspect 6]
The discharge device includes a series circuit of a switch and a resistor,
the series circuit is connected between the connection line and the reference potential;
the first state is a state in which the switch is off,
The second state is a state in which the switch is on.
The control device according to any one of aspects 1 to 5.

 [態様7]
 前記抵抗の抵抗値は、1kΩ以下である、
 態様6の制御装置。
[Aspect 7]
The resistance value of the resistor is 1 kΩ or less.
The control device of aspect 6.

 [態様8]
 前記接続線は、交流出力電力の三相にそれぞれ対応する複数の接続線を含み、
 前記放流装置は、前記複数の接続線と前記基準電位との間にそれぞれ接続される複数の前記直列回路を有する、
 態様4~7のいずれか一つの制御装置。
[Aspect 8]
the connection lines include a plurality of connection lines respectively corresponding to three phases of AC output power,
The discharge device has a plurality of the series circuits respectively connected between the plurality of connection lines and the reference potential.
The control device according to any one of aspects 4 to 7.

 [態様9]
 前記圧縮機と前記駆動回路との少なくとも一方の状態を検出する状態検出回路を更に備え、
 前記駆動回路は、電源からの入力電力に基づいて直流出力電力の電圧が第1電圧となるように前記直流出力電力を出力するコンバータ回路及び前記直流出力電力に基づいて交流出力電力を前記圧縮機に出力するインバータ回路を含み、
 前記状態検出回路は、前記直流出力電力を検出し、前記直流出力電力の電圧を示す検出電圧を出力し、
 前記制御回路は、前記検出電圧が前記第1電圧以下の第2電圧未満になると、前記駆動回路の動作の停止と、前記放流装置の前記第2状態への切り替えと、を行う、
 態様4又は5の制御装置。
[Aspect 9]
A state detection circuit for detecting a state of at least one of the compressor and the drive circuit is further provided,
the drive circuit includes a converter circuit that outputs DC output power based on input power from a power source so that a voltage of the DC output power becomes a first voltage, and an inverter circuit that outputs AC output power to the compressor based on the DC output power,
the state detection circuit detects the DC output power and outputs a detection voltage indicative of a voltage of the DC output power;
When the detection voltage becomes less than a second voltage that is equal to or less than the first voltage, the control circuit stops the operation of the drive circuit and switches the discharge device to the second state.
The control device of aspect 4 or 5.

 [態様10]
 前記第2電圧は、前記第1電圧の0.3倍以上0.8倍以下である、
 態様9の制御装置。
[Aspect 10]
The second voltage is 0.3 to 0.8 times the first voltage.
The control device of aspect 9.

 [態様11]
 前記圧縮機は、
  前記作動媒体の流路を構成する密閉容器と、
  前記密閉容器内に位置し、前記作動媒体を圧縮する圧縮機構と、
  前記密閉容器内に位置し、前記圧縮機構を動作させる電動機と、
 を備え、
 前記インバータ回路は、前記交流出力電力を前記電動機に出力し、
 前記接続線は、前記インバータ回路と前記電動機との間にある、
 態様1~10のいずれか一つの制御装置。
[Aspect 11]
The compressor includes:
A sealed container that forms a flow path of the working medium;
a compression mechanism located within the sealed container and configured to compress the working medium;
an electric motor located within the sealed container for operating the compression mechanism;
Equipped with
The inverter circuit outputs the AC output power to the electric motor,
The connecting line is between the inverter circuit and the electric motor.
The control device according to any one of aspects 1 to 10.

 [態様12]
 作動媒体が循環する冷凍サイクル回路の圧縮機と前記圧縮機を駆動する駆動回路との間の接続線に接続され、前記接続線を基準電位から分離する第1状態と、前記接続線を基準電位に接続する第2状態とを切り替え可能に構成される、
 放流装置。
[Aspect 12]
the compressor is connected to a connection line between a compressor of a refrigeration cycle circuit in which a working medium circulates and a drive circuit that drives the compressor, and is configured to be switchable between a first state in which the connection line is separated from a reference potential and a second state in which the connection line is connected to the reference potential;
Discharge device.

 [態様13]
 態様1~11のいずれか一つの制御装置と、
 前記冷凍サイクル回路と、
 を備える、
 冷凍サイクル装置。
[Aspect 13]
A control device according to any one of aspects 1 to 11;
The refrigeration cycle circuit;
Equipped with
Refrigeration cycle equipment.

 [態様14]
 前記作動媒体は、エチレン系フルオロオレフィンを含む、
 態様13の冷凍サイクル装置。
[Aspect 14]
The working medium comprises an ethylene-based fluoroolefin;
The refrigeration cycle apparatus of aspect 13.

 [態様15]
 前記エチレン系フルオロオレフィンは、1,1,2-トリフルオロエチレン、トランス-1,2-ジフルオロエチレン、シス-1,2-ジフルオロエチレン、1,1-ジフルオロエチレン、テトラフルオロエチレン、又は、モノフルオロエチレンである、
 態様14の冷凍サイクル装置。
[Aspect 15]
The ethylenic fluoroolefin is 1,1,2-trifluoroethylene, trans-1,2-difluoroethylene, cis-1,2-difluoroethylene, 1,1-difluoroethylene, tetrafluoroethylene, or monofluoroethylene;
The refrigeration cycle apparatus of aspect 14.

 [態様16]
 前記作動媒体は、ジフルオロメタンを更に含む、
 態様14の冷凍サイクル装置。
[Aspect 16]
The working medium further comprises difluoromethane.
The refrigeration cycle apparatus of aspect 14.

 [態様17]
 前記作動媒体は、飽和炭化水素を更に含む、
 態様14の冷凍サイクル装置。
[Aspect 17]
The working medium further comprises a saturated hydrocarbon.
The refrigeration cycle apparatus of aspect 14.

 [態様18]
 前記作動媒体は、前記エチレン系フルオロオレフィンの不均化反応を抑制する不均化抑制剤として、炭素数が1又は2のハロアルカンを含む、
 態様14の冷凍サイクル装置。
[Aspect 18]
The working fluid contains a haloalkane having 1 or 2 carbon atoms as a disproportionation inhibitor for suppressing the disproportionation reaction of the ethylenic fluoroolefin.
The refrigeration cycle apparatus of aspect 14.

 [態様19]
 前記飽和炭化水素は、n-プロパンを含む、
 態様17の冷凍サイクル装置。
[Aspect 19]
The saturated hydrocarbons include n-propane.
The refrigeration cycle apparatus of aspect 17.

 [態様20]
 作動媒体が循環する冷凍サイクル回路の圧縮機を制御する制御装置で実行される制御方法であって、
 前記制御装置は、
  前記圧縮機を駆動する駆動回路と、
  前記駆動回路と前記圧縮機との間の接続線を基準電位から分離する第1状態と、前記接続線を基準電位に接続する第2状態とを切り替え可能な放流装置と、
 を備え、
 前記制御方法は、前記圧縮機と前記駆動回路との少なくとも一方の異常の検出に応じて、前記駆動回路の動作の停止と、前記放流装置の前記第2状態への切り替えと、を行う、
 制御方法。
[Aspect 20]
A control method executed by a control device that controls a compressor of a refrigeration cycle circuit in which a working medium circulates, comprising:
The control device includes:
A drive circuit for driving the compressor;
a discharge device capable of switching between a first state in which a connection line between the drive circuit and the compressor is separated from a reference potential and a second state in which the connection line is connected to the reference potential;
Equipped with
The control method includes stopping the operation of the drive circuit and switching the discharge device to the second state in response to detection of an abnormality in at least one of the compressor and the drive circuit.
Control methods.

 [態様21]
 作動媒体が循環する冷凍サイクル回路の圧縮機を制御する制御装置が備えるコンピュータシステムで実行されるプログラムであって、
 前記制御装置は、
  前記圧縮機を駆動する駆動回路と、
  前記駆動回路と前記圧縮機との間の接続線を基準電位から分離する第1状態と、前記接続線を基準電位に接続する第2状態とを切り替え可能な放流装置と、
 を備え、
 前記プログラムは、前記コンピュータシステムに、前記圧縮機と前記駆動回路との少なくとも一方の異常の検出に応じて、前記駆動回路の動作の停止と、前記放流装置の前記第2状態への切り替えと、を行わせる、
 プログラム。
[Aspect 21]
A program executed by a computer system provided in a control device that controls a compressor of a refrigeration cycle circuit in which a working medium circulates,
The control device includes:
A drive circuit for driving the compressor;
a discharge device capable of switching between a first state in which a connection line between the drive circuit and the compressor is separated from a reference potential and a second state in which the connection line is connected to the reference potential;
Equipped with
The program causes the computer system to stop operation of the drive circuit and switch the discharge device to the second state in response to detection of an abnormality in at least one of the compressor and the drive circuit.
program.

 態様2~11、態様14~19は、任意の要素であり、必須ではない。態様2~11、態様14~19は、態様12、20又は21に適宜組み合わせることが可能である。 Aspects 2 to 11 and aspects 14 to 19 are optional elements and are not required. Aspects 2 to 11 and aspects 14 to 19 can be appropriately combined with aspect 12, 20, or 21.

 本開示は、制御装置、放流装置、冷凍サイクル装置、制御方法及びプログラムに適用可能である。具体的には、作動媒体が、冷媒成分としてエチレン系フルオロオレフィンを含む冷凍サイクル回路のための制御装置、放流装置、当該冷凍サイクル回路及び制御装置を含む冷凍サイクル装置、当該制御装置で実行される制御方法、及び、当該制御装置で用いられるプログラム(コンピュータプログラム)に、本開示は適用可能である。 The present disclosure is applicable to a control device, a discharge device, a refrigeration cycle device, a control method, and a program. Specifically, the present disclosure is applicable to a control device for a refrigeration cycle circuit in which the working medium contains an ethylene-based fluoroolefin as a refrigerant component, a discharge device, a refrigeration cycle device including the refrigeration cycle circuit and the control device, a control method executed by the control device, and a program (computer program) used in the control device.

  1 冷凍サイクル装置
  2 冷凍サイクル回路
  3 制御装置
  4 圧縮機
  10 電源
  20 作動媒体
  31 駆動回路
  32 状態検出回路
  35 制御回路
  36 放流装置
  361,362,363 直列回路
  SW31,SW32,SW33 スイッチ
  R31,R32,R33 抵抗
  40 密閉容器
  41 圧縮機構
  42 電動機
  311 コンバータ回路
  312 インバータ回路
  Lu,Lv,Lw 接続線
REFRIGERATION CYCLE DEVICE 2 REFRIGERATION CYCLE CIRCUIT 3 CONTROL DEVICE 4 COMPRESSOR 10 POWER SUPPLY 20 WORKING MEDIUM 31 DRIVE CIRCUIT 32 STATUS DETECTION CIRCUIT 35 CONTROL CIRCUIT 36 DISCHARGE DEVICE 361, 362, 363 SERIAL CIRCUIT SW31, SW32, SW33 SWITCH R31, R32, R33 RESISTOR 40 ENCLOSED CONTAINER 41 COMPRESSION MECHANISM 42 ELECTRIC MOTOR 311 CONVERTER CIRCUIT 312 INVERTER CIRCUIT Lu, Lv, Lw CONNECTION WIRE

Claims (20)

 作動媒体が循環する冷凍サイクル回路の圧縮機を制御する制御装置であって、
 前記制御装置は、
  前記圧縮機を駆動する駆動回路と、
  前記駆動回路と前記圧縮機との間の接続線に接続され、前記接続線を基準電位から分離する第1状態と、前記接続線を基準電位に接続する第2状態とを切り替え可能な放流装置と、
 を備える、
 制御装置。
A control device for controlling a compressor of a refrigeration cycle circuit in which a working medium circulates,
The control device includes:
A drive circuit for driving the compressor;
a discharge device connected to a connection line between the drive circuit and the compressor and switchable between a first state in which the connection line is separated from a reference potential and a second state in which the connection line is connected to the reference potential;
Equipped with
Control device.
 前記基準電位は、前記駆動回路外に存在する、
 請求項1の制御装置。
The reference potential exists outside the drive circuit.
The control device of claim 1.
 前記基準電位は、グランドにより与えられる、
 請求項2の制御装置。
The reference potential is provided by ground.
The control device of claim 2.
 前記駆動回路及び前記放流装置を制御する制御回路を更に備え、
 前記制御回路は、前記圧縮機と前記駆動回路との少なくとも一方の異常の検出に応じて、前記駆動回路の動作の停止と、前記放流装置の前記第2状態への切り替えと、を行う、
 請求項1の制御装置。
A control circuit for controlling the drive circuit and the discharge device is further provided.
The control circuit stops the operation of the drive circuit and switches the discharge device to the second state in response to detection of an abnormality in at least one of the compressor and the drive circuit.
The control device of claim 1.
 前記制御回路は、前記駆動回路の動作の停止を解除する場合に、前記放流装置を前記第1状態に切り替える、
 請求項4の制御装置。
The control circuit switches the discharge device to the first state when the stop of the operation of the drive circuit is released.
The control device of claim 4.
 前記放流装置は、スイッチと抵抗との直列回路を有し、
 前記直列回路は、前記接続線と、前記基準電位との間に接続され、
 前記第1状態は、前記スイッチがオフの状態であり、
 前記第2状態は、前記スイッチがオンの状態である、
 請求項1の制御装置。
The discharge device includes a series circuit of a switch and a resistor,
the series circuit is connected between the connection line and the reference potential;
the first state is a state in which the switch is off,
The second state is a state in which the switch is on.
The control device of claim 1.
 前記抵抗の抵抗値は、1kΩ以下である、
 請求項6の制御装置。
The resistance value of the resistor is 1 kΩ or less.
The control device of claim 6.
 前記接続線は、交流出力電力の三相にそれぞれ対応する複数の接続線を含み、
 前記放流装置は、前記複数の接続線と前記基準電位との間にそれぞれ接続される複数の前記直列回路を有する、
 請求項6の制御装置。
the connection lines include a plurality of connection lines respectively corresponding to three phases of AC output power,
The discharge device has a plurality of the series circuits respectively connected between the plurality of connection lines and the reference potential.
The control device of claim 6.
 前記圧縮機と前記駆動回路との少なくとも一方の状態を検出する状態検出回路を更に備え、
 前記駆動回路は、電源からの入力電力に基づいて直流出力電力の電圧が第1電圧となるように前記直流出力電力を出力するコンバータ回路及び前記直流出力電力に基づいて交流出力電力を前記圧縮機に出力するインバータ回路を含み、
 前記状態検出回路は、前記直流出力電力を検出し、前記直流出力電力の電圧を示す検出電圧を出力し、
 前記制御回路は、前記検出電圧が前記第1電圧以下の第2電圧未満になると前記駆動回路の動作の停止と、前記放流装置の前記第2状態への切り替えと、を行う、
 請求項4の制御装置。
a state detection circuit for detecting a state of at least one of the compressor and the drive circuit,
the drive circuit includes a converter circuit that outputs DC output power based on input power from a power source so that a voltage of the DC output power becomes a first voltage, and an inverter circuit that outputs AC output power to the compressor based on the DC output power,
the state detection circuit detects the DC output power and outputs a detection voltage indicative of a voltage of the DC output power;
When the detection voltage becomes less than a second voltage that is equal to or less than the first voltage, the control circuit stops the operation of the drive circuit and switches the discharge device to the second state.
The control device of claim 4.
 前記第2電圧は、前記第1電圧の0.3倍以上0.8倍以下である、
 請求項9の制御装置。
The second voltage is 0.3 to 0.8 times the first voltage.
The control device of claim 9.
 作動媒体が循環する冷凍サイクル回路の圧縮機と前記圧縮機を駆動する駆動回路との間の接続線に接続され、前記接続線を基準電位から分離する第1状態と、前記接続線を基準電位に接続する第2状態とを切り替え可能に構成される、
 放流装置。
the compressor is connected to a connection line between a compressor of a refrigeration cycle circuit in which a working medium circulates and a drive circuit that drives the compressor, and is configured to be switchable between a first state in which the connection line is separated from a reference potential and a second state in which the connection line is connected to the reference potential;
Discharge device.
 請求項1~10のいずれか一つの制御装置と、
 前記冷凍サイクル回路と、
 を備える、
 冷凍サイクル装置。
A control device according to any one of claims 1 to 10;
The refrigeration cycle circuit;
Equipped with
Refrigeration cycle equipment.
 前記作動媒体は、エチレン系フルオロオレフィンを含む、
 請求項12の冷凍サイクル装置。
The working medium comprises an ethylene-based fluoroolefin;
The refrigeration cycle apparatus of claim 12.
 前記エチレン系フルオロオレフィンは、1,1,2-トリフルオロエチレン、トランス-1,2-ジフルオロエチレン、シス-1,2-ジフルオロエチレン、1,1-ジフルオロエチレン、テトラフルオロエチレン、又は、モノフルオロエチレンである、
 請求項13の冷凍サイクル装置。
The ethylenic fluoroolefin is 1,1,2-trifluoroethylene, trans-1,2-difluoroethylene, cis-1,2-difluoroethylene, 1,1-difluoroethylene, tetrafluoroethylene, or monofluoroethylene;
The refrigeration cycle apparatus of claim 13.
 前記作動媒体は、ジフルオロメタンを更に含む、
 請求項12の冷凍サイクル装置。
The working medium further comprises difluoromethane.
The refrigeration cycle apparatus of claim 12.
 前記作動媒体は、飽和炭化水素を更に含む、
 請求項12の冷凍サイクル装置。
The working medium further comprises a saturated hydrocarbon.
The refrigeration cycle apparatus of claim 12.
 前記作動媒体は、前記エチレン系フルオロオレフィンの不均化反応を抑制する不均化抑制剤として、炭素数が1又は2のハロアルカンを含む、
 請求項13の冷凍サイクル装置。
The working fluid contains a haloalkane having 1 or 2 carbon atoms as a disproportionation inhibitor for suppressing the disproportionation reaction of the ethylenic fluoroolefin.
The refrigeration cycle apparatus of claim 13.
 前記飽和炭化水素は、n-プロパンを含む、
 請求項16の冷凍サイクル装置。
The saturated hydrocarbons include n-propane.
The refrigeration cycle apparatus of claim 16.
 作動媒体が循環する冷凍サイクル回路の圧縮機を制御する制御装置で実行される制御方法であって、
 前記制御装置は、
  前記圧縮機を駆動する駆動回路と、
  前記駆動回路と前記圧縮機との間の接続線に接続され、前記接続線を基準電位から分離する第1状態と、前記接続線を基準電位に接続する第2状態とを切り替え可能な放流装置と、
 を備え、
 前記制御方法は、前記圧縮機と前記駆動回路との少なくとも一方の異常の検出に応じて、前記駆動回路の動作の停止と、前記放流装置の前記第2状態への切り替えと、を行う、
 制御方法。
A control method executed by a control device that controls a compressor of a refrigeration cycle circuit in which a working medium circulates, comprising:
The control device includes:
A drive circuit for driving the compressor;
a discharge device connected to a connection line between the drive circuit and the compressor and switchable between a first state in which the connection line is separated from a reference potential and a second state in which the connection line is connected to the reference potential;
Equipped with
The control method includes stopping the operation of the drive circuit and switching the discharge device to the second state in response to detection of an abnormality in at least one of the compressor and the drive circuit.
Control methods.
 作動媒体が循環する冷凍サイクル回路の圧縮機を制御する制御装置が備えるコンピュータシステムで実行されるプログラムであって、
 前記制御装置は、
  前記圧縮機を駆動する駆動回路と、
  前記駆動回路と前記圧縮機との間の接続線に接続され、前記接続線を基準電位から分離する第1状態と、前記接続線を基準電位に接続する第2状態とを切り替え可能な放流装置と、
 を備え、
 前記プログラムは、前記コンピュータシステムに、前記圧縮機と前記駆動回路との少なくとも一方の異常の検出に応じて、前記駆動回路の動作の停止と、前記放流装置の前記第2状態への切り替えと、を行わせる、
 プログラム。
A program executed by a computer system provided in a control device that controls a compressor of a refrigeration cycle circuit in which a working medium circulates,
The control device includes:
A drive circuit for driving the compressor;
a discharge device connected to a connection line between the drive circuit and the compressor and switchable between a first state in which the connection line is separated from a reference potential and a second state in which the connection line is connected to the reference potential;
Equipped with
The program causes the computer system to stop operation of the drive circuit and switch the discharge device to the second state in response to detection of an abnormality in at least one of the compressor and the drive circuit.
program.
PCT/JP2024/011312 2023-03-31 2024-03-22 Control device, discharge device, refrigeration cycle device, control method, and program WO2024203857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023059387 2023-03-31
JP2023-059387 2023-03-31

Publications (1)

Publication Number Publication Date
WO2024203857A1 true WO2024203857A1 (en) 2024-10-03

Family

ID=92906413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/011312 WO2024203857A1 (en) 2023-03-31 2024-03-22 Control device, discharge device, refrigeration cycle device, control method, and program

Country Status (1)

Country Link
WO (1) WO2024203857A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259202A (en) * 2009-04-23 2010-11-11 Toshiba Corp Electric vehicle controller
JP2011502457A (en) * 2007-10-31 2011-01-20 ジョンソン コントロールズ テクノロジー カンパニー Common mode and differential mode filters for variable speed drives
CN205385408U (en) * 2015-12-25 2016-07-13 深圳市英威腾电气股份有限公司 Capacitor filter device, converter major loop and converter
JP2017003197A (en) * 2015-06-11 2017-01-05 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP2020150572A (en) * 2019-03-11 2020-09-17 株式会社明電舎 Clamp circuit
JP2022122870A (en) * 2017-04-13 2022-08-23 パナソニックIpマネジメント株式会社 refrigeration cycle equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502457A (en) * 2007-10-31 2011-01-20 ジョンソン コントロールズ テクノロジー カンパニー Common mode and differential mode filters for variable speed drives
JP2010259202A (en) * 2009-04-23 2010-11-11 Toshiba Corp Electric vehicle controller
JP2017003197A (en) * 2015-06-11 2017-01-05 パナソニックIpマネジメント株式会社 Refrigeration cycle device
CN205385408U (en) * 2015-12-25 2016-07-13 深圳市英威腾电气股份有限公司 Capacitor filter device, converter major loop and converter
JP2022122870A (en) * 2017-04-13 2022-08-23 パナソニックIpマネジメント株式会社 refrigeration cycle equipment
JP2020150572A (en) * 2019-03-11 2020-09-17 株式会社明電舎 Clamp circuit

Similar Documents

Publication Publication Date Title
WO2019172008A1 (en) Refrigeration cycle device
JP4757680B2 (en) Air conditioner
JPH09145174A (en) Air conditioner and its operation controlling method
WO2009051321A2 (en) Motor controller and method of controlling motor
JP6732126B2 (en) Refrigeration cycle equipment
JP2013162719A (en) Rush-current prevention device
WO2024203857A1 (en) Control device, discharge device, refrigeration cycle device, control method, and program
WO2024203858A1 (en) Inverter circuit, drive circuit, control device, refrigeration cycle device, control method, and program
JP2009268201A (en) Ac-dc converter and compressor drive device, compressor and air conditioner using the ac-dc converter
WO2024203908A1 (en) Converter circuit, drive circuit, control device, refrigeration cycle device, control method, and program
WO2024203926A1 (en) Drive circuit, discharge device, control device, refrigeration cycle device, control method, and program
EP4517224A1 (en) Refrigeration cycle device
US11211890B2 (en) Power conversion apparatus and air-conditioning apparatus
WO2025070609A1 (en) Method for operating refrigeration cycle circuit, refrigeration cycle composition, refrigeration cycle device, control method, and program
EP4534924A1 (en) Refrigeration cycle device
US20170074561A1 (en) Refrigeration cycle device
WO2022065506A1 (en) Instrument management system for inverter compressor
JPS6277539A (en) inverter air conditioner
WO2025009431A1 (en) Control device, refrigeration cycle device, control method, and program
EP4517088A1 (en) Refrigeration cycle device
WO2025028193A1 (en) Control device and refrigeration cycle device
JP5392281B2 (en) Power supply circuit and heat pump unit
WO2025084086A1 (en) Refrigeration cycle apparatus, light detection circuit, control device, control method, and program
US11611285B2 (en) Power converter and air conditioner
WO2025041299A1 (en) Air conditioner and abnormality detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24779975

Country of ref document: EP

Kind code of ref document: A1