WO2024203515A1 - Resin composition, resin composition for metal surface treatment, method for producing metal laminate, and metal laminate - Google Patents
Resin composition, resin composition for metal surface treatment, method for producing metal laminate, and metal laminate Download PDFInfo
- Publication number
- WO2024203515A1 WO2024203515A1 PCT/JP2024/010462 JP2024010462W WO2024203515A1 WO 2024203515 A1 WO2024203515 A1 WO 2024203515A1 JP 2024010462 W JP2024010462 W JP 2024010462W WO 2024203515 A1 WO2024203515 A1 WO 2024203515A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- metal
- compound
- polyether
- component
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 257
- 239000002184 metal Substances 0.000 title claims abstract description 257
- 239000011342 resin composition Substances 0.000 title claims abstract description 256
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 39
- 238000004381 surface treatment Methods 0.000 title claims description 53
- 239000004721 Polyphenylene oxide Substances 0.000 claims abstract description 239
- 229920000570 polyether Polymers 0.000 claims abstract description 239
- 239000003822 epoxy resin Substances 0.000 claims abstract description 150
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 150
- 150000001875 compounds Chemical class 0.000 claims abstract description 134
- 229920001730 Moisture cure polyurethane Polymers 0.000 claims abstract description 98
- 229920002635 polyurethane Polymers 0.000 claims abstract description 74
- 239000004814 polyurethane Substances 0.000 claims abstract description 74
- 239000007787 solid Substances 0.000 claims abstract description 59
- 239000011248 coating agent Substances 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 48
- 238000000576 coating method Methods 0.000 claims abstract description 43
- -1 polyol compound Chemical class 0.000 claims description 151
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 82
- 229920005862 polyol Polymers 0.000 claims description 66
- 239000005056 polyisocyanate Substances 0.000 claims description 63
- 229920001228 polyisocyanate Polymers 0.000 claims description 63
- 229920000877 Melamine resin Polymers 0.000 claims description 55
- 239000003795 chemical substances by application Substances 0.000 claims description 50
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 49
- 125000000129 anionic group Chemical group 0.000 claims description 39
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 35
- 239000002981 blocking agent Substances 0.000 claims description 30
- 239000004970 Chain extender Substances 0.000 claims description 16
- 230000000903 blocking effect Effects 0.000 claims description 11
- 238000010030 laminating Methods 0.000 claims description 11
- 238000002788 crimping Methods 0.000 claims description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 62
- 238000005260 corrosion Methods 0.000 description 57
- 230000007797 corrosion Effects 0.000 description 57
- 239000002994 raw material Substances 0.000 description 41
- 239000000839 emulsion Substances 0.000 description 33
- 239000002904 solvent Substances 0.000 description 31
- 239000002736 nonionic surfactant Substances 0.000 description 29
- 239000005011 phenolic resin Substances 0.000 description 28
- 229920001568 phenolic resin Polymers 0.000 description 26
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 24
- 239000004094 surface-active agent Substances 0.000 description 24
- 229910000831 Steel Inorganic materials 0.000 description 22
- 239000010959 steel Substances 0.000 description 22
- 239000004593 Epoxy Substances 0.000 description 21
- 230000001070 adhesive effect Effects 0.000 description 21
- 150000002739 metals Chemical class 0.000 description 21
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 20
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 20
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 19
- 239000006185 dispersion Substances 0.000 description 18
- 238000011156 evaluation Methods 0.000 description 18
- 238000003825 pressing Methods 0.000 description 18
- 239000000758 substrate Substances 0.000 description 17
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 16
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 16
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 15
- 239000002253 acid Substances 0.000 description 15
- 125000003277 amino group Chemical group 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 229920003986 novolac Polymers 0.000 description 14
- 229920001451 polypropylene glycol Polymers 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 229920000909 polytetrahydrofuran Polymers 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 229930185605 Bisphenol Natural products 0.000 description 11
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 11
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 10
- 238000001035 drying Methods 0.000 description 10
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 9
- 239000004640 Melamine resin Substances 0.000 description 9
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 150000004985 diamines Chemical class 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 230000003472 neutralizing effect Effects 0.000 description 9
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 8
- 239000002280 amphoteric surfactant Substances 0.000 description 8
- 239000003945 anionic surfactant Substances 0.000 description 8
- 239000012948 isocyanate Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 7
- PTBDIHRZYDMNKB-UHFFFAOYSA-N 2,2-Bis(hydroxymethyl)propionic acid Chemical compound OCC(C)(CO)C(O)=O PTBDIHRZYDMNKB-UHFFFAOYSA-N 0.000 description 7
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 7
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 7
- 150000001412 amines Chemical class 0.000 description 7
- HIFVAOIJYDXIJG-UHFFFAOYSA-N benzylbenzene;isocyanic acid Chemical class N=C=O.N=C=O.C=1C=CC=CC=1CC1=CC=CC=C1 HIFVAOIJYDXIJG-UHFFFAOYSA-N 0.000 description 7
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 150000003077 polyols Chemical class 0.000 description 7
- GODZNYBQGNSJJN-UHFFFAOYSA-N 1-aminoethane-1,2-diol Chemical compound NC(O)CO GODZNYBQGNSJJN-UHFFFAOYSA-N 0.000 description 6
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 6
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- 239000004305 biphenyl Substances 0.000 description 6
- 235000010290 biphenyl Nutrition 0.000 description 6
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 6
- 239000003093 cationic surfactant Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 235000011007 phosphoric acid Nutrition 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 5
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical class CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 5
- 150000001718 carbodiimides Chemical class 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- WTFAGPBUAGFMQX-UHFFFAOYSA-N 1-[2-[2-(2-aminopropoxy)propoxy]propoxy]propan-2-amine Chemical compound CC(N)COCC(C)OCC(C)OCC(C)N WTFAGPBUAGFMQX-UHFFFAOYSA-N 0.000 description 4
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 4
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000005058 Isophorone diisocyanate Substances 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- MBHRHUJRKGNOKX-UHFFFAOYSA-N [(4,6-diamino-1,3,5-triazin-2-yl)amino]methanol Chemical compound NC1=NC(N)=NC(NCO)=N1 MBHRHUJRKGNOKX-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 229960003237 betaine Drugs 0.000 description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 4
- 229930003836 cresol Natural products 0.000 description 4
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 4
- 125000005442 diisocyanate group Chemical group 0.000 description 4
- 230000005674 electromagnetic induction Effects 0.000 description 4
- 125000003700 epoxy group Chemical group 0.000 description 4
- XLLIQLLCWZCATF-UHFFFAOYSA-N ethylene glycol monomethyl ether acetate Natural products COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 4
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 4
- 150000002513 isocyanates Chemical class 0.000 description 4
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 239000010680 novolac-type phenolic resin Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920001515 polyalkylene glycol Polymers 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 3
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 3
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 3
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 3
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 3
- JVYDLYGCSIHCMR-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)butanoic acid Chemical compound CCC(CO)(CO)C(O)=O JVYDLYGCSIHCMR-UHFFFAOYSA-N 0.000 description 3
- OJRJDENLRJHEJO-UHFFFAOYSA-N 2,4-diethylpentane-1,5-diol Chemical compound CCC(CO)CC(CC)CO OJRJDENLRJHEJO-UHFFFAOYSA-N 0.000 description 3
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 3
- DSKYSDCYIODJPC-UHFFFAOYSA-N 2-butyl-2-ethylpropane-1,3-diol Chemical compound CCCCC(CC)(CO)CO DSKYSDCYIODJPC-UHFFFAOYSA-N 0.000 description 3
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical compound OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 description 3
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 3
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 3
- 230000001804 emulsifying effect Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 3
- 125000005702 oxyalkylene group Chemical group 0.000 description 3
- 150000003016 phosphoric acids Chemical class 0.000 description 3
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 3
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 3
- 229940080818 propionamide Drugs 0.000 description 3
- 125000006308 propyl amino group Chemical group 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 235000013772 propylene glycol Nutrition 0.000 description 3
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000012756 surface treatment agent Substances 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 3
- 229960004418 trolamine Drugs 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- KGSFMPRFQVLGTJ-UHFFFAOYSA-N 1,1,2-triphenylethylbenzene Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)CC1=CC=CC=C1 KGSFMPRFQVLGTJ-UHFFFAOYSA-N 0.000 description 2
- WBODDOZXDKQEFS-UHFFFAOYSA-N 1,2,3,4-tetramethyl-5-phenylbenzene Chemical group CC1=C(C)C(C)=CC(C=2C=CC=CC=2)=C1C WBODDOZXDKQEFS-UHFFFAOYSA-N 0.000 description 2
- NNOZGCICXAYKLW-UHFFFAOYSA-N 1,2-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=CC=C1C(C)(C)N=C=O NNOZGCICXAYKLW-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 2
- RXYPXQSKLGGKOL-UHFFFAOYSA-N 1,4-dimethylpiperazine Chemical compound CN1CCN(C)CC1 RXYPXQSKLGGKOL-UHFFFAOYSA-N 0.000 description 2
- SBJCUZQNHOLYMD-UHFFFAOYSA-N 1,5-Naphthalene diisocyanate Chemical compound C1=CC=C2C(N=C=O)=CC=CC2=C1N=C=O SBJCUZQNHOLYMD-UHFFFAOYSA-N 0.000 description 2
- ATOUXIOKEJWULN-UHFFFAOYSA-N 1,6-diisocyanato-2,2,4-trimethylhexane Chemical compound O=C=NCCC(C)CC(C)(C)CN=C=O ATOUXIOKEJWULN-UHFFFAOYSA-N 0.000 description 2
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 2
- IRTOOLQOINXNHY-UHFFFAOYSA-N 1-(2-aminoethylamino)ethanol Chemical compound CC(O)NCCN IRTOOLQOINXNHY-UHFFFAOYSA-N 0.000 description 2
- PMBXCGGQNSVESQ-UHFFFAOYSA-N 1-Hexanethiol Chemical compound CCCCCCS PMBXCGGQNSVESQ-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 2
- ICKWICRCANNIBI-UHFFFAOYSA-N 2,4-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C(C(C)(C)C)=C1 ICKWICRCANNIBI-UHFFFAOYSA-N 0.000 description 2
- MSXVEPNJUHWQHW-UHFFFAOYSA-N 2-methylbutan-2-ol Chemical compound CCC(C)(C)O MSXVEPNJUHWQHW-UHFFFAOYSA-N 0.000 description 2
- SDQROPCSKIYYAV-UHFFFAOYSA-N 2-methyloctane-1,8-diol Chemical compound OCC(C)CCCCCCO SDQROPCSKIYYAV-UHFFFAOYSA-N 0.000 description 2
- GSKNLOOGBYYDHV-UHFFFAOYSA-N 2-methylphenol;naphthalen-1-ol Chemical compound CC1=CC=CC=C1O.C1=CC=C2C(O)=CC=CC2=C1 GSKNLOOGBYYDHV-UHFFFAOYSA-N 0.000 description 2
- WDGCBNTXZHJTHJ-UHFFFAOYSA-N 2h-1,3-oxazol-2-id-4-one Chemical group O=C1CO[C-]=N1 WDGCBNTXZHJTHJ-UHFFFAOYSA-N 0.000 description 2
- RBQLGIKHSXQZTB-UHFFFAOYSA-N 3-methylpentane-2,4-diol Chemical compound CC(O)C(C)C(C)O RBQLGIKHSXQZTB-UHFFFAOYSA-N 0.000 description 2
- KNYSNQHOKNRINQ-UHFFFAOYSA-N 4-(dimethoxymethylsilyl)-N-ethyl-2,2-dimethylbutan-1-amine Chemical compound CCNCC(C)(C)CC[SiH2]C(OC)OC KNYSNQHOKNRINQ-UHFFFAOYSA-N 0.000 description 2
- IGFHQQFPSIBGKE-UHFFFAOYSA-N 4-nonylphenol Chemical compound CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- RUPBZQFQVRMKDG-UHFFFAOYSA-M Didecyldimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCC[N+](C)(C)CCCCCCCCCC RUPBZQFQVRMKDG-UHFFFAOYSA-M 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 2
- SUPOBRXPULIDDX-UHFFFAOYSA-N [[4-amino-6-(hydroxymethylamino)-1,3,5-triazin-2-yl]amino]methanol Chemical compound NC1=NC(NCO)=NC(NCO)=N1 SUPOBRXPULIDDX-UHFFFAOYSA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 238000007259 addition reaction Methods 0.000 description 2
- IBVAQQYNSHJXBV-UHFFFAOYSA-N adipic acid dihydrazide Chemical compound NNC(=O)CCCCC(=O)NN IBVAQQYNSHJXBV-UHFFFAOYSA-N 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 125000005263 alkylenediamine group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- IKWQWOFXRCUIFT-UHFFFAOYSA-N benzene-1,2-dicarbohydrazide Chemical compound NNC(=O)C1=CC=CC=C1C(=O)NN IKWQWOFXRCUIFT-UHFFFAOYSA-N 0.000 description 2
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- HCOMFAYPHBFMKU-UHFFFAOYSA-N butanedihydrazide Chemical compound NNC(=O)CCC(=O)NN HCOMFAYPHBFMKU-UHFFFAOYSA-N 0.000 description 2
- WQAQPCDUOCURKW-UHFFFAOYSA-N butanethiol Chemical compound CCCCS WQAQPCDUOCURKW-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005536 corrosion prevention Methods 0.000 description 2
- 238000007766 curtain coating Methods 0.000 description 2
- PDXRQENMIVHKPI-UHFFFAOYSA-N cyclohexane-1,1-diol Chemical compound OC1(O)CCCCC1 PDXRQENMIVHKPI-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 229960004670 didecyldimethylammonium chloride Drugs 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- SXCBDZAEHILGLM-UHFFFAOYSA-N heptane-1,7-diol Chemical compound OCCCCCCCO SXCBDZAEHILGLM-UHFFFAOYSA-N 0.000 description 2
- BQWORYKVVNTRAW-UHFFFAOYSA-N heptane-3,5-diol Chemical compound CCC(O)CC(O)CC BQWORYKVVNTRAW-UHFFFAOYSA-N 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 125000001841 imino group Chemical group [H]N=* 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- CHJJGSNFBQVOTG-UHFFFAOYSA-N methylguanidine Chemical compound CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- VSWALKINGSNVAR-UHFFFAOYSA-N naphthalen-1-ol;phenol Chemical compound OC1=CC=CC=C1.C1=CC=C2C(O)=CC=CC2=C1 VSWALKINGSNVAR-UHFFFAOYSA-N 0.000 description 2
- NXPPAOGUKPJVDI-UHFFFAOYSA-N naphthalene-1,2-diol Chemical compound C1=CC=CC2=C(O)C(O)=CC=C21 NXPPAOGUKPJVDI-UHFFFAOYSA-N 0.000 description 2
- 239000008239 natural water Substances 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- IXQGCWUGDFDQMF-UHFFFAOYSA-N o-Hydroxyethylbenzene Natural products CCC1=CC=CC=C1O IXQGCWUGDFDQMF-UHFFFAOYSA-N 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 2
- GTCCGKPBSJZVRZ-UHFFFAOYSA-N pentane-2,4-diol Chemical compound CC(O)CC(C)O GTCCGKPBSJZVRZ-UHFFFAOYSA-N 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical compound O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 229920001748 polybutylene Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920000056 polyoxyethylene ether Polymers 0.000 description 2
- 229940051841 polyoxyethylene ether Drugs 0.000 description 2
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 2
- 229920000137 polyphosphoric acid Polymers 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 2
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 2
- 229940005657 pyrophosphoric acid Drugs 0.000 description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000011134 resol-type phenolic resin Substances 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 229960001755 resorcinol Drugs 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 125000000542 sulfonic acid group Chemical group 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 239000012855 volatile organic compound Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 1
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- FZENGILVLUJGJX-NSCUHMNNSA-N (E)-acetaldehyde oxime Chemical compound C\C=N\O FZENGILVLUJGJX-NSCUHMNNSA-N 0.000 description 1
- SNVRDQORMVVQBI-UPHRSURJSA-N (z)-but-2-enedihydrazide Chemical compound NNC(=O)\C=C/C(=O)NN SNVRDQORMVVQBI-UPHRSURJSA-N 0.000 description 1
- ICLYJLBTOGPLMC-KVVVOXFISA-N (z)-octadec-9-enoate;tris(2-hydroxyethyl)azanium Chemical compound OCCN(CCO)CCO.CCCCCCCC\C=C/CCCCCCCC(O)=O ICLYJLBTOGPLMC-KVVVOXFISA-N 0.000 description 1
- NQOFYFRKWDXGJP-UHFFFAOYSA-N 1,1,2-trimethylguanidine Chemical compound CN=C(N)N(C)C NQOFYFRKWDXGJP-UHFFFAOYSA-N 0.000 description 1
- KYVBNYUBXIEUFW-UHFFFAOYSA-N 1,1,3,3-tetramethylguanidine Chemical compound CN(C)C(=N)N(C)C KYVBNYUBXIEUFW-UHFFFAOYSA-N 0.000 description 1
- HCNHNBLSNVSJTJ-UHFFFAOYSA-N 1,1-Bis(4-hydroxyphenyl)ethane Chemical compound C=1C=C(O)C=CC=1C(C)C1=CC=C(O)C=C1 HCNHNBLSNVSJTJ-UHFFFAOYSA-N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- MTZUIIAIAKMWLI-UHFFFAOYSA-N 1,2-diisocyanatobenzene Chemical compound O=C=NC1=CC=CC=C1N=C=O MTZUIIAIAKMWLI-UHFFFAOYSA-N 0.000 description 1
- LINDOXZENKYESA-UHFFFAOYSA-N 1,2-dimethylguanidine Chemical compound CNC(N)=NC LINDOXZENKYESA-UHFFFAOYSA-N 0.000 description 1
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 1
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 1
- OWRCNXZUPFZXOS-UHFFFAOYSA-N 1,3-diphenylguanidine Chemical compound C=1C=CC=CC=1NC(=N)NC1=CC=CC=C1 OWRCNXZUPFZXOS-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- 239000005059 1,4-Cyclohexyldiisocyanate Substances 0.000 description 1
- FGHKSYPMIAQSDG-UHFFFAOYSA-N 1-(1h-imidazol-2-yl)-n,n-dimethylpropan-1-amine Chemical compound CCC(N(C)C)C1=NC=CN1 FGHKSYPMIAQSDG-UHFFFAOYSA-N 0.000 description 1
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 1
- XTYRIICDYQTTTC-UHFFFAOYSA-N 1-(dimethylamino)-2-methylpropan-2-ol Chemical compound CN(C)CC(C)(C)O XTYRIICDYQTTTC-UHFFFAOYSA-N 0.000 description 1
- AQABZFKTYXFIJF-UHFFFAOYSA-N 1-(dimethylamino)-3-[4-[[4-(dimethylaminocarbamoylamino)phenyl]methyl]phenyl]urea Chemical compound C1=CC(NC(=O)NN(C)C)=CC=C1CC1=CC=C(NC(=O)NN(C)C)C=C1 AQABZFKTYXFIJF-UHFFFAOYSA-N 0.000 description 1
- VETHREXFBVHLJJ-UHFFFAOYSA-N 1-(dimethylamino)-3-[6-(dimethylaminocarbamoylamino)hexyl]urea Chemical compound CN(C)NC(=O)NCCCCCCNC(=O)NN(C)C VETHREXFBVHLJJ-UHFFFAOYSA-N 0.000 description 1
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 description 1
- LFSYUSUFCBOHGU-UHFFFAOYSA-N 1-isocyanato-2-[(4-isocyanatophenyl)methyl]benzene Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=CC=C1N=C=O LFSYUSUFCBOHGU-UHFFFAOYSA-N 0.000 description 1
- DTZHXCBUWSTOPO-UHFFFAOYSA-N 1-isocyanato-4-[(4-isocyanato-3-methylphenyl)methyl]-2-methylbenzene Chemical compound C1=C(N=C=O)C(C)=CC(CC=2C=C(C)C(N=C=O)=CC=2)=C1 DTZHXCBUWSTOPO-UHFFFAOYSA-N 0.000 description 1
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 description 1
- JUXXCHAGQCBNTI-UHFFFAOYSA-N 1-n,1-n,2-n,2-n-tetramethylpropane-1,2-diamine Chemical compound CN(C)C(C)CN(C)C JUXXCHAGQCBNTI-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- BRXKVEIJEXJBFF-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)-3-methylbutane-1,4-diol Chemical compound OCC(C)C(CO)(CO)CO BRXKVEIJEXJBFF-UHFFFAOYSA-N 0.000 description 1
- UHAMPPWFPNXLIU-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)pentanoic acid Chemical compound CCCC(CO)(CO)C(O)=O UHAMPPWFPNXLIU-UHFFFAOYSA-N 0.000 description 1
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 1
- CDULGHZNHURECF-UHFFFAOYSA-N 2,3-dimethylaniline 2,4-dimethylaniline 2,5-dimethylaniline 2,6-dimethylaniline 3,4-dimethylaniline 3,5-dimethylaniline Chemical group CC1=CC=C(N)C(C)=C1.CC1=CC=C(C)C(N)=C1.CC1=CC(C)=CC(N)=C1.CC1=CC=C(N)C=C1C.CC1=CC=CC(N)=C1C.CC1=CC=CC(C)=C1N CDULGHZNHURECF-UHFFFAOYSA-N 0.000 description 1
- PISLZQACAJMAIO-UHFFFAOYSA-N 2,4-diethyl-6-methylbenzene-1,3-diamine Chemical compound CCC1=CC(C)=C(N)C(CC)=C1N PISLZQACAJMAIO-UHFFFAOYSA-N 0.000 description 1
- KDBZVULQVCUNNA-UHFFFAOYSA-N 2,5-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(C(C)(C)C)C(O)=C1 KDBZVULQVCUNNA-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- GXVUZYLYWKWJIM-UHFFFAOYSA-N 2-(2-aminoethoxy)ethanamine Chemical compound NCCOCCN GXVUZYLYWKWJIM-UHFFFAOYSA-N 0.000 description 1
- BBBUAWSVILPJLL-UHFFFAOYSA-N 2-(2-ethylhexoxymethyl)oxirane Chemical compound CCCCC(CC)COCC1CO1 BBBUAWSVILPJLL-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- KAIRTVANLJFYQS-UHFFFAOYSA-N 2-(3,5-dimethylheptyl)phenol Chemical compound CCC(C)CC(C)CCC1=CC=CC=C1O KAIRTVANLJFYQS-UHFFFAOYSA-N 0.000 description 1
- YSUQLAYJZDEMOT-UHFFFAOYSA-N 2-(butoxymethyl)oxirane Chemical compound CCCCOCC1CO1 YSUQLAYJZDEMOT-UHFFFAOYSA-N 0.000 description 1
- SWKPGMVENNYLFK-UHFFFAOYSA-N 2-(dipropylamino)ethanol Chemical compound CCCN(CCC)CCO SWKPGMVENNYLFK-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- ABROBCBIIWHVNS-UHFFFAOYSA-N 2-Ethylbenzenethiol Chemical compound CCC1=CC=CC=C1S ABROBCBIIWHVNS-UHFFFAOYSA-N 0.000 description 1
- OZDGMOYKSFPLSE-UHFFFAOYSA-N 2-Methylaziridine Chemical compound CC1CN1 OZDGMOYKSFPLSE-UHFFFAOYSA-N 0.000 description 1
- LXUNZSDDXMPKLP-UHFFFAOYSA-N 2-Methylbenzenethiol Chemical compound CC1=CC=CC=C1S LXUNZSDDXMPKLP-UHFFFAOYSA-N 0.000 description 1
- GQTBMBMBWQJACJ-UHFFFAOYSA-N 2-[(4-butan-2-ylphenoxy)methyl]oxirane Chemical compound C1=CC(C(C)CC)=CC=C1OCC1OC1 GQTBMBMBWQJACJ-UHFFFAOYSA-N 0.000 description 1
- CUFXMPWHOWYNSO-UHFFFAOYSA-N 2-[(4-methylphenoxy)methyl]oxirane Chemical compound C1=CC(C)=CC=C1OCC1OC1 CUFXMPWHOWYNSO-UHFFFAOYSA-N 0.000 description 1
- HHRACYLRBOUBKM-UHFFFAOYSA-N 2-[(4-tert-butylphenoxy)methyl]oxirane Chemical compound C1=CC(C(C)(C)C)=CC=C1OCC1OC1 HHRACYLRBOUBKM-UHFFFAOYSA-N 0.000 description 1
- SYEWHONLFGZGLK-UHFFFAOYSA-N 2-[1,3-bis(oxiran-2-ylmethoxy)propan-2-yloxymethyl]oxirane Chemical compound C1OC1COCC(OCC1OC1)COCC1CO1 SYEWHONLFGZGLK-UHFFFAOYSA-N 0.000 description 1
- HPILSDOMLLYBQF-UHFFFAOYSA-N 2-[1-(oxiran-2-ylmethoxy)butoxymethyl]oxirane Chemical compound C1OC1COC(CCC)OCC1CO1 HPILSDOMLLYBQF-UHFFFAOYSA-N 0.000 description 1
- HDPLHDGYGLENEI-UHFFFAOYSA-N 2-[1-(oxiran-2-ylmethoxy)propan-2-yloxymethyl]oxirane Chemical compound C1OC1COC(C)COCC1CO1 HDPLHDGYGLENEI-UHFFFAOYSA-N 0.000 description 1
- WTYYGFLRBWMFRY-UHFFFAOYSA-N 2-[6-(oxiran-2-ylmethoxy)hexoxymethyl]oxirane Chemical compound C1OC1COCCCCCCOCC1CO1 WTYYGFLRBWMFRY-UHFFFAOYSA-N 0.000 description 1
- KUAUJXBLDYVELT-UHFFFAOYSA-N 2-[[2,2-dimethyl-3-(oxiran-2-ylmethoxy)propoxy]methyl]oxirane Chemical compound C1OC1COCC(C)(C)COCC1CO1 KUAUJXBLDYVELT-UHFFFAOYSA-N 0.000 description 1
- XEDDSVXNGSVIKY-UHFFFAOYSA-N 2-aminopentadecanoic acid Chemical class CCCCCCCCCCCCCC(N)C(O)=O XEDDSVXNGSVIKY-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- CGWBIHLHAGNJCX-UHFFFAOYSA-N 2-butylguanidine Chemical compound CCCCNC(N)=N CGWBIHLHAGNJCX-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- PQAMFDRRWURCFQ-UHFFFAOYSA-N 2-ethyl-1h-imidazole Chemical compound CCC1=NC=CN1 PQAMFDRRWURCFQ-UHFFFAOYSA-N 0.000 description 1
- KEWLVUBYGUZFKX-UHFFFAOYSA-N 2-ethylguanidine Chemical compound CCNC(N)=N KEWLVUBYGUZFKX-UHFFFAOYSA-N 0.000 description 1
- AYCPWULCTAQDNZ-UHFFFAOYSA-M 2-ethylhexanoate;tetramethylazanium Chemical compound C[N+](C)(C)C.CCCCC(CC)C([O-])=O AYCPWULCTAQDNZ-UHFFFAOYSA-M 0.000 description 1
- XSXYESVZDBAKKT-UHFFFAOYSA-N 2-hydroxybenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1O XSXYESVZDBAKKT-UHFFFAOYSA-N 0.000 description 1
- SVNWKKJQEFIURY-UHFFFAOYSA-N 2-methyl-1-(2-methylpropyl)imidazole Chemical compound CC(C)CN1C=CN=C1C SVNWKKJQEFIURY-UHFFFAOYSA-N 0.000 description 1
- PABWYMSXHPGZFP-UHFFFAOYSA-N 2-methyl-3-trimethoxysilyl-n-(3-trimethoxysilylpropyl)propan-1-amine Chemical compound CO[Si](OC)(OC)CCCNCC(C)C[Si](OC)(OC)OC PABWYMSXHPGZFP-UHFFFAOYSA-N 0.000 description 1
- QXULZQKARBZMBR-UHFFFAOYSA-N 2-methyl-n-(3-trimethoxysilylpropyl)propan-2-amine Chemical compound CO[Si](OC)(OC)CCCNC(C)(C)C QXULZQKARBZMBR-UHFFFAOYSA-N 0.000 description 1
- JOMNTHCQHJPVAZ-UHFFFAOYSA-N 2-methylpiperazine Chemical compound CC1CNCCN1 JOMNTHCQHJPVAZ-UHFFFAOYSA-N 0.000 description 1
- QRJZGVVKGFIGLI-UHFFFAOYSA-N 2-phenylguanidine Chemical compound NC(=N)NC1=CC=CC=C1 QRJZGVVKGFIGLI-UHFFFAOYSA-N 0.000 description 1
- BWMDMTSNSXYYSP-UHFFFAOYSA-N 2-propylguanidine Chemical compound CCCNC(N)=N BWMDMTSNSXYYSP-UHFFFAOYSA-N 0.000 description 1
- QZWKEPYTBWZJJA-UHFFFAOYSA-N 3,3'-Dimethoxybenzidine-4,4'-diisocyanate Chemical compound C1=C(N=C=O)C(OC)=CC(C=2C=C(OC)C(N=C=O)=CC=2)=C1 QZWKEPYTBWZJJA-UHFFFAOYSA-N 0.000 description 1
- BYPFICORERPGJY-UHFFFAOYSA-N 3,4-diisocyanatobicyclo[2.2.1]hept-2-ene Chemical compound C1CC2(N=C=O)C(N=C=O)=CC1C2 BYPFICORERPGJY-UHFFFAOYSA-N 0.000 description 1
- ZDWSNKPLZUXBPE-UHFFFAOYSA-N 3,5-ditert-butylphenol Chemical compound CC(C)(C)C1=CC(O)=CC(C(C)(C)C)=C1 ZDWSNKPLZUXBPE-UHFFFAOYSA-N 0.000 description 1
- WDULIZRNXLCPBC-UHFFFAOYSA-N 3-(2-phenylpropan-2-yl)benzene-1,2-diamine Chemical compound C=1C=CC(N)=C(N)C=1C(C)(C)C1=CC=CC=C1 WDULIZRNXLCPBC-UHFFFAOYSA-N 0.000 description 1
- FBFIDNKZBQMMEQ-UHFFFAOYSA-N 3-(3-phenylpentan-3-yl)benzene-1,2-diamine Chemical compound C=1C=CC(N)=C(N)C=1C(CC)(CC)C1=CC=CC=C1 FBFIDNKZBQMMEQ-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- IFAPXTBWPQMLAF-UHFFFAOYSA-N 3-(diethoxymethylsilyl)-N-ethyl-2-methylpropan-1-amine Chemical compound CCNCC(C)C[SiH2]C(OCC)OCC IFAPXTBWPQMLAF-UHFFFAOYSA-N 0.000 description 1
- PYSGFFTXMUWEOT-UHFFFAOYSA-N 3-(dimethylamino)propan-1-ol Chemical compound CN(C)CCCO PYSGFFTXMUWEOT-UHFFFAOYSA-N 0.000 description 1
- FZQMJOOSLXFQSU-UHFFFAOYSA-N 3-[3,5-bis[3-(dimethylamino)propyl]-1,3,5-triazinan-1-yl]-n,n-dimethylpropan-1-amine Chemical compound CN(C)CCCN1CN(CCCN(C)C)CN(CCCN(C)C)C1 FZQMJOOSLXFQSU-UHFFFAOYSA-N 0.000 description 1
- ANOPCGQVRXJHHD-UHFFFAOYSA-N 3-[3-(3-aminopropyl)-2,4,8,10-tetraoxaspiro[5.5]undecan-9-yl]propan-1-amine Chemical compound C1OC(CCCN)OCC21COC(CCCN)OC2 ANOPCGQVRXJHHD-UHFFFAOYSA-N 0.000 description 1
- HXLAEGYMDGUSBD-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propan-1-amine Chemical compound CCO[Si](C)(OCC)CCCN HXLAEGYMDGUSBD-UHFFFAOYSA-N 0.000 description 1
- XDFJBMAPHNLKKR-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]-n-ethyl-2-methylpropan-1-amine Chemical compound CCNCC(C)C[Si](C)(OC)OC XDFJBMAPHNLKKR-UHFFFAOYSA-N 0.000 description 1
- ZYAASQNKCWTPKI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propan-1-amine Chemical compound CO[Si](C)(OC)CCCN ZYAASQNKCWTPKI-UHFFFAOYSA-N 0.000 description 1
- DDGPBVIAYDDWDH-UHFFFAOYSA-N 3-[dodecyl(dimethyl)azaniumyl]-2-hydroxypropane-1-sulfonate Chemical compound CCCCCCCCCCCC[N+](C)(C)CC(O)CS([O-])(=O)=O DDGPBVIAYDDWDH-UHFFFAOYSA-N 0.000 description 1
- HYCSHFLKPSMPGO-UHFFFAOYSA-N 3-hydroxypropyl dihydrogen phosphate Chemical class OCCCOP(O)(O)=O HYCSHFLKPSMPGO-UHFFFAOYSA-N 0.000 description 1
- MECNWXGGNCJFQJ-UHFFFAOYSA-N 3-piperidin-1-ylpropane-1,2-diol Chemical compound OCC(O)CN1CCCCC1 MECNWXGGNCJFQJ-UHFFFAOYSA-N 0.000 description 1
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- LNQVOBNVXUVSEA-UHFFFAOYSA-N 4,5-dihydro-1h-imidazol-3-ium;dodecanoate Chemical compound C1CN=C[NH2+]1.CCCCCCCCCCCC([O-])=O LNQVOBNVXUVSEA-UHFFFAOYSA-N 0.000 description 1
- CUAUDSWILJWDOD-UHFFFAOYSA-N 4-(3,5-dimethylheptyl)phenol Chemical compound CCC(C)CC(C)CCC1=CC=C(O)C=C1 CUAUDSWILJWDOD-UHFFFAOYSA-N 0.000 description 1
- HVXRCAWUNAOCTA-UHFFFAOYSA-N 4-(6-methylheptyl)phenol Chemical compound CC(C)CCCCCC1=CC=C(O)C=C1 HVXRCAWUNAOCTA-UHFFFAOYSA-N 0.000 description 1
- KJWMCPYEODZESQ-UHFFFAOYSA-N 4-Dodecylphenol Chemical compound CCCCCCCCCCCCC1=CC=C(O)C=C1 KJWMCPYEODZESQ-UHFFFAOYSA-N 0.000 description 1
- KXEPRLUGFAULQX-UHFFFAOYSA-N 4-[2,5-di(propan-2-yl)phenyl]aniline Chemical compound CC(C)C1=CC=C(C(C)C)C(C=2C=CC(N)=CC=2)=C1 KXEPRLUGFAULQX-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- AOFIWCXMXPVSAZ-UHFFFAOYSA-N 4-methyl-2,6-bis(methylsulfanyl)benzene-1,3-diamine Chemical compound CSC1=CC(C)=C(N)C(SC)=C1N AOFIWCXMXPVSAZ-UHFFFAOYSA-N 0.000 description 1
- ISAVYTVYFVQUDY-UHFFFAOYSA-N 4-tert-Octylphenol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(O)C=C1 ISAVYTVYFVQUDY-UHFFFAOYSA-N 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229920001342 Bakelite® Polymers 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- YUEDZVRMWQBEPT-UHFFFAOYSA-N CC1=CC=CC(C(C2=CC=CC=C2)C2=CC=CC=C2)=C1C.N=C=O.N=C=O.N=C=O.N=C=O Chemical compound CC1=CC=CC(C(C2=CC=CC=C2)C2=CC=CC=C2)=C1C.N=C=O.N=C=O.N=C=O.N=C=O YUEDZVRMWQBEPT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229920003270 Cymel® Polymers 0.000 description 1
- 239000009261 D 400 Substances 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- QORUGOXNWQUALA-UHFFFAOYSA-N N=C=O.N=C=O.N=C=O.C1=CC=C(C(C2=CC=CC=C2)C2=CC=CC=C2)C=C1 Chemical compound N=C=O.N=C=O.N=C=O.C1=CC=C(C(C2=CC=CC=C2)C2=CC=CC=C2)C=C1 QORUGOXNWQUALA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- FQYUMYWMJTYZTK-UHFFFAOYSA-N Phenyl glycidyl ether Chemical compound C1OC1COC1=CC=CC=C1 FQYUMYWMJTYZTK-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- VBIIFPGSPJYLRR-UHFFFAOYSA-M Stearyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C VBIIFPGSPJYLRR-UHFFFAOYSA-M 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 1
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 1
- XZAHJRZBUWYCBM-UHFFFAOYSA-N [1-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1(CN)CCCCC1 XZAHJRZBUWYCBM-UHFFFAOYSA-N 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- USDJGQLNFPZEON-UHFFFAOYSA-N [[4,6-bis(hydroxymethylamino)-1,3,5-triazin-2-yl]amino]methanol Chemical compound OCNC1=NC(NCO)=NC(NCO)=N1 USDJGQLNFPZEON-UHFFFAOYSA-N 0.000 description 1
- YGCOKJWKWLYHTG-UHFFFAOYSA-N [[4,6-bis[bis(hydroxymethyl)amino]-1,3,5-triazin-2-yl]-(hydroxymethyl)amino]methanol Chemical compound OCN(CO)C1=NC(N(CO)CO)=NC(N(CO)CO)=N1 YGCOKJWKWLYHTG-UHFFFAOYSA-N 0.000 description 1
- SYDYRFPJJJPJFE-UHFFFAOYSA-N [[4,6-bis[bis(hydroxymethyl)amino]-1,3,5-triazin-2-yl]amino]methanol Chemical compound OCNC1=NC(N(CO)CO)=NC(N(CO)CO)=N1 SYDYRFPJJJPJFE-UHFFFAOYSA-N 0.000 description 1
- WEAJVJTWVRAPED-UHFFFAOYSA-N [[4-amino-6-[bis(hydroxymethyl)amino]-1,3,5-triazin-2-yl]-(hydroxymethyl)amino]methanol Chemical compound NC1=NC(N(CO)CO)=NC(N(CO)CO)=N1 WEAJVJTWVRAPED-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- XQBCVRSTVUHIGH-UHFFFAOYSA-L [dodecanoyloxy(dioctyl)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCCCCCC)(CCCCCCCC)OC(=O)CCCCCCCCCCC XQBCVRSTVUHIGH-UHFFFAOYSA-L 0.000 description 1
- RSWGJHLUYNHPMX-ONCXSQPRSA-N abietic acid Chemical compound C([C@@H]12)CC(C(C)C)=CC1=CC[C@@H]1[C@]2(C)CCC[C@@]1(C)C(O)=O RSWGJHLUYNHPMX-ONCXSQPRSA-N 0.000 description 1
- PXAJQJMDEXJWFB-UHFFFAOYSA-N acetone oxime Chemical compound CC(C)=NO PXAJQJMDEXJWFB-UHFFFAOYSA-N 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052936 alkali metal sulfate Inorganic materials 0.000 description 1
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- MNFORVFSTILPAW-UHFFFAOYSA-N azetidin-2-one Chemical compound O=C1CCN1 MNFORVFSTILPAW-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- UTTHLMXOSUFZCQ-UHFFFAOYSA-N benzene-1,3-dicarbohydrazide Chemical compound NNC(=O)C1=CC=CC(C(=O)NN)=C1 UTTHLMXOSUFZCQ-UHFFFAOYSA-N 0.000 description 1
- ALHNLFMSAXZKRC-UHFFFAOYSA-N benzene-1,4-dicarbohydrazide Chemical compound NNC(=O)C1=CC=C(C(=O)NN)C=C1 ALHNLFMSAXZKRC-UHFFFAOYSA-N 0.000 description 1
- JBIROUFYLSSYDX-UHFFFAOYSA-M benzododecinium chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 JBIROUFYLSSYDX-UHFFFAOYSA-M 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- VFGRALUHHHDIQI-UHFFFAOYSA-N butyl 2-hydroxyacetate Chemical compound CCCCOC(=O)CO VFGRALUHHHDIQI-UHFFFAOYSA-N 0.000 description 1
- CJJXPYGSZOJSGD-UHFFFAOYSA-N butyl-ethoxy-dimethoxysilane Chemical compound CCCC[Si](OC)(OC)OCC CJJXPYGSZOJSGD-UHFFFAOYSA-N 0.000 description 1
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- UKJLNMAFNRKWGR-UHFFFAOYSA-N cyclohexatrienamine Chemical group NC1=CC=C=C[CH]1 UKJLNMAFNRKWGR-UHFFFAOYSA-N 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- ZWLIYXJBOIDXLL-UHFFFAOYSA-N decanedihydrazide Chemical compound NNC(=O)CCCCCCCCC(=O)NN ZWLIYXJBOIDXLL-UHFFFAOYSA-N 0.000 description 1
- FSEUPUDHEBLWJY-HWKANZROSA-N diacetylmonoxime Chemical compound CC(=O)C(\C)=N\O FSEUPUDHEBLWJY-HWKANZROSA-N 0.000 description 1
- 125000005265 dialkylamine group Chemical group 0.000 description 1
- 125000005266 diarylamine group Chemical group 0.000 description 1
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 1
- RJGHQTVXGKYATR-UHFFFAOYSA-L dibutyl(dichloro)stannane Chemical compound CCCC[Sn](Cl)(Cl)CCCC RJGHQTVXGKYATR-UHFFFAOYSA-L 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- KEIQPMUPONZJJH-UHFFFAOYSA-N dicyclohexylmethanediamine Chemical compound C1CCCCC1C(N)(N)C1CCCCC1 KEIQPMUPONZJJH-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 description 1
- 229940043276 diisopropanolamine Drugs 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Natural products C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000004664 distearyldimethylammonium chloride (DHTDMAC) Substances 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- DDXLVDQZPFLQMZ-UHFFFAOYSA-M dodecyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)C DDXLVDQZPFLQMZ-UHFFFAOYSA-M 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- QTBWAKWPKYZSRL-UHFFFAOYSA-N ethenol;phenol Chemical group OC=C.OC1=CC=CC=C1 QTBWAKWPKYZSRL-UHFFFAOYSA-N 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- NVVZQXQBYZPMLJ-UHFFFAOYSA-N formaldehyde;naphthalene-1-sulfonic acid Chemical compound O=C.C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 NVVZQXQBYZPMLJ-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 125000000400 lauroyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- GIWKOZXJDKMGQC-UHFFFAOYSA-L lead(2+);naphthalene-2-carboxylate Chemical compound [Pb+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 GIWKOZXJDKMGQC-UHFFFAOYSA-L 0.000 description 1
- YMQPOZUUTMLSEK-UHFFFAOYSA-L lead(2+);octanoate Chemical compound [Pb+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O YMQPOZUUTMLSEK-UHFFFAOYSA-L 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- WDWDWGRYHDPSDS-UHFFFAOYSA-N methanimine Chemical compound N=C WDWDWGRYHDPSDS-UHFFFAOYSA-N 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- AYLRODJJLADBOB-QMMMGPOBSA-N methyl (2s)-2,6-diisocyanatohexanoate Chemical compound COC(=O)[C@@H](N=C=O)CCCCN=C=O AYLRODJJLADBOB-QMMMGPOBSA-N 0.000 description 1
- 229940057867 methyl lactate Drugs 0.000 description 1
- SOOARYARZPXNAL-UHFFFAOYSA-N methyl-thiophenol Natural products CSC1=CC=CC=C1O SOOARYARZPXNAL-UHFFFAOYSA-N 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 229940043348 myristyl alcohol Drugs 0.000 description 1
- INJVFBCDVXYHGQ-UHFFFAOYSA-N n'-(3-triethoxysilylpropyl)ethane-1,2-diamine Chemical compound CCO[Si](OCC)(OCC)CCCNCCN INJVFBCDVXYHGQ-UHFFFAOYSA-N 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- AMVXVPUHCLLJRE-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)hexane-1,6-diamine Chemical compound CO[Si](OC)(OC)CCCNCCCCCCN AMVXVPUHCLLJRE-UHFFFAOYSA-N 0.000 description 1
- MQWFLKHKWJMCEN-UHFFFAOYSA-N n'-[3-[dimethoxy(methyl)silyl]propyl]ethane-1,2-diamine Chemical compound CO[Si](C)(OC)CCCNCCN MQWFLKHKWJMCEN-UHFFFAOYSA-N 0.000 description 1
- SMIDUPHNWFRONB-UHFFFAOYSA-N n,2-dimethyl-3-trimethoxysilylpropan-1-amine Chemical compound CNCC(C)C[Si](OC)(OC)OC SMIDUPHNWFRONB-UHFFFAOYSA-N 0.000 description 1
- JEQPWXGHMRFTRF-UHFFFAOYSA-N n,n'-bis(2-methylpropyl)methanediimine Chemical compound CC(C)CN=C=NCC(C)C JEQPWXGHMRFTRF-UHFFFAOYSA-N 0.000 description 1
- XLDBGFGREOMWSL-UHFFFAOYSA-N n,n'-bis[2,6-di(propan-2-yl)phenyl]methanediimine Chemical compound CC(C)C1=CC=CC(C(C)C)=C1N=C=NC1=C(C(C)C)C=CC=C1C(C)C XLDBGFGREOMWSL-UHFFFAOYSA-N 0.000 description 1
- NASVTBDJHWPMOO-UHFFFAOYSA-N n,n'-dimethylmethanediimine Chemical compound CN=C=NC NASVTBDJHWPMOO-UHFFFAOYSA-N 0.000 description 1
- NWBVGPKHJHHPTA-UHFFFAOYSA-N n,n'-dioctylmethanediimine Chemical compound CCCCCCCCN=C=NCCCCCCCC NWBVGPKHJHHPTA-UHFFFAOYSA-N 0.000 description 1
- TXXWBTOATXBWDR-UHFFFAOYSA-N n,n,n',n'-tetramethylhexane-1,6-diamine Chemical compound CN(C)CCCCCCN(C)C TXXWBTOATXBWDR-UHFFFAOYSA-N 0.000 description 1
- XFLSMWXCZBIXLV-UHFFFAOYSA-N n,n-dimethyl-2-(4-methylpiperazin-1-yl)ethanamine Chemical compound CN(C)CCN1CCN(C)CC1 XFLSMWXCZBIXLV-UHFFFAOYSA-N 0.000 description 1
- GEMHFKXPOCTAIP-UHFFFAOYSA-N n,n-dimethyl-n'-phenylcarbamimidoyl chloride Chemical compound CN(C)C(Cl)=NC1=CC=CC=C1 GEMHFKXPOCTAIP-UHFFFAOYSA-N 0.000 description 1
- YWFWDNVOPHGWMX-UHFFFAOYSA-N n,n-dimethyldodecan-1-amine Chemical compound CCCCCCCCCCCCN(C)C YWFWDNVOPHGWMX-UHFFFAOYSA-N 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- KGNDVXPHQJMHLX-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)cyclohexanamine Chemical compound CO[Si](OC)(OC)CCCNC1CCCCC1 KGNDVXPHQJMHLX-UHFFFAOYSA-N 0.000 description 1
- WHIVNJATOVLWBW-UHFFFAOYSA-N n-butan-2-ylidenehydroxylamine Chemical compound CCC(C)=NO WHIVNJATOVLWBW-UHFFFAOYSA-N 0.000 description 1
- SWPRLROHVKTMPN-UHFFFAOYSA-N n-butyl-2-methyl-3-trimethoxysilylpropan-1-amine Chemical compound CCCCNCC(C)C[Si](OC)(OC)OC SWPRLROHVKTMPN-UHFFFAOYSA-N 0.000 description 1
- MJCJUDJQDGGKOX-UHFFFAOYSA-N n-dodecyldodecan-1-amine Chemical compound CCCCCCCCCCCCNCCCCCCCCCCCC MJCJUDJQDGGKOX-UHFFFAOYSA-N 0.000 description 1
- YJOGKUUQSLYPQJ-UHFFFAOYSA-N n-ethyl-2,2-dimethyl-4-trimethoxysilylbutan-1-amine Chemical compound CCNCC(C)(C)CC[Si](OC)(OC)OC YJOGKUUQSLYPQJ-UHFFFAOYSA-N 0.000 description 1
- PNAUMDBGSPRGCS-UHFFFAOYSA-N n-ethyl-2-methyl-3-triethoxysilylpropan-1-amine Chemical compound CCNCC(C)C[Si](OCC)(OCC)OCC PNAUMDBGSPRGCS-UHFFFAOYSA-N 0.000 description 1
- FRDNYWXDODPUJV-UHFFFAOYSA-N n-ethyl-2-methyl-3-trimethoxysilylpropan-1-amine Chemical compound CCNCC(C)C[Si](OC)(OC)OC FRDNYWXDODPUJV-UHFFFAOYSA-N 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- PXSXRABJBXYMFT-UHFFFAOYSA-N n-hexylhexan-1-amine Chemical compound CCCCCCNCCCCCC PXSXRABJBXYMFT-UHFFFAOYSA-N 0.000 description 1
- OKIKLSJWTXOVSF-UHFFFAOYSA-N n-methyl-2-(3-trimethoxysilylpropoxy)propan-1-amine Chemical compound CNCC(C)OCCC[Si](OC)(OC)OC OKIKLSJWTXOVSF-UHFFFAOYSA-N 0.000 description 1
- DVYVMJLSUSGYMH-UHFFFAOYSA-N n-methyl-3-trimethoxysilylpropan-1-amine Chemical compound CNCCC[Si](OC)(OC)OC DVYVMJLSUSGYMH-UHFFFAOYSA-N 0.000 description 1
- SQDFHQJTAWCFIB-UHFFFAOYSA-N n-methylidenehydroxylamine Chemical compound ON=C SQDFHQJTAWCFIB-UHFFFAOYSA-N 0.000 description 1
- HKUFIYBZNQSHQS-UHFFFAOYSA-N n-octadecyloctadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCNCCCCCCCCCCCCCCCCCC HKUFIYBZNQSHQS-UHFFFAOYSA-N 0.000 description 1
- JACMPVXHEARCBO-UHFFFAOYSA-N n-pentylpentan-1-amine Chemical compound CCCCCNCCCCC JACMPVXHEARCBO-UHFFFAOYSA-N 0.000 description 1
- UIEKYBOPAVTZKW-UHFFFAOYSA-L naphthalene-2-carboxylate;nickel(2+) Chemical compound [Ni+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 UIEKYBOPAVTZKW-UHFFFAOYSA-L 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- UKODFQOELJFMII-UHFFFAOYSA-N pentamethyldiethylenetriamine Chemical compound CN(C)CCN(C)CCN(C)C UKODFQOELJFMII-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 229940116254 phosphonic acid Drugs 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- ONQDVAFWWYYXHM-UHFFFAOYSA-M potassium lauryl sulfate Chemical compound [K+].CCCCCCCCCCCCOS([O-])(=O)=O ONQDVAFWWYYXHM-UHFFFAOYSA-M 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 125000002924 primary amino group Chemical class [H]N([H])* 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229940077386 sodium benzenesulfonate Drugs 0.000 description 1
- BTURAGWYSMTVOW-UHFFFAOYSA-M sodium dodecanoate Chemical compound [Na+].CCCCCCCCCCCC([O-])=O BTURAGWYSMTVOW-UHFFFAOYSA-M 0.000 description 1
- 229940082004 sodium laurate Drugs 0.000 description 1
- MZSDGDXXBZSFTG-UHFFFAOYSA-M sodium;benzenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C1=CC=CC=C1 MZSDGDXXBZSFTG-UHFFFAOYSA-M 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229940012831 stearyl alcohol Drugs 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- WMXCDAVJEZZYLT-UHFFFAOYSA-N tert-butylthiol Chemical compound CC(C)(C)S WMXCDAVJEZZYLT-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 150000005622 tetraalkylammonium hydroxides Chemical class 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical class [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- VOZKAJLKRJDJLL-UHFFFAOYSA-N tolylenediamine group Chemical group CC1=C(C=C(C=C1)N)N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 229940117013 triethanolamine oleate Drugs 0.000 description 1
- BJAARRARQJZURR-UHFFFAOYSA-N trimethylazanium;hydroxide Chemical compound O.CN(C)C BJAARRARQJZURR-UHFFFAOYSA-N 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 229940048102 triphosphoric acid Drugs 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 125000002256 xylenyl group Chemical class C1(C(C=CC=C1)C)(C)* 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
- C08L75/08—Polyurethanes from polyethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/08—Polyurethanes from polyethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J175/00—Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
- C09J175/04—Polyurethanes
- C09J175/08—Polyurethanes from polyethers
Definitions
- the present invention relates to a resin composition that has excellent adhesive properties.
- Epoxy resins and urethane resins have excellent adhesion to various substrates, and can produce cured products that are excellent in corrosion resistance, heat resistance, chemical resistance, electrical properties, and mechanical properties, and are therefore widely used in various fields as adhesives, coating agents, paints, and the like.
- adhesives, paints, coating agents, and the like that contain epoxy resins and urethane resins to be water-based resin compositions that use water as a solvent, from the standpoint of reducing environmental impact and safety.
- Patent Document 1 describes an environmentally friendly aqueous epoxy resin emulsion that has excellent storage stability and rust prevention properties, and an aqueous paint that contains the same.
- Patent Document 2 describes an aqueous epoxy resin dispersion with low volatile organic compounds (VOCs), particularly for coating metals and concrete.
- Patent Document 3 describes an aqueous paint composition that can form a coating film that improves the water-resistant adhesion to steel sheets that have been surface-treated by plating or other methods, and exhibits excellent corrosion resistance and corrosion prevention.
- Patent Document 4 describes a surface treatment agent for metal materials that can produce a surface-treated metal material with a coating film that has excellent corrosion resistance and adhesion, even when the paint base treatment is omitted.
- the present invention aims to provide a resin composition with excellent adhesive properties.
- the present inventors conducted extensive research and found that a resin composition containing a specific component solves the above problems. That is, the present invention provides a resin composition containing component (A) consisting of an epoxy resin that is solid at 25°C, and component (B) consisting of one or more members selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes.
- component (A) consisting of an epoxy resin that is solid at 25°C
- component (B) consisting of one or more members selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes.
- the present invention provides a resin composition with excellent adhesive properties.
- the resin composition of the present invention is a resin composition containing component (A) consisting of an epoxy resin that is solid at 25° C., and component (B) consisting of one or more members selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes.
- component (A) consisting of an epoxy resin that is solid at 25° C.
- component (B) consisting of one or more members selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes.
- the resin composition of the present invention will be described in detail below. 1-1.
- Component (A) The component (A) used in the present invention is an epoxy resin that is solid at 25° C. In the present invention, there are no particular limitations on the epoxy resin that can be used as long as it is solid at 25° C.
- epoxy resins examples include bisphenol type epoxy resins such as bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, and bisphenol AD type epoxy resins, which are solid at 25° C., resorcin type epoxy resins, hydroquinone type epoxy resins, catechol type epoxy resins, dihydroxynaphthalene type epoxy resins, biphenyl type epoxy resins, tetramethylbiphenyl type epoxy resins, oxazolidone ring type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, triphenylmethane type epoxy resins, tetraphenylethane type epoxy resins, dicyclopentadiene-phenol addition reaction type epoxy resins, phenol aralkyl type epoxy resins, naphthol novolac type epoxy resins, naphthol aralkyl type epoxy resins, naphthol-phenol co-condensed novolac type epoxy resins, naphtt
- a bisphenol type epoxy resin that is solid at 25 ° C.
- being solid at 25 ° C. means that the melting point is higher than 25 ° C. and is solid at 25 ° C.
- the melting point of the epoxy resin is not particularly limited as long as it is higher than 25 ° C. From the viewpoint of the adhesiveness of the resulting resin composition, the melting point of the epoxy resin is preferably 40 ° C. to 180 ° C., more preferably 70 ° C. to 150 ° C. In addition, the component (A) consisting of an epoxy resin that is solid at 25 ° C. does not include the phosphoric acid-modified epoxy resin described later and is clearly distinguished.
- the epoxy equivalent of the epoxy resin in a solid state at 25°C is not particularly limited and can be adjusted according to the purpose. From the viewpoint of improving the adhesiveness of the resulting resin composition, particularly the adhesiveness by short-time compression, the epoxy equivalent of the epoxy resin in a solid state at 25°C is preferably 500 g/eq. to 30,000 g/eq., more preferably 1,000 g/eq. to 10,000 g/eq., even more preferably 1,500 g/eq. to 6,000 g/eq., even more preferably 2,000 g/eq. to 5,000 g/eq., and particularly preferably 2,500 g/eq. to 3,500 g/eq. In the present invention, the epoxy equivalent of the epoxy resin is measured in accordance with JIS K 7236 (2009).
- the component (B) used in the present invention is one or more selected from the group consisting of polyether polyurethane prepolymer and polyether polyurethane.
- the polyether polyurethane prepolymer refers to a compound obtained by reacting a raw material containing at least one polyether polyol compound and at least one polyisocyanate compound so that unreacted isocyanate groups remain in the compound.
- the polyether polyurethane refers to a compound obtained by reacting a raw material containing at least one polyether polyol compound and at least one polyisocyanate compound so that unreacted isocyanate groups remain in the compound, or by blocking the polyether polyurethane prepolymer obtained by the above-mentioned method with a blocking agent, or by chain-extending the polyether polyurethane prepolymer with a chain extender.
- examples of polyether polyol compounds that can be used in the production of polyether polyurethane prepolymers include polyalkylene glycols such as polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, polyethylene glycol-polypropylene glycol random copolymers, and polyethylene glycol-polypropylene glycol block copolymers, as well as polyoxyethylene adducts, polyoxypropylene adducts, and polyoxybutylene adducts of diol compounds such as ethylene glycol, propanediol, and butanediol.
- polyalkylene glycols such as polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, polyethylene glycol-polypropylene glycol random copolymers, and polyethylene glycol-polypropylene glycol block copolymers, as well as polyoxyethylene adducts, polyoxypropylene adducts, and polyoxy
- polyalkylene glycols more preferably one or more selected from the group consisting of polyethylene glycol, polypropylene glycol, and polytetramethylene ether glycol, even more preferably one or more selected from the group consisting of polypropylene glycol and polytetramethylene ether glycol, and particularly preferably polytetramethylene ether glycol.
- the molecular weight of the polyether polyol compound used is not particularly limited.
- the polyisocyanate compound that can be used in the production of the polyether polyurethane prepolymer is not particularly limited as long as it has two or more isocyanate groups in the molecule.
- polyisocyanate compounds include aromatic diisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, p-phenylene diisocyanate, xylylene diisocyanate, 1,5-naphthylene diisocyanate, 3,3'-dimethyldiphenyl-4,4'-diisocyanate, dianisidine diisocyanate, and tetramethylxylylene diisocyanate; alicyclic diisocyanates such as isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, trans-1,4-cyclohexyl diisocyanate,
- Aliphatic diisocyanates such as lamethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,8-octamethylene diisocyanate, 2-methyl-1,5-pentamethylene diisocyanate, 2,2-dimethyl-1,5-pentamethylene diisocyanate, 1,11-undecamethylene diisocyanate, 2,2,4-trimethyl-1,6-hexamethylene diisocyanate, 2,4,4-trimethyl-1,6-hexamethylene diisocyanate, 2,4-dimethyl-1,8-octamethylene diisocyanate, 5-methyl-1,9-nonamethylene diisocyanate, lysine diisocyanate, and lysine methyl ester diisocyanate are included.
- the present invention from the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition, it is preferable to use one or more selected from the group consisting of aromatic diisocyanates, alicyclic diisocyanates, and aliphatic diisocyanates, and it is more preferable to use one or more selected from the group consisting of tolylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, p-phenylene diisocyanate, xylylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, and 1,6-hexamethylene diisocyanate, and it is even more preferable to use one or more selected from the group consisting of hydrogenated diphenylmethane diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate,
- the polyether polyurethane prepolymer that can be used in the present invention can be any polyether polyurethane prepolymer obtained by reacting a raw material containing at least one polyether polyol compound and at least one polyisocyanate compound in such a way that unreacted isocyanate groups remain.
- a polyether polyurethane prepolymer obtained by reacting the above-mentioned polyether polyol compound and a raw material containing a polyisocyanate compound in an amount such that the ratio of the number of hydroxyl groups in the polyether polyol compound to the number of isocyanate groups in the polyisocyanate compound is 0.20 to 0.99:1 can be used.
- the polyether polyurethane prepolymer used in the present invention may be a compound obtained by reacting at least one polyether polyol compound, at least one polyisocyanate compound, and one or more raw materials having a reactive group such as a hydroxyl group or an amino group that can react with the polyisocyanate compound, such as an anionic group-introducing agent, a melamine compound, or a low molecular weight polyol, such that unreacted isocyanate groups remain in the compound.
- a reactive group such as a hydroxyl group or an amino group that can react with the polyisocyanate compound, such as an anionic group-introducing agent, a melamine compound, or a low molecular weight polyol, such that unreacted isocyanate groups remain in the compound.
- Anionic group introducing agents that can be used in the production of polyether polyurethane prepolymers are not particularly limited, and can be any compound that has an anionic group, such as a carboxyl group or a sulfonic acid group, and a reactive group, such as a hydroxyl group or an amino group, that can react with a polyisocyanate compound in the molecule.
- anionic group introducing agents include compounds that contain a carboxyl group and a hydroxyl group, such as dimethylolpropionic acid, dimethylolbutanoic acid, dimethylolbutyric acid, and dimethylolvaleric acid; and compounds that contain a sulfonic acid group and a hydroxyl group, such as 1,4-butanediol-2-sulfonic acid. One or more of these can be used.
- a compound having a carboxyl group and a hydroxyl group in the molecule as the anionic group introducing agent, it is more preferable to use a compound having a carboxyl group and a hydroxyl group in the molecule and a molecular weight of 100 to 5,000, it is even more preferable to use dimethylolpropionic acid or dimethylolbutanoic acid, and it is particularly preferable to use dimethylolpropionic acid.
- the amount of the anionic group introducing agent used is not particularly limited and can be adjusted appropriately depending on the purpose.
- the anionic group introducing agent can be used in an amount such that the number of reactive groups such as hydroxyl groups and amino groups that can react with the polyisocyanate compound in the anionic group introducing agent is 0.01 to 0.80, preferably 0.05 to 0.60, and more preferably 0.10 to 0.50.
- the amount of the anionic group introducing agent relative to the polyether polyol compound is not particularly limited and can be adjusted appropriately depending on the purpose.
- the anionic group introducing agent can be used in an amount such that the number of reactive groups such as hydroxyl groups and amino groups that can react with a polyisocyanate compound in the anionic group introducing agent is 0.05 to 20, preferably 0.1 to 10, and more preferably 0.2 to 5.
- Examples of melamine-based compounds that can be used in the production of polyether polyurethane prepolymers include melamine, monomethylol melamine, dimethylol melamine, trimethylol melamine, tetramethylol melamine, pentamethylol melamine, hexamethylol melamine, methylated methylol melamine, butylated methylol melamine, and melamine resins. One or more of these can be used.
- the present invention from the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition, it is preferable to use one or more of the melamine-based compounds selected from the group consisting of melamine, monomethylol melamine, and dimethylol melamine, and it is more preferable to use melamine.
- the amount of the melamine-based compound used is not particularly limited and can be adjusted appropriately depending on the purpose.
- the melamine-based compound can be used in an amount such that the number of amino groups in the melamine-based compound is 0.01 to 0.50, preferably 0.05 to 0.40, and more preferably 0.10 to 0.30.
- the amount of the melamine-based compound relative to the polyether polyol compound is not particularly limited and can be adjusted appropriately depending on the purpose.
- the number of reactive groups such as hydroxyl groups and amino groups that can react with a polyisocyanate compound in the polyether polyol compound used is taken as 1, the melamine-based compound can be used in an amount that results in the number of amino groups of 0.05 to 20, preferably 0.1 to 10, and more preferably 0.2 to 5.
- Low molecular weight polyols that can be used in the production of polyether polyurethane prepolymers include, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, 3-methyl-2,4-pentanediol, 2,4-pentanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol, 2,4-diethyl-1,5-pentanediol, aliphatic diols such as 1,6-hexanediol, 1,7-heptanediol, 3,5-heptanediol, 1,8-oct
- the amount of low molecular weight polyol used is not particularly limited and can be adjusted appropriately depending on the purpose.
- the low molecular weight polyol can be used in an amount such that the number of reactive groups such as hydroxyl groups that can react with the polyisocyanate compound in the low molecular weight polyol is 0.01 to 0.50, preferably 0.05 to 0.40, and more preferably 0.10 to 0.30.
- the polyether polyurethane prepolymer a polyether polyurethane prepolymer obtained using a raw material containing at least one polyether polyol compound, at least one polyisocyanate compound, and one or more selected from the group consisting of an anionic group-introducing agent and a melamine-based compound
- the amounts of the polyether polyol compound, the polyisocyanate compound, the anionic group-introducing agent, and the melamine-based compound used are not particularly limited and can be appropriately adjusted depending on the purpose.
- the number of isocyanate groups in the polyisocyanate compound is taken as 1
- the sum of the number of reactive groups such as hydroxyl groups in the polyether polyol compound, the number of reactive groups such as hydroxyl groups in the anionic group-introducing agent, and the number of amino groups in the melamine-based compound is preferably used in an amount of 0.20 to 0.99, more preferably 0.30 to 0.95, and even more preferably 0.40 to 0.90.
- the amounts of the polyether polyol compound, the polyisocyanate compound, the anionic group introducing agent, and the melamine-based compound used are determined based on the amount of isocyanate in the polyisocyanate compound from the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition.
- the ratio of the number of anate groups, the number of reactive groups such as hydroxyl groups in the polyether polyol compound, the number of reactive groups such as hydroxyl groups in the anionic group introducing agent, and the number of amino groups in the melamine compound is 1:0.01-0.9:0.01-0.9:0.01-0.5, more preferably 1:0.05-0.6:0.05-0.6:0.05-0.4, and even more preferably 1:0.1-0.5:0.1-0.5:0.05-0.3.
- the acid value of the polyether polyurethane prepolymer that can be used in the present invention is not particularly limited, and can be adjusted appropriately depending on the purpose. From the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition, the acid value of the polyether polyurethane prepolymer is preferably 0 to 70 mgKOH/g, more preferably 10 to 60 mgKOH/g, even more preferably 15 to 50 mgKOH/g, and particularly preferably 20 to 40 mgKOH/g. In the present invention, the acid value of the polyether polyurethane prepolymer is a value measured by the neutralization titration method of JIS K 0070 (1992).
- the polyether polyurethane prepolymer used in the present invention is not particularly limited, and can be produced by adding the above-mentioned raw materials, either at once or in multiple batches, to a reaction vessel in the presence of a solvent, catalyst, etc. as necessary, and mixing and reacting for 10 minutes to 24 hours, for example, in an environment of room temperature to 180°C and 0.01 Pa to 100 MPa.
- the catalyst that can be used in producing the polyether polyurethane prepolymer is not particularly limited, and any known catalyst can be used.
- catalysts include N,N,N',N'-tetramethylethylenediamine, N,N,N',N'-tetramethylpropylenediamine, N,N,N',N",N"-pentamethyldiethylenetriamine, N,N,N',N",N"-pentamethyl(3-aminopropyl)ethylenediamine, N,N,N',N",N"-pentamethyldipropylenetriamine, N,N,N',N'-tetramethylguanidine, 1,3,5 -Tris(N,N-dimethylaminopropyl)hexahydro-S-triazine, 1,8-diazabicyclo[5.4.0]undecene-7, triethylenediamine, N,N,N',N'-tetramethylhexamethylenediamine
- the amount of the catalyst used when using the catalyst is not particularly limited, and can be appropriately adjusted depending on the purpose.
- the catalyst can be used, for example, in an amount of 0.0001 to 1% by mass based on the total mass of the raw materials used.
- any known solvent can be used as the solvent for producing the polyether polyurethane prepolymer.
- solvents include acetone, methyl ethyl ketone, dioxane, tetrahydrofuran, N-methyl-2-pyrrolidone, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, and propylene glycol monomethyl ether acetate.
- the amount of the solvent used is not particularly limited and can be adjusted appropriately depending on the purpose.
- the solvent can be used in an amount of 0.1 to 80% by mass based on the total mass of the raw materials used.
- the reaction time when the polyether polyol compound, the polyisocyanate compound, and other raw materials are reacted to produce the polyether polyurethane prepolymer is not particularly limited. From the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition, the reaction time is preferably 30 minutes to 15 hours, more preferably 1 hour to 10 hours, and even more preferably 3 hours to 7 hours.
- the polyether polyurethane prepolymer obtained by the above-mentioned method is obtained by reacting a polyether polyol compound, a polyisocyanate compound, and, if necessary, an anionic group introducing agent and a melamine-based compound.
- a wide variety of compounds can be used as the polyether polyol compound, the polyisocyanate compound, the anionic group introducing agent, and the melamine-based compound.
- the present invention relates to an invention that has discovered that a polyether polyurethane prepolymer obtained by reacting raw materials containing at least one polyether polyol compound and at least one polyisocyanate compound can be used in combination with component (A) consisting of an epoxy resin that is solid at 25°C to obtain a resin composition having excellent adhesion, particularly adhesion that allows adhesion with short pressure bonding, and corrosion resistance. Therefore, in the present invention, the polyether polyurethane prepolymer must be defined as "a polyether polyurethane prepolymer obtained by reacting raw materials containing at least one polyether polyol compound and at least one polyisocyanate compound.”
- Polyether polyurethanes that can be used in the present invention include polyether polyurethanes obtained by blocking the polyether polyurethane prepolymer obtained by the above-mentioned method with a blocking agent or by extending the chain with a chain extender, and polyether polyurethanes obtained by reacting raw materials containing at least one polyether polyol compound and at least one polyisocyanate compound in such a way that no unreacted isocyanate groups remain in the compound.
- the blocking agent used when blocking the polyether polyurethane prepolymer is not particularly limited, and any known blocking agent can be used.
- blocking agents include alcohols such as methanol and ethanol; dialkylamines such as diethylamine, dimethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, didodecylamine, and distearylamine; diarylamines such as diphenylamine; and secondary amino group-containing heterocyclic compounds such as morpholine, piperidine, pyrrole, pyrrolidine, pyrazole, and imidazole. One or more of these can be used.
- the amount of the blocking agent used is not particularly limited, and can be appropriately adjusted depending on the purpose.
- the amount can be set to an amount such that the number of reactive groups in the blocking agent that can react with the isocyanate groups relative to the number of isocyanate groups in the polyether polyurethane prepolymer is 0.01 to 2.0 in terms of equivalent ratio.
- the chain extender used when extending the chain of the polyether polyurethane prepolymer is not particularly limited, and any known chain extender can be used.
- chain extenders include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, diethylene glycol, triethylene glycol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, 3-methyl-2,4-pentanediol, 2,4-pentanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 3,5
- aliphatic diols such as diol, 1,8-octanediol, 2-methyl-1,8-octanediol, and 1,9-nonanediol
- alicyclic diols such as cyclohexanedimethanol and cyclohexanediol
- low molecular weight diamines such as ethylenediamine, propylenediamine, hexamethylenediamine, tolylenediamine, piperazine, and 2-methylpiperazine
- polyalkylene polyamines such as diethylenetriamine, triethylenetetramine, and tetraethylenepentamine
- polyether diamines such as polyoxypropylene diamine and polyoxyethylene
- polyether polyurethane may be used alone or in combination.
- the amount of the chain extender used is not particularly limited and can be appropriately adjusted depending on the purpose.
- the number of reactive groups in the chain extender that can react with the isocyanate groups relative to the number of isocyanate groups in the polyether polyurethane prepolymer can be 0.01 or more in equivalent ratio, and from the viewpoint of various properties of the resulting polyether polyurethane, it is preferable to set the equivalent ratio to 0.5 or more, and more preferably to set it to 1 or more.
- water when water is used as the chain extender, water also functions as a solvent for the resulting resin composition, so the upper limit of the amount of the chain extender containing water to be used is not particularly limited.
- the chain extender containing water can be used, for example, in an amount of 10% by mass to 1000% by mass relative to the mass of the polyether polyurethane prepolymer.
- the polyether polyol compound and polyisocyanate compound that can be used when reacting a raw material containing at least one polyether polyol compound and at least one polyisocyanate compound so that no unreacted isocyanate groups remain in the compound to produce a polyether polyurethane can be used without any particular limitation as long as they are known polyether polyol compounds and polyisocyanate compounds, respectively.
- polyether polyol compounds and polyisocyanate compounds for example, the polyether polyol compounds and polyisocyanate compounds that can be used in the production of the above-mentioned polyether polyurethane prepolymer can be used, respectively.
- the ratio of the amount of the polyether polyol compound and the polyisocyanate compound used when reacting a raw material containing at least one polyether polyol compound and at least one polyisocyanate compound so that no unreacted isocyanate groups remain in the compound is not particularly limited and can be appropriately adjusted according to the purpose.
- the polyether polyol compound and the polyisocyanate compound can be used in amounts such that the ratio of the number of hydroxyl groups in the polyether polyol compound to the number of isocyanate groups in the polyisocyanate compound is 1:0.5 to 0.99.
- the polyether polyurethane is preferably a polyether polyurethane obtained by reacting a raw material containing at least one polyether polyol compound and at least one polyisocyanate compound, and then blocking the polyether polyurethane prepolymer with a blocking agent or extending the chain with a chain extender, and more preferably a polyether polyurethane obtained by blocking a polyether polyurethane prepolymer obtained using a raw material containing at least one polyether polyol compound, at least one polyisocyanate compound, and one or more selected from the group consisting of an anionic group-introducing agent and a melamine-based compound, and then blocking the polyether polyurethane prepolymer with a blocking agent or extending the chain with a chain extender.
- the polyether polyurethane is obtained by blocking with a blocking agent or by extending the chain of a polyether polyurethane prepolymer obtained by using a raw material containing at least one polyether polyol compound, at least one polyisocyanate compound, at least one anionic group introducing agent, and at least one melamine compound, and even more preferably, the polyether polyurethane is obtained by blocking with a blocking agent or by extending the chain of a polyether polyurethane prepolymer obtained by reacting raw materials consisting of at least one polyether polyol compound, at least one polyisocyanate compound, at least one anionic group introducing agent, and at least one melamine compound, and particularly preferably, the polyether polyurethane is obtained by blocking with a blocking agent or by extending the chain of a polyether polyurethane prepolymer obtained by reacting raw materials consisting of at least one polyether polyol compound, at least one polyisocyanate compound, at least one anionic group introducing agent, and at least
- the acid value of the polyether polyurethane that can be used in the present invention is not particularly limited, and can be adjusted appropriately depending on the purpose. From the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition, the acid value of the polyether polyurethane is preferably 0 to 70 mgKOH/g, more preferably 10 to 60 mgKOH/g, even more preferably 15 to 50 mgKOH/g, and particularly preferably 20 to 40 mgKOH/g. In the present invention, the acid value of the polyether polyurethane is a value measured by the neutralization titration method of JIS K 0070 (1992).
- the polyether polyurethane obtained by the above-mentioned method is obtained by reacting a polyether polyol compound, a polyisocyanate compound, and, if necessary, an anionic group introduction agent, a melamine-based compound, and a blocking agent or a chain extender.
- a wide variety of compounds can be used as the polyether polyol compound, the polyisocyanate compound, the anionic group introduction agent, the melamine-based compound, the blocking agent, and the chain extender.
- the present invention relates to an invention that has discovered that a polyether polyurethane obtained by reacting raw materials containing at least one polyether polyol compound and at least one polyisocyanate compound can obtain a resin composition having excellent adhesion, particularly adhesion that allows adhesion with short pressure bonding, and corrosion resistance, when used in combination with component (A) consisting of an epoxy resin that is solid at 25°C. Therefore, in the present invention, polyether polyurethane must be defined as "a polyether polyurethane obtained by reacting raw materials containing at least one polyether polyol compound and at least one polyisocyanate compound.”
- the present invention relates to an invention that has discovered that when component (B) consisting of one or more selected from the group consisting of the above-mentioned polyether polyurethane prepolymer and polyether polyurethane is used in combination with component (A) consisting of an epoxy resin that is solid at 25°C, a resin composition having excellent adhesive properties, particularly adhesive properties that allow bonding by short-time pressure bonding and corrosion resistance, can be obtained.
- the content ratio of polyether structures in the polyether polyurethane prepolymer or polyether polyurethane is preferably 10 to 70 mass%, more preferably 15 to 60 mass%, and even more preferably 20 to 50 mass%, based on the total mass of the polyether polyurethane prepolymer or polyether polyurethane.
- the content ratio of polyether structures in the polyether polyurethane prepolymer or polyether polyurethane is calculated from the mass content of polyether structures in the raw materials used.
- Component (B) used in the present invention may consist of only the above-mentioned polyether polyurethane prepolymer, may consist of only polyether polyurethane, or may consist of polyether polyurethane prepolymer and polyether polyurethane. From the viewpoint of the various properties of the resulting resin composition, it is preferable that component (B) contains polyether polyurethane.
- the content of component (A) in the resin composition of the present invention is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of improving the adhesiveness of the resulting resin composition, particularly the adhesiveness by short-term compression bonding, the content of component (A) in the resin composition is preferably 3 to 60 mass % relative to the total amount of the resin composition, more preferably 5 to 50 mass %, even more preferably 8 to 45 mass %, and even more preferably 20 to 40 mass %.
- the content of component (B) in the resin composition of the present invention is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of improving the adhesiveness of the resulting resin composition, particularly the adhesiveness by short-term compression bonding, the content of component (B) in the resin composition is preferably 1 to 50 mass % relative to the total amount of the resin composition, more preferably 2 to 40 mass %, even more preferably 3 to 30 mass %, and particularly preferably 4 to 10 mass %.
- the content ratio of component (A) to component (B) in the resin composition of the present invention is not particularly limited and can be adjusted according to the purpose. From the viewpoint of improving the adhesiveness of the resulting resin composition, particularly the adhesiveness by short-time compression bonding, the content ratio of component (A) to component (B) in the resin composition is preferably 5:95 to 98:2 by mass, more preferably 20:80 to 95:5, even more preferably 50:50 to 92:8, and particularly preferably 70:30 to 90:10.
- the resin composition of the present invention may further contain water.
- the content of water in the resin composition of the present invention is not particularly limited and can be appropriately adjusted. From the viewpoints of adhesion and corrosion resistance of the resin composition to metals, reduction of the burden on the environment, and ease of handling of the resin composition, the resin composition preferably contains 10 to 90% by mass of water, more preferably 20 to 80% by mass, even more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass.
- tap water, ion-exchanged water, distilled water, natural water, pure water, etc. can be used as the water depending on the purpose.
- the content ratio of component (A), component (B), and water is not particularly limited and can be adjusted according to the purpose.
- the content ratio of component (A), component (B), and water in the resin composition is preferably 3-80:1-60:10-90, more preferably 5-60:2-50:20-80, even more preferably 8-50:3-40:30-70, and particularly preferably 20-40:4-10:40-60, when the sum of the contents of component (A), component (B), and water is taken as 100.
- the resin composition of the present invention can obtain a water-dispersed emulsion having excellent dispersion stability as a resin composition, and therefore can be a resin composition having reduced environmental load and excellent ease of handling.
- the resin composition of the present invention contains water, as component (A), from the viewpoint of dispersion stability and various properties of the obtained resin composition, it is preferable to use a bisphenol type epoxy resin that is solid at 25°C among the epoxy resins that are solid at 25°C described above, and it is more preferable to use one or more selected from the group consisting of bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, and bisphenol AD type epoxy resins that are solid at 25°C, and it is even more preferable to use a bisphenol A type epoxy resin that is solid at 25°C.
- an epoxy resin that is solid at 25°C and has an epoxy equivalent of 500 g/eq. to 30,000 g/eq. as component (A) among the epoxy resins that are solid at 25°C described above and it is more preferable to use an epoxy resin that is solid at 25°C and has an epoxy equivalent of 1,000 g/eq. to 10,000 g/eq., and it is even more preferable to use an epoxy resin that is solid at 25°C and has an epoxy equivalent of 1,500 g/eq. It is even more preferable to use an epoxy resin that is solid at 25°C and has an epoxy equivalent of 2,000 g/eq. to 5,000 g/eq., and it is particularly preferable to use an epoxy resin that is solid at 25°C and has an epoxy equivalent of 2,500 g/eq. to 3,500 g/eq.
- component (B) one or more selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes obtained by reacting raw materials containing one or more polyalkylene glycols, among the above-mentioned polyether polyurethane prepolymers and polyether polyurethanes, more preferable to use one or more selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes obtained by reacting raw materials containing one or more selected from the group consisting of polyethylene glycol, polypropylene glycol, and polytetramethylene ether glycol, even more preferable to use one or more selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes obtained by reacting raw materials containing one or more selected from the group consisting of polypropylene glycol and polytetram
- the acid value of the polyether polyurethane prepolymer and polyether polyurethane used is preferably 0 to 70 mgKOH/g, more preferably 10 to 60 mgKOH/g, even more preferably 15 to 50 mgKOH/g, and particularly preferably 20 to 40 mgKOH/g.
- the resin composition of the present invention may contain, depending on the purpose, a solvent, a neutralizing agent, a surfactant, an aminosilane-based compound, an amide-based compound, a carbodiimide compound, an isocyanate-based compound (excluding polyether polyurethane prepolymer), a polyetheramine-based compound, a phosphoric acid-modified epoxy resin, a melamine resin, a phenolic resin, and the like.
- the solvent that may be contained in the resin composition of the present invention is not particularly limited, and a known solvent can be used.
- solvents examples include acetone, methyl ethyl ketone, dioxane, tetrahydrofuran, N-methyl-2-pyrrolidone, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, and propylene glycol monomethyl ether acetate.
- the content of the solvent is not particularly limited, and can be appropriately adjusted depending on the purpose.
- the solvent can be contained in an amount of 0.1 to 50 mass% based on the total amount of the resin composition.
- the upper limit of the solvent content is preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 10% by mass or less, based on the total amount of the resin composition.
- a resin composition having excellent stability and ease of handling can be produced even when the solvent content is small or not contained.
- the neutralizing agent that may be contained in the resin composition of the present invention is not particularly limited, and known neutralizing agents may be used.
- neutralizing agents include trialkylamines such as trimethylamine, triethylamine, and tributylamine; N,N-dialkylalkanolamines such as N,N-dimethylethanolamine, N,N-dimethylpropanolamine, N,N-dipropylethanolamine, and 1-dimethylamino-2-methyl-2-propanol; tertiary amine compounds such as N-alkyl-N,N-dialkanolamines and trialkanolamines such as triethanolamine; ammonia, trimethylammonium hydroxide, sodium hydroxide, potassium hydroxide, and lithium hydroxide.
- component (B) when one or more types selected from the group consisting of polyether polyurethane prepolymers having an acid value of 10 to 60 mgKOH/g and polyether polyurethanes having an acid value of 10 to 60 mgKOH/g are used as component (B), from the viewpoint of the stability and handleability of the resin composition, it is preferable to contain 0.01 to 5 mass% of a neutralizing agent, and more preferably 0.05 to 3 mass%, based on the total amount of the resin composition.
- the surfactant that may be contained in the resin composition of the present invention is not particularly limited, and any known surfactant may be used.
- examples of such surfactants include known anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, etc. One or more of these may be used.
- anionic surfactants include alkyl sulfates such as sodium dodecyl sulfate, potassium dodecyl sulfate, and ammonium dodecyl sulfate; polyoxyethylene ether sulfates such as sodium dodecyl polyglycol ether sulfate and ammonium polyoxyethylene alkyl ether sulfate; ammonium salts of alkyl sulfonates such as ammonium salts of sulfonated paraffin; fatty acid salts such as sodium laurate, triethanolamine oleate, and triethanolamine abietate; alkylaryl sulfonates such as sodium benzenesulfonate and alkali metal sulfates of alkali phenol hydroxyethylene; alkylnaphthalenesulfonates, naphthalenesulfonic acid-formaldehyde condensates, dialkylsulfosuccinates
- Nonionic surfactants include fatty acid partial esters of polyhydric alcohols such as sorbitan monolaurate and sorbitan monooleate; polyoxyethylene glycol fatty acid esters; polyglycerin fatty acid esters; ethylene oxide and/or propylene oxide adducts of alcohols having 1 to 18 carbon atoms; ethylene oxide and/or propylene oxide adducts of alkylphenols; ethylene oxide and/or propylene oxide adducts of alkylene glycols and/or alkylenediamines, etc.
- polyhydric alcohols such as sorbitan monolaurate and sorbitan monooleate
- polyoxyethylene glycol fatty acid esters such as sorbitan monolaurate and sorbitan monooleate
- polyoxyethylene glycol fatty acid esters such as sorbitan monolaurate and sorbitan monooleate
- polyoxyethylene glycol fatty acid esters such as sorbitan monolau
- alcohols having 1 to 18 carbon atoms that constitute nonionic surfactants include methanol, ethanol, propanol, 2-propanol, butanol, 2-butanol, tertiary butanol, amyl alcohol, isoamyl alcohol, tertiary amyl alcohol, hexanol, octanol, decane alcohol, lauryl alcohol, myristyl alcohol, palmityl alcohol, and stearyl alcohol.
- alkylphenols constituting the nonionic surfactant examples include phenol, methylphenol, 2,4-di-tert-butylphenol, 2,5-di-tert-butylphenol, 3,5-di-tert-butylphenol, 4-(1,3-tetramethylbutyl)phenol, 4-isooctylphenol, 4-nonylphenol, 4-tert-octylphenol, 4-dodecylphenol, 2-(3,5-dimethylheptyl)phenol, 4-(3,5-dimethylheptyl)phenol, naphthol, bisphenol A, and bisphenol F.
- alkylene glycols constituting the nonionic surfactant examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, and 1,6-hexanediol.
- alkylene diamines examples include those in which the alcoholic hydroxyl groups of these alkylene glycols are replaced with amino groups.
- the ethylene oxide and propylene oxide adducts may be random adducts or block adducts.
- Cationic surfactants include quaternary ammonium salts such as lauryl trimethyl ammonium chloride, stearyl trimethyl ammonium chloride, distearyl dimethyl ammonium chloride, didecyl dimethyl ammonium chloride, lauryl benzyl dimethyl ammonium chloride, and didecyl dimethyl ammonium chloride; alkyl pyridinium bromide, imidazolinium laurate, etc. One or more of these can be used.
- amphoteric surfactants include betaine-type amphoteric surfactants such as coconut oil fatty acid amidopropyl dimethyl acetate betaine, lauryl dimethyl amino acid betaine, 2-alkyl-N-carboxymethyl-N-hydroxymethyl imidazolinium betaine, lauryl hydroxysulfobetaine, lauroyl amidoethyl hydroxyethyl carboxymethyl betaine, and metal salts of hydroxypropyl phosphate; amino acid-type, sulfate ester-type, and sulfonic acid-type amphoteric surfactants such as metal salts of ⁇ -lauryl aminopropionic acid. One or more of these may be used.
- betaine-type amphoteric surfactants such as coconut oil fatty acid amidopropyl dimethyl acetate betaine, lauryl dimethyl amino acid betaine, 2-alkyl-N-carboxymethyl-N-hydroxymethyl imidazolinium betaine, lauryl hydroxysulf
- the present invention from the viewpoints of the adhesiveness and corrosion resistance of the resin composition to metals, the ease of handling of the resin composition, etc., it is preferable to contain one or more surfactants selected from the group consisting of anionic surfactants and nonionic surfactants, it is more preferable to contain at least one nonionic surfactant, and it is even more preferable to contain at least one nonionic surfactant having an alkylene oxide skeleton.
- nonionic surfactants it is preferable to contain a nonionic surfactant having a weight average molecular weight of 1,000 to 50,000, it is more preferable to contain a nonionic surfactant having a weight average molecular weight of 5,000 to 30,000, it is even more preferable to contain a nonionic surfactant having a weight average molecular weight of 10,000 to 20,000, and it is particularly preferable to contain a nonionic surfactant having a weight average molecular weight of 14,000 to 18,000.
- the content of the surfactant in the resin composition is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of the handleability of the resulting resin composition and the adhesion to metals and corrosion resistance, the content of the surfactant in the resin composition is preferably 0.01 to 20 mass%, more preferably 0.1 to 15 mass%, even more preferably 0.2 to 10 mass%, even more preferably 0.5 to 6 mass%, and particularly preferably 3.0 to 5.0 mass%, based on the total amount of the resin composition.
- aminosilane compounds that can be used in the present invention are not particularly limited as long as they contain an amino group and a silicon-containing group in the molecule, and known silane coupling agents can be used.
- aminosilane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-methyl-3-(trimethoxysilyl)propylamine, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, N-(6-aminohexyl)-3-aminopropyltrimethoxysilane, 3-aminopropyldiethoxymethylsilane, 3-t-
- N-methyl-3-amino-2-methylpropyltrimethoxysilane N-ethyl-3-amino-2-methylpropylmethyldimethoxysilane, N-ethyl-3-amino-2-methylpropyltrimethoxysilane, N-ethyl-3-amino-2-methylpropyldiethoxymethylsilane, N-ethyl-3-amino-2-methylpropyltriethoxysilane, N-butyl-3-amino-2-methylpropyltrimethoxysilane, 3-(N-methyl-2-amino-1-methyl-1-ethoxy)propyltrimethoxysilane, N-ethyl-4-amino-3,3-dimethylbutyldimethoxymethylsilane, N-ethyl-4-amino-3,3-dimethylbutyltrimethoxysilane, bis-(3-trimethylbutyl N-(3-trimethoxy
- the content of the aminosilane compound in the resin composition is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of adhesion to metals and corrosion resistance of the resulting resin composition, the content of the aminosilane compound in the resin composition is preferably 0.01 to 20 mass%, more preferably 0.1 to 10 mass%, and even more preferably 0.2 to 5 mass%, relative to the total mass of the resin composition.
- Amide compounds that can be used in the present invention are not particularly limited as long as they have one or more amide groups in the molecule.
- amide compounds include succinic acid dihydrazide, adipic acid dihydrazide, phthalic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide, p-oxybenzoic acid hydrazide, salicylic acid hydrazide, maleic acid dihydrazide, dicyandiamide, methylguanidine, ethylguanidine, propylguanidine, butylguanidine, dimethylguanidine, trimethylguanidine, phenylguanidine, diphenylguanidine, and the like. One or more of these can be used.
- the content of the amide compound in the resin composition is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of adhesion to metal and corrosion resistance of the resulting resin composition, the content of the amide compound in the resin composition is preferably 0.01 to 20 mass%, more preferably 0.1 to 10 mass%, and even more preferably 0.2 to 5 mass%, relative to the total mass of the resin composition.
- carbodiimide compounds include N,N'-dicyclohexylcarbodiimide, N,N'-dimethylcarbodiimide, N,N'-diisopropylcarbodiimide, N,N'-diisobutylcarbodiimide, N,N'-dioctylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, N,N'-bis(2,6-diisopropylphenyl)carbodiimide, poly(1,6-hexamethylenecarbodiimide), and N,N'-dicyclohexylcarbodiimide.
- Poly(4,4'-methylenebiscyclohexylcarbodiimide), poly(1,3-cyclohexylenecarbodiimide), poly(1,4-cyclohexylenecarbodiimide), poly(4,4'-dicyclohexylmethanecarbodiimide), etc. can be used, and also commercially available products such as Carbodilite V-02, V-02-L2, SV-02, V-04, V-10, E-02, E-03A, and E-05 (all manufactured by Nisshinbo Chemical Co., Ltd.) can be used.
- a carbodiimide compound having a carbodiimide equivalent of 100 to 800 g/eq. as the carbodiimide compound, and a carbodiimide equivalent of 200 to 700 g/eq. It is more preferable to use a carbodiimide compound having a carbodiimide equivalent of 300 to 600 g/eq., even more preferable to use a carbodiimide compound having a carbodiimide equivalent of 300 to 600 g/eq., and particularly preferable to use a carbodiimide compound having a carbodiimide equivalent of 400 to 500 g/eq.
- the content of the carbodiimide compound in the resin composition is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of adhesion to metals and corrosion resistance of the resulting resin composition, the content of the carbodiimide compound in the resin composition is preferably 0.01 to 20 mass%, more preferably 0.1 to 10 mass%, and even more preferably 0.2 to 5 mass%, based on the total amount of the resin composition.
- the isocyanate-based compound that can be used in the present invention is not particularly limited as long as it has one or two or more isocyanate groups in the molecule. From the viewpoint of the adhesion to metals and corrosion resistance of the resulting resin composition, an isocyanate-based compound having two isocyanate groups in the molecule is preferred.
- isocyanate compounds include aliphatic diisocyanates such as hexamethylene diisocyanate and 2,2,4-trimethylhexamethylene diisocyanate, alicyclic diisocyanates such as isophorone diisocyanate, 4,4-dicyclohexylmethane diisocyanate and 1,3-bis(isocyanatemethyl)cyclohexane, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 1,5-naphthylene diisocyanate, 1,4-naphthylene diisocyanate, and the like.
- aliphatic diisocyanates such as hexamethylene diisocyanate and 2,2,4-trimethylhexamethylene diisocyanate
- aromatic diisocyanates examples include aromatic diisocyanates such as anate, phenylene diisocyanate, tetramethylxylylene diisocyanate, 4,4'-diphenyl ether diisocyanate, 2-nitrodiphenyl-4,4'-diisocyanate, 2,2'-diphenylpropane-4,4'-diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, 4,4'-diphenylpropane diisocyanate, 3,3'-dimethoxydiphenyl-4,4'-diisocyanate, and xylylene diisocyanate.
- aromatic diisocyanates such as anate, phenylene diisocyanate, tetramethylxylylene diisocyanate, 4,4'-diphenyl ether diisocyanate, 2-nitrodiphenyl-4,4'-diisocyanate, 2,2
- Polymers, adducts, biuret forms, nurate forms, and blocked forms blocked with a blocking agent may also be used.
- the blocking agent include phenol-based blocking agents such as phenol, cresol, xylenol, chlorophenol, and ethylphenol; lactam-based blocking agents such as ⁇ -caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam, and ⁇ -propiolactam; active methylene-based blocking agents such as ethyl acetoacetate and acetylacetone; methanol, ethanol, propanol, butanol, amyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, benzyl ether, methyl glycolate, butyl glycolate, diacetone alcohol, methyl lactate, and lactic acid.
- blocking agents examples include alcohol-based blocking agents such as ethyl; oxime-based blocking agents such as formaldehyde oxime, acetaldoxime, acetoxime, methyl ethyl ketoxime, diacetyl monooxime, and cyclohexane oxime; mercaptan-based blocking agents such as butyl mercaptan, hexyl mercaptan, t-butyl mercaptan, thiophenol, methylthiophenol, and ethylthiophenol; acid amide-based blocking agents such as acetate amide and benzamide; imide-based blocking agents such as succinimide and maleimide; amine-based blocking agents such as xylidine, aniline, butylamine, and dibutylamine; imidazole-based blocking agents such as imidazole and 2-ethylimidazole; and imine-based blocking agents such as methyleneimine and propy
- the content of the isocyanate compound in the resin composition is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of adhesion to metals and corrosion resistance of the resulting resin composition, the content of the isocyanate compound in the resin composition is preferably 0.01 to 20 mass%, more preferably 0.1 to 10 mass%, and even more preferably 0.2 to 5 mass%, based on the total amount of the resin composition.
- the polyetheramine compound that can be used in the present invention can be any compound that has a polyether group consisting of a polyoxyalkylene structure such as a polyoxyethylene group, a polyoxypropylene group, or a polyoxybutylene group in the molecule, and at least one amino group.
- the polyetheramine compound may have only polyoxyethylene groups, only polyoxypropylene groups, only polyoxybutylene groups, or two or more types selected from the group consisting of polyoxyethylene groups, polyoxypropylene groups, and polyoxybutylene groups, as the polyether group in the molecule.
- the number of repetitions of the oxyalkylene structure in the polyether group is not particularly limited, and can be adjusted according to the purpose.
- the number of repetitions of the oxyalkylene structure in the polyetheramine compound can be 2 to 500, as the total number of repetitions of one or more types of oxyalkylene groups.
- polyetheramine compounds include polyethylene glycol amine, polyethylene glycol diamine, methoxypolyethylene glycol amine, polypropylene glycol amine, polypropylene glycol diamine, methoxypolypropylene glycol amine, polybutylene glycol amine, polybutylene glycol diamine, methoxypolybutylene glycol amine, polyoxyethylene polyoxypropylene amine, polyoxyethylene polyoxypropylene diamine, and methoxypolyoxyethylene polyoxypropylene amine.
- polyetheramine compounds can also be used, and examples of commercially available products include JEFFAMINE (registered trademark) M Series (M-600, M-1000, M-2005, M-2070), JEFFAMINE D Series (D-230, D-400, D-2000, D-4000), JEFFAMINE ED Series (ED-600, ED-900, ED-2003), and JEFFAMINE T Series (T-403, T-3000, T-5000) (all manufactured by HUNTSMAN).
- JEFFAMINE registered trademark
- M Series M-600, M-1000, M-2005, M-2070
- JEFFAMINE D Series D-230, D-400, D-2000, D-4000
- JEFFAMINE ED Series ED-600, ED-900, ED-2003
- T-403, T-3000, T-5000 all manufactured by HUNTSMAN.
- a polyetheramine compound having a polyether group, an amino group, and a methoxy group in the molecule it is preferable to use, among these, a polyetheramine compound having only a polyoxyethylene group, only a polyoxypropylene group, or a polyoxyethylene group and a polyoxypropylene group as the polyether group.
- the polyetheramine compound a methoxypolyoxyethylenepolyoxypropyleneamine compound in which the number of repeats of oxyethylene groups in the molecule is 1 to 100 and the number of repeats of oxypropylene groups is 2 to 50.
- the content of the polyetheramine compound in the resin composition is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of adhesion to metal and corrosion resistance of the resulting resin composition, the content of the polyetheramine compound in the resin composition is preferably 0.01 to 20 mass%, more preferably 0.1 to 10 mass%, and even more preferably 0.2 to 5 mass%, based on the total amount of the resin composition.
- the phosphoric acid-modified epoxy resin that can be used in the present invention is not particularly limited as long as it is a modified product obtained by reacting phosphoric acids with an epoxy compound.
- phosphoric acids orthophosphoric acid, phosphorous acid, hypophosphorous acid, phosphonic acid, pyrophosphoric acid, triphosphoric acid and other polyphosphoric acids can be used.
- the epoxy compound can be used without particular limitation as long as it is a compound having at least one epoxy group in the molecule, and examples thereof include n-butyl glycidyl ether, C 12 -C Compounds having one epoxy group in the molecule, such as alkyl glycidyl ether of 14 , allyl glycidyl ether, 2-ethylhexyl glycidyl ether, styrene oxide, phenyl glycidyl ether, cresyl glycidyl ether, p-sec-butylphenyl glycidyl ether, t-butylphenyl glycidyl ether, glycidyl methacrylate, and tertiary carboxylic acid glycidyl ester; compounds having two epoxy groups in the molecule, such as ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, but
- the phosphoric acid-modified epoxy resin that can be used in the present invention can be obtained by reacting the above-mentioned epoxy compound with phosphoric acids, for example, at an equivalent ratio of 1:0.1 to 1:5 at room temperature to 100°C.
- a phosphoric acid-modified epoxy resin obtained by reacting one or more epoxy compounds selected from the group consisting of bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and bisphenol AD type epoxy resin with a phosphoric acid compound such as orthophosphoric acid, metaphosphoric acid, phosphonic acid, pyrophosphoric acid, or polyphosphoric acid at an equivalent ratio of 1:0.5 to 1:3, and it is more preferable to use a phosphoric acid-modified epoxy resin obtained by reacting at an equivalent ratio of 1:1 to 1:2.
- the content of the phosphoric acid-modified epoxy resin in the resin composition is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of adhesion to metal and corrosion resistance of the resulting resin composition, the content of the phosphoric acid-modified epoxy resin in the resin composition is preferably 0.01 to 20 mass%, more preferably 0.1 to 10 mass%, and even more preferably 0.2 to 5 mass%, based on the total amount of the resin composition.
- any known melamine resin can be used without any particular limitation.
- examples of such melamine resins include partially or completely methylolated melamine obtained by the reaction of melamine with formaldehyde, alkyl ether type melamine resins obtained by partially or completely etherifying the methylol groups of methylolated melamine resins with alcohol, imino group-containing melamine resins, and mixtures thereof.
- imino group-containing melamine resin it is preferable to use an imino group-containing melamine resin as the melamine resin from the viewpoint of adhesion to metals and corrosion resistance of the resulting resin composition.
- melamine resin that can be used in the present invention
- a commercially available product for example, a series of melamine resins bearing the name CYMEL (registered trademark) (manufactured by Allnex Co., Ltd.) can be used.
- the phenolic resin that can be used in the present invention can be any known phenolic resin without any particular restrictions.
- phenolic resins include bisphenol A type phenolic resins, bisphenol E type phenolic resins, bisphenol F type phenolic resins, bisphenol S type phenolic resins, phenol novolac resins, bisphenol A novolac type phenolic resins, glycidyl ester type phenolic resins, aralkyl novolac type phenolic resins, biphenyl aralkyl type phenolic resins, resol type phenolic resins, cresol novolac type phenolic resins, multifunctional phenolic resins, naphthol resins, naphthol novolac resins, multifunctional naphthol resins, anthracene type phenolic resins, naphthalene skeleton modified novolac type phenolic resins, phenol aralkyl type phenolic resins, naphthol aralkyl type
- a resol type phenolic resin as the phenolic resin from the viewpoint of adhesion to metals and corrosion resistance of the resulting resin composition.
- commercially available products can be used as the phenolic resin that can be used in the present invention, for example, a series of phenolic resins bearing the name SUMILITE RESIN (registered trademark) (manufactured by Sumitomo Bakelite Co., Ltd.) can be used.
- the content of the phenolic resin in the resin composition is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of adhesion to metals and corrosion resistance of the resulting resin composition, the content of the phenolic resin in the resin composition is preferably 0.01 to 20 mass%, more preferably 0.1 to 10 mass%, and even more preferably 0.2 to 5 mass%, based on the total amount of the resin composition.
- the resin composition of the present invention contains components such as polyether polyurethane prepolymer and polyether polyurethane, which have excellent polymer chain freedom due to their main structure of polyether urethane, and is therefore believed to have excellent adhesion, particularly in a short time.
- the resin composition of the present invention contains an epoxy resin that is solid at 25°C, which improves the stability and coatability of the resin composition, and is therefore believed to have excellent adhesion, particularly in a short time, and corrosion resistance.
- the method for manufacturing the resin composition of the present invention is not particularly limited, and it can be manufactured by a method of mixing component (A) consisting of an epoxy resin solid at 25 ° C. with component (B) consisting of one or more selected from the group consisting of polyether polyurethane prepolymer and polyether polyurethane by a known method.
- component (A) consisting of an epoxy resin solid at 25 ° C. may be used in a solid state, in a state dispersed in water, or in a state dissolved in a solvent.
- the resin composition using an aqueous dispersion emulsion in which component (A) consisting of an epoxy resin solid at 25 ° C. is dispersed in a solvent containing water.
- the method for dispersing component (A) consisting of an epoxy resin solid at 25 ° C. in water is not particularly limited, and for example, a method of forcibly emulsifying an epoxy resin in water using a surfactant, a method of dispersing an epoxy resin having self-emulsifying properties in water, etc. can be used.
- the surfactant that can be used when producing a resin composition using an aqueous dispersion emulsion in which component (A) consisting of an epoxy resin that is solid at 25°C is dispersed in a solvent containing water is not particularly limited, and the above-mentioned known anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, etc. can be used. From the viewpoint of adhesion to metals, corrosion resistance, handleability, etc.
- the resulting resin composition it is preferable to contain one or more surfactants selected from the group consisting of anionic surfactants and nonionic surfactants, it is more preferable to contain at least one nonionic surfactant, and it is even more preferable to contain at least one nonionic surfactant having an alkylene oxide skeleton.
- the nonionic surfactants from the viewpoint of adhesion to metals, corrosion resistance, handling properties, etc.
- a nonionic surfactant having a weight average molecular weight of 1,000 to 50,000 more preferably a nonionic surfactant having a weight average molecular weight of 5,000 to 30,000, even more preferably a nonionic surfactant having a weight average molecular weight of 10,000 to 20,000, and particularly preferably a nonionic surfactant having a weight average molecular weight of 14,000 to 18,000.
- the content of the surfactant in the water-dispersed emulsion in which component (A) consisting of a solid epoxy resin at 25 ° C. is dispersed in a solvent containing water is not particularly limited, but can be, for example, 0.01 to 20 mass%.
- the content of the surfactant is preferably 0.1 to 20 mass% relative to the total amount of the water-dispersed emulsion in which component (A), which is a solid epoxy resin at 25°C, is dispersed in a solvent containing water, more preferably 0.5 to 10 mass%, even more preferably 0.5 to 8.0 mass%, and particularly preferably 3.0 to 6.0 mass%.
- the polyether polyurethane prepolymer when producing the resin composition of the present invention, may be used as a solid or liquid polyether polyurethane prepolymer alone, or may be used in a state dispersed in water, or may be used in a state dissolved in a solvent. From the viewpoint of easily producing a resin composition having excellent stability and ease of handling, it is preferable to produce the resin composition using an aqueous dispersion emulsion in which the polyether polyurethane prepolymer is dispersed in a solvent containing water.
- the method of dispersing the polyether polyurethane prepolymer in water is not particularly limited, and for example, a method of forcibly emulsifying the polyether polyurethane prepolymer in water using a surfactant, a method of dispersing a polyether polyurethane prepolymer having self-emulsifying properties in water, etc. can be used.
- the surfactant that can be used at this time is not particularly limited, and the above-mentioned known anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, etc. can be used, and the content thereof is also not particularly limited.
- the content of the surfactant is, for example, preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, even more preferably 0.5 to 8.0% by mass, and particularly preferably 3.0 to 6.0% by mass, relative to the total amount of the water-dispersed emulsion in which the polyether polyurethane prepolymer is dispersed in a solvent containing water.
- the polyether polyurethane When producing the resin composition of the present invention, the polyether polyurethane may be used as a solid or liquid polyether polyurethane alone, or may be used in a state dispersed in water, or may be used in a state dissolved in a solvent. From the viewpoint of easily producing a resin composition having excellent stability and ease of handling, it is preferable to produce the resin composition using an aqueous dispersion emulsion in which the polyether polyurethane is dispersed in a solvent containing water.
- the method for dispersing the polyether polyurethane in water is not particularly limited, and for example, a method of forcibly emulsifying the polyether polyurethane in water using a surfactant, or a method of dispersing a polyether polyurethane having self-emulsifying properties in water, etc. can be used.
- the surfactant that can be used is not particularly limited, and the above-mentioned known anionic surfactant, nonionic surfactant, cationic surfactant, amphoteric surfactant, etc. can be used, and the content thereof is also not particularly limited.
- the content of the surfactant is preferably 0.1 to 20 mass % relative to the total amount of the aqueous dispersion emulsion in which the polyether polyurethane is dispersed in a solvent containing water, more preferably 0.5 to 10 mass %, even more preferably 0.5 to 8.0 mass %, and particularly preferably 3.0 to 6.0 mass %.
- an aqueous resin composition having excellent adhesive properties, particularly adhesive properties that can be bonded by pressure bonding in a short time, and corrosion resistance
- it is particularly preferred to produce the resin composition by mixing an aqueous dispersion emulsion of component (A) consisting of an epoxy resin that is solid at 25°C with an aqueous dispersion emulsion of component (B) consisting of one or more members selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes.
- the resin composition of the present invention can be used without any particular limitation as long as the application uses an epoxy resin or a urethane resin.
- the resin composition of the present invention can be used, for example, as an adhesive, coating agent, sealant agent, etc. for substrates such as metal, wood, glass, concrete, plastic, ceramic, etc., and more specifically, it can be used as an adhesive or coating agent for bonding various substrates in the fields of automobiles, vehicles (bullet trains, trains, etc.), civil engineering, architecture, ships, airplanes, and the space industry, adhesives for general office materials, medical materials, and electronic material materials, sealants, etc.
- the resin composition of the present invention contains the above-mentioned specific component (A) and component (B), and therefore has excellent adhesion to metals in particular, and is therefore preferably used as a resin composition for metal surface treatment, such as an adhesive between metal substrates or between a metal substrate and another substrate, or a coating agent for a metal substrate.
- the metal surface treatment resin composition of the present invention is a metal surface treatment resin composition containing component (A) consisting of an epoxy resin solid at 25 ° C. and component (B) consisting of one or more selected from the group consisting of polyether polyurethane prepolymer and polyether polyurethane.
- component (A) consisting of an epoxy resin solid at 25 ° C.
- component (B) consisting of one or more selected from the group consisting of polyether polyurethane prepolymer and polyether polyurethane.
- the content of component (A) in the metal surface treatment resin composition is preferably 3 to 60 mass % relative to the total amount of the metal surface treatment resin composition, more preferably 5 to 50 mass %, even more preferably 8 to 45 mass %, and even more preferably 20 to 40 mass %.
- the content of component (B) consisting of one or more selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes in the resin composition for metal surface treatment of the present invention is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of improving the adhesiveness and corrosion resistance of the resin composition for metal surface treatment, particularly the adhesiveness by short-time pressing, the content of component (B) is preferably 1 to 50 mass % relative to the total amount of the resin composition for metal surface treatment, more preferably 2 to 40 mass %, even more preferably 3 to 30 mass %, and particularly preferably 4 to 10 mass %.
- the content ratio of component (A) consisting of an epoxy resin that is solid at 25°C and component (B) consisting of one or more selected from the group consisting of polyether polyurethane prepolymer and polyether polyurethane in the resin composition for metal surface treatment of the present invention is not particularly limited and can be adjusted according to the purpose. From the viewpoint of improving the adhesion and corrosion resistance of the resin composition for metal surface treatment, particularly the adhesion by short-time pressing, the content ratio of component (A) to component (B) in the resin composition for metal surface treatment is preferably 5:95 to 98:2 by mass, more preferably 20:80 to 95:5, even more preferably 50:50 to 92:8, and particularly preferably 70:30 to 90:10.
- the water content in the resin composition for metal surface treatment of the present invention is not particularly limited and can be adjusted as appropriate.
- the resin composition for metal surface treatment preferably contains 10 to 90% by mass of water relative to the total amount of the resin composition for metal surface treatment, more preferably 20 to 80% by mass, even more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass.
- tap water, ion-exchanged water, distilled water, natural water, pure water, etc. can be used as the water depending on the purpose.
- the ratio of the contents of component (A), component (B), and water is not particularly limited and can be adjusted according to the purpose.
- the ratio of the contents of component (A), component (B), and water in the resin composition for metal surface treatment is preferably 3-80:1-60:10-90, more preferably 5-60:2-50:20-80, even more preferably 8-50:3-40:30-70, and particularly preferably 20-40:4-10:40-60, when the sum of the contents of component (A), component (B), and water is taken as 100.
- the resin composition for metal surface treatment of the present invention contains the above-mentioned specific component (A), component (B), and water in such a content ratio, so that a water-dispersed emulsion with excellent dispersion stability can be obtained as a resin composition for metal surface treatment, and therefore it can be a resin composition for metal surface treatment that reduces the burden on the environment and is easy to handle.
- component (A) when the resin composition for metal surface treatment of the present invention contains water, it is preferable to use, as component (A), from the viewpoint of the dispersion stability and various properties of the resin composition for metal surface treatment obtained, a bisphenol type epoxy resin that is solid at 25°C among the epoxy resins that are solid at 25°C described above, and it is more preferable to use one or more selected from the group consisting of bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, and bisphenol AD type epoxy resins that are solid at 25°C, and it is even more preferable to use a bisphenol A type epoxy resin that is solid at 25°C.
- component (A) an epoxy resin that is solid at 25°C and has an epoxy equivalent of 500 g/eq. to 30,000 g/eq. among the epoxy resins that are solid at 25°C described above, and an epoxy equivalent of 1,000 g/eq. to 10,000 g/eq. It is more preferable to use an epoxy resin that is solid at 25°C and has an epoxy equivalent of 1,500 g/eq. to 6,000 g/eq., even more preferable to use an epoxy resin that is solid at 25°C and has an epoxy equivalent of 2,000 g/eq. to 5,000 g/eq., and particularly preferable to use an epoxy resin that is solid at 25°C and has an epoxy equivalent of 2,500 g/eq. to 3,500 g/eq.
- the resin composition for metal surface treatment of the present invention contains water, as component (B), from the viewpoint of the dispersion stability and various properties of the resulting resin composition for metal surface treatment, it is preferable to use one or more selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes obtained by reacting raw materials containing one or more polyalkylene glycols, among the above-mentioned polyether polyurethane prepolymers and polyether polyurethanes, it is more preferable to use one or more selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes obtained by reacting raw materials containing one or more selected from the group consisting of polyethylene glycol, polypropylene glycol, and polytetramethylene ether glycol, it is even more preferable to use one or more selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes obtained by reacting raw materials containing one or more selected from the group consisting of poly
- the acid value of the polyether polyurethane prepolymer and polyether polyurethane used is preferably 0 to 70 mgKOH/g, more preferably 10 to 60 mgKOH/g, even more preferably 15 to 50 mgKOH/g, and particularly preferably 20 to 40 mgKOH/g.
- the content of the surfactant in the resin composition for metal surface treatment is not particularly limited and can be appropriately adjusted depending on the purpose.
- the content of the surfactant in the resin composition for metal surface treatment is preferably 0.01 to 20 mass%, more preferably 0.1 to 15 mass%, even more preferably 0.2 to 10 mass%, even more preferably 0.5 to 6 mass%, and particularly preferably 3.0 to 5.0 mass%, based on the total amount of the resin composition for metal surface treatment.
- the metal material to be treated with the resin composition for metal surface treatment of the present invention is not particularly limited, and examples include copper, aluminum, gold, silver, iron, platinum, chromium, nickel, tin, titanium, zinc, manganese, magnesium, molybdenum, cobalt, tungsten, zirconium, lead, gallium, indium, and composite materials thereof.
- Metal oxides include single oxides and/or composite oxides of these metals.
- the resin composition for metal surface treatment of the present invention can be applied to metal surfaces that have been processed into a plate or foil shape, etc., and have been subjected to plating treatment, etc., as necessary.
- the resin composition for metal surface treatment of the present invention can also be used as an adhesive between metal substrates made of such metal materials, or between metal substrates and other substrates, or as a coating agent for metal substrates, etc.
- the method of applying the resin composition for metal surface treatment of the present invention to a metal surface is not particularly limited, and known methods can be used.
- the resin composition for metal surface treatment of the present invention can be applied to a metal surface using spray coating, dip coating, roll coating, curtain coating, spin coating, and combinations of these methods.
- the temperature of the metal surface and the resin composition for metal surface treatment during application is also not particularly limited, and can be adjusted according to the purpose.
- the temperature of the metal surface and the resin composition for metal surface treatment during application can be, for example, 10°C to 90°C.
- the method of drying after application of the resin composition for metal surface treatment to the metal surface is not particularly limited, and known methods can be used.
- a drying method for example, a method using a drying oven, an electromagnetic induction heating oven, etc., with a maximum temperature of 40°C to 250°C can be used.
- the resin composition for metal surface treatment of the present invention when used as an adhesive between metal substrates or between a metal substrate and another substrate, for example, the resin composition for metal surface treatment can be applied to a metal substrate by the method described above, and then dried as necessary.
- another substrate can be laminated on the coating of the resin composition for metal surface treatment on the surface of the metal substrate, and the laminate can be pressed and bonded by applying a pressure of 0.1 MPa to 100 MPa to the laminate while heating to a maximum temperature of 40°C to 250°C, batchwise or continuously, using a press, drying furnace, electromagnetic induction heating furnace, or the like as necessary.
- the manufacturing method of the metal laminate plate of the present invention is a manufacturing method of a metal laminate plate including a step of applying the above-mentioned resin composition to the surface of a first metal plate to form a coating film, and a step of laminating a second metal plate on the coating film of the first metal plate to form a metal laminate.
- a metal laminate plate in which the metal plates are strongly bonded to each other can be obtained.
- the material of the metal plate used as the first metal plate and the second metal plate is not particularly limited.
- Examples of such materials include metal plates and steel plates containing copper, aluminum, gold, silver, iron, platinum, chromium, nickel, tin, titanium, zinc, manganese, magnesium, molybdenum, cobalt, tungsten, zirconium, lead, gallium, indium, and alloys thereof as main components, and may further contain optional components such as carbon, silicon, nitrogen, phosphorus, sulfur, boron, niobium, tantalum, vanadium, antimony, and germanium.
- the thickness of the metal plate used in the present invention is not particularly limited, and can be appropriately adjusted according to the purpose. For example, a metal plate having a thickness of 1 ⁇ m to 100 cm can be used.
- the metal laminate plate may be manufactured using two metal plates, or three or more metal plates.
- the multiple metal plates may be metal plates made of the same material and thickness, or may be metal plates made of different materials and thicknesses.
- the method for applying the resin composition to the metal sheet surface is not particularly limited, and known methods can be used.
- the resin composition can be applied to the metal sheet surface by spray coating, dip coating, roll coating, curtain coating, spin coating, or a combination of these methods.
- the amount of the resin composition applied to the metal sheet surface is not particularly limited, and can be adjusted appropriately depending on the purpose.
- the resin composition can be applied to the metal sheet surface in an amount such that the thickness of the coating film obtained by applying and drying the resin composition is 0.1 ⁇ m to 10 mm.
- the method for producing a metal laminate of the present invention may comprise a step of applying the above-mentioned resin composition to the surface of a first metal sheet to form a coating film, and a step of laminating a second metal sheet onto the coating film on the surface of the first metal sheet to form a metal laminate, and may further comprise a step of heating the metal laminate and a step of pressing the metal laminate, depending on the purpose.
- a method for producing a metal laminate that includes a step of applying the resin composition to the surface of a first metal sheet to form a coating film, a step of laminating a second metal sheet onto the coating film of the first metal sheet to form a metal laminate, and a step of pressing the metal laminate.
- the heating method in the step of heating the metal laminate, which can be included in the manufacturing method of the metal laminate of the present invention is not particularly limited, and known methods and conditions can be used.
- a heating method can be, for example, a method of heating to 40°C to 250°C using a drying oven, an electromagnetic induction heating oven, etc.
- the pressing method in the step of pressing the metal laminate, which can be included in the manufacturing method of the metal laminate of the present invention is not particularly limited, and known methods can be used.
- Such a pressing method can be, for example, a method of pressing the metal laminate by applying pressure to it at a pressure of 0.1 MPa to 100 MPa using a press machine, etc.
- the step of heating the metal laminate and the step of pressing the metal laminate may be performed simultaneously.
- a method of pressing the metal laminate at a pressure of 0.1 MPa to 100 MPa using a press machine or the like in an environment of 40°C to 250°C using a drying furnace, electromagnetic induction heating furnace, or the like or a method of pressing the metal laminate at a pressure of 0.1 MPa to 100 MPa using a heater press machine or the like heated to 40°C to 250°C.
- the material and thickness of the metal plate used are not particularly limited, and for example, a metal plate made of the material and thickness described above can be used.
- the first metal plate and the second metal plate may be metal plates made of the same material and thickness, or may be metal plates made of different materials and thicknesses.
- a method for producing a metal laminate plate of the present invention that includes a step of applying a resin composition to the surface of a first metal plate to form a coating film, a step of laminating a second metal plate on the coating film of the first metal plate to form a metal laminate, and a step of pressing the metal laminate
- the method of applying the resin composition to the metal plate surface and the amount of the resin composition applied to the metal plate surface are not particularly limited, and can be, for example, the method and amount of application described above.
- the method for manufacturing the metal laminate of the present invention includes a step of applying a resin composition to the surface of a first metal plate to form a coating film, a step of laminating a second metal plate on the coating film of the first metal plate to form a metal laminate, and a step of pressing the metal laminate
- the metal laminate may be manufactured using two metal plates, or may be manufactured using three or more metal plates.
- the multiple metal plates may be metal plates made of the same material and thickness, or may be metal plates made of different materials and thicknesses.
- the metal laminate plate when a metal laminate plate is manufactured using three or more metal plates, the metal laminate plate may be manufactured by repeating a process including a step of applying a resin composition to the surface of a first metal plate to form a coating film, a step of laminating a second metal plate on the coating film of the first metal plate to form a metal laminate, a step of pressing the metal laminate, a step of applying a resin composition to the surface of the pressed metal laminate to form a coating film, a step of further laminating a third metal plate on the coating film of the metal laminate to form a metal laminate, and a step of pressing the metal laminate.
- the metal laminate plate may be manufactured by repeating a process of applying a resin composition to the surfaces of three or more metal plates to form coating films, laminating the metal plates to form a metal laminate, and then pressing the metal laminate.
- the method for producing a metal laminate plate of the present invention uses the resin composition described above to produce a strongly bonded metal laminate plate.
- the metal laminate plate obtained by the present invention can be used without any particular restrictions as long as it is used in applications where a metal laminate plate is used, and can be used, for example, as a metal laminate plate for automobiles, vehicles (bullet trains, trains, etc.), civil engineering, architecture, ships, airplanes, and the space industry.
- the metal laminate plate of the present invention is a metal laminate plate in which a first metal plate, a coating film of the above-mentioned resin composition, and a second metal plate are laminated in this order.
- the first metal plate and the second metal plate may be metal plates made of the same material and thickness, or may be metal plates made of different materials and thicknesses.
- the metal laminate plate of the present invention can be manufactured, for example, by the above-mentioned manufacturing method of a metal laminate plate. Since the metal plates of the metal laminate plate of the present invention are strongly bonded to each other, it can be used without any particular limitation as long as it is used for the purpose of a metal laminate plate.
- the metal laminate plate of the present invention can be used, for example, as a metal laminate plate for automobiles, vehicles (bullet trains, trains, etc.), civil engineering, architecture, ships, airplanes, and the space industry.
- the present disclosure includes the following aspects:
- component (A) contains a bisphenol A type epoxy resin that is solid at 25°C.
- component (B) contains a polyether polyurethane prepolymer obtained by reacting a polyether polyol compound, a polyisocyanate compound, an anionic group introducing agent, and a melamine-based compound.
- component (B) contains a polyether polyurethane obtained by reacting a polyether polyol compound, a polyisocyanate compound, an anionic group-introducing agent, and a melamine-based compound, and then blocking the reaction with a blocking agent or extending the chains with a chain extender.
- a resin composition for metal surface treatment comprising component (A) made of an epoxy resin that is solid at 25°C, and component (B) made of one or more members selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes.
- a method for producing a metal laminate plate comprising the steps of applying the resin composition described in any one of [1] to [6] to the surface of a first metal plate to form a coating film, and laminating a second metal plate onto the coating film of the first metal plate to form a metal laminate.
- the method for producing the metal laminate described in [8] further includes a step of crimping the metal laminate.
- a metal laminate plate having a first metal plate, a coating film of the resin composition described in any one of [1] to [6], and a second metal plate laminated in this order.
- the obtained water-dispersed epoxy resin emulsion 1 contained 45.0 mass% of epoxy resin A-1 (bisphenol A type epoxy resin, melting point 140°C, epoxy equivalent 3,000 g/eq.), 5.0 mass% of nonionic surfactant 1, 5.0 mass% of propylene glycol monomethyl ether, and 45.0 mass% of water.
- the obtained water-dispersed emulsion 2 of epoxy resin contained 45.0 mass% of epoxy resin A'-2 (bisphenol A type epoxy resin, melting point 0°C or less, epoxy equivalent 190 g/eq.), 5.0 mass% of nonionic surfactant 1, 5.0 mass% of propylene glycol monomethyl ether, and 45.0 mass% of water.
- the obtained water-dispersed emulsion 1 of urethane resin contained 30 mass% of polyether polyurethane B-1 (acid value: 38.0 mg KOH/g, content ratio of polyether structure: 27 mass%), 8 mass% of N-methyl-2-pyrrolidone, and 62 mass% of water.
- the obtained water-dispersed emulsion 2 of a urethane resin contained 30 mass% of polyether polyurethane B-2 (acid value: 23.0 mg KOH/g, content ratio of polyether structure: 49 mass%), 8 mass% of N-methyl-2-pyrrolidone, and 62 mass% of water.
- the obtained water-dispersed emulsion of urethane resin 3 contained 30 mass% of polyester polyurethane B'-3 (acid value: 28.0 mgKOH/g), 8 mass% of N-methyl-2-pyrrolidone, and 62 mass% of water.
- the obtained water-dispersed emulsion of urethane resin 4 contained 30 mass% of polycarbonate polyurethane B'-4 (acid value: 23.0 mgKOH/g), 8 mass% of N-methyl-2-pyrrolidone, and 62 mass% of water.
- Examples 1 to 4 Comparative Examples 1 to 5
- the produced water-dispersed epoxy resin emulsions 1 to 2 and the water-dispersed urethane resin emulsions 1 to 4 were mixed to produce the resin compositions of Examples 1 to 4 and Comparative Examples 1 to 5 shown in Table 1, respectively.
- the two surface-treated steel plates produced were laminated so that the treated surfaces (surfaces on which the coating film was formed) of the surface-treated steel plates overlapped each other by 10 mm in the length direction (the positions in the width direction were the same), and the two steel plates were pressed at room temperature for 10 minutes or 20 minutes while being pressed with a pressure of 3 MPa using a press machine to produce a metal laminate plate in which the two steel plates were bonded.
- the overlap shear strength (MPa) of the obtained metal laminate plate was measured using a tensile tester according to the method described in JIS K 6850 (1999), and the adhesion was evaluated from the overlap shear strength value according to the following evaluation criteria for room temperature adhesion.
- the evaluation results of the room temperature adhesion of each resin composition are shown in Table 1. In this evaluation, if the room temperature adhesion evaluation is ⁇ or higher, it indicates that the composition has practical applicability in a short-time room temperature adhesion method.
- the overlap shear strength (MPa) of the obtained metal laminate plate was measured using a tensile tester according to the method described in JIS K 6850 (1999), and the adhesion was evaluated from the overlap shear strength value according to the following evaluation criteria for high-temperature adhesion.
- the evaluation results of the high temperature adhesion of each resin composition are shown in Table 1. In this evaluation, if the high temperature adhesion evaluation is ⁇ or higher, it indicates that the composition has practical applicability in a high temperature adhesion method for a short period of time.
- ⁇ Lap shear strength is 2.5 MPa or more; ⁇ : Lap shear strength is 1.0 MPa or more and less than 2.5 Pa; ⁇ : Lap shear strength is 0.1 MPa or more and less than 1.0 MPa; ⁇ : Lap shear strength is less than 0.1 MPa
- Evaluation criteria for corrosion resistance ⁇ : Rust occurred on less than 10% of the surface area. ⁇ : Rust occurred on 10% or more but less than 20% of the surface area. ⁇ : Rust occurred on 20% or more but less than 40% of the surface area. ⁇ : Rust occurred on 40% or more of the surface area.
- the resin composition of the present invention which contains component (A) consisting of an epoxy resin that is solid at 25°C and component (B) consisting of one or more selected from the group consisting of polyether polyurethane prepolymer and polyether polyurethane, has excellent adhesive properties, and in particular, has adhesive properties that allow bonding by short-time compression at room temperature and high temperatures, and corrosion resistance.
- component (A) consisting of an epoxy resin that is solid at 25°C
- component (B) consisting of one or more selected from the group consisting of polyether polyurethane prepolymer and polyether polyurethane
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Polyurethanes Or Polyureas (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は、優れた接着性を有する樹脂組成物に関する。 The present invention relates to a resin composition that has excellent adhesive properties.
エポキシ樹脂やウレタン樹脂は、各種基材への接着性に優れており、耐食性、耐熱性、耐薬品性、電気特性、機械特性等にも優れる硬化物が得られることから、接着剤、コーティング剤、塗料等として様々な分野で広く用いられている。また、近年では、エポキシ樹脂やウレタン樹脂を含む接着剤、塗料、コーティング剤等においては、環境負荷低減や安全性等の観点から、溶媒として水を用いる水系樹脂組成物とすることが求められている。このような水系樹脂組成物として、特許文献1には、環境にやさしく、貯蔵安定性及び防錆性に優れた水性エポキシ樹脂エマルション、及びこれを含む水性塗料が記載されている。特許文献2には、特に金属及びコンクリートのコーティングのための、揮発性有機化合物(VOC)が少ない水性エポキシ樹脂分散液が記載されている。 Epoxy resins and urethane resins have excellent adhesion to various substrates, and can produce cured products that are excellent in corrosion resistance, heat resistance, chemical resistance, electrical properties, and mechanical properties, and are therefore widely used in various fields as adhesives, coating agents, paints, and the like. In recent years, there has been a demand for adhesives, paints, coating agents, and the like that contain epoxy resins and urethane resins to be water-based resin compositions that use water as a solvent, from the standpoint of reducing environmental impact and safety. As such water-based resin compositions, Patent Document 1 describes an environmentally friendly aqueous epoxy resin emulsion that has excellent storage stability and rust prevention properties, and an aqueous paint that contains the same. Patent Document 2 describes an aqueous epoxy resin dispersion with low volatile organic compounds (VOCs), particularly for coating metals and concrete.
また、水性エポキシ樹脂等を用いた、金属接着性や防食性を有する各種金属表面処理剤の開発も行われている。例えば、特許文献3には、メッキ処理等の表面処理が施された鋼板に対する耐水密着性を向上させて優れた耐食性・防食性を発揮する塗膜を形成できる水性塗料組成物が記載されている。特許文献4には、塗装下地処理を省略した場合の塗膜の耐食性及び密着性等に優れる表面処理金属材料を製造することができる、金属材料用表面処理剤が記載されている。 Also, various metal surface treatment agents that have metal adhesion and corrosion prevention properties using water-based epoxy resins and the like are being developed. For example, Patent Document 3 describes an aqueous paint composition that can form a coating film that improves the water-resistant adhesion to steel sheets that have been surface-treated by plating or other methods, and exhibits excellent corrosion resistance and corrosion prevention. Patent Document 4 describes a surface treatment agent for metal materials that can produce a surface-treated metal material with a coating film that has excellent corrosion resistance and adhesion, even when the paint base treatment is omitted.
しかし、これらの水系樹脂組成物や金属表面処理剤においては、金属表面等に対する接着性が十分ではなく、市場では、優れた接着性を有する樹脂組成物が求められていた。 However, these water-based resin compositions and metal surface treatment agents do not have sufficient adhesion to metal surfaces, and there is a demand in the market for resin compositions with excellent adhesion.
上記の状況を鑑み、本発明は、優れた接着性を有する樹脂組成物を提供することを課題とする。 In view of the above, the present invention aims to provide a resin composition with excellent adhesive properties.
そこで本発明者等は鋭意検討し、特定の成分を含有する樹脂組成物が、上記課題を解決することを見出した。
即ち、本発明は、25℃で固形状のエポキシ樹脂からなる成分(A)と、ポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上からなる成分(B)と、を含有する樹脂組成物を提供するものである。
Therefore, the present inventors conducted extensive research and found that a resin composition containing a specific component solves the above problems.
That is, the present invention provides a resin composition containing component (A) consisting of an epoxy resin that is solid at 25°C, and component (B) consisting of one or more members selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes.
本発明によれば、接着性に優れる樹脂組成物を提供することができる。 The present invention provides a resin composition with excellent adhesive properties.
1.樹脂組成物
本発明の樹脂組成物は、25℃で固形状のエポキシ樹脂からなる成分(A)と、ポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上からなる成分(B)と、を含有する樹脂組成物である。以下、本発明の樹脂組成物について詳細に説明する。
1-1.成分(A)
本発明に用いる成分(A)は、25℃で固形状のエポキシ樹脂からなる。本発明においては、25℃で固形状のエポキシ樹脂であれば特に限定されず用いることができる。このようなエポキシ樹脂としては、例えば、25℃で固形状の、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂等のビスフェノール型エポキシ樹脂、レゾルシン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、カテコール型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、オキサゾリドン環型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂等が挙げられる。これらの1種又は2種以上を用いることができる。これらの中でも、得られる樹脂組成物の接着性、特には短時間の圧着による接着性の向上の観点から、25℃で固形状のビスフェノール型エポキシ樹脂を用いることが好ましく、25℃で固形状の、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、及びビスフェノールAD型エポキシ樹脂からなる群から選ばれる1種又は2種以上を用いることがより好ましく、25℃で固形状のビスフェノールA型エポキシ樹脂を用いることが更により好ましい。なお、本発明において、25℃で固形状であるとは、融点が25℃より高く、25℃で固形状であることを指す。エポキシ樹脂の融点は25℃より高ければ特に限定されない。得られる樹脂組成物の接着性の観点から、エポキシ樹脂の融点は、40℃~180℃であることが好ましく、70℃~150℃であることがより好ましい。また、25℃で固形状のエポキシ樹脂からなる成分(A)は、後述するリン酸変性エポキシ樹脂を包含せず明確に区別される。
1. Resin Composition The resin composition of the present invention is a resin composition containing component (A) consisting of an epoxy resin that is solid at 25° C., and component (B) consisting of one or more members selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes. The resin composition of the present invention will be described in detail below.
1-1. Component (A)
The component (A) used in the present invention is an epoxy resin that is solid at 25° C. In the present invention, there are no particular limitations on the epoxy resin that can be used as long as it is solid at 25° C. Examples of such epoxy resins include bisphenol type epoxy resins such as bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, and bisphenol AD type epoxy resins, which are solid at 25° C., resorcin type epoxy resins, hydroquinone type epoxy resins, catechol type epoxy resins, dihydroxynaphthalene type epoxy resins, biphenyl type epoxy resins, tetramethylbiphenyl type epoxy resins, oxazolidone ring type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, triphenylmethane type epoxy resins, tetraphenylethane type epoxy resins, dicyclopentadiene-phenol addition reaction type epoxy resins, phenol aralkyl type epoxy resins, naphthol novolac type epoxy resins, naphthol aralkyl type epoxy resins, naphthol-phenol co-condensed novolac type epoxy resins, naphthol-cresol co-condensed novolac type epoxy resins, aromatic hydrocarbon formaldehyde resin modified phenol resin type epoxy resins, biphenyl modified novolac type epoxy resins, etc. One or more of these may be used. Among these, from the viewpoint of improving the adhesiveness of the resulting resin composition, particularly the adhesiveness by short-time pressure bonding, it is preferable to use a bisphenol type epoxy resin that is solid at 25 ° C., more preferably to use one or more selected from the group consisting of bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and bisphenol AD type epoxy resin that are solid at 25 ° C., and even more preferably to use a bisphenol A type epoxy resin that is solid at 25 ° C. In the present invention, being solid at 25 ° C. means that the melting point is higher than 25 ° C. and is solid at 25 ° C. The melting point of the epoxy resin is not particularly limited as long as it is higher than 25 ° C. From the viewpoint of the adhesiveness of the resulting resin composition, the melting point of the epoxy resin is preferably 40 ° C. to 180 ° C., more preferably 70 ° C. to 150 ° C. In addition, the component (A) consisting of an epoxy resin that is solid at 25 ° C. does not include the phosphoric acid-modified epoxy resin described later and is clearly distinguished.
25℃で固形状のエポキシ樹脂のエポキシ当量は特に限定されず、目的に応じて調整することができる。得られる樹脂組成物の接着性、特には短時間の圧着による接着性の向上の観点から、25℃で固形状のエポキシ樹脂のエポキシ当量は500g/eq.~30,000g/eq.であることが好ましく、1,000g/eq.~10,000g/eq.であることがより好ましく、1,500g/eq.~6,000g/eq.であることが更により好ましく、2,000g/eq.~5,000g/eq.であることが更により好ましく、2,500g/eq.~3,500g/eq.であることが特に好ましい。本発明において、エポキシ樹脂のエポキシ当量は、JIS K 7236(2009)に準拠して測定される。 The epoxy equivalent of the epoxy resin in a solid state at 25°C is not particularly limited and can be adjusted according to the purpose. From the viewpoint of improving the adhesiveness of the resulting resin composition, particularly the adhesiveness by short-time compression, the epoxy equivalent of the epoxy resin in a solid state at 25°C is preferably 500 g/eq. to 30,000 g/eq., more preferably 1,000 g/eq. to 10,000 g/eq., even more preferably 1,500 g/eq. to 6,000 g/eq., even more preferably 2,000 g/eq. to 5,000 g/eq., and particularly preferably 2,500 g/eq. to 3,500 g/eq. In the present invention, the epoxy equivalent of the epoxy resin is measured in accordance with JIS K 7236 (2009).
1-2.成分(B)
本発明に用いる成分(B)は、ポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上からなる。本発明において、ポリエーテルポリウレタンプレポリマーとは、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、を含む原料を、化合物中に未反応のイソシアネート基が残存するよう反応させて得られる化合物を指す。また、本発明において、ポリエーテルポリウレタンとは、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、を含む原料を、化合物中に未反応のイソシアネート基が残存しないように反応させるか、上述した方法により得られたポリエーテルポリウレタンプレポリマーを封鎖剤により封鎖するか、又は鎖伸長剤により鎖伸長して得られる化合物を指す。
1-2. Component (B)
The component (B) used in the present invention is one or more selected from the group consisting of polyether polyurethane prepolymer and polyether polyurethane. In the present invention, the polyether polyurethane prepolymer refers to a compound obtained by reacting a raw material containing at least one polyether polyol compound and at least one polyisocyanate compound so that unreacted isocyanate groups remain in the compound. In the present invention, the polyether polyurethane refers to a compound obtained by reacting a raw material containing at least one polyether polyol compound and at least one polyisocyanate compound so that unreacted isocyanate groups remain in the compound, or by blocking the polyether polyurethane prepolymer obtained by the above-mentioned method with a blocking agent, or by chain-extending the polyether polyurethane prepolymer with a chain extender.
本発明において、ポリエーテルポリウレタンプレポリマーの製造に用いることができるポリエーテルポリオール化合物としては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリエチレングリコール・ポリプロピレングリコールランダム共重合体、ポリエチレングリコール・ポリプロピレングリコールブロック共重合体等のポリアルキレングリコール、エチレングリコール、プロパンジオール、ブタンジオール等のジオール化合物のポリオキシエチレン付加体、ポリオキシプロピレン付加体、ポリオキシブチレン付加体等を用いることができる。これらの中でも、得られる樹脂組成物の接着性及び耐食性の観点から、1種又は2種以上のポリアルキレングリコールを用いることが好ましく、ポリエチレングリコール、ポリプロピレングリコール、及びポリテトラメチレンエーテルグリコールからなる群から選ばれる1種又は2種以上を用いることがより好ましく、ポリプロピレングリコール及びポリテトラメチレンエーテルグリコールからなる群から選ばれる1種又は2種以上を用いることが更により好ましく、ポリテトラメチレンエーテルグリコールを用いることが特に好ましい。用いるポリエーテルポリオール化合物の分子量は特に限定されない。得られる樹脂組成物の接着性及び耐食性の観点から、数平均分子量が200~10,000のポリエーテルポリオール化合物を用いることが好ましく、数平均分子量が400~5,000のポリエーテルポリオール化合物を用いることがより好ましく、数平均分子量が600~2,000のポリエーテルポリオール化合物を用いることが更により好ましく、数平均分子量が800~1,500のポリエーテルポリオール化合物を用いることが特に好ましい。なお、本発明において、ポリエーテルポリオール化合物の数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定され、ポリスチレン換算で算出される数平均分子量である。 In the present invention, examples of polyether polyol compounds that can be used in the production of polyether polyurethane prepolymers include polyalkylene glycols such as polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, polyethylene glycol-polypropylene glycol random copolymers, and polyethylene glycol-polypropylene glycol block copolymers, as well as polyoxyethylene adducts, polyoxypropylene adducts, and polyoxybutylene adducts of diol compounds such as ethylene glycol, propanediol, and butanediol. Among these, from the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition, it is preferable to use one or more polyalkylene glycols, more preferably one or more selected from the group consisting of polyethylene glycol, polypropylene glycol, and polytetramethylene ether glycol, even more preferably one or more selected from the group consisting of polypropylene glycol and polytetramethylene ether glycol, and particularly preferably polytetramethylene ether glycol. The molecular weight of the polyether polyol compound used is not particularly limited. From the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition, it is preferable to use a polyether polyol compound having a number average molecular weight of 200 to 10,000, more preferably a polyether polyol compound having a number average molecular weight of 400 to 5,000, even more preferably a polyether polyol compound having a number average molecular weight of 600 to 2,000, and particularly preferably a polyether polyol compound having a number average molecular weight of 800 to 1,500. In the present invention, the number average molecular weight of the polyether polyol compound is measured by gel permeation chromatography (GPC) and is the number average molecular weight calculated in terms of polystyrene.
本発明において、ポリエーテルポリウレタンプレポリマーの製造に用いることができるポリイソシアネート化合物としては、分子内に2個以上のイソシアネート基を有する化合物であれば、特に限定されず用いることができる。このようなポリイソシアネート化合物としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、水添ジフェニルメタンジイソシアネート、p-フェニレンジイソシアネート、キシリレンジイソシアネート、1,5-ナフチレンジイソシアネート、3,3’-ジメチルジフェニル-4,4’-ジイソシアネート、ジアニシジンジイソシアネート、テトラメチルキシリレンジイソシアネート等の芳香族ジイソシアネート;イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、トランス-1,4-シクロヘキシルジイソシアネート、ノルボルネンジイソシアネート等の脂環式ジイソシアネート;1,4-テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,8-オクタメチレンジイソシアネート、2-メチル-1,5-ペンタメチレンジイソシアネート、2,2-ジメチル-1,5-ペンタメチレンジイソシアネート、1,11-ウンデカメチレンジイソシアネート、2,2,4-トリメチル-1,6-ヘキサメチレンジイソシアネート、2,4,4-トリメチル-1,6-ヘキサメチレンジイソシアネート、2,4-ジメチル-1,8-オクタメチレンジイソシアネート、5-メチル-1,9-ノナメチレンジイソシアネート、リシンジイソシアネート、リシンメチルエステルジイソシアネート等の脂肪族ジイソシアネート等が挙げられる。また、ポリエーテルポリウレタンプレポリマーの製造においては、ポリイソシアネート化合物として、上述したジイソシアネート化合物のイソシアヌレート三量化物、ビューレット三量化物、トリメチロールプロパンアダクト化物や、トリフェニルメタントリイソシアネート、1-メチルベンゾール-2,4,6-トリイソシアネート、ジメチルトリフェニルメタンテトライソシアネート等の、分子内にイソシアネート基を3個以上有するポリイソシアネート化合物を用いることもできる。本発明においては、得られる樹脂組成物の接着性及び耐食性の観点から、芳香族ジイソシアネート、脂環式ジイソシアネート、及び脂肪族ジイソシアネートからなる群から選ばれる1種又は2種以上を用いることが好ましく、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、水添ジフェニルメタンジイソシアネート、p-フェニレンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、及び1,6-ヘキサメチレンジイソシアネートからなる群から選ばれる1種又は2種以上を用いることがより好ましく、水添ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、及び1,6-ヘキサメチレンジイソシアネートからなる群から選ばれる1種又は2種以上を用いることが更により好ましい。 In the present invention, the polyisocyanate compound that can be used in the production of the polyether polyurethane prepolymer is not particularly limited as long as it has two or more isocyanate groups in the molecule. Examples of such polyisocyanate compounds include aromatic diisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, p-phenylene diisocyanate, xylylene diisocyanate, 1,5-naphthylene diisocyanate, 3,3'-dimethyldiphenyl-4,4'-diisocyanate, dianisidine diisocyanate, and tetramethylxylylene diisocyanate; alicyclic diisocyanates such as isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, trans-1,4-cyclohexyl diisocyanate, and norbornene diisocyanate; and 1,4-tetramethylphenyl diisocyanate. Aliphatic diisocyanates such as lamethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,8-octamethylene diisocyanate, 2-methyl-1,5-pentamethylene diisocyanate, 2,2-dimethyl-1,5-pentamethylene diisocyanate, 1,11-undecamethylene diisocyanate, 2,2,4-trimethyl-1,6-hexamethylene diisocyanate, 2,4,4-trimethyl-1,6-hexamethylene diisocyanate, 2,4-dimethyl-1,8-octamethylene diisocyanate, 5-methyl-1,9-nonamethylene diisocyanate, lysine diisocyanate, and lysine methyl ester diisocyanate are included. In addition, in the production of the polyether polyurethane prepolymer, as the polyisocyanate compound, an isocyanurate trimer, a biuret trimer, or a trimethylolpropane adduct of the above-mentioned diisocyanate compound, or a polyisocyanate compound having three or more isocyanate groups in the molecule, such as triphenylmethane triisocyanate, 1-methylbenzene-2,4,6-triisocyanate, or dimethyltriphenylmethane tetraisocyanate, can also be used. In the present invention, from the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition, it is preferable to use one or more selected from the group consisting of aromatic diisocyanates, alicyclic diisocyanates, and aliphatic diisocyanates, and it is more preferable to use one or more selected from the group consisting of tolylene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, p-phenylene diisocyanate, xylylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, and 1,6-hexamethylene diisocyanate, and it is even more preferable to use one or more selected from the group consisting of hydrogenated diphenylmethane diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, and 1,6-hexamethylene diisocyanate.
本発明に用いることができるポリエーテルポリウレタンプレポリマーとしては、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、を含む原料を、未反応のイソシアネート基が残存するよう反応させて得られたものであれば特に制限なく用いることができる。例えば、上述したポリエーテルポリオール化合物と、ポリイソシアネート化合物とを、ポリエーテルポリオール化合物中の水酸基の数とポリイソシアネート化合物中のイソシアネート基の数との比が0.20~0.99:1となる量で含む原料を用いて反応させて得られるポリエーテルポリウレタンプレポリマー等を用いることができる。 The polyether polyurethane prepolymer that can be used in the present invention can be any polyether polyurethane prepolymer obtained by reacting a raw material containing at least one polyether polyol compound and at least one polyisocyanate compound in such a way that unreacted isocyanate groups remain. For example, a polyether polyurethane prepolymer obtained by reacting the above-mentioned polyether polyol compound and a raw material containing a polyisocyanate compound in an amount such that the ratio of the number of hydroxyl groups in the polyether polyol compound to the number of isocyanate groups in the polyisocyanate compound is 0.20 to 0.99:1 can be used.
また、本発明に用いるポリエーテルポリウレタンプレポリマーとしては、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、に加え、アニオン性基導入剤、メラミン系化合物、低分子ポリオール等の、ポリイソシアネート化合物と反応し得る水酸基、アミノ基等の反応基を有する1種又は2種以上を含む原料を、化合物中に未反応のイソシアネート基が残存するよう反応させて得られる化合物を用いることもできる。 The polyether polyurethane prepolymer used in the present invention may be a compound obtained by reacting at least one polyether polyol compound, at least one polyisocyanate compound, and one or more raw materials having a reactive group such as a hydroxyl group or an amino group that can react with the polyisocyanate compound, such as an anionic group-introducing agent, a melamine compound, or a low molecular weight polyol, such that unreacted isocyanate groups remain in the compound.
ポリエーテルポリウレタンプレポリマーの製造に用いることができるアニオン性基導入剤としては、例えば、分子内にカルボキシル基、スルホン酸基等のアニオン性基と、ポリイソシアネート化合物と反応し得る水酸基、アミノ基等の反応基を有する化合物であれば特に限定されず用いることができる。このようなアニオン性基導入剤としては、例えば、ジメチロールプロピオン酸、ジメチロールブタン酸、ジメチロール酪酸、ジメチロール吉草酸等のカルボキシル基及び水酸基を含有する化合物;1,4-ブタンジオール-2-スルホン酸等のスルホン酸基及び水酸基を含有する化合物等が挙げられる。これらの1種又は2種以上を用いることができる。これらの中でも、本発明においては、得られる樹脂組成物の接着性及び耐食性の観点から、アニオン性基導入剤として、分子内にカルボキシル基及び水酸基を有する化合物を用いることが好ましく、分子内にカルボキシル基及び水酸基を有する分子量が100~5,000である化合物を用いることがより好ましく、ジメチロールプロピオン酸又はジメチロールブタン酸を用いることが更により好ましく、ジメチロールプロピオン酸を用いることが特に好ましい。 Anionic group introducing agents that can be used in the production of polyether polyurethane prepolymers are not particularly limited, and can be any compound that has an anionic group, such as a carboxyl group or a sulfonic acid group, and a reactive group, such as a hydroxyl group or an amino group, that can react with a polyisocyanate compound in the molecule. Examples of such anionic group introducing agents include compounds that contain a carboxyl group and a hydroxyl group, such as dimethylolpropionic acid, dimethylolbutanoic acid, dimethylolbutyric acid, and dimethylolvaleric acid; and compounds that contain a sulfonic acid group and a hydroxyl group, such as 1,4-butanediol-2-sulfonic acid. One or more of these can be used. Among these, in the present invention, from the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition, it is preferable to use a compound having a carboxyl group and a hydroxyl group in the molecule as the anionic group introducing agent, it is more preferable to use a compound having a carboxyl group and a hydroxyl group in the molecule and a molecular weight of 100 to 5,000, it is even more preferable to use dimethylolpropionic acid or dimethylolbutanoic acid, and it is particularly preferable to use dimethylolpropionic acid.
本発明において、ポリエーテルポリウレタンプレポリマーの製造にアニオン性基導入剤を用いる際の、用いるアニオン性基導入剤の量は特に限定されず、目的に応じて適宜調整することができる。例えば、用いるポリイソシアネート化合物中のイソシアネート基の数を1としたときに、アニオン性基導入剤中のポリイソシアネート化合物と反応し得る水酸基、アミノ基等の反応基の数が0.01~0.80となる量で用いることができ、0.05~0.60となる量で用いることが好ましく、0.10~0.50となる量で用いることがより好ましい。 In the present invention, when an anionic group introducing agent is used to produce a polyether polyurethane prepolymer, the amount of the anionic group introducing agent used is not particularly limited and can be adjusted appropriately depending on the purpose. For example, when the number of isocyanate groups in the polyisocyanate compound used is taken as 1, the anionic group introducing agent can be used in an amount such that the number of reactive groups such as hydroxyl groups and amino groups that can react with the polyisocyanate compound in the anionic group introducing agent is 0.01 to 0.80, preferably 0.05 to 0.60, and more preferably 0.10 to 0.50.
また、ポリエーテルポリウレタンプレポリマーの製造にアニオン性基導入剤を用いる際の、ポリエーテルポリオール化合物に対するアニオン性基導入剤の量は特に限定されず、目的に応じて適宜調整することができる。例えば、用いるポリエーテルポリオール化合物中のポリイソシアネート化合物と反応し得る水酸基、アミノ基等の反応基の数を1としたときに、アニオン性基導入剤中のポリイソシアネート化合物と反応し得る水酸基、アミノ基等の反応基の数が0.05~20となる量で用いることができ、0.1~10となる量で用いることが好ましく、0.2~5となる量で用いることがより好ましい。 In addition, when an anionic group introducing agent is used in the production of a polyether polyurethane prepolymer, the amount of the anionic group introducing agent relative to the polyether polyol compound is not particularly limited and can be adjusted appropriately depending on the purpose. For example, when the number of reactive groups such as hydroxyl groups and amino groups that can react with a polyisocyanate compound in the polyether polyol compound used is taken as 1, the anionic group introducing agent can be used in an amount such that the number of reactive groups such as hydroxyl groups and amino groups that can react with a polyisocyanate compound in the anionic group introducing agent is 0.05 to 20, preferably 0.1 to 10, and more preferably 0.2 to 5.
ポリエーテルポリウレタンプレポリマーの製造に用いることができるメラミン系化合物としては、例えば、メラミン、モノメチロールメラミン、ジメチロールメラミン、トリメチロールメラミン、テトラメチロールメラミン、ペンタメチロールメラミン、ヘキサメチロールメラミン、メチル化メチロールメラミン、ブチル化メチロールメラミン、及びメラミン樹脂等が挙げられる。これらの1種又は2種以上を用いることができる。これらの中でも、本発明においては、得られる樹脂組成物の接着性及び耐食性の観点から、メラミン系化合物として、メラミン、モノメチロールメラミン及びジメチロールメラミンからなる群から選ばれる1種又は2種以上を用いることが好ましく、メラミンを用いることがより好ましい。 Examples of melamine-based compounds that can be used in the production of polyether polyurethane prepolymers include melamine, monomethylol melamine, dimethylol melamine, trimethylol melamine, tetramethylol melamine, pentamethylol melamine, hexamethylol melamine, methylated methylol melamine, butylated methylol melamine, and melamine resins. One or more of these can be used. Among these, in the present invention, from the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition, it is preferable to use one or more of the melamine-based compounds selected from the group consisting of melamine, monomethylol melamine, and dimethylol melamine, and it is more preferable to use melamine.
本発明において、ポリエーテルポリウレタンプレポリマーの製造にメラミン系化合物を用いる際の、用いるメラミン系化合物の量は特に限定されず、目的に応じて適宜調整することができる。例えば、用いるポリイソシアネート化合物中のイソシアネート基の数を1としたときに、メラミン系化合物中のアミノ基の数が、0.01~0.50となる量で用いることができ、0.05~0.40となる量で用いることが好ましく、0.10~0.30となる量で用いることがより好ましい。 In the present invention, when a melamine-based compound is used to produce a polyether polyurethane prepolymer, the amount of the melamine-based compound used is not particularly limited and can be adjusted appropriately depending on the purpose. For example, when the number of isocyanate groups in the polyisocyanate compound used is taken as 1, the melamine-based compound can be used in an amount such that the number of amino groups in the melamine-based compound is 0.01 to 0.50, preferably 0.05 to 0.40, and more preferably 0.10 to 0.30.
また、ポリエーテルポリウレタンプレポリマーの製造にメラミン系化合物を用いる際の、ポリエーテルポリオール化合物に対するメラミン系化合物の量は特に限定されず、目的に応じて適宜調整することができる。例えば、用いるポリエーテルポリオール化合物中のポリイソシアネート化合物と反応し得る水酸基、アミノ基等の反応基の数を1としたときに、メラミン系化合物のアミノ基の数が0.05~20となる量で用いることができ、0.1~10となる量で用いることが好ましく、0.2~5となる量で用いることがより好ましい。 In addition, when a melamine-based compound is used to produce a polyether polyurethane prepolymer, the amount of the melamine-based compound relative to the polyether polyol compound is not particularly limited and can be adjusted appropriately depending on the purpose. For example, when the number of reactive groups such as hydroxyl groups and amino groups that can react with a polyisocyanate compound in the polyether polyol compound used is taken as 1, the melamine-based compound can be used in an amount that results in the number of amino groups of 0.05 to 20, preferably 0.1 to 10, and more preferably 0.2 to 5.
ポリエーテルポリウレタンプレポリマーの製造に用いることができる低分子ポリオールとしては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、3-メチル-2,4-ペンタンジオール、2,4-ペンタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、3,5-ヘプタンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、ジエチレングリコール、トリエチレングリコール等の脂肪族ジオール類;シクロヘキサンジメタノール、シクロヘキサンジオール等の脂環式ジオール類;トリメチロールエタン、トリメチロールプロパン、ヘキシトール類、ペンチトール類、グリセリン、ペンタエリスリトール、テトラメチロールプロパン等の三価以上のアルコール類等が挙げられる。これらの1種又は2種以上を用いることができる。 Low molecular weight polyols that can be used in the production of polyether polyurethane prepolymers include, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, 3-methyl-2,4-pentanediol, 2,4-pentanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol, 2,4-diethyl-1,5-pentanediol, aliphatic diols such as 1,6-hexanediol, 1,7-heptanediol, 3,5-heptanediol, 1,8-octanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, diethylene glycol, and triethylene glycol; alicyclic diols such as cyclohexanedimethanol and cyclohexanediol; and trihydric or higher alcohols such as trimethylolethane, trimethylolpropane, hexitols, pentitols, glycerin, pentaerythritol, and tetramethylolpropane. One or more of these can be used.
本発明において、ポリエーテルポリウレタンプレポリマーの製造に低分子ポリオールを用いる際の、用いる低分子ポリオールの量は特に限定されず、目的に応じて適宜調整することができる。例えば、用いるポリイソシアネート化合物中のイソシアネート基の数を1としたときに、低分子ポリオール中のポリイソシアネート化合物と反応し得る水酸基等の反応基の数が、0.01~0.50となる量で用いることができ、0.05~0.40となる量で用いることが好ましく、0.10~0.30となる量で用いることがより好ましい。 In the present invention, when a low molecular weight polyol is used to produce a polyether polyurethane prepolymer, the amount of low molecular weight polyol used is not particularly limited and can be adjusted appropriately depending on the purpose. For example, when the number of isocyanate groups in the polyisocyanate compound used is taken as 1, the low molecular weight polyol can be used in an amount such that the number of reactive groups such as hydroxyl groups that can react with the polyisocyanate compound in the low molecular weight polyol is 0.01 to 0.50, preferably 0.05 to 0.40, and more preferably 0.10 to 0.30.
本発明においては、得られる樹脂組成物の接着性及び耐食性の観点から、ポリエーテルポリウレタンプレポリマーとして、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、アニオン性基導入剤及びメラミン系化合物からなる群から選ばれる1種又は2種以上と、を含む原料を用いて得られるポリエーテルポリウレタンプレポリマーを用いることが好ましく、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、少なくとも一種のアニオン性基導入剤と、少なくとも一種のメラミン系化合物と、を含む原料を用いて得られるポリエーテルポリウレタンプレポリマーを用いることがより好ましく、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、少なくとも一種のアニオン性基導入剤と、少なくとも一種のメラミン系化合物と、からなる原料を反応させて得られるポリエーテルポリウレタンプレポリマーを用いることが更により好ましい。 In the present invention, from the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition, it is preferable to use, as the polyether polyurethane prepolymer, a polyether polyurethane prepolymer obtained using a raw material containing at least one polyether polyol compound, at least one polyisocyanate compound, and one or more selected from the group consisting of an anionic group-introducing agent and a melamine-based compound, it is more preferable to use a polyether polyurethane prepolymer obtained using a raw material containing at least one polyether polyol compound, at least one polyisocyanate compound, at least one anionic group-introducing agent, and at least one melamine-based compound, and it is even more preferable to use a polyether polyurethane prepolymer obtained by reacting raw materials consisting of at least one polyether polyol compound, at least one polyisocyanate compound, at least one anionic group-introducing agent, and at least one melamine-based compound.
本発明において、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、少なくとも一種のアニオン性基導入剤と、少なくとも一種のメラミン系化合物と、を含む原料を用いてポリエーテルポリウレタンプレポリマーを製造する際の、用いるポリエーテルポリオール化合物、ポリイソシアネート化合物、アニオン性基導入剤及びメラミン系化合物の量はそれぞれ特に限定されず、目的に応じて適宜調整することができる。得られる樹脂組成物の接着性及び耐食性の観点から、例えば、ポリイソシアネート化合物中のイソシアネート基の数を1としたときの、ポリエーテルポリオール化合物中の水酸基等の反応基の数と、アニオン性基導入剤中の水酸基等の反応基の数と、メラミン系化合物中のアミノ基の数との和が、0.20~0.99となる量で用いることが好ましく、0.30~0.95となる量で用いることがより好ましく、0.40~0.90となる量で用いることが更により好ましい。 In the present invention, when a polyether polyurethane prepolymer is produced using raw materials containing at least one polyether polyol compound, at least one polyisocyanate compound, at least one anionic group-introducing agent, and at least one melamine-based compound, the amounts of the polyether polyol compound, the polyisocyanate compound, the anionic group-introducing agent, and the melamine-based compound used are not particularly limited and can be appropriately adjusted depending on the purpose. From the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition, for example, when the number of isocyanate groups in the polyisocyanate compound is taken as 1, the sum of the number of reactive groups such as hydroxyl groups in the polyether polyol compound, the number of reactive groups such as hydroxyl groups in the anionic group-introducing agent, and the number of amino groups in the melamine-based compound is preferably used in an amount of 0.20 to 0.99, more preferably 0.30 to 0.95, and even more preferably 0.40 to 0.90.
また、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、少なくとも一種のアニオン性基導入剤と、少なくとも一種のメラミン系化合物と、を含む原料を用いてポリエーテルポリウレタンプレポリマーを製造する際の、用いるポリエーテルポリオール化合物、ポリイソシアネート化合物、アニオン性基導入剤及びメラミン系化合物の量は、得られる樹脂組成物の接着性及び耐食性の観点から、ポリイソシアネート化合物中のイソシアネート基の数と、ポリエーテルポリオール化合物中の水酸基等の反応基の数と、アニオン性基導入剤中の水酸基等の反応基の数と、メラミン系化合物中のアミノ基の数との比が、1:0.01~0.9:0.01~0.9:0.01~0.5となる量で用いることが好ましく、1:0.05~0.6:0.05~0.6:0.05~0.4となる量で用いることがより好ましく、1:0.1~0.5:0.1~0.5:0.05~0.3となる量で用いることが更により好ましい。 In addition, when producing a polyether polyurethane prepolymer using raw materials containing at least one polyether polyol compound, at least one polyisocyanate compound, at least one anionic group introducing agent, and at least one melamine-based compound, the amounts of the polyether polyol compound, the polyisocyanate compound, the anionic group introducing agent, and the melamine-based compound used are determined based on the amount of isocyanate in the polyisocyanate compound from the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition. It is preferable to use an amount such that the ratio of the number of anate groups, the number of reactive groups such as hydroxyl groups in the polyether polyol compound, the number of reactive groups such as hydroxyl groups in the anionic group introducing agent, and the number of amino groups in the melamine compound is 1:0.01-0.9:0.01-0.9:0.01-0.5, more preferably 1:0.05-0.6:0.05-0.6:0.05-0.4, and even more preferably 1:0.1-0.5:0.1-0.5:0.05-0.3.
本発明に用いることができるポリエーテルポリウレタンプレポリマーの酸価は特に限定されず、目的に応じて適宜調整することができる。得られる樹脂組成物の接着性及び耐食性の観点から、ポリエーテルポリウレタンプレポリマーの酸価が0~70mgKOH/gであることが好ましく、10~60mgKOH/gであることがより好ましく、15~50mgKOH/gであることが更により好ましく、20~40mgKOH/gであることが特に好ましい。本発明において、ポリエーテルポリウレタンプレポリマーの酸価は、JIS K 0070(1992)の中和滴定法にて測定される値である。 The acid value of the polyether polyurethane prepolymer that can be used in the present invention is not particularly limited, and can be adjusted appropriately depending on the purpose. From the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition, the acid value of the polyether polyurethane prepolymer is preferably 0 to 70 mgKOH/g, more preferably 10 to 60 mgKOH/g, even more preferably 15 to 50 mgKOH/g, and particularly preferably 20 to 40 mgKOH/g. In the present invention, the acid value of the polyether polyurethane prepolymer is a value measured by the neutralization titration method of JIS K 0070 (1992).
本発明に用いるポリエーテルポリウレタンプレポリマーは、特に限定されず、必要に応じて溶媒、触媒等の存在下、上述した原料を、一度に又は複数回に分けてそれぞれ反応容器に投入し、例えば、常温~180℃及び0.01Pa~100MPaの環境下で、10分~24時間混合して反応させることにより製造することができる。このとき、原料に含まれるポリイソシアネート化合物中のイソシアネート基の数が、ポリエーテルポリオール化合物等の原料に含まれるイソシアネート基と反応し得る水酸基、アミノ基等の反応基の数よりも多くなるよう用いて反応させることにより、未反応のイソシアネート基を有するポリエーテルポリウレタンプレポリマーを製造することができる。 The polyether polyurethane prepolymer used in the present invention is not particularly limited, and can be produced by adding the above-mentioned raw materials, either at once or in multiple batches, to a reaction vessel in the presence of a solvent, catalyst, etc. as necessary, and mixing and reacting for 10 minutes to 24 hours, for example, in an environment of room temperature to 180°C and 0.01 Pa to 100 MPa. At this time, by reacting the raw materials so that the number of isocyanate groups in the polyisocyanate compound contained in the raw materials is greater than the number of reactive groups such as hydroxyl groups and amino groups that can react with the isocyanate groups contained in raw materials such as polyether polyol compounds, a polyether polyurethane prepolymer having unreacted isocyanate groups can be produced.
ポリエーテルポリウレタンプレポリマーを製造する際に用いることができる触媒としては特に限定されず公知の触媒を用いることができる。このような触媒としては、例えば、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチルプロピレンジアミン、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、N,N,N’,N”,N”-ペンタメチル(3-アミノプロピル)エチレンジアミン、N,N,N’,N”,N”-ペンタメチルジプロピレントリアミン、N,N,N’,N’-テトラメチルグアニジン、1,3,5-トリス(N,N-ジメチルアミノプロピル)ヘキサヒドロ-S-トリアジン、1,8-ジアザビシクロ〔5.4.0〕ウンデセン-7、トリエチレンジアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N-メチル-N’-(2-ジメチルアミノエチル)ピペラジン、N,N’-ジメチルピペラジン、N,N-ジメチルシクロヘキシルアミン、N-メチルモルホリン、N-エチルモルホリン、ビス(2-ジメチルアミノエチル)エーテル、N,N-ジメチルラウリルアミン、1-メチルイミダゾール、1,2-ジメチルイミダゾール、1-イソブチル-2-メチルイミダゾール、1-ジメチルアミノプロピルイミダゾール等の第3級アミン;テトラメチルアンモニウムクロライド等のテトラアルキルアンモニウムハロゲン化物、水酸化テトラメチルアンモニウム塩等のテトラアルキルアンモニウム水酸化物、テトラメチルアンモニウム2-エチルヘキサン酸塩等のテトラアルキルアンモニウム有機酸塩等の第4級アンモニウム塩;スタナスジアセテート、スタナスジオクトエート、スタナスジオレエート、スタナスジラウレート、ジブチル錫オキサイド、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジクロライド、ジオクチル錫ジラウレート、オクタン酸鉛、ナフテン酸鉛、ナフテン酸ニッケル、ナフテン酸コバルト等の有機金属触媒類等が挙げられる。これらの1種又は2種以上を用いることができる。触媒を用いる際の触媒の使用量は特に限定されず、目的に応じて適宜調整することができる。触媒は、例えば、用いる原料の全質量に対し、0.0001~1質量%用いることができる。 The catalyst that can be used in producing the polyether polyurethane prepolymer is not particularly limited, and any known catalyst can be used. Examples of such catalysts include N,N,N',N'-tetramethylethylenediamine, N,N,N',N'-tetramethylpropylenediamine, N,N,N',N",N"-pentamethyldiethylenetriamine, N,N,N',N",N"-pentamethyl(3-aminopropyl)ethylenediamine, N,N,N',N",N"-pentamethyldipropylenetriamine, N,N,N',N'-tetramethylguanidine, 1,3,5 -Tris(N,N-dimethylaminopropyl)hexahydro-S-triazine, 1,8-diazabicyclo[5.4.0]undecene-7, triethylenediamine, N,N,N',N'-tetramethylhexamethylenediamine, N-methyl-N'-(2-dimethylaminoethyl)piperazine, N,N'-dimethylpiperazine, N,N-dimethylcyclohexylamine, N-methylmorpholine, N-ethylmorpholine, bis(2-dimethyl Tertiary amines such as tertiary amines (aminoethyl) ether, N,N-dimethyllaurylamine, 1-methylimidazole, 1,2-dimethylimidazole, 1-isobutyl-2-methylimidazole, and 1-dimethylaminopropylimidazole; quaternary ammonium salts such as tetraalkylammonium halides (tetramethylammonium chloride), tetraalkylammonium hydroxides (tetramethylammonium hydroxide salts), and tetraalkylammonium organic acid salts (tetramethylammonium 2-ethylhexanoate); and organometallic catalysts such as stannous diacetate, stannous dioctoate, stannous dioleate, stannous dilaurate, dibutyltin oxide, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dichloride, dioctyltin dilaurate, lead octanoate, lead naphthenate, nickel naphthenate, and cobalt naphthenate. One or more of these can be used. The amount of the catalyst used when using the catalyst is not particularly limited, and can be appropriately adjusted depending on the purpose. The catalyst can be used, for example, in an amount of 0.0001 to 1% by mass based on the total mass of the raw materials used.
ポリエーテルポリウレタンプレポリマーを製造する際に用いることができる溶媒としては、公知の溶媒を用いることができる。このような溶媒としては、例えば、アセトン、メチルエチルケトン、ジオキサン、テトラヒドロフラン、N-メチル-2-ピロリドン、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。これらの1種又は2種以上を用いることができる。溶媒を用いる際の溶媒の使用量は特に限定されず、目的に応じて適宜調整することができる。溶媒は、例えば、用いる原料の全質量に対し、0.1~80質量%用いることができる。 Any known solvent can be used as the solvent for producing the polyether polyurethane prepolymer. Examples of such solvents include acetone, methyl ethyl ketone, dioxane, tetrahydrofuran, N-methyl-2-pyrrolidone, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, and propylene glycol monomethyl ether acetate. One or more of these can be used. When using a solvent, the amount of the solvent used is not particularly limited and can be adjusted appropriately depending on the purpose. For example, the solvent can be used in an amount of 0.1 to 80% by mass based on the total mass of the raw materials used.
本発明において、ポリエーテルポリオール化合物、ポリイソシアネート化合物及び他の原料を反応させてポリエーテルポリウレタンプレポリマーを製造する際の、反応時間は特に限定されない。反応時間は、得られる樹脂組成物の接着性及び耐食性の観点から、30分~15時間であることが好ましく、1時間~10時間であることがより好ましく、3~7時間であることが更により好ましい。 In the present invention, the reaction time when the polyether polyol compound, the polyisocyanate compound, and other raw materials are reacted to produce the polyether polyurethane prepolymer is not particularly limited. From the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition, the reaction time is preferably 30 minutes to 15 hours, more preferably 1 hour to 10 hours, and even more preferably 3 hours to 7 hours.
上述した方法により得られるポリエーテルポリウレタンプレポリマーは、ポリエーテルポリオール化合物と、ポリイソシアネート化合物と、必要に応じてアニオン性基導入剤と、メラミン系化合物とを反応させて得られる。本発明においては、ポリエーテルポリオール化合物、ポリイソシアネート化合物、アニオン性基導入剤、メラミン系化合物として、多種多様な化合物を用いることができる。このため、上記ポリエーテルポリウレタンプレポリマーの構造は、該ポリエーテルポリウレタンプレポリマーの製造に用いる原料の構造によって大きく異なることから、ポリエーテルポリウレタンプレポリマーの構造を一律にある種の一般式で表すことは到底できないのが現状であり、このことは当業者の技術常識である。そして、構造が特定されなければそれに応じて決まるその物質の特性も容易にはわからないことから、特性で表現することも到底できない。一方で、本発明は、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、を含む原料を反応させて得られるポリエーテルポリウレタンプレポリマーであれば、25℃で固形状のエポキシ樹脂からなる成分(A)と併せて用いた際に、優れた接着性、特には短時間の圧着により接着可能な接着性と、耐食性とを有する樹脂組成物が得られることを見出した発明に関する。したがって、本発明では、ポリエーテルポリウレタンプレポリマーを、「少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、を含む原料を反応させて得られるポリエーテルポリウレタンプレポリマー」という表現で定義せざるを得ない。 The polyether polyurethane prepolymer obtained by the above-mentioned method is obtained by reacting a polyether polyol compound, a polyisocyanate compound, and, if necessary, an anionic group introducing agent and a melamine-based compound. In the present invention, a wide variety of compounds can be used as the polyether polyol compound, the polyisocyanate compound, the anionic group introducing agent, and the melamine-based compound. For this reason, since the structure of the above-mentioned polyether polyurethane prepolymer varies greatly depending on the structure of the raw material used in the production of the polyether polyurethane prepolymer, it is impossible to uniformly express the structure of the polyether polyurethane prepolymer by a certain general formula, and this is technical common knowledge for those skilled in the art. Furthermore, unless the structure is specified, the properties of the substance determined accordingly cannot be easily understood, and therefore it is impossible to express them in terms of properties. On the other hand, the present invention relates to an invention that has discovered that a polyether polyurethane prepolymer obtained by reacting raw materials containing at least one polyether polyol compound and at least one polyisocyanate compound can be used in combination with component (A) consisting of an epoxy resin that is solid at 25°C to obtain a resin composition having excellent adhesion, particularly adhesion that allows adhesion with short pressure bonding, and corrosion resistance. Therefore, in the present invention, the polyether polyurethane prepolymer must be defined as "a polyether polyurethane prepolymer obtained by reacting raw materials containing at least one polyether polyol compound and at least one polyisocyanate compound."
本発明に用いることができるポリエーテルポリウレタンとしては、上述した方法により得られたポリエーテルポリウレタンプレポリマーを封鎖剤により封鎖するか、又は鎖伸長剤により鎖伸長して得られるポリエーテルポリウレタンや、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、を含む原料を、化合物中に未反応のイソシアネート基が残存しないように反応させることで得られるポリエーテルポリウレタン等を用いることができる。 Polyether polyurethanes that can be used in the present invention include polyether polyurethanes obtained by blocking the polyether polyurethane prepolymer obtained by the above-mentioned method with a blocking agent or by extending the chain with a chain extender, and polyether polyurethanes obtained by reacting raw materials containing at least one polyether polyol compound and at least one polyisocyanate compound in such a way that no unreacted isocyanate groups remain in the compound.
本発明において、ポリエーテルポリウレタンプレポリマーを封鎖する際に用いる封鎖剤は特に限定されず、公知の封鎖剤を用いることができる。このような封鎖剤としては、例えば、メタノール、エタノール等のアルコール類;ジエチルアミン、ジメチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジドデシルアミン、ジステアリルアミン等のジアルキルアミン類;ジフェニルアミン等のジアリールアミン類;モルホリン、ピペリジン、ピロール、ピロリジン、ピラゾール、イミダゾール等の2級アミノ基含有複素環化合物等が挙げられる。これらの1種又は2種以上を用いることができる。このとき、封鎖剤の使用量は特に限定されず、目的に応じて適宜調整することができる。例えば、ポリエーテルポリウレタンプレポリマー中のイソシアネート基の数に対する封鎖剤中のイソシアネート基と反応し得る反応基の数が、当量比で0.01~2.0となる量とすることができる。 In the present invention, the blocking agent used when blocking the polyether polyurethane prepolymer is not particularly limited, and any known blocking agent can be used. Examples of such blocking agents include alcohols such as methanol and ethanol; dialkylamines such as diethylamine, dimethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, didodecylamine, and distearylamine; diarylamines such as diphenylamine; and secondary amino group-containing heterocyclic compounds such as morpholine, piperidine, pyrrole, pyrrolidine, pyrazole, and imidazole. One or more of these can be used. In this case, the amount of the blocking agent used is not particularly limited, and can be appropriately adjusted depending on the purpose. For example, the amount can be set to an amount such that the number of reactive groups in the blocking agent that can react with the isocyanate groups relative to the number of isocyanate groups in the polyether polyurethane prepolymer is 0.01 to 2.0 in terms of equivalent ratio.
また、本発明において、ポリエーテルポリウレタンプレポリマーを鎖伸長する際に用いる鎖伸長剤は特に限定されず、公知の鎖伸長剤を用いることができる。このような鎖伸長剤としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、ジエチレングリコール、トリエチレングリコール、2-ブチル-2-エチル-1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、3-メチル-2,4-ペンタンジオール、2,4-ペンタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、3,5-ヘプタンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール等の脂肪族ジオール;シクロヘキサンジメタノール、シクロヘキサンジオール等の脂環式ジオール;エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、トリレンジアミン、ピペラジン、2-メチルピペラジン等の低分子ジアミン類;ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等のポリアルキレンポリアミン;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、2-(2-アミノエチルアミノ)エタノール等のアルカノールアミン類;ポリオキシプロピレンジアミン、ポリオキシエチレンジアミン等のポリエーテルジアミン類;メンセンジアミン、イソホロンジアミン、ノルボルネンジアミン、アミノエチルアミノエタノール、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロヘキサン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン等の脂環式ジアミン類;m-キシレンジアミン、α-(m/p-アミノフェニル)エチルアミン、m-フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジアミノジメチルジフェニルメタン、ジアミノジエチルジフェニルメタン、ジメチルチオトルエンジアミン、ジエチルトルエンジアミン、α,α’-ビス(4-アミノフェニル)-p-ジイソプロピルベンゼン等の芳香族ジアミン類等のポリアミン;コハク酸ジヒドラジド、アジピン酸ジヒドラジド、セバチン酸ジヒドラジド、フタル酸ジヒドラジド、水加ヒドラジン、1,6-ヘキサメチレンビス(N,N-ジメチルセミカルバジド)、1,1,1’,1’-テトラメチル-4,4’-(メチレン-ジ-パラ-フェニレン)ジセミカルバジド等のヒドラジン類、水等が挙げられる。これらの1種又は2種以上を用いることができる。これらの中でも、得られるポリエーテルポリウレタンの諸特性の観点から、低分子ジアミン類、ポリエーテルジアミン類及び水からなる群から選ばれる1種又は2種以上を用いることが好ましく、エチレンジアミン、プロピレンジアミン及び水からなる群から選ばれる1種又は2種以上を用いることがより好ましい。このとき、鎖伸長剤の使用量は特に限定されず、目的に応じて適宜調整することができる。例えば、ポリエーテルポリウレタンプレポリマー中のイソシアネート基の数に対する鎖伸長剤中のイソシアネート基と反応し得る反応基の数が、当量比で0.01以上とすることができ、得られるポリエーテルポリウレタンの諸特性の観点から、当量比で0.5以上とすることが好ましく、1以上とすることがより好ましい。本発明において、鎖伸長剤として水を用いる場合、水は得られる樹脂組成物の溶媒としても機能することから、水を含む鎖伸長剤の使用量の上限は特に限定されない。水を含む鎖伸長剤は、例えば、ポリエーテルポリウレタンプレポリマーの質量に対して、10質量%~1000質量%用いることができる。 In the present invention, the chain extender used when extending the chain of the polyether polyurethane prepolymer is not particularly limited, and any known chain extender can be used. Examples of such chain extenders include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, diethylene glycol, triethylene glycol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, 3-methyl-2,4-pentanediol, 2,4-pentanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol, 2,4-diethyl-1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 3,5-heptanediol, and the like. aliphatic diols such as diol, 1,8-octanediol, 2-methyl-1,8-octanediol, and 1,9-nonanediol; alicyclic diols such as cyclohexanedimethanol and cyclohexanediol; low molecular weight diamines such as ethylenediamine, propylenediamine, hexamethylenediamine, tolylenediamine, piperazine, and 2-methylpiperazine; polyalkylene polyamines such as diethylenetriamine, triethylenetetramine, and tetraethylenepentamine; monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, 2- alkanolamines such as (2-aminoethylamino)ethanol; polyether diamines such as polyoxypropylene diamine and polyoxyethylene diamine; alicyclic diamines such as menthene diamine, isophorone diamine, norbornene diamine, aminoethyl aminoethanol, bis(4-amino-3-methyldicyclohexyl)methane, diaminodicyclohexylmethane, bis(aminomethyl)cyclohexane, and 3,9-bis(3-aminopropyl)-2,4,8,10-tetraoxaspiro(5,5)undecane; m-xylene diamine, α-(m/p-aminophenyl)ethylamine, m-phenylenediamine, diamino Examples of the polyamines include aromatic diamines such as diphenylmethane, diaminodiphenylsulfone, diaminodimethyldiphenylmethane, diaminodiethyldiphenylmethane, dimethylthiotoluenediamine, diethyltoluenediamine, and α,α'-bis(4-aminophenyl)-p-diisopropylbenzene; hydrazines such as succinic acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, phthalic acid dihydrazide, hydrazine hydrate, 1,6-hexamethylenebis(N,N-dimethylsemicarbazide), and 1,1,1',1'-tetramethyl-4,4'-(methylene-di-para-phenylene) disemicarbazide; and water. These may be used alone or in combination. Among these, from the viewpoint of various properties of the resulting polyether polyurethane, it is preferable to use one or more selected from the group consisting of low molecular weight diamines, polyether diamines, and water, and it is more preferable to use one or more selected from the group consisting of ethylene diamine, propylene diamine, and water. In this case, the amount of the chain extender used is not particularly limited and can be appropriately adjusted depending on the purpose. For example, the number of reactive groups in the chain extender that can react with the isocyanate groups relative to the number of isocyanate groups in the polyether polyurethane prepolymer can be 0.01 or more in equivalent ratio, and from the viewpoint of various properties of the resulting polyether polyurethane, it is preferable to set the equivalent ratio to 0.5 or more, and more preferably to set it to 1 or more. In the present invention, when water is used as the chain extender, water also functions as a solvent for the resulting resin composition, so the upper limit of the amount of the chain extender containing water to be used is not particularly limited. The chain extender containing water can be used, for example, in an amount of 10% by mass to 1000% by mass relative to the mass of the polyether polyurethane prepolymer.
本発明において、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、を含む原料を、化合物中に未反応のイソシアネート基が残存しないように反応させてポリエーテルポリウレタンを製造する際に用いることができるポリエーテルポリオール化合物及びポリイソシアネート化合物としては、それぞれ公知のポリエーテルポリオール化合物及びポリイソシアネート化合物であれば特に限定されず用いることができる。このようなポリエーテルポリオール化合物及びポリイソシアネート化合物としては、例えば、上述したポリエーテルポリウレタンプレポリマーの製造に用いることができるポリエーテルポリオール化合物及びポリイソシアネート化合物をそれぞれ用いることができる。また、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、を含む原料を、化合物中に未反応のイソシアネート基が残存しないように反応させる際の、用いるポリエーテルポリオール化合物とポリイソシアネート化合物との量の比は特に限定されず、目的に応じて適宜調整することができる。例えば、ポリエーテルポリオール化合物とポリイソシアネート化合物とを、ポリエーテルポリオール化合物中の水酸基の数とポリイソシアネート化合物中のイソシアネート基の数との比が1:0.5~0.99となる量で用いることができる。 In the present invention, the polyether polyol compound and polyisocyanate compound that can be used when reacting a raw material containing at least one polyether polyol compound and at least one polyisocyanate compound so that no unreacted isocyanate groups remain in the compound to produce a polyether polyurethane can be used without any particular limitation as long as they are known polyether polyol compounds and polyisocyanate compounds, respectively. As such polyether polyol compounds and polyisocyanate compounds, for example, the polyether polyol compounds and polyisocyanate compounds that can be used in the production of the above-mentioned polyether polyurethane prepolymer can be used, respectively. In addition, the ratio of the amount of the polyether polyol compound and the polyisocyanate compound used when reacting a raw material containing at least one polyether polyol compound and at least one polyisocyanate compound so that no unreacted isocyanate groups remain in the compound is not particularly limited and can be appropriately adjusted according to the purpose. For example, the polyether polyol compound and the polyisocyanate compound can be used in amounts such that the ratio of the number of hydroxyl groups in the polyether polyol compound to the number of isocyanate groups in the polyisocyanate compound is 1:0.5 to 0.99.
これらの中でも、ポリエーテルポリウレタンとしては、得られる樹脂組成物の接着性及び耐食性の観点から、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、を含む原料を反応させて得られるポリエーテルポリウレタンプレポリマーを、封鎖剤により封鎖するか、又は鎖伸長剤により鎖伸長して得られるポリエーテルポリウレタンであることが好ましく、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、アニオン性基導入剤及びメラミン系化合物からなる群から選ばれる1種又は2種以上と、を含む原料を用いて得られるポリエーテルポリウレタンプレポリマーを、封鎖剤により封鎖するか、又は鎖伸長剤により鎖伸長して得られるポリエーテルポリウレタンであることがより好ましく、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、少なくとも一種のアニオン性基導入剤と、少なくとも一種のメラミン系化合物と、を含む原料を用いて得られるポリエーテルポリウレタンプレポリマーを、封鎖剤により封鎖するか、又は鎖伸長剤により鎖伸長して得られるポリエーテルポリウレタンであることが更により好ましく、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、少なくとも一種のアニオン性基導入剤と、少なくとも一種のメラミン系化合物と、からなる原料を反応させて得られるポリエーテルポリウレタンプレポリマーを、封鎖剤により封鎖するか、又は鎖伸長剤により鎖伸長して得られるポリエーテルポリウレタンであることが特に好ましい。 Among these, from the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition, the polyether polyurethane is preferably a polyether polyurethane obtained by reacting a raw material containing at least one polyether polyol compound and at least one polyisocyanate compound, and then blocking the polyether polyurethane prepolymer with a blocking agent or extending the chain with a chain extender, and more preferably a polyether polyurethane obtained by blocking a polyether polyurethane prepolymer obtained using a raw material containing at least one polyether polyol compound, at least one polyisocyanate compound, and one or more selected from the group consisting of an anionic group-introducing agent and a melamine-based compound, and then blocking the polyether polyurethane prepolymer with a blocking agent or extending the chain with a chain extender. More preferably, the polyether polyurethane is obtained by blocking with a blocking agent or by extending the chain of a polyether polyurethane prepolymer obtained by using a raw material containing at least one polyether polyol compound, at least one polyisocyanate compound, at least one anionic group introducing agent, and at least one melamine compound, and even more preferably, the polyether polyurethane is obtained by blocking with a blocking agent or by extending the chain of a polyether polyurethane prepolymer obtained by reacting raw materials consisting of at least one polyether polyol compound, at least one polyisocyanate compound, at least one anionic group introducing agent, and at least one melamine compound, and particularly preferably, the polyether polyurethane is obtained by blocking with a blocking agent or by extending the chain of a polyether polyurethane prepolymer obtained by reacting raw materials consisting of at least one polyether polyol compound, at least one polyisocyanate compound, at least one anionic group introducing agent, and at least one melamine compound, and by extending the chain of the polyether polyurethane prepolymer obtained by reacting raw materials consisting of at least one polyether polyol compound, at least one polyisocyanate compound, at least one anionic group introducing agent, and at least one melamine compound, and
本発明に用いることができるポリエーテルポリウレタンの酸価は特に限定されず、目的に応じて適宜調整することができる。得られる樹脂組成物の接着性及び耐食性の観点から、ポリエーテルポリウレタンの酸価が0~70mgKOH/gであることが好ましく、10~60mgKOH/gであることがより好ましく、15~50mgKOH/gであることが更により好ましく、20~40mgKOH/gであることが特に好ましい。本発明において、ポリエーテルポリウレタンの酸価は、JIS K 0070(1992)の中和滴定法にて測定される値である。 The acid value of the polyether polyurethane that can be used in the present invention is not particularly limited, and can be adjusted appropriately depending on the purpose. From the viewpoint of the adhesiveness and corrosion resistance of the resulting resin composition, the acid value of the polyether polyurethane is preferably 0 to 70 mgKOH/g, more preferably 10 to 60 mgKOH/g, even more preferably 15 to 50 mgKOH/g, and particularly preferably 20 to 40 mgKOH/g. In the present invention, the acid value of the polyether polyurethane is a value measured by the neutralization titration method of JIS K 0070 (1992).
上述した方法により得られるポリエーテルポリウレタンは、ポリエーテルポリオール化合物と、ポリイソシアネート化合物と、必要に応じてアニオン性基導入剤と、メラミン系化合物と、封鎖剤又は鎖伸長剤と、を反応させて得られる。本発明においては、ポリエーテルポリオール化合物、ポリイソシアネート化合物、アニオン性基導入剤、メラミン系化合物、封鎖剤及び鎖伸長剤として、多種多様な化合物を用いることができる。このため、上記ポリエーテルポリウレタンの構造は、該ポリエーテルポリウレタンの製造に用いる原料の構造によって大きく異なることから、ポリエーテルポリウレタンの構造を一律にある種の一般式で表すことは到底できないのが現状であり、このことは当業者の技術常識である。そして、構造が特定されなければそれに応じて決まるその物質の特性も容易にはわからないことから、特性で表現することも到底できない。一方で、本発明は、少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、を含む原料を反応させて得られるポリエーテルポリウレタンであれば、25℃で固形状のエポキシ樹脂からなる成分(A)と併せて用いた際に、優れた接着性、特には短時間の圧着により接着可能な接着性と、耐食性を有する樹脂組成物が得られることを見出した発明に関する。したがって、本発明では、ポリエーテルポリウレタンを、「少なくとも1種のポリエーテルポリオール化合物と、少なくとも一種のポリイソシアネート化合物と、を含む原料を反応させて得られるポリエーテルポリウレタン」という表現で定義せざるを得ない。 The polyether polyurethane obtained by the above-mentioned method is obtained by reacting a polyether polyol compound, a polyisocyanate compound, and, if necessary, an anionic group introduction agent, a melamine-based compound, and a blocking agent or a chain extender. In the present invention, a wide variety of compounds can be used as the polyether polyol compound, the polyisocyanate compound, the anionic group introduction agent, the melamine-based compound, the blocking agent, and the chain extender. For this reason, since the structure of the above-mentioned polyether polyurethane varies greatly depending on the structure of the raw materials used in the production of the polyether polyurethane, it is currently impossible to uniformly express the structure of polyether polyurethane by a certain general formula, and this is technical common knowledge for those skilled in the art. Furthermore, unless the structure is specified, the properties of the substance determined accordingly cannot be easily understood, and therefore it is impossible to express it in terms of properties. On the other hand, the present invention relates to an invention that has discovered that a polyether polyurethane obtained by reacting raw materials containing at least one polyether polyol compound and at least one polyisocyanate compound can obtain a resin composition having excellent adhesion, particularly adhesion that allows adhesion with short pressure bonding, and corrosion resistance, when used in combination with component (A) consisting of an epoxy resin that is solid at 25°C. Therefore, in the present invention, polyether polyurethane must be defined as "a polyether polyurethane obtained by reacting raw materials containing at least one polyether polyol compound and at least one polyisocyanate compound."
本発明は、上述したポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上からなる成分(B)を、25℃で固形状のエポキシ樹脂からなる成分(A)と併せて用いた際に、優れた接着性、特には短時間の圧着により接着可能な接着性と耐食性とを有する樹脂組成物が得られることを見出した発明に関する。このとき、成分(A)との併用による接着性と耐食性との向上、特には短時間の圧着により接着可能な接着性と耐食性との向上の観点から、ポリエーテルポリウレタンプレポリマー又はポリエーテルポリウレタンにおけるポリエーテル構造の含有比率が、ポリエーテルポリウレタンプレポリマー又はポリエーテルポリウレタンの全質量に対し、10~70質量%であることが好ましく、15~60質量%であることがより好ましく、20~50質量%であることが更により好ましい。本発明において、ポリエーテルポリウレタンプレポリマー又はポリエーテルポリウレタンにおけるポリエーテル構造の含有比率は、用いる原料における、ポリエーテル構造が占める含有質量により算出される。 The present invention relates to an invention that has discovered that when component (B) consisting of one or more selected from the group consisting of the above-mentioned polyether polyurethane prepolymer and polyether polyurethane is used in combination with component (A) consisting of an epoxy resin that is solid at 25°C, a resin composition having excellent adhesive properties, particularly adhesive properties that allow bonding by short-time pressure bonding and corrosion resistance, can be obtained. In this case, from the viewpoint of improving adhesive properties and corrosion resistance by using component (A) in combination, particularly adhesive properties that allow bonding by short-time pressure bonding and corrosion resistance, the content ratio of polyether structures in the polyether polyurethane prepolymer or polyether polyurethane is preferably 10 to 70 mass%, more preferably 15 to 60 mass%, and even more preferably 20 to 50 mass%, based on the total mass of the polyether polyurethane prepolymer or polyether polyurethane. In the present invention, the content ratio of polyether structures in the polyether polyurethane prepolymer or polyether polyurethane is calculated from the mass content of polyether structures in the raw materials used.
本発明に用いる成分(B)としては、上述したポリエーテルポリウレタンプレポリマーのみからなっていても、ポリエーテルポリウレタンのみからなっていても、ポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなっていてもよい。得られる樹脂組成物の諸特性の観点から、成分(B)としてポリエーテルポリウレタンを含有することが好ましい。 Component (B) used in the present invention may consist of only the above-mentioned polyether polyurethane prepolymer, may consist of only polyether polyurethane, or may consist of polyether polyurethane prepolymer and polyether polyurethane. From the viewpoint of the various properties of the resulting resin composition, it is preferable that component (B) contains polyether polyurethane.
本発明の樹脂組成物中の成分(A)の含有量は特に限定されず、目的に応じて適宜調整することができる。得られる樹脂組成物の接着性、特には短時間の圧着による接着性の向上の観点から、樹脂組成物中の成分(A)の含有量は、樹脂組成物全量に対して、3~60質量%であることが好ましく、5~50質量%であることがより好ましく、8~45質量%であることが更により好ましく、20~40質量%であることが更により好ましい。 The content of component (A) in the resin composition of the present invention is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of improving the adhesiveness of the resulting resin composition, particularly the adhesiveness by short-term compression bonding, the content of component (A) in the resin composition is preferably 3 to 60 mass % relative to the total amount of the resin composition, more preferably 5 to 50 mass %, even more preferably 8 to 45 mass %, and even more preferably 20 to 40 mass %.
本発明の樹脂組成物中の成分(B)の含有量は特に限定されず、目的に応じて適宜調整することができる。得られる樹脂組成物の接着性、特には短時間の圧着による接着性の向上の観点から、樹脂組成物中の成分(B)の含有量は、樹脂組成物全量に対して、1~50質量%であることが好ましく、2~40質量%であることがより好ましく、3~30質量%であることが更により好ましく、4~10質量%であることが特に好ましい。 The content of component (B) in the resin composition of the present invention is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of improving the adhesiveness of the resulting resin composition, particularly the adhesiveness by short-term compression bonding, the content of component (B) in the resin composition is preferably 1 to 50 mass % relative to the total amount of the resin composition, more preferably 2 to 40 mass %, even more preferably 3 to 30 mass %, and particularly preferably 4 to 10 mass %.
本発明の樹脂組成物中の、成分(A)と成分(B)との含有比率は特に限定されず、目的に応じて調整することができる。得られる樹脂組成物の接着性、特には短時間の圧着による接着性の向上の観点から、樹脂組成物中の成分(A)と成分(B)との含有比率が、質量比で、5:95~98:2であることが好ましく、20:80~95:5であることがより好ましく、50:50~92:8であることが更により好ましく、70:30~90:10であることが特に好ましい。 The content ratio of component (A) to component (B) in the resin composition of the present invention is not particularly limited and can be adjusted according to the purpose. From the viewpoint of improving the adhesiveness of the resulting resin composition, particularly the adhesiveness by short-time compression bonding, the content ratio of component (A) to component (B) in the resin composition is preferably 5:95 to 98:2 by mass, more preferably 20:80 to 95:5, even more preferably 50:50 to 92:8, and particularly preferably 70:30 to 90:10.
1-3.水
本発明の樹脂組成物は、水を更に含有してもよい。本発明の樹脂組成物における、水の含有量は特に限定されず、適宜調整することができる。樹脂組成物の金属に対する接着性と耐食性、環境への負荷低減、及び樹脂組成物の取り扱い性等の観点から、樹脂組成物全量に対して、水を10~90質量%含有することが好ましく、20~80質量%含有することがより好ましく、30~70質量%含有することが更により好ましく、40~60質量%含有することが特に好ましい。このとき、水としては、水道水、イオン交換水、蒸留水、天然水、純水等を目的に応じて適宜用いることができる。
1-3. Water The resin composition of the present invention may further contain water. The content of water in the resin composition of the present invention is not particularly limited and can be appropriately adjusted. From the viewpoints of adhesion and corrosion resistance of the resin composition to metals, reduction of the burden on the environment, and ease of handling of the resin composition, the resin composition preferably contains 10 to 90% by mass of water, more preferably 20 to 80% by mass, even more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass. In this case, tap water, ion-exchanged water, distilled water, natural water, pure water, etc. can be used as the water depending on the purpose.
本発明の樹脂組成物が水を含有する場合の、成分(A)と成分(B)と水との含有量の比は特に限定されず、目的に応じて調整することができる。樹脂組成物の金属に対する接着性と耐食性、環境への負荷低減、及び樹脂組成物の取り扱い性等の観点から、樹脂組成物中の成分(A)と成分(B)と水との含有量の比が、成分(A)と成分(B)と水との含有量の和を100としたときに、3~80:1~60:10~90であることが好ましく、5~60:2~50:20~80であることがより好ましく、8~50:3~40:30~70であることが更により好ましく、20~40:4~10:40~60であることが特に好ましい。本発明の樹脂組成物は、上述した特定の成分(A)と成分(B)と水とを、このような含有量の比で含有することにより、樹脂組成物として分散安定性に優れる水分散エマルションを得ることができ、よって環境への負荷低減及び取り扱い性に優れる樹脂組成物とすることができる。 When the resin composition of the present invention contains water, the content ratio of component (A), component (B), and water is not particularly limited and can be adjusted according to the purpose. From the viewpoints of adhesion and corrosion resistance of the resin composition to metals, reduction in environmental load, and ease of handling of the resin composition, the content ratio of component (A), component (B), and water in the resin composition is preferably 3-80:1-60:10-90, more preferably 5-60:2-50:20-80, even more preferably 8-50:3-40:30-70, and particularly preferably 20-40:4-10:40-60, when the sum of the contents of component (A), component (B), and water is taken as 100. By containing the above-mentioned specific component (A), component (B), and water in such a content ratio, the resin composition of the present invention can obtain a water-dispersed emulsion having excellent dispersion stability as a resin composition, and therefore can be a resin composition having reduced environmental load and excellent ease of handling.
本発明の樹脂組成物が水を含有する場合、成分(A)としては、上述した25℃で固形状のエポキシ樹脂の中でも、得られる樹脂組成物の分散安定性及び諸特性の観点からは、25℃で固形状のビスフェノール型エポキシ樹脂を用いることが好ましく、25℃で固形状の、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、及びビスフェノールAD型エポキシ樹脂からなる群から選ばれる1種又は2種以上を用いることがより好ましく、25℃で固形状のビスフェノールA型エポキシ樹脂を用いることが更により好ましい。また、得られる樹脂組成物の分散安定性及び諸特性の観点からは、成分(A)としては、上述した25℃で固形状のエポキシ樹脂の中でも、エポキシ当量が500g/eq.~30,000g/eq.の25℃で固形状のエポキシ樹脂を用いることが好ましく、エポキシ当量が1,000g/eq.~10,000g/eq.の25℃で固形状のエポキシ樹脂を用いることがより好ましく、エポキシ当量が1,500g/eq.~6,000g/eq.の25℃で固形状のエポキシ樹脂を用いることが更により好ましく、エポキシ当量が2,000g/eq.~5,000g/eq.の25℃で固形状のエポキシ樹脂を用いることが更により好ましく、エポキシ当量が2,500g/eq.~3,500g/eq.の25℃で固形状のエポキシ樹脂を用いることが特に好ましい。 When the resin composition of the present invention contains water, as component (A), from the viewpoint of dispersion stability and various properties of the obtained resin composition, it is preferable to use a bisphenol type epoxy resin that is solid at 25°C among the epoxy resins that are solid at 25°C described above, and it is more preferable to use one or more selected from the group consisting of bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, and bisphenol AD type epoxy resins that are solid at 25°C, and it is even more preferable to use a bisphenol A type epoxy resin that is solid at 25°C. Also, from the viewpoint of dispersion stability and various properties of the obtained resin composition, it is preferable to use an epoxy resin that is solid at 25°C and has an epoxy equivalent of 500 g/eq. to 30,000 g/eq. as component (A) among the epoxy resins that are solid at 25°C described above, and it is more preferable to use an epoxy resin that is solid at 25°C and has an epoxy equivalent of 1,000 g/eq. to 10,000 g/eq., and it is even more preferable to use an epoxy resin that is solid at 25°C and has an epoxy equivalent of 1,500 g/eq. It is even more preferable to use an epoxy resin that is solid at 25°C and has an epoxy equivalent of 2,000 g/eq. to 5,000 g/eq., and it is particularly preferable to use an epoxy resin that is solid at 25°C and has an epoxy equivalent of 2,500 g/eq. to 3,500 g/eq.
本発明の樹脂組成物が水を含有する場合、成分(B)としては、上述したポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンの中でも、得られる樹脂組成物の分散安定性及び諸特性の観点からは、1種又は2種以上のポリアルキレングリコールを含む原料を反応させて得られるポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上を用いることが好ましく、ポリエチレングリコール、ポリプロピレングリコール、及びポリテトラメチレンエーテルグリコールからなる群から選ばれる1種又は2種以上を含む原料を反応させて得られるポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上を用いることがより好ましく、ポリプロピレングリコール及びポリテトラメチレンエーテルグリコールからなる群から選ばれる1種又は2種以上を含む原料を反応させて得られるポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上を用いることが更により好ましく、ポリテトラメチレンエーテルグリコールを含む原料を反応させて得られるポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上を用いることが特に好ましい。また、得られる樹脂組成物の分散安定性及び諸特性の観点からは、用いるポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンの酸価は、それぞれ、0~70mgKOH/gであることが好ましく、10~60mgKOH/gであることがより好ましく、15~50mgKOH/gであることが更により好ましく、20~40mgKOH/gであることが特に好ましい。 When the resin composition of the present invention contains water, from the viewpoint of the dispersion stability and various properties of the resulting resin composition, it is preferable to use, as component (B), one or more selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes obtained by reacting raw materials containing one or more polyalkylene glycols, among the above-mentioned polyether polyurethane prepolymers and polyether polyurethanes, more preferable to use one or more selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes obtained by reacting raw materials containing one or more selected from the group consisting of polyethylene glycol, polypropylene glycol, and polytetramethylene ether glycol, even more preferable to use one or more selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes obtained by reacting raw materials containing one or more selected from the group consisting of polypropylene glycol and polytetramethylene ether glycol, and particularly preferable to use one or more selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes obtained by reacting raw materials containing polytetramethylene ether glycol. In addition, from the viewpoint of the dispersion stability and various properties of the resulting resin composition, the acid value of the polyether polyurethane prepolymer and polyether polyurethane used is preferably 0 to 70 mgKOH/g, more preferably 10 to 60 mgKOH/g, even more preferably 15 to 50 mgKOH/g, and particularly preferably 20 to 40 mgKOH/g.
1-4.その他の成分
本発明の樹脂組成物は、上述した成分(A)、成分(B)及び水以外に、目的に応じて、溶媒、中和剤、界面活性剤、アミノシラン系化合物、アミド系化合物、カルボジイミド化合物、イソシアネート系化合物(但し、ポリエーテルポリウレタンプレポリマーを除く)、ポリエーテルアミン系化合物、リン酸変性エポキシ樹脂、メラミン樹脂、フェノール樹脂等を含有していてもよい。本発明の樹脂組成物が含有していてもよい溶媒としては特に限定されず、公知の溶媒を用いることができる。このような溶媒としては、例えば、アセトン、メチルエチルケトン、ジオキサン、テトラヒドロフラン、N-メチル-2-ピロリドン、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。これらの1種又は2種以上を用いることができる。本発明の樹脂組成物が溶媒を含有する場合の、溶媒の含有量は特に限定されず、目的に応じて適宜調整することができる。例えば、溶媒を、樹脂組成物全量に対し、0.1~50質量%含有することができる。樹脂組成物の金属に対する接着性と耐食性、環境への負荷低減、及び樹脂組成物の取り扱い性等の観点から、溶媒の含有量の上限は、樹脂組成物全量に対し、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが更により好ましい。なお、本発明においては、上述した成分(A)及び成分(B)を含有することで、溶媒の含有量が少ない又は含有しない場合においても、安定性や取り扱い性に優れる樹脂組成物を製造することができる。
1-4. Other components In addition to the above-mentioned components (A), (B) and water, the resin composition of the present invention may contain, depending on the purpose, a solvent, a neutralizing agent, a surfactant, an aminosilane-based compound, an amide-based compound, a carbodiimide compound, an isocyanate-based compound (excluding polyether polyurethane prepolymer), a polyetheramine-based compound, a phosphoric acid-modified epoxy resin, a melamine resin, a phenolic resin, and the like. The solvent that may be contained in the resin composition of the present invention is not particularly limited, and a known solvent can be used. Examples of such solvents include acetone, methyl ethyl ketone, dioxane, tetrahydrofuran, N-methyl-2-pyrrolidone, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, and propylene glycol monomethyl ether acetate. One or more of these can be used. When the resin composition of the present invention contains a solvent, the content of the solvent is not particularly limited, and can be appropriately adjusted depending on the purpose. For example, the solvent can be contained in an amount of 0.1 to 50 mass% based on the total amount of the resin composition. From the viewpoints of adhesion and corrosion resistance of the resin composition to metals, reduction of the burden on the environment, and ease of handling of the resin composition, the upper limit of the solvent content is preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 10% by mass or less, based on the total amount of the resin composition. In the present invention, by containing the above-mentioned component (A) and component (B), a resin composition having excellent stability and ease of handling can be produced even when the solvent content is small or not contained.
本発明の樹脂組成物が含有することができる中和剤としては特に限定されず、公知の中和剤を用いることができる。このような中和剤としては、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン等のトリアルキルアミン類;N,N-ジメチルエタノールアミン、N,N-ジメチルプロパノールアミン、N,N-ジプロピルエタノールアミン、1-ジメチルアミノ-2-メチル-2-プロパノール等のN,N-ジアルキルアルカノールアミン類;N-アルキル-N,N-ジアルカノールアミン類、トリエタノールアミン等のトリアルカノールアミン類等の3級アミン化合物;アンモニア、トリメチルアンモニウムヒドロキシド、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等が挙げられる。これらの1種又は2種以上を用いることができる。本発明においては、成分(B)として、酸価が10~60mgKOH/gであるポリエーテルポリウレタンプレポリマー及び酸価が10~60mgKOH/gであるポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上を用いる場合は、樹脂組成物の安定性や取り扱い性の観点から、中和剤を、樹脂組成物の全量に対して0.01~5質量%含有することが好ましく、0.05~3質量%含有することがより好ましい。 The neutralizing agent that may be contained in the resin composition of the present invention is not particularly limited, and known neutralizing agents may be used. Examples of such neutralizing agents include trialkylamines such as trimethylamine, triethylamine, and tributylamine; N,N-dialkylalkanolamines such as N,N-dimethylethanolamine, N,N-dimethylpropanolamine, N,N-dipropylethanolamine, and 1-dimethylamino-2-methyl-2-propanol; tertiary amine compounds such as N-alkyl-N,N-dialkanolamines and trialkanolamines such as triethanolamine; ammonia, trimethylammonium hydroxide, sodium hydroxide, potassium hydroxide, and lithium hydroxide. One or more of these may be used. In the present invention, when one or more types selected from the group consisting of polyether polyurethane prepolymers having an acid value of 10 to 60 mgKOH/g and polyether polyurethanes having an acid value of 10 to 60 mgKOH/g are used as component (B), from the viewpoint of the stability and handleability of the resin composition, it is preferable to contain 0.01 to 5 mass% of a neutralizing agent, and more preferably 0.05 to 3 mass%, based on the total amount of the resin composition.
本発明の樹脂組成物が含有することができる界面活性剤としては特に限定されず、公知の界面活性剤を用いることができる。このような界面活性剤としては、例えば、公知のアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤等が挙げられる。これらの1種又は2種以上を用いることができる。 The surfactant that may be contained in the resin composition of the present invention is not particularly limited, and any known surfactant may be used. Examples of such surfactants include known anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, etc. One or more of these may be used.
アニオン性界面活性剤としては、例えば、ナトリウムドデシルサルフェート、カリウムドデシルサルフェート、アンモニウムドデシルサルフェート等のアルキルサルフェート類;ナトリウムドデシルポリグリコールエーテルサルフェート、アンモニウムポリオキシエチレンアルキルエーテルサルフェート等のポリオキシエチレンエーテルサルフェート類;スルホン化パラフィンのアンモニウム塩等のアルキルスルホネートのアンモニウム塩;ナトリウムラウレート、トリエタノールアミンオレート、トリエタノールアミンアビエテート等の脂肪酸塩;ナトリウムベンゼンスルホネート、アルカリフェノールヒドロキシエチレンのアルカリ金属サルフェート等のアルキルアリールスルホネート;アルキルナフタレンスルホン酸塩、ナフタレンスルホン酸ホルマリン縮合物、ジアルキルスルホコハク酸塩、ポリオキシエチレンアルキルサルフェート塩、ポリオキシエチレンアルキルアリールサルフェート塩、ポリオキシエチレンエーテルリン酸塩、ポリオキシエチレンアルキルエーテル酢酸塩、N-アシルアミノ酸塩、及びN-アシルメチルタウリン塩等が挙げられる。これらの1種又は2種以上を用いることができる。 Examples of anionic surfactants include alkyl sulfates such as sodium dodecyl sulfate, potassium dodecyl sulfate, and ammonium dodecyl sulfate; polyoxyethylene ether sulfates such as sodium dodecyl polyglycol ether sulfate and ammonium polyoxyethylene alkyl ether sulfate; ammonium salts of alkyl sulfonates such as ammonium salts of sulfonated paraffin; fatty acid salts such as sodium laurate, triethanolamine oleate, and triethanolamine abietate; alkylaryl sulfonates such as sodium benzenesulfonate and alkali metal sulfates of alkali phenol hydroxyethylene; alkylnaphthalenesulfonates, naphthalenesulfonic acid-formaldehyde condensates, dialkylsulfosuccinates, polyoxyethylene alkyl sulfate salts, polyoxyethylene alkylaryl sulfate salts, polyoxyethylene ether phosphates, polyoxyethylene alkyl ether acetates, N-acyl amino acid salts, and N-acyl methyl taurine salts. One or more of these can be used.
ノニオン性界面活性剤としては、ソルビタンモノラウレート、ソルビタンモノオレート等の多価アルコールの脂肪酸部分エステル類;ポリオキシエチレングリコール脂肪酸エステル類;ポリグリセリン脂肪酸エステル類;炭素原子数1~18のアルコールのエチレンオキサイド及び/又はプロピレンオキサイド付加物;アルキルフェノールのエチレンオキサイド及び/又はプロピレンオキサイド付加物;アルキレングリコール及び/又はアルキレンジアミンのエチレンオキサイド及び/又はプロピレンオキサイド付加物等が挙げられる。ノニオン性界面活性剤を構成する炭素原子数1~18のアルコールとしては、メタノール、エタノール、プロパノール、2-プロパノール、ブタノール、2-ブタノール、第3ブタノール、アミルアルコール、イソアミルアルコール、第3アミルアルコール、ヘキサノール、オクタノール、デカンアルコール、ラウリルアルコール、ミリスチルアルコール、パルミチルアルコール、及びステアリルアルコール等が挙げられる。また、ノニオン性界面活性剤を構成するアルキルフェノールとしては、フェノール、メチルフェノール、2,4-ジ第3ブチルフェノール、2,5-ジ第3ブチルフェノール、3,5-ジ第3ブチルフェノール、4-(1,3-テトラメチルブチル)フェノール、4-イソオクチルフェノール、4-ノニルフェノール、4-第3オクチルフェノール、4-ドデシルフェノール、2-(3,5-ジメチルヘプチル)フェノール、4-(3,5-ジメチルヘプチル)フェノール、ナフトール、ビスフェノールA、及びビスフェノールF等が挙げられる。また、ノニオン性界面活性剤を構成するアルキレングリコールとしては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、及び1,6-ヘキサンジオール等が挙げられる。また、アルキレンジアミンとしては、これらのアルキレングリコールのアルコール性水酸基がアミノ基に置換されたもの等が挙げられる。更に、エチレンオキサイド及びプロピレンオキサイド付加物は、ランダム付加物であってもブロック付加物であってもよい。 Nonionic surfactants include fatty acid partial esters of polyhydric alcohols such as sorbitan monolaurate and sorbitan monooleate; polyoxyethylene glycol fatty acid esters; polyglycerin fatty acid esters; ethylene oxide and/or propylene oxide adducts of alcohols having 1 to 18 carbon atoms; ethylene oxide and/or propylene oxide adducts of alkylphenols; ethylene oxide and/or propylene oxide adducts of alkylene glycols and/or alkylenediamines, etc. Examples of alcohols having 1 to 18 carbon atoms that constitute nonionic surfactants include methanol, ethanol, propanol, 2-propanol, butanol, 2-butanol, tertiary butanol, amyl alcohol, isoamyl alcohol, tertiary amyl alcohol, hexanol, octanol, decane alcohol, lauryl alcohol, myristyl alcohol, palmityl alcohol, and stearyl alcohol. Examples of alkylphenols constituting the nonionic surfactant include phenol, methylphenol, 2,4-di-tert-butylphenol, 2,5-di-tert-butylphenol, 3,5-di-tert-butylphenol, 4-(1,3-tetramethylbutyl)phenol, 4-isooctylphenol, 4-nonylphenol, 4-tert-octylphenol, 4-dodecylphenol, 2-(3,5-dimethylheptyl)phenol, 4-(3,5-dimethylheptyl)phenol, naphthol, bisphenol A, and bisphenol F. Examples of alkylene glycols constituting the nonionic surfactant include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, and 1,6-hexanediol. Examples of alkylene diamines include those in which the alcoholic hydroxyl groups of these alkylene glycols are replaced with amino groups. Furthermore, the ethylene oxide and propylene oxide adducts may be random adducts or block adducts.
カチオン性界面活性剤としては、ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライド、ジデシルジメチルアンモニウムクロライド、ラウリルベンジルジメチルアンモニウムクロライド、ジデシルジメチルアンモニウムクロライド等の第4級アンモニウム塩;アルキルピリジニウムブロマイド、イミダゾリニウムラウレート等が挙げられる。これらの1種又は2種以上を用いることができる。 Cationic surfactants include quaternary ammonium salts such as lauryl trimethyl ammonium chloride, stearyl trimethyl ammonium chloride, distearyl dimethyl ammonium chloride, didecyl dimethyl ammonium chloride, lauryl benzyl dimethyl ammonium chloride, and didecyl dimethyl ammonium chloride; alkyl pyridinium bromide, imidazolinium laurate, etc. One or more of these can be used.
両性界面活性剤としては、ヤシ油脂肪酸アミドプロピルジメチル酢酸ベタイン、ラウリルジメチルアミノ酸ベタイン、2-アルキル-N-カルボキシメチル-N-ヒドロキシメチルイミダゾリニウムベタイン、ラウリルヒドロキシスルホベタイン、ラウロイルアミドエチルヒドロキシエチルカルボキシメチルベタイン、ヒドロキシプロピルリン酸の金属塩等のベタイン型両性界面活性剤;β-ラウリルアミノプロピオン酸の金属塩等の、アミノ酸型、硫酸エステル型及びスルホン酸型両性界面活性剤等が挙げられる。これらの1種又は2種以上を用いることができる。 Examples of amphoteric surfactants include betaine-type amphoteric surfactants such as coconut oil fatty acid amidopropyl dimethyl acetate betaine, lauryl dimethyl amino acid betaine, 2-alkyl-N-carboxymethyl-N-hydroxymethyl imidazolinium betaine, lauryl hydroxysulfobetaine, lauroyl amidoethyl hydroxyethyl carboxymethyl betaine, and metal salts of hydroxypropyl phosphate; amino acid-type, sulfate ester-type, and sulfonic acid-type amphoteric surfactants such as metal salts of β-lauryl aminopropionic acid. One or more of these may be used.
本発明においては、樹脂組成物の金属に対する接着性と耐食性、樹脂組成物の取り扱い性等の観点から、アニオン性界面活性剤及びノニオン性界面活性剤からなる群から選ばれる1種又は2種以上の界面活性剤を含有することが好ましく、少なくとも1種のノニオン性界面活性剤を含有することがより好ましく、少なくとも1種のアルキレンオキサイド骨格を有するノニオン性界面活性剤を含有することが更により好ましい。またこのとき、ノニオン性界面活性剤の中でも、重量平均分子量が1,000~50,000であるノニオン性界面活性剤を含有することが好ましく、重量平均分子量が5,000~30,000であるノニオン性界面活性剤を含有することがより好ましく、重量平均分子量が10,000~20,000であるノニオン性界面活性剤を含有することが更により好ましく、重量平均分子量が14,000~18,000であるノニオン性界面活性剤を含有することが特に好ましい。 In the present invention, from the viewpoints of the adhesiveness and corrosion resistance of the resin composition to metals, the ease of handling of the resin composition, etc., it is preferable to contain one or more surfactants selected from the group consisting of anionic surfactants and nonionic surfactants, it is more preferable to contain at least one nonionic surfactant, and it is even more preferable to contain at least one nonionic surfactant having an alkylene oxide skeleton. In this case, among the nonionic surfactants, it is preferable to contain a nonionic surfactant having a weight average molecular weight of 1,000 to 50,000, it is more preferable to contain a nonionic surfactant having a weight average molecular weight of 5,000 to 30,000, it is even more preferable to contain a nonionic surfactant having a weight average molecular weight of 10,000 to 20,000, and it is particularly preferable to contain a nonionic surfactant having a weight average molecular weight of 14,000 to 18,000.
本発明の樹脂組成物が界面活性剤を含有する場合の、樹脂組成物中の界面活性剤の含有量は特に限定されず、目的に応じて適宜調整することができる。得られる樹脂組成物の取り扱い性及び金属に対する接着性と耐食性の観点から、樹脂組成物中の界面活性剤の含有量は、樹脂組成物の全量に対して、0.01~20質量%であることが好ましく、0.1~15質量%であることがより好ましく、0.2~10質量%であることが更により好ましく、0.5~6質量%であることが更により好ましく、3.0~5.0質量%であることが特に好ましい。 When the resin composition of the present invention contains a surfactant, the content of the surfactant in the resin composition is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of the handleability of the resulting resin composition and the adhesion to metals and corrosion resistance, the content of the surfactant in the resin composition is preferably 0.01 to 20 mass%, more preferably 0.1 to 15 mass%, even more preferably 0.2 to 10 mass%, even more preferably 0.5 to 6 mass%, and particularly preferably 3.0 to 5.0 mass%, based on the total amount of the resin composition.
本発明に用いることができるアミノシラン系化合物としては、分子内にアミノ基及びケイ素含有基を含む化合物であれば特に限定されず、公知のシランカップリング剤等を用いることができる。このようなアミノシラン系化合物としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-メチル-3-(トリメトキシシリル)プロピルアミン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、N-(6-アミノヘキシル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルジエトキシメチルシラン、3-t-ブチルアミノプロピルトリメトキシシラン、3-シクロヘキシルアミノプロピルトリメトキシシラン、N-メチル-3-アミノ-2-メチルプロピルトリメトキシシラン、N-エチル-3-アミノ-2-メチルプロピルメチルジメトキシシラン、N-エチル-3-アミノ-2-メチルプロピルトリメトキシシラン、N-エチル-3-アミノ-2-メチルプロピルジエトキシメチルシラン、N-エチル-3-アミノ-2-メチルプロピルトリエトキシシラン、N-ブチル-3-アミノ-2-メチルプロピルトリメトキシシラン、3-(N-メチル-2-アミノ-1-メチル-1-エトキシ)プロピルトリメトキシシラン、N-エチル-4-アミノ-3,3-ジメチルブチルジメトキシメチルシラン、N-エチル-4-アミノ-3,3-ジメチルブチルトリメトキシシラン、ビス-(3-トリメトキシシリル-2-メチルプロピル)アミン、N-(3-トリメトキシシリルプロピル)-3-アミノ-2-メチルプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-トリメトキシシリルプロピル-3-[N-(3-トリメトキシシリル)-プロピルアミノ]-2-プロピオン酸メチル、3-トリエトキシシリルプロピル-3-[N-(3-トリエトキシシリル)-プロピルアミノ]-2-プロピオン酸メチル、3-トリメトキシシリルプロピル-3-[N-(3-トリエトキシシリル)-プロピルアミノ]-2-プロピオン酸メチル、N-エチル-4-アミノ-3,3-ジメチルブチルジメトキシメチルシラン、N-エチル-4-アミノ-3,3-ジメチルブチルトリメトキシシラン、N-(3-トリメトキシシリル)プロピル-3-[N-(3-トリメトキシシリル)プロピルアミノ]プロピオンアミド、N-(3-トリエトキシシリル)プロピル-3-[N-(3-トリエトキシシリル)プロピルアミノ]プロピオンアミド、N-(3-トリメトキシシリル)プロピル-3-[N-(3-トリエトキシシリル)プロピルアミノ]プロピオンアミド、N,N-ビス[(3-トリメトキシシリル)プロピル]アミン、N,N-ビス[(3-トリエトキシシリル)プロピル]アミン、N,N-ビス[(3-トリプロポキシシリル)プロピル]アミン、N,N-ビス[(3-トリメトキシシリル)-2-メチルプロピル]アミン等が挙げられる。これらの1種又は2種以上を用いることができる。 The aminosilane compounds that can be used in the present invention are not particularly limited as long as they contain an amino group and a silicon-containing group in the molecule, and known silane coupling agents can be used. Examples of such aminosilane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-methyl-3-(trimethoxysilyl)propylamine, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, N-(6-aminohexyl)-3-aminopropyltrimethoxysilane, 3-aminopropyldiethoxymethylsilane, 3-t-butylaminopropyltrimethoxysilane, and 3-cyclohexylaminopropyltrimethoxysilane. , N-methyl-3-amino-2-methylpropyltrimethoxysilane, N-ethyl-3-amino-2-methylpropylmethyldimethoxysilane, N-ethyl-3-amino-2-methylpropyltrimethoxysilane, N-ethyl-3-amino-2-methylpropyldiethoxymethylsilane, N-ethyl-3-amino-2-methylpropyltriethoxysilane, N-butyl-3-amino-2-methylpropyltrimethoxysilane, 3-(N-methyl-2-amino-1-methyl-1-ethoxy)propyltrimethoxysilane, N-ethyl-4-amino-3,3-dimethylbutyldimethoxymethylsilane, N-ethyl-4-amino-3,3-dimethylbutyltrimethoxysilane, bis-(3-trimethylbutyl N-(3-trimethoxysilylpropyl)amine, N-(3-trimethoxysilylpropyl)-3-amino-2-methylpropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-trimethoxysilylpropyl-3-[N-(3-trimethoxysilyl)-propylamino]-2-methylpropionate, 3-triethoxysilylpropyl-3-[N-(3-triethoxysilyl)-propylamino]-2-methylpropionate, 3-trimethoxysilylpropyl-3-[N-(3-triethoxysilyl)-propylamino]-2-methylpropionate, N-ethyl-4-amino-3,3-dimethylbutyldimethoxymethylsilane, N-ethyl-4-amino-3,3-di Examples include methylbutyltrimethoxysilane, N-(3-trimethoxysilyl)propyl-3-[N-(3-trimethoxysilyl)propylamino]propionamide, N-(3-triethoxysilyl)propyl-3-[N-(3-triethoxysilyl)propylamino]propionamide, N-(3-trimethoxysilyl)propyl-3-[N-(3-triethoxysilyl)propylamino]propionamide, N,N-bis[(3-trimethoxysilyl)propyl]amine, N,N-bis[(3-triethoxysilyl)propyl]amine, N,N-bis[(3-tripropoxysilyl)propyl]amine, and N,N-bis[(3-trimethoxysilyl)-2-methylpropyl]amine. These can be used alone or in combination.
本発明の樹脂組成物がアミノシラン系化合物を含有する場合の、樹脂組成物中のアミノシラン系化合物の含有量は特に限定されず、目的に応じて適宜調整することができる。得られる樹脂組成物の金属に対する接着性と耐食性の観点から、樹脂組成物中のアミノシラン系化合物の含有量は、樹脂組成物の総質量に対して、0.01~20質量%であることが好ましく、0.1~10質量%であることがより好ましく、0.2~5質量%であることが更により好ましい。 When the resin composition of the present invention contains an aminosilane compound, the content of the aminosilane compound in the resin composition is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of adhesion to metals and corrosion resistance of the resulting resin composition, the content of the aminosilane compound in the resin composition is preferably 0.01 to 20 mass%, more preferably 0.1 to 10 mass%, and even more preferably 0.2 to 5 mass%, relative to the total mass of the resin composition.
本発明に用いることができるアミド系化合物としては、分子内に1個又は2個以上のアミド基を有する化合物であれば特に制限なく用いることができる。このようなアミド系化合物としては、例えば、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、フタル酸ジヒドラジド、イソフタル酸ジヒドラジド、テレフタル酸ジヒドラジド、p-オキシ安息香酸ヒドラジド、サリチル酸ヒドラジド、マレイン酸ジヒドラジド、ジシアンジアミド、メチルグアニジン、エチルグアニジン、プロピルグアニジン、ブチルグアニジン、ジメチルグアニジン、トリメチルグアニジン、フェニルグアニジン、ジフェニルグアニジン等が挙げられる。これらの1種又は2種以上を用いることができる。 Amide compounds that can be used in the present invention are not particularly limited as long as they have one or more amide groups in the molecule. Examples of such amide compounds include succinic acid dihydrazide, adipic acid dihydrazide, phthalic acid dihydrazide, isophthalic acid dihydrazide, terephthalic acid dihydrazide, p-oxybenzoic acid hydrazide, salicylic acid hydrazide, maleic acid dihydrazide, dicyandiamide, methylguanidine, ethylguanidine, propylguanidine, butylguanidine, dimethylguanidine, trimethylguanidine, phenylguanidine, diphenylguanidine, and the like. One or more of these can be used.
本発明の樹脂組成物がアミド系化合物を含有する場合の、樹脂組成物中のアミド系化合物の含有量は特に限定されず、目的に応じて適宜調整することができる。得られる樹脂組成物の金属に対する接着性と耐食性の観点から、樹脂組成物中のアミド系化合物の含有量は、樹脂組成物の総質量に対して、0.01~20質量%であることが好ましく、0.1~10質量%であることがより好ましく、0.2~5質量%であることが更により好ましい。 When the resin composition of the present invention contains an amide compound, the content of the amide compound in the resin composition is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of adhesion to metal and corrosion resistance of the resulting resin composition, the content of the amide compound in the resin composition is preferably 0.01 to 20 mass%, more preferably 0.1 to 10 mass%, and even more preferably 0.2 to 5 mass%, relative to the total mass of the resin composition.
本発明に用いることができるカルボジイミド化合物としては、分子内に1個又は2個以上のカルボジイミド基(-N=C=N-)を有する化合物であれば特に制限なく用いることができる。このようなカルボジイミド化合物としては、例えば、N,N’-ジシクロヘキシルカルボジイミド、N,N’-ジメチルカルボジイミド、N,N’-ジイソプロピルカルボジイミド、N,N’-ジイソブチルカルボジイミド、N,N’-ジオクチルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド、N,N’-ビス(2,6-ジイソプロピルフェニル)カルボジイミド、ポリ(1,6-ヘキサメチレンカルボジイミド)、ポリ(4,4’-メチレンビスシクロヘキシルカルボジイミド)、ポリ(1,3-シクロヘキシレンカルボジイミド)、ポリ(1,4-シクロヘキシレンカルボジイミド)、ポリ(4,4’-ジシクロヘキシルメタンカルボジイミド)等を用いることができ、また、カルボジライトV-02、V-02-L2、SV-02、V-04、V-10、E-02、E-03A、E-05(以上、日清紡ケミカル社製)等の市販品を用いることもできる。本発明においては、これらの中でも、得られる樹脂組成物の金属に対する接着性と耐食性の観点から、カルボジイミド化合物として、カルボジイミド当量が100~800g/eq.のカルボジイミド化合物を用いることが好ましく、カルボジイミド当量が200~700g/eq.のカルボジイミド化合物を用いることがより好ましく、カルボジイミド当量が300~600g/eq.のカルボジイミド化合物を用いることが更により好ましく、カルボジイミド当量が400~500g/eq.のカルボジイミド化合物を用いることが特に好ましい。 The carbodiimide compound that can be used in the present invention is not particularly limited as long as it has one or more carbodiimide groups (-N=C=N-) in the molecule. Examples of such carbodiimide compounds include N,N'-dicyclohexylcarbodiimide, N,N'-dimethylcarbodiimide, N,N'-diisopropylcarbodiimide, N,N'-diisobutylcarbodiimide, N,N'-dioctylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, N,N'-bis(2,6-diisopropylphenyl)carbodiimide, poly(1,6-hexamethylenecarbodiimide), and N,N'-dicyclohexylcarbodiimide. Poly(4,4'-methylenebiscyclohexylcarbodiimide), poly(1,3-cyclohexylenecarbodiimide), poly(1,4-cyclohexylenecarbodiimide), poly(4,4'-dicyclohexylmethanecarbodiimide), etc. can be used, and also commercially available products such as Carbodilite V-02, V-02-L2, SV-02, V-04, V-10, E-02, E-03A, and E-05 (all manufactured by Nisshinbo Chemical Co., Ltd.) can be used. In the present invention, among these, from the viewpoint of adhesion to metals and corrosion resistance of the resulting resin composition, it is preferable to use a carbodiimide compound having a carbodiimide equivalent of 100 to 800 g/eq. as the carbodiimide compound, and a carbodiimide equivalent of 200 to 700 g/eq. It is more preferable to use a carbodiimide compound having a carbodiimide equivalent of 300 to 600 g/eq., even more preferable to use a carbodiimide compound having a carbodiimide equivalent of 300 to 600 g/eq., and particularly preferable to use a carbodiimide compound having a carbodiimide equivalent of 400 to 500 g/eq.
本発明の樹脂組成物がカルボジイミド化合物を含有する場合の、樹脂組成物中のカルボジイミド化合物の含有量は特に限定されず、目的に応じて適宜調整することができる。得られる樹脂組成物の金属に対する接着性と耐食性の観点から、樹脂組成物中のカルボジイミド化合物の含有量は、樹脂組成物の全量に対して、0.01~20質量%であることが好ましく、0.1~10質量%であることがより好ましく、0.2~5質量%であることが更により好ましい。 When the resin composition of the present invention contains a carbodiimide compound, the content of the carbodiimide compound in the resin composition is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of adhesion to metals and corrosion resistance of the resulting resin composition, the content of the carbodiimide compound in the resin composition is preferably 0.01 to 20 mass%, more preferably 0.1 to 10 mass%, and even more preferably 0.2 to 5 mass%, based on the total amount of the resin composition.
本発明に用いることができるイソシアネート系化合物としては、分子内に1個又は2個以上のイソシアネート基を有する化合物であれば特に制限されず用いることができる。得られる樹脂組成物の金属に対する接着性と耐食性の観点から、分子内に2個のイソシアネート基を有するイソシアネート系化合物が好ましい。このようなイソシアネート系化合物としては、例えば、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート類、イソホロンジイソシアネート、4,4-ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等の脂環式ジイソシアネート類、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、1,5-ナフチレンジイソシアネート、1,4-ナフチレンジイソシアネート、フェニレンジイソシアネート、テトラメチルキシリレンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、2-ニトロジフェニル-4,4’-ジイソシアネート、2,2’-ジフェニルプロパン-4,4’-ジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、4,4’-ジフェニルプロパンジイソシアネート、3,3’-ジメトキシジフェニル-4,4’-ジイソシアネート、キシリレンジイソシアネート等の芳香族ジイソシアネート類等が挙げられ、これらの重合体、アダクト体、ビウレット体、ヌレート体、ブロック剤でブロック化したブロック体等も用いることができる。このとき、ブロック剤としては、例えば、フェノール、クレゾール、キシレノール、クロロフェノール、エチルフェノール等のフェノール系ブロック剤;ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、β-プロピオラクタム等のラクタム系ブロック剤;アセト酢酸エチル、アセチルアセトン等の活性メチレン系ブロック剤;メタノール、エタノール、プロパノール、ブタノール、アミルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ベンジルエーテル、グリコール酸メチル、グリコール酸ブチル、ジアセトンアルコール、乳酸メチル、乳酸エチル等のアルコール系ブロック剤;ホルムアルデヒドキシム、アセトアルドキシム、アセトキシム、メチルエチルケトキシム、ジアセチルモノオキシム、シクロヘキサンオキシム等のオキシム系ブロック剤;ブチルメルカプタン、ヘキシルメルカプタン、t-ブチルメルカプタン、チオフェノール、メチルチオフェノール、エチルチオフェノール等のメルカプタン系ブロック剤;酢酸アミド、ベンズアミド等の酸アミド系ブロック剤;コハク酸イミド、マレイン酸イミド等のイミド系ブロック剤;キシリジン、アニリン、ブチルアミン、ジブチルアミン等のアミン系ブロック剤;イミダゾール、2-エチルイミダゾール等のイミダゾール系ブロック剤;メチレンイミン、プロピレンイミン等のイミン系ブロック剤等を用いることができる。 The isocyanate-based compound that can be used in the present invention is not particularly limited as long as it has one or two or more isocyanate groups in the molecule. From the viewpoint of the adhesion to metals and corrosion resistance of the resulting resin composition, an isocyanate-based compound having two isocyanate groups in the molecule is preferred. Examples of such isocyanate compounds include aliphatic diisocyanates such as hexamethylene diisocyanate and 2,2,4-trimethylhexamethylene diisocyanate, alicyclic diisocyanates such as isophorone diisocyanate, 4,4-dicyclohexylmethane diisocyanate and 1,3-bis(isocyanatemethyl)cyclohexane, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 1,5-naphthylene diisocyanate, 1,4-naphthylene diisocyanate, and the like. Examples of the aromatic diisocyanates include aromatic diisocyanates such as anate, phenylene diisocyanate, tetramethylxylylene diisocyanate, 4,4'-diphenyl ether diisocyanate, 2-nitrodiphenyl-4,4'-diisocyanate, 2,2'-diphenylpropane-4,4'-diisocyanate, 3,3'-dimethyldiphenylmethane-4,4'-diisocyanate, 4,4'-diphenylpropane diisocyanate, 3,3'-dimethoxydiphenyl-4,4'-diisocyanate, and xylylene diisocyanate. Polymers, adducts, biuret forms, nurate forms, and blocked forms blocked with a blocking agent may also be used. In this case, examples of the blocking agent include phenol-based blocking agents such as phenol, cresol, xylenol, chlorophenol, and ethylphenol; lactam-based blocking agents such as ε-caprolactam, δ-valerolactam, γ-butyrolactam, and β-propiolactam; active methylene-based blocking agents such as ethyl acetoacetate and acetylacetone; methanol, ethanol, propanol, butanol, amyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, benzyl ether, methyl glycolate, butyl glycolate, diacetone alcohol, methyl lactate, and lactic acid. Examples of blocking agents that can be used include alcohol-based blocking agents such as ethyl; oxime-based blocking agents such as formaldehyde oxime, acetaldoxime, acetoxime, methyl ethyl ketoxime, diacetyl monooxime, and cyclohexane oxime; mercaptan-based blocking agents such as butyl mercaptan, hexyl mercaptan, t-butyl mercaptan, thiophenol, methylthiophenol, and ethylthiophenol; acid amide-based blocking agents such as acetate amide and benzamide; imide-based blocking agents such as succinimide and maleimide; amine-based blocking agents such as xylidine, aniline, butylamine, and dibutylamine; imidazole-based blocking agents such as imidazole and 2-ethylimidazole; and imine-based blocking agents such as methyleneimine and propyleneimine.
本発明の樹脂組成物がイソシアネート系化合物を含有する場合の、樹脂組成物中のイソシアネート系化合物の含有量は特に限定されず、目的に応じて適宜調整することができる。得られる樹脂組成物の金属に対する接着性と耐食性の観点から、樹脂組成物中のイソシアネート系化合物の含有量は、樹脂組成物の全量に対して、0.01~20質量%であることが好ましく、0.1~10質量%であることがより好ましく、0.2~5質量%であることが更により好ましい。 When the resin composition of the present invention contains an isocyanate compound, the content of the isocyanate compound in the resin composition is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of adhesion to metals and corrosion resistance of the resulting resin composition, the content of the isocyanate compound in the resin composition is preferably 0.01 to 20 mass%, more preferably 0.1 to 10 mass%, and even more preferably 0.2 to 5 mass%, based on the total amount of the resin composition.
本発明に用いることができるポリエーテルアミン系化合物としては、分子内にポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシブチレン基等のポリオキシアルキレン構造からなるポリエーテル基と、少なくとも1のアミノ基を有する化合物であれば特に制限なく用いることができる。このとき、ポリエーテルアミン系化合物としては、分子内にポリエーテル基として、ポリオキシエチレン基のみを有していてもよく、ポリオキシプロピレン基のみを有していてもよく、ポリオキシブチレン基のみを有していてもよく、また、ポリオキシエチレン基、ポリオキシプロピレン基、及びポリオキシブチレン基からなる群から選ばれる2種以上を有していてもよい。また、ポリエーテル基におけるオキシアルキレン構造の繰り返し数は特に限定されず、目的に応じて調整することができる。例えば、ポリエーテルアミン系化合物中のオキシアルキレン構造の繰り返し数は、1種又は2種以上のオキシアルキレン基の繰り返し数の合計として、2~500とすることができる。このようなポリエーテルアミン系化合物としては、例えば、ポリエチレングリコールアミン、ポリエチレングリコールジアミン、メトキシポリエチレングリコールアミン、ポリプロピレングリコールアミン、ポリプロピレングリコールジアミン、メトキシポリプロピレングリコールアミン、ポリブチレングリコールアミン、ポリブチレングリコールジアミン、メトキシポリブチレングリコールアミン、ポリオキシエチレンポリオキシプロピレンアミン、ポリオキシエチレンポリオキシプロピレンジアミン、メトキシポリオキシエチレンポリオキシプロピレンアミン等が挙げられる。また、ポリエーテルアミン系化合物としては、市販品を使用することもでき、市販品の例としては、JEFFAMINE(登録商標) M Series(M-600、M-1000、M-2005、M-2070)、JEFFAMINE D Series(D-230、D-400、D-2000、D-4000)、JEFFAMINE ED Series(ED-600、ED-900、ED-2003)、JEFFAMINE T Series(T-403、T-3000、T-5000)(いずれも、HUNTSMAN社製)が挙げられる。 The polyetheramine compound that can be used in the present invention can be any compound that has a polyether group consisting of a polyoxyalkylene structure such as a polyoxyethylene group, a polyoxypropylene group, or a polyoxybutylene group in the molecule, and at least one amino group. In this case, the polyetheramine compound may have only polyoxyethylene groups, only polyoxypropylene groups, only polyoxybutylene groups, or two or more types selected from the group consisting of polyoxyethylene groups, polyoxypropylene groups, and polyoxybutylene groups, as the polyether group in the molecule. In addition, the number of repetitions of the oxyalkylene structure in the polyether group is not particularly limited, and can be adjusted according to the purpose. For example, the number of repetitions of the oxyalkylene structure in the polyetheramine compound can be 2 to 500, as the total number of repetitions of one or more types of oxyalkylene groups. Examples of such polyetheramine compounds include polyethylene glycol amine, polyethylene glycol diamine, methoxypolyethylene glycol amine, polypropylene glycol amine, polypropylene glycol diamine, methoxypolypropylene glycol amine, polybutylene glycol amine, polybutylene glycol diamine, methoxypolybutylene glycol amine, polyoxyethylene polyoxypropylene amine, polyoxyethylene polyoxypropylene diamine, and methoxypolyoxyethylene polyoxypropylene amine. Commercially available polyetheramine compounds can also be used, and examples of commercially available products include JEFFAMINE (registered trademark) M Series (M-600, M-1000, M-2005, M-2070), JEFFAMINE D Series (D-230, D-400, D-2000, D-4000), JEFFAMINE ED Series (ED-600, ED-900, ED-2003), and JEFFAMINE T Series (T-403, T-3000, T-5000) (all manufactured by HUNTSMAN).
本発明においては、これらの中でも、得られる樹脂組成物の金属に対する接着性と耐食性の観点から、ポリエーテルアミン系化合物として、分子内にポリエーテル基、アミノ基、及びメトキシ基を有するポリエーテルアミン系化合物を用いることが好ましく、また、ポリエーテル基として、ポリオキシエチレン基のみ、ポリオキシプロピレン基のみ、又はポリオキシエチレン基及びポリオキシプロピレン基を有するポリエーテルアミン系化合物を用いることが好ましい。より具体的に、本発明においては、ポリエーテルアミン系化合物として、分子内のオキシエチレン基の繰り返し数が1~100であり、オキシプロピレン基の繰り返し数が2~50である、メトキシポリオキシエチレンポリオキシプロピレンアミン系化合物を用いることが特に好ましい。 In the present invention, from the viewpoint of adhesion to metals and corrosion resistance of the resulting resin composition, it is preferable to use, among these, a polyetheramine compound having a polyether group, an amino group, and a methoxy group in the molecule as the polyetheramine compound, and it is also preferable to use a polyetheramine compound having only a polyoxyethylene group, only a polyoxypropylene group, or a polyoxyethylene group and a polyoxypropylene group as the polyether group. More specifically, in the present invention, it is particularly preferable to use, as the polyetheramine compound, a methoxypolyoxyethylenepolyoxypropyleneamine compound in which the number of repeats of oxyethylene groups in the molecule is 1 to 100 and the number of repeats of oxypropylene groups is 2 to 50.
本発明の樹脂組成物がポリエーテルアミン系化合物を含有する場合の、樹脂組成物中のポリエーテルアミン系化合物の含有量は特に限定されず、目的に応じて適宜調整することができる。得られる樹脂組成物の金属に対する接着性と耐食性の観点から、樹脂組成物中のポリエーテルアミン系化合物の含有量は、樹脂組成物の全量に対して、0.01~20質量%であることが好ましく、0.1~10質量%であることがより好ましく、0.2~5質量%であることが更により好ましい。 When the resin composition of the present invention contains a polyetheramine compound, the content of the polyetheramine compound in the resin composition is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of adhesion to metal and corrosion resistance of the resulting resin composition, the content of the polyetheramine compound in the resin composition is preferably 0.01 to 20 mass%, more preferably 0.1 to 10 mass%, and even more preferably 0.2 to 5 mass%, based on the total amount of the resin composition.
本発明に用いることができるリン酸変性エポキシ樹脂としては、リン酸類とエポキシ化合物とを反応させて得られる変性物であれば特に制限なく用いることができる。このようなリン酸類としては、オルトリン酸、亜リン酸、次亜リン酸、ホスホン酸、ピロリン酸、三リン酸などのポリリン酸を使用することができる。このとき、エポキシ化合物としては、分子内にエポキシ基を少なくとも1個有する化合物であれば特に制限なく用いることができ、例えば、n-ブチルグリシジルエーテル、C12~C14のアルキルグリシジルエーテル、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、スチレンオキシド、フェニルグリシジルエーテル、クレジルグリシジルエーテル、p-sec-ブチルフェニルグリシジルエーテル、t-ブチルフェニルグリシジルエーテル、グリシジルメタクリレート、3級カルボン酸グリシジルエステル等の、分子内にエポキシ基を1個有する化合物;エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、及びネオペンチルグリコールジグリシジルエーテル等の、分子内にエポキシ基を2個有する化合物;トリメチロールプロパントリグリシジルエーテル、及びグリセリントリグリシジルエーテル等の、分子内にエポキシ基を3個有する化合物;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、レゾルシン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、カテコール型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、オキサゾリドン環型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂等が挙げられる。これらの1種又は2種以上を用いることができる。 The phosphoric acid-modified epoxy resin that can be used in the present invention is not particularly limited as long as it is a modified product obtained by reacting phosphoric acids with an epoxy compound. As such phosphoric acids, orthophosphoric acid, phosphorous acid, hypophosphorous acid, phosphonic acid, pyrophosphoric acid, triphosphoric acid and other polyphosphoric acids can be used. In this case, the epoxy compound can be used without particular limitation as long as it is a compound having at least one epoxy group in the molecule, and examples thereof include n-butyl glycidyl ether, C 12 -C Compounds having one epoxy group in the molecule, such as alkyl glycidyl ether of 14 , allyl glycidyl ether, 2-ethylhexyl glycidyl ether, styrene oxide, phenyl glycidyl ether, cresyl glycidyl ether, p-sec-butylphenyl glycidyl ether, t-butylphenyl glycidyl ether, glycidyl methacrylate, and tertiary carboxylic acid glycidyl ester; compounds having two epoxy groups in the molecule, such as ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and neopentyl glycol diglycidyl ether; compounds having three epoxy groups in the molecule, such as trimethylolpropane triglycidyl ether and glycerin triglycidyl ether; bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol Examples of the epoxy resins include phenol S type epoxy resins, bisphenol AD type epoxy resins, resorcin type epoxy resins, hydroquinone type epoxy resins, catechol type epoxy resins, dihydroxynaphthalene type epoxy resins, biphenyl type epoxy resins, tetramethylbiphenyl type epoxy resins, oxazolidone ring type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, triphenylmethane type epoxy resins, tetraphenylethane type epoxy resins, dicyclopentadiene-phenol addition reaction type epoxy resins, phenol aralkyl type epoxy resins, naphthol novolac type epoxy resins, naphthol aralkyl type epoxy resins, naphthol-phenol co-condensed novolac type epoxy resins, naphthol-cresol co-condensed novolac type epoxy resins, aromatic hydrocarbon formaldehyde resin modified phenol resin type epoxy resins, biphenyl modified novolac type epoxy resins, etc. One or more of these may be used.
本発明に用いることができるリン酸変性エポキシ樹脂は、上述したエポキシ化合物とリン酸類とを、例えば、1:0.1~1:5の当量比で、室温~100℃で反応させることで得ることができる。このとき、得られる樹脂組成物の金属に対する接着性と耐食性の観点から、リン酸変性エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、及びビスフェノールAD型エポキシ樹脂からなる群から選ばれる1種又は2種以上のエポキシ化合物と、オルトリン酸、メタリン酸、ホスホン酸、ピロリン酸、ポリリン酸等のリン酸化合物とを、1:0.5~1:3の当量比で反応させて得られたリン酸変性エポキシ樹脂を用いることが好ましく、1:1~1:2の当量比で反応させて得られたリン酸変性エポキシ樹脂を用いることがより好ましい。 The phosphoric acid-modified epoxy resin that can be used in the present invention can be obtained by reacting the above-mentioned epoxy compound with phosphoric acids, for example, at an equivalent ratio of 1:0.1 to 1:5 at room temperature to 100°C. In this case, from the viewpoint of adhesion to metals and corrosion resistance of the resulting resin composition, it is preferable to use a phosphoric acid-modified epoxy resin obtained by reacting one or more epoxy compounds selected from the group consisting of bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and bisphenol AD type epoxy resin with a phosphoric acid compound such as orthophosphoric acid, metaphosphoric acid, phosphonic acid, pyrophosphoric acid, or polyphosphoric acid at an equivalent ratio of 1:0.5 to 1:3, and it is more preferable to use a phosphoric acid-modified epoxy resin obtained by reacting at an equivalent ratio of 1:1 to 1:2.
本発明の樹脂組成物がリン酸変性エポキシ樹脂を含有する場合の、樹脂組成物中のリン酸変性エポキシ樹脂の含有量は特に限定されず、目的に応じて適宜調整することができる。得られる樹脂組成物の金属に対する接着性と耐食性の観点から、樹脂組成物中のリン酸変性エポキシ樹脂の含有量は、樹脂組成物の全量に対して、0.01~20質量%であることが好ましく、0.1~10質量%であることがより好ましく、0.2~5質量%であることが更により好ましい。 When the resin composition of the present invention contains a phosphoric acid-modified epoxy resin, the content of the phosphoric acid-modified epoxy resin in the resin composition is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of adhesion to metal and corrosion resistance of the resulting resin composition, the content of the phosphoric acid-modified epoxy resin in the resin composition is preferably 0.01 to 20 mass%, more preferably 0.1 to 10 mass%, and even more preferably 0.2 to 5 mass%, based on the total amount of the resin composition.
本発明に用いることができるメラミン樹脂としては、公知のメラミン樹脂であれば特に制限なく用いることができる。このようなメラミン樹脂としては、例えば、メラミンとホルムアルデヒドとの反応により得られる部分又は完全メチロール化メラミン、メチロール化メラミン樹脂のメチロール基をアルコールで部分又は完全エーテル化することにより得られるアルキルエーテルタイプメラミン樹脂、イミノ基含有メラミン樹脂、及びこれらの混合物等が挙げられる。これらの1種又は2種以上を用いることができる。本発明においては、これらの中でも、得られる樹脂組成物の金属に対する接着性と耐食性の観点から、メラミン樹脂として、イミノ基含有メラミン樹脂を用いることが好ましい。また、本発明に用いることができるメラミン樹脂としては、市販品を使用することもでき、例えば、CYMEL(登録商標)の名称を有する一連のメラミン樹脂(Allnex社製)等を使用することができる。 As the melamine resin that can be used in the present invention, any known melamine resin can be used without any particular limitation. Examples of such melamine resins include partially or completely methylolated melamine obtained by the reaction of melamine with formaldehyde, alkyl ether type melamine resins obtained by partially or completely etherifying the methylol groups of methylolated melamine resins with alcohol, imino group-containing melamine resins, and mixtures thereof. One or more of these can be used. In the present invention, among these, it is preferable to use an imino group-containing melamine resin as the melamine resin from the viewpoint of adhesion to metals and corrosion resistance of the resulting resin composition. In addition, as the melamine resin that can be used in the present invention, a commercially available product can be used, for example, a series of melamine resins bearing the name CYMEL (registered trademark) (manufactured by Allnex Co., Ltd.) can be used.
本発明の樹脂組成物がメラミン樹脂を含有する場合の、樹脂組成物中のメラミン樹脂の含有量は特に限定されず、目的に応じて適宜調整することができる。得られる樹脂組成物の金属に対する接着性と耐食性の観点から、樹脂組成物中のメラミン樹脂の含有量は、樹脂組成物の全量に対して、0.01~20質量%であることが好ましく、0.1~10質量%であることがより好ましく、0.2~5質量%であることが更により好ましい。 When the resin composition of the present invention contains a melamine resin, the content of the melamine resin in the resin composition is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of the adhesion to metal and corrosion resistance of the resulting resin composition, the content of the melamine resin in the resin composition is preferably 0.01 to 20 mass%, more preferably 0.1 to 10 mass%, and even more preferably 0.2 to 5 mass%, based on the total amount of the resin composition.
本発明に用いることができるフェノール樹脂としては、公知のフェノール樹脂であれば特に制限なく用いることができる。このようなフェノール樹脂としては、例えば、ビスフェノールA型フェノール樹脂、ビスフェノールE型フェノール樹脂、ビスフェノールF型フェノール樹脂、ビスフェノールS型フェノール樹脂、フェノールノボラック樹脂、ビスフェノールAノボラック型フェノール樹脂、グリシジルエステル型フェノール樹脂、アラルキルノボラック型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂、レゾール型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、ナフトール樹脂、ナフトールノボラック樹脂、多官能ナフトール樹脂、アントラセン型フェノール樹脂、ナフタレン骨格変性ノボラック型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、リン含有フェノール樹脂、重合性不飽和炭化水素基含有フェノール樹脂及び、水酸基含有シリコーン樹脂類等が挙げられる。これらの1種又は2種以上を用いることができる。本発明においては、これらの中でも、得られる樹脂組成物の金属に対する接着性と耐食性の観点から、フェノール樹脂として、レゾール型フェノール樹脂を用いることが好ましい。また、本発明に用いることができるフェノール樹脂として、市販品を使用することができ、例えば、スミライトレジン(登録商標)の名称を有する一連のフェノール樹脂(住友ベークライト株式会社製)等を使用することができる。 The phenolic resin that can be used in the present invention can be any known phenolic resin without any particular restrictions. Examples of such phenolic resins include bisphenol A type phenolic resins, bisphenol E type phenolic resins, bisphenol F type phenolic resins, bisphenol S type phenolic resins, phenol novolac resins, bisphenol A novolac type phenolic resins, glycidyl ester type phenolic resins, aralkyl novolac type phenolic resins, biphenyl aralkyl type phenolic resins, resol type phenolic resins, cresol novolac type phenolic resins, multifunctional phenolic resins, naphthol resins, naphthol novolac resins, multifunctional naphthol resins, anthracene type phenolic resins, naphthalene skeleton modified novolac type phenolic resins, phenol aralkyl type phenolic resins, naphthol aralkyl type phenolic resins, dicyclopentadiene type phenolic resins, biphenyl type phenolic resins, alicyclic phenolic resins, polyol type phenolic resins, phosphorus-containing phenolic resins, polymerizable unsaturated hydrocarbon group-containing phenolic resins, and hydroxyl group-containing silicone resins. One or more of these can be used. In the present invention, among these, it is preferable to use a resol type phenolic resin as the phenolic resin from the viewpoint of adhesion to metals and corrosion resistance of the resulting resin composition. In addition, commercially available products can be used as the phenolic resin that can be used in the present invention, for example, a series of phenolic resins bearing the name SUMILITE RESIN (registered trademark) (manufactured by Sumitomo Bakelite Co., Ltd.) can be used.
本発明の樹脂組成物がフェノール樹脂を含有する場合の、樹脂組成物中のフェノール樹脂の含有量は特に限定されず、目的に応じて適宜調整することができる。得られる樹脂組成物の金属に対する接着性と耐食性の観点から、樹脂組成物中のフェノール樹脂の含有量は、樹脂組成物の全量に対して、0.01~20質量%であることが好ましく、0.1~10質量%であることがより好ましく、0.2~5質量%であることが更により好ましい。 When the resin composition of the present invention contains a phenolic resin, the content of the phenolic resin in the resin composition is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of adhesion to metals and corrosion resistance of the resulting resin composition, the content of the phenolic resin in the resin composition is preferably 0.01 to 20 mass%, more preferably 0.1 to 10 mass%, and even more preferably 0.2 to 5 mass%, based on the total amount of the resin composition.
本発明の樹脂組成物は、ポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンといった、ポリエーテルウレタンを主骨格とすることにより高分子鎖の自由度に優れる成分を含有するため、得られる樹脂組成物は、接着性、特に短時間で優れた接着性を有すると考えられる。また、本発明の樹脂組成物は、25℃で固形状のエポキシ樹脂を含有することにより、樹脂組成物の安定性及び塗工性が向上するため、よって接着性、特に短時間で優れた接着性及び耐食性を有すると考えられる。 The resin composition of the present invention contains components such as polyether polyurethane prepolymer and polyether polyurethane, which have excellent polymer chain freedom due to their main structure of polyether urethane, and is therefore believed to have excellent adhesion, particularly in a short time. In addition, the resin composition of the present invention contains an epoxy resin that is solid at 25°C, which improves the stability and coatability of the resin composition, and is therefore believed to have excellent adhesion, particularly in a short time, and corrosion resistance.
1-5.樹脂組成物の製造方法
本発明の樹脂組成物を製造する方法は特に限定されず、25℃で固形状のエポキシ樹脂からなる成分(A)と、ポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上からなる成分(B)とを、公知の方法により混合する方法等により製造することができる。このとき、25℃で固形状のエポキシ樹脂からなる成分(A)は、固形状のまま用いても、水に分散させた状態で用いても、溶媒に溶解させた状態で用いてもよい。安定性及び取り扱い性に優れる樹脂組成物を容易に製造できる観点から、25℃で固形状のエポキシ樹脂からなる成分(A)を水を含む溶媒に分散させた水分散エマルションを用いて樹脂組成物を製造することが好ましい。このとき、25℃で固形状のエポキシ樹脂からなる成分(A)を水に分散させる方法は特に限定されず、例えば、界面活性剤を用いてエポキシ樹脂を水中に強制乳化する方法、自己乳化性を有するエポキシ樹脂を水中に分散させる方法等を用いることができる。
1-5. Manufacturing method of resin composition The method for manufacturing the resin composition of the present invention is not particularly limited, and it can be manufactured by a method of mixing component (A) consisting of an epoxy resin solid at 25 ° C. with component (B) consisting of one or more selected from the group consisting of polyether polyurethane prepolymer and polyether polyurethane by a known method. At this time, component (A) consisting of an epoxy resin solid at 25 ° C. may be used in a solid state, in a state dispersed in water, or in a state dissolved in a solvent. From the viewpoint of easily manufacturing a resin composition having excellent stability and handling properties, it is preferable to manufacture the resin composition using an aqueous dispersion emulsion in which component (A) consisting of an epoxy resin solid at 25 ° C. is dispersed in a solvent containing water. At this time, the method for dispersing component (A) consisting of an epoxy resin solid at 25 ° C. in water is not particularly limited, and for example, a method of forcibly emulsifying an epoxy resin in water using a surfactant, a method of dispersing an epoxy resin having self-emulsifying properties in water, etc. can be used.
本発明において、25℃で固形状のエポキシ樹脂からなる成分(A)を水を含む溶媒に分散させた水分散エマルションを用いて樹脂組成物を製造する際に用いることができる界面活性剤としては特に限定されず、前述した公知のアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤等を用いることができる。得られる樹脂組成物の金属に対する接着性と耐食性、取り扱い性等の観点から、アニオン性界面活性剤及びノニオン性界面活性剤からなる群から選ばれる1種又は2種以上の界面活性剤を含有することが好ましく、少なくとも1種のノニオン性界面活性剤を含有することがより好ましく、少なくとも1種のアルキレンオキサイド骨格を有するノニオン性界面活性剤を含有することが更により好ましい。このとき、ノニオン性界面活性剤の中でも、得られる樹脂組成物の金属に対する接着性と耐食性、取り扱い性等の観点から、重量平均分子量が1,000~50,000であるノニオン性界面活性剤を含有することが好ましく、重量平均分子量が5,000~30,000であるノニオン性界面活性剤を含有することがより好ましく、重量平均分子量が10,000~20,000であるノニオン性界面活性剤を含有することが更により好ましく、重量平均分子量が14,000~18,000であるノニオン性界面活性剤を含有することが特に好ましい。また、25℃で固形状のエポキシ樹脂からなる成分(A)を水を含む溶媒に分散させた水分散エマルションにおける、界面活性剤の含有量も特に限定されないが、例えば、0.01~20質量%であることができる。得られる樹脂組成物の金属に対する接着性と耐食性、取り扱い性等の観点から、界面活性剤の含有量は、25℃で固形状のエポキシ樹脂からなる成分(A)を水を含む溶媒に分散させた水分散エマルションの全量に対して、0.1~20質量%であることが好ましく、0.5~10質量%であることがより好ましく、0.5~8.0質量%であることが更により好ましく、3.0~6.0質量%であることが特に好ましい。 In the present invention, the surfactant that can be used when producing a resin composition using an aqueous dispersion emulsion in which component (A) consisting of an epoxy resin that is solid at 25°C is dispersed in a solvent containing water is not particularly limited, and the above-mentioned known anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, etc. can be used. From the viewpoint of adhesion to metals, corrosion resistance, handleability, etc. of the resulting resin composition, it is preferable to contain one or more surfactants selected from the group consisting of anionic surfactants and nonionic surfactants, it is more preferable to contain at least one nonionic surfactant, and it is even more preferable to contain at least one nonionic surfactant having an alkylene oxide skeleton. At this time, among the nonionic surfactants, from the viewpoint of adhesion to metals, corrosion resistance, handling properties, etc. of the resin composition obtained, it is preferable to contain a nonionic surfactant having a weight average molecular weight of 1,000 to 50,000, more preferably a nonionic surfactant having a weight average molecular weight of 5,000 to 30,000, even more preferably a nonionic surfactant having a weight average molecular weight of 10,000 to 20,000, and particularly preferably a nonionic surfactant having a weight average molecular weight of 14,000 to 18,000. In addition, the content of the surfactant in the water-dispersed emulsion in which component (A) consisting of a solid epoxy resin at 25 ° C. is dispersed in a solvent containing water is not particularly limited, but can be, for example, 0.01 to 20 mass%. From the viewpoints of adhesion to metals, corrosion resistance, handling properties, etc. of the resulting resin composition, the content of the surfactant is preferably 0.1 to 20 mass% relative to the total amount of the water-dispersed emulsion in which component (A), which is a solid epoxy resin at 25°C, is dispersed in a solvent containing water, more preferably 0.5 to 10 mass%, even more preferably 0.5 to 8.0 mass%, and particularly preferably 3.0 to 6.0 mass%.
また、本発明の樹脂組成物を製造する際、ポリエーテルポリウレタンプレポリマーは、固形又は液状のポリエーテルポリウレタンプレポリマー単体を用いても、水に分散させた状態で用いても、溶媒に溶解させた状態で用いてもよい。安定性及び取り扱い性に優れる樹脂組成物を容易に製造できる観点から、ポリエーテルポリウレタンプレポリマーを水を含む溶媒に分散させた水分散エマルションを用いて樹脂組成物を製造することが好ましい。このとき、ポリエーテルポリウレタンプレポリマーを水に分散させる方法は特に限定されず、例えば、界面活性剤を用いてポリエーテルポリウレタンプレポリマーを水中に強制乳化する方法、自己乳化性を有するポリエーテルポリウレタンプレポリマーを水中に分散させる方法等を用いることができる。このとき用いることができる界面活性剤としては特に限定されず、前述した公知のアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤等を用いることができ、またその含有量も特に限定されない。界面活性剤の含有量は、例えば、ポリエーテルポリウレタンプレポリマーを水を含む溶媒に分散させた水分散エマルションの全量に対して、0.1~20質量%であることが好ましく、0.5~10質量%であることがより好ましく、0.5~8.0質量%であることが更により好ましく、3.0~6.0質量%であることが特に好ましい。 In addition, when producing the resin composition of the present invention, the polyether polyurethane prepolymer may be used as a solid or liquid polyether polyurethane prepolymer alone, or may be used in a state dispersed in water, or may be used in a state dissolved in a solvent. From the viewpoint of easily producing a resin composition having excellent stability and ease of handling, it is preferable to produce the resin composition using an aqueous dispersion emulsion in which the polyether polyurethane prepolymer is dispersed in a solvent containing water. At this time, the method of dispersing the polyether polyurethane prepolymer in water is not particularly limited, and for example, a method of forcibly emulsifying the polyether polyurethane prepolymer in water using a surfactant, a method of dispersing a polyether polyurethane prepolymer having self-emulsifying properties in water, etc. can be used. The surfactant that can be used at this time is not particularly limited, and the above-mentioned known anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, etc. can be used, and the content thereof is also not particularly limited. The content of the surfactant is, for example, preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, even more preferably 0.5 to 8.0% by mass, and particularly preferably 3.0 to 6.0% by mass, relative to the total amount of the water-dispersed emulsion in which the polyether polyurethane prepolymer is dispersed in a solvent containing water.
また、本発明の樹脂組成物を製造する際、ポリエーテルポリウレタンは、固形又は液状のポリエーテルポリウレタン単体を用いても、水に分散させた状態で用いても、溶媒に溶解させた状態で用いてもよい。安定性及び取り扱い性に優れる樹脂組成物を容易に製造できる観点から、ポリエーテルポリウレタンを水を含む溶媒に分散させた水分散エマルションを用いて樹脂組成物を製造することが好ましい。このとき、ポリエーテルポリウレタンを水に分散させる方法は特に限定されず、例えば、界面活性剤を用いてポリエーテルポリウレタンを水中に強制乳化する方法、自己乳化性を有するポリエーテルポリウレタンを水中に分散させる方法等を用いることができる。このとき、用いることができる界面活性剤としては特に限定されず、前述した公知のアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤等を用いることができ、またその含有量も特に限定されない。界面活性剤の含有量は、例えば、ポリエーテルポリウレタンを水を含む溶媒に分散させた水分散エマルションの全量に対して、0.1~20質量%であることが好ましく、0.5~10質量%であることがより好ましく、0.5~8.0質量%であることが更により好ましく、3.0~6.0質量%であることが特に好ましい。 When producing the resin composition of the present invention, the polyether polyurethane may be used as a solid or liquid polyether polyurethane alone, or may be used in a state dispersed in water, or may be used in a state dissolved in a solvent. From the viewpoint of easily producing a resin composition having excellent stability and ease of handling, it is preferable to produce the resin composition using an aqueous dispersion emulsion in which the polyether polyurethane is dispersed in a solvent containing water. At this time, the method for dispersing the polyether polyurethane in water is not particularly limited, and for example, a method of forcibly emulsifying the polyether polyurethane in water using a surfactant, or a method of dispersing a polyether polyurethane having self-emulsifying properties in water, etc. can be used. At this time, the surfactant that can be used is not particularly limited, and the above-mentioned known anionic surfactant, nonionic surfactant, cationic surfactant, amphoteric surfactant, etc. can be used, and the content thereof is also not particularly limited. For example, the content of the surfactant is preferably 0.1 to 20 mass % relative to the total amount of the aqueous dispersion emulsion in which the polyether polyurethane is dispersed in a solvent containing water, more preferably 0.5 to 10 mass %, even more preferably 0.5 to 8.0 mass %, and particularly preferably 3.0 to 6.0 mass %.
本発明においては、優れた接着性、特には短時間の圧着により接着可能な接着性と耐食性を有する水系の樹脂組成物がより簡便に得られる観点から、25℃で固形状のエポキシ樹脂からなる成分(A)の水分散エマルションと、ポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上からなる成分(B)の水分散エマルションとを混合することにより、樹脂組成物を製造することが特に好ましい。 In the present invention, from the viewpoint of more easily obtaining an aqueous resin composition having excellent adhesive properties, particularly adhesive properties that can be bonded by pressure bonding in a short time, and corrosion resistance, it is particularly preferred to produce the resin composition by mixing an aqueous dispersion emulsion of component (A) consisting of an epoxy resin that is solid at 25°C with an aqueous dispersion emulsion of component (B) consisting of one or more members selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes.
1-6.樹脂組成物の用途
本発明の樹脂組成物は、エポキシ樹脂やウレタン樹脂が用いられる用途であれば特に限定されず用いることができる。本発明の樹脂組成物は、例えば、金属、木材、ガラス、コンクリート、プラスチック、セラミック等の基材に用いる接着剤、コーティング剤、シーラント剤等として用いることができ、より具体的には、自動車、車両(新幹線、電車等)、土木、建築、船舶、飛行機、宇宙産業分野における各種基材の接合用接着剤やコーティング剤、一般事務用部材、医療用部材、電子材料部材用の接着剤、シーラント剤等として用いることができる。これらの中でも、本発明の樹脂組成物は、上述した特定の成分(A)及び成分(B)を含有することにより、特に金属に対する優れた接着性を有することから、金属基材同士、又は金属基材とそれ以外の基材との接着剤、金属基材のコーティング剤等の、金属表面処理用樹脂組成物として用いることが好ましい。
1-6. Uses of the resin composition The resin composition of the present invention can be used without any particular limitation as long as the application uses an epoxy resin or a urethane resin. The resin composition of the present invention can be used, for example, as an adhesive, coating agent, sealant agent, etc. for substrates such as metal, wood, glass, concrete, plastic, ceramic, etc., and more specifically, it can be used as an adhesive or coating agent for bonding various substrates in the fields of automobiles, vehicles (bullet trains, trains, etc.), civil engineering, architecture, ships, airplanes, and the space industry, adhesives for general office materials, medical materials, and electronic material materials, sealants, etc. Among these, the resin composition of the present invention contains the above-mentioned specific component (A) and component (B), and therefore has excellent adhesion to metals in particular, and is therefore preferably used as a resin composition for metal surface treatment, such as an adhesive between metal substrates or between a metal substrate and another substrate, or a coating agent for a metal substrate.
2.金属表面処理用樹脂組成物
本発明の金属表面処理用樹脂組成物は、25℃で固形状のエポキシ樹脂からなる成分(A)と、ポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上からなる成分(B)と、を含有する金属表面処理用樹脂組成物である。このとき、25℃で固形状のエポキシ樹脂からなる成分(A)、ポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上からなる成分(B)としてはそれぞれ、上述した成分を用いることができる。本発明の金属表面処理用樹脂組成物中の25℃で固形状のエポキシ樹脂からなる成分(A)の含有量は特に限定されず、目的に応じて適宜調整することができる。金属表面処理用樹脂組成物の接着性と耐食性、特には短時間の圧着による接着性の向上の観点から、金属表面処理用樹脂組成物中の成分(A)の含有量は、金属表面処理用樹脂組成物全量に対して、3~60質量%であることが好ましく、5~50質量%であることがより好ましく、8~45質量%であることが更により好ましく、20~40質量%であることが更により好ましい。
2. Metal surface treatment resin composition The metal surface treatment resin composition of the present invention is a metal surface treatment resin composition containing component (A) consisting of an epoxy resin solid at 25 ° C. and component (B) consisting of one or more selected from the group consisting of polyether polyurethane prepolymer and polyether polyurethane. In this case, the above-mentioned components can be used as component (A) consisting of an epoxy resin solid at 25 ° C. and component (B) consisting of one or more selected from the group consisting of polyether polyurethane prepolymer and polyether polyurethane. The content of component (A) consisting of an epoxy resin solid at 25 ° C. in the metal surface treatment resin composition of the present invention is not particularly limited and can be appropriately adjusted depending on the purpose. From the viewpoint of improving the adhesion and corrosion resistance of the metal surface treatment resin composition, particularly the adhesion by short-time pressure bonding, the content of component (A) in the metal surface treatment resin composition is preferably 3 to 60 mass % relative to the total amount of the metal surface treatment resin composition, more preferably 5 to 50 mass %, even more preferably 8 to 45 mass %, and even more preferably 20 to 40 mass %.
本発明の金属表面処理用樹脂組成物中の、ポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上からなる成分(B)の含有量は特に限定されず、目的に応じて適宜調整することができる。金属表面処理用樹脂組成物の接着性及び耐食性、特には短時間の圧着による接着性の向上の観点から、成分(B)の含有量は、金属表面処理用樹脂組成物全量に対して、1~50質量%であることが好ましく、2~40質量%であることがより好ましく、3~30質量%であることが更により好ましく、4~10質量%であることが特に好ましい。 The content of component (B) consisting of one or more selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes in the resin composition for metal surface treatment of the present invention is not particularly limited and can be adjusted appropriately depending on the purpose. From the viewpoint of improving the adhesiveness and corrosion resistance of the resin composition for metal surface treatment, particularly the adhesiveness by short-time pressing, the content of component (B) is preferably 1 to 50 mass % relative to the total amount of the resin composition for metal surface treatment, more preferably 2 to 40 mass %, even more preferably 3 to 30 mass %, and particularly preferably 4 to 10 mass %.
本発明の金属表面処理用樹脂組成物中の、25℃で固形状のエポキシ樹脂からなる成分(A)と、ポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上からなる成分(B)との含有比率は特に限定されず、目的に応じて調整することができる。金属表面処理用樹脂組成物の接着性と耐食性、特には短時間の圧着による接着性の向上の観点から、金属表面処理用樹脂組成物中の成分(A)と成分(B)との含有比率が、質量比で、5:95~98:2であることが好ましく、20:80~95:5であることがより好ましく、50:50~92:8であることが更により好ましく、70:30~90:10であることが特に好ましい。 The content ratio of component (A) consisting of an epoxy resin that is solid at 25°C and component (B) consisting of one or more selected from the group consisting of polyether polyurethane prepolymer and polyether polyurethane in the resin composition for metal surface treatment of the present invention is not particularly limited and can be adjusted according to the purpose. From the viewpoint of improving the adhesion and corrosion resistance of the resin composition for metal surface treatment, particularly the adhesion by short-time pressing, the content ratio of component (A) to component (B) in the resin composition for metal surface treatment is preferably 5:95 to 98:2 by mass, more preferably 20:80 to 95:5, even more preferably 50:50 to 92:8, and particularly preferably 70:30 to 90:10.
本発明の金属表面処理用樹脂組成物における、水の含有量は特に限定されず、適宜調整することができる。金属表面処理用樹脂組成物の金属に対する接着性と耐食性、環境への負荷低減、及び金属表面処理用樹脂組成物の取り扱い性等の観点から、金属表面処理用樹脂組成物全量に対して、水を、10~90質量%含有することが好ましく、20~80質量%含有することがより好ましく、30~70質量%含有することが更により好ましく、40~60質量%含有することが特に好ましい。このとき、水としては、水道水、イオン交換水、蒸留水、天然水、純水等を目的に応じて適宜用いることができる。 The water content in the resin composition for metal surface treatment of the present invention is not particularly limited and can be adjusted as appropriate. From the viewpoints of adhesion and corrosion resistance of the resin composition for metal surface treatment to metal, reduction of the burden on the environment, and ease of handling of the resin composition for metal surface treatment, the resin composition for metal surface treatment preferably contains 10 to 90% by mass of water relative to the total amount of the resin composition for metal surface treatment, more preferably 20 to 80% by mass, even more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass. In this case, tap water, ion-exchanged water, distilled water, natural water, pure water, etc. can be used as the water depending on the purpose.
本発明の金属表面処理用樹脂組成物が水を含有する場合の、成分(A)と成分(B)と水との含有量の比は特に限定されず、目的に応じて調整することができる。金属表面処理用樹脂組成物の金属に対する接着性と耐食性、環境への負荷低減、及び金属表面処理用樹脂組成物の取り扱い性等の観点から、金属表面処理用樹脂組成物中の成分(A)と成分(B)と水との含有量の比が、成分(A)と成分(B)と水との含有量の和を100としたときに、3~80:1~60:10~90であることが好ましく、5~60:2~50:20~80であることがより好ましく、8~50:3~40:30~70であることが更により好ましく、20~40:4~10:40~60であることが特に好ましい。本発明の金属表面処理用樹脂組成物は、上述した特定の成分(A)と成分(B)と水とを、このような含有量の比で含有することにより、金属表面処理用樹脂組成物として分散安定性に優れる水分散エマルションを得ることができ、よって環境への負荷低減及び取り扱い性に優れる金属表面処理用樹脂組成物とすることができる。 When the resin composition for metal surface treatment of the present invention contains water, the ratio of the contents of component (A), component (B), and water is not particularly limited and can be adjusted according to the purpose. From the viewpoints of adhesion and corrosion resistance of the resin composition for metal surface treatment to metal, reduction of the burden on the environment, and ease of handling of the resin composition for metal surface treatment, the ratio of the contents of component (A), component (B), and water in the resin composition for metal surface treatment is preferably 3-80:1-60:10-90, more preferably 5-60:2-50:20-80, even more preferably 8-50:3-40:30-70, and particularly preferably 20-40:4-10:40-60, when the sum of the contents of component (A), component (B), and water is taken as 100. The resin composition for metal surface treatment of the present invention contains the above-mentioned specific component (A), component (B), and water in such a content ratio, so that a water-dispersed emulsion with excellent dispersion stability can be obtained as a resin composition for metal surface treatment, and therefore it can be a resin composition for metal surface treatment that reduces the burden on the environment and is easy to handle.
本発明の金属表面処理用樹脂組成物が水を含有する場合、成分(A)としては、上述した25℃で固形状のエポキシ樹脂の中でも、得られる金属表面処理用樹脂組成物の分散安定性及び諸特性の観点からは、25℃で固形状のビスフェノール型エポキシ樹脂を用いることが好ましく、25℃で固形状の、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、及びビスフェノールAD型エポキシ樹脂からなる群から選ばれる1種又は2種以上を用いることがより好ましく、25℃で固形状のビスフェノールA型エポキシ樹脂を用いることが更により好ましい。また、得られる金属表面処理用樹脂組成物の分散安定性及び諸特性の観点からは、成分(A)としては、上述した25℃で固形状のエポキシ樹脂の中でも、エポキシ当量が500g/eq.~30,000g/eq.の25℃で固形状のエポキシ樹脂を用いることが好ましく、エポキシ当量が1,000g/eq.~10,000g/eq.の25℃で固形状のエポキシ樹脂を用いることがより好ましく、エポキシ当量が1,500g/eq.~6,000g/eq.の25℃で固形状のエポキシ樹脂を用いることが更により好ましく、エポキシ当量が2,000g/eq.~5,000g/eq.の25℃で固形状のエポキシ樹脂を用いることが更により好ましく、エポキシ当量が2,500g/eq.~3,500g/eq.の25℃で固形状のエポキシ樹脂を用いることが特に好ましい。 When the resin composition for metal surface treatment of the present invention contains water, it is preferable to use, as component (A), from the viewpoint of the dispersion stability and various properties of the resin composition for metal surface treatment obtained, a bisphenol type epoxy resin that is solid at 25°C among the epoxy resins that are solid at 25°C described above, and it is more preferable to use one or more selected from the group consisting of bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, and bisphenol AD type epoxy resins that are solid at 25°C, and it is even more preferable to use a bisphenol A type epoxy resin that is solid at 25°C. Also, from the viewpoint of the dispersion stability and various properties of the resin composition for metal surface treatment obtained, it is preferable to use, as component (A), an epoxy resin that is solid at 25°C and has an epoxy equivalent of 500 g/eq. to 30,000 g/eq. among the epoxy resins that are solid at 25°C described above, and an epoxy equivalent of 1,000 g/eq. to 10,000 g/eq. It is more preferable to use an epoxy resin that is solid at 25°C and has an epoxy equivalent of 1,500 g/eq. to 6,000 g/eq., even more preferable to use an epoxy resin that is solid at 25°C and has an epoxy equivalent of 2,000 g/eq. to 5,000 g/eq., and particularly preferable to use an epoxy resin that is solid at 25°C and has an epoxy equivalent of 2,500 g/eq. to 3,500 g/eq.
本発明の金属表面処理用樹脂組成物が水を含有する場合、成分(B)としては、上述したポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンの中でも、得られる金属表面処理用樹脂組成物の分散安定性及び諸特性の観点からは、1種又は2種以上のポリアルキレングリコールを含む原料を反応させて得られるポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上を用いることが好ましく、ポリエチレングリコール、ポリプロピレングリコール、及びポリテトラメチレンエーテルグリコールからなる群から選ばれる1種又は2種以上を含む原料を反応させて得られるポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上を用いることがより好ましく、ポリプロピレングリコール及びポリテトラメチレンエーテルグリコールからなる群から選ばれる1種又は2種以上を含む原料を反応させて得られるポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上を用いることが更により好ましく、ポリテトラメチレンエーテルグリコールを含む原料を反応させて得られるポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上を用いることが特に好ましい。また、得られる金属表面処理用樹脂組成物の分散安定性及び諸特性の観点からは、用いるポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンの酸価は、それぞれ、0~70mgKOH/gであることが好ましく、10~60mgKOH/gであることがより好ましく、15~50mgKOH/gであることが更により好ましく、20~40mgKOH/gであることが特に好ましい。 When the resin composition for metal surface treatment of the present invention contains water, as component (B), from the viewpoint of the dispersion stability and various properties of the resulting resin composition for metal surface treatment, it is preferable to use one or more selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes obtained by reacting raw materials containing one or more polyalkylene glycols, among the above-mentioned polyether polyurethane prepolymers and polyether polyurethanes, it is more preferable to use one or more selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes obtained by reacting raw materials containing one or more selected from the group consisting of polyethylene glycol, polypropylene glycol, and polytetramethylene ether glycol, it is even more preferable to use one or more selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes obtained by reacting raw materials containing one or more selected from the group consisting of polypropylene glycol and polytetramethylene ether glycol, and it is particularly preferable to use one or more selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes obtained by reacting raw materials containing polytetramethylene ether glycol. In addition, from the viewpoint of the dispersion stability and various properties of the resulting resin composition for metal surface treatment, the acid value of the polyether polyurethane prepolymer and polyether polyurethane used is preferably 0 to 70 mgKOH/g, more preferably 10 to 60 mgKOH/g, even more preferably 15 to 50 mgKOH/g, and particularly preferably 20 to 40 mgKOH/g.
本発明の金属表面処理用樹脂組成物は、上述した成分(A)、成分(B)及び水以外に、目的に応じて、界面活性剤、充填剤、触媒、潤滑剤、顔料、染料、着色剤、増量剤、防食剤、流れ調整剤、チキソトロープ剤、分散剤、抗酸化剤、接着促進剤、光安定剤等のその他の成分を含有していてもよい。このとき、本発明の金属表面処理用樹脂組成物が含有してもよい界面活性剤としては、例えば、上述したアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤等が挙げられる。これらの1種又は2種以上を用いることができる。本発明の金属表面処理用樹脂組成物が、界面活性剤を含有する場合の、金属表面処理用樹脂組成物中の界面活性剤の含有量は特に限定されず、目的に応じて適宜調整することができる。得られる金属表面処理用樹脂組成物の取り扱い性及び金属に対する接着性と耐食性の観点から、金属表面処理用樹脂組成物中の界面活性剤の含有量は、金属表面処理用樹脂組成物の全量に対して、0.01~20質量%であることが好ましく、0.1~15質量%であることがより好ましく、0.2~10質量%であることが更により好ましく、0.5~6質量%であることが更により好ましく、3.0~5.0質量%であることが特に好ましい。 In addition to the above-mentioned components (A), (B) and water, the resin composition for metal surface treatment of the present invention may contain other components such as surfactants, fillers, catalysts, lubricants, pigments, dyes, colorants, extenders, anticorrosive agents, flow control agents, thixotropic agents, dispersants, antioxidants, adhesion promoters, light stabilizers, etc., depending on the purpose. In this case, examples of surfactants that may be contained in the resin composition for metal surface treatment of the present invention include the above-mentioned anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric surfactants, etc. One or more of these can be used. When the resin composition for metal surface treatment of the present invention contains a surfactant, the content of the surfactant in the resin composition for metal surface treatment is not particularly limited and can be appropriately adjusted depending on the purpose. From the viewpoint of the handleability of the resulting resin composition for metal surface treatment and the adhesion to metal and corrosion resistance, the content of the surfactant in the resin composition for metal surface treatment is preferably 0.01 to 20 mass%, more preferably 0.1 to 15 mass%, even more preferably 0.2 to 10 mass%, even more preferably 0.5 to 6 mass%, and particularly preferably 3.0 to 5.0 mass%, based on the total amount of the resin composition for metal surface treatment.
本発明の金属表面処理用樹脂組成物の、処理対象の金属材料は特に限定されず、例えば、銅、アルミ、金、銀、鉄、プラチナ、クロム、ニッケル、錫、チタン、亜鉛、マンガン、マグネシウム、モリブデン、コバルト、タングステン、ジルコニウム、鉛、ガリウム、インジウム、及びこれらを複合した材料が挙げられ、金属酸化物としてはこれら金属の単独酸化物及び又は複合酸化物が挙げられる。本発明の金属表面処理用樹脂組成物は、このような金属材料を板状、箔状等に加工し、必要に応じてめっき処理等を施した金属表面に対して適用することができる。また、本発明の金属表面処理用樹脂組成物は、このような金属材料からなる金属基材同士、又は金属基材とそれ以外の基材との接着剤、金属基材のコーティング剤等として用いることができる。 The metal material to be treated with the resin composition for metal surface treatment of the present invention is not particularly limited, and examples include copper, aluminum, gold, silver, iron, platinum, chromium, nickel, tin, titanium, zinc, manganese, magnesium, molybdenum, cobalt, tungsten, zirconium, lead, gallium, indium, and composite materials thereof. Metal oxides include single oxides and/or composite oxides of these metals. The resin composition for metal surface treatment of the present invention can be applied to metal surfaces that have been processed into a plate or foil shape, etc., and have been subjected to plating treatment, etc., as necessary. The resin composition for metal surface treatment of the present invention can also be used as an adhesive between metal substrates made of such metal materials, or between metal substrates and other substrates, or as a coating agent for metal substrates, etc.
本発明の金属表面処理用樹脂組成物の、金属表面への塗布方法は特に限定されず、公知の方法を用いることができる。例えば、スプレーコート、ディップコート、ロールコート、カーテンコート、スピンコート、及びこれらを組み合わせた方法等を用いて、本発明の金属表面処理用樹脂組成物を金属表面へ塗布することができる。このとき、塗布時の金属表面及び金属表面処理用樹脂組成物の温度も特に限定されず、目的に応じて調整することができる。塗布時の金属表面及び金属表面処理用樹脂組成物の温度は、例えば、10℃~90℃とすることができる。また、金属表面への金属表面処理用樹脂組成物の塗布後の乾燥方法は特に限定されず、公知の方法を用いることができる。このような乾燥方法としては、例えば、乾燥炉、電磁誘導加熱炉等を用いて、最高到達温度を40℃~250℃とする方法等を用いることができる。また、本発明の金属表面処理用樹脂組成物を、金属基材同士、又は金属基材とそれ以外の基材との接着剤として用いる場合の方法として、例えば、金属基材に金属表面処理用樹脂組成物を前述したような方法により塗布した後、必要に応じて乾燥後、もう一方の基材を前記金属基材表面の金属表面処理用樹脂組成物の塗膜上に積層し、必要に応じてプレス機、乾燥炉、電磁誘導加熱炉等を用いて、バッチ式又は連続的に、最高到達温度を40℃~250℃として加熱しながら、積層体に0.1MPa~100MPaの圧力を加圧することにより圧着して接着処理する方法等を用いることができる。 The method of applying the resin composition for metal surface treatment of the present invention to a metal surface is not particularly limited, and known methods can be used. For example, the resin composition for metal surface treatment of the present invention can be applied to a metal surface using spray coating, dip coating, roll coating, curtain coating, spin coating, and combinations of these methods. At this time, the temperature of the metal surface and the resin composition for metal surface treatment during application is also not particularly limited, and can be adjusted according to the purpose. The temperature of the metal surface and the resin composition for metal surface treatment during application can be, for example, 10°C to 90°C. In addition, the method of drying after application of the resin composition for metal surface treatment to the metal surface is not particularly limited, and known methods can be used. As such a drying method, for example, a method using a drying oven, an electromagnetic induction heating oven, etc., with a maximum temperature of 40°C to 250°C can be used. In addition, when the resin composition for metal surface treatment of the present invention is used as an adhesive between metal substrates or between a metal substrate and another substrate, for example, the resin composition for metal surface treatment can be applied to a metal substrate by the method described above, and then dried as necessary. After that, another substrate can be laminated on the coating of the resin composition for metal surface treatment on the surface of the metal substrate, and the laminate can be pressed and bonded by applying a pressure of 0.1 MPa to 100 MPa to the laminate while heating to a maximum temperature of 40°C to 250°C, batchwise or continuously, using a press, drying furnace, electromagnetic induction heating furnace, or the like as necessary.
3.金属積層板の製造方法
本発明の金属積層板の製造方法は、上述した樹脂組成物を第一の金属板の表面に塗布して塗膜を形成する工程と、第二の金属板を第一の金属板の塗膜上に積層して金属積層体とする工程と、を含む金属積層板の製造方法である。本発明の金属積層板の製造方法を用いることで、金属板同士が強力に接着された金属積層板を得ることができる。本発明において、第一の金属板及び第二の金属板として用いる金属板の素材は特に限定されない。このような素材としては、例えば、銅、アルミ、金、銀、鉄、プラチナ、クロム、ニッケル、錫、チタン、亜鉛、マンガン、マグネシウム、モリブデン、コバルト、タングステン、ジルコニウム、鉛、ガリウム、インジウム及びこれらの合金を主成分として含有し、炭素、ケイ素、窒素、リン、硫黄、ホウ素、ニオブ、タンタル、バナジウム、アンチモン、ゲルマニウム等の任意成分を更に含有してもよい金属板、鋼板等を挙げることができる。また、本発明に用いる金属板の厚さは特に限定されず、目的に応じて適宜調整することができる。例えば、厚さが1μm~100cmの金属板を用いることができる。また、本発明においては、2枚の金属板を用いて金属積層板を製造してもよく、3枚以上の金属板を用いて金属積層板を製造してもよい。複数枚の金属板は、同じ素材及び厚さからなる金属板であってもよいし、異なる素材及び厚さからなる金属板であってもよい。
3. Manufacturing method of metal laminate plate The manufacturing method of the metal laminate plate of the present invention is a manufacturing method of a metal laminate plate including a step of applying the above-mentioned resin composition to the surface of a first metal plate to form a coating film, and a step of laminating a second metal plate on the coating film of the first metal plate to form a metal laminate. By using the manufacturing method of the metal laminate plate of the present invention, a metal laminate plate in which the metal plates are strongly bonded to each other can be obtained. In the present invention, the material of the metal plate used as the first metal plate and the second metal plate is not particularly limited. Examples of such materials include metal plates and steel plates containing copper, aluminum, gold, silver, iron, platinum, chromium, nickel, tin, titanium, zinc, manganese, magnesium, molybdenum, cobalt, tungsten, zirconium, lead, gallium, indium, and alloys thereof as main components, and may further contain optional components such as carbon, silicon, nitrogen, phosphorus, sulfur, boron, niobium, tantalum, vanadium, antimony, and germanium. In addition, the thickness of the metal plate used in the present invention is not particularly limited, and can be appropriately adjusted according to the purpose. For example, a metal plate having a thickness of 1 μm to 100 cm can be used. In the present invention, the metal laminate plate may be manufactured using two metal plates, or three or more metal plates. The multiple metal plates may be metal plates made of the same material and thickness, or may be metal plates made of different materials and thicknesses.
本発明の金属積層板の製造方法における、樹脂組成物の金属板表面への塗布方法は特に限定されず、公知の方法を用いることができる。例えば、スプレーコート、ディップコート、ロールコート、カーテンコート、スピンコート、及びこれらを組み合わせた方法により、樹脂組成物を金属板表面に塗布することができる。このときの、樹脂組成物の金属板表面への塗布量は、特に限定されず、目的に応じて適宜調整することができる。例えば、樹脂組成物を塗布、乾燥して得られる塗膜の膜厚が0.1μm~10mmとなる量で、樹脂組成物を金属板表面に塗布することができる。 In the method for producing a metal laminate of the present invention, the method for applying the resin composition to the metal sheet surface is not particularly limited, and known methods can be used. For example, the resin composition can be applied to the metal sheet surface by spray coating, dip coating, roll coating, curtain coating, spin coating, or a combination of these methods. The amount of the resin composition applied to the metal sheet surface is not particularly limited, and can be adjusted appropriately depending on the purpose. For example, the resin composition can be applied to the metal sheet surface in an amount such that the thickness of the coating film obtained by applying and drying the resin composition is 0.1 μm to 10 mm.
本発明の金属積層板の製造方法は、上述した樹脂組成物を第一の金属板の表面に塗布して塗膜を形成する工程と、第二の金属板を第一の金属板の表面の塗膜上に積層して金属積層体とする工程と、からなっていてもよく、目的に応じて、金属積層体を加熱する工程や、金属積層体を圧着する工程を更に含んでいてもよい。本発明においては、より強力に接着された金属積層板、特に短時間で強力に接着された金属積層板を得る観点から、樹脂組成物を第一の金属板の表面に塗布して塗膜を形成する工程と、第二の金属板を第一の金属板の塗膜上に積層して金属積層体とする工程と、金属積層体を圧着する工程とを含む、金属積層板の製造方法を用いることが好ましい。 The method for producing a metal laminate of the present invention may comprise a step of applying the above-mentioned resin composition to the surface of a first metal sheet to form a coating film, and a step of laminating a second metal sheet onto the coating film on the surface of the first metal sheet to form a metal laminate, and may further comprise a step of heating the metal laminate and a step of pressing the metal laminate, depending on the purpose. In the present invention, from the viewpoint of obtaining a more strongly bonded metal laminate, particularly a metal laminate that is strongly bonded in a short time, it is preferable to use a method for producing a metal laminate that includes a step of applying the resin composition to the surface of a first metal sheet to form a coating film, a step of laminating a second metal sheet onto the coating film of the first metal sheet to form a metal laminate, and a step of pressing the metal laminate.
本発明の金属積層板の製造方法において含むことができる、金属積層体を加熱する工程における加熱方法は特に限定されず、公知の方法及び条件を用いることができる。このような加熱方法としては、例えば、乾燥炉、電磁誘導加熱炉等を用いて40℃~250℃とする方法等を用いることができる。また、本発明の金属積層板の製造方法において含むことができる、金属積層体を圧着する工程における圧着方法は特に限定されず、公知の方法を用いることができる。このような圧着方法としては、例えば、プレス機等を用いて、金属積層体を0.1MPa~100MPaの圧力で加圧することで圧着する方法等を用いることができる。また、本発明においては、金属積層体を加熱する工程と金属積層体を圧着する工程を同時に行ってもよく、このような方法としては、例えば、乾燥炉、電磁誘導加熱炉等を用いて40℃~250℃とした環境下で、プレス機等を用いて、金属積層体を0.1MPa~100MPaの圧力で加圧する方法や、40℃~250℃に加熱したヒータプレス機等を用いて金属積層体を0.1MPa~100MPaの圧力で加圧することで圧着する方法等を用いることができる。 The heating method in the step of heating the metal laminate, which can be included in the manufacturing method of the metal laminate of the present invention, is not particularly limited, and known methods and conditions can be used. Such a heating method can be, for example, a method of heating to 40°C to 250°C using a drying oven, an electromagnetic induction heating oven, etc. Furthermore, the pressing method in the step of pressing the metal laminate, which can be included in the manufacturing method of the metal laminate of the present invention, is not particularly limited, and known methods can be used. Such a pressing method can be, for example, a method of pressing the metal laminate by applying pressure to it at a pressure of 0.1 MPa to 100 MPa using a press machine, etc. In the present invention, the step of heating the metal laminate and the step of pressing the metal laminate may be performed simultaneously. Examples of such a method include a method of pressing the metal laminate at a pressure of 0.1 MPa to 100 MPa using a press machine or the like in an environment of 40°C to 250°C using a drying furnace, electromagnetic induction heating furnace, or the like, or a method of pressing the metal laminate at a pressure of 0.1 MPa to 100 MPa using a heater press machine or the like heated to 40°C to 250°C.
本発明の金属積層板の製造方法として、樹脂組成物を第一の金属板の表面に塗布して塗膜を形成する工程と、第二の金属板を第一の金属板の塗膜上に積層して金属積層体とする工程と、金属積層体を圧着する工程とを含む方法を用いる場合の、用いる金属板の素材及び厚さは特に限定されず、例えば、上述した素材及び厚さからなる金属板を用いることができる。第一の金属板及び第二の金属板は、同じ素材及び厚さからなる金属板であってもよいし、異なる素材及び厚さからなる金属板であってもよい。また、本発明の金属積層板の製造方法として、樹脂組成物を第一の金属板の表面に塗布して塗膜を形成する工程と、第二の金属板を第一の金属板の塗膜上に積層して金属積層体とする工程と、金属積層体を圧着する工程とを含む方法を用いる場合の、樹脂組成物の金属板表面への塗布方法及び樹脂組成物の金属板表面への塗布量も特に限定されず、例えば、それぞれ上述した方法及び塗布量とすることができる。 When using a method for producing a metal laminate plate of the present invention that includes a step of applying a resin composition to the surface of a first metal plate to form a coating film, a step of laminating a second metal plate on the coating film of the first metal plate to form a metal laminate, and a step of pressing the metal laminate, the material and thickness of the metal plate used are not particularly limited, and for example, a metal plate made of the material and thickness described above can be used. The first metal plate and the second metal plate may be metal plates made of the same material and thickness, or may be metal plates made of different materials and thicknesses. In addition, when using a method for producing a metal laminate plate of the present invention that includes a step of applying a resin composition to the surface of a first metal plate to form a coating film, a step of laminating a second metal plate on the coating film of the first metal plate to form a metal laminate, and a step of pressing the metal laminate, the method of applying the resin composition to the metal plate surface and the amount of the resin composition applied to the metal plate surface are not particularly limited, and can be, for example, the method and amount of application described above.
また、本発明の金属積層板の製造方法として、樹脂組成物を第一の金属板の表面に塗布して塗膜を形成する工程と、第二の金属板を第一の金属板の塗膜上に積層して金属積層体とする工程と、金属積層体を圧着する工程とを含む方法を用いる場合、2枚の金属板を用いて金属積層板を製造してもよく、3枚以上の金属板を用いて金属積層板を製造してもよい。複数枚の金属板は、同じ素材及び厚さからなる金属板であってもよいし、異なる素材及び厚さからなる金属板であってもよい。このとき、3枚以上の金属板を用いて金属積層板を製造する場合、樹脂組成物を第一の金属板の表面に塗布して塗膜を形成する工程と、第二の金属板を第一の金属板の塗膜上に積層して金属積層体とする工程と、金属積層体を圧着する工程と、樹脂組成物を、圧着した金属積層体の表面に塗布して塗膜を形成する工程と、第三の金属板を、金属積層体の塗膜上に更に積層して金属積層体とする工程と、金属積層体を圧着する工程とを含む方法を複数回繰り返すことにより金属積層板を製造してもよく、また、樹脂組成物を3枚以上の金属板の表面にそれぞれ塗布して塗膜を形成した後に、金属板を積層して金属積層体とする工程を複数回繰り返した後に、金属積層体を圧着する工程、により金属積層板を製造してもよい。 Furthermore, when the method for manufacturing the metal laminate of the present invention includes a step of applying a resin composition to the surface of a first metal plate to form a coating film, a step of laminating a second metal plate on the coating film of the first metal plate to form a metal laminate, and a step of pressing the metal laminate, the metal laminate may be manufactured using two metal plates, or may be manufactured using three or more metal plates. The multiple metal plates may be metal plates made of the same material and thickness, or may be metal plates made of different materials and thicknesses. In this case, when a metal laminate plate is manufactured using three or more metal plates, the metal laminate plate may be manufactured by repeating a process including a step of applying a resin composition to the surface of a first metal plate to form a coating film, a step of laminating a second metal plate on the coating film of the first metal plate to form a metal laminate, a step of pressing the metal laminate, a step of applying a resin composition to the surface of the pressed metal laminate to form a coating film, a step of further laminating a third metal plate on the coating film of the metal laminate to form a metal laminate, and a step of pressing the metal laminate. Alternatively, the metal laminate plate may be manufactured by repeating a process of applying a resin composition to the surfaces of three or more metal plates to form coating films, laminating the metal plates to form a metal laminate, and then pressing the metal laminate.
本発明の金属積層板の製造方法は、上述した樹脂組成物を用いて上述した方法により製造することで、強力に接着された金属積層板を得ることができる。本発明により得られる金属積層板は、金属積層板が用いられる用途であれば特に制限なく用いることができ、例えば、自動車、車両(新幹線、電車等)、土木、建築、船舶、飛行機、宇宙産業分野用の金属積層板として用いることができる。 The method for producing a metal laminate plate of the present invention uses the resin composition described above to produce a strongly bonded metal laminate plate. The metal laminate plate obtained by the present invention can be used without any particular restrictions as long as it is used in applications where a metal laminate plate is used, and can be used, for example, as a metal laminate plate for automobiles, vehicles (bullet trains, trains, etc.), civil engineering, architecture, ships, airplanes, and the space industry.
4.金属積層板
本発明の金属積層板は、第一の金属板と、上述した樹脂組成物の塗膜と、第二の金属板と、がこの順で積層した、金属積層板である。第一の金属板及び第二の金属板は、同じ素材及び厚さからなる金属板であってもよいし、異なる素材及び厚さからなる金属板であってもよい。本発明の金属積層板は、例えば、上述した金属積層板の製造方法により製造することができる。本発明の金属積層板は、金属板同士が強力に接着されているため、金属積層板が用いられる用途であれば特に制限なく用いることができる。本発明の金属積層板は、例えば、自動車、車両(新幹線、電車等)、土木、建築、船舶、飛行機、宇宙産業分野用の金属積層板として用いることができる。
4. Metal laminate plate The metal laminate plate of the present invention is a metal laminate plate in which a first metal plate, a coating film of the above-mentioned resin composition, and a second metal plate are laminated in this order. The first metal plate and the second metal plate may be metal plates made of the same material and thickness, or may be metal plates made of different materials and thicknesses. The metal laminate plate of the present invention can be manufactured, for example, by the above-mentioned manufacturing method of a metal laminate plate. Since the metal plates of the metal laminate plate of the present invention are strongly bonded to each other, it can be used without any particular limitation as long as it is used for the purpose of a metal laminate plate. The metal laminate plate of the present invention can be used, for example, as a metal laminate plate for automobiles, vehicles (bullet trains, trains, etc.), civil engineering, architecture, ships, airplanes, and the space industry.
本開示においては、以下の態様が挙げられる。 The present disclosure includes the following aspects:
[1]25℃で固形状のエポキシ樹脂からなる成分(A)と、ポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上からなる成分(B)と、を含有する樹脂組成物。 [1] A resin composition containing component (A) consisting of an epoxy resin that is solid at 25°C, and component (B) consisting of one or more members selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes.
[2]成分(A)が、25℃で固形状のビスフェノールA型エポキシ樹脂を含有する、[1]に記載の樹脂組成物。 [2] The resin composition described in [1], in which component (A) contains a bisphenol A type epoxy resin that is solid at 25°C.
[3]成分(B)が、ポリエーテルポリオール化合物と、ポリイソシアネート化合物と、アニオン性基導入剤と、メラミン系化合物と、を反応させて得られるポリエーテルポリウレタンプレポリマーを含有する、[1]又は[2]に記載の樹脂組成物。 [3] The resin composition according to [1] or [2], in which component (B) contains a polyether polyurethane prepolymer obtained by reacting a polyether polyol compound, a polyisocyanate compound, an anionic group introducing agent, and a melamine-based compound.
[4]成分(B)が、ポリエーテルポリオール化合物と、ポリイソシアネート化合物と、アニオン性基導入剤と、メラミン系化合物と、を反応させた後、封鎖剤により封鎖するか、又は鎖伸長剤により鎖伸長することにより得られるポリエーテルポリウレタンを含有する、[1]~[3]のいずれかに記載の樹脂組成物。 [4] The resin composition according to any one of [1] to [3], in which component (B) contains a polyether polyurethane obtained by reacting a polyether polyol compound, a polyisocyanate compound, an anionic group-introducing agent, and a melamine-based compound, and then blocking the reaction with a blocking agent or extending the chains with a chain extender.
[5]樹脂組成物中の、成分(A)と成分(B)との含有量の比が、質量比で5:95~98:2である、[1]~[4]のいずれかに記載の樹脂組成物。 [5] A resin composition according to any one of [1] to [4], in which the ratio of the contents of component (A) and component (B) in the resin composition is 5:95 to 98:2 by mass ratio.
[6]水を更に含有し、水の含有量が10~90質量%である、[1]~[5]のいずれかに記載の樹脂組成物。 [6] The resin composition according to any one of [1] to [5], further comprising water, the water content being 10 to 90 mass%.
[7]25℃で固形状のエポキシ樹脂からなる成分(A)と、ポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上からなる成分(B)と、を含有する金属表面処理用樹脂組成物。 [7] A resin composition for metal surface treatment, comprising component (A) made of an epoxy resin that is solid at 25°C, and component (B) made of one or more members selected from the group consisting of polyether polyurethane prepolymers and polyether polyurethanes.
[8][1]~[6]のいずれかに記載の樹脂組成物を第一金属板の表面に塗布して塗膜を形成する工程と、第二の金属板を第一の金属板の塗膜上に積層して金属積層体とする工程と、を含む金属積層板の製造方法。 [8] A method for producing a metal laminate plate, comprising the steps of applying the resin composition described in any one of [1] to [6] to the surface of a first metal plate to form a coating film, and laminating a second metal plate onto the coating film of the first metal plate to form a metal laminate.
[9]金属積層体を圧着する工程を更に含む、[8]に記載の金属積層板の製造方法。 [9] The method for producing the metal laminate described in [8] further includes a step of crimping the metal laminate.
[10]第一の金属板と、[1]~[6]のいずれかに記載の樹脂組成物の塗膜と、第二の金属板と、がこの順で積層した、金属積層板。 [10] A metal laminate plate having a first metal plate, a coating film of the resin composition described in any one of [1] to [6], and a second metal plate laminated in this order.
以下、実施例及び比較例により本発明の詳細を説明するが、これらによって本発明が限定されるものではない。なお、以下の実施例等において、%は特に記載がない限り質量基準である。 The present invention will be described in detail below with reference to examples and comparative examples, but the present invention is not limited to these. In the following examples, percentages are by weight unless otherwise specified.
<エポキシ樹脂の水分散エマルション1の製造>
ジムロート、撹拌羽及び窒素ラインを装着した4つ口セパラブル丸底フラスコに、ビスフェノールA型エポキシ樹脂(融点0℃以下、エポキシ当量190g/eq.)を290.0g、ビスフェノールAを159.5g、触媒としてトリフェニルホスフィンを0.1g入れ、180℃で5時間反応させてエポキシ樹脂A-1を得た。その後、溶剤としてプロピレングリコールモノメチルエーテルを50.5g加えた後、エチレンオキサイド骨格を有する重量平均分子量16,000のノニオン性界面活性剤1を50.5g加えて混合し、70℃に冷却後、水を449.5g加えて転相乳化することにより、エポキシ樹脂の水分散エマルション1を製造した。得られたエポキシ樹脂の水分散エマルション1は、エポキシ樹脂A-1(ビスフェノールA型エポキシ樹脂、融点140℃、エポキシ当量3,000g/eq.)を45.0質量%、ノニオン性界面活性剤1を5.0質量%、プロピレングリコールモノメチルエーテルを5.0質量%、水を45.0質量%含有するものであった。
<Production of Water-Dispersed Epoxy Resin Emulsion 1>
In a four-necked separable round-bottom flask equipped with a Dimroth stirrer and a nitrogen line, 290.0 g of bisphenol A type epoxy resin (melting point 0°C or less, epoxy equivalent 190 g/eq.), 159.5 g of bisphenol A, and 0.1 g of triphenylphosphine as a catalyst were placed and reacted at 180°C for 5 hours to obtain epoxy resin A-1. After that, 50.5 g of propylene glycol monomethyl ether was added as a solvent, and then 50.5 g of nonionic surfactant 1 having an ethylene oxide skeleton and a weight average molecular weight of 16,000 was added and mixed, and after cooling to 70°C, 449.5 g of water was added to perform phase inversion emulsification, thereby producing water-dispersed emulsion 1 of epoxy resin. The obtained water-dispersed epoxy resin emulsion 1 contained 45.0 mass% of epoxy resin A-1 (bisphenol A type epoxy resin, melting point 140°C, epoxy equivalent 3,000 g/eq.), 5.0 mass% of nonionic surfactant 1, 5.0 mass% of propylene glycol monomethyl ether, and 45.0 mass% of water.
<エポキシ樹脂の水分散エマルション2の製造>
ジムロート、撹拌羽及び窒素ラインを装着した4つ口セパラブル丸底フラスコに、ビスフェノールA型エポキシ樹脂(融点0℃以下、エポキシ当量190g/eq.)を450.5g、溶剤としてプロピレングリコールモノメチルエーテルを49.5g、エチレンオキサイド骨格を有する重量平均分子量16,000のノニオン性界面活性剤1を49.5g加えて70℃で混合し、水を450.5g加えて転相乳化することにより、エポキシ樹脂の水分散エマルション2を製造した。得られたエポキシ樹脂の水分散エマルション2は、エポキシ樹脂A’-2(ビスフェノールA型エポキシ樹脂、融点0℃以下、エポキシ当量190g/eq.)を45.0質量%、ノニオン性界面活性剤1を5.0質量%、プロピレングリコールモノメチルエーテルを5.0質量%、水を45.0質量%含有するものであった。
<Preparation of Water-Dispersed Epoxy Resin Emulsion 2>
In a four-neck separable round-bottom flask equipped with a Dimroth stirrer and a nitrogen line, 450.5 g of bisphenol A type epoxy resin (melting point 0°C or less, epoxy equivalent 190 g/eq.), 49.5 g of propylene glycol monomethyl ether as a solvent, and 49.5 g of nonionic surfactant 1 having an ethylene oxide skeleton and a weight average molecular weight of 16,000 were added and mixed at 70°C, and 450.5 g of water was added to perform phase inversion emulsification, thereby producing a water-dispersed emulsion 2 of epoxy resin. The obtained water-dispersed emulsion 2 of epoxy resin contained 45.0 mass% of epoxy resin A'-2 (bisphenol A type epoxy resin, melting point 0°C or less, epoxy equivalent 190 g/eq.), 5.0 mass% of nonionic surfactant 1, 5.0 mass% of propylene glycol monomethyl ether, and 45.0 mass% of water.
<ウレタン樹脂の水分散エマルション1の製造>
ジムロート、撹拌羽及び窒素ラインを装着した4つ口セパラブル丸底フラスコに、ポリエーテルポリオール化合物として数平均分子量1,000のポリテトラメチレンエーテルグリコールを202.7g、ポリイソシアネート化合物として水添ジフェニルメタンジイソシアネートを436.9g、アニオン性基導入剤としてジメチロールプロピオン酸を67.6g、メラミンを33.8g、中和剤としてトリエチルアミンを56.3g、N-メチル-2-ピロリドンを202.7g加え、80℃で5時間反応させ、ウレタンプレポリマー溶液を製造した。
続いて、2Lのディスポカップに、40℃の水を724.0g加え、撹拌した後、上記ウレタンプレポリマー溶液500gを加え、30分間撹拌を行った。その後、エチレンジアミン/水=1/3(質量比)の水溶液を52.0g加え、更に1時間撹拌を行うことで、ウレタン樹脂の水分散エマルション1を得た。得られたウレタン樹脂の水分散エマルション1は、ポリエーテルポリウレタンB-1(酸価:38.0mgKOH/g、ポリエーテル構造の含有比率:27質量%)を30質量%、N-メチル-2-ピロリドンを8質量%、水を62質量%含有するものであった。
<Production of Water-Dispersed Urethane Resin Emulsion 1>
A four-neck separable round-bottom flask equipped with a Dimroth stirrer, a stirring blade, and a nitrogen line was charged with 202.7 g of polytetramethylene ether glycol having a number average molecular weight of 1,000 as a polyether polyol compound, 436.9 g of hydrogenated diphenylmethane diisocyanate as a polyisocyanate compound, 67.6 g of dimethylolpropionic acid and 33.8 g of melamine as anionic group introducing agents, 56.3 g of triethylamine and 202.7 g of N-methyl-2-pyrrolidone as neutralizing agents, and the mixture was allowed to react at 80° C. for 5 hours to produce a urethane prepolymer solution.
Next, 724.0 g of water at 40°C was added to a 2L disposable cup, and after stirring, 500 g of the above urethane prepolymer solution was added and stirred for 30 minutes. Then, 52.0 g of an aqueous solution of ethylenediamine/water = 1/3 (mass ratio) was added, and stirring was continued for another hour to obtain a water-dispersed emulsion 1 of urethane resin. The obtained water-dispersed emulsion 1 of urethane resin contained 30 mass% of polyether polyurethane B-1 (acid value: 38.0 mg KOH/g, content ratio of polyether structure: 27 mass%), 8 mass% of N-methyl-2-pyrrolidone, and 62 mass% of water.
<ウレタン樹脂の水分散エマルション2の製造>
ジムロート、撹拌羽及び窒素ラインを装着した4つ口セパラブル丸底フラスコに、ポリエーテルポリオール化合物として数平均分子量1,000のポリテトラメチレンエーテルグリコールを374.3g、ポリイソシアネート化合物として水添ジフェニルメタンジイソシアネートを334.2g、アニオン性基導入剤としてジメチロールプロピオン酸を42.8g、メラミンを13.4g、中和剤としてトリエチルアミンを32.1g、N-メチル-2-ピロリドンを203.2g加え、80℃で5時間反応させ、ウレタンプレポリマー溶液を製造した。
続いて、2Lのディスポカップに、40℃の水を765.8g加え、撹拌した後、上記ウレタンプレポリマー溶液500gを加え、30分間撹拌を行った。その後、エチレンジアミン/水=1/3(質量比)の水溶液を26.7g加え、更に1時間撹拌を行うことで、ウレタン樹脂の水分散エマルション2を得た。得られたウレタン樹脂の水分散エマルション2は、ポリエーテルポリウレタンB-2(酸価:23.0mgKOH/g、ポリエーテル構造の含有比率:49質量%)を30質量%、N-メチル-2-ピロリドンを8質量%、水を62質量%含有するものであった。
<Production of Water-Dispersed Urethane Resin Emulsion 2>
A four-neck separable round-bottom flask equipped with a Dimroth stirrer, a stirring blade, and a nitrogen line was charged with 374.3 g of polytetramethylene ether glycol having a number average molecular weight of 1,000 as a polyether polyol compound, 334.2 g of hydrogenated diphenylmethane diisocyanate as a polyisocyanate compound, 42.8 g of dimethylolpropionic acid and 13.4 g of melamine as anionic group introducing agents, 32.1 g of triethylamine and 203.2 g of N-methyl-2-pyrrolidone as neutralizing agents, and the mixture was allowed to react at 80° C. for 5 hours to produce a urethane prepolymer solution.
Next, 765.8 g of water at 40°C was added to a 2L disposable cup, and after stirring, 500 g of the above urethane prepolymer solution was added and stirred for 30 minutes. Then, 26.7 g of an aqueous solution of ethylenediamine/water = 1/3 (mass ratio) was added, and stirring was continued for another hour to obtain a water-dispersed emulsion 2 of a urethane resin. The obtained water-dispersed emulsion 2 of a urethane resin contained 30 mass% of polyether polyurethane B-2 (acid value: 23.0 mg KOH/g, content ratio of polyether structure: 49 mass%), 8 mass% of N-methyl-2-pyrrolidone, and 62 mass% of water.
<ウレタン樹脂の水分散エマルション3の製造>
ジムロート、撹拌羽及び窒素ラインを装着した4つ口セパラブル丸底フラスコに、数平均分子量500のポリエステルポリオールを253.2g、ポリイソシアネート化合物として水添ジフェニルメタンジイソシアネートを436.7g、アニオン性基導入剤としてジメチロールプロピオン酸を50.6g、メラミンを19.0g、中和剤としてトリエチルアミンを38.0g、N-メチル-2-ピロリドンを202.5g加え、80℃で5時間反応させ、ウレタンプレポリマー溶液を製造した。
続いて、2Lのディスポカップに、40℃の水を771.1g加え、撹拌した後、上記ウレタンプレポリマー溶液500gを加え、30分間撹拌を行った。その後、エチレンジアミン/水=1/3(質量比)の水溶液を35.5g加え、更に1時間撹拌を行うことで、ウレタン樹脂の水分散エマルション3を得た。得られたウレタン樹脂の水分散エマルション3は、ポリエステルポリウレタンB’-3(酸価:28.0mgKOH/g)を30質量%、N-メチル-2-ピロリドンを8質量%、水を62質量%含有するものであった。
<Production of Water-Dispersed Urethane Resin Emulsion 3>
A four-neck separable round-bottom flask equipped with a Dimroth stirrer, a stirring blade, and a nitrogen line was charged with 253.2 g of polyester polyol having a number average molecular weight of 500, 436.7 g of hydrogenated diphenylmethane diisocyanate as a polyisocyanate compound, 50.6 g of dimethylolpropionic acid and 19.0 g of melamine as anionic group introducing agents, 38.0 g of triethylamine and 202.5 g of N-methyl-2-pyrrolidone as neutralizing agents, and the mixture was reacted at 80° C. for 5 hours to produce a urethane prepolymer solution.
Next, 771.1 g of water at 40°C was added to a 2L disposable cup, and after stirring, 500 g of the above urethane prepolymer solution was added and stirred for 30 minutes. Then, 35.5 g of an aqueous solution of ethylenediamine/water = 1/3 (mass ratio) was added, and stirring was continued for another hour to obtain a water-dispersed emulsion of urethane resin 3. The obtained water-dispersed emulsion of urethane resin 3 contained 30 mass% of polyester polyurethane B'-3 (acid value: 28.0 mgKOH/g), 8 mass% of N-methyl-2-pyrrolidone, and 62 mass% of water.
<ウレタン樹脂の水分散エマルション4の製造>
ジムロート、撹拌羽及び窒素ラインを装着した4つ口セパラブル丸底フラスコに、ポリカーボネートポリオール化合物として数平均分子量2,000のポリカーボネートジオールを526.8g、ポリイソシアネート化合物として水添ジフェニルメタンジイソシアネートを229.9g、アニオン性基導入剤としてジメチロールプロピオン酸を43.1g、中和剤としてトリエチルアミンを42.2g、N-メチル-2-ピロリドンを202.2g加え、80℃で5時間反応させ、ウレタンプレポリマー溶液を製造した。
続いて、2Lのディスポカップに、40℃の水を807.8g加え、撹拌した後、上記ウレタンプレポリマー溶液500gを加え、30分間撹拌を行った。その後、エチレンジアミン/水=1/3(質量比)の水溶液を22.3g加え、更に1時間撹拌を行うことで、ウレタン樹脂の水分散エマルション4を得た。得られたウレタン樹脂の水分散エマルション4は、ポリカーボネートポリウレタンB’-4(酸価:23.0mgKOH/g)を30質量%、N-メチル-2-ピロリドンを8質量%、水を62質量%含有するものであった。
<Production of Water-Dispersed Urethane Resin Emulsion 4>
Into a four-neck separable round-bottom flask equipped with a Dimroth stirrer, stirring blades, and a nitrogen line, 526.8 g of polycarbonate diol having a number average molecular weight of 2,000 as a polycarbonate polyol compound, 229.9 g of hydrogenated diphenylmethane diisocyanate as a polyisocyanate compound, 43.1 g of dimethylolpropionic acid as an anionic group introducing agent, 42.2 g of triethylamine as a neutralizing agent, and 202.2 g of N-methyl-2-pyrrolidone were added and reacted at 80° C. for 5 hours to produce a urethane prepolymer solution.
Next, 807.8 g of water at 40°C was added to a 2L disposable cup, and after stirring, 500 g of the above urethane prepolymer solution was added and stirred for 30 minutes. Then, 22.3 g of an aqueous solution of ethylenediamine/water = 1/3 (mass ratio) was added, and stirring was continued for another hour to obtain a water-dispersed emulsion of urethane resin 4. The obtained water-dispersed emulsion of urethane resin 4 contained 30 mass% of polycarbonate polyurethane B'-4 (acid value: 23.0 mgKOH/g), 8 mass% of N-methyl-2-pyrrolidone, and 62 mass% of water.
[実施例1~4、比較例1~5]
製造したエポキシ樹脂の水分散エマルション1~2及びウレタン樹脂の水分散エマルション1~4を混合することで、表1に示す実施例1~4、比較例1~5の樹脂組成物をそれぞれ製造した。
[Examples 1 to 4, Comparative Examples 1 to 5]
The produced water-dispersed epoxy resin emulsions 1 to 2 and the water-dispersed urethane resin emulsions 1 to 4 were mixed to produce the resin compositions of Examples 1 to 4 and Comparative Examples 1 to 5 shown in Table 1, respectively.
[室温接着性評価]
2枚の鋼板(幅25mm、長さ100mm、厚さ1.6mm)それぞれの片面に、実施例1~4、比較例1~5で製造した樹脂組成物を乾燥後の塗膜厚さが約4μmとなるようそれぞれ塗布した後、熱風(到達板温度200℃)で乾燥することで、鋼板それぞれの表面全体に樹脂組成物の塗膜が形成された表面処理鋼板を作製した。作製した2枚の表面処理鋼板を、表面処理鋼板の処理面(塗膜が形成された表面)同士が長さ方向に10mm重なるよう(幅方向の位置は一致)積層し、プレス機を用いて、3MPaの圧力で加圧しながら室温で10分間又は20分間圧着することにより、2枚の鋼板が接着された金属積層板を製造した。得られた金属積層板について、引張試験機を用いて、JIS K 6850(1999)に記載の方法により重ね合せせん断強さ(MPa)を測定し、重ね合せせん断強さの値から下記の室温接着性の評価基準により接着性を評価した。各樹脂組成物の室温接着性の評価結果を表1に示す。なお、本評価において室温接着性評価が△以上であれば、短時間での室温接着方法における実用性を有することを表す。
[Room temperature adhesion evaluation]
The resin compositions produced in Examples 1 to 4 and Comparative Examples 1 to 5 were applied to one side of two steel plates (width 25 mm, length 100 mm, thickness 1.6 mm) so that the coating thickness after drying was about 4 μm, and then dried with hot air (attained plate temperature 200 ° C.) to produce surface-treated steel plates in which a coating film of the resin composition was formed on the entire surface of each steel plate. The two surface-treated steel plates produced were laminated so that the treated surfaces (surfaces on which the coating film was formed) of the surface-treated steel plates overlapped each other by 10 mm in the length direction (the positions in the width direction were the same), and the two steel plates were pressed at room temperature for 10 minutes or 20 minutes while being pressed with a pressure of 3 MPa using a press machine to produce a metal laminate plate in which the two steel plates were bonded. The overlap shear strength (MPa) of the obtained metal laminate plate was measured using a tensile tester according to the method described in JIS K 6850 (1999), and the adhesion was evaluated from the overlap shear strength value according to the following evaluation criteria for room temperature adhesion. The evaluation results of the room temperature adhesion of each resin composition are shown in Table 1. In this evaluation, if the room temperature adhesion evaluation is Δ or higher, it indicates that the composition has practical applicability in a short-time room temperature adhesion method.
室温接着性の評価基準
◎:重ね合せせん断強さが15MPa以上
○:重ね合せせん断強さが10MPa以上15MPa未満
△:重ね合せせん断強さが5MPa以上10MPa未満
×:重ね合せせん断強さが5MPa未満
Evaluation criteria for room temperature adhesion: ⊚: Lap shear strength is 15 MPa or more; ◯: Lap shear strength is 10 MPa or more and less than 15 MPa; △: Lap shear strength is 5 MPa or more and less than 10 MPa; ×: Lap shear strength is less than 5 MPa
[高温接着性評価]
2枚の鋼板(幅25mm、長さ100mm、厚さ1.6mm)それぞれの片面に、実施例1~4、比較例1~5で製造した樹脂組成物を乾燥後の塗膜厚さが約4μmとなるようそれぞれ塗布した後、熱風(到達板温度200℃)で乾燥することで、鋼板それぞれの表面全体に樹脂組成物の塗膜が形成された表面処理鋼板を作製した。作製した2枚の表面処理鋼板を、表面処理鋼板の処理面(塗膜が形成された表面)同士が長さ方向に10mm重なるよう(幅方向の位置は一致)積層し、ヒータプレス機を用いて、3MPaの圧力で加圧しながら180℃で10分間圧着することにより、2枚の鋼板が接着された金属積層板を製造した。得られた金属積層板について、引張試験機を用いて、JIS K 6850(1999)に記載の方法により重ね合せせん断強さ(MPa)を測定し、重ね合せせん断強さの値から下記の高温接着性の評価基準により接着性を評価した。各樹脂組成物の高温接着性の評価結果を表1に示す。なお、本評価において高温接着性評価が△以上であれば、短時間での高温接着方法における実用性を有することを表す。
[High temperature adhesion evaluation]
The resin compositions produced in Examples 1 to 4 and Comparative Examples 1 to 5 were applied to one side of each of two steel plates (width 25 mm, length 100 mm, thickness 1.6 mm) so that the coating thickness after drying was about 4 μm, and then dried with hot air (attained plate temperature 200 ° C.) to produce a surface-treated steel plate in which a coating film of the resin composition was formed on the entire surface of each steel plate. The two surface-treated steel plates produced were laminated so that the treated surfaces (surfaces on which the coating film was formed) of the surface-treated steel plates overlapped each other by 10 mm in the length direction (the positions in the width direction were the same), and the two steel plates were pressed at 180 ° C. for 10 minutes while being pressed at a pressure of 3 MPa using a heater press machine, thereby producing a metal laminate plate in which the two steel plates were bonded. The overlap shear strength (MPa) of the obtained metal laminate plate was measured using a tensile tester according to the method described in JIS K 6850 (1999), and the adhesion was evaluated from the overlap shear strength value according to the following evaluation criteria for high-temperature adhesion. The evaluation results of the high temperature adhesion of each resin composition are shown in Table 1. In this evaluation, if the high temperature adhesion evaluation is Δ or higher, it indicates that the composition has practical applicability in a high temperature adhesion method for a short period of time.
高温接着性の評価基準
◎:重ね合せせん断強さが2.5MPa以上
○:重ね合せせん断強さが1.0MPa以上2.5Pa未満
△:重ね合せせん断強さが0.1MPa以上1.0MPa未満
×:重ね合せせん断強さが0.1MPa未満
Evaluation criteria for high temperature adhesion: ⊚: Lap shear strength is 2.5 MPa or more; ◯: Lap shear strength is 1.0 MPa or more and less than 2.5 Pa; Δ: Lap shear strength is 0.1 MPa or more and less than 1.0 MPa; ×: Lap shear strength is less than 0.1 MPa
[耐食性評価]
鋼板(幅25mm、長さ100mm、厚さ1.6mm)の片面に、実施例1~4、比較例1~5で製造した樹脂組成物を乾燥後の塗膜厚さが約4μmとなるようそれぞれ塗布した後、熱風(到達板温度200℃)で乾燥することで、鋼板それぞれの表面全体に樹脂組成物の塗膜が形成された表面処理鋼板を作製した。作製した表面処理鋼板について、JIS Z 2371(2015)に準拠して、表面処理鋼板の処理面(塗膜が形成された表面)に対して5質量%の中性塩水を用いて35℃、24時間塩水噴霧試験を行い、試験後の表面処理鋼板上の塗膜の目視観察及び下記耐食性の評価基準により、各樹脂組成物の耐食性を評価した。各樹脂組成物の耐食性の評価結果を表1に示す。なお、本評価において耐食性評価が△以上であれば、実用性を有することを表す。
[Corrosion resistance evaluation]
The resin compositions produced in Examples 1 to 4 and Comparative Examples 1 to 5 were applied to one side of a steel plate (width 25 mm, length 100 mm, thickness 1.6 mm) so that the coating thickness after drying was about 4 μm, and then dried with hot air (plate temperature reached 200 ° C.) to produce surface-treated steel plates on which a coating film of the resin composition was formed on the entire surface of each steel plate. For the surface-treated steel plates produced, a salt spray test was performed at 35 ° C. for 24 hours using 5 mass % neutral salt water on the treated surface (surface on which the coating film was formed) of the surface-treated steel plate in accordance with JIS Z 2371 (2015), and the corrosion resistance of each resin composition was evaluated by visual observation of the coating film on the surface-treated steel plate after the test and the following corrosion resistance evaluation criteria. The evaluation results of the corrosion resistance of each resin composition are shown in Table 1. In addition, if the corrosion resistance evaluation in this evaluation is △ or higher, it indicates that it has practical use.
耐食性の評価基準
◎:錆発生面積が10%未満
○:錆発生面積が10%以上20%未満
△:錆発生面積が20%以上40%未満
×:錆発生面積が40%以上
Evaluation criteria for corrosion resistance: ◎: Rust occurred on less than 10% of the surface area. ○: Rust occurred on 10% or more but less than 20% of the surface area. △: Rust occurred on 20% or more but less than 40% of the surface area. ×: Rust occurred on 40% or more of the surface area.
表1に示されるように、25℃で固形状のエポキシ樹脂からなる成分(A)と、ポリエーテルポリウレタンプレポリマー及びポリエーテルポリウレタンからなる群から選ばれる1種又は2種以上からなる成分(B)と、を含有する本発明の樹脂組成物は、優れた接着性を有しており、特に、室温及び高温での短時間の圧着により接着可能な接着性と、耐食性とを有していた。一方で、成分(A)の代わりに25℃で液体であるエポキシ樹脂を用いた場合や、成分(B)の代わりにポリエステルポリウレタンやポリカーボネートポリウレタンを用いた場合は、短時間での圧着による接着性を有さなかった。これらの結果から、本発明によれば、従来の樹脂組成物と比較して、優れた接着性を有する樹脂組成物を提供することができることわかる。 As shown in Table 1, the resin composition of the present invention, which contains component (A) consisting of an epoxy resin that is solid at 25°C and component (B) consisting of one or more selected from the group consisting of polyether polyurethane prepolymer and polyether polyurethane, has excellent adhesive properties, and in particular, has adhesive properties that allow bonding by short-time compression at room temperature and high temperatures, and corrosion resistance. On the other hand, when an epoxy resin that is liquid at 25°C was used instead of component (A), or when polyester polyurethane or polycarbonate polyurethane was used instead of component (B), adhesive properties by short-time compression were not obtained. From these results, it can be seen that the present invention can provide a resin composition that has excellent adhesive properties compared to conventional resin compositions.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023055655 | 2023-03-30 | ||
JP2023-055655 | 2023-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024203515A1 true WO2024203515A1 (en) | 2024-10-03 |
Family
ID=92904870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/010462 WO2024203515A1 (en) | 2023-03-30 | 2024-03-18 | Resin composition, resin composition for metal surface treatment, method for producing metal laminate, and metal laminate |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202506782A (en) |
WO (1) | WO2024203515A1 (en) |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH023465A (en) * | 1988-01-12 | 1990-01-09 | Mobay Corp | Aqueous composition used in production of crosslinked polyurethane |
US5034435A (en) * | 1989-07-18 | 1991-07-23 | Mobay Corporation | Aqueously dispersed blends of epoxy resins and blocked urethane prepolymers |
JPH04359081A (en) * | 1990-12-10 | 1992-12-11 | Hb Fuller Licensing & Financing Inc | Improved aqueous emulsion based on polyol and hindered isocyanate compound |
JPH05230364A (en) * | 1991-11-15 | 1993-09-07 | Basf Ag | Aqueous polyurethane dispersion |
JPH0753916A (en) * | 1993-08-06 | 1995-02-28 | Sanyo Chem Ind Ltd | Water-base baking coating composition for metallic can |
JPH08113704A (en) * | 1994-10-17 | 1996-05-07 | Asahi Denka Kogyo Kk | Production of aqueous polyurethane composition having discoloration resistance |
JPH08283660A (en) * | 1995-04-17 | 1996-10-29 | Asahi Denka Kogyo Kk | Coating composition for protecting glass |
JPH0912996A (en) * | 1995-07-04 | 1997-01-14 | Mitsubishi Heavy Ind Ltd | Water-dispersible type urethane-modified epoxy adhesive and its production |
JP2003183401A (en) * | 2001-12-20 | 2003-07-03 | Showa Denko Kk | Curable resin composition and cured product thereof |
JP2006243564A (en) * | 2005-03-04 | 2006-09-14 | Fuji Photo Film Co Ltd | Photosensitive composition and photosensitive film, and permanent pattern and method for forming the same |
WO2007032463A1 (en) * | 2005-09-16 | 2007-03-22 | Toyo Ink Manufacturing Co., Ltd. | Adhesive composition, adhesive sheet using same, and use of those |
JP2008201847A (en) * | 2007-02-16 | 2008-09-04 | Taiyo Ink Mfg Ltd | Thermosetting resin composition containing carboxylic group-containing urethane resin and cured product thereof |
JP2010065211A (en) * | 2008-08-12 | 2010-03-25 | Nippon Parkerizing Co Ltd | Water-based coating substrate treatment agent which serves as primer, surface-treated metal material, and precoated metal material |
WO2020230481A1 (en) * | 2019-05-16 | 2020-11-19 | Dic株式会社 | Aqueous epoxy resin composition, fiber sizing agent, fiber material, molding material and coating agent |
WO2022209895A1 (en) * | 2021-04-01 | 2022-10-06 | 松本油脂製薬株式会社 | Sizing agent for reinforcing fibers and use of same |
-
2024
- 2024-03-18 WO PCT/JP2024/010462 patent/WO2024203515A1/en active Application Filing
- 2024-03-26 TW TW113111137A patent/TW202506782A/en unknown
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH023465A (en) * | 1988-01-12 | 1990-01-09 | Mobay Corp | Aqueous composition used in production of crosslinked polyurethane |
US5034435A (en) * | 1989-07-18 | 1991-07-23 | Mobay Corporation | Aqueously dispersed blends of epoxy resins and blocked urethane prepolymers |
JPH04359081A (en) * | 1990-12-10 | 1992-12-11 | Hb Fuller Licensing & Financing Inc | Improved aqueous emulsion based on polyol and hindered isocyanate compound |
JPH05230364A (en) * | 1991-11-15 | 1993-09-07 | Basf Ag | Aqueous polyurethane dispersion |
JPH0753916A (en) * | 1993-08-06 | 1995-02-28 | Sanyo Chem Ind Ltd | Water-base baking coating composition for metallic can |
JPH08113704A (en) * | 1994-10-17 | 1996-05-07 | Asahi Denka Kogyo Kk | Production of aqueous polyurethane composition having discoloration resistance |
JPH08283660A (en) * | 1995-04-17 | 1996-10-29 | Asahi Denka Kogyo Kk | Coating composition for protecting glass |
JPH0912996A (en) * | 1995-07-04 | 1997-01-14 | Mitsubishi Heavy Ind Ltd | Water-dispersible type urethane-modified epoxy adhesive and its production |
JP2003183401A (en) * | 2001-12-20 | 2003-07-03 | Showa Denko Kk | Curable resin composition and cured product thereof |
JP2006243564A (en) * | 2005-03-04 | 2006-09-14 | Fuji Photo Film Co Ltd | Photosensitive composition and photosensitive film, and permanent pattern and method for forming the same |
WO2007032463A1 (en) * | 2005-09-16 | 2007-03-22 | Toyo Ink Manufacturing Co., Ltd. | Adhesive composition, adhesive sheet using same, and use of those |
JP2008201847A (en) * | 2007-02-16 | 2008-09-04 | Taiyo Ink Mfg Ltd | Thermosetting resin composition containing carboxylic group-containing urethane resin and cured product thereof |
JP2010065211A (en) * | 2008-08-12 | 2010-03-25 | Nippon Parkerizing Co Ltd | Water-based coating substrate treatment agent which serves as primer, surface-treated metal material, and precoated metal material |
WO2020230481A1 (en) * | 2019-05-16 | 2020-11-19 | Dic株式会社 | Aqueous epoxy resin composition, fiber sizing agent, fiber material, molding material and coating agent |
WO2022209895A1 (en) * | 2021-04-01 | 2022-10-06 | 松本油脂製薬株式会社 | Sizing agent for reinforcing fibers and use of same |
Also Published As
Publication number | Publication date |
---|---|
TW202506782A (en) | 2025-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8377508B2 (en) | Solventless laminating adhesive and process for production of composite film | |
CN109651922B (en) | A kind of water-based polyurethane toughening water-based epoxy resin anti-corrosion coating and preparation method | |
CN104768991A (en) | New impact modifier for epoxy-based adhesives | |
JP6582363B2 (en) | Adhesive composition and method for producing the same | |
WO2011024917A1 (en) | Hot melt adhesive composition | |
EP1865010B1 (en) | Water dispersible polyurethane composition | |
JP5105610B2 (en) | Cationic water-based polyurethane resin composition | |
CN105968303B (en) | Preparation method of water-based epoxy resin curing agent | |
JP5596363B2 (en) | Aqueous dispersion of carbonyl group-containing urethane urea resin | |
KR101649759B1 (en) | Manufacturing method of waterborne polyurethane using epoxy resin | |
WO2023176768A1 (en) | Epoxy resin composition, composition for metal surface processing, method for producing layered metal sheet, and method for bonding metal sheet | |
CN108350307B (en) | The manufacturing method of metal surface treating composition, metal material | |
EP3589669B1 (en) | Isocyanate-modified polyester-epoxide polymer compositions | |
WO2010023872A1 (en) | Aqueous polyurethane dispersion and method for producing same | |
WO2024203515A1 (en) | Resin composition, resin composition for metal surface treatment, method for producing metal laminate, and metal laminate | |
JP6590671B2 (en) | Water-based urethane resin, method for producing water-based urethane resin, and antirust treatment agent | |
CN109679056B (en) | Self-crosslinking polyurethane-polyurea water dispersion and preparation method and application thereof | |
JP6176649B2 (en) | Polyurethane resin water dispersion coating for metal | |
JP7629987B2 (en) | Blocked isocyanate composition, aqueous dispersion, coating composition, and coating film | |
JP2008255196A (en) | Aqueous polyurethane resin composition | |
JP2010229224A (en) | Water-based polyurethane dispersion and water-based paint using the same | |
JP6601029B2 (en) | Adhesive composition | |
WO2009119065A1 (en) | Aqueous polyurethane dispersing element and manufacturing method thereof | |
JP2013133392A (en) | Polyurethane resin | |
JP2022081256A (en) | Polyisocyanate composition and resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24779640 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2025510524 Country of ref document: JP |