WO2024203398A1 - Long-fiber nonwoven fabric, method for manufacturing same, and sanitary material - Google Patents
Long-fiber nonwoven fabric, method for manufacturing same, and sanitary material Download PDFInfo
- Publication number
- WO2024203398A1 WO2024203398A1 PCT/JP2024/010048 JP2024010048W WO2024203398A1 WO 2024203398 A1 WO2024203398 A1 WO 2024203398A1 JP 2024010048 W JP2024010048 W JP 2024010048W WO 2024203398 A1 WO2024203398 A1 WO 2024203398A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nonwoven fabric
- long
- fiber nonwoven
- fiber
- fibers
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/51—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers of the pads
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/24—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/14—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/16—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
Definitions
- the present invention relates to a long-fiber nonwoven fabric, its manufacturing method, and a sanitary material.
- sanitary materials such as disposable diapers and sanitary napkins
- elastic materials that need to elastically fit the skin around the waist and thighs are generally required to have good elasticity (the ability to stretch and shrink well) and to be soft to the touch.
- elastic materials have been widely made up of elastic threads bonded to slack non-stretchable nonwoven fabric.
- the slack non-stretchable nonwoven fabric covers the elastic threads, which have a sticky feel (hereinafter also referred to as "rubber touch")
- the pleats hereinafter also referred to as "gathers" caused by the slack in the non-stretchable nonwoven fabric cause uneven tightening force from the elastic threads, making it difficult to achieve a comfortable feel against the skin.
- Patent Document 1 proposes a stretchable nonwoven fabric obtained by stretching a fiber sheet in which substantially inelastic inelastic fiber layers made of continuous fibers formed by the spunbonding method are arranged on each side of an elastic fiber layer made of continuous fibers formed by the spunbonding method, and then relaxing the stretching to exhibit stretchability.
- Patent Document 2 proposes a nonwoven fabric laminate in which a nonwoven fabric made of crimped fibers is laminated on at least one side of a mixed fiber spunbonded nonwoven fabric containing long fibers of a thermoplastic elastomer (A) and long fibers of a thermoplastic resin (B).
- the inelastic fiber layer can only be stretched to the extent that it can be stretched in the drawing process, and the fibers break when stretched beyond the elastic deformation region, making it difficult to obtain good stretchability.
- air-through hot air
- the number of bonding points between the fibers is greater than when bonding is performed using a hot embossing roll, which is commonly used in the spunbond method, and deformation between the bonding points is suppressed, making it difficult to obtain good stretchability from this perspective as well.
- Patent Document 2 a technique of laminating a mixed fiber spunbonded nonwoven fabric containing long fibers of a thermoplastic elastomer (A) and long fibers of a thermoplastic resin (B) with a nonwoven fabric made of crimped fibers, and then stretching the laminate to exhibit elasticity, makes it easy to stretch in the stretching process due to the slackness of the crimp, but the effect is difficult to obtain unless the distance between the convex parts of the hot embossing roll (corresponding to the fused parts of the spunbonded nonwoven fabric) is greater than the crimp, and on the other hand, if this distance is too great, there is an issue that handling is difficult due to surface fuzzing and low strength.
- the present invention was made in consideration of the above circumstances, and its purpose is to provide a long-fiber nonwoven fabric that has a smooth surface without pleats and has good elasticity.
- a long-fiber nonwoven fabric at least one surface of which is composed of fibers F A mainly composed of thermoplastic resin A, wherein the ratio D max /D min of the apparent maximum fiber diameter D max ( ⁇ m) to the apparent minimum fiber diameter D min ( ⁇ m) of the fibers F A is 1.2 to 5.0, the elongation recovery rate of the long-fiber nonwoven fabric is 50% to 99%, and the apparent density is 0.02 g/cm 3 to 0.20 g/cm 3 .
- thermoplastic resin A is a polyolefin-based polymer and/or a copolymer thereof.
- thermoplastic resin B is one or more types selected from the group consisting of polyolefin-based elastomers and polyurethane-based elastomers.
- a sanitary material at least in part, composed of the long-fiber nonwoven fabric described in any one of [1] to [9] above.
- a sanitary material at least a portion of which is composed of an extensible member in which the long-fiber nonwoven fabric described in any one of [1] to [9] above and a pleated long-fiber nonwoven fabric are bonded together.
- the present invention provides a long-fiber nonwoven fabric that has a smooth surface without pleats and good elasticity.
- the long-fiber nonwoven fabric of the present invention has the characteristics of uniform stress during expansion and contraction within the plane, and is thin due to the absence of pleats, so it is expected to be comfortable to wear and unnoticeable, and can be suitably used for sanitary materials such as disposable diapers and sanitary napkins, surgical gowns and drapes, protective clothing, masks, medical tapes, face masks, etc.
- FIG. 1 is a diagram illustrating a method for measuring the number of crimps of the long-fiber nonwoven fabric of the present invention.
- FIG. 2 is a diagram illustrating a method for measuring the apparent maximum fiber diameter D max ( ⁇ m) and the apparent minimum fiber diameter D min ( ⁇ m) of the long-fiber nonwoven fabric of the present invention.
- the long-fiber nonwoven fabric of the present invention is a long-fiber nonwoven fabric having at least one surface constituted by fibers F A mainly composed of thermoplastic resin A, the ratio D max /D min of the apparent maximum fiber diameter D max ( ⁇ m) to the apparent minimum fiber diameter D min ( ⁇ m) of the fibers F A being 1.2 to 5.0, the elongation recovery rate of the long-fiber nonwoven fabric being 50% to 99%, and the apparent density being 0.02 g/cm 3 to 0.20 g/cm 3.
- the components are described in detail below, but the present invention is not limited to the scope described below as long as it does not deviate from the gist of the invention, and various modifications are possible within the scope of the invention.
- the long-fiber nonwoven fabric of the present invention has at least one surface composed of fibers F A mainly composed of thermoplastic resin A.
- fibers mainly composed of thermoplastic resin A refers to the fact that 50 mass % or more of the fibers are made of thermoplastic resin A.
- thermoplastic resin A examples include aromatic polyester polymers and copolymers thereof, such as "polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate,” aliphatic polyester polymers and copolymers thereof, such as "polylactic acid, polyethylene succinate, polybutylene succinate, polybutylene succinate adipate, polyhydroxybutyrate-polyhydroxyvalerate copolymer, polycaprolactone,” aliphatic polyamide polymers and copolymers thereof, such as “polyamide 6, polyamide 66, polyamide 610, polyamide 10, polyamide 12, polyamide 6-12,” polyolefin polymers and copolymers thereof, such as "polypropylene, polyethylene, polybutene, polymethylpentene,” water-insoluble ethylene-vinyl alcohol copolymer polymers containing 25 mol% to 70 mol% ethylene units, polystyrene-based, polydiene-
- thermoplastic resins that are not the last group of elastomeric polymers, i.e., the above-mentioned aromatic polyester polymers and their copolymers, aliphatic polyester polymers and their copolymers, aliphatic polyamide polymers and their copolymers, polyolefin polymers and their copolymers, and ethylene-vinyl alcohol copolymer polymers, are preferred because they tend to give the long-fiber nonwoven fabric a smooth feel rather than a rubber-like feel (easily deformed like rubber, resulting in a sticky tackiness and a stick-slip phenomenon that causes discontinuous friction).
- elastomeric polymer refers to a thermoplastic resin that has rubber elasticity at room temperature.
- thermoplastic resin A it is preferable that 90.1% by mass or more and 100.0% by mass or less of the thermoplastic resin A is a polyolefin-based polymer and/or copolymer.
- the touch of the long-fiber nonwoven fabric is less likely to become rubbery as described above, and tends to be smooth to the touch.
- the fiber F A according to the present invention is mainly composed of the thermoplastic resin A, but preferably, it is composed only of the thermoplastic resin A.
- the thermoplastic resin A used may be one type, or may be composed of a plurality of thermoplastic resins A.
- the fiber F A according to the present invention is also preferably a composite fiber, and the composite form is not particularly limited as long as it does not impair the effects of the present invention. That is, it can be appropriately selected from (concentric) sheath-core composite fibers, eccentric sheath-core composite fibers, islands-in-the-sea composite fibers, side-by-side composite fibers, polymer blend composite fibers, and the like.
- the fiber F A of the present invention preferably has a crimp number per 25 mm of 0 to 49.
- the crimp number of 0 or more preferably 5 or more
- the long-fiber nonwoven fabric has a soft feel and a higher elongation.
- the crimp number of 49 or less preferably 45 or less, more preferably 40 or less
- the long-fiber nonwoven fabric has high dimensional stability.
- the number of crimps referred to here refers to a value obtained by measuring and calculating as follows.
- An image of the surface of the long-fiber nonwoven fabric is taken with a scanning electron microscope (SEM, for example, "VHX6000" manufactured by Keyence Corporation) at a magnification such that 10 or more fibers can be observed.
- SEM scanning electron microscope
- the composition, viscosity, and molecular weight distribution of the polymer used as the thermoplastic resin A the fiber diameter and cross-sectional shape of the fiber F A , the spinning speed, and the cooling conditions during spinning can be adjusted.
- the fiber F A of the present invention has a ratio D max /D min of the apparent maximum fiber diameter D max ( ⁇ m) to the apparent minimum fiber diameter D min ( ⁇ m) of 1.2 or more and 5.0 or less.
- the apparent maximum fiber diameter D max ( ⁇ m) and the apparent minimum fiber diameter D min ( ⁇ m) of the present invention are values measured in the same continuous fiber. Therefore, a large D max /D min indicates a large change in fiber diameter in the continuous fiber, and when it is made into a long fiber nonwoven fabric, the fiber diameters are large and small, so that the large fiber diameter part can be caught by the surrounding fibers, and excellent shape stability can be obtained. If such shape stability is not imparted, there is a problem that the surface fibers easily move when touched lightly, forming fiber bundles and resulting in a stiff touch.
- Dmax / Dmin is preferably 1.4 or more, and more preferably 1.6 or more.
- Dmax / Dmin is preferably 4.5 or less, and more preferably 4.0 or less .
- the Dmax ( ⁇ m) is 0.5 or more and 50.0 or less.
- the Dmax ( ⁇ m) be 0.5 or more, more preferably 1.0 or more, and even more preferably 1.5 or more, high dimensional stability is easily obtained.
- the Dmax ( ⁇ m) be 50.0 or less, more preferably 40.0 or less, and more preferably 30.0 or less, a long-fiber nonwoven fabric with high flexibility is obtained.
- the D min ( ⁇ m) is preferably 0.4 or more and 40.0 or less.
- the D min ( ⁇ m) 0.4 or more more preferably 0.9 or more, and even more preferably 1.4 or more, a stiff feel is easily obtained.
- the D min ( ⁇ m) 40.0 or less more preferably 30.0 or less, and even more preferably 20.0 or less, a long-fiber nonwoven fabric having a soft feel is obtained.
- D max ( ⁇ m), D min ( ⁇ m) and D max /D min refer to values obtained by measurement and calculation as follows.
- SEM scanning electron microscope
- VHX6000 scanning electron microscope
- Twenty different fibers are randomly selected from the captured image, and for one of them, the apparent maximum fiber diameter Dmax ( ⁇ m) and the apparent minimum fiber diameter Dmin ( ⁇ m) of fiber F A in the measurement range are measured.
- the points showing the apparent maximum fiber diameter Dmax ( ⁇ m) and the apparent minimum fiber diameter Dmin ( ⁇ m) are determined at the positions shown in Figure 2, and the distance between these positions is measured. Note that fibers fused together at the fusion portion are not measured.
- This maximum apparent fiber diameter D max ( ⁇ m) is divided by the minimum apparent fiber diameter D min ( ⁇ m) to determine D max /D min for that fiber.
- the same operation is performed on the remaining 19 fibers, and a simple number average is calculated from the results. The values are rounded off to one decimal place to determine D max ( ⁇ m), D min ( ⁇ m), and D max /D min for that long-fiber nonwoven fabric.
- the melting point or softening temperature of the polymer used as the thermoplastic resin A the fiber diameter or cross-sectional shape of the fiber F A , and the shape, temperature, and linear pressure of the embossing roll in the process of forming the fused sheet can be adjusted. Specifically, first, the lower the melting point or softening temperature of the polymer, the greater the D max /D min can be. Then, the larger the fiber diameter of the fiber F A , the easier it is to increase D max /D min , and when the fiber cross-sectional shape includes a circular portion and a flat portion, it is easy to increase D max /D min .
- the long-fiber nonwoven fabric of the present invention preferably further comprises at least one long-fiber nonwoven fabric layer composed of fibers F 2 B having a thermoplastic resin B different from the thermoplastic resin A as a main component.
- thermoplastic resin B is different from thermoplastic resin A, and is generally preferably a polymer compound having soft and hard segments, specific examples of which include polyurethane-based elastomers, polypropylene-based elastomers, polyethylene-based elastomers, polyester-based elastomers, polystyrene-based elastomers, and polybutadiene-based elastomers.
- the thermoplastic resin B is preferably one or more selected from the group consisting of polyolefin-based elastomers and polyurethane-based elastomers, with 90.1% by mass or more and 100.0% by mass or less of the thermoplastic resin B.
- a polyolefin-based elastomer When a polyolefin-based elastomer is used, the adhesiveness to other long-fiber nonwoven fabric layers and their constituent fibers is good, resulting in a long-fiber nonwoven fabric with excellent shape stability.
- a polyurethane-based elastomer is used, the resulting long-fiber nonwoven fabric has excellent elasticity.
- the long-fiber nonwoven fabric of the present invention has at least one long-fiber nonwoven fabric layer composed of fibers F B mainly composed of a thermoplastic resin B different from thermoplastic resin A
- of the difference between the softening temperature T S,A (°C) of the thermoplastic resin A and the softening temperature T S,B (°C) of the thermoplastic resin B is 10°C or more and 100°C or less.
- is preferably 10°C or more, more preferably 15°C or more, even if fused parts are provided in the long-fiber nonwoven fabric, the fiber shape can be retained in the fused parts, resulting in a long-fiber nonwoven fabric with excellent strength.
- the softening temperature T S,A (°C) of the thermoplastic resin A and the softening temperature T S,B (°C) of the thermoplastic resin B refer to values measured and calculated by the following method.
- a nano-thermal analyzer device e.g., "Nano-TA2" manufactured by Anasys Instruments
- a temperature sensor that also serves as a heater is attached to the probe (cantilever) of an atomic force microscope (AFM)
- the softening temperature is measured by increasing the temperature at a heating rate of 10°C/sec.
- the same operation is performed on 10 different fibers, and the arithmetic mean value (°C) of the results is calculated, and the value is rounded off to the first decimal place.
- the fibers F B contain a fatty acid amide compound.
- the content of the fatty acid amide is preferably 0.01% by mass or more and 5.0% by mass or less.
- the fibers F B contain 0.01% by mass or more of a fatty acid amide compound, the slipperiness and flexibility are improved.
- the fibers F B contain 5.0% by mass or less of a fatty acid amide compound, a non-slip feel is obtained.
- the fatty acid amide compound is contained in an amount of 0.05% by mass or more. It is more preferable that the upper limit of the fatty acid amide compound is 1.0% by mass.
- the fatty acid amide compounds include saturated fatty acid monoamide compounds, saturated fatty acid diamide compounds, unsaturated fatty acid monoamide compounds, and unsaturated fatty acid diamide compounds.
- the number of carbon atoms in the fatty acid amide compound is preferably 15 or more and 50 or less.
- the number of carbon atoms means the number of carbon atoms contained in the molecule, and includes the number of carbon atoms contained in amide groups, etc.
- Examples of the fatty acid amide compound having 15 to 50 carbon atoms include palmitic acid amide, palmitoleic acid amide, stearic acid amide, oleic acid amide, elaidic acid amide, vaccenic acid amide, linoleic acid amide, linolenic acid amide, pinolenic acid amide, eleostearic acid amide, stearidonic acid amide, bosseopentaenoic acid amide, arachidic acid amide, gadoleic acid amide, eicosenoic acid amide, eicosadienoic acid amide, mead acid amide, eicosatrienoic acid amide, arachidonic acid amide, eicosatetraenoic acid amide, eicosapentaenoic acid amide, heneicosyl acid amide, behenic acid amide, erucic acid amide, docosadienoic acid
- the number of carbon atoms of the fatty acid amide compound is preferably 15 or more, more preferably 23 or more, and even more preferably 30 or more, to provide a long-fiber nonwoven fabric that is not sticky.
- a carbon number of the fatty acid amide compound of preferably 50 or less, more preferably 45 or less, and even more preferably 42 or less, the fatty acid amide compound is appropriately precipitated on the fiber surface, resulting in a long-fiber nonwoven fabric with excellent flexibility.
- the average single fiber diameter ( ⁇ m) of the long-fiber nonwoven fabric layer composed of the fibers F 1 B is preferably 0.5 ⁇ m or more and 50.0 ⁇ m or less.
- this average single fiber diameter is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, and even more preferably 1.5 ⁇ m or more, the long-fiber nonwoven fabric has high breathability.
- the average single fiber diameter is preferably 50.0 ⁇ m or less, more preferably 40.0 ⁇ m or less, and more preferably 30.0 ⁇ m or less, the long-fiber nonwoven fabric has high elongation.
- the basis weight (g/ m2 ) of the long-fiber nonwoven fabric layer composed of the fibers F B is preferably 5 g/m2 or more and 200 g/ m2 or less.
- this basis weight is preferably 5 g/m2 or more , more preferably 10 g/m2 or more , the long-fiber nonwoven fabric has a high elongation recovery rate.
- the basis weight is preferably 200 g/m2 or less, more preferably 100 g/m2 or less , and even more preferably 50 g/m2 or less, the flexibility is high.
- the long-fiber nonwoven fabric of the present invention has at least one surface made of fibers F A mainly composed of thermoplastic resin A.
- the long-fiber nonwoven fabric of the present invention has an elongation recovery rate of 50% or more and 99% or less, and an apparent density of 0.02 g/cm 3 or more and 0.20 g/cm 3 or less. By satisfying these two requirements, the long-fiber nonwoven fabric has good stretchability.
- the long-fiber nonwoven fabric of the present invention refers not only to a single layer made of fibers F A mainly composed of thermoplastic resin A (sometimes referred to as O layer), but also to a layer made of a long-fiber nonwoven fabric layer (sometimes referred to as I layer) made of fibers F B mainly composed of thermoplastic resin B different from thermoplastic resin A on one surface side and a layer made of O layer on the other surface side, a layer made of O layer on both surface sides, and a layer made of O layer/I layer/O layer in this order, and also to a layer made of multiple long-fiber nonwoven fabric layers.
- other structures such as fiber layers may be included within the scope of not impairing the effects of the present invention.
- nonwoven fabric When a nonwoven fabric is used as the structure other than the nonwoven fabric to be laminated on the long-fiber nonwoven fabric of the present invention, examples of the nonwoven fabric include nonwoven fabrics obtained by known manufacturing methods such as the spunbond method, meltblowing method, and short fiber carding method.
- the resin constituting the structure other than the nonwoven fabric of the present invention is not particularly limited, but it is preferably composed of polypropylene because it is easy to bond.
- the layer (O layer) made of fibers F A mainly composed of thermoplastic resin A is specifically a nonwoven fabric layer made of fibers F A mainly composed of thermoplastic resin A, and more specifically, this nonwoven fabric layer is a spunbond nonwoven fabric layer or a meltblown nonwoven fabric layer formed by a method described later. In particular, a spunbond nonwoven fabric layer is more preferable.
- the long-fiber nonwoven fabric layer (I layer) made of fibers F 3 B mainly composed of thermoplastic resin B different from thermoplastic resin A is a long-fiber nonwoven fabric layer made of fibers F 3 B mainly composed of thermoplastic resin B different from thermoplastic resin A , and more specifically, this long-fiber nonwoven fabric layer is a spunbond nonwoven fabric layer or a meltblown nonwoven fabric layer formed by a method described later. It is more preferable that this layer is a spunbond nonwoven fabric layer.
- the long-fiber nonwoven fabric of the present invention has a stretch recovery rate of 50% or more and 99% or less.
- this stretch recovery rate 50% or more, preferably 60% or more, and more preferably 70% or more
- the long-fiber nonwoven fabric will provide a comfortable fit when used as a material for wearable items such as sanitary materials like disposable diapers.
- the higher the stretch recovery rate the better, but in reality, the long-fiber nonwoven fabric will have a stretch recovery rate of 99% or less.
- the stretch recovery rate of the long-fiber nonwoven fabric refers to a value measured and calculated by the following method.
- Five test pieces are randomly cut out from the sample in the same direction as the direction showing the maximum breaking elongation measured and calculated by the method described below.
- a tensile tester for example, "TENSILON”"UCT-100” manufactured by Orientec Co., Ltd.
- the test piece is pulled at a pulling speed of 200 mm/min until the elongation of the test piece reaches 100%, and then allowed to stand for 1 minute.
- the elongation percentage (%) at which the stress becomes 0 N is measured.
- the composition and viscosity of the polymers used as the thermoplastic resin A and the thermoplastic resin B, the fiber diameter and cross-sectional shape of the fibers F A and F B , the spinning speed, the cooling conditions during spinning, and the apparent density of the long-fiber nonwoven fabric can be adjusted.
- the long-fiber nonwoven fabric of the present invention has an apparent density of 0.02 g/cm3 or more and 0.20 g/cm3 or less.
- the apparent density is 0.20 g/cm3 or less , more preferably 0.18 g/cm3 or less , and even more preferably 0.16 g/cm3 or less .
- the long-fiber nonwoven fabric has excellent breathability and softness and a high sense of bulk.
- the apparent density is 0.02 g/cm3 or more , preferably 0.04 g/cm3 or more , and more preferably 0.06 g/cm3 or more
- the long-fiber nonwoven fabric has excellent shape stability.
- the basis weight refers to the mass per m2 (g/m2) calculated based on "6.2 Mass per unit area" of JIS L1913:2010 "Testing methods for general nonwoven fabrics” by randomly taking three 20 cm x 25 cm test pieces per 1 m of sample width, measuring the mass (g) of each piece under standard conditions, and averaging the measured masses.
- the thickness refers to the no-load thickness measured using a shape measuring machine (for example, "VR3050" manufactured by Keyence Corporation) in an area of 5 mm x 5 mm or more.
- the long-fiber nonwoven fabric of the present invention preferably has a maximum breaking elongation of 120% or more and 400% or less.
- a maximum breaking elongation of preferably 120% or more, more preferably 150% or more the long-fiber nonwoven fabric becomes easy to stretch when used as a material for wearable items such as sanitary materials like disposable diapers.
- the maximum breaking elongation of preferably 400% or less, more preferably 300% or less the long-fiber nonwoven fabric becomes one that stops stretching at an appropriate position when used as a material for wearable items such as sanitary materials like disposable diapers.
- the long-fiber nonwoven fabric of the present invention preferably has a ratio E max /E min of the maximum breaking elongation E max (%) to the minimum breaking elongation E min (%) of 1.5 to 5.0.
- the ratio E max /E min of the maximum breaking elongation E max (%) to the minimum breaking elongation E min (%) is 1.5 or more, preferably 1.6 or more, the long-fiber nonwoven fabric becomes easy to wear when used as a material for wearable items such as sanitary materials such as disposable diapers.
- the ratio E max /E min is 5.0 or less, preferably 4.0 or less, the long-fiber nonwoven fabric has a soft feel.
- the maximum breaking elongation E max (%), the minimum breaking elongation E min (%), and the ratio E max /E min of the maximum breaking elongation E max (%) to the minimum breaking elongation E min (%) refer to values measured and calculated by the following methods.
- One arbitrary direction of the sample is defined as 0 degrees, and five test pieces are randomly cut out from the sample.
- a tensile tester for example, "TENSILON""UCT-100" manufactured by Orientec Co., Ltd.
- means may be used to adjust the composition, viscosity, molecular weight distribution, fiber diameter and cross-sectional shape of fiber F A , spinning speed, and cooling conditions during spinning of the polymer used as thermoplastic resin A, the composition, viscosity, fiber diameter and cross-sectional shape of fiber F B , spinning speed, and cooling conditions during spinning of the polymer used as thermoplastic resin B, and the apparent density of the long-fiber nonwoven fabric.
- means may be used to adjust the orientation direction of fiber F A , the orientation direction and degree of crimp of fiber F B , and the mass ratio of fiber F A to fiber F B.
- a preferred embodiment of the method for producing the long-fiber nonwoven fabric of the present invention is as follows: (a) forming a laminated sheet having a layer that is to be a layer composed of fibers F A having the thermoplastic resin A as a main component; (b) pressing the laminated sheet with a roll having a surface temperature of 0° C. or more and 120° C. or less to form a fused sheet; (c) further stretching the fused sheet by 1.5 to 5.0 times; It includes.
- a sheet is formed having a layer that will become a layer composed of fibers F A whose main component is the thermoplastic resin A.
- the layer that will become a layer composed of fibers F A whose main component is thermoplastic resin A is preferably a nonwoven fabric layer formed by the spunbond method or the meltblowing method, and more preferably a nonwoven fabric layer formed by the spunbond method.
- the spunbond method is a method of manufacturing nonwoven fabric that generally involves melting the thermoplastic resin raw material, spinning it from a spinneret, pulling it with high-speed air to obtain threads, collecting them on a moving collection belt to form a nonwoven fiber web, and then thermally bonding it.
- molecular orientation is promoted by the pulling with high-speed air, and the fibers are firmly fixed together by thermal bonding, so that it can obtain sufficient strength for use as a sanitary material, etc.
- a spinneret used for forming a layer composed of fibers F A mainly composed of thermoplastic resin A according to the present invention may have a round hole or a different shape hole as appropriate, but from the viewpoint of spinning stability, a round hole is preferred.
- a spinneret equipped with a mechanism capable of forming a side-by-side type composite cross section or an eccentric core-sheath composite cross section may be used.
- the spinning speed which is the speed finally reached by pulling with high-speed air when forming a layer composed of fibers F A mainly composed of thermoplastic resin A according to the present invention, is preferably 2000 m/min or more, more preferably 3000 m/min or more.
- the spinning speed is preferably 8000 m/min or less, more preferably 7000 m/min or less. In this way, a long-fiber nonwoven fabric with excellent flexibility can be obtained.
- the sheet is preferably a laminated sheet further having at least one layer serving as a long-fiber nonwoven fabric layer composed of fibers F B mainly composed of a thermoplastic resin B different from the thermoplastic resin A.
- the thermoplastic resin B here is the thermoplastic resin B.
- adding 0.01% by mass or more and 5.0% by mass or less of the fatty acid amide compound to the thermoplastic resin B and spinning the mixture is more preferable from the viewpoint of smooth fiberization in the spinning step and stabilizing the process.
- the long-fiber nonwoven fabric layer composed of fibers F B mainly composed of thermoplastic resin B different from thermoplastic resin A is preferably a nonwoven fabric layer formed by a spunbond method or a meltblowing method, and more preferably a nonwoven fabric layer formed by a spunbond method.
- a sheet having a layer that will become a layer composed of fibers F 2 A whose main component is thermoplastic resin A is formed.
- this layer is formed and then the next step is carried out as is.
- a laminated sheet is formed by laminating layers that will become the other layers, and then the next step is carried out.
- the other layers include a layer that will become a long-fiber nonwoven fabric layer composed of fibers F 2 B whose main component is thermoplastic resin B different from thermoplastic resin A, and a layer that will become the other structure. Among them, it is preferable to laminate a layer that will become a long-fiber nonwoven fabric layer composed of fibers F 2 B whose main component is thermoplastic resin B different from thermoplastic resin A. In the case where the other layers are laminated, at least one of these layers can be laminated.
- the term "laminate sheet" should be read as "a layer which will be composed of fibers F A having thermoplastic resin A as a main component.”
- the laminated sheet is selected depending on the purpose of use, and as described above, when it becomes a long-fiber nonwoven fabric, it has the following configuration, that is, a layer (O layer) composed of fibers F A whose main component is thermoplastic resin A on one surface side and a long-fiber nonwoven fabric layer (I layer) composed of fibers F B whose main component is thermoplastic resin B different from thermoplastic resin A on the other surface side, a layer having O layers laminated on both surface sides, and further a layer having O layers/I layers/O layers laminated in this order, which includes a plurality of long-fiber nonwoven fabric layers.
- a layer (O layer) composed of fibers F A whose main component is thermoplastic resin A on one surface side
- a long-fiber nonwoven fabric layer (I layer) composed of fibers F B whose main component is thermoplastic resin B different from thermoplastic resin A on the other surface side
- a layer having O layers laminated on both surface sides and further a layer having O layers/I layers/O layers laminated in
- Specific laminated structures of four or more layers not mentioned above include, for example, O layers/I layers/I layers/O layers, O layers/I layers/O layers/I layers, O layers/I layers/O layers/I layers/O layers, and O layers/I layers/I layers/I layers/O layers.
- a form in which a layer made of fiber F A , which is likely to provide a smooth touch, is laminated on both sides of a layer made of fiber F B, which is likely to provide a rubber-like touch i.e., a form in which the layers are laminated in the order of O layer/I layer/O layer, or a form in which the layers are laminated in the order of O layer/I layer/O layer/I layer/O layer, is more preferable.
- the layers of the laminated sheet are integrated. Integrating here means that these layers are joined by entangling the fibers, fixing with an adhesive or other component, or fusing the thermoplastic resins that make up each layer together. However, when joining by fusing the thermoplastic resins that make up each layer together, this may be done simultaneously with step (b) described below, and it is also preferable to join them by, for example, forming the I layer directly on the O layer.
- the rolls used in this process are preferably ones that give the laminated sheet a regular pattern of fused parts, and more specifically, it is more preferable for them to be a pair of rolls consisting of an embossing roll and a flat roll that have a regular pattern.
- the embossing roll having a regular pattern is, for example, one having protrusions (convex portions) formed in the portions corresponding to the fused parts, or one having concave shapes formed in the portions not corresponding to the fused parts.
- the top portions of the convex portions corresponding to the fused parts are further uneven or have curved top surfaces, the flattened fibers F A can be more easily separated from each other in the step of stretching the fused sheet described below.
- the fused portions are preferably provided so that the distance between adjacent fused portions is 50 ⁇ m or more and 20 mm or less.
- the distance between fused portions 50 ⁇ m or more By making the distance between fused portions 50 ⁇ m or more, a long-fiber nonwoven fabric having flexibility and excellent stretchability can be produced.
- the distance between fused portions 20 mm or less by making the distance between fused portions 20 mm or less, the shape stabilization effect of the flattened portion formed by the pressurizing portion can be easily obtained.
- the surface temperature of the roll is preferably 0° C. or higher and 120° C. or lower.
- the surface temperature is preferably 0° C. or higher, more preferably 5° C. or higher, and even more preferably 10° C. or higher.
- a long-fiber nonwoven fabric having excellent dimensional stability can be obtained, and the fibers F A in the pressurizing section can be further flattened to increase the apparent fiber diameter.
- the surface temperature at 120° C. or lower, more preferably 90° C. or lower, and even more preferably 60° C. or lower, the flattened fibers F A can be more easily separated from each other in the step of stretching the fused sheet described below.
- the linear pressure of the roll be 0.5 N/cm or more and 5.0 N/cm or less for the above-mentioned pressing.
- Step (c) Step of Stretching the Fused Sheet the fused sheet is stretched in the width direction and/or the longitudinal direction in the range of 1.5 to 5.0 times.
- This stretching may be performed by a general stretching device that stretches the fused sheet in the width direction and/or the longitudinal direction, or a method called gear stretching described in JP-A-2003-73967 may be used.
- the "layer that will become a layer composed of fibers F A having thermoplastic resin A as a main component” becomes a "layer composed of fibers F A having thermoplastic resin A as a main component".
- the lower limit of the above range (sometimes referred to as the stretch ratio) to preferably 1.5 times or more, more preferably 2.0 times or more, the adhesion between the fibers F A in the fused parts can be released, and a long-fiber nonwoven fabric with excellent elasticity can be obtained.
- the release of the adhesion increases the thickness and the bulk, and a long-fiber nonwoven fabric with a soft touch can be obtained.
- the above range (stretch ratio) to preferably 5.0 times or less, more preferably 4.0 times or less, the adhesion between the fibers F A can be partially maintained, and a long-fiber nonwoven fabric with excellent shape stability can be obtained.
- the roll temperature (stretching temperature) of the gear roll during stretching in the present invention is preferably 10°C or higher and 150°C or lower.
- the stretching temperature is preferably 10°C or higher, more preferably 30°C or higher, and even more preferably 50°C or higher.
- the stretching temperature is set to preferably 150°C or lower, more preferably 130°C or lower, deformation of the fibers during the process can be reduced, allowing for stable stretching.
- This step may be carried out immediately (continuously) after the fused sheet is obtained, or it may be carried out after the fused sheet is first wound into a roll and then sent out.
- the long-fiber nonwoven fabric of the present invention may be appropriately subjected to processes such as drilling holes, applying various treatments such as hydrophilic treatment, laminating with other materials, printing, etc.
- the perforation process may be performed to create openings that penetrate through the thickness direction, or to create blind holes that are only open in specific layers.
- the application of the treatment agent may include a squeezing or drying process, if necessary.
- the method for applying the treatment agent to the long-fiber nonwoven fabric is not particularly limited, and examples include a method of applying a liquid in which the treatment agent is dissolved or dispersed, and a method of immersion.
- examples of treatment agents include antibacterial agents, antioxidants, preservatives, matting agents, pigments, rust inhibitors, fragrances, and defoamers.
- the method of laminating e.g., bonding each layer is not limited.
- it can be performed by a known method such as heat fusion such as heat embossing or ultrasonic fusion, mechanical entanglement such as needle punching or water jet, or adhesion with a hot melt or solvent-based adhesive.
- Printing methods include known methods such as gravure printing, mold printing, silk screen printing, and offset printing.
- the sanitary material of the present invention is preferably at least partially composed of the long-fiber nonwoven fabric.
- the sanitary material has excellent touch and stretchability.
- the sanitary material of the present invention is composed of an extensible member in which the long-fiber nonwoven fabric and the pleated long-fiber nonwoven fabric are bonded together, as this provides excellent surface durability.
- the sanitary materials of the present invention refer to primarily disposable items used for health-related purposes such as medical care and nursing care, and specific examples include disposable diapers, sanitary napkins, gauze, bandages, masks, gloves, bandages, etc., as well as their constituent parts, such as the top sheet, back sheet, and side gathers of disposable diapers.
- Average single fiber diameter ( ⁇ m) of fibers F A and F B before the process of forming a fused sheet was measured by the following procedure.
- Each layer was formed independently, and ten test pieces of 5 mm x 5 mm were randomly cut out from each of the layers excluding a 10 cm area from each end in the width direction.
- the test piece was embedded in an embedding agent such as epoxy resin, and an image of the fiber cross section perpendicular to the fiber axis was taken using a scanning electron microscope "SU1510" manufactured by Hitachi High-Technologies Corporation at a magnification such that 10 or more fibers could be observed.
- the basis weight (g/m 2 ) of the layer (O layer) composed of the fiber F A and the layer (I layer) composed of the fiber F B was determined by forming each layer independently, randomly taking three 20 cm x 25 cm test pieces per meter of sample width from each layer, measuring the mass (g) of each piece under standard conditions, and calculating the mass per m2 (g/ m2 ) from the average value.
- Number of crimps per 25 mm of fiber F A The number of crimps per 25 mm was measured and calculated using a scanning electron microscope (SEM) "VHX6000" manufactured by Keyence Corporation according to the method described above.
- Elongation recovery rate (%) of long fiber nonwoven fabric The tensile strength was measured and calculated by the above-mentioned method using a tensile tester "TENSILON” (UCT-100) manufactured by Orientec Co., Ltd.
- Weight (g/ m2 ), thickness (mm), and apparent density (g/ cm3 ) of long fiber nonwoven fabric The shape measuring machine used was a "VR3050" manufactured by Keyence Corporation, and measurements and calculations were performed according to the above-mentioned method.
- Shape stability grade
- the appearance of the long-fiber nonwoven fabric after the evaluation of the above-mentioned (10) skin feel was visually evaluated on a three-level scale according to the following criteria. The evaluation results were then averaged, and the average value was used to evaluate the morphology of the long-fiber nonwoven fabric. The results were used as an evaluation of stability. 5: It is not possible to clearly see any pilling, fuzzing, or twisted fibers. 3: Pilling, fuzzing, and twisted fibers are clearly visible. 1: Peeling of the fiber layer is clearly observed.
- Example 1 (Layer that will be composed of fibers F A ) Polypropylene (HP5038 (manufactured by Polymiley), indicated as PP1 in Tables 1 to 8) was melted in an extruder and spun at a spinning temperature of 235°C from a rectangular die with a hole diameter ⁇ of 0.30 mm at a single hole throughput of 0.6 g/min. The spun yarn was pulled at a spinning speed of 3,530 m/min using high-speed air and collected on a moving net to obtain a fiber web, which is a nonwoven fabric layer formed by a spunbond method with a basis weight of 10 g/ m2 . The characteristics of the crimped fibers constituting the obtained spunbond nonwoven fabric layer (the layer that will become the layer composed of fibers F A ) were that the average single fiber diameter was 15.5 ⁇ m.
- the spun yarn was pulled at a spinning speed of 900 m/min using high-speed air and collected on a moving net to obtain a fiber web, which is a nonwoven fabric layer formed by a spunbond method and has a basis weight of 20 g/ m2 .
- the characteristics of the fibers constituting the obtained spunbond nonwoven fabric layer were that the average single fiber diameter was 18.0 ⁇ m.
- the obtained laminated sheet was pressed using a metal embossing roll with circular protrusions arranged in a staggered pattern at the same pitch in both the MD and CD directions as the upper roll, and an embossing roll with a pair of upper and lower heating mechanisms consisting of a metal flat roll as the lower roll, at a linear pressure of 3 N/cm and a surface temperature of the embossing roll of 40°C to form a fused sheet.
- the fused sheet was then passed through a gear stretching device and stretched 2.4 times in the width direction and 1.1 times in the longitudinal direction at a stretching temperature of 40° C. to obtain a long-fiber nonwoven fabric having a basis weight of 40 g/ m2 .
- the evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 1.
- the obtained long-fiber nonwoven fabric had a smooth surface without pleats and good stretchability.
- Example 2 A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that the fibers constituting the layer (which will become the layer constituted by fiber F A ) were changed to side-by-side type composite fibers (the resin type is indicated as "PP1-coPE/PP" in Tables 1 to 8) by melting polypropylene (PP1) and ethylene copolymer polypropylene (RP361S (manufactured by Lyondell Basell), coPE/PP) in an extruder at a spinning temperature of 235°C and a mass ratio of 1:1, and spinning them from a rectangular spinneret with a hole diameter of 0.30 mm at a single-hole output rate of 0.6 g/min.
- the evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 1.
- the obtained long-fiber nonwoven fabric had a smooth surface without pleats, a soft feeling of pressing including an air layer, and excellent stretchability.
- Example 3 A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that in the layer (composed of fibers F through B ), a polypropylene-based elastomer was used but was changed to a polyurethane-based elastomer (referred to as TPU in Tables 1 to 8).
- TPU polyurethane-based elastomer
- the evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 1.
- the obtained long-fiber nonwoven fabric had a smooth surface without pleats and good stretchability.
- Example 4 A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that in the layer (made up of fibers F through B ), a polypropylene-based elastomer having a softening temperature of 45°C was used, but a polypropylene-based elastomer having a softening temperature of 111°C (represented as TPO2 in Table 2) was used instead, and the conditions were as shown in Table 2.
- the evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 2.
- the obtained long-fiber nonwoven fabric had a smooth surface without pleats and good stretchability.
- Example 5 A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that the content of erucic acid amide in (layer composed of fibers F through B ) was changed from 0.2% by mass to 0.005% by mass.
- the evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 2.
- the obtained long-fiber nonwoven fabric had a smooth surface without pleats and good stretchability.
- Example 6 (Layer that will be composed of fibers F A ) Polypropylene (PP1) and a polypropylene-based elastomer (TPO1) containing 0.1% by mass of fatty acid amide (erucic acid amide) were melted in an extruder, and side-by-side composite fibers (resin type is indicated as "PP1-TPO1" in Table 2) were spun from a rectangular die with a hole diameter of 0.30 mm at a single hole output rate of 0.6 g/min at a spinning temperature of 235°C and a mass ratio of 1:1.
- PP1-TPO1 side-by-side composite fibers
- the spun yarn was pulled at a spinning speed of 3530 m/min using high-speed air and collected on a moving net to obtain a fiber web, which is a nonwoven fabric layer formed by a spunbond method with a basis weight of 20 g/ m2 .
- the characteristics of the crimped fibers constituting the obtained spunbond nonwoven fabric layer were an average single fiber diameter of 15.5 ⁇ m.
- the obtained laminated sheet was pressed using a metal embossing roll on the upper roll, which has circular protrusions arranged in a staggered pattern at the same pitch in both the MD and CD directions, and an embossing roll on the lower roll, which has a pair of upper and lower heating mechanisms consisting of a metal flat roll, at a linear pressure of 3 N/cm and a surface temperature of the embossing roll of 40°C to form a fused sheet.
- the fused sheet was then passed through a gear stretching device and stretched 2.4 times in the width direction and 1.1 times in the longitudinal direction at a stretching temperature of 40° C. to obtain a long-fiber nonwoven fabric having a basis weight of 40 g/ m2 .
- the evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 2.
- the obtained long-fiber nonwoven fabric had a smooth surface without pleats and good stretchability.
- Example 7 A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that the surface temperature of the embossing roll was changed from 40° C. to 55° C., and the linear pressure of the roll was changed from 3 N/cm to 5 N/cm.
- the evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 3.
- the obtained long-fiber nonwoven fabric had a smooth surface without pleats and good stretchability.
- Example 8 For the fibers constituting the layer composed of fibers F A , polyethylene terephthalate (PET) was melted in an extruder, spun from a rectangular spinneret having a hole diameter ⁇ of 0.30 mm at a single-hole throughput rate of 0.9 g/min at a spinning temperature of 290° C., and the spun yarn was pulled at a spinning speed of 4700 m/min using high-speed air, to obtain a long-fiber nonwoven fabric in the same manner as in Example 1. The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 3. The obtained long-fiber nonwoven fabric had a smooth surface without pleats and had excellent stretchability.
- PET polyethylene terephthalate
- Example 9 For the fibers constituting the layer composed of fibers F A , polybutylene terephthalate (PBT) was melted in an extruder, spun from a rectangular spinneret having a hole diameter ⁇ of 0.30 mm at a single hole output rate of 0.9 g/min at a spinning temperature of 260° C., and the spun yarn was pulled at a spinning speed of 4700 m/min using high-speed air, to obtain a long-fiber nonwoven fabric in the same manner as in Example 1. The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 3. The obtained long-fiber nonwoven fabric had a smooth surface without pleats and had excellent stretchability.
- PBT polybutylene terephthalate
- Example 10 A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that for the fibers constituting the layer (fiber F A ), polyamide 6 (N6) was melted in an extruder, spun at a spinning temperature of 260° C. from a rectangular spinneret with a hole diameter ⁇ of 0.30 mm at a single-hole throughput of 0.9 g/min, and the spun yarn was pulled at a spinning speed of 4700 m/min using high-speed air.
- the evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 4.
- the obtained long-fiber nonwoven fabric had a smooth surface without pleats and had excellent stretchability.
- Example 11 A long-fiber nonwoven fabric was obtained in the same manner as in Example 2, except that polypropylene (PP1) and polyethylene (PE) were melted in an extruder for the fibers constituting the layer (fiber F A) .
- the evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 4.
- the obtained long-fiber nonwoven fabric had a smooth surface without pleats, a soft feel with an air layer, and excellent stretchability.
- Example 12 For the fibers constituting the layer composed of fibers F A , polybutylene terephthalate (PBT) and polyethylene (PE) were melted in an extruder, respectively, and spun from a rectangular die having a hole diameter ⁇ of 0.30 mm at a single hole output rate of 0.9 g/min at a spinning temperature of 260° C. and a mass ratio of 1:1, and the spun yarn was pulled at a spinning speed of 4700 m/min using high-speed air (the resin type was indicated as "PBT-PE").
- PBT polybutylene terephthalate
- PE polyethylene
- a long-fiber nonwoven fabric was obtained in the same manner as in Example 2, except that the fibers were melted in an extruder and spun from a rectangular die having a hole diameter ⁇ of 0.30 mm at a single hole output rate of 0.9 g/min at a spinning temperature of 260° C. and a mass ratio of 1:1, and the spun yarn was pulled at a spinning speed of 4700 m/min using high-speed air (the resin type was indicated as "PBT-PE").
- the evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 4.
- the obtained long-fiber nonwoven fabric had a smooth surface without pleats, a soft feeling of pressing including an air layer, and excellent stretchability.
- Example 13 A long-fiber nonwoven fabric was obtained in the same manner as in Example 12, except that for the fibers constituting the layer (fiber F A ), polyethylene terephthalate (PET) and polyethylene (PE) were melted in an extruder and the spinning temperature was 290°C (the resin type was indicated as "PET-PE").
- the evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 5.
- the obtained long-fiber nonwoven fabric had a smooth surface without pleats, a soft feel with an air layer, and excellent stretchability.
- Example 14 A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that in the layer (composed of fibers F through B ), a styrene-based elastomer (represented as SEBS in the table) was used instead of the polypropylene-based elastomer used in the layer (composed of fibers F through B).
- SEBS polypropylene-based elastomer
- Example 15 A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that in the layer (made up of fibers F through B ), a polypropylene-based elastomer having a softening temperature of 45°C was used, but a polyethylene-based elastomer having a softening temperature of 95°C (referred to as TPO3 in the table) was used instead.
- TPO3 polyethylene-based elastomer having a softening temperature of 95°C
- Example 16 A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that in the layer (made up of fibers F B ), a polypropylene-based elastomer (TPO1) and a styrene-based elastomer (SEBS) were mixed in a mass ratio of 95:5 and melted in an extruder (the resin type was indicated as "TPO1-SEBS").
- TPO1-SEBS polypropylene-based elastomer
- SEBS styrene-based elastomer
- Example 17 A long-fiber nonwoven fabric was obtained in the same manner as in Example 2, except that for the fibers constituting the layer composed of fibers F A , polypropylene (PP1) and polypropylene having a higher viscosity (HP562T (manufactured by Lyondell Basell), PP2) were melted in an extruder, respectively.
- the evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 6.
- the obtained long-fiber nonwoven fabric had a smooth surface without pleats, a soft feel with an air layer, and excellent stretchability.
- Example 1 A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that the obtained laminated sheet was not pressed but was passed directly through the gear stretching device (long-fiber nonwoven fabric). The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 7. The obtained long-fiber nonwoven fabric had good stretchability, but the fibers on the surface easily moved when touched lightly, forming fiber bundles that made the fabric stiff to the touch, and the fiber layers partially peeled off, making it difficult to put into practical use.
- Example 2 A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that the surface temperature of the embossing roll was changed from 40° C. to 130° C. and other conditions were changed as shown in Table 7. The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 7. The obtained long-fiber nonwoven fabric had a smooth surface without pleats, but the fibers were partially fuzzed and it was poor in stretchability.
- Example 3 A long-fiber nonwoven fabric was obtained in the same manner as in Example 2, except that the surface temperature of the embossing roll was changed from 40° C. to 130° C., and other conditions were changed as shown in Table 7. The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 7. The obtained long-fiber nonwoven fabric had a smooth surface without pleats, but the fibers were partially fuzzed and it was poor in stretchability.
- Example 4 A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that the surface temperature of the embossing roll was changed from 40° C. to 55° C., and the linear pressure of the roll was changed from 3 N/cm to 150 N/cm.
- the evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 8.
- the obtained long-fiber nonwoven fabric had a smooth surface without pleats, but the fibers were partially fuzzed and it was poor in stretchability.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hematology (AREA)
- Materials Engineering (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
本発明は長繊維不織布およびその製造方法ならびに衛生材料に関する。 The present invention relates to a long-fiber nonwoven fabric, its manufacturing method, and a sanitary material.
紙おむつや生理用ナプキン等の衛生材料において、腰や大腿部など肌への弾性的な密着を要する伸縮部材には、一般に、良好な伸縮性(よく伸び、よく縮む特性)を有し、かつ、肌触りに優れることが要求される。 In sanitary materials such as disposable diapers and sanitary napkins, elastic materials that need to elastically fit the skin around the waist and thighs are generally required to have good elasticity (the ability to stretch and shrink well) and to be soft to the touch.
従来、伸縮部材には、弾性糸とたるませた非伸縮不織布が接着した部材が広く使用されてきた。しかし、このような伸縮部材は、弛ませた非伸縮不織布が粘りのある触り心地(以下、「ラバータッチ」とも表記する)である弾性糸を覆うものの、非伸縮不織布のたるみでできたひだ(以下、「ギャザー」とも表記する)によって、弾性糸による締め付け力にむらを生じ、快適な肌触りを得ることが困難である。 Traditionally, elastic materials have been widely made up of elastic threads bonded to slack non-stretchable nonwoven fabric. However, in such elastic materials, although the slack non-stretchable nonwoven fabric covers the elastic threads, which have a sticky feel (hereinafter also referred to as "rubber touch"), the pleats (hereinafter also referred to as "gathers") caused by the slack in the non-stretchable nonwoven fabric cause uneven tightening force from the elastic threads, making it difficult to achieve a comfortable feel against the skin.
この課題に対して、特許文献1では、スパンボンド法で形成された連続繊維からなる弾性繊維層の各面に、スパンボンド法で形成された連続繊維からなる実質的に非弾性の非弾性繊維層がそれぞれ配されてなる繊維シートを延伸加工し、次いで該延伸を緩和させ伸縮性を発現させて得られた伸縮性不織布が提案されている。また、特許文献2では、熱可塑性エラストマー(A)の長繊維及び熱可塑性樹脂(B)の長繊維を含む混繊スパンボンド不織布の少なくとも片面に捲縮繊維からなる不織布が積層されている、不織布積層体が提案されている。 In response to this problem, Patent Document 1 proposes a stretchable nonwoven fabric obtained by stretching a fiber sheet in which substantially inelastic inelastic fiber layers made of continuous fibers formed by the spunbonding method are arranged on each side of an elastic fiber layer made of continuous fibers formed by the spunbonding method, and then relaxing the stretching to exhibit stretchability. In addition, Patent Document 2 proposes a nonwoven fabric laminate in which a nonwoven fabric made of crimped fibers is laminated on at least one side of a mixed fiber spunbonded nonwoven fabric containing long fibers of a thermoplastic elastomer (A) and long fibers of a thermoplastic resin (B).
しかしながら、特許文献1に記載されているような、伸縮性不織布を得るためには、非弾性繊維層を延伸工程で引き伸ばせる範囲でしか伸長させられず、弾性変形領域を超えて引き伸ばすと繊維が破断してしまうため、良好な伸縮性を得ることが難しい。さらに、特許文献1に記載されているような、エアスルー(熱風)で交絡接着する場合には、スパンボンド法で一般に使用される熱エンボスロールでの接着よりも、繊維間の接着点数が多くなり、接着点間での変形が抑制されるため、この観点でも良好な伸縮性が得にくい。 However, to obtain a stretchable nonwoven fabric as described in Patent Document 1, the inelastic fiber layer can only be stretched to the extent that it can be stretched in the drawing process, and the fibers break when stretched beyond the elastic deformation region, making it difficult to obtain good stretchability. Furthermore, when interlacing and bonding is performed using air-through (hot air) as described in Patent Document 1, the number of bonding points between the fibers is greater than when bonding is performed using a hot embossing roll, which is commonly used in the spunbond method, and deformation between the bonding points is suppressed, making it difficult to obtain good stretchability from this perspective as well.
また、特許文献2に記載されているような、熱可塑性エラストマー(A)の長繊維及び熱可塑性樹脂(B)の長繊維を含む混繊スパンボンド不織布と、捲縮繊維からなる不織布とを積層した後に、これを延伸して伸縮性を発現させる技術は、捲縮の弛みによって延伸工程で引き伸ばしやすくはなっているものの、熱エンボスロールの凸部(スパンボンド不織布の融着部に対応)同士の距離が捲縮よりも大きくないとその効果が得られにくく、一方で、この距離が大きいと表面の毛羽立ちや低強度のために取り扱いが難しいという課題がある。 In addition, as described in Patent Document 2, a technique of laminating a mixed fiber spunbonded nonwoven fabric containing long fibers of a thermoplastic elastomer (A) and long fibers of a thermoplastic resin (B) with a nonwoven fabric made of crimped fibers, and then stretching the laminate to exhibit elasticity, makes it easy to stretch in the stretching process due to the slackness of the crimp, but the effect is difficult to obtain unless the distance between the convex parts of the hot embossing roll (corresponding to the fused parts of the spunbonded nonwoven fabric) is greater than the crimp, and on the other hand, if this distance is too great, there is an issue that handling is difficult due to surface fuzzing and low strength.
そこで、本発明は、上記の事情に鑑みてなされたものであって、その目的は、ひだの無いスムーズな表面を有しており、かつ、良好な伸縮性を有する長繊維不織布を提供することである。 The present invention was made in consideration of the above circumstances, and its purpose is to provide a long-fiber nonwoven fabric that has a smooth surface without pleats and has good elasticity.
本発明者らは、上記目的を達成するべく鋭意検討を重ねた結果、見かけの繊維径が特定の範囲にある長繊維不織布では、繊維同士の相互作用が適切に制御されて形態安定性が得られることを見出し、良好な伸縮性が達成できるという知見を得た。さらにこの長繊維不織布が、非常にかさ高なものとなって、ふわふわとしていながらもコシのある触感を与えることも判明した。 As a result of intensive research conducted by the inventors to achieve the above object, they discovered that in a long-fiber nonwoven fabric having an apparent fiber diameter within a specific range, the interactions between the fibers are appropriately controlled to obtain dimensional stability, and they have come to the realization that good stretchability can be achieved. Furthermore, they discovered that this long-fiber nonwoven fabric is very bulky, and is fluffy yet firm to the touch.
本発明は、これら知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。 The present invention has been completed based on these findings, and provides the following inventions:
[1] 少なくとも一方の表面が熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる、長繊維不織布であって、前記繊維FAの見かけの最大繊維径Dmax(μm)と見かけの最小繊維径Dmin(μm)の比Dmax/Dminが1.2以上5.0以下であり、前記長繊維不織布の伸長回復率が50%以上99%以下であり、かつ、見かけ密度が0.02g/cm3以上0.20g/cm3以下である、長繊維不織布。 [1] A long-fiber nonwoven fabric, at least one surface of which is composed of fibers F A mainly composed of thermoplastic resin A, wherein the ratio D max /D min of the apparent maximum fiber diameter D max (μm) to the apparent minimum fiber diameter D min (μm) of the fibers F A is 1.2 to 5.0, the elongation recovery rate of the long-fiber nonwoven fabric is 50% to 99%, and the apparent density is 0.02 g/cm 3 to 0.20 g/cm 3 .
[2] 前記長繊維不織布の最大破断伸度Emax(%)が120%以上400%以下である、前記[1]に記載の長繊維不織布。 [2] The long-fiber nonwoven fabric according to the above [1], wherein the long-fiber nonwoven fabric has a maximum breaking elongation E max (%) of 120% or more and 400% or less.
[3] 前記最大破断伸度Emax(%)と最小破断伸度Emin(%)の比Emax/Eminが1.5以上5.0以下である、前記[2]に記載の長繊維不織布。 [3] The long-fiber nonwoven fabric according to the above [2], wherein the ratio E max /E min of the maximum breaking elongation E max (%) to the minimum breaking elongation E min (%) is 1.5 or more and 5.0 or less.
[4] 前記繊維FAが、25mm当たりの捲縮数が0以上49以下である、前記[1]~[3]のいずれかに記載の長繊維不織布。 [4] The long-fiber nonwoven fabric according to any one of [1] to [3] above, wherein the fibers F A have a crimp number per 25 mm of 0 to 49.
[5] 前記熱可塑性樹脂Aの90.1質量%以上100.0質量%以下がポリオレフィン系ポリマーおよび/またはその共重合体である、前記[1]~[4]のいずれかに記載の長繊維不織布。 [5] The long-fiber nonwoven fabric according to any one of [1] to [4] above, in which 90.1% by mass or more and 100.0% by mass or less of the thermoplastic resin A is a polyolefin-based polymer and/or a copolymer thereof.
[6] さらに、熱可塑性樹脂Aとは異なる熱可塑性樹脂Bを主成分とする繊維FBで構成されてなる長繊維不織布層を少なくとも1層有する、前記[1]~[5]のいずれかに記載の長繊維不織布。 [6] The long-fiber nonwoven fabric according to any one of [1] to [5] above, further comprising at least one long-fiber nonwoven fabric layer composed of fibers F B mainly composed of a thermoplastic resin B different from the thermoplastic resin A.
[7] 熱可塑性樹脂Bの90.1質量%以上100.0質量%以下がポリオレフィン系エラストマー、ポリウレタン系エラストマーからなる群から選択される1種以上である、前記[6]に記載の長繊維不織布。 [7] The long-fiber nonwoven fabric according to [6], in which 90.1% by mass or more and 100.0% by mass or less of thermoplastic resin B is one or more types selected from the group consisting of polyolefin-based elastomers and polyurethane-based elastomers.
[8] 前記熱可塑性樹脂Aの軟化温度TS,A(℃)と前記熱可塑性樹脂Bの軟化温度TS,B(℃)との差の絶対値|TS,A-TS,B|が10℃以上100℃以下である、前記[6]または[7]に記載の長繊維不織布。 [8] The long-fiber nonwoven fabric according to [6] or [7], wherein the absolute value of the difference between the softening temperature T S, A (°C) of the thermoplastic resin A and the softening temperature T S,B (°C) of the thermoplastic resin B, |T S,A -T S,B |, is 10°C or more and 100°C or less.
[9] 前記繊維FBが脂肪酸アミド化合物を含み、その含有量が0.01質量%以上5.0質量%以下である、前記[6]~[8]のいずれかに記載の長繊維不織布。 [9] The long-fiber nonwoven fabric according to any one of [6] to [8], wherein the fibers F B contain a fatty acid amide compound and the content thereof is 0.01% by mass or more and 5.0% by mass or less.
[10] 少なくとも一部が、前記[1]~[9]のいずれかに記載の長繊維不織布で構成されてなる、衛生材料。 [10] A sanitary material, at least in part, composed of the long-fiber nonwoven fabric described in any one of [1] to [9] above.
[11] 少なくとも一部が、前記[1]~[9]のいずれかに記載の長繊維不織布とひだ状の長繊維不織布が接着した伸長部材で構成されている、衛生材料。 [11] A sanitary material, at least a portion of which is composed of an extensible member in which the long-fiber nonwoven fabric described in any one of [1] to [9] above and a pleated long-fiber nonwoven fabric are bonded together.
[12] 前記熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる層となる層を有する積層シートを形成する工程と、
前記積層シートを、表面温度が0℃以上120℃以下としたロールで加圧して融着シートを形成する工程と、
さらに、前記融着シートを幅方向および/または長手方向に1.5倍以上5.0倍以下の範囲で延伸する工程と、を含む、前記[1]~[9]のいずれかに記載の長繊維不織布の製造方法。
[12] A step of forming a laminated sheet having a layer that is composed of fibers F A having the thermoplastic resin A as a main component;
a step of pressing the laminated sheet with a roll having a surface temperature of 0° C. or more and 120° C. or less to form a fused sheet;
The method for producing a long-fiber nonwoven fabric according to any one of the above [1] to [9], further comprising a step of stretching the fused sheet in the width direction and/or the longitudinal direction at a stretch ratio of 1.5 to 5.0 times.
[13] 前記積層シートを形成する工程において、前記シートが、さらに、熱可塑性樹脂Aとは異なる熱可塑性樹脂Bを主成分とする繊維FBで構成されてなる長繊維不織布層を少なくとも1層有する積層シートである、前記[12]に記載の長繊維不織布の製造方法。 [13] The method for producing a long-fiber nonwoven fabric according to the above [12], wherein in the step of forming the laminated sheet, the sheet is a laminated sheet further having at least one long-fiber nonwoven fabric layer composed of fibers F B mainly composed of a thermoplastic resin B different from the thermoplastic resin A.
[14] 前記融着シートを形成する工程において、前記ロールの線圧が0.5N/cm以上5.0N/cm以下とする、前記[12]または[13]に記載の長繊維不織布の製造方法。 [14] The method for producing a long-fiber nonwoven fabric according to [12] or [13], wherein in the step of forming the fused sheet, the linear pressure of the roll is 0.5 N/cm or more and 5.0 N/cm or less.
本発明によれば、ひだの無いスムーズな表面を有しており、かつ、良好な伸縮性を有する長繊維不織布が得られる。特に、本発明の長繊維不織布は、面内で伸縮時の応力が均一であり、かつ、ひだが無いために薄いという特徴から、着用時の快適性や、目立たないことが期待されるので、紙おむつや生理用ナプキン等の衛生材料、手術着やドレープ、防護服、マスク、医療用テープ、フェイスマスク等に好適に用いることができる。 The present invention provides a long-fiber nonwoven fabric that has a smooth surface without pleats and good elasticity. In particular, the long-fiber nonwoven fabric of the present invention has the characteristics of uniform stress during expansion and contraction within the plane, and is thin due to the absence of pleats, so it is expected to be comfortable to wear and unnoticeable, and can be suitably used for sanitary materials such as disposable diapers and sanitary napkins, surgical gowns and drapes, protective clothing, masks, medical tapes, face masks, etc.
本発明の長繊維不織布は、少なくとも一方の表面が熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる、長繊維不織布であって、前記繊維FAの見かけの最大繊維径Dmax(μm)と見かけの最小繊維径Dmin(μm)の比Dmax/Dminが1.2以上5.0以下であり、前記長繊維不織布の伸長回復率が50%以上99%以下であり、かつ、見かけ密度が0.02g/cm3以上0.20g/cm3以下である。以下に、その構成要素について詳細に説明するが、本発明はその要旨を超えない限り、以下に説明する範囲に何ら限定されるものではなく、そして、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The long-fiber nonwoven fabric of the present invention is a long-fiber nonwoven fabric having at least one surface constituted by fibers F A mainly composed of thermoplastic resin A, the ratio D max /D min of the apparent maximum fiber diameter D max (μm) to the apparent minimum fiber diameter D min (μm) of the fibers F A being 1.2 to 5.0, the elongation recovery rate of the long-fiber nonwoven fabric being 50% to 99%, and the apparent density being 0.02 g/cm 3 to 0.20 g/cm 3. The components are described in detail below, but the present invention is not limited to the scope described below as long as it does not deviate from the gist of the invention, and various modifications are possible within the scope of the invention.
[熱可塑性樹脂A、繊維FA]
まず、本発明の長繊維不織布は、その少なくとも一方の表面が熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる。ここで、本発明において、「熱可塑性樹脂Aを主成分とする繊維」とは、当該繊維の50質量%以上が熱可塑性樹脂Aであることを指すこととする。
[Thermoplastic resin A, fiber F A ]
First, the long-fiber nonwoven fabric of the present invention has at least one surface composed of fibers F A mainly composed of thermoplastic resin A. Here, in the present invention, "fibers mainly composed of thermoplastic resin A" refers to the fact that 50 mass % or more of the fibers are made of thermoplastic resin A.
この熱可塑性樹脂Aの例としては、「ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート」等の芳香族ポリエステル系ポリマーおよびその共重合体、「ポリ乳酸、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリヒドロキシブチレート-ポリヒドロキシバリレート共重合体、ポリカプロラクトン」等の脂肪族ポリエステル系ポリマーおよびその共重合体、「ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド10、ポリアミド12、ポリアミド6-12」等の脂肪族ポリアミド系ポリマーおよびその共重合体、「ポリプロピレン、ポリエチレン、ポリブテン、ポリメチルペンテン」等のポリオレフィン系ポリマーおよびその共重合体、エチレン単位を25モル%から70モル%含有する水不溶性のエチレン-ビニルアルコール共重合体系ポリマー、ポリスチレン系、ポリジエン系、塩素系、ポリオレフィン系、ポリエステル系、ポリウレタン系、ポリアミド系、フッ素系のエラストマー系ポリマー等であり、これらの中から選んで用いることができる。特に、最後に挙げたエラストマー系ポリマーではない群の熱可塑性樹脂、つまり、前記の芳香族ポリエステル系ポリマーおよびその共重合体、脂肪族ポリエステル系ポリマーおよびその共重合体、脂肪族ポリアミド系ポリマーおよびその共重合体、ポリオレフィン系ポリマーおよびその共重合体、ならびに、エチレン-ビニルアルコール共重合体系ポリマーは、長繊維不織布の触感がラバータッチ(ゴムのように簡単に変形し、ベタベタするタック感や、非連続的な摩擦になるスティック・スリップ現象を生じるもの)になりにくく、スムーズな触感になりやすいため、好ましい。なお、本発明における「エラストマー系ポリマー」とは、常温でゴム弾性を有する熱可塑性樹脂をいう。 Examples of this thermoplastic resin A include aromatic polyester polymers and copolymers thereof, such as "polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate," aliphatic polyester polymers and copolymers thereof, such as "polylactic acid, polyethylene succinate, polybutylene succinate, polybutylene succinate adipate, polyhydroxybutyrate-polyhydroxyvalerate copolymer, polycaprolactone," aliphatic polyamide polymers and copolymers thereof, such as "polyamide 6, polyamide 66, polyamide 610, polyamide 10, polyamide 12, polyamide 6-12," polyolefin polymers and copolymers thereof, such as "polypropylene, polyethylene, polybutene, polymethylpentene," water-insoluble ethylene-vinyl alcohol copolymer polymers containing 25 mol% to 70 mol% ethylene units, polystyrene-based, polydiene-based, chlorine-based, polyolefin-based, polyester-based, polyurethane-based, polyamide-based, and fluorine-based elastomer polymers, and any of these may be selected and used. In particular, thermoplastic resins that are not the last group of elastomeric polymers, i.e., the above-mentioned aromatic polyester polymers and their copolymers, aliphatic polyester polymers and their copolymers, aliphatic polyamide polymers and their copolymers, polyolefin polymers and their copolymers, and ethylene-vinyl alcohol copolymer polymers, are preferred because they tend to give the long-fiber nonwoven fabric a smooth feel rather than a rubber-like feel (easily deformed like rubber, resulting in a sticky tackiness and a stick-slip phenomenon that causes discontinuous friction). In the present invention, "elastomeric polymer" refers to a thermoplastic resin that has rubber elasticity at room temperature.
とりわけ、本発明において、前記の熱可塑性樹脂Aは、90.1質量%以上100.0質量%以下がポリオレフィン系ポリマーおよび/または共重合体であることが好ましい。熱可塑性樹脂Aの90.1質量%以上100.0質量%以下がポリオレフィン系ポリマーおよび/またはその共重合体であることによって、長繊維不織布の触感が上記のようなラバータッチになりにくく、スムーズな触感になりやすくなる。 In particular, in the present invention, it is preferable that 90.1% by mass or more and 100.0% by mass or less of the thermoplastic resin A is a polyolefin-based polymer and/or copolymer. By having 90.1% by mass or more and 100.0% by mass or less of the thermoplastic resin A be a polyolefin-based polymer and/or its copolymer, the touch of the long-fiber nonwoven fabric is less likely to become rubbery as described above, and tends to be smooth to the touch.
本発明に係る繊維FAは、前記のとおり、熱可塑性樹脂Aを主成分とするものであるが、好ましくは、前記の熱可塑性樹脂Aのみからなるものである。いずれの場合においても、用いる熱可塑性樹脂Aは1種類であってもよいし、複数の熱可塑性樹脂Aからなるものであってもよい。 As described above, the fiber F A according to the present invention is mainly composed of the thermoplastic resin A, but preferably, it is composed only of the thermoplastic resin A. In either case, the thermoplastic resin A used may be one type, or may be composed of a plurality of thermoplastic resins A.
また、本発明に係る繊維FAは、複合繊維であることも好ましく、その複合形態は本発明の効果を損ねない限り、特に限定されるものではない。すなわち、(同心型の)芯鞘型複合繊維や偏心芯鞘型複合繊維、海島型複合繊維、サイドバイサイド型複合繊維、ポリマーブレンド型複合繊維などから、適宜選択することができる。 The fiber F A according to the present invention is also preferably a composite fiber, and the composite form is not particularly limited as long as it does not impair the effects of the present invention. That is, it can be appropriately selected from (concentric) sheath-core composite fibers, eccentric sheath-core composite fibers, islands-in-the-sea composite fibers, side-by-side composite fibers, polymer blend composite fibers, and the like.
本発明の繊維FAは、25mm当たりの捲縮数が0以上49以下であることが好ましい。前記の捲縮数が0以上(捲縮を含まないものも含む)、好ましくは5以上であることによって、ソフトな風合いの長繊維不織布となるとともに、より伸長率の高い長繊維不織布となる。一方、前記の捲縮数が49以下、好ましくは45以下、より好ましくは40以下であることによって、形態安定性の高い長繊維不織布となる。 The fiber F A of the present invention preferably has a crimp number per 25 mm of 0 to 49. By having the crimp number of 0 or more (including those without crimp), preferably 5 or more, the long-fiber nonwoven fabric has a soft feel and a higher elongation. On the other hand, by having the crimp number of 49 or less, preferably 45 or less, more preferably 40 or less, the long-fiber nonwoven fabric has high dimensional stability.
なお、ここでいう捲縮数とは、以下のように測定、算出して得られる値のことを指す。
(i) 2cm×2cmの試験片を試料からランダムに5枚切り出す。
(ii) 長繊維不織布の表面を走査型電子顕微鏡(SEM、例えば、株式会社キーエンス製「VHX6000」など)で繊維が10本以上観察できる倍率として画像を撮影する。
(iii)撮影された画像を用いて、長繊維不織布を構成する繊維FAをランダムに1本選び、図1の説明図のように、隣り合う2つの山に接線Lを引く。そして、この接線L上の2つの接点P1、P2間の距離(μm)を測定する。
(iv)以下の式でその繊維FAの25mm当たりの捲縮数を算出する
(その繊維FAの25mm当たりの捲縮数)=25000(μm)/(2つの接点P1、P2間の距離(μm))
(v)これと同様の動作を、1つの試験片から4つの視野、5つの試験片で計20本の繊維に対して行った結果の算術平均値を求め、その小数点以下第1位を四捨五入した値を得る。
The number of crimps referred to here refers to a value obtained by measuring and calculating as follows.
(i) Five test pieces measuring 2 cm x 2 cm are randomly cut out from the sample.
(ii) An image of the surface of the long-fiber nonwoven fabric is taken with a scanning electron microscope (SEM, for example, "VHX6000" manufactured by Keyence Corporation) at a magnification such that 10 or more fibers can be observed.
(iii) Using the captured image, one fiber F A constituting the long-fiber nonwoven fabric is randomly selected, and a tangent line L is drawn between two adjacent peaks as shown in the explanatory diagram of Figure 1. Then, the distance (μm) between two contact points P1 and P2 on this tangent line L is measured.
(iv) Calculate the number of crimps per 25 mm of the fiber F A using the following formula: (Number of crimps per 25 mm of the fiber F A ) = 25,000 (μm) / (Distance between the two contact points P1 and P2 (μm))
(v) The same operation is performed on four visual fields from one test piece, and on five test pieces, for a total of 20 fibers, to obtain the arithmetic average of the results, and then round the result to the nearest integer.
また、捲縮数を上記の範囲とするためには、例えば、熱可塑性樹脂Aとして用いるポリマーの組成、粘度や分子量分布、繊維FAの繊維径や断面形状、紡糸速度、紡糸時の冷却条件などを調整することなどの手段が挙げられる。 In order to set the number of crimps within the above range, for example, the composition, viscosity, and molecular weight distribution of the polymer used as the thermoplastic resin A, the fiber diameter and cross-sectional shape of the fiber F A , the spinning speed, and the cooling conditions during spinning can be adjusted.
本発明の繊維FAは、見かけの最大繊維径Dmax(μm)と見かけの最小繊維径Dmin(μm)の比Dmax/Dminが1.2以上5.0以下である。本発明の見かけの最大繊維径Dmax(μm)と見かけの最小繊維径Dmin(μm)は連続した同じ繊維の中で測定した値である。そのため、Dmax/Dminが大きいことは、連続する繊維に繊維径の変化が大きいことを示しており、長繊維不織布とした際には、繊維径の大小があることによって、繊維径の大きい部分が周囲の繊維に引っ掛かることができるため、優れた形態安定性を得ることができる。このような形態安定性を付与しない場合、少し触れると簡単に表面の繊維が動いて繊維束を形成してゴワゴワしたタッチとなりやすいという問題がある。 The fiber F A of the present invention has a ratio D max /D min of the apparent maximum fiber diameter D max (μm) to the apparent minimum fiber diameter D min (μm) of 1.2 or more and 5.0 or less. The apparent maximum fiber diameter D max (μm) and the apparent minimum fiber diameter D min (μm) of the present invention are values measured in the same continuous fiber. Therefore, a large D max /D min indicates a large change in fiber diameter in the continuous fiber, and when it is made into a long fiber nonwoven fabric, the fiber diameters are large and small, so that the large fiber diameter part can be caught by the surrounding fibers, and excellent shape stability can be obtained. If such shape stability is not imparted, there is a problem that the surface fibers easily move when touched lightly, forming fiber bundles and resulting in a stiff touch.
このため、Dmax/Dminは1.4以上が好ましく、Dmax/Dminは1.6以上がより好ましい。Dmax/Dminは5.0以下であることによってソフトなタッチとなり、Dmax/Dminは4.5以下が好ましく、Dmax/Dminは4.0以下がより好ましい。 For this reason, Dmax / Dmin is preferably 1.4 or more, and more preferably 1.6 or more. When Dmax / Dmin is 5.0 or less , a soft touch is achieved, and Dmax / Dmin is preferably 4.5 or less, and more preferably 4.0 or less .
前記のDmax(μm)は、上記のDmax/Dminの関係を満たす限りにおいて、0.5以上50.0以下であることが好ましい。前記のDmax(μm)が0.5以上、より好ましくは1.0以上、さらに好ましくは1.5以上であることによって、高い形態安定性を得やすい。一方、前記のDmax(μm)が50.0以下、より好ましくは40.0以下、より好ましくは30.0以下であることによって、柔軟性の高い長繊維不織布となる。 As long as the above Dmax (μm) satisfies the above Dmax / Dmin relationship, it is preferred that the Dmax (μm) is 0.5 or more and 50.0 or less. By having the Dmax (μm) be 0.5 or more, more preferably 1.0 or more, and even more preferably 1.5 or more, high dimensional stability is easily obtained. On the other hand, by having the Dmax (μm) be 50.0 or less, more preferably 40.0 or less, and more preferably 30.0 or less, a long-fiber nonwoven fabric with high flexibility is obtained.
前記のDmin(μm)は、上記のDmax/Dminの関係を満たす限りにおいて、0.4以上40.0以下であることが好ましい。前記のDmin(μm)が0.4以上、より好ましくは0.9以上、さらに好ましくは1.4以上であることによって、コシのある風合いが得やすい。一方、前記のDmin(μm)が40.0以下、より好ましくは30.0以下、さらに好ましくは20.0以下であることによって、柔軟でソフトな触感の長繊維不織布となる。 As long as the above D max /D min relationship is satisfied, the D min (μm) is preferably 0.4 or more and 40.0 or less. By making the D min ( μm) 0.4 or more, more preferably 0.9 or more, and even more preferably 1.4 or more, a stiff feel is easily obtained. On the other hand, by making the D min (μm) 40.0 or less, more preferably 30.0 or less, and even more preferably 20.0 or less, a long-fiber nonwoven fabric having a soft feel is obtained.
なお、前記のDmax(μm)、Dmin(μm)、Dmax/Dminは、以下のように測定、算出して得られる値のことを指す。
(i) 長繊維不織布の表面を走査型電子顕微鏡(SEM、例えば、株式会社キーエンス製「VHX6000」など)で、前記の繊維FAを連続して1mm以上観察できる領域の画像を撮影する。
(ii) 撮影された画像中の異なる20本の繊維をランダムに選択し、そのうちの1本について、測定範囲における繊維FAの見かけの最大繊維径Dmax(μm)と見かけの最小繊維径Dmin(μm)を測定する。例えば、図2の説明図の例では、見かけの最大繊維径Dmax(μm)と見かけの最小繊維径Dmin(μm)を示す箇所が、図2に示される位置に定められ、その位置の距離を測定することとなる。なお、融着部で融着一体化している繊維は測定対象としない。
(iii) この見かけの最大繊維径Dmax(μm)を見かけの最小繊維径Dmin(μm)で除して、その繊維のDmax/Dminを求める。
(iv) これと同様の動作を、残りの19本の繊維に対しても行い、それらの結果の単純な数平均を求め、小数点以下第2位を四捨五入した値をそれぞれ算出し、その長繊維不織布におけるDmax(μm)、Dmin(μm)、Dmax/Dminとする。
The above D max (μm), D min (μm) and D max /D min refer to values obtained by measurement and calculation as follows.
(i) An image of the surface of the long-fiber nonwoven fabric is taken with a scanning electron microscope (SEM, for example, "VHX6000" manufactured by Keyence Corporation) in an area where the fibers F A can be observed continuously for 1 mm or more.
(ii) Twenty different fibers are randomly selected from the captured image, and for one of them, the apparent maximum fiber diameter Dmax (μm) and the apparent minimum fiber diameter Dmin (μm) of fiber F A in the measurement range are measured. For example, in the example of the explanatory diagram in Figure 2, the points showing the apparent maximum fiber diameter Dmax (μm) and the apparent minimum fiber diameter Dmin (μm) are determined at the positions shown in Figure 2, and the distance between these positions is measured. Note that fibers fused together at the fusion portion are not measured.
(iii) This maximum apparent fiber diameter D max (μm) is divided by the minimum apparent fiber diameter D min (μm) to determine D max /D min for that fiber.
(iv) The same operation is performed on the remaining 19 fibers, and a simple number average is calculated from the results. The values are rounded off to one decimal place to determine D max (μm), D min (μm), and D max /D min for that long-fiber nonwoven fabric.
また、前記の比Dmax/Dminを上記の範囲とするためには、例えば、熱可塑性樹脂Aとして用いるポリマーの融点や軟化温度、繊維FAの繊維径や断面形状、融着シートを形成する工程のエンボスロールの形状、温度、線圧を調整することなどの手段が挙げられる。具体的には、まず、ポリマーの融点や軟化温度は低いほどDmax/Dminを大きくすることができる。そして、繊維FAの繊維径は大きいほどDmax/Dminを大きくすることが容易であり、繊維断面形状としては、真円の部分と扁平の部分を含む形状である場合にDmax/Dminを大きくしやすい。さらに、エンボスロールの形状に関し、融着部に対応する突起部分(凸部)の面積が小さいほどDmax/Dminを大きくすることが容易であり、融着シートを形成する工程における形成温度や線圧が高いほどDmax/Dminを大きくすることが容易である。 In order to set the ratio D max /D min within the above range, for example, the melting point or softening temperature of the polymer used as the thermoplastic resin A, the fiber diameter or cross-sectional shape of the fiber F A , and the shape, temperature, and linear pressure of the embossing roll in the process of forming the fused sheet can be adjusted. Specifically, first, the lower the melting point or softening temperature of the polymer, the greater the D max /D min can be. Then, the larger the fiber diameter of the fiber F A , the easier it is to increase D max /D min , and when the fiber cross-sectional shape includes a circular portion and a flat portion, it is easy to increase D max /D min . Furthermore, with regard to the shape of the embossing roll, the smaller the area of the protruding portion (convex portion) corresponding to the fused portion, the easier it is to increase D max /D min , and the higher the forming temperature and linear pressure in the process of forming the fused sheet, the easier it is to increase D max /D min .
[熱可塑性樹脂B、繊維FB]
本発明の長繊維不織布は、さらに、熱可塑性樹脂Aとは異なる熱可塑性樹脂Bを主成分とする繊維FBで構成されてなる長繊維不織布層を少なくとも1層有することが好ましい。
[Thermoplastic resin B, fiber F B ]
The long-fiber nonwoven fabric of the present invention preferably further comprises at least one long-fiber nonwoven fabric layer composed of fibers F 2 B having a thermoplastic resin B different from the thermoplastic resin A as a main component.
この熱可塑性樹脂Bとしては、熱可塑性樹脂Aとは異なるものであって、一般的には、ソフトセグメントとハードセグメントを有する高分子化合物であるものが好ましく、具体的には、ポリウレタン系エラストマー、ポリプロピレン系エラストマー、ポリエチレン系エラストマー、ポリエステル系エラストマー、ポリスチレン系エラストマー、ポリブタジエン系エラストマーなどが挙げられる。 This thermoplastic resin B is different from thermoplastic resin A, and is generally preferably a polymer compound having soft and hard segments, specific examples of which include polyurethane-based elastomers, polypropylene-based elastomers, polyethylene-based elastomers, polyester-based elastomers, polystyrene-based elastomers, and polybutadiene-based elastomers.
前記の熱可塑性樹脂Bは、これらの中から、熱可塑性樹脂Bの90.1質量%以上~100.0質量%以下がポリオレフィン系エラストマー、ポリウレタン系エラストマーからなる群から選択される1種以上であることが好ましい。ポリオレフィン系エラストマーが用いられる場合には、他の長繊維不織布層やその構成繊維との接着性が良好なものとなり、形態安定性に優れた長繊維不織布となる。また、ポリウレタン系エラストマーが用いられる場合には、伸縮性に優れた長繊維不織布となる。 The thermoplastic resin B is preferably one or more selected from the group consisting of polyolefin-based elastomers and polyurethane-based elastomers, with 90.1% by mass or more and 100.0% by mass or less of the thermoplastic resin B. When a polyolefin-based elastomer is used, the adhesiveness to other long-fiber nonwoven fabric layers and their constituent fibers is good, resulting in a long-fiber nonwoven fabric with excellent shape stability. When a polyurethane-based elastomer is used, the resulting long-fiber nonwoven fabric has excellent elasticity.
熱可塑性樹脂Aとは異なる熱可塑性樹脂Bを主成分とする繊維FBで構成されてなる長繊維不織布層を少なくとも1層有する場合において、本発明の長繊維不織布は、前記の熱可塑性樹脂Aの軟化温度TS,A(℃)と前記の熱可塑性樹脂Bの軟化温度TS,B(℃)との差の絶対値|TS,A-TS,B|が10℃以上100℃以下であることが好ましい。前記の絶対値|TS,A-TS,B|が好ましくは10℃以上、より好ましくは15℃以上であることによって、長繊維不織布に融着部を設けた場合であっても、その融着部内に繊維形状を残すことができるため、優れた強度を有する長繊維不織布となる。一方、前記の絶対値|TS,A-TS,B|が好ましくは100℃以下、より好ましくは80℃以下であることで、例えば、後述の融着シートを形成する工程などで繊維FAを部分的に圧縮して変形させる際、繊維FBのみが融着し、繊維FA同士は密着しているが融着していない状態にしやすい(ただし上記においてTS,A>TS,Bである場合)。これによって、続く融着シートを延伸する工程で、密着した繊維FA同士を1本1本にバラけさせることが容易となる。この結果、前記比Dmax/Dminを大きくしやすくなり、形態安定性と高い伸度および、ソフトさを有する長繊維不織布となるのである。 In the case where the long-fiber nonwoven fabric of the present invention has at least one long-fiber nonwoven fabric layer composed of fibers F B mainly composed of a thermoplastic resin B different from thermoplastic resin A, it is preferable that the absolute value |T S,A -T S,B | of the difference between the softening temperature T S,A (°C) of the thermoplastic resin A and the softening temperature T S,B (°C) of the thermoplastic resin B is 10°C or more and 100°C or less. When the absolute value |T S,A -T S,B | is preferably 10°C or more, more preferably 15°C or more, even if fused parts are provided in the long-fiber nonwoven fabric, the fiber shape can be retained in the fused parts, resulting in a long-fiber nonwoven fabric with excellent strength. On the other hand, by making the absolute value |T S,A -T S,B | preferably 100°C or less, more preferably 80°C or less, when the fibers F A are partially compressed and deformed in, for example, the process of forming a fused sheet described below, only the fibers F B are fused, and the fibers F A are easily in a state of being in close contact but not fused together (provided that T S,A >T S,B in the above). This makes it easy to separate the closely-contacted fibers F A into individual fibers in the subsequent process of stretching the fused sheet. As a result, it becomes easier to increase the ratio D max /D min , and a long-fiber nonwoven fabric having shape stability, high elongation, and softness is obtained.
なお、本発明において、前記の熱可塑性樹脂Aの軟化温度TS,A(℃)と前記の熱可塑性樹脂Bの軟化温度TS,B(℃)とは、以下の方法で測定、算出される値のことを指す。
(i) 2mm以上の繊維FAおよび繊維FBを試料の非融着部から、それぞれランダムに10本切り出す。
(ii) 原子間力顕微鏡(AFM)のプローブ(カンチレバー)に加熱ヒーターを兼ねた温度センサーを取り付けたナノサーマルアナライザー装置(例えば、Anasys Instruments社製「Nano-TA2」など)を用いて、10℃/秒の昇温速度で昇温して軟化温度を測定する。
(iii) これと同様の動作を、異なる10本の繊維に対して行った結果の算術平均値(℃)を求め、小数点以下第1位を四捨五入した値をそれぞれ算出する。
In the present invention, the softening temperature T S,A (°C) of the thermoplastic resin A and the softening temperature T S,B (°C) of the thermoplastic resin B refer to values measured and calculated by the following method.
(i) Ten fibers each of fibers F A and F B , each 2 mm or larger, are randomly cut out from the non-fused portion of the sample.
(ii) Using a nano-thermal analyzer device (e.g., "Nano-TA2" manufactured by Anasys Instruments) in which a temperature sensor that also serves as a heater is attached to the probe (cantilever) of an atomic force microscope (AFM), the softening temperature is measured by increasing the temperature at a heating rate of 10°C/sec.
(iii) The same operation is performed on 10 different fibers, and the arithmetic mean value (°C) of the results is calculated, and the value is rounded off to the first decimal place.
さらに、本発明の長繊維不織布において、前記の繊維FBは脂肪酸アミド化合物を含むことが好ましい。その場合において、脂肪酸アミドの含有量は0.01質量%以上5.0質量%以下であることが好ましい。前記繊維FBに脂肪酸アミド化合物が0.01質量%以上含まれることで、滑り性や柔軟性が向上するためである。また、前記繊維FBに脂肪酸アミド化合物が5.0質量%以下含むことによって滑りの無い触感が得られる。より好ましくは脂肪酸アミド化合物が0.05質量%以上含まれることである。脂肪酸アミド化合物の上限としては1.0質量%であることがより好ましい。 Furthermore, in the long fiber nonwoven fabric of the present invention, it is preferable that the fibers F B contain a fatty acid amide compound. In this case, the content of the fatty acid amide is preferably 0.01% by mass or more and 5.0% by mass or less. When the fibers F B contain 0.01% by mass or more of a fatty acid amide compound, the slipperiness and flexibility are improved. Furthermore, when the fibers F B contain 5.0% by mass or less of a fatty acid amide compound, a non-slip feel is obtained. More preferably, the fatty acid amide compound is contained in an amount of 0.05% by mass or more. It is more preferable that the upper limit of the fatty acid amide compound is 1.0% by mass.
前記の脂肪酸アミド化合物としては、飽和脂肪酸モノアミド化合物、飽和脂肪酸ジアミド化合物、不飽和脂肪酸モノアミド化合物、および不飽和脂肪酸ジアミド化合物などが挙げられる。 The fatty acid amide compounds include saturated fatty acid monoamide compounds, saturated fatty acid diamide compounds, unsaturated fatty acid monoamide compounds, and unsaturated fatty acid diamide compounds.
そして、前記の脂肪酸アミド化合物の炭素数は、15以上50以下であることが好ましい。なお、本発明における炭素数とは、分子中に含まれる炭素原子の数を意味し、アミド基などに含まれる炭素原子の数も含めた数である。前記の炭素数が15以上50以下の脂肪酸アミド化合物としては、パルミチン酸アミド、パルミトレイン酸アミド、ステアリン酸アミド、オレイン酸アミド、エライジン酸アミド、バクセン酸アミド、リノール酸アミド、リノレン酸アミド、ピノレン酸アミド、エレオステアリン酸アミド、ステアリドン酸アミド、ボセオペンタエン酸アミド、アラキジン酸アミド、ガドレイン酸アミド、エイコセン酸アミド、エイコサジエン酸アミド、ミード酸アミド、エイコサトリエン酸アミド、アラキドン酸アミド、エイコサテトラエン酸アミド、エイコサペンタエン酸アミド、ヘンイコシル酸アミド、ベヘン酸アミド、エルカ酸アミド、ドコサジエン酸アミド、アドレン酸アミド、オズボンド酸アミド、イワシ酸アミド、ドコサヘキサエン酸アミド、リグノセリン酸アミド、ネルボン酸アミド、テトラコサペンタエン酸アミド、ニシン酸アミド、セロチン酸アミド、モンタン酸アミド、メリシン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、メチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、ジステアリルアジピン酸アミド、ジステアリルセバシン酸アミド、およびヘキサメチレンビスオレイン酸アミドなどが挙げられ、これらを複数組み合わせて用いることができる。脂肪酸アミド化合物の炭素数が好ましくは15以上、より好ましくは23以上、さらに好ましくは30以上であることにより、べたつきのない長繊維不織布となる。一方、脂肪酸アミド化合物の炭素数が好ましくは50以下、より好ましくは45以下、さらに好ましくは42以下であることにより、脂肪酸アミド化合物が適度に繊維表面に析出するため、優れた柔軟性を有する長繊維不織布となる。 The number of carbon atoms in the fatty acid amide compound is preferably 15 or more and 50 or less. In the present invention, the number of carbon atoms means the number of carbon atoms contained in the molecule, and includes the number of carbon atoms contained in amide groups, etc. Examples of the fatty acid amide compound having 15 to 50 carbon atoms include palmitic acid amide, palmitoleic acid amide, stearic acid amide, oleic acid amide, elaidic acid amide, vaccenic acid amide, linoleic acid amide, linolenic acid amide, pinolenic acid amide, eleostearic acid amide, stearidonic acid amide, bosseopentaenoic acid amide, arachidic acid amide, gadoleic acid amide, eicosenoic acid amide, eicosadienoic acid amide, mead acid amide, eicosatrienoic acid amide, arachidonic acid amide, eicosatetraenoic acid amide, eicosapentaenoic acid amide, heneicosyl acid amide, behenic acid amide, erucic acid amide, docosadienoic acid amide, adrenic acid amide, osbondoic acid amide, sardine acid amide, docosahexaenoic acid amide, Examples of the fatty acid amide include lignoceric acid amide, nervonic acid amide, tetracosapentaenoic acid amide, nisinic acid amide, cerotic acid amide, montanic acid amide, melissic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, methylene bislauric acid amide, ethylene bisstearic acid amide, ethylene bisoleic acid amide, ethylene bishydroxystearic acid amide, ethylene bisbehenic acid amide, ethylene biserucic acid amide, hexamethylene bisstearic acid amide, hexamethylene bisbehenic acid amide, hexamethylene hydroxystearic acid amide, distearyl adipic acid amide, distearyl sebacic acid amide, and hexamethylene bisoleic acid amide, and a combination of these may be used. The number of carbon atoms of the fatty acid amide compound is preferably 15 or more, more preferably 23 or more, and even more preferably 30 or more, to provide a long-fiber nonwoven fabric that is not sticky. On the other hand, by having a carbon number of the fatty acid amide compound of preferably 50 or less, more preferably 45 or less, and even more preferably 42 or less, the fatty acid amide compound is appropriately precipitated on the fiber surface, resulting in a long-fiber nonwoven fabric with excellent flexibility.
繊維FBで構成されてなる長繊維不織布層の平均単繊維径(μm)は、0.5μm以上50.0μm以下であることが好ましい。この平均単繊維径が好ましくは0.5μm以上、より好ましくは1.0μm以上、さらに好ましくは1.5μm以上であることによって、通気性が高い長繊維不織布となる。一方、平均単繊維径が好ましくは50.0μm以下、より好ましくは40.0μm以下、より好ましくは30.0μm以下であることによって、伸長率が高い長繊維不織布となる。 The average single fiber diameter (μm) of the long-fiber nonwoven fabric layer composed of the fibers F 1 B is preferably 0.5 μm or more and 50.0 μm or less. When this average single fiber diameter is preferably 0.5 μm or more, more preferably 1.0 μm or more, and even more preferably 1.5 μm or more, the long-fiber nonwoven fabric has high breathability. On the other hand, when the average single fiber diameter is preferably 50.0 μm or less, more preferably 40.0 μm or less, and more preferably 30.0 μm or less, the long-fiber nonwoven fabric has high elongation.
繊維FBで構成されてなる長繊維不織布層の目付(g/m2)は、5g/m2以上200g/m2以下であることが好ましい。この目付が好ましくは5g/m2以上、より好ましくは10g/m2以上であることによって、伸長回復率の高い長繊維不織布となる。一方、目付が好ましくは200g/m2以下、より好ましくは100g/m2以下、さらに好ましくは50g/m2以下であることによって、柔軟性が高くなる。 The basis weight (g/ m2 ) of the long-fiber nonwoven fabric layer composed of the fibers F B is preferably 5 g/m2 or more and 200 g/ m2 or less. When this basis weight is preferably 5 g/m2 or more , more preferably 10 g/m2 or more , the long-fiber nonwoven fabric has a high elongation recovery rate. On the other hand, when the basis weight is preferably 200 g/m2 or less, more preferably 100 g/m2 or less , and even more preferably 50 g/m2 or less, the flexibility is high.
[長繊維不織布]
本発明の長繊維不織布は、前記の少なくとも一方の表面が熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる。そして、本発明の長繊維不織布は、伸長回復率が50%以上99%以下であり、かつ、見かけ密度が0.02g/cm3以上0.20g/cm3以下である。この2つの要件を満たすことによって、良好な伸縮性を有する長繊維不織布となるのである。なお、本発明の長繊維不織布とは、熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる層(O層と称することがある)のみのもの(単層のもの)のみならず、一方の表面側にO層、他方の表面側に熱可塑性樹脂Aとは異なる熱可塑性樹脂Bを主成分とする繊維FBで構成されてなる長繊維不織布層(I層と称することがある)が積層されてなるもの、両方の表面側にO層が積層されてなるもの、さらには、O層/I層/O層の順に積層されてなるものなど、複数の長繊維不織布層を含むものも指す。また、本発明の効果を損なわない範囲で他の繊維層などの構造体を含んでいても良い。本発明の長繊維不織布に積層される、上記不織布以外の構造体として不織布を用いる場合、スパンボンド法、メルトブロー法、短繊維カード法などの公知の製造方法によって得られた不織布が挙げられる。また、本発明の不織布以外の構造体を構成する樹脂は特に制限されないが、接着が容易であることから、ポリプロピレンで構成されていることが好ましい。
[Long fiber nonwoven fabric]
The long-fiber nonwoven fabric of the present invention has at least one surface made of fibers F A mainly composed of thermoplastic resin A. The long-fiber nonwoven fabric of the present invention has an elongation recovery rate of 50% or more and 99% or less, and an apparent density of 0.02 g/cm 3 or more and 0.20 g/cm 3 or less. By satisfying these two requirements, the long-fiber nonwoven fabric has good stretchability. The long-fiber nonwoven fabric of the present invention refers not only to a single layer made of fibers F A mainly composed of thermoplastic resin A (sometimes referred to as O layer), but also to a layer made of a long-fiber nonwoven fabric layer (sometimes referred to as I layer) made of fibers F B mainly composed of thermoplastic resin B different from thermoplastic resin A on one surface side and a layer made of O layer on the other surface side, a layer made of O layer on both surface sides, and a layer made of O layer/I layer/O layer in this order, and also to a layer made of multiple long-fiber nonwoven fabric layers. In addition, other structures such as fiber layers may be included within the scope of not impairing the effects of the present invention. When a nonwoven fabric is used as the structure other than the nonwoven fabric to be laminated on the long-fiber nonwoven fabric of the present invention, examples of the nonwoven fabric include nonwoven fabrics obtained by known manufacturing methods such as the spunbond method, meltblowing method, and short fiber carding method. In addition, the resin constituting the structure other than the nonwoven fabric of the present invention is not particularly limited, but it is preferably composed of polypropylene because it is easy to bond.
ここで、この熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる層(O層)とは、具体的には、熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる不織布層であり、この不織布層とは、より詳細には、後述する方法によって形成されるスパンボンド不織布層、あるいは、メルトブロー不織布層である。とりわけ、スパンボンド不織布層であることがより好ましい。 Here, the layer (O layer) made of fibers F A mainly composed of thermoplastic resin A is specifically a nonwoven fabric layer made of fibers F A mainly composed of thermoplastic resin A, and more specifically, this nonwoven fabric layer is a spunbond nonwoven fabric layer or a meltblown nonwoven fabric layer formed by a method described later. In particular, a spunbond nonwoven fabric layer is more preferable.
また、熱可塑性樹脂Aとは異なる熱可塑性樹脂Bを主成分とする繊維FBで構成されてなる長繊維不織布層(I層)とは、熱可塑性樹脂Aとは異なる熱可塑性樹脂Bを主成分とする繊維FBで構成されてなる長繊維不織布層であり、この長繊維不織布層とは、より詳細には、後述する方法によって形成されるスパンボンド不織布層、あるいは、メルトブロー不織布層である。こちらもスパンボンド不織布層であることがより好ましい。 The long-fiber nonwoven fabric layer (I layer) made of fibers F 3 B mainly composed of thermoplastic resin B different from thermoplastic resin A is a long-fiber nonwoven fabric layer made of fibers F 3 B mainly composed of thermoplastic resin B different from thermoplastic resin A , and more specifically, this long-fiber nonwoven fabric layer is a spunbond nonwoven fabric layer or a meltblown nonwoven fabric layer formed by a method described later. It is more preferable that this layer is a spunbond nonwoven fabric layer.
まず、本発明の長繊維不織布は、その伸長回復率が50%以上99%以下である。この伸長回復率が50%以上、好ましくは、60%以上、より好ましくは70%以上であることによって、紙おむつのような衛生材料など、着用するものの材料として用いたとき、体にフィットするような着用感が得られる長繊維不織布となる。一方、前記の伸長回復率は高いほど好ましいが、現実的には99%以下の長繊維不織布となる。 First, the long-fiber nonwoven fabric of the present invention has a stretch recovery rate of 50% or more and 99% or less. By having this stretch recovery rate of 50% or more, preferably 60% or more, and more preferably 70% or more, the long-fiber nonwoven fabric will provide a comfortable fit when used as a material for wearable items such as sanitary materials like disposable diapers. On the other hand, the higher the stretch recovery rate, the better, but in reality, the long-fiber nonwoven fabric will have a stretch recovery rate of 99% or less.
なお、本発明において、長繊維不織布の伸長回復率とは、以下の方法によって測定、算出される値のことを指す。
(i)後述する方法によって測定、算出される最大破断伸度を示す方向と同一の方向の試験片を、試料から5枚ランダムに切り出す。
(ii) 引張試験機(例えば、株式会社オリエンテック製“テンシロン”(TENSILON)「UCT-100」)を用いて、引張速度200mm/分で試験片を引張り、試験片の伸び率が100%になるまで引き伸ばした後1分間静置する。
(iii) その後200mm/分で元の位置まで戻す際に応力が0Nになる伸び率(%)を測定する。
(iv) 続いて、この伸び率(%)を100%から差し引いた値(%)を得る。これと同様の操作を計5つの試験片で行い、これらの算術平均値を求め、小数点以下第1位を四捨五入する。
In the present invention, the stretch recovery rate of the long-fiber nonwoven fabric refers to a value measured and calculated by the following method.
(i) Five test pieces are randomly cut out from the sample in the same direction as the direction showing the maximum breaking elongation measured and calculated by the method described below.
(ii) Using a tensile tester (for example, "TENSILON""UCT-100" manufactured by Orientec Co., Ltd.), the test piece is pulled at a pulling speed of 200 mm/min until the elongation of the test piece reaches 100%, and then allowed to stand for 1 minute.
(iii) Thereafter, when returning to the original position at a speed of 200 mm/min, the elongation percentage (%) at which the stress becomes 0 N is measured.
(iv) Next, the elongation percentage (%) is subtracted from 100% to obtain a value (%). The same operation is carried out for a total of five test pieces, and the arithmetic average value is calculated and rounded off to the first decimal place.
また、前記の伸長回復率を上記の範囲とするためには、例えば、熱可塑性樹脂Aおよび熱可塑性樹脂Bとして用いるポリマーの組成、粘度、繊維FAおよび繊維FBの繊維径や断面形状、紡糸速度、紡糸時の冷却条件、長繊維不織布の見かけ密度を調整することなどの手段が挙げられる。 In order to set the elongation recovery rate within the above range, for example, the composition and viscosity of the polymers used as the thermoplastic resin A and the thermoplastic resin B, the fiber diameter and cross-sectional shape of the fibers F A and F B , the spinning speed, the cooling conditions during spinning, and the apparent density of the long-fiber nonwoven fabric can be adjusted.
そして、本発明の長繊維不織布は、見かけ密度が0.02g/cm3以上0.20g/cm3以下である。見かけ密度が0.20g/cm3以下、より好ましくは0.18g/cm3以下、さらに好ましくは0.16g/cm3以下であることで、通気性や柔軟性に優れ、高い嵩高性が感じられる長繊維不織布となる。一方、上記の見かけ密度が0.02g/cm3以上、好ましくは0.04g/cm3以上、より好ましくは0.06g/cm3以上であることで、形態安定性に優れた長繊維不織布となる。 The long-fiber nonwoven fabric of the present invention has an apparent density of 0.02 g/cm3 or more and 0.20 g/cm3 or less. When the apparent density is 0.20 g/cm3 or less , more preferably 0.18 g/cm3 or less , and even more preferably 0.16 g/cm3 or less , the long-fiber nonwoven fabric has excellent breathability and softness and a high sense of bulk. On the other hand, when the apparent density is 0.02 g/cm3 or more , preferably 0.04 g/cm3 or more , and more preferably 0.06 g/cm3 or more , the long-fiber nonwoven fabric has excellent shape stability.
なお、本発明において、長繊維不織布の見かけ密度とは、以下の式で算出される値のことを指す
見かけ密度(g/cm3)=目付(g/m2)/厚み(mm)/1000
ここで、目付とは、JIS L1913:2010「一般不織布試験方法」の「6.2 単位面積当たりの質量」に基づいて、20cm×25cmの試験片を、試料の幅1m当たりランダムに3枚採取し、標準状態におけるそれぞれの質量(g)を量り、その平均値から算出する1m2当たりの質量(g/m2)のことであり、厚みとは、形状測定機(例えば、株式会社キーエンス製「VR3050」など)で、5mm×5mm以上の範囲で測定した、無荷重での厚みをいう。
In the present invention, the apparent density of the long-fiber nonwoven fabric refers to a value calculated by the following formula: apparent density (g/cm 3 )=basis weight (g/m 2 )/thickness (mm)/1000.
Here, the basis weight refers to the mass per m2 (g/m2) calculated based on "6.2 Mass per unit area" of JIS L1913:2010 "Testing methods for general nonwoven fabrics" by randomly taking three 20 cm x 25 cm test pieces per 1 m of sample width, measuring the mass (g) of each piece under standard conditions, and averaging the measured masses. The thickness refers to the no-load thickness measured using a shape measuring machine (for example, "VR3050" manufactured by Keyence Corporation) in an area of 5 mm x 5 mm or more.
また、本発明の長繊維不織布は、その最大破断伸度が120%以上400%以下であることが好ましい。最大破断伸度が好ましくは120%以上、より好ましくは150%以上であることによって、紙おむつのような衛生材料など、着用するものの材料に使用された際、その着用時に伸ばしやすい長繊維不織布となる。一方、前記の最大破断伸度が好ましくは400%以下、より好ましくは300%以下であることによって、紙おむつのような衛生材料など、着用するものの材料に使用された際、適度な位置で伸び止まる長繊維不織布となる。 Furthermore, the long-fiber nonwoven fabric of the present invention preferably has a maximum breaking elongation of 120% or more and 400% or less. By having a maximum breaking elongation of preferably 120% or more, more preferably 150% or more, the long-fiber nonwoven fabric becomes easy to stretch when used as a material for wearable items such as sanitary materials like disposable diapers. On the other hand, by having the maximum breaking elongation of preferably 400% or less, more preferably 300% or less, the long-fiber nonwoven fabric becomes one that stops stretching at an appropriate position when used as a material for wearable items such as sanitary materials like disposable diapers.
さらに、本発明の長繊維不織布は、その最大破断伸度Emax(%)と最小破断伸度Emin(%)の比Emax/Eminが1.5以上5.0以下であることが好ましい。最大破断伸度Emax(%)と最小破断伸度Emin(%)の比Emax/Eminが1.5以上、好ましくは1.6以上であることによって、紙おむつのような衛生材料など、着用するものの材料に使用された際、その着用が容易になる長繊維不織布となる。一方、前記の比Emax/Eminが5.0以下、好ましくは4.0以下であることにより、ソフトな風合いの長繊維不織布となる。 Furthermore, the long-fiber nonwoven fabric of the present invention preferably has a ratio E max /E min of the maximum breaking elongation E max (%) to the minimum breaking elongation E min (%) of 1.5 to 5.0. When the ratio E max /E min of the maximum breaking elongation E max (%) to the minimum breaking elongation E min (%) is 1.5 or more, preferably 1.6 or more, the long-fiber nonwoven fabric becomes easy to wear when used as a material for wearable items such as sanitary materials such as disposable diapers. On the other hand, when the ratio E max /E min is 5.0 or less, preferably 4.0 or less, the long-fiber nonwoven fabric has a soft feel.
なお、本発明の長繊維不織布において、最大破断伸度Emax(%)、最小破断伸度Emin(%)、そして、最大破断伸度Emax(%)と最小破断伸度Emin(%)の比Emax/Eminとは、以下の方法によって測定、算出される値のことを指す。
(i)試料の任意の一方向を0度と定め、そこから5枚の試験片を試料からランダムに切り出す。
(ii) 引張試験機(例えば、株式会社オリエンテック製“テンシロン”(TENSILON)「UCT-100」)を用いて、引張速度200mm/分で試験片が破断する伸度(破断伸度)を測定する。この操作を5つの試験片全てで行い、算術平均値を求め、小数点以下第1位を四捨五入し、これを0度の破断伸度とする。
(iii)これと同様の操作を、0度の方向から30度ずつ角度を変えた計5方向(30度、60度、90度、120度、150度)で行う。
(iv) 得られた各角度の破断伸度のうち、最も大きい値を示す方向での破断伸度を最大破断伸度Emax(%)、最も小さい値を示す方向での破断伸度を最小破断伸度Emin(%)とする。
(v) さらに、これらの比Emax/Eminについて、小数点以下第2位を四捨五入する。
In the long-fiber nonwoven fabric of the present invention, the maximum breaking elongation E max (%), the minimum breaking elongation E min (%), and the ratio E max /E min of the maximum breaking elongation E max (%) to the minimum breaking elongation E min (%) refer to values measured and calculated by the following methods.
(i) One arbitrary direction of the sample is defined as 0 degrees, and five test pieces are randomly cut out from the sample.
(ii) Using a tensile tester (for example, "TENSILON""UCT-100" manufactured by Orientec Co., Ltd.), measure the elongation at which the test piece breaks (breaking elongation) at a tensile speed of 200 mm/min. This operation is carried out for all five test pieces, and the arithmetic average value is calculated and rounded off to the first decimal place, and this is regarded as the breaking elongation at 0 degrees.
(iii) A similar operation is performed in five directions (30 degrees, 60 degrees, 90 degrees, 120 degrees, 150 degrees) in increments of 30 degrees from the 0 degree direction.
(iv) Of the obtained breaking elongations at each angle, the breaking elongation in the direction showing the largest value is designated as the maximum breaking elongation E max (%), and the breaking elongation in the direction showing the smallest value is designated as the minimum breaking elongation E min (%).
(v) Furthermore, the ratio E max /E min is rounded off to one decimal place.
また、前記の最大破断伸度Emaxを上記の範囲とするためには、例えば、熱可塑性樹脂Aとして用いるポリマーの組成、粘度、分子量分布、繊維FAの繊維径や断面形状、紡糸速度、紡糸時の冷却条件、熱可塑性樹脂Bとして用いるポリマーの組成、粘度、繊維FBの繊維径や断面形状、紡糸速度、紡糸時の冷却条件、長繊維不織布の見かけ密度を調整することなどの手段が挙げられる。そして、前記の最大破断伸度Emaxと最小破断伸度Eminの比Emax/Eminを上記の範囲とするためには、例えば、繊維FAの配向方向、繊維FBの配向方向や捲縮の程度、繊維FAと繊維FBの質量比率を調整することなどの手段が挙げられる。 In order to set the maximum breaking elongation Emax within the above range, for example, means may be used to adjust the composition, viscosity, molecular weight distribution, fiber diameter and cross-sectional shape of fiber F A , spinning speed, and cooling conditions during spinning of the polymer used as thermoplastic resin A, the composition, viscosity, fiber diameter and cross-sectional shape of fiber F B , spinning speed, and cooling conditions during spinning of the polymer used as thermoplastic resin B, and the apparent density of the long-fiber nonwoven fabric. In order to set the ratio Emax / Emin of the maximum breaking elongation Emax to the minimum breaking elongation Emin within the above range, for example, means may be used to adjust the orientation direction of fiber F A , the orientation direction and degree of crimp of fiber F B , and the mass ratio of fiber F A to fiber F B.
[長繊維不織布の製造方法]
本発明の長繊維不織布を製造する方法の好ましい態様は、
(a) 前記の熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる層となる層を有する積層シートを形成する工程と、
(b) 前記の積層シートを、表面温度が0℃以上120℃以下としたロールで加圧して融着シートを形成する工程と、
(c) さらに、前記融着シートを1.5倍から5.0倍延伸する工程と、
を含むものである。
[Method of manufacturing long fiber nonwoven fabric]
A preferred embodiment of the method for producing the long-fiber nonwoven fabric of the present invention is as follows:
(a) forming a laminated sheet having a layer that is to be a layer composed of fibers F A having the thermoplastic resin A as a main component;
(b) pressing the laminated sheet with a roll having a surface temperature of 0° C. or more and 120° C. or less to form a fused sheet;
(c) further stretching the fused sheet by 1.5 to 5.0 times;
It includes.
以下に、上記の各工程について、さらに具体的に説明する。 The following provides a more detailed explanation of each of the above steps.
(a)積層シートを形成する工程
まず、本工程では、前記の熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる層となる層を有するシートを形成する。この熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる層となる層は、前記のとおり、スパンボンド法、あるいは、メルトブロー法によって形成される不織布層であることが好ましく、より好ましくはスパンボンド法によって形成される不織布層である。
(a) Step of forming a laminated sheet First, in this step, a sheet is formed having a layer that will become a layer composed of fibers F A whose main component is the thermoplastic resin A. As described above, the layer that will become a layer composed of fibers F A whose main component is thermoplastic resin A is preferably a nonwoven fabric layer formed by the spunbond method or the meltblowing method, and more preferably a nonwoven fabric layer formed by the spunbond method.
このスパンボンド法とは、一般に、原料である熱可塑性樹脂を溶融し、紡糸口金から紡糸した後、高速の空気によって牽引して得られた糸条を、移動する捕集ベルト上に捕集して不織繊維ウェブ化した後、熱接着する工程を要する不織布の製造方法である。本発明の長繊維不織布では、スパンボンド法を採用することにより、高速の空気での牽引により分子配向が促進されるとともに、熱接着により繊維同士が強固に固定されるため、衛生材料などとして使用するために十分な強度を得ることができる。 The spunbond method is a method of manufacturing nonwoven fabric that generally involves melting the thermoplastic resin raw material, spinning it from a spinneret, pulling it with high-speed air to obtain threads, collecting them on a moving collection belt to form a nonwoven fiber web, and then thermally bonding it. By using the spunbond method in the long-fiber nonwoven fabric of the present invention, molecular orientation is promoted by the pulling with high-speed air, and the fibers are firmly fixed together by thermal bonding, so that it can obtain sufficient strength for use as a sanitary material, etc.
本発明に係る熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる層となる層を形成する際に用いる紡糸口金としては、丸孔や異形孔を適宜使用することができるが、紡糸安定性の観点から丸孔が好ましい。特に、捲縮数を多くするために複合紡糸を行うことは好ましい態様であり、その場合は、サイドバイサイド型複合断面または、偏心芯鞘複合断面を形成できる機構を具備している口金を用いることができる。 A spinneret used for forming a layer composed of fibers F A mainly composed of thermoplastic resin A according to the present invention may have a round hole or a different shape hole as appropriate, but from the viewpoint of spinning stability, a round hole is preferred. In particular, it is a preferred embodiment to perform composite spinning in order to increase the number of crimps, and in this case, a spinneret equipped with a mechanism capable of forming a side-by-side type composite cross section or an eccentric core-sheath composite cross section may be used.
本発明に係る熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる層となる層を形成する際の、高速の空気による牽引で最終的に到達する速度である紡糸速度は、好ましくは2000m/分以上、より好ましくは3000m/分以上とすることが好ましい。紡糸速度を2000m/分以上とすることにより、高い生産性を有することになり、また繊維の配向結晶化が進み、より高い強度の繊維、そしてより高い強度の長繊維不織布を得ることができる。一方、前記の紡糸速度は、好ましくは8000m/分以下、より好ましくは7000m/分以下とすることが好ましい。このようにすることで、優れた柔軟性を有する長繊維不織布を得ることができる。 The spinning speed, which is the speed finally reached by pulling with high-speed air when forming a layer composed of fibers F A mainly composed of thermoplastic resin A according to the present invention, is preferably 2000 m/min or more, more preferably 3000 m/min or more. By setting the spinning speed to 2000 m/min or more, high productivity is achieved, and the orientation and crystallization of the fibers progresses, making it possible to obtain fibers with higher strength and long-fiber nonwoven fabrics with higher strength. On the other hand, the spinning speed is preferably 8000 m/min or less, more preferably 7000 m/min or less. In this way, a long-fiber nonwoven fabric with excellent flexibility can be obtained.
また、本工程において、前記シートは、さらに、熱可塑性樹脂Aとは異なる熱可塑性樹脂Bを主成分とする繊維FBで構成されてなる長繊維不織布層となる層を少なくとも1層有する積層シートとすることが好ましい。ここでいう熱可塑性樹脂Bは前記の熱可塑性樹脂Bである。とりわけ、熱可塑性樹脂Bに前記の脂肪酸アミド化合物を0.01質量%以上5.0質量%以下加えて紡糸することは、紡糸工程での繊維化がスムーズとなり、工程を安定化させられる観点でより好ましい。 In this step, the sheet is preferably a laminated sheet further having at least one layer serving as a long-fiber nonwoven fabric layer composed of fibers F B mainly composed of a thermoplastic resin B different from the thermoplastic resin A. The thermoplastic resin B here is the thermoplastic resin B. In particular, adding 0.01% by mass or more and 5.0% by mass or less of the fatty acid amide compound to the thermoplastic resin B and spinning the mixture is more preferable from the viewpoint of smooth fiberization in the spinning step and stabilizing the process.
なお、前記の、熱可塑性樹脂Aとは異なる熱可塑性樹脂Bを主成分とする繊維FBで構成されてなる長繊維不織布層は、前記のとおり、スパンボンド法、あるいは、メルトブロー法によって形成される不織布層であることが好ましく、より好ましくはスパンボンド法によって形成される不織布層である。 As described above, the long-fiber nonwoven fabric layer composed of fibers F B mainly composed of thermoplastic resin B different from thermoplastic resin A is preferably a nonwoven fabric layer formed by a spunbond method or a meltblowing method, and more preferably a nonwoven fabric layer formed by a spunbond method.
そして、本工程では、前記のとおり、熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる層となる層を有するシートを形成する。長繊維不織布において、熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる層のみとする場合は、この層を形成した後、そのまま次の工程に進めることとする。熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる層以外の層(その他の層)を含む場合は、その他の層となる層を積層した積層シートを形成した後、次の工程に進めることとする。その他の層としては、例えば熱可塑性樹脂Aとは異なる熱可塑性樹脂Bを主成分とする繊維FBで構成されてなる長繊維不織布層となる層、前記その他の構造体となる層などが挙げられ、なかでも熱可塑性樹脂Aとは異なる熱可塑性樹脂Bを主成分とする繊維FBで構成されてなる長繊維不織布層となる層を積層することが好ましい。前記その他の層を積層する場合において、これらは少なくとも1層以上積層することができる。なお、次工程以降、「積層シート」と記載されているところは、長繊維不織布において、熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる層のみとする場合は、「熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる層となる層」と記載されているものとして読み替えることとする。 In this step, as described above, a sheet having a layer that will become a layer composed of fibers F 2 A whose main component is thermoplastic resin A is formed. In the case where the long-fiber nonwoven fabric is only a layer composed of fibers F 2 A whose main component is thermoplastic resin A, this layer is formed and then the next step is carried out as is. In the case where layers (other layers) other than the layer composed of fibers F 2 A whose main component is thermoplastic resin A are included, a laminated sheet is formed by laminating layers that will become the other layers, and then the next step is carried out. Examples of the other layers include a layer that will become a long-fiber nonwoven fabric layer composed of fibers F 2 B whose main component is thermoplastic resin B different from thermoplastic resin A, and a layer that will become the other structure. Among them, it is preferable to laminate a layer that will become a long-fiber nonwoven fabric layer composed of fibers F 2 B whose main component is thermoplastic resin B different from thermoplastic resin A. In the case where the other layers are laminated, at least one of these layers can be laminated. In the subsequent steps and thereafter, when the long-fiber nonwoven fabric has only a layer composed of fibers F A having thermoplastic resin A as a main component, the term "laminate sheet" should be read as "a layer which will be composed of fibers F A having thermoplastic resin A as a main component."
この積層シートとは、使用される目的等に応じて選択されるものであり、前記したように、長繊維不織布となったときに、以下のような構成となるもの、すなわち、一方の表面側に熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる層(O層)、他方の表面側に熱可塑性樹脂Aとは異なる熱可塑性樹脂Bを主成分とする繊維FBで構成されてなる長繊維不織布層(I層)が積層されてなるもの、両方の表面側にO層が積層されてなるもの、さらには、O層/I層/O層の順に積層されてなるものなど、複数の長繊維不織布層を含むものである。上記されていない4層以上の具体的な積層構成としては、例えば、O層/I層/I層/O層、O層/I層/O層/I層、O層/I層/O層/I層/O層、O層/I層/I層/I層/O層などが挙げられる。中でも、ラバータッチになり易い繊維FBで構成された層の表裏両面にスムーズなタッチを得易い繊維FAで構成された層が積層されてなる形態、すなわち、O層/I層/O層の順に積層されてなるもの、あるいは、O層/I層/O層/I層/O層の順に積層されてなるものなどがより好ましい。 The laminated sheet is selected depending on the purpose of use, and as described above, when it becomes a long-fiber nonwoven fabric, it has the following configuration, that is, a layer (O layer) composed of fibers F A whose main component is thermoplastic resin A on one surface side and a long-fiber nonwoven fabric layer (I layer) composed of fibers F B whose main component is thermoplastic resin B different from thermoplastic resin A on the other surface side, a layer having O layers laminated on both surface sides, and further a layer having O layers/I layers/O layers laminated in this order, which includes a plurality of long-fiber nonwoven fabric layers. Specific laminated structures of four or more layers not mentioned above include, for example, O layers/I layers/I layers/O layers, O layers/I layers/O layers/I layers, O layers/I layers/O layers/I layers/O layers, and O layers/I layers/I layers/I layers/O layers. Among these, a form in which a layer made of fiber F A , which is likely to provide a smooth touch, is laminated on both sides of a layer made of fiber F B, which is likely to provide a rubber-like touch, i.e., a form in which the layers are laminated in the order of O layer/I layer/O layer, or a form in which the layers are laminated in the order of O layer/I layer/O layer/I layer/O layer, is more preferable.
本発明において、前記の積層シートの各層が一体化していることが好ましい。ここでいう一体化とは、これらの層が繊維同士の交絡、接着剤等の成分による固定、それぞれの層を構成する熱可塑性樹脂同士の融着によって接合しているものである。ただし、それぞれの層を構成する熱可塑性樹脂同士の融着によって接合する場合は、後述する工程(b)と同時に行ってもよく、例えば、O層の上に直接I層を形成するなどして接合することも好ましい。 In the present invention, it is preferable that the layers of the laminated sheet are integrated. Integrating here means that these layers are joined by entangling the fibers, fixing with an adhesive or other component, or fusing the thermoplastic resins that make up each layer together. However, when joining by fusing the thermoplastic resins that make up each layer together, this may be done simultaneously with step (b) described below, and it is also preferable to join them by, for example, forming the I layer directly on the O layer.
(b)融着シートを形成する工程
続いて、この工程では、前記のシートを、表面温度が0℃以上120℃以下としたロールで加圧して融着シートを形成する。
(b) Step of Forming a Fused Sheet Next, in this step, the sheet is pressed with a roll having a surface temperature of 0° C. or more and 120° C. or less to form a fused sheet.
この工程で用いられる前記のロールは、積層シートに規則的なパターンの融着部を有させるものとすることが好ましく、具体的には、規則的なパターンを有するエンボスロールとフラットロールとで構成されてなる一対のロールとすることがより好ましい。 The rolls used in this process are preferably ones that give the laminated sheet a regular pattern of fused parts, and more specifically, it is more preferable for them to be a pair of rolls consisting of an embossing roll and a flat roll that have a regular pattern.
ここで、規則的なパターンを有するエンボスロールとは、例えば、融着部に対応する部分に突起部分(凸部)が形成されているもの、あるいは、融着部に対応しない部分に凹形状が形成されているものである。特に、融着部に対応する凸部の頂上部分に更に凹凸が形成されていたり、頂上部分が曲面になっていたりすると、後述する融着シートを延伸する工程において、扁平化した繊維FA同士をより容易に引き離すことができるようになる。 Here, the embossing roll having a regular pattern is, for example, one having protrusions (convex portions) formed in the portions corresponding to the fused parts, or one having concave shapes formed in the portions not corresponding to the fused parts. In particular, if the top portions of the convex portions corresponding to the fused parts are further uneven or have curved top surfaces, the flattened fibers F A can be more easily separated from each other in the step of stretching the fused sheet described below.
そして、この融着部について、隣接する融着部同士の間隔が、50μm以上20mm以下となるように付与することが好ましい。融着部同士の間隔が50μm以上とすることによって、柔軟性と優れた伸縮性を有する長繊維不織布を製造することができる。一方、融着部同士の間隔が20mm以下とすることによって、加圧部で形成された扁平部による形態安定化の効果が得やすくなる。 The fused portions are preferably provided so that the distance between adjacent fused portions is 50 μm or more and 20 mm or less. By making the distance between fused portions 50 μm or more, a long-fiber nonwoven fabric having flexibility and excellent stretchability can be produced. On the other hand, by making the distance between fused portions 20 mm or less, the shape stabilization effect of the flattened portion formed by the pressurizing portion can be easily obtained.
さらに、前記のロールの表面温度は、0℃以上120℃以下とすることが好ましい。前記の表面温度を好ましくは0℃以上、より好ましくは5℃以上、さらに好ましくは10℃以上とすることで、形態安定性に優れた長繊維不織布が得られるとともに、加圧部の繊維FAをより扁平化させて、前記の見かけの繊維径を大きくすることができる。一方、前記の表面温度を好ましくは120℃以下、より好ましくは90℃以下、さらに好ましくは60℃以下とすることで、後述する融着シートを延伸する工程において、扁平化した繊維FA同士をより容易に引き離すことができるようになる。 Furthermore, the surface temperature of the roll is preferably 0° C. or higher and 120° C. or lower. By setting the surface temperature at 0° C. or higher, more preferably 5° C. or higher, and even more preferably 10° C. or higher, a long-fiber nonwoven fabric having excellent dimensional stability can be obtained, and the fibers F A in the pressurizing section can be further flattened to increase the apparent fiber diameter. On the other hand, by setting the surface temperature at 120° C. or lower, more preferably 90° C. or lower, and even more preferably 60° C. or lower, the flattened fibers F A can be more easily separated from each other in the step of stretching the fused sheet described below.
加えて、前記の加圧について、ロールの線圧が0.5N/cm以上5.0N/cm以下とすることが好ましい。このような線圧で加圧し、融着シートを形成しておくことによって、後述する融着シートを延伸する工程において、繊維同士の接着を解除しやすいためである。 In addition, it is preferable that the linear pressure of the roll be 0.5 N/cm or more and 5.0 N/cm or less for the above-mentioned pressing. By pressing with such a linear pressure to form a fused sheet, the adhesion between the fibers can be easily released in the process of stretching the fused sheet described below.
(c)融着シートを延伸する工程
そして、本工程では、前記の融着シートを幅方向および/または長手方向に1.5倍以上5.0倍以下の範囲で延伸する。この延伸は、融着シートを幅方向および/または長手方向へと延伸操作を加えるような一般的な延伸装置で実施してもよいし、特開2003-73967号公報等に記載されたギア延伸と呼ばれる方法を用いてもよい。いずれにしても、この工程まで経ることで、「熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる層となる層」が「熱可塑性樹脂Aを主成分とする繊維FAで構成されてなる層」となる。
(c) Step of Stretching the Fused Sheet In this step, the fused sheet is stretched in the width direction and/or the longitudinal direction in the range of 1.5 to 5.0 times. This stretching may be performed by a general stretching device that stretches the fused sheet in the width direction and/or the longitudinal direction, or a method called gear stretching described in JP-A-2003-73967 may be used. In any case, by going through this step, the "layer that will become a layer composed of fibers F A having thermoplastic resin A as a main component" becomes a "layer composed of fibers F A having thermoplastic resin A as a main component".
前記の範囲(延伸倍率と称することがある)について、その下限を好ましくは1.5倍以上、より好ましくは2.0倍以上とすることで、融着部における繊維FA同士の密着を解除して、伸縮性に優れた長繊維不織布を得ることができる。また、密着が解除されることによって厚みが増加し、かさ高くなるためソフトなタッチの長繊維不織布を得ることができる。一方、前記の範囲(延伸倍率)を好ましくは5.0倍以下、より好ましくは4.0倍以下とすることで、部分的に繊維FA同士の密着を残すことができ、優れた形態安定性を有する長繊維不織布を得ることができる。 By setting the lower limit of the above range (sometimes referred to as the stretch ratio) to preferably 1.5 times or more, more preferably 2.0 times or more, the adhesion between the fibers F A in the fused parts can be released, and a long-fiber nonwoven fabric with excellent elasticity can be obtained. In addition, the release of the adhesion increases the thickness and the bulk, and a long-fiber nonwoven fabric with a soft touch can be obtained. On the other hand, by setting the above range (stretch ratio) to preferably 5.0 times or less, more preferably 4.0 times or less, the adhesion between the fibers F A can be partially maintained, and a long-fiber nonwoven fabric with excellent shape stability can be obtained.
本発明の延伸時のギアロールのロール温度(延伸温度)は、10℃以上150℃以下とすることが好ましい。延伸温度を好ましくは10℃以上、より好ましくは30℃以上、さらに好ましくは50℃以上とすることで、繊維を破損させることなく伸長させることができる。一方、延伸温度を好ましくは150℃以下、より好ましくは130℃以下とすることで、工程内での繊維の変形を小さくすることができ、安定して延伸することができる。 The roll temperature (stretching temperature) of the gear roll during stretching in the present invention is preferably 10°C or higher and 150°C or lower. By setting the stretching temperature to preferably 10°C or higher, more preferably 30°C or higher, and even more preferably 50°C or higher, the fibers can be stretched without breaking. On the other hand, by setting the stretching temperature to preferably 150°C or lower, more preferably 130°C or lower, deformation of the fibers during the process can be reduced, allowing for stable stretching.
なお、この工程は、前記の融着シートが得られた後、直ちに(連続して)行ってもよいし、一旦、前記の融着シートを巻き取ってロール状のものとした後、これを送り出して行ってもよい。 This step may be carried out immediately (continuously) after the fused sheet is obtained, or it may be carried out after the fused sheet is first wound into a roll and then sent out.
(4)その他の工程
本発明の長繊維不織布は、その用途や目的に応じて、孔開けや、親水処理など各種処理剤の付与、他の材料との積層、印刷などを適宜実施することができる。
(4) Other Steps Depending on the application or purpose, the long-fiber nonwoven fabric of the present invention may be appropriately subjected to processes such as drilling holes, applying various treatments such as hydrophilic treatment, laminating with other materials, printing, etc.
孔開け加工は、厚み方向に貫通する開孔部が設けられてもよいし、特定の層だけが開孔した非貫通孔が設けられてもよい。 The perforation process may be performed to create openings that penetrate through the thickness direction, or to create blind holes that are only open in specific layers.
処理剤の付与は、必要に応じて、絞りや乾燥工程を設けてもよい。処理剤を長繊維不織布に付着させる方法は特に限定されるものではなく、例えば、処理剤を溶解または分散させた液を塗布する方法、浸漬する方法などを挙げることができる。処理剤としては親水剤以外にも、抗菌剤、酸化防止剤、防腐剤、艶消し剤、顔料、防錆剤、芳香剤、消泡剤等を例示することができる。 The application of the treatment agent may include a squeezing or drying process, if necessary. The method for applying the treatment agent to the long-fiber nonwoven fabric is not particularly limited, and examples include a method of applying a liquid in which the treatment agent is dissolved or dispersed, and a method of immersion. In addition to hydrophilic agents, examples of treatment agents include antibacterial agents, antioxidants, preservatives, matting agents, pigments, rust inhibitors, fragrances, and defoamers.
また、本発明の長繊維不織布に前記その他の構造体を積層する場合において、各層を積層する(例えば、貼り合せる)方法は限定されない。例えば、熱エンボスや超音波融着といった熱融着、ニードルパンチ、ウォータージェット等の機械的交絡、ホットメルトや溶剤系の接着剤での接着など公知の方法で実施できる。 In addition, when laminating the other structures to the long-fiber nonwoven fabric of the present invention, the method of laminating (e.g., bonding) each layer is not limited. For example, it can be performed by a known method such as heat fusion such as heat embossing or ultrasonic fusion, mechanical entanglement such as needle punching or water jet, or adhesion with a hot melt or solvent-based adhesive.
印刷は、グラビア印刷、モールドプリント、シルクスクリーン印刷、オフセット印刷等の公知の方法を挙げることができる。 Printing methods include known methods such as gravure printing, mold printing, silk screen printing, and offset printing.
[衛生材料]
本発明の衛生材料は、その少なくとも一部が前記の長繊維不織布から構成されるものであることが好ましい。このような前記の長繊維不織布が伸長材料として用いられるような衛生材料であることで、肌触りと伸縮性とに優れた衛生材料となる。
[Hygienic materials]
The sanitary material of the present invention is preferably at least partially composed of the long-fiber nonwoven fabric. By using such a long-fiber nonwoven fabric as an extensible material, the sanitary material has excellent touch and stretchability.
また、本発明の衛生材料は、その少なくとも一部が、前記の長繊維不織布とひだ状の長繊維不織布が接着した伸長部材で構成されていることも、表面の耐久性に優れるものであり、同様に好ましい。 Furthermore, it is also preferable that at least a portion of the sanitary material of the present invention is composed of an extensible member in which the long-fiber nonwoven fabric and the pleated long-fiber nonwoven fabric are bonded together, as this provides excellent surface durability.
なお、本発明の衛生材料とは、医療・介護など健康に関わる目的で使用される、主に使い捨ての物品のことを指し、具体的には、紙おむつ、生理用ナプキン、ガーゼ、包帯、マスク、手袋、絆創膏等が挙げられ、その構成部材、例えば、紙おむつのトップシート、バックシート、サイドギャザー等も含まれる。 The sanitary materials of the present invention refer to primarily disposable items used for health-related purposes such as medical care and nursing care, and specific examples include disposable diapers, sanitary napkins, gauze, bandages, masks, gloves, bandages, etc., as well as their constituent parts, such as the top sheet, back sheet, and side gathers of disposable diapers.
次に、実施例に基づき本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。 Next, the present invention will be specifically explained based on examples. However, the present invention is not limited to these examples.
[測定方法]
実施例で用いた評価法とその測定条件について説明する。なお、各物性の測定において、特段の記載がないものは、前記の方法に基づいて測定、算出を行ったものである。
[Measurement method]
The evaluation methods and measurement conditions used in the examples are described below. In addition, in the measurement of each physical property, unless otherwise specified, the measurement and calculation were performed based on the above-mentioned methods.
(1) 熱可塑性樹脂Aの軟化温度TS,A(℃)、熱可塑性樹脂Bの軟化温度TS,B(℃)、これらの差の絶対値|TS,A-TS,B|(℃)
原子間力顕微鏡(AFM)のプローブ(カンチレバー)に加熱ヒーターを兼ねた温度センサーを取り付けたナノサーマルアナライザー装置として、Anasys Instruments社製「Nano-TA2」を用い、前記の方法で測定、算出した。
(1) Softening temperature T S,A (°C) of thermoplastic resin A, softening temperature T S,B (°C) of thermoplastic resin B, and absolute value of the difference between them |T S,A -T S,B | (°C)
The nano-thermal analyzer device, "Nano-TA2" manufactured by Anasys Instruments, was used as a nano-thermal analyzer device having a temperature sensor that also serves as a heater attached to the probe (cantilever) of an atomic force microscope (AFM), and measurements and calculations were performed using the above-mentioned method.
(2) 融着シートを形成する工程の前の繊維FA、繊維FBの平均単繊維径(μm)
融着シートを形成する工程の前の平均単繊維径(μm)は、以下の手順によって測定される値を採用した。
(i)各層を単独で形成し、その幅方向の端から10cmを除いた箇所からランダムに5mm×5mmの試験片を10枚切り出した。
(ii)試験片をエポキシ樹脂等の包埋剤にて包埋し、繊維軸に垂直方向の繊維横断面を株式会社日立ハイテクノロジーズ製走査型電子顕微鏡「SU1510」で10本以上の繊維が観察できる倍率にて画像を撮影した。
(iii)撮影された各画像から同一画像内で無作為に抽出した繊維を、画像解析ソフトImageJを用いて解析することで各繊維の断面積を測定し、真円換算で求められる繊維の単繊維径(μm)を求めた。
(iv)試験片1枚につき10回測定を行い、その算術平均値(μm)の小数点以下第二位を四捨五入した値を繊維の平均単繊維径(μm)とした。
(2) Average single fiber diameter (μm) of fibers F A and F B before the process of forming a fused sheet
The average single fiber diameter (μm) before the step of forming a fused sheet was measured by the following procedure.
(i) Each layer was formed independently, and ten test pieces of 5 mm x 5 mm were randomly cut out from each of the layers excluding a 10 cm area from each end in the width direction.
(ii) The test piece was embedded in an embedding agent such as epoxy resin, and an image of the fiber cross section perpendicular to the fiber axis was taken using a scanning electron microscope "SU1510" manufactured by Hitachi High-Technologies Corporation at a magnification such that 10 or more fibers could be observed.
(iii) Fibers randomly extracted from each captured image were analyzed using image analysis software ImageJ to measure the cross-sectional area of each fiber, and the single fiber diameter (μm) of the fiber calculated as a perfect circle was calculated.
(iv) Ten measurements were made for each test piece, and the arithmetic mean value (μm) was rounded off to one decimal place to obtain the average single fiber diameter (μm) of the fibers.
(3) 繊維FAで構成されてなる層(O層)、繊維FBで構成されてなる層(I層)の紡糸性(級)
各層を紡糸した際の糸切れ回数を測定し、以下の分類により評価した。
5:紡糸中の10分間に糸切れが発生しなかった。
3:糸切れ回数が紡糸中の10分間に1回以上9回以下であった。
1:糸切れ回数が紡糸中の10分間に10回以上であった。
(3) Spinnability (grade) of the layer (O layer) composed of fiber F A and the layer (I layer) composed of fiber F B
The number of times each layer was broken during spinning was counted and evaluated according to the following classification.
5: No yarn breakage occurred during 10 minutes of spinning.
3: The number of yarn breakages was 1 to 9 times within 10 minutes during spinning.
1: The number of yarn breakages was 10 or more times within 10 minutes during spinning.
(4) 繊維FAで構成されてなる層(O層)、繊維FBで構成されてなる層(I層)の目付(g/m2)
各層の目付は、各層を単独で形成し、そこから20cm×25cmの試験片を、試料の幅1m当たりランダムに3枚採取し、標準状態におけるそれぞれの質量(g)を量り、その平均値から1m2あたりの質量(g/m2)を算出した。
(4) The basis weight (g/m 2 ) of the layer (O layer) composed of the fiber F A and the layer (I layer) composed of the fiber F B
The basis weight of each layer was determined by forming each layer independently, randomly taking three 20 cm x 25 cm test pieces per meter of sample width from each layer, measuring the mass (g) of each piece under standard conditions, and calculating the mass per m2 (g/ m2 ) from the average value.
(5) 繊維FAの25mm当たりの捲縮数
走査型電子顕微鏡(SEM)として、株式会社キーエンス製「VHX6000」を用い、前記の方法で測定、算出した。
(5) Number of crimps per 25 mm of fiber F A : The number of crimps per 25 mm was measured and calculated using a scanning electron microscope (SEM) "VHX6000" manufactured by Keyence Corporation according to the method described above.
(6) 繊維FAの見かけの最大繊維径Dmax(μm)、見かけの最小繊維径Dmin(μm)、これらの比Dmax/Dmin(-)
走査型電子顕微鏡(SEM)として、株式会社キーエンス製「VHX6000」を用い、前記の方法で測定、算出した。
(6) Apparent maximum fiber diameter D max (μm), apparent minimum fiber diameter D min (μm), and ratio thereof D max /D min (-) of fiber F A
As a scanning electron microscope (SEM), a "VHX6000" manufactured by Keyence Corporation was used, and measurements and calculations were carried out according to the above-mentioned methods.
(7) 長繊維不織布の伸長回復率(%)
引張試験機として、株式会社オリエンテック製“テンシロン”(TENSILON)「UCT-100」)を用い、前記の方法で測定、算出した。
(7) Elongation recovery rate (%) of long fiber nonwoven fabric
The tensile strength was measured and calculated by the above-mentioned method using a tensile tester "TENSILON" (UCT-100) manufactured by Orientec Co., Ltd.
(8) 長繊維不織布の目付(g/m2)、厚み(mm)、見かけ密度(g/cm3)
形状測定機として、株式会社キーエンス製「VR3050」を用い、前記の方法で測定、算出した。
(8) Weight (g/ m2 ), thickness (mm), and apparent density (g/ cm3 ) of long fiber nonwoven fabric
The shape measuring machine used was a "VR3050" manufactured by Keyence Corporation, and measurements and calculations were performed according to the above-mentioned method.
(9) 長繊維不織布の最大破断伸度Emax(%)、最小破断伸度Emin(%)、これらの比Emax/Emin(-)
引張試験機として、株式会社オリエンテック製“テンシロン”(TENSILON)「UCT-100」)を用い、前記の方法で測定、算出した。
(9) Maximum breaking elongation E max (%), minimum breaking elongation E min (%), and ratio thereof E max /E min (-) of long fiber nonwoven fabric
The tensile strength was measured and calculated by the above-mentioned method using a tensile tester "TENSILON" (UCT-100) manufactured by Orientec Co., Ltd.
(10) 肌触り(級)
長繊維不織布を健康な一般成人(男女15名ずつ計30名)が手で触り、表面の触感を次の3段階で評価した。そして、評価結果の平均点を算出し、その値を長繊維不織布の肌触りの評価結果とした。
5: 空気層を含むソフトな押さえ心地で、スムーズな撫で心地である
3: 空気層を含むソフトな押さえ心地ではあるがスムーズでないか、空気層を含むソフトな押さえ心地でないがスムーズな撫で心地である
1: 空気層を含むソフトな押さえ心地でもスムーズな撫で心地でもない(硬く、ラバータッチ)。
(10) Texture (grade)
The long-fiber nonwoven fabrics were touched by healthy adults (a total of 30 people, 15 men and 15 women) and the surface texture was evaluated using the following three-level scale. The average score of the evaluation results was calculated and used as the evaluation result of the texture of the long-fiber nonwoven fabric.
5: Soft pressing feel including air layer, smooth stroking feel 3: Soft pressing feel including air layer but not smooth, or not soft pressing feel including air layer but smooth stroking feel 1: Neither soft pressing feel including air layer nor smooth stroking feel (hard, rubbery touch).
(11) 形態安定性(級)
前述の(10)肌触りを評価した後の長繊維不織布の外観について、目視により以下の基準によって、3段階で評価した。そして、評価結果の平均点を算出し、その値を長繊維不織布の形態安定性の評価結果とした。
5:毛玉や毛羽立ち、繊維の撚れがないか、はっきりとは確認できない。
3:毛玉、毛羽立ち、繊維の撚れがはっきりと確認できる。
1:繊維層の剥がれがはっきりと確認できる。
(11) Shape stability (grade)
The appearance of the long-fiber nonwoven fabric after the evaluation of the above-mentioned (10) skin feel was visually evaluated on a three-level scale according to the following criteria. The evaluation results were then averaged, and the average value was used to evaluate the morphology of the long-fiber nonwoven fabric. The results were used as an evaluation of stability.
5: It is not possible to clearly see any pilling, fuzzing, or twisted fibers.
3: Pilling, fuzzing, and twisted fibers are clearly visible.
1: Peeling of the fiber layer is clearly observed.
[実施例1]
(繊維FAで構成されてなる層となる層)
ポリプロピレン(HP5038(ポリミレイ社製)、表1~8ではPP1と表記した)を押出機で溶融し、紡糸温度235℃で、孔径φが0.30mmの矩形口金から、単孔吐出量が0.6g/分で紡出した。紡出した糸条を、高速の空気を用い、紡糸速度3530m/分で牽引し、移動するネット上に捕集して目付10g/m2のスパンボンド法によって形成される不織布層である繊維ウェブを得た。得られたスパンボンド不織布層(繊維FAで構成されてなる層となる層)を構成する捲縮繊維の特性は、平均単繊維径が15.5μmであった。
[Example 1]
(Layer that will be composed of fibers F A )
Polypropylene (HP5038 (manufactured by Polymiley), indicated as PP1 in Tables 1 to 8) was melted in an extruder and spun at a spinning temperature of 235°C from a rectangular die with a hole diameter φ of 0.30 mm at a single hole throughput of 0.6 g/min. The spun yarn was pulled at a spinning speed of 3,530 m/min using high-speed air and collected on a moving net to obtain a fiber web, which is a nonwoven fabric layer formed by a spunbond method with a basis weight of 10 g/ m2 . The characteristics of the crimped fibers constituting the obtained spunbond nonwoven fabric layer (the layer that will become the layer composed of fibers F A ) were that the average single fiber diameter was 15.5 μm.
(繊維FBで構成されてなる層)
脂肪酸アミド(エルカ酸アミド)を0.2質量%含むポリプロピレン系エラストマー(“Vistamaxx(登録商標)” 7050(ExxonMobil社製)、表1~3ではTPO1と表記した)(軟化温度45℃)を押出機で溶融し、紡糸温度が230℃として矩形口金から、単孔あたりの吐出量が0.2g/分で紡出した。紡出した糸条を、高速の空気を用い、紡糸速度900m/分で牽引し、移動するネット上に捕集して目付20g/m2のスパンボンド法によって形成される不織布層である繊維ウェブを得た。得られたスパンボンド不織布層(繊維FBで構成されてなる層)を構成する繊維の特性は、平均単繊維径が18.0μmであった。
(Layer composed of fiber F B )
A polypropylene-based elastomer containing 0.2% by mass of fatty acid amide (erucic acid amide) ("Vistamaxx (registered trademark)" 7050 (manufactured by ExxonMobil), represented as TPO1 in Tables 1 to 3) (softening temperature 45°C) was melted in an extruder and spun from a rectangular die at a spinning temperature of 230°C and a throughput of 0.2 g/min per hole. The spun yarn was pulled at a spinning speed of 900 m/min using high-speed air and collected on a moving net to obtain a fiber web, which is a nonwoven fabric layer formed by a spunbond method and has a basis weight of 20 g/ m2 . The characteristics of the fibers constituting the obtained spunbond nonwoven fabric layer (layer composed of fibers F B ) were that the average single fiber diameter was 18.0 μm.
(長繊維不織布)
上記で得られた繊維FAで構成されてなる層となる層の上に、上記した方法で、繊維FBで構成されてなる層を直接捕集し、さらに、その上に前記繊維FAで構成されてなる層と同様の不織布層を捕集することで、積層シートを形成した。
(long fiber nonwoven fabric)
A layer composed of fiber F B was directly collected on top of the layer composed of fiber F A obtained above, by the method described above, and a nonwoven fabric layer similar to the layer composed of fiber F A was further collected on top of that, thereby forming a laminated sheet.
続いて、得られた積層シートを、上ロールに正円形の凸部がMDおよびCDの両方向に同じピッチで千鳥配置された金属製エンボスロールを用い、下ロールに金属製フラットロールで構成される上下一対の加熱機構を有するエンボスロールを用いて、線圧が3N/cmで、エンボスロールの表面温度が40℃の温度で加圧して、融着シートを形成した。 Then, the obtained laminated sheet was pressed using a metal embossing roll with circular protrusions arranged in a staggered pattern at the same pitch in both the MD and CD directions as the upper roll, and an embossing roll with a pair of upper and lower heating mechanisms consisting of a metal flat roll as the lower roll, at a linear pressure of 3 N/cm and a surface temperature of the embossing roll of 40°C to form a fused sheet.
さらに、その融着シートをギア延伸装置に通し、幅方向に2.4倍、長手方向に1.1倍、延伸温度40℃で延伸を施し、目付が40g/m2の長繊維不織布を得た。得られた長繊維不織布の評価結果を表1に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しており、かつ、良好な伸縮性を有するものであった。 The fused sheet was then passed through a gear stretching device and stretched 2.4 times in the width direction and 1.1 times in the longitudinal direction at a stretching temperature of 40° C. to obtain a long-fiber nonwoven fabric having a basis weight of 40 g/ m2 . The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 1. The obtained long-fiber nonwoven fabric had a smooth surface without pleats and good stretchability.
[実施例2]
(繊維FAで構成されてなる層となる層)の構成する繊維について、ポリプロピレン(PP1)と、エチレン共重合ポリプロピレン(RP361S(Lyondell Basell社製)、coPE/PP)を、それぞれ押出機で溶融し、紡糸温度が235℃で、質量比率は1:1として、孔径φが0.30mmの矩形口金から、単孔吐出量が0.6g/分で紡出して、サイドバイサイド型複合繊維(樹脂種について、表1~8では「PP1-coPE/PP」と表記した)に変えたこと以外は、実施例1と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表1に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しており、空気層を含むソフトな押さえ心地で、かつ、優れた伸縮性を有するものであった。
[Example 2]
A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that the fibers constituting the layer (which will become the layer constituted by fiber F A ) were changed to side-by-side type composite fibers (the resin type is indicated as "PP1-coPE/PP" in Tables 1 to 8) by melting polypropylene (PP1) and ethylene copolymer polypropylene (RP361S (manufactured by Lyondell Basell), coPE/PP) in an extruder at a spinning temperature of 235°C and a mass ratio of 1:1, and spinning them from a rectangular spinneret with a hole diameter of 0.30 mm at a single-hole output rate of 0.6 g/min. The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 1. The obtained long-fiber nonwoven fabric had a smooth surface without pleats, a soft feeling of pressing including an air layer, and excellent stretchability.
[実施例3]
(繊維FBで構成されてなる層)において、ポリプロピレン系エラストマーを用いていたところ、ポリウレタン系エラストマー(表1~8ではTPUと表記した)に変えたこと以外は、実施例1と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表1に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しており、かつ、良好な伸縮性を有するものであった。
[Example 3]
A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that in the layer (composed of fibers F through B ), a polypropylene-based elastomer was used but was changed to a polyurethane-based elastomer (referred to as TPU in Tables 1 to 8). The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 1. The obtained long-fiber nonwoven fabric had a smooth surface without pleats and good stretchability.
[実施例4]
(繊維FBで構成されてなる層)において、軟化温度が45℃のポリプロピレン系エラストマーを用いていたところ、軟化温度が111℃のポリプロピレン系エラストマーを(表2ではTPO2と表記した)に変えるとともに表2記載の条件としたこと以外は、実施例1と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表2に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しており、かつ、良好な伸縮性を有するものであった。
[Example 4]
A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that in the layer (made up of fibers F through B ), a polypropylene-based elastomer having a softening temperature of 45°C was used, but a polypropylene-based elastomer having a softening temperature of 111°C (represented as TPO2 in Table 2) was used instead, and the conditions were as shown in Table 2. The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 2. The obtained long-fiber nonwoven fabric had a smooth surface without pleats and good stretchability.
[実施例5]
(繊維FBで構成されてなる層)において、エルカ酸アミドの含有量が0.2質量%であったところ、0.005質量%に変えたこと以外は、実施例1と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表2に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しており、かつ、良好な伸縮性を有するものであった。
[Example 5]
A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that the content of erucic acid amide in (layer composed of fibers F through B ) was changed from 0.2% by mass to 0.005% by mass. The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 2. The obtained long-fiber nonwoven fabric had a smooth surface without pleats and good stretchability.
[実施例6]
(繊維FAで構成されてなる層となる層)
ポリプロピレン(PP1)と、脂肪酸アミド(エルカ酸アミド)を0.1質量%含むポリプロピレン系エラストマー(TPO1)を、それぞれ押出機で溶融し、紡糸温度が235℃で、質量比率は1:1として、孔径φが0.30mmの矩形口金から、単孔吐出量が0.6g/分で、サイドバイサイド型複合繊維(樹脂種について、表2では「PP1-TPO1」と表記した)を紡出した。紡出した糸条を、高速の空気を用い、紡糸速度3530m/分で牽引し、移動するネット上に捕集して目付20g/m2のスパンボンド法によって形成される不織布層である繊維ウェブを得た。得られたスパンボンド不織布層(繊維FAで構成されてなる層となる層)を構成する捲縮繊維の特性は、平均単繊維径が15.5μmであった。
[Example 6]
(Layer that will be composed of fibers F A )
Polypropylene (PP1) and a polypropylene-based elastomer (TPO1) containing 0.1% by mass of fatty acid amide (erucic acid amide) were melted in an extruder, and side-by-side composite fibers (resin type is indicated as "PP1-TPO1" in Table 2) were spun from a rectangular die with a hole diameter of 0.30 mm at a single hole output rate of 0.6 g/min at a spinning temperature of 235°C and a mass ratio of 1:1. The spun yarn was pulled at a spinning speed of 3530 m/min using high-speed air and collected on a moving net to obtain a fiber web, which is a nonwoven fabric layer formed by a spunbond method with a basis weight of 20 g/ m2 . The characteristics of the crimped fibers constituting the obtained spunbond nonwoven fabric layer (the layer that becomes the layer composed of fiber F A ) were an average single fiber diameter of 15.5 μm.
(長繊維不織布)
上記で得られた繊維FAで構成されてなる層となる層の上に、上記した方法で、前記繊維FAで構成されてなる層と同様の不織布層を捕集した。
(long fiber nonwoven fabric)
On top of the layer that would become the layer composed of the fibers F A obtained above, a nonwoven fabric layer similar to the layer composed of the fibers F A was collected by the method described above.
続いて、得られた積層シートを、上ロールに正円形の凸部がMDおよびCDの両方向に同じピッチで千鳥配置された金属製エンボスロールを用い、下ロールに金属製フラットロールで構成される上下一対の加熱機構を有するエンボスロールを用いて、線圧が3N/cmで、エンボスロールの表面温度が40℃の温度で加圧して、融着シートを形成した。 Then, the obtained laminated sheet was pressed using a metal embossing roll on the upper roll, which has circular protrusions arranged in a staggered pattern at the same pitch in both the MD and CD directions, and an embossing roll on the lower roll, which has a pair of upper and lower heating mechanisms consisting of a metal flat roll, at a linear pressure of 3 N/cm and a surface temperature of the embossing roll of 40°C to form a fused sheet.
さらに、その融着シートをギア延伸装置に通し、幅方向に2.4倍、長手方向に1.1倍、延伸温度40℃で延伸を施し、目付が40g/m2の長繊維不織布を得た。得られた長繊維不織布の評価結果を表2に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しており、かつ、良好な伸縮性を有するものであった。 The fused sheet was then passed through a gear stretching device and stretched 2.4 times in the width direction and 1.1 times in the longitudinal direction at a stretching temperature of 40° C. to obtain a long-fiber nonwoven fabric having a basis weight of 40 g/ m2 . The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 2. The obtained long-fiber nonwoven fabric had a smooth surface without pleats and good stretchability.
[実施例7]
(長繊維不織布)において、エンボスロールの表面温度が40℃であったところを、55℃に変え、さらに、ロールの線圧が3N/cmであったところを5N/cmに変えたこと以外は、実施例1と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表3に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しており、かつ、良好な伸縮性を有するものであった。
[Example 7]
A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that the surface temperature of the embossing roll was changed from 40° C. to 55° C., and the linear pressure of the roll was changed from 3 N/cm to 5 N/cm. The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 3. The obtained long-fiber nonwoven fabric had a smooth surface without pleats and good stretchability.
[実施例8]
(繊維FAで構成されてなる層)の構成する繊維について、ポリエチレンテレフタレート(PET)を押出機で溶融し、紡糸温度が290℃で、孔径φが0.30mmの矩形口金から、単孔吐出量が0.9g/分で紡出して、紡出した糸条を、高速の空気を用い、紡糸速度4700m/分で牽引したこと以外は、実施例1と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表3に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しており、優れた伸縮性を有するものであった。
[Example 8]
For the fibers constituting the layer composed of fibers F A , polyethylene terephthalate (PET) was melted in an extruder, spun from a rectangular spinneret having a hole diameter φ of 0.30 mm at a single-hole throughput rate of 0.9 g/min at a spinning temperature of 290° C., and the spun yarn was pulled at a spinning speed of 4700 m/min using high-speed air, to obtain a long-fiber nonwoven fabric in the same manner as in Example 1. The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 3. The obtained long-fiber nonwoven fabric had a smooth surface without pleats and had excellent stretchability.
[実施例9]
(繊維FAで構成されてなる層)の構成する繊維について、ポリブチレンテレフタレート(PBT)を押出機で溶融し、紡糸温度が260℃で、孔径φが0.30mmの矩形口金から、単孔吐出量が0.9g/分で紡出して、紡出した糸条を、高速の空気を用い、紡糸速度4700m/分で牽引したこと以外は、実施例1と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表3に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しており、優れた伸縮性を有するものであった。
[Example 9]
For the fibers constituting the layer composed of fibers F A , polybutylene terephthalate (PBT) was melted in an extruder, spun from a rectangular spinneret having a hole diameter φ of 0.30 mm at a single hole output rate of 0.9 g/min at a spinning temperature of 260° C., and the spun yarn was pulled at a spinning speed of 4700 m/min using high-speed air, to obtain a long-fiber nonwoven fabric in the same manner as in Example 1. The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 3. The obtained long-fiber nonwoven fabric had a smooth surface without pleats and had excellent stretchability.
[実施例10]
(繊維FAで構成されてなる層)の構成する繊維について、ポリアミド6(N6)を押出機で溶融し、紡糸温度が260℃で、孔径φが0.30mmの矩形口金から、単孔吐出量が0.9g/分で紡出して、紡出した糸条を、高速の空気を用い、紡糸速度4700m/分で牽引したこと以外は、実施例1と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表4に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しており、優れた伸縮性を有するものであった。
[Example 10]
A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that for the fibers constituting the layer (fiber F A ), polyamide 6 (N6) was melted in an extruder, spun at a spinning temperature of 260° C. from a rectangular spinneret with a hole diameter φ of 0.30 mm at a single-hole throughput of 0.9 g/min, and the spun yarn was pulled at a spinning speed of 4700 m/min using high-speed air. The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 4. The obtained long-fiber nonwoven fabric had a smooth surface without pleats and had excellent stretchability.
[実施例11]
(繊維FAで構成されてなる層)の構成する繊維について、ポリプロピレン(PP1)と、ポリエチレン(PE)を、それぞれ押出機で溶融したこと以外は、実施例2と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表4に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しており、空気層を含むソフトな押さえ心地で、かつ、優れた伸縮性を有するものであった。
[Example 11]
A long-fiber nonwoven fabric was obtained in the same manner as in Example 2, except that polypropylene (PP1) and polyethylene (PE) were melted in an extruder for the fibers constituting the layer (fiber F A) . The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 4. The obtained long-fiber nonwoven fabric had a smooth surface without pleats, a soft feel with an air layer, and excellent stretchability.
[実施例12]
(繊維FAで構成されてなる層)の構成する繊維について、ポリブチレンテレフタレート(PBT)と、ポリエチレン(PE)を、それぞれ押出機で溶融し、紡糸温度が260℃で、質量比率は1:1として、孔径φが0.30mmの矩形口金から、単孔吐出量が0.9g/分で紡出して、紡出した糸条を、高速の空気を用い、紡糸速度4700m/分で牽引した(樹脂種は「PBT-PE」と表記した)こと以外は、実施例2と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表4に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しており、空気層を含むソフトな押さえ心地で、かつ、優れた伸縮性を有するものであった。
[Example 12]
For the fibers constituting the layer composed of fibers F A , polybutylene terephthalate (PBT) and polyethylene (PE) were melted in an extruder, respectively, and spun from a rectangular die having a hole diameter φ of 0.30 mm at a single hole output rate of 0.9 g/min at a spinning temperature of 260° C. and a mass ratio of 1:1, and the spun yarn was pulled at a spinning speed of 4700 m/min using high-speed air (the resin type was indicated as "PBT-PE"). A long-fiber nonwoven fabric was obtained in the same manner as in Example 2, except that the fibers were melted in an extruder and spun from a rectangular die having a hole diameter φ of 0.30 mm at a single hole output rate of 0.9 g/min at a spinning temperature of 260° C. and a mass ratio of 1:1, and the spun yarn was pulled at a spinning speed of 4700 m/min using high-speed air (the resin type was indicated as "PBT-PE"). The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 4. The obtained long-fiber nonwoven fabric had a smooth surface without pleats, a soft feeling of pressing including an air layer, and excellent stretchability.
[実施例13]
(繊維FAで構成されてなる層)の構成する繊維について、ポリエチレンテレフタレート(PET)と、ポリエチレン(PE)を、それぞれ押出機で溶融し、紡糸温度を290℃とした(樹脂種は「PET-PE」と表記した)こと以外は、実施例12と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表5に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しており、空気層を含むソフトな押さえ心地で、かつ、優れた伸縮性を有するものであった。
[Example 13]
A long-fiber nonwoven fabric was obtained in the same manner as in Example 12, except that for the fibers constituting the layer (fiber F A ), polyethylene terephthalate (PET) and polyethylene (PE) were melted in an extruder and the spinning temperature was 290°C (the resin type was indicated as "PET-PE"). The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 5. The obtained long-fiber nonwoven fabric had a smooth surface without pleats, a soft feel with an air layer, and excellent stretchability.
[実施例14]
(繊維FBで構成されてなる層)において、ポリプロピレン系エラストマーを用いていたところ、スチレン系エラストマー(表ではSEBSと表記した)に変えたこと以外は、実施例1と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表5に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しており、かつ、良好な伸縮性を有するものであった。
[Example 14]
A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that in the layer (composed of fibers F through B ), a styrene-based elastomer (represented as SEBS in the table) was used instead of the polypropylene-based elastomer used in the layer (composed of fibers F through B). The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 5. The obtained long-fiber nonwoven fabric had a smooth surface without pleats and good stretchability.
[実施例15]
(繊維FBで構成されてなる層)において、軟化温度が45℃のポリプロピレン系エラストマーを用いていたところ、軟化温度が95℃のポリエチレン系エラストマーを(表ではTPO3と表記した)に変えたこと以外は、実施例1と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表5に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しており、かつ、良好な伸縮性を有するものであった。
[Example 15]
A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that in the layer (made up of fibers F through B ), a polypropylene-based elastomer having a softening temperature of 45°C was used, but a polyethylene-based elastomer having a softening temperature of 95°C (referred to as TPO3 in the table) was used instead. The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 5. The obtained long-fiber nonwoven fabric had a smooth surface without pleats and good stretchability.
[実施例16]
(繊維FBで構成されてなる層)において、ポリプロピレン系エラストマー(TPO1)と、スチレン系エラストマー(SEBS)を質量比率95:5で混合して押出機で溶融したこと(樹脂種は「TPO1-SEBS」と表記した)以外は、実施例1と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表6に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しており、かつ、良好な伸縮性を有するものであった。
[Example 16]
A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that in the layer (made up of fibers F B ), a polypropylene-based elastomer (TPO1) and a styrene-based elastomer (SEBS) were mixed in a mass ratio of 95:5 and melted in an extruder (the resin type was indicated as "TPO1-SEBS"). The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 6. The obtained long-fiber nonwoven fabric had a smooth surface without pleats and good stretchability.
[実施例17]
(繊維FAで構成されてなる層)の構成する繊維について、ポリプロピレン(PP1)と、それよりも粘度の高いポリプロピレン(HP562T(Lyondell Basell社製)、PP2)を、それぞれ押出機で溶融したこと以外は、実施例2と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表6に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しており、空気層を含むソフトな押さえ心地で、かつ、優れた伸縮性を有するものであった。
[Example 17]
A long-fiber nonwoven fabric was obtained in the same manner as in Example 2, except that for the fibers constituting the layer composed of fibers F A , polypropylene (PP1) and polypropylene having a higher viscosity (HP562T (manufactured by Lyondell Basell), PP2) were melted in an extruder, respectively. The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 6. The obtained long-fiber nonwoven fabric had a smooth surface without pleats, a soft feel with an air layer, and excellent stretchability.
[比較例1]
(長繊維不織布)において、得られた積層シートを加圧せず、そのままギア延伸装置に通すように変えたこと以外は、実施例1と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表7に示す。得られた長繊維不織布は、良好な伸縮性は有するものの、少し触れると簡単に表面の繊維が動いて繊維束を形成してゴワゴワしたタッチとなったり、部分的に繊維層が剥がれたりするなど、実用は難しいものであった。
[Comparative Example 1]
A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that the obtained laminated sheet was not pressed but was passed directly through the gear stretching device (long-fiber nonwoven fabric). The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 7. The obtained long-fiber nonwoven fabric had good stretchability, but the fibers on the surface easily moved when touched lightly, forming fiber bundles that made the fabric stiff to the touch, and the fiber layers partially peeled off, making it difficult to put into practical use.
[比較例2]
(長繊維不織布)において、エンボスロールの表面温度が40℃であったところを、130℃に変えたこと、その他の条件を表7記載のとおりに変更した以外は、実施例1と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表7に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しているものの、部分的に繊維が毛羽立っており、また、伸縮性に劣るものであった。
[Comparative Example 2]
A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that the surface temperature of the embossing roll was changed from 40° C. to 130° C. and other conditions were changed as shown in Table 7. The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 7. The obtained long-fiber nonwoven fabric had a smooth surface without pleats, but the fibers were partially fuzzed and it was poor in stretchability.
[比較例3]
(長繊維不織布)において、エンボスロールの表面温度が40℃であったところを、130℃に変えたこと、その他の条件を表7記載のとおりに変更した以外は、実施例2と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表7に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しているものの、部分的に繊維が毛羽立っており、また、伸縮性に劣るものであった。
[Comparative Example 3]
A long-fiber nonwoven fabric was obtained in the same manner as in Example 2, except that the surface temperature of the embossing roll was changed from 40° C. to 130° C., and other conditions were changed as shown in Table 7. The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 7. The obtained long-fiber nonwoven fabric had a smooth surface without pleats, but the fibers were partially fuzzed and it was poor in stretchability.
[比較例4]
(長繊維不織布)において、エンボスロールの表面温度が40℃であったところを、55℃に変え、さらに、ロールの線圧が3N/cmであったところを150N/cmに変えたこと以外は、実施例1と同様にして長繊維不織布を得た。得られた長繊維不織布の評価結果を表8に示す。得られた長繊維不織布は、ひだの無いスムーズな表面を有しているものの、部分的に繊維が毛羽立っており、また、伸縮性に劣るものであった。
[Comparative Example 4]
A long-fiber nonwoven fabric was obtained in the same manner as in Example 1, except that the surface temperature of the embossing roll was changed from 40° C. to 55° C., and the linear pressure of the roll was changed from 3 N/cm to 150 N/cm. The evaluation results of the obtained long-fiber nonwoven fabric are shown in Table 8. The obtained long-fiber nonwoven fabric had a smooth surface without pleats, but the fibers were partially fuzzed and it was poor in stretchability.
L:接線
P1、P2:接線L上の2つの接点
Dmax:繊維FAの見かけの最大繊維径
Dmin:繊維FAの見かけの最小繊維径
L: tangent lines P1, P2: two tangent points on the tangent line L D max : apparent maximum fiber diameter of fiber F A D min : apparent minimum fiber diameter of fiber F A
Claims (14)
前記シートを、表面温度が0℃以上120℃以下としたロールで加圧して融着シートを形成する工程と、
さらに、前記融着シートを幅方向および/または長手方向に1.5倍以上5.0倍以下の範囲で延伸する工程と、を含む、請求項1に記載の長繊維不織布の製造方法。 forming a sheet having a layer that is a layer composed of fibers F A having the thermoplastic resin A as a main component;
a step of pressing the sheet with a roll having a surface temperature of 0° C. or more and 120° C. or less to form a fused sheet;
The method for producing a long-fiber nonwoven fabric according to claim 1, further comprising a step of stretching the fused sheet in the width direction and/or the length direction in a range of 1.5 to 5.0 times.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-053076 | 2023-03-29 | ||
JP2023053076 | 2023-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024203398A1 true WO2024203398A1 (en) | 2024-10-03 |
Family
ID=92906006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/010048 WO2024203398A1 (en) | 2023-03-29 | 2024-03-14 | Long-fiber nonwoven fabric, method for manufacturing same, and sanitary material |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202507112A (en) |
WO (1) | WO2024203398A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002088633A (en) * | 2000-09-18 | 2002-03-27 | Idemitsu Unitech Co Ltd | Multilayer nonwoven fabric and its use |
JP2007312927A (en) * | 2006-05-24 | 2007-12-06 | Kao Corp | Pants-type absorbent article |
WO2007138733A1 (en) * | 2006-05-31 | 2007-12-06 | Mitsui Chemicals, Inc. | Non-woven fabric laminate and method for production thereof |
WO2012046694A1 (en) * | 2010-10-05 | 2012-04-12 | Jnc株式会社 | Multilayered non-woven fabric and product thereof |
JP2012237081A (en) * | 2011-05-13 | 2012-12-06 | Asahi Kasei Fibers Corp | Elastic filament nonwoven fabric |
WO2020085502A1 (en) * | 2018-10-25 | 2020-04-30 | 三井化学株式会社 | Nonwoven cloth laminated body, stretchable nonwoven cloth laminated body, fiber product, absorbent article, and sanitary mask |
JP2020196962A (en) * | 2019-05-31 | 2020-12-10 | 東レ株式会社 | Spun-bonded nonwoven fabric |
WO2020250481A1 (en) * | 2019-06-11 | 2020-12-17 | 花王株式会社 | Laminated nonwoven fabric for absorbent article |
JP2022518334A (en) * | 2019-03-15 | 2022-03-15 | ファイバーテクス・パーソナル・ケア・アクティーゼルスカブ | Elastic non-woven fabric sheet and its manufacturing method |
-
2024
- 2024-03-14 WO PCT/JP2024/010048 patent/WO2024203398A1/en active Application Filing
- 2024-03-25 TW TW113110915A patent/TW202507112A/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002088633A (en) * | 2000-09-18 | 2002-03-27 | Idemitsu Unitech Co Ltd | Multilayer nonwoven fabric and its use |
JP2007312927A (en) * | 2006-05-24 | 2007-12-06 | Kao Corp | Pants-type absorbent article |
WO2007138733A1 (en) * | 2006-05-31 | 2007-12-06 | Mitsui Chemicals, Inc. | Non-woven fabric laminate and method for production thereof |
WO2012046694A1 (en) * | 2010-10-05 | 2012-04-12 | Jnc株式会社 | Multilayered non-woven fabric and product thereof |
JP2012237081A (en) * | 2011-05-13 | 2012-12-06 | Asahi Kasei Fibers Corp | Elastic filament nonwoven fabric |
WO2020085502A1 (en) * | 2018-10-25 | 2020-04-30 | 三井化学株式会社 | Nonwoven cloth laminated body, stretchable nonwoven cloth laminated body, fiber product, absorbent article, and sanitary mask |
JP2022518334A (en) * | 2019-03-15 | 2022-03-15 | ファイバーテクス・パーソナル・ケア・アクティーゼルスカブ | Elastic non-woven fabric sheet and its manufacturing method |
JP2020196962A (en) * | 2019-05-31 | 2020-12-10 | 東レ株式会社 | Spun-bonded nonwoven fabric |
WO2020250481A1 (en) * | 2019-06-11 | 2020-12-17 | 花王株式会社 | Laminated nonwoven fabric for absorbent article |
Also Published As
Publication number | Publication date |
---|---|
TW202507112A (en) | 2025-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11591730B2 (en) | Extensible nonwoven fabric | |
JP5063315B2 (en) | Telescopic sheet | |
US5635290A (en) | Knit like nonwoven fabric composite | |
TWI374205B (en) | ||
HUP0600060A2 (en) | High-elongation apertured nonwoven web and method for making | |
KR101219249B1 (en) | Elastic non-woven fabric having a fitting property and a soft touch and manufacturing method thereof | |
JP2008169506A (en) | Elastic nonwoven fabric | |
JP6715056B2 (en) | Spunbond nonwovens and sanitary materials | |
JP7168125B1 (en) | Spunbond nonwovens and laminated nonwovens, their production methods and sanitary materials | |
WO2021065446A1 (en) | Layered stretchable nonwoven fabric, hygenic material, and layered stretchable nonwoven fabric production method | |
JP4918002B2 (en) | Elastic sheet and method for producing the same | |
KR20120034918A (en) | Spunbonded nonwoven having an excellent elastic recovering property and manufacturing method thereof | |
TW202210677A (en) | Spun-bonded nonwoven fabric and sanitary material | |
JP2013517393A (en) | Joined web and its manufacture | |
WO2024203398A1 (en) | Long-fiber nonwoven fabric, method for manufacturing same, and sanitary material | |
JP5276305B2 (en) | Mixed fiber non-woven fabric | |
US20230107550A1 (en) | Method of making a nonwoven web | |
JP7661879B2 (en) | Laminated nonwoven fabrics and sanitary materials | |
TW202231954A (en) | Spunbond nonwoven fabric, and hygienic material equipped therewith | |
JP5055105B2 (en) | Telescopic sheet | |
JP6864502B2 (en) | How to manufacture elastic sheet | |
JP6247921B2 (en) | Telescopic sheet | |
KR101240750B1 (en) | Elastic nonwoven fabric having an excellent flexibility and soft touch simultaneously and preparing method thereof | |
JP2024065356A (en) | Nonwoven fabric, laminated nonwoven fabric, sanitary material, and nonwoven fabric manufacturing method | |
JP2009190235A (en) | Manufacturing method of composite sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2024518108 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24779527 Country of ref document: EP Kind code of ref document: A1 |