WO2024203024A1 - Method for producing oxidized cellulose nanofiber dispersion - Google Patents
Method for producing oxidized cellulose nanofiber dispersion Download PDFInfo
- Publication number
- WO2024203024A1 WO2024203024A1 PCT/JP2024/008258 JP2024008258W WO2024203024A1 WO 2024203024 A1 WO2024203024 A1 WO 2024203024A1 JP 2024008258 W JP2024008258 W JP 2024008258W WO 2024203024 A1 WO2024203024 A1 WO 2024203024A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxidized cellulose
- cellulose nanofiber
- dispersion
- mass
- stirring
- Prior art date
Links
- 239000006185 dispersion Substances 0.000 title claims abstract description 115
- 229920002201 Oxidized cellulose Polymers 0.000 title claims abstract description 110
- 229940107304 oxidized cellulose Drugs 0.000 title claims abstract description 110
- 239000002121 nanofiber Substances 0.000 title claims abstract description 104
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 36
- 238000003756 stirring Methods 0.000 claims abstract description 82
- 239000007787 solid Substances 0.000 claims abstract description 31
- 230000014759 maintenance of location Effects 0.000 claims abstract description 23
- 238000010790 dilution Methods 0.000 claims description 28
- 239000012895 dilution Substances 0.000 claims description 28
- 239000002270 dispersing agent Substances 0.000 claims description 26
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 19
- 238000002156 mixing Methods 0.000 claims description 12
- 238000003113 dilution method Methods 0.000 claims description 4
- 210000000988 bone and bone Anatomy 0.000 claims description 3
- 238000007865 diluting Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 23
- 230000000284 resting effect Effects 0.000 abstract 2
- 229920002678 cellulose Polymers 0.000 description 45
- 239000001913 cellulose Substances 0.000 description 45
- 238000006243 chemical reaction Methods 0.000 description 28
- 238000007254 oxidation reaction Methods 0.000 description 24
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 21
- 238000013112 stability test Methods 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 239000002994 raw material Substances 0.000 description 18
- 238000011282 treatment Methods 0.000 description 18
- 230000008569 process Effects 0.000 description 15
- 239000000835 fiber Substances 0.000 description 14
- 239000005708 Sodium hypochlorite Substances 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000007864 aqueous solution Substances 0.000 description 9
- 239000007800 oxidant agent Substances 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000002655 kraft paper Substances 0.000 description 8
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 8
- 239000002904 solvent Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methyl-cyclopentane Natural products CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 229920003043 Cellulose fiber Polymers 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 4
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 239000011122 softwood Substances 0.000 description 4
- 239000002562 thickening agent Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000008719 thickening Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229920001131 Pulp (paper) Polymers 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- 230000001804 emulsifying effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011121 hardwood Substances 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 125000003132 pyranosyl group Chemical group 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- UZFMOKQJFYMBGY-UHFFFAOYSA-N 4-hydroxy-TEMPO Chemical compound CC1(C)CC(O)CC(C)(C)N1[O] UZFMOKQJFYMBGY-UHFFFAOYSA-N 0.000 description 1
- 241000589220 Acetobacter Species 0.000 description 1
- 241000251557 Ascidiacea Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 239000004155 Chlorine dioxide Substances 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000984084 Helianthemum nummularium subsp. grandiflorum Species 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000002154 agricultural waste Substances 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 229910001513 alkali metal bromide Inorganic materials 0.000 description 1
- 229910001516 alkali metal iodide Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 235000019398 chlorine dioxide Nutrition 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 229910052811 halogen oxide Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000013586 microbial product Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000010893 paper waste Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 150000004968 peroxymonosulfuric acids Chemical class 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- UKLNMMHNWFDKNT-UHFFFAOYSA-M sodium chlorite Chemical compound [Na+].[O-]Cl=O UKLNMMHNWFDKNT-UHFFFAOYSA-M 0.000 description 1
- 229960002218 sodium chlorite Drugs 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B15/00—Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
- C08B15/02—Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
Definitions
- the present invention relates to a method for producing an oxidized cellulose nanofiber dispersion with improved viscosity retention.
- Nanotechnology a technique for freely controlling matter in the nanometer range, that is, on the scale of atoms and molecules, is expected to produce a variety of convenient new materials and devices.
- One such example is cellulose nanofiber, which is obtained by finely breaking down plant fibers.
- This cellulose nanofiber is highly crystalline and features a low coefficient of thermal expansion and high elastic modulus. In addition, it has a high aspect ratio, so it is expected that by compounding it with rubber or resin, it will have the effect of adding strength and stabilizing shape.
- this cellulose nanofiber when in a dispersed state, this cellulose nanofiber has viscosity characteristics such as pseudoplasticity and thixotropy, and it is expected to be effective as an additive such as a thickener.
- Patent Document 1 discloses fine cellulose fibers (cellulose nanofibers) in which some of the hydroxyl groups of cellulose have been converted to carboxyl groups and have a number average fiber diameter of 2 to 150 nm. These cellulose nanofibers have the property of having high viscosity at low shear rates and low viscosity at high shear rates. Because of these viscosity characteristics, cellulose nanofibers are used as thickeners in various fields such as cosmetics, food, civil engineering, building materials, inks, and paints.
- the present invention therefore aims to provide a method for producing an oxidized cellulose nanofiber dispersion that can suppress the decrease in viscosity before and after stirring when the dispersion is mixed with a substance that imparts a thickening function.
- the present invention provides the following (1) to (5).
- a method for producing an oxidized cellulose nanofiber dispersion with improved viscosity retention comprising a stirring step of stirring an oxidized cellulose nanofiber dispersion having a solid content concentration of 0.1 to 5.0% by mass at a rotation speed of 2000 to 6000 rpm for 1 to 90 minutes, and a standing step of standing the oxidized cellulose nanofiber dispersion at a temperature of 4 to 35°C for 12 hours or more after the stirring step.
- the present invention provides a method for producing an oxidized cellulose nanofiber dispersion that can suppress the decrease in viscosity before and after stirring when mixing with a substance that imparts a thickening function.
- the method for producing an oxidized cellulose nanofiber (oxidized CNF) dispersion with improved viscosity retention of the present invention includes a stirring step in which an oxidized cellulose nanofiber dispersion with a solid content concentration of 0.1 to 5.0 mass% is stirred for 1 to 90 minutes at a rotation speed of 2000 to 6000 rpm, and a settling step in which, after the stirring step, the oxidized cellulose nanofiber dispersion is settling at a temperature of 4 to 35°C for 12 hours or more.
- the oxidized CNF used in the present invention can be obtained by defibrating oxidized cellulose obtained by introducing carboxyl groups into a cellulose raw material.
- cellulose raw materials examples include plant materials (e.g., wood, bamboo, hemp, jute, kenaf, agricultural waste, cloth, pulp (softwood unbleached kraft pulp (NUKP), softwood bleached kraft pulp (NBKP), hardwood unbleached kraft pulp (LUKP), hardwood bleached kraft pulp (LBKP), softwood unbleached sulfite pulp (NUSP), softwood bleached sulfite pulp (NBSP), thermomechanical pulp (TMP), recycled pulp, waste paper, etc.), animal materials (e.g., ascidians), algae, microorganisms (e.g., acetic acid bacteria (Acetobacter)), and those derived from microbial products, and any of these can be used.
- Cellulose raw materials derived from plants or microorganisms are preferred, and cellulosic raw materials derived from plants are more preferred.
- Carboxyl groups can be introduced into the above-mentioned cellulose raw material by oxidizing (carboxylating) it by a known method.
- oxidation is a method in which cellulose raw material is oxidized in water using an oxidizing agent in the presence of an N-oxyl compound and a bromide, iodide, or a mixture of these.
- This oxidation reaction selectively oxidizes the primary hydroxyl group at the C6 position of the pyranose ring on the cellulose surface.
- oxidized cellulose can be obtained that has aldehyde groups and carboxyl groups (-COOH) or carboxylate groups (-COO-) on its surface.
- concentration of cellulose during the reaction but it is preferable that it be 5% by mass or less.
- N-oxyl compound is a compound that can generate nitroxy radicals. Any compound that promotes the desired oxidation reaction can be used as an N-oxyl compound. Examples include 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and its derivatives (e.g., 4-hydroxyTEMPO).
- TEMPO 2,2,6,6-tetramethylpiperidine-1-oxy radical
- 4-hydroxyTEMPO 4-hydroxyTEMPO
- the amount of N-oxyl compound used is not particularly limited, as long as it is a catalytic amount capable of oxidizing the raw material cellulose.
- 0.01 mmol to 10 mmol is preferred, 0.01 mmol to 1 mmol is more preferred, and 0.05 mmol to 0.5 mmol is even more preferred.
- the concentration of the N-oxyl compound in the reaction system is preferably about 0.1 mmol/L to 4 mmol/L.
- Bromides are compounds that contain bromine, including alkali metal bromides that can dissociate and ionize in water.
- Iodides are compounds that contain iodine, including alkali metal iodides.
- the amount of bromide or iodide used can be selected within a range that can promote the oxidation reaction.
- the total amount of bromide and iodide is preferably 0.1 mmol to 100 mmol, more preferably 0.1 mmol to 10 mmol, and even more preferably 0.5 mmol to 5 mmol, per 1 g of bone-dry cellulose.
- the oxidizing agent may be any known oxidizing agent, such as halogens, hypohalous acids, hypohalous acids, perhalogen acids or their salts, halogen oxides, peroxides, etc.
- halogens such as halogens, hypohalous acids, hypohalous acids, perhalogen acids or their salts, halogen oxides, peroxides, etc.
- sodium hypochlorite is preferred, as it is inexpensive and has a low environmental impact.
- the amount of the oxidizing agent used is preferably 0.5 mmol to 500 mmol, more preferably 0.5 mmol to 50 mmol, and even more preferably 1 mmol to 25 mmol, per 1 g of bone-dry cellulose. Also, for example, 1 mol to 40 mol is preferred per 1 mol of the N-oxyl compound.
- the cellulose oxidation process can proceed efficiently even under relatively mild conditions.
- the reaction temperature is preferably 4°C to 40°C, and may be room temperature of about 15°C to 30°C.
- carboxyl groups are generated in the cellulose, and the pH of the reaction solution decreases.
- an alkaline solution such as an aqueous sodium hydroxide solution during the reaction to maintain the pH of the reaction solution at 8 to 12, preferably 10 to 11. Water is preferred as the reaction medium because it is easy to handle and is less likely to cause side reactions.
- the reaction time for the oxidation reaction can be set appropriately according to the degree of progress of the oxidation, and is usually 0.5 to 6 hours, preferably 0.5 to 4 hours.
- the oxidation reaction may also be carried out in two stages.
- the oxidized cellulose obtained by filtration after the completion of the first stage reaction can be oxidized again under the same or different reaction conditions, allowing efficient oxidation without reaction inhibition by salt produced as a by-product in the first stage reaction.
- Another example is a method of oxidation by contacting cellulose raw materials with a gas containing ozone. This oxidation reaction oxidizes at least the hydroxyl groups at positions 2 and 6 of the pyranose ring, and causes the cellulose chain to break down.
- the ozone concentration in the ozone-containing gas is preferably 50 g/m 3 to 250 g/m 3 , and more preferably 50 g/m 3 to 220 g/m 3.
- the amount of ozone added to the cellulose raw material is preferably 0.1 parts by mass to 30 parts by mass, and more preferably 5 parts by mass to 30 parts by mass, based on 100 parts by mass of the solid content of the cellulose raw material.
- the ozone treatment temperature is preferably 0°C to 50°C, and more preferably 20°C to 50°C.
- the ozone treatment time is not particularly limited, but is about 1 minute to 360 minutes, and preferably about 30 minutes to 360 minutes. If the ozone treatment conditions are within these ranges, excessive oxidation and decomposition of cellulose can be prevented, and the yield of oxidized cellulose will be good.
- a further oxidation treatment may be carried out using an oxidizing agent.
- the oxidizing agent used in the further oxidation treatment is not particularly limited, but examples include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid.
- these oxidizing agents can be dissolved in water or a polar organic solvent such as alcohol to prepare an oxidizing agent solution, and the further oxidation treatment can be carried out by immersing the cellulose raw material in the solution.
- the amount of carboxyl groups which indicates the degree of modification of oxidized cellulose, can be adjusted by controlling the reaction conditions such as the amount of oxidizing agent added and the reaction time described above.
- the amount of carboxyl groups is preferably about 0.2 to 2.0 mmol/g, and more preferably 0.5 to 1.6 mmol/g, based on the bone dry mass of oxidized cellulose. If it is less than 0.2 mmol/g, a large amount of energy is required to defibrate it into oxidized CNF. Furthermore, if more than 2.0 mmol of oxidized cellulose is used as the raw material, the resulting oxidized CNF will not have a fibrous form.
- the amount of carboxyl groups in oxidized cellulose is usually the same as the amount of carboxyl groups when made into cellulose nanofibers.
- the device used for defibration is not particularly limited, but examples include devices of high-speed rotation type, colloid mill type, high-pressure type, roll mill type, ultrasonic type, etc., and a high-pressure or ultra-high-pressure homogenizer is preferable, and a wet high-pressure or ultra-high-pressure homogenizer is more preferable.
- the device is preferably capable of applying a strong shear force to the cellulose raw material or oxidized cellulose (usually a dispersion liquid).
- the pressure that the device can apply is preferably 50 MPa or more, more preferably 100 MPa or more, and even more preferably 140 MPa or more.
- the device is preferably a wet high-pressure or ultra-high-pressure homogenizer that can apply the above pressure to the cellulose raw material or oxidized cellulose (usually a dispersion liquid) and can apply a strong shear force. This allows defibration to be performed efficiently.
- the number of treatments (passes) in the defibration device may be one or two or more, and two or more are preferable.
- oxidized cellulose is usually dispersed in a solvent.
- a solvent there are no particular limitations on the solvent as long as it can disperse oxidized cellulose, but examples include water, organic solvents (e.g., hydrophilic organic solvents such as methanol), and mixtures of these. Since the cellulose raw material is hydrophilic, it is preferable that the solvent is water.
- the solids concentration of oxidized cellulose in the dispersion is usually 0.1% by mass or more, preferably 0.2% by mass or more, and more preferably 0.3% by mass or more. This ensures that the amount of liquid relative to the amount of cellulose fiber raw material is appropriate and efficient.
- the upper limit is usually 10% by mass or less, and preferably 6% by mass or less. This allows fluidity to be maintained.
- the order of the defibration process and the dispersion process is not particularly limited, and either may be performed first, or they may be performed simultaneously, but it is preferable to perform the defibration process after the dispersion process.
- Each combination of processes needs to be performed at least once, and may be repeated two or more times.
- preliminary treatment may be carried out prior to the defibration or dispersion treatment.
- the preliminary treatment may be carried out using a mixing, stirring, emulsifying, or dispersing device such as a high-speed shear mixer.
- the average fiber diameter of the oxidized CNF of the present invention is preferably 3 nm or more or 500 nm or less.
- the average fiber diameter and average fiber length of the cellulose nanofibers can be measured, for example, by preparing a 0.001% by mass aqueous dispersion of oxidized CNF, spreading this diluted dispersion thinly on a mica sample stage, and heating and drying it at 50°C to prepare a sample for observation, and measuring the cross-sectional height of the shape image observed with an atomic force microscope (AFM) to calculate the number average fiber diameter or fiber length.
- AFM atomic force microscope
- the average aspect ratio of the oxidized CNF is usually 50 or more. There is no particular upper limit, but it is usually 1000 or less.
- the oxidized cellulose nanofiber dispersion having a solid content concentration of 0.1 to 5.0% by mass is stirred for 1 to 90 minutes at a rotation speed of 2000 to 6000 rpm.
- the solid content concentration of the oxidized CNF dispersion to be subjected to the stirring step is 0.1 to 5.0% by mass, preferably 0.1 to 3.0% by mass. If the concentration is too high, stirring becomes difficult, and if the concentration is too low, the amount of CNF added when added to other materials becomes low, making it difficult to use as a thickener.
- the oxidized CNF dispersion after the above-mentioned dispersion and defibration treatment can be directly subjected to the stirring step as long as the solid content concentration is within the above range.
- the solid content concentration can be adjusted by dilution, dehydration, etc. as appropriate.
- the rotation speed in the stirring step is 2000 to 6000 rpm, preferably 2000 to 3000 rpm, from the viewpoint of thoroughly stirring the entire CNF dispersion.
- the stirring time is from 1 to 90 minutes, preferably from 5 to 60 minutes, and more preferably from 10 to 60 minutes, from the viewpoint of imparting a shear effect by stirring to the entire CNF dispersion.
- the agitator used in the agitation process is not particularly limited as long as it can agitate the oxidized CNF dispersion liquid having a solid content concentration of 0.1 to 5.0% by mass at the above rotation speed.
- a high-speed agitator or a high-speed emulsifying disperser can be used.
- a high-speed agitator such as Homo Disper manufactured by Primix Corporation can be used.
- the oxidized CNF dispersion after the stirring step is allowed to stand at a temperature of 4 to 35°C, preferably 6 to 25°C, for 12 hours or more, preferably 24 hours or more.
- the upper limit of the standing time is not particularly limited, but from the viewpoint of long-term storage, it is, for example, 10 days or less. If the standing time is too short, there is a risk that the temporary viscosity reduction immediately after stirring will not recover.
- the material of the container is not particularly limited, and may be a glass bottle or a plastic bottle. It is preferable that the container can be closed with a lid.
- the production method of the present invention may include a dilution step after the standing step.
- the oxidized CNF is diluted until the solid content concentration is preferably 0.1 to 0.8% by mass, more preferably 0.1 to 0.6% by mass.
- the solvent used for dilution may be the same as or different from the solvent of the dispersion before dilution, and examples of the solvent include water, organic solvents (e.g., hydrophilic organic solvents such as methanol), and mixed solvents thereof. Since the cellulose raw material is hydrophilic, the solvent is preferably water.
- the stirring and mixing conditions are not particularly limited as long as the mixture can be uniformly diluted, but the mixture is diluted by stirring at a rotation speed of 1000 rpm for 10 minutes, for example.
- the oxidized CNF dispersion produced by the production method of the present invention may contain a dispersant.
- the amount of the dispersant added is preferably 5 to 100 parts by mass, more preferably 10 to 50 parts by mass, per 100 parts by mass of the solid content of the oxidized CNF, from the viewpoint of the solid content of the CNF.
- the type of dispersant may be used without particular limitation as long as it exhibits the effects of the present invention, and examples thereof include polyacrylic acid, carboxymethyl cellulose, and polyurethane dispersants.
- the step of adding the dispersant is not particularly limited as long as the effects of the present invention are achieved, but the dispersant may be added in the stirring step, the dispersant may be added in the dilution step, or a step of adding the dispersant and mixing may be provided after the dilution step. If a dilution step is not provided, a step of adding the dispersant and mixing may be provided after the standing step.
- the device used for stirring and mixing is not particularly limited, and a commonly used stirring device may be used.
- the stirring time is also not particularly limited, and stirring may be performed within a range of about 1 minute to 1 hour.
- the B-type viscosity is measured using a B-type viscometer under conditions of 6 rpm, 23°C, and 1 minute (viscosity before stirring). Note that, if the dilution step is not required, the viscosity before stirring can be measured under the same conditions for the dispersion to which shear force has been applied by stirring (1000 rpm, 10 minutes) after the standing step, and if a step of adding and mixing a dispersant is included after the dilution step, the viscosity before stirring can be measured under the same conditions for the dispersion after that step.
- the oxidized cellulose nanofiber dispersion is stirred for 30 minutes (1000 rpm, 23°C) using a high-speed stirrer. Immediately after stirring for 30 minutes, the B-type viscosity is measured using a B-type viscometer at 6 rpm, 23°C, and 1 minute (viscosity after stirring).
- a high-speed stirrer for example, a Homo Disper manufactured by Primix Corporation can be used.
- the manufacturing method of the present invention makes it possible to produce an oxidized cellulose nanofiber dispersion with improved viscosity retention.
- the reason why the production method of the present invention makes it possible to obtain an oxidized cellulose nanofiber dispersion with improved viscosity retention is believed to be as follows. It is possible to obtain cellulose nanofibers by defibrating oxidized cellulose, and in the cellulose nanofibers obtained here, each fiber is swollen (defibrated) to the nano level, but the physical entanglements of the cellulose fibers that existed before defibration remain.
- the oxidized cellulose nanofiber aqueous dispersion after measuring the B-type viscosity was stirred for 30 minutes (1000 rpm, 23°C) using a high-speed stirrer (Homodisper, manufactured by Primix Corporation). Immediately after stirring for 30 minutes, the B-type viscosity was measured using a B-type viscometer at 6 rpm, 23°C, and for 1 minute (viscosity after stirring).
- the pulp yield was 90%, the time required for the oxidation reaction was 60 minutes, and the amount of carboxyl groups (hereinafter sometimes referred to as "degree of modification") was 1.46 mmol/g. This was adjusted to 1.0 mass% with water and defibrated three times using a high-pressure homogenizer to obtain oxidized cellulose nanofiber aqueous dispersion A.
- the average fiber diameter was 4 nm, and the aspect ratio was 270.
- the pulp yield at this time was 92%, the time required for the oxidation reaction was 60 minutes, and the amount of carboxyl groups (hereinafter sometimes referred to as the "degree of modification") was 1.1 mmol/g. This was adjusted to 1.0 mass % with water and defibration treatment was carried out three times using a high-pressure homogenizer to obtain oxidized cellulose nanofiber aqueous dispersion B.
- the average fiber diameter was 4 nm, and the aspect ratio was 273.
- the pulp yield at this time was 93%, the time required for the oxidation reaction was 60 minutes, and the amount of carboxyl groups (hereinafter sometimes referred to as the "degree of modification") was 0.58 mmol/g. This was adjusted to 1.0 mass % with water and defibration treatment was carried out five times using a high-pressure homogenizer to obtain oxidized cellulose nanofiber aqueous dispersion C.
- the average fiber diameter was 4 nm, and the aspect ratio was 290.
- Example 1 (Mixing process) The oxidized cellulose nanofiber aqueous dispersion A having a solids concentration of 1.0% by mass obtained in Production Example A was subjected to a stirring treatment for 5 minutes at a rotation speed of 3000 rpm using a high-speed stirrer (Homodisper, manufactured by Primix Corporation).
- the oxidized cellulose nanofiber aqueous dispersion A that had been subjected to the standing step was placed in a plastic container, deionized water was added, and the mixture was stirred (1000 rpm, 10 minutes) to obtain oxidized cellulose nanofiber aqueous dispersion A diluted to a solids concentration of 0.5 mass%.
- Examples 2 to 4 Except for changing the stirring time in the stirring step to 15 minutes (Example 2), 30 minutes (Example 3), and 60 minutes (Example 4), the stirring step, the standing step, and the dilution step were carried out in this order in the same manner as in Example 1, and a stability test was carried out. The results are shown in Table 1.
- Example 5 A stability test was carried out by carrying out the stirring step, the standing step, and the dilution step in that order in the same manner as in Example 1, except that oxidized cellulose nanofiber aqueous dispersion B obtained in Production Example B was used. The results are shown in Table 1.
- Example 6 A stability test was carried out by carrying out the stirring step, the standing step, and the dilution step in the same order as in Example 5, except that the stirring time in the stirring step was changed to 15 minutes (Example 6), 30 minutes (Example 7), and 60 minutes (Example 8), respectively.
- the results are shown in Table 1.
- Example 9 Except for using the oxidized cellulose nanofiber aqueous dispersion C obtained in Production Example C, a stability test was carried out by carrying out the stirring step, the standing step, and the dilution step in that order in the same manner as in Example 1. The results are shown in Table 1.
- Example 10 A stability test was carried out by carrying out the stirring step, the standing step, and the dilution step in the same order as in Example 9, except that the stirring time in the stirring step was changed to 15 minutes (Example 10), 30 minutes (Example 11), and 60 minutes (Example 12), respectively.
- the results are shown in Table 1.
- Example 1 The standing and dilution steps were carried out in the same manner as in Example 1, except that instead of oxidized cellulose nanofiber aqueous dispersion A which had been stirred in the standing step without being subjected to the stirring step, a dispersion which had not been stirred was used, to obtain an oxidized cellulose nanofiber aqueous dispersion with a solid content concentration of 0.5% by mass. A stability test was carried out on this oxidized cellulose nanofiber aqueous dispersion. The results are shown in Table 1.
- Example 2 The standing and dilution steps were carried out in the same manner as in Example 5, except that instead of oxidized cellulose nanofiber aqueous dispersion B which had been stirred in the standing step without being subjected to the stirring step, a dispersion which had not been stirred was used, to obtain an oxidized cellulose nanofiber aqueous dispersion with a solid content concentration of 0.5% by mass. A stability test was carried out on this oxidized cellulose nanofiber aqueous dispersion. The results are shown in Table 1.
- Example 3 The standing and dilution steps were carried out in the same manner as in Example 9, except that instead of oxidized cellulose nanofiber aqueous dispersion C which had been stirred in the standing step without being subjected to the stirring step, a dispersion which had not been stirred was used, to obtain an oxidized cellulose nanofiber aqueous dispersion with a solid content concentration of 0.5% by mass. A stability test was carried out on this oxidized cellulose nanofiber aqueous dispersion. The results are shown in Table 1.
- Example 1 when the methods of Examples 1 to 12 were used, which included a stirring step of stirring a 0.1 to 5.0 mass% oxidized cellulose nanofiber dispersion at a rotation speed of 2000 to 6000 rpm for 1 to 90 minutes, and a settling step of leaving the oxidized cellulose nanofiber dispersion at a temperature of 4 to 35°C for 12 hours or more after the stirring step, the obtained oxidized cellulose nanofiber dispersion had improved viscosity retention when compared with Comparative Examples 1 to 3, which did not involve the stirring step and which had the same degree of modification.
- Example 13 The oxidized cellulose nanofiber aqueous dispersion D obtained in Production Example D was used, and the stirring step and the standing step were carried out in that order in the same manner as in Example 1, except that the stirring treatment time was changed to 15 minutes.
- the oxidized cellulose nanofiber aqueous dispersion D that had been subjected to the standing step was placed in a plastic container, and polyacrylic acid (Aron A-7100, manufactured by Toagosei Co., Ltd., hereinafter sometimes abbreviated as "PAA") was further added as a dispersant in an amount of 20 parts by mass per 100 parts by mass of the oxidized cellulose nanofiber solids content. Furthermore, deionized water was added to this plastic container and stirred (1000 rpm, 10 minutes), thereby obtaining a dispersion with an oxidized cellulose nanofiber solids concentration of 0.5 mass% and a dispersant concentration of 0.1 mass% relative to the total amount of the dispersion.
- PAA polyacrylic acid
- Example 14 A dispersion with an oxidized cellulose nanofiber solids concentration of 0.5% by mass and a dispersant concentration of 0.1% by mass was obtained in the same manner as in Example 13, except that the dispersant was changed to carboxymethyl cellulose (Sunrose A04SH, manufactured by Nippon Paper Industries Co., Ltd., hereinafter sometimes abbreviated as "CMC"). A stability test was carried out on the obtained dispersion. The results are shown in Table 2.
- Example 15 A dispersion with an oxidized cellulose nanofiber solids concentration of 0.5 mass% and a dispersant concentration of 0.1 mass% was obtained in the same manner as in Example 13, except that the oxidized cellulose nanofiber aqueous dispersion C obtained in Production Example C was used instead of the oxidized cellulose nanofiber aqueous dispersion D obtained in Production Example D. A stability test was carried out on the obtained dispersion. The results are shown in Table 2.
- Example 16 A dispersion with an oxidized cellulose nanofiber solids concentration of 0.5 mass% and a dispersant concentration of 0.1 mass% was obtained in the same manner as in Example 14, except that the oxidized cellulose nanofiber aqueous dispersion C obtained in Production Example C was used instead of the oxidized cellulose nanofiber aqueous dispersion D obtained in Production Example D. A stability test was carried out on the obtained dispersion. The results are shown in Table 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
Description
本発明は、粘度保持率が改善された酸化セルロースナノファイバー分散液の製造方法に関する。 The present invention relates to a method for producing an oxidized cellulose nanofiber dispersion with improved viscosity retention.
ナノメートルの領域すなわち原子や分子のスケールにおいて物質を自在に制御する技術であるナノテクノロジーから様々な便利な新素材やデバイスが生み出されることが期待される。植物繊維を細かく解すことで得られるセルロースナノファイバーもその一つであり、このセルロースナノファイバーは非常に結晶性が高く、低い熱膨張係数と高い弾性率を特徴とすることに加え、高いアスペクト比を有するため、ゴムや樹脂へ複合化することで強度付与、形状安定化といった効果が期待されている。また、このセルロースナノファイバーは、分散液の状態では擬塑性やチキソトロピー性といった粘度特性を有し、増粘剤などの添加剤としても効果が期待されている。 Nanotechnology, a technique for freely controlling matter in the nanometer range, that is, on the scale of atoms and molecules, is expected to produce a variety of convenient new materials and devices. One such example is cellulose nanofiber, which is obtained by finely breaking down plant fibers. This cellulose nanofiber is highly crystalline and features a low coefficient of thermal expansion and high elastic modulus. In addition, it has a high aspect ratio, so it is expected that by compounding it with rubber or resin, it will have the effect of adding strength and stabilizing shape. Furthermore, when in a dispersed state, this cellulose nanofiber has viscosity characteristics such as pseudoplasticity and thixotropy, and it is expected to be effective as an additive such as a thickener.
このセルロースナノファイバーに関する様々な開発や研究が行われており、例えば、特許文献1には、セルロースの水酸基の一部がカルボキシル基化された数平均繊維径が2~150nmの微細セルロース繊維(セルロースナノファイバー)が開示されている。このセルロースナノファイバーは、低せん断速度における粘度が高く、高せん断速度における粘度が低い特性を有している。セルロースナノファイバーは、このような粘度特性を有するため、化粧品、食品、土木、建材、インキ、塗料など様々な分野において、増粘剤として用いられている。 Various developments and researches on cellulose nanofibers have been conducted. For example, Patent Document 1 discloses fine cellulose fibers (cellulose nanofibers) in which some of the hydroxyl groups of cellulose have been converted to carboxyl groups and have a number average fiber diameter of 2 to 150 nm. These cellulose nanofibers have the property of having high viscosity at low shear rates and low viscosity at high shear rates. Because of these viscosity characteristics, cellulose nanofibers are used as thickeners in various fields such as cosmetics, food, civil engineering, building materials, inks, and paints.
しかしながら、特許文献1に記載のセルロースナノファイバーを増粘剤として用いる場合、増粘機能を付与する相手方と混合する際に、撹拌処理を行うと、粘度が大幅に低下する問題があった。 However, when the cellulose nanofiber described in Patent Document 1 is used as a thickener, there is a problem in that the viscosity is significantly reduced when the cellulose nanofiber is stirred during mixing with the other substance to which the thickening function is to be imparted.
このため、本発明は、増粘機能を付与する相手方と混合する際に、撹拌処理を行った場合に、撹拌前後における粘度低下を抑制することが可能な酸化セルロースナノファイバー分散液の製造方法を提供することを目的とする。 The present invention therefore aims to provide a method for producing an oxidized cellulose nanofiber dispersion that can suppress the decrease in viscosity before and after stirring when the dispersion is mixed with a substance that imparts a thickening function.
本発明は以下の(1)~(5)を提供する。
(1) 固形分濃度0.1~5.0質量%の酸化セルロースナノファイバー分散液に対して、回転数2000~6000rpmの条件で撹拌処理を1~90分間行う撹拌工程と、前記撹拌工程後に、前記酸化セルロースナノファイバー分散液を温度4~35℃で12時間以上静置する静置工程とを含む粘度保持率が改善された酸化セルロースナノファイバー分散液の製造方法。
(2) 前記静置工程後に、前記酸化セルロースナノファイバー分散液を固形分濃度0.1~0.8質量%まで希釈する希釈化工程をさらに含む、(1)に記載の粘度保持率が改善された酸化セルロースナノファイバー分散液の製造方法。
(3) 前記酸化セルロースナノファイバーは、酸化セルロースナノファイバーの絶乾質量に対してカルボキシルキ量が0.2~2.0mmol/gである、(1)又は(2)に記載の粘度保持率が改善された酸化セルロースナノファイバー分散液の製造方法。
(4) 前記希釈化工程において、酸化セルロースナノファイバーの固形分100質量部に対して、さらに分散剤を5~100質量部添加することを特徴とする、(2)に記載の粘度保持率が改善された酸化セルロースナノファイバー分散液の製造方法。
(5) 前記希釈化工程後に、前記酸化セルロースナノファイバー分散液中の酸化セルロースナノファイバーの固形分100質量部に対して、分散剤を5~100質量部添加し、混合する工程をさらに含む、(2)に記載の粘度保持率が改善された酸化セルロースナノファイバー分散液の製造方法。
The present invention provides the following (1) to (5).
(1) A method for producing an oxidized cellulose nanofiber dispersion with improved viscosity retention, comprising a stirring step of stirring an oxidized cellulose nanofiber dispersion having a solid content concentration of 0.1 to 5.0% by mass at a rotation speed of 2000 to 6000 rpm for 1 to 90 minutes, and a standing step of standing the oxidized cellulose nanofiber dispersion at a temperature of 4 to 35°C for 12 hours or more after the stirring step.
(2) The method for producing an oxidized cellulose nanofiber dispersion with improved viscosity retention described in (1), further comprising a dilution step of diluting the oxidized cellulose nanofiber dispersion to a solids concentration of 0.1 to 0.8 mass % after the standing step.
(3) The method for producing an oxidized cellulose nanofiber dispersion with improved viscosity retention according to (1) or (2), wherein the oxidized cellulose nanofiber has a carboxyl amount of 0.2 to 2.0 mmol/g relative to the bone dry mass of the oxidized cellulose nanofiber.
(4) The method for producing an oxidized cellulose nanofiber dispersion with improved viscosity retention described in (2), characterized in that in the dilution step, 5 to 100 parts by mass of a dispersant is further added per 100 parts by mass of the solid content of the oxidized cellulose nanofiber.
(5) The method for producing an oxidized cellulose nanofiber dispersion with improved viscosity retention described in (2), further comprising the step of adding, after the dilution step, 5 to 100 parts by mass of a dispersant per 100 parts by mass of the solid content of oxidized cellulose nanofibers in the oxidized cellulose nanofiber dispersion, and mixing.
本発明によれば、増粘機能を付与する相手方と混合する際に、撹拌処理を行った場合に、撹拌前後における粘度低下を抑制することが可能な酸化セルロースナノファイバー分散液の製造方法を提供することができる。 The present invention provides a method for producing an oxidized cellulose nanofiber dispersion that can suppress the decrease in viscosity before and after stirring when mixing with a substance that imparts a thickening function.
本発明の粘度保持率が改善された酸化セルロースナノファイバー(酸化CNF)分散液の製造方法は、固形分濃度0.1~5.0質量%の酸化セルロースナノファイバー分散液に対して、回転数2000~6000rpmの条件で撹拌処理を1~90分間行う撹拌工程と、前記撹拌工程後に、前記酸化セルロースナノファイバー分散液を温度4~35℃で12時間以上静置する静置工程とを含む。 The method for producing an oxidized cellulose nanofiber (oxidized CNF) dispersion with improved viscosity retention of the present invention includes a stirring step in which an oxidized cellulose nanofiber dispersion with a solid content concentration of 0.1 to 5.0 mass% is stirred for 1 to 90 minutes at a rotation speed of 2000 to 6000 rpm, and a settling step in which, after the stirring step, the oxidized cellulose nanofiber dispersion is settling at a temperature of 4 to 35°C for 12 hours or more.
(酸化セルロースナノファイバー(酸化CNF))
本発明で用いられる酸化CNFは、セルロース原料にカルボキシル基を導入して得られる酸化セルロースを解繊することによって得ることができる。
(Oxidized Cellulose Nanofiber (Oxidized CNF))
The oxidized CNF used in the present invention can be obtained by defibrating oxidized cellulose obtained by introducing carboxyl groups into a cellulose raw material.
(原料)
セルロース原料としては、例えば、植物性材料(例えば、木材、竹、麻、ジュート、ケナフ、農地残廃物、布、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)、サーモメカニカルパルプ(TMP)、再生パルプ、古紙等)、動物性材料(例えば、ホヤ類)、藻類、微生物(例えば、酢酸菌(アセトバクター))、微生物産生物を起源とするものを挙げることができ、いずれも使用することができる。好ましくは、植物又は微生物由来のセルロース原料であり、より好ましくは、植物由来のセルロース原料である。
(Raw materials)
Examples of cellulose raw materials include plant materials (e.g., wood, bamboo, hemp, jute, kenaf, agricultural waste, cloth, pulp (softwood unbleached kraft pulp (NUKP), softwood bleached kraft pulp (NBKP), hardwood unbleached kraft pulp (LUKP), hardwood bleached kraft pulp (LBKP), softwood unbleached sulfite pulp (NUSP), softwood bleached sulfite pulp (NBSP), thermomechanical pulp (TMP), recycled pulp, waste paper, etc.), animal materials (e.g., ascidians), algae, microorganisms (e.g., acetic acid bacteria (Acetobacter)), and those derived from microbial products, and any of these can be used. Cellulose raw materials derived from plants or microorganisms are preferred, and cellulosic raw materials derived from plants are more preferred.
(カルボキシル基の導入)
上記のセルロース原料を公知の方法で酸化(カルボキシル化)することにより、セルロース原料にカルボキシル基を導入することができる。
(Introduction of Carboxyl Group)
Carboxyl groups can be introduced into the above-mentioned cellulose raw material by oxidizing (carboxylating) it by a known method.
酸化の一例として、セルロース原料を、N-オキシル化合物と、臭化物、ヨウ化物、又はこれらの混合物との存在下で酸化剤を用いて水中で酸化する方法がある。この酸化反応により、セルロース表面のピラノース環のC6位の一級水酸基が選択的に酸化される。その結果、表面にアルデヒド基と、カルボキシル基(-COOH)又はカルボキシレート基(-COO-)を有する酸化セルロースを得ることができる。反応時のセルロースの濃度は特に限定されないが、5質量%以下であることが好ましい。 One example of oxidation is a method in which cellulose raw material is oxidized in water using an oxidizing agent in the presence of an N-oxyl compound and a bromide, iodide, or a mixture of these. This oxidation reaction selectively oxidizes the primary hydroxyl group at the C6 position of the pyranose ring on the cellulose surface. As a result, oxidized cellulose can be obtained that has aldehyde groups and carboxyl groups (-COOH) or carboxylate groups (-COO-) on its surface. There are no particular limitations on the concentration of cellulose during the reaction, but it is preferable that it be 5% by mass or less.
N-オキシル化合物とは、ニトロキシラジカルを発生し得る化合物をいう。N-オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。例えば、2,2,6,6-テトラメチルピペリジン-1-オキシラジカル(TEMPO)及びその誘導体(例えば、4-ヒドロキシTEMPO)が挙げられる。 An N-oxyl compound is a compound that can generate nitroxy radicals. Any compound that promotes the desired oxidation reaction can be used as an N-oxyl compound. Examples include 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and its derivatives (e.g., 4-hydroxyTEMPO).
N-オキシル化合物の使用量は、原料となるセルロースを酸化できる触媒量であればよく、特に制限されない。絶乾1gのセルロースに対して、0.01mmol~10mmolが好ましく、0.01mmol~1mmolがより好ましく、0.05mmol~0.5mmolがさらに好ましい。また、その濃度は、反応系に対し、0.1mmol/L~4mmol/L程度が好ましい。 The amount of N-oxyl compound used is not particularly limited, as long as it is a catalytic amount capable of oxidizing the raw material cellulose. For 1 g of bone-dry cellulose, 0.01 mmol to 10 mmol is preferred, 0.01 mmol to 1 mmol is more preferred, and 0.05 mmol to 0.5 mmol is even more preferred. The concentration of the N-oxyl compound in the reaction system is preferably about 0.1 mmol/L to 4 mmol/L.
臭化物とは臭素を含む化合物であり、水中で解離してイオン化可能な臭化アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物であり、ヨウ化アルカリ金属が含まれる。 Bromides are compounds that contain bromine, including alkali metal bromides that can dissociate and ionize in water. Iodides are compounds that contain iodine, including alkali metal iodides.
臭化物又はヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物及びヨウ化物の合計量は、絶乾1gのセルロースに対して、0.1mmol~100mmolが好ましく、0.1mmol~10mmolがより好ましく、0.5mmol~5mmolがさらに好ましい。 The amount of bromide or iodide used can be selected within a range that can promote the oxidation reaction. The total amount of bromide and iodide is preferably 0.1 mmol to 100 mmol, more preferably 0.1 mmol to 10 mmol, and even more preferably 0.5 mmol to 5 mmol, per 1 g of bone-dry cellulose.
酸化剤としては、公知のものを使用でき、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸又はそれらの塩、ハロゲン酸化物、過酸化物等がある。中でも、安価で環境負荷の少ない次亜塩素酸ナトリウムが好ましい。 The oxidizing agent may be any known oxidizing agent, such as halogens, hypohalous acids, hypohalous acids, perhalogen acids or their salts, halogen oxides, peroxides, etc. Among these, sodium hypochlorite is preferred, as it is inexpensive and has a low environmental impact.
酸化剤の使用量は、絶乾1gのセルロースに対して、0.5mmol~500mmolが好ましく、0.5mmol~50mmolがより好ましく、1mmol~25mmolがさらに好ましい。また、例えば、N-オキシル化合物1molに対して1mol~40molが好ましい。 The amount of the oxidizing agent used is preferably 0.5 mmol to 500 mmol, more preferably 0.5 mmol to 50 mmol, and even more preferably 1 mmol to 25 mmol, per 1 g of bone-dry cellulose. Also, for example, 1 mol to 40 mol is preferred per 1 mol of the N-oxyl compound.
セルロースの酸化工程は、比較的温和な条件であっても反応を効率よく進行させられる。そのため、反応温度は4℃~40℃が好ましく、15℃~30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHは低下する。酸化反応を効率よく進行させるために、反応途中で水酸化ナトリウム水溶液等のアルカリ性溶液を添加して、反応液のpHを8~12、好ましくは10~11程度に維持することが好ましい。反応媒体は、取扱い性の容易さや、副反応が生じ難い等の理由で、水が好ましい。 The cellulose oxidation process can proceed efficiently even under relatively mild conditions. For this reason, the reaction temperature is preferably 4°C to 40°C, and may be room temperature of about 15°C to 30°C. As the reaction proceeds, carboxyl groups are generated in the cellulose, and the pH of the reaction solution decreases. To ensure that the oxidation reaction proceeds efficiently, it is preferable to add an alkaline solution such as an aqueous sodium hydroxide solution during the reaction to maintain the pH of the reaction solution at 8 to 12, preferably 10 to 11. Water is preferred as the reaction medium because it is easy to handle and is less likely to cause side reactions.
酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、通常、0.5時間~6時間であり、0.5時間~4時間であることが好ましい。 The reaction time for the oxidation reaction can be set appropriately according to the degree of progress of the oxidation, and is usually 0.5 to 6 hours, preferably 0.5 to 4 hours.
また、酸化反応は、2段階に分けて実施してもよい。例えば、1段階目の反応終了後に濾別して得られた酸化セルロースを、再度、同一又は異なる反応条件で酸化することにより、1段階目の反応で副生する食塩による反応阻害を受けることなく、効率よく酸化することができる。 The oxidation reaction may also be carried out in two stages. For example, the oxidized cellulose obtained by filtration after the completion of the first stage reaction can be oxidized again under the same or different reaction conditions, allowing efficient oxidation without reaction inhibition by salt produced as a by-product in the first stage reaction.
他の例として、オゾンを含む気体とセルロース原料とを接触させることにより酸化する方法がある。この酸化反応により、ピラノース環の少なくとも2位及び6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。 Another example is a method of oxidation by contacting cellulose raw materials with a gas containing ozone. This oxidation reaction oxidizes at least the hydroxyl groups at positions 2 and 6 of the pyranose ring, and causes the cellulose chain to break down.
オゾンを含む気体中のオゾン濃度は、50g/m3~250g/m3であることが好ましく、50g/m3~220g/m3であることがより好ましい。セルロース原料に対するオゾン添加量は、セルロース原料の固形分を100質量部とした際に、0.1質量部~30質量部であることが好ましく、5質量部~30質量部であることがより好ましい。 The ozone concentration in the ozone-containing gas is preferably 50 g/m 3 to 250 g/m 3 , and more preferably 50 g/m 3 to 220 g/m 3. The amount of ozone added to the cellulose raw material is preferably 0.1 parts by mass to 30 parts by mass, and more preferably 5 parts by mass to 30 parts by mass, based on 100 parts by mass of the solid content of the cellulose raw material.
オゾン処理温度は、0℃~50℃であることが好ましく、20℃~50℃であることがより好ましい。オゾン処理時間は、特に限定されないが、1分~360分程度であり、30分~360分程度が好ましい。オゾン処理の条件がこれらの範囲内であると、セルロースが過度に酸化及び分解されることを防ぐことができ、酸化セルロースの収率が良好となる。 The ozone treatment temperature is preferably 0°C to 50°C, and more preferably 20°C to 50°C. The ozone treatment time is not particularly limited, but is about 1 minute to 360 minutes, and preferably about 30 minutes to 360 minutes. If the ozone treatment conditions are within these ranges, excessive oxidation and decomposition of cellulose can be prevented, and the yield of oxidized cellulose will be good.
オゾン処理を施した後に、酸化剤を用いて、追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物や、酸素、過酸化水素、過硫酸、過酢酸等が挙げられる。例えば、これらの酸化剤を水又はアルコール等の極性有機溶媒中に溶解して酸化剤溶液を調製し、溶液中にセルロース原料を浸漬させることにより追酸化処理を行うことができる。 After the ozone treatment, a further oxidation treatment may be carried out using an oxidizing agent. The oxidizing agent used in the further oxidation treatment is not particularly limited, but examples include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid. For example, these oxidizing agents can be dissolved in water or a polar organic solvent such as alcohol to prepare an oxidizing agent solution, and the further oxidation treatment can be carried out by immersing the cellulose raw material in the solution.
酸化セルロースの変性度を示すカルボキシル基の量は、上記した酸化剤の添加量、反応時間等の反応条件をコントロールすることで調整することができる。なお、カルボキシル基の量は、酸化セルロースの絶乾質量に対して、好ましくは0.2~2.0mmol/g程度であり、より好ましくは0.5~1.6mmol/gである。0.2mmol/g未満であると酸化CNFへと解繊するためには多大なエネルギーが必要となる。また、2.0mmolを超えた酸化セルロースを原料に用いた場合、得られる酸化CNFは繊維形態を有していない。なお、酸化セルロースのカルボキシル基量とセルロースナノファイバーとしたときのカルボキシル基量は通常、同じである。 The amount of carboxyl groups, which indicates the degree of modification of oxidized cellulose, can be adjusted by controlling the reaction conditions such as the amount of oxidizing agent added and the reaction time described above. The amount of carboxyl groups is preferably about 0.2 to 2.0 mmol/g, and more preferably 0.5 to 1.6 mmol/g, based on the bone dry mass of oxidized cellulose. If it is less than 0.2 mmol/g, a large amount of energy is required to defibrate it into oxidized CNF. Furthermore, if more than 2.0 mmol of oxidized cellulose is used as the raw material, the resulting oxidized CNF will not have a fibrous form. The amount of carboxyl groups in oxidized cellulose is usually the same as the amount of carboxyl groups when made into cellulose nanofibers.
(解繊)
解繊に用いる装置は特に限定されないが例えば、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などのタイプの装置が挙げられ、高圧又は超高圧ホモジナイザーが好ましく、湿式の高圧又は超高圧ホモジナイザーがより好ましい。装置は、セルロース原料又は酸化セルロース(通常は分散液)に強力なせん断力を印加できることが好ましい。装置が印加できる圧力は、50MPa以上が好ましく、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。装置は、セルロース原料又は酸化セルロース(通常は分散液)に上記圧力を印加でき、かつ強力なせん断力を印加できる、湿式の高圧または超高圧ホモジナイザーが好ましい。これにより、解繊を効率的に行うことができる。解繊装置での処理(パス)回数は、1回でもよいし2回以上でもよく、2回以上が好ましい。
(Defibrilization)
The device used for defibration is not particularly limited, but examples include devices of high-speed rotation type, colloid mill type, high-pressure type, roll mill type, ultrasonic type, etc., and a high-pressure or ultra-high-pressure homogenizer is preferable, and a wet high-pressure or ultra-high-pressure homogenizer is more preferable. The device is preferably capable of applying a strong shear force to the cellulose raw material or oxidized cellulose (usually a dispersion liquid). The pressure that the device can apply is preferably 50 MPa or more, more preferably 100 MPa or more, and even more preferably 140 MPa or more. The device is preferably a wet high-pressure or ultra-high-pressure homogenizer that can apply the above pressure to the cellulose raw material or oxidized cellulose (usually a dispersion liquid) and can apply a strong shear force. This allows defibration to be performed efficiently. The number of treatments (passes) in the defibration device may be one or two or more, and two or more are preferable.
分散処理においては通常、溶媒に酸化セルロースを分散する。溶媒は、酸化セルロースを分散できるものであれば特に限定されないが、例えば、水、有機溶媒(例えば、メタノール等の親水性の有機溶媒)、それらの混合溶媒が挙げられる。セルロース原料が親水性であることから、溶媒は水であることが好ましい。 In the dispersion process, oxidized cellulose is usually dispersed in a solvent. There are no particular limitations on the solvent as long as it can disperse oxidized cellulose, but examples include water, organic solvents (e.g., hydrophilic organic solvents such as methanol), and mixtures of these. Since the cellulose raw material is hydrophilic, it is preferable that the solvent is water.
分散液中の酸化セルロースの固形分濃度は、通常は0.1質量%以上、好ましくは0.2質量%以上、より好ましくは0.3質量%以上である。これにより、セルロース繊維原料の量に対する液量が適量となり効率的である。上限は、通常10質量%以下、好ましくは6質量%以下である。これにより流動性を保持することができる。 The solids concentration of oxidized cellulose in the dispersion is usually 0.1% by mass or more, preferably 0.2% by mass or more, and more preferably 0.3% by mass or more. This ensures that the amount of liquid relative to the amount of cellulose fiber raw material is appropriate and efficient. The upper limit is usually 10% by mass or less, and preferably 6% by mass or less. This allows fluidity to be maintained.
解繊処理と分散処理の順序は特に限定されず、どちらを先に行ってもよいし同時に行ってもよいが、分散処理後に解繊処理を行うことが好ましい。各処理の組み合わせを少なくとも1回行えばよく、2回以上繰り返してもよい。 The order of the defibration process and the dispersion process is not particularly limited, and either may be performed first, or they may be performed simultaneously, but it is preferable to perform the defibration process after the dispersion process. Each combination of processes needs to be performed at least once, and may be repeated two or more times.
解繊処理又は分散処理に先立ち、必要に応じて予備処理を行ってもよい。予備処理は、高速せん断ミキサーなどの混合、撹拌、乳化、分散装置を用いて行えばよい。 If necessary, preliminary treatment may be carried out prior to the defibration or dispersion treatment. The preliminary treatment may be carried out using a mixing, stirring, emulsifying, or dispersing device such as a high-speed shear mixer.
本発明の酸化CNFの平均繊維径は、3nm以上又は500nm以下であることが好ましい。セルロースナノファイバーの平均繊維径及び平均繊維長の測定は、例えば、酸化CNFの0.001質量%水分散液を調製し、この希釈分散液をマイカ製試料台に薄く延ばし、50℃で加熱乾燥させて観察用試料を作成し、原子間力顕微鏡(AFM)にて観察した形状像の断面高さを計測することにより、数平均繊維径あるいは繊維長として算出することができる。 The average fiber diameter of the oxidized CNF of the present invention is preferably 3 nm or more or 500 nm or less. The average fiber diameter and average fiber length of the cellulose nanofibers can be measured, for example, by preparing a 0.001% by mass aqueous dispersion of oxidized CNF, spreading this diluted dispersion thinly on a mica sample stage, and heating and drying it at 50°C to prepare a sample for observation, and measuring the cross-sectional height of the shape image observed with an atomic force microscope (AFM) to calculate the number average fiber diameter or fiber length.
また、酸化CNFの平均アスペクト比は、通常は50以上である。上限は特に限定されないが、通常は1000以下である。平均アスペクト比は下記の式により算出することができる:
アスペクト比=平均繊維長/平均繊維径
The average aspect ratio of the oxidized CNF is usually 50 or more. There is no particular upper limit, but it is usually 1000 or less. The average aspect ratio can be calculated by the following formula:
Aspect ratio = average fiber length/average fiber diameter
(撹拌工程)
本発明の撹拌工程においては、固形分濃度0.1~5.0質量%の酸化セルロースナノファイバー分散液に対して、回転数2000~6000rpmの条件で撹拌処理を1~90分間行う。撹拌工程に供する酸化CNF分散液の固形分濃度は、0.1~5.0質量%であり、好ましくは0.1~3.0質量%である。濃度が高すぎると撹拌が困難となり、濃度が低すぎると他の材料に添加する際にCNF添加量が低くなり増粘剤としての使用が困難となる。撹拌工程に供する酸化CNF分散液としては、固形分濃度が上記範囲内であれば、上記の分散・解繊処理後の酸化CNF分散液をそのまま撹拌工程に供することができる。固形分濃度は、適宜、希釈、脱水等することにより調整可能である。撹拌工程における回転数は、CNF分散液全体をしっかりと撹拌する観点から2000~6000rpmであり、好ましくは2000~3000rpmである。撹拌処理の時間は、CNF分散液全体に撹拌によるせん断の効果を与える観点から1~90分間であり、好ましくは5~60分間、より好ましくは10~60分間である。
(Mixing process)
In the stirring step of the present invention, the oxidized cellulose nanofiber dispersion having a solid content concentration of 0.1 to 5.0% by mass is stirred for 1 to 90 minutes at a rotation speed of 2000 to 6000 rpm. The solid content concentration of the oxidized CNF dispersion to be subjected to the stirring step is 0.1 to 5.0% by mass, preferably 0.1 to 3.0% by mass. If the concentration is too high, stirring becomes difficult, and if the concentration is too low, the amount of CNF added when added to other materials becomes low, making it difficult to use as a thickener. As the oxidized CNF dispersion to be subjected to the stirring step, the oxidized CNF dispersion after the above-mentioned dispersion and defibration treatment can be directly subjected to the stirring step as long as the solid content concentration is within the above range. The solid content concentration can be adjusted by dilution, dehydration, etc. as appropriate. The rotation speed in the stirring step is 2000 to 6000 rpm, preferably 2000 to 3000 rpm, from the viewpoint of thoroughly stirring the entire CNF dispersion. The stirring time is from 1 to 90 minutes, preferably from 5 to 60 minutes, and more preferably from 10 to 60 minutes, from the viewpoint of imparting a shear effect by stirring to the entire CNF dispersion.
撹拌工程で用いる撹拌機としては、上記の回転数で固形分濃度0.1~5.0質量%の酸化CNF分散液を撹拌できるものであれば特に限定されず、例えば、高速撹拌機、高速乳化分散機等が挙げられ、高速撹拌機としては例えばプライミクス社製のホモディスパー等を用いることができる。 The agitator used in the agitation process is not particularly limited as long as it can agitate the oxidized CNF dispersion liquid having a solid content concentration of 0.1 to 5.0% by mass at the above rotation speed. For example, a high-speed agitator or a high-speed emulsifying disperser can be used. For example, a high-speed agitator such as Homo Disper manufactured by Primix Corporation can be used.
(静置工程)
本発明の静置工程においては、撹拌工程後の酸化CNF分散液を、温度4~35℃、好ましくは6~25℃で、12時間以上、好ましくは24時間以上静置する。静置する時間の上限は特に限定されないが、長期での保管の観点から、例えば10日以下である。静置する時間が短すぎると、撹拌直後の一時的な減粘が回復しない虞がある。静置工程においては、CNF分散液中の水分の蒸発を防ぐため、酸化CNF分散液を容器に入れて静置することが好ましい。容器の材質は、ガラス瓶やプラスチック製など、特に限定されない。容器は、蓋を閉めることができものであることが好ましい。
(Stillage process)
In the standing step of the present invention, the oxidized CNF dispersion after the stirring step is allowed to stand at a temperature of 4 to 35°C, preferably 6 to 25°C, for 12 hours or more, preferably 24 hours or more. The upper limit of the standing time is not particularly limited, but from the viewpoint of long-term storage, it is, for example, 10 days or less. If the standing time is too short, there is a risk that the temporary viscosity reduction immediately after stirring will not recover. In the standing step, it is preferable to place the oxidized CNF dispersion in a container and allow it to stand in order to prevent evaporation of water in the CNF dispersion. The material of the container is not particularly limited, and may be a glass bottle or a plastic bottle. It is preferable that the container can be closed with a lid.
(希釈化工程)
本発明の製造方法は、静置工程後に、希釈化工程を含むものであっても良い。希釈化工程を含む場合は、酸化CNFの固形分濃度が、好ましくは0.1~0.8質量%、より好ましくは0.1~0.6質量%となるまで希釈する。希釈に用いる溶媒は、希釈前の分散液の溶媒と同じであってもよいし、異なるものであってもよく、例えば、水、有機溶媒(例えば、メタノール等の親水性の有機溶媒)、それらの混合溶媒が挙げられる。セルロース原料が親水性であることから、溶媒は水であることが好ましい。希釈化工程においては、均一に希釈できれば撹拌・混合条件は特に限定されないが、例えば回転数1000rpmで10分間撹拌することにより希釈化する。
(Dilution process)
The production method of the present invention may include a dilution step after the standing step. When the dilution step is included, the oxidized CNF is diluted until the solid content concentration is preferably 0.1 to 0.8% by mass, more preferably 0.1 to 0.6% by mass. The solvent used for dilution may be the same as or different from the solvent of the dispersion before dilution, and examples of the solvent include water, organic solvents (e.g., hydrophilic organic solvents such as methanol), and mixed solvents thereof. Since the cellulose raw material is hydrophilic, the solvent is preferably water. In the dilution step, the stirring and mixing conditions are not particularly limited as long as the mixture can be uniformly diluted, but the mixture is diluted by stirring at a rotation speed of 1000 rpm for 10 minutes, for example.
(分散剤)
本発明の製造方法で製造される酸化CNF分散液は、分散剤を含むものであってもよい。分散剤を添加する場合におけるその添加量は、CNFの固形分量の観点から酸化CNFの固形分100質量部に対して、5~100質量部が好ましく、10~50質量部がより好ましい。分散剤の種類としては、本発明の効果を奏する限り特に制限なく用いることができ、例えば、ポリアクリル酸、カルボキシメチルセルロース、ポリウレタン分散剤等が挙げられる。
(Dispersant)
The oxidized CNF dispersion produced by the production method of the present invention may contain a dispersant. When a dispersant is added, the amount of the dispersant added is preferably 5 to 100 parts by mass, more preferably 10 to 50 parts by mass, per 100 parts by mass of the solid content of the oxidized CNF, from the viewpoint of the solid content of the CNF. The type of dispersant may be used without particular limitation as long as it exhibits the effects of the present invention, and examples thereof include polyacrylic acid, carboxymethyl cellulose, and polyurethane dispersants.
分散剤を含む場合において、分散剤を添加する工程は、本発明の効果を奏する限り特に限定されないが、撹拌工程において分散剤を添加してもよいし、希釈化工程において分散剤を添加してもよいし、希釈化工程後に分散剤を添加し、混合する工程を設けてもよい。なお、希釈化工程を設けない場合は、静置工程後に分散剤を添加し、混合する工程を設けてもよい。撹拌工程および希釈化工程以外で分散剤を添加・混合する場合において、撹拌、混合に用いる装置は特に限定されず、慣用される撹拌装置を用いればよい。撹拌時間も特に限定されず、1分から1時間程度の範囲で撹拌すればよい。 When a dispersant is included, the step of adding the dispersant is not particularly limited as long as the effects of the present invention are achieved, but the dispersant may be added in the stirring step, the dispersant may be added in the dilution step, or a step of adding the dispersant and mixing may be provided after the dilution step. If a dilution step is not provided, a step of adding the dispersant and mixing may be provided after the standing step. When a dispersant is added and mixed at a step other than the stirring step and dilution step, the device used for stirring and mixing is not particularly limited, and a commonly used stirring device may be used. The stirring time is also not particularly limited, and stirring may be performed within a range of about 1 minute to 1 hour.
(粘度保持率)
酸化セルロースナノファイバー分散液の粘度保持率は、以下に示す安定性試験により撹拌前の粘度および撹拌後の粘度を求め、それらの値から下式により算出することができる。
粘度保持率(%)=(撹拌後の粘度/撹拌前の粘度)×100
(Viscosity retention rate)
The viscosity retention rate of an oxidized cellulose nanofiber dispersion can be calculated from the viscosity before and after stirring determined by the stability test described below, using the following formula.
Viscosity retention rate (%) = (viscosity after stirring/viscosity before stirring) x 100
(安定性試験)
希釈化工程直後の酸化セルロースナノファイバー分散液について、B型粘度計を用いて6rpm、23℃、1分間の条件で、B型粘度を測定する(撹拌前の粘度)。なお、希釈化工程が必要ない場合には、静置工程後に撹拌(1000rpm、10分間)することにより剪断力を加えた分散液に対して、同様の条件にて撹拌前の粘度を測定すればよく、希釈化工程後に分散剤を添加、混合する工程を含む場合は、当該工程後の分散液に対して、同様の条件にて撹拌前の粘度を測定すればよい。
(Stability test)
For the oxidized cellulose nanofiber dispersion immediately after the dilution step, the B-type viscosity is measured using a B-type viscometer under conditions of 6 rpm, 23°C, and 1 minute (viscosity before stirring). Note that, if the dilution step is not required, the viscosity before stirring can be measured under the same conditions for the dispersion to which shear force has been applied by stirring (1000 rpm, 10 minutes) after the standing step, and if a step of adding and mixing a dispersant is included after the dilution step, the viscosity before stirring can be measured under the same conditions for the dispersion after that step.
B型粘度を測定し終えた酸化セルロースナノファイバー分散液は、高速撹拌機を用いて30分間撹拌(1000rpm、23℃)する。30分間撹拌した直後に、B型粘度計を用いて6rpm、23℃、1分間の条件で、B型粘度を測定する(撹拌後の粘度)。高速撹拌機としては、例えば、プライミクス社製のホモディスパー等を使用することができる。 After measuring the B-type viscosity, the oxidized cellulose nanofiber dispersion is stirred for 30 minutes (1000 rpm, 23°C) using a high-speed stirrer. Immediately after stirring for 30 minutes, the B-type viscosity is measured using a B-type viscometer at 6 rpm, 23°C, and 1 minute (viscosity after stirring). As a high-speed stirrer, for example, a Homo Disper manufactured by Primix Corporation can be used.
本発明の製造方法によれば、粘度保持率が改善された酸化セルロースナノファイバー分散液を製造することができる。 The manufacturing method of the present invention makes it possible to produce an oxidized cellulose nanofiber dispersion with improved viscosity retention.
なお、本発明の製造方法により、粘度保持率が改善された酸化セルロースナノファイバー分散液を得ることができる理由としては、以下のように考えられる。
酸化セルロースを解繊することによりセルロースナノファイバーを得ることが可能であり、ここで得られたセルロースナノファイバーは、繊維1本1本はナノレベルまで膨潤(解繊)しているが、解繊前から存在していたセルロース繊維の物理的な絡まり合いが残った状態である。このような酸化セルロースナノファイバーの分散液を、安定性試験の条件(1000rpm、23℃)で撹拌すると、絡まっていたナノファイバー同士がほぐれ、分散状態が変化し、ほぐれたナノファイバーが一定方向に配向することにより擬塑性が発現し、粘度が下がる。
本発明の製造方法においては、安定性試験を行う前に撹拌工程を設けるため、撹拌工程において、解繊後に残っているセルロース繊維の物理的な絡まり合いを解消することができる。したがって、安定性試験の前後における粘度の低下が抑制されることになり、結果的に、粘度保持率が改善された酸化セルロースナノファイバー分散液を製造することができる。
The reason why the production method of the present invention makes it possible to obtain an oxidized cellulose nanofiber dispersion with improved viscosity retention is believed to be as follows.
It is possible to obtain cellulose nanofibers by defibrating oxidized cellulose, and in the cellulose nanofibers obtained here, each fiber is swollen (defibrated) to the nano level, but the physical entanglements of the cellulose fibers that existed before defibration remain. When such a dispersion of oxidized cellulose nanofibers is stirred under the stability test conditions (1000 rpm, 23°C), the entangled nanofibers become loose, the dispersion state changes, and the loosened nanofibers become oriented in a certain direction, resulting in the development of pseudoplasticity and a decrease in viscosity.
In the production method of the present invention, a stirring step is provided before the stability test, and therefore physical entanglements of the cellulose fibers remaining after defibration can be eliminated in the stirring step. Therefore, the decrease in viscosity before and after the stability test is suppressed, and as a result, an oxidized cellulose nanofiber dispersion with improved viscosity retention can be produced.
以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to these.
(カルボキシル基量の測定方法)
酸化セルロースの0.5質量%スラリー(水分散液)60mLを調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出した:
カルボキシル基量〔mmol/g酸化セルロース〕=a〔mL〕×0.05/酸化セルロース質量〔g〕
(Method of measuring the amount of carboxyl groups)
60 mL of a 0.5% by mass slurry (aqueous dispersion) of oxidized cellulose was prepared, and a 0.1 M aqueous hydrochloric acid solution was added to adjust the pH to 2.5. A 0.05 N aqueous sodium hydroxide solution was then added dropwise, and the electrical conductivity was measured until the pH reached 11. The electrical conductivity was calculated using the amount of sodium hydroxide (a) consumed in the neutralization stage of the weak acid, where the change in electrical conductivity was gradual, using the following formula:
Amount of carboxyl groups [mmol/g oxidized cellulose] = a [mL] × 0.05 / mass of oxidized cellulose [g]
(安定性試験)
実施例及び比較例の酸化セルロースナノファイバー水分散液について、希釈化工程直後に、B型粘度計を用いて6rpm、23℃、1分間の条件で、B型粘度を測定した(撹拌前の粘度)。
(Stability test)
For the oxidized cellulose nanofiber aqueous dispersions of the Examples and Comparative Examples, immediately after the dilution step, the B-type viscosity was measured using a B-type viscometer under conditions of 6 rpm, 23°C, and 1 minute (viscosity before stirring).
B型粘度を測定し終えた酸化セルロースナノファイバー水分散液は、高速撹拌機(プライミクス社製、ホモディスパー)を用いて30分間撹拌(1000rpm、23℃)した。30分間撹拌した直後に、B型粘度計を用いて6rpm、23℃、1分間の条件で、B型粘度を測定した(撹拌後の粘度)。 The oxidized cellulose nanofiber aqueous dispersion after measuring the B-type viscosity was stirred for 30 minutes (1000 rpm, 23°C) using a high-speed stirrer (Homodisper, manufactured by Primix Corporation). Immediately after stirring for 30 minutes, the B-type viscosity was measured using a B-type viscometer at 6 rpm, 23°C, and for 1 minute (viscosity after stirring).
(粘度保持率)
粘度保持率は、安定性試験で測定した撹拌前の粘度及び撹拌後の粘度を用いて、下記式により求めた。
式:粘度保持率(%)=(撹拌後の粘度/撹拌前の粘度)×100
(Viscosity retention rate)
The viscosity retention rate was calculated according to the following formula using the viscosity before stirring and the viscosity after stirring measured in the stability test.
Formula: Viscosity retention rate (%) = (viscosity after stirring/viscosity before stirring) x 100
(製造例A)
(酸化セルロースナノファイバー水分散液Aの製造)
針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)20mg(絶乾1gのセルロースに対し0.025mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムが5.1mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水で洗浄することで酸化されたパルプ(酸化セルロース)を得た。この時のパルプ収率は90%であり、酸化反応に要した時間は60分、カルボキシル基量(以下、「変性度」ということがある)は1.46mmol/gであった。これを水で1.0質量%に調整し、高圧ホモジナイザーを用いて、3回解繊処理を実施することで、酸化セルロースナノファイバー水分散液Aを得た。平均繊維径は4nm、アスペクト比は270であった。
(Production Example A)
(Production of oxidized cellulose nanofiber aqueous dispersion A)
5.00 g (bone-dry) of bleached unbeaten kraft pulp (whiteness 85%) derived from coniferous trees was added to 500 mL of an aqueous solution in which 20 mg (0.025 mmol per 1 g of bone-dry cellulose) of TEMPO (Sigma Aldrich) and 514 mg of sodium bromide (1.0 mmol per 1 g of bone-dry cellulose) were dissolved, and the mixture was stirred until the pulp was uniformly dispersed. An aqueous solution of sodium hypochlorite was added to the reaction system so that the sodium hypochlorite concentration was 5.1 mmol/g, and an oxidation reaction was started. During the reaction, the pH of the system decreased, but a 3M aqueous solution of sodium hydroxide was added successively to adjust the pH to 10. The reaction was terminated when the sodium hypochlorite was consumed and the pH of the system did not change. The mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was thoroughly washed with water to obtain an oxidized pulp (oxidized cellulose). The pulp yield was 90%, the time required for the oxidation reaction was 60 minutes, and the amount of carboxyl groups (hereinafter sometimes referred to as "degree of modification") was 1.46 mmol/g. This was adjusted to 1.0 mass% with water and defibrated three times using a high-pressure homogenizer to obtain oxidized cellulose nanofiber aqueous dispersion A. The average fiber diameter was 4 nm, and the aspect ratio was 270.
(製造例B)
(酸化セルロースナノファイバー水分散液Bの製造)
針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)20mg(絶乾1gのセルロースに対し0.025mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムが3.4mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水で洗浄することで酸化されたパルプ(酸化セルロース)を得た。この時のパルプ収率は92%であり、酸化反応に要した時間は60分、カルボキシル基量(以下、「変性度」ということがある)は1.1mmol/gであった。これを水で1.0質量%に調整し、高圧ホモジナイザーを用いて、3回解繊処理を実施することで、酸化セルロースナノファイバー水分散液Bを得た。平均繊維径は4nm、アスペクト比は273であった。
(Production Example B)
(Production of oxidized cellulose nanofiber aqueous dispersion B)
5.00 g (bone-dry) of bleached, unbeaten kraft pulp (whiteness 85%) derived from coniferous trees was added to 500 mL of an aqueous solution in which 20 mg (0.025 mmol per 1 g of bone-dry cellulose) of TEMPO (Sigma Aldrich) and 514 mg (1.0 mmol per 1 g of bone-dry cellulose) of sodium bromide were dissolved, and the mixture was stirred until the pulp was uniformly dispersed. An aqueous solution of sodium hypochlorite was added to the reaction system so that the sodium hypochlorite concentration was 3.4 mmol/g, and the oxidation reaction was started. During the reaction, the pH of the system decreased, but 3M aqueous sodium hydroxide solution was added successively to adjust the pH to 10. The reaction was terminated when the sodium hypochlorite was consumed and the pH of the system did not change. The mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was thoroughly washed with water to obtain an oxidized pulp (oxidized cellulose). The pulp yield at this time was 92%, the time required for the oxidation reaction was 60 minutes, and the amount of carboxyl groups (hereinafter sometimes referred to as the "degree of modification") was 1.1 mmol/g. This was adjusted to 1.0 mass % with water and defibration treatment was carried out three times using a high-pressure homogenizer to obtain oxidized cellulose nanofiber aqueous dispersion B. The average fiber diameter was 4 nm, and the aspect ratio was 273.
(製造例C)
(酸化セルロースナノファイバー水分散液Cの製造)
針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)20mg(絶乾1gのセルロースに対し0.025mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムが1.0mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水で洗浄することで酸化されたパルプ(酸化セルロース)を得た。この時のパルプ収率は93%であり、酸化反応に要した時間は60分、カルボキシル基量(以下、「変性度」ということがある)は0.58mmol/gであった。これを水で1.0質量%に調整し、高圧ホモジナイザーを用いて、5回解繊処理を実施することで、酸化セルロースナノファイバー水分散液Cを得た。平均繊維径は4nm、アスペクト比は290であった。
(Production Example C)
(Production of oxidized cellulose nanofiber aqueous dispersion C)
5.00 g (bone-dry) of bleached unbeaten kraft pulp (85% whiteness) derived from coniferous trees was added to 500 mL of an aqueous solution in which 20 mg (0.025 mmol per 1 g of bone-dry cellulose) of TEMPO (Sigma Aldrich) and 514 mg of sodium bromide (1.0 mmol per 1 g of bone-dry cellulose) were dissolved, and the mixture was stirred until the pulp was uniformly dispersed. An aqueous solution of sodium hypochlorite was added to the reaction system so that the sodium hypochlorite concentration was 1.0 mmol/g, and the oxidation reaction was started. During the reaction, the pH of the system decreased, but 3M aqueous sodium hydroxide solution was added successively to adjust the pH to 10. The reaction was terminated when the sodium hypochlorite was consumed and the pH of the system did not change. The mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was thoroughly washed with water to obtain an oxidized pulp (oxidized cellulose). The pulp yield at this time was 93%, the time required for the oxidation reaction was 60 minutes, and the amount of carboxyl groups (hereinafter sometimes referred to as the "degree of modification") was 0.58 mmol/g. This was adjusted to 1.0 mass % with water and defibration treatment was carried out five times using a high-pressure homogenizer to obtain oxidized cellulose nanofiber aqueous dispersion C. The average fiber diameter was 4 nm, and the aspect ratio was 290.
(製造例D)
(酸化セルロースナノファイバー水分散液Dの製造)
針葉樹由来の漂白済み未叩解クラフトパルプ(白色度85%)5.00g(絶乾)をTEMPO(Sigma Aldrich社)20mg(絶乾1gのセルロースに対し0.025mmol)と臭化ナトリウム514mg(絶乾1gのセルロースに対し1.0mmol)を溶解した水溶液500mLに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を、次亜塩素酸ナトリウムが2.2mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプ分離し、パルプを十分に水で洗浄することで酸化されたパルプ(酸化セルロース)を得た。この時のパルプ収率は93%であり、酸化反応に要した時間は60分、カルボキシル基量は0.76mmol/gであった。これを水で1.0質量%に調整し、高圧ホモジナイザーを用いて、5回解繊処理を実施することで、酸化セルロースナノファイバー水分散液Dを得た。平均繊維径は4nm、アスペクト比は280であった。
(Production Example D)
(Production of oxidized cellulose nanofiber aqueous dispersion D)
5.00 g (bone-dry) of bleached unbeaten kraft pulp (whiteness 85%) derived from coniferous trees was added to 500 mL of an aqueous solution in which 20 mg (0.025 mmol per 1 g of bone-dry cellulose) of TEMPO (Sigma Aldrich) and 514 mg of sodium bromide (1.0 mmol per 1 g of bone-dry cellulose) were dissolved, and the mixture was stirred until the pulp was uniformly dispersed. An aqueous solution of sodium hypochlorite was added to the reaction system so that the sodium hypochlorite concentration was 2.2 mmol/g, and the oxidation reaction was started. During the reaction, the pH of the system decreased, but 3M aqueous sodium hydroxide solution was added successively to adjust the pH to 10. The reaction was terminated when the sodium hypochlorite was consumed and the pH of the system did not change. The mixture after the reaction was filtered through a glass filter to separate the pulp, and the pulp was thoroughly washed with water to obtain an oxidized pulp (oxidized cellulose). The pulp yield was 93%, the time required for the oxidation reaction was 60 minutes, and the amount of carboxyl groups was 0.76 mmol/g. This was adjusted to 1.0% by mass with water and defibrated five times using a high-pressure homogenizer to obtain oxidized cellulose nanofiber aqueous dispersion D. The average fiber diameter was 4 nm, and the aspect ratio was 280.
(実施例1)
(撹拌工程)
製造例Aで得られた固形分濃度1.0質量%の酸化セルロースナノファイバー水分散液Aは、高速撹拌機(プライミクス社製、ホモディスパー)を用いて、回転数3000rpmの条件で撹拌処理を5分間行った。
Example 1
(Mixing process)
The oxidized cellulose nanofiber aqueous dispersion A having a solids concentration of 1.0% by mass obtained in Production Example A was subjected to a stirring treatment for 5 minutes at a rotation speed of 3000 rpm using a high-speed stirrer (Homodisper, manufactured by Primix Corporation).
(静置工程)
上記の撹拌工程において撹拌処理を行った酸化セルロースナノファイバー水分散液Aをプラスチック容器に入れ、23℃で7日間静置した。
(Stillage process)
The oxidized cellulose nanofiber aqueous dispersion A that had been subjected to the stirring treatment in the stirring step described above was placed in a plastic container and allowed to stand at 23° C. for 7 days.
(希釈化工程)
静置工程を行った酸化セルロースナノファイバー水分散液Aを、プラスチック容器に入れ、脱イオン水を添加して撹拌(1000rpm、10分間)することで、固形分濃度0.5質量%に希釈した酸化セルロースナノファイバー水分散液Aを得た。
(Dilution process)
The oxidized cellulose nanofiber aqueous dispersion A that had been subjected to the standing step was placed in a plastic container, deionized water was added, and the mixture was stirred (1000 rpm, 10 minutes) to obtain oxidized cellulose nanofiber aqueous dispersion A diluted to a solids concentration of 0.5 mass%.
この希釈した酸化セルロースナノファイバー水分散液Aに対して、安定性試験を実施し、撹拌前と撹拌後のB型粘度の値を得た。結果を表1に示す。 A stability test was conducted on this diluted oxidized cellulose nanofiber aqueous dispersion A, and the B-type viscosity values before and after stirring were obtained. The results are shown in Table 1.
(実施例2~4)
撹拌工程において、撹拌処理の時間をそれぞれ15分間(実施例2)、30分間(実施例3)、60分間(実施例4)に変更したこと以外は実施例1と同様に、撹拌工程、静置工程、希釈化工程をこの順で行い、安定性試験を実施した。結果を表1に示す。
(Examples 2 to 4)
Except for changing the stirring time in the stirring step to 15 minutes (Example 2), 30 minutes (Example 3), and 60 minutes (Example 4), the stirring step, the standing step, and the dilution step were carried out in this order in the same manner as in Example 1, and a stability test was carried out. The results are shown in Table 1.
(実施例5)
製造例Bで得られた酸化セルロースナノファイバー水分散液Bを用いたこと以外は実施例1と同様に撹拌工程、静置工程、希釈化工程をこの順で行い、安定性試験を実施した。結果を表1に示す。
Example 5
A stability test was carried out by carrying out the stirring step, the standing step, and the dilution step in that order in the same manner as in Example 1, except that oxidized cellulose nanofiber aqueous dispersion B obtained in Production Example B was used. The results are shown in Table 1.
(実施例6~8)
撹拌工程において、撹拌処理の時間をそれぞれ15分間(実施例6)、30分間(実施例7)、60分間(実施例8)に変更したこと以外は実施例5と同様に、撹拌工程、静置工程、希釈化工程をこの順で行い、安定性試験を実施した。結果を表1に示す。
(Examples 6 to 8)
A stability test was carried out by carrying out the stirring step, the standing step, and the dilution step in the same order as in Example 5, except that the stirring time in the stirring step was changed to 15 minutes (Example 6), 30 minutes (Example 7), and 60 minutes (Example 8), respectively. The results are shown in Table 1.
(実施例9)
製造例Cで得られた酸化セルロースナノファイバー水分散液Cを用いたこと以外は、実施例1と同様に撹拌工程、静置工程、希釈化工程をこの順で行い、安定性試験を実施した。結果を表1に示す。
Example 9
Except for using the oxidized cellulose nanofiber aqueous dispersion C obtained in Production Example C, a stability test was carried out by carrying out the stirring step, the standing step, and the dilution step in that order in the same manner as in Example 1. The results are shown in Table 1.
(実施例10~12)
撹拌工程において、撹拌処理の時間をそれぞれ15分間(実施例10)、30分間(実施例11)、60分間(実施例12)に変更したこと以外は実施例9と同様に、撹拌工程、静置工程、希釈化工程をこの順で行い、安定性試験を実施した。結果を表1に示す。
(Examples 10 to 12)
A stability test was carried out by carrying out the stirring step, the standing step, and the dilution step in the same order as in Example 9, except that the stirring time in the stirring step was changed to 15 minutes (Example 10), 30 minutes (Example 11), and 60 minutes (Example 12), respectively. The results are shown in Table 1.
(比較例1)
撹拌工程を行わず、静置工程において撹拌処理を行った酸化セルロースナノファイバー水分散液Aに代えて、撹拌処理を行っていないものを用いたこと以外は、実施例1と同様に静置工程、および希釈化工程を行い、固形分濃度0.5質量%の酸化セルロースナノファイバー水分散液を得た。この酸化セルロースナノファイバー水分散液に対して、安定性試験を実施した。結果を表1に示す。
(Comparative Example 1)
The standing and dilution steps were carried out in the same manner as in Example 1, except that instead of oxidized cellulose nanofiber aqueous dispersion A which had been stirred in the standing step without being subjected to the stirring step, a dispersion which had not been stirred was used, to obtain an oxidized cellulose nanofiber aqueous dispersion with a solid content concentration of 0.5% by mass. A stability test was carried out on this oxidized cellulose nanofiber aqueous dispersion. The results are shown in Table 1.
(比較例2)
撹拌工程を行わず、静置工程において撹拌処理を行った酸化セルロースナノファイバー水分散液Bに代えて、撹拌処理を行っていないものを用いたこと以外は、実施例5と同様に静置工程、および希釈化工程を行い、固形分濃度0.5質量%の酸化セルロースナノファイバー水分散液を得た。この酸化セルロースナノファイバー水分散液に対して、安定性試験を実施した。結果を表1に示す。
(Comparative Example 2)
The standing and dilution steps were carried out in the same manner as in Example 5, except that instead of oxidized cellulose nanofiber aqueous dispersion B which had been stirred in the standing step without being subjected to the stirring step, a dispersion which had not been stirred was used, to obtain an oxidized cellulose nanofiber aqueous dispersion with a solid content concentration of 0.5% by mass. A stability test was carried out on this oxidized cellulose nanofiber aqueous dispersion. The results are shown in Table 1.
(比較例3)
撹拌工程を行わず、静置工程において撹拌処理を行った酸化セルロースナノファイバー水分散液Cに代えて、撹拌処理を行っていないものを用いたこと以外は、実施例9と同様に静置工程、および希釈化工程を行い、固形分濃度0.5質量%の酸化セルロースナノファイバー水分散液を得た。この酸化セルロースナノファイバー水分散液に対して、安定性試験を実施した。結果を表1に示す。
(Comparative Example 3)
The standing and dilution steps were carried out in the same manner as in Example 9, except that instead of oxidized cellulose nanofiber aqueous dispersion C which had been stirred in the standing step without being subjected to the stirring step, a dispersion which had not been stirred was used, to obtain an oxidized cellulose nanofiber aqueous dispersion with a solid content concentration of 0.5% by mass. A stability test was carried out on this oxidized cellulose nanofiber aqueous dispersion. The results are shown in Table 1.
表1からわかるように、0.1~5.0質量%の酸化セルロースナノファイバー分散液に対して、回転数2000~6000rpmの条件で撹拌処理を1~90分間行う撹拌工程と、撹拌工程後に、酸化セルロースナノファイバー分散液を温度4~35℃で12時間以上静置する静置工程とを含む実施例1~12の方法を用いると、撹拌工程を行わなかった比較例1~3と変性度が同じもの同士で比べた場合には、得られた酸化セルロースナノファイバー分散液は粘度保持率が改善されたものであった。 As can be seen from Table 1, when the methods of Examples 1 to 12 were used, which included a stirring step of stirring a 0.1 to 5.0 mass% oxidized cellulose nanofiber dispersion at a rotation speed of 2000 to 6000 rpm for 1 to 90 minutes, and a settling step of leaving the oxidized cellulose nanofiber dispersion at a temperature of 4 to 35°C for 12 hours or more after the stirring step, the obtained oxidized cellulose nanofiber dispersion had improved viscosity retention when compared with Comparative Examples 1 to 3, which did not involve the stirring step and which had the same degree of modification.
(実施例13)
製造例Dで得られた酸化セルロースナノファイバー水分散液Dを用い、撹拌処理の時間を15分間に変更したこと以外は実施例1と同様に、撹拌工程、静置工程をこの順で実施した。
(Example 13)
The oxidized cellulose nanofiber aqueous dispersion D obtained in Production Example D was used, and the stirring step and the standing step were carried out in that order in the same manner as in Example 1, except that the stirring treatment time was changed to 15 minutes.
(希釈化工程)
静置工程を行った酸化セルロースナノファイバー水分散液Dをプラスチック容器に入れ、さらに分散剤としてポリアクリル酸(東亜合成社製、アロンA-7100、以下「PAA」と略記することがある。)を、酸化セルロースナノファイバーの固形分100質量部に対して20質量部となるように添加した。さらに、このプラスチック容器に脱イオン水を添加して撹拌(1000rpm、10分間)することで、分散液の全体量に対して、それぞれ酸化セルロースナノファイバーの固形分濃度が0.5質量%、分散剤の濃度が0.1質量%の分散液を得た。
(Dilution process)
The oxidized cellulose nanofiber aqueous dispersion D that had been subjected to the standing step was placed in a plastic container, and polyacrylic acid (Aron A-7100, manufactured by Toagosei Co., Ltd., hereinafter sometimes abbreviated as "PAA") was further added as a dispersant in an amount of 20 parts by mass per 100 parts by mass of the oxidized cellulose nanofiber solids content. Furthermore, deionized water was added to this plastic container and stirred (1000 rpm, 10 minutes), thereby obtaining a dispersion with an oxidized cellulose nanofiber solids concentration of 0.5 mass% and a dispersant concentration of 0.1 mass% relative to the total amount of the dispersion.
得られた分散液に対して、安定性試験を実施し、撹拌前と撹拌後のB型粘度の値を得た。結果を表2に示す。 A stability test was conducted on the resulting dispersion, and the B-type viscosity values before and after stirring were obtained. The results are shown in Table 2.
(実施例14)
分散剤をカルボキシメチルセルロース(日本製紙社製、サンローズA04SH、以下「CMC」と略記することがある。)に変えたこと以外は、実施例13と同様にして酸化セルロースナノファイバーの固形分濃度が0.5質量%、分散剤の濃度が0.1質量%の分散液を得た。得られた分散液に対して安定性試験を実施した。結果を表2に示す。
(Example 14)
A dispersion with an oxidized cellulose nanofiber solids concentration of 0.5% by mass and a dispersant concentration of 0.1% by mass was obtained in the same manner as in Example 13, except that the dispersant was changed to carboxymethyl cellulose (Sunrose A04SH, manufactured by Nippon Paper Industries Co., Ltd., hereinafter sometimes abbreviated as "CMC"). A stability test was carried out on the obtained dispersion. The results are shown in Table 2.
(実施例15)
製造例Dで得られた酸化セルロースナノファイバー水分散液Dに代えて、製造例Cで得られた酸化セルロースナノファイバー水分散液Cを用いたこと以外は、実施例13と同様にして酸化セルロースナノファイバーの固形分濃度が0.5質量%、分散剤の濃度が0.1質量%の分散液を得た。得られた分散液に対して安定性試験を実施した。結果を表2に示す。
(Example 15)
A dispersion with an oxidized cellulose nanofiber solids concentration of 0.5 mass% and a dispersant concentration of 0.1 mass% was obtained in the same manner as in Example 13, except that the oxidized cellulose nanofiber aqueous dispersion C obtained in Production Example C was used instead of the oxidized cellulose nanofiber aqueous dispersion D obtained in Production Example D. A stability test was carried out on the obtained dispersion. The results are shown in Table 2.
(実施例16)
製造例Dで得られた酸化セルロースナノファイバー水分散液Dに代えて、製造例Cで得られた酸化セルロースナノファイバー水分散液Cを用いたこと以外は、実施例14と同様にして酸化セルロースナノファイバーの固形分濃度が0.5質量%、分散剤の濃度が0.1質量%の分散液を得た。得られた分散液に対して安定性試験を実施した。結果を表2に示す。
(Example 16)
A dispersion with an oxidized cellulose nanofiber solids concentration of 0.5 mass% and a dispersant concentration of 0.1 mass% was obtained in the same manner as in Example 14, except that the oxidized cellulose nanofiber aqueous dispersion C obtained in Production Example C was used instead of the oxidized cellulose nanofiber aqueous dispersion D obtained in Production Example D. A stability test was carried out on the obtained dispersion. The results are shown in Table 2.
(比較例4~5)
撹拌工程を行わず、静置工程において撹拌処理を行った酸化セルロースナノファイバー水分散液Dに代えて、撹拌処理を行っていないものを用いたこと以外は、実施例13および実施例14と同様に静置工程、および希釈化工程を行い、それぞれ比較例4および比較例5の酸化セルロースナノファイバーの固形分濃度が0.5質量%、分散剤の濃度が0.1質量%の分散液を得た。得られた分散液に対して安定性試験を実施した。結果を表2に示す。
(Comparative Examples 4 to 5)
The standing and dilution steps were carried out in the same manner as in Examples 13 and 14, except that instead of oxidized cellulose nanofiber aqueous dispersion D which had not been subjected to the stirring process and had been stirred in the standing process, a dispersion which had not been subjected to the stirring process was used, thereby obtaining dispersions of Comparative Examples 4 and 5, respectively, with oxidized cellulose nanofiber solids concentrations of 0.5% by mass and dispersant concentrations of 0.1% by mass. Stability tests were carried out on the obtained dispersions. The results are shown in Table 2.
表2からわかるように、0.1~5.0質量%の酸化セルロースナノファイバー分散液に対して、回転数2000~6000rpmの条件で撹拌処理を1~90分間行う撹拌工程と、撹拌工程後に、酸化セルロースナノファイバー分散液を温度4~35℃で12時間以上静置する静置工程とを含む実施例13~16の方法を用いると、撹拌工程を行わなかった比較例4、5と比べて、得られた酸化セルロースナノファイバー分散液は、分散剤が添加されている場合であっても粘度保持率が改善されたものであった。
As can be seen from Table 2, when the methods of Examples 13 to 16 were used, which included a stirring step in which a 0.1 to 5.0 mass% oxidized cellulose nanofiber dispersion was subjected to a stirring treatment for 1 to 90 minutes at a rotation speed of 2000 to 6000 rpm, and a standing step in which the oxidized cellulose nanofiber dispersion was allowed to stand at a temperature of 4 to 35°C for 12 hours or more after the stirring step, the obtained oxidized cellulose nanofiber dispersion had improved viscosity retention even when a dispersant was added, compared to Comparative Examples 4 and 5 in which the stirring step was not performed.
Claims (5)
前記撹拌工程後に、前記酸化セルロースナノファイバー分散液を温度4~35℃で12時間以上静置する静置工程とを含む
粘度保持率が改善された酸化セルロースナノファイバー分散液の製造方法。 a stirring step of stirring an oxidized cellulose nanofiber dispersion having a solid content concentration of 0.1 to 5.0% by mass at a rotation speed of 2000 to 6000 rpm for 1 to 90 minutes;
a standing step of standing the oxidized cellulose nanofiber dispersion at a temperature of 4 to 35°C for 12 hours or more after the stirring step.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-049573 | 2023-03-27 | ||
JP2023049573A JP2024138861A (en) | 2023-03-27 | 2023-03-27 | Method for producing oxidized cellulose nanofiber dispersion |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024203024A1 true WO2024203024A1 (en) | 2024-10-03 |
Family
ID=92905532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/008258 WO2024203024A1 (en) | 2023-03-27 | 2024-03-05 | Method for producing oxidized cellulose nanofiber dispersion |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024138861A (en) |
WO (1) | WO2024203024A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016186018A (en) * | 2015-03-27 | 2016-10-27 | 日本製紙株式会社 | Concentrate of anion-modified cellulose nanofiber, method for the production thereof and dispersion liquid thereof |
JP2017002135A (en) * | 2015-06-05 | 2017-01-05 | 日本製紙株式会社 | Cellulose nano-fiber dry solid material and production method therefor, and dry solid material re-dispersion |
JP2017110085A (en) * | 2015-12-16 | 2017-06-22 | 第一工業製薬株式会社 | Viscous water base composition and method for producing the same |
WO2018216474A1 (en) * | 2017-05-24 | 2018-11-29 | 日本製紙株式会社 | Oxidized cellulose nanofibers, dispersion of oxidized cellulose nanofibers, and production method for dispersion of oxidized cellulose nanofibers |
JP2022102007A (en) * | 2020-12-25 | 2022-07-07 | 国立大学法人金沢大学 | Cellulose nanofiber composition and its manufacturing method |
JP2022165987A (en) * | 2020-07-09 | 2022-11-01 | 東亞合成株式会社 | Oxidized cellulose, nanocellulose and liquid dispersions thereof |
-
2023
- 2023-03-27 JP JP2023049573A patent/JP2024138861A/en active Pending
-
2024
- 2024-03-05 WO PCT/JP2024/008258 patent/WO2024203024A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016186018A (en) * | 2015-03-27 | 2016-10-27 | 日本製紙株式会社 | Concentrate of anion-modified cellulose nanofiber, method for the production thereof and dispersion liquid thereof |
JP2017002135A (en) * | 2015-06-05 | 2017-01-05 | 日本製紙株式会社 | Cellulose nano-fiber dry solid material and production method therefor, and dry solid material re-dispersion |
JP2017110085A (en) * | 2015-12-16 | 2017-06-22 | 第一工業製薬株式会社 | Viscous water base composition and method for producing the same |
WO2018216474A1 (en) * | 2017-05-24 | 2018-11-29 | 日本製紙株式会社 | Oxidized cellulose nanofibers, dispersion of oxidized cellulose nanofibers, and production method for dispersion of oxidized cellulose nanofibers |
JP2022165987A (en) * | 2020-07-09 | 2022-11-01 | 東亞合成株式会社 | Oxidized cellulose, nanocellulose and liquid dispersions thereof |
JP2022102007A (en) * | 2020-12-25 | 2022-07-07 | 国立大学法人金沢大学 | Cellulose nanofiber composition and its manufacturing method |
Non-Patent Citations (3)
Title |
---|
"COMBI MIX Model 3M-5", PRIMIX STANDARD SPECIFICATIONS COLUMN, 10 May 2013 (2013-05-10), pages 1 - 1, XP093213904, Retrieved from the Internet <URL:https://www.primix.jp/products/labo/vd/01.html> * |
"Great for dissolving powders and breaking up lumps! "Homodisper"", PRIMIX, 31 October 2013 (2013-10-31), pages 1 - 1, XP093213908, Retrieved from the Internet <URL:https://www.primix.jp/mixer_lecture/vol4/09.html> * |
ANONYMOUS: "Homo Disper 2.5 type", PRIMIX, 24 March 2013 (2013-03-24), pages 1 - 1, XP093213896, Retrieved from the Internet <URL:https://www.primix.jp/products/labo/ed/07.html> * |
Also Published As
Publication number | Publication date |
---|---|
JP2024138861A (en) | 2024-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6951978B2 (en) | Anion-modified cellulose nanofiber dispersion liquid and its manufacturing method | |
JP2018199753A (en) | Hydrogel and production method thereof | |
JP2009243014A (en) | Method for manufacturing cellulose nanofiber | |
JP2011046793A (en) | Method for producing cellulose nanofiber | |
JP7266235B2 (en) | Composition containing cellulose nanofiber and halloysite nanotube, film and composite containing the same | |
WO2018110627A1 (en) | Method for manufacturing dry solid of chemically modified pulp | |
WO2018216474A1 (en) | Oxidized cellulose nanofibers, dispersion of oxidized cellulose nanofibers, and production method for dispersion of oxidized cellulose nanofibers | |
JP2021075665A (en) | Cellulose nanofiber having carboxyl group and anionic group other than carboxyl group, and method for producing the same | |
WO2018173761A1 (en) | Method for storing chemically modified cellulose fibers and method for producing chemically modified cellulose nanofibers | |
JP2023013443A (en) | Method for producing chemically modified microfibril cellulose fibers | |
JP2019035041A (en) | Method for producing hydrophobized cellulose nanofiber dispersion liquid | |
WO2024203024A1 (en) | Method for producing oxidized cellulose nanofiber dispersion | |
JP7432390B2 (en) | Hydrophobized anion-modified cellulose nanofiber dispersion and method for producing the same, and dry solid of hydrophobized anion-modified cellulose and method for producing the same | |
JP7477326B2 (en) | Dry solid of hydrophobized anion-modified cellulose or defibrated product thereof, dispersion of hydrophobized anion-modified cellulose nanofiber, and method for producing the same | |
JP7199230B2 (en) | Method for producing hydrophobized anion-modified cellulose nanofiber dispersion and dry solid of hydrophobized anion-modified cellulose | |
JP7199229B2 (en) | Method for producing hydrophobized anion-modified cellulose nanofiber dispersion and dry solid of hydrophobized anion-modified cellulose | |
JP7459411B1 (en) | Cellulose nanofiber and aqueous dispersion composition containing it | |
JPWO2020080119A1 (en) | A method for redispersing a dry solid of fine fibrous cellulose and a method for producing a redispersion liquid for fine fibrous cellulose. | |
JP7542504B2 (en) | Carboxymethylated cellulose nanofiber and method for producing same | |
JP7377397B1 (en) | Method for producing fine fibrous cellulose and method for fibrillating cellulose | |
JP7424756B2 (en) | Dry solid of hydrophobized anion-modified cellulose pulverized product and method for producing the same, and method for producing hydrophobized anion-modified cellulose nanofiber dispersion | |
JP7574553B2 (en) | Method for producing chemically modified microfibril cellulose fibers | |
JP7098467B2 (en) | Manufacturing method of cellulose nanofibers | |
JP7239294B2 (en) | Method for producing anion-modified cellulose nanofiber | |
WO2024071075A1 (en) | Cellulose nanofiber, and aqueous dispersion composition containing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24779162 Country of ref document: EP Kind code of ref document: A1 |