WO2024202863A1 - Fuel battery cell - Google Patents
Fuel battery cell Download PDFInfo
- Publication number
- WO2024202863A1 WO2024202863A1 PCT/JP2024/007296 JP2024007296W WO2024202863A1 WO 2024202863 A1 WO2024202863 A1 WO 2024202863A1 JP 2024007296 W JP2024007296 W JP 2024007296W WO 2024202863 A1 WO2024202863 A1 WO 2024202863A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- fuel cell
- flow path
- electrolyte membrane
- anode
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 61
- 239000003054 catalyst Substances 0.000 claims abstract description 108
- 239000012528 membrane Substances 0.000 claims abstract description 85
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 56
- 239000007789 gas Substances 0.000 claims abstract description 55
- 239000002737 fuel gas Substances 0.000 claims abstract description 33
- 239000007800 oxidant agent Substances 0.000 claims abstract description 29
- 230000001590 oxidative effect Effects 0.000 claims abstract description 28
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 26
- 239000001257 hydrogen Substances 0.000 claims abstract description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 18
- 239000005518 polymer electrolyte Substances 0.000 claims abstract description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 11
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 49
- 229910052697 platinum Inorganic materials 0.000 claims description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 229910052684 Cerium Inorganic materials 0.000 claims description 9
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 229910052723 transition metal Inorganic materials 0.000 claims description 5
- 150000003624 transition metals Chemical class 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical group O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 abstract description 5
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 abstract description 5
- 239000003792 electrolyte Substances 0.000 description 61
- 230000000052 comparative effect Effects 0.000 description 22
- 239000002826 coolant Substances 0.000 description 19
- -1 iron ions Chemical class 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 13
- 230000006866 deterioration Effects 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 239000011737 fluorine Substances 0.000 description 11
- 229910052731 fluorine Inorganic materials 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 239000002351 wastewater Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000010248 power generation Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 2
- 229920000554 ionomer Polymers 0.000 description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- CLBRCZAHAHECKY-UHFFFAOYSA-N [Co].[Pt] Chemical compound [Co].[Pt] CLBRCZAHAHECKY-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 150000004688 heptahydrates Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 238000004502 linear sweep voltammetry Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a fuel cell of a polymer electrolyte fuel cell (PEFC (Polymer Electrolyte Fuel Cell)).
- PEFC Polymer Electrolyte Fuel Cell
- Fuel cells designed to suppress electrolyte membrane degradation have been known for some time (see, for example, Patent Document 1).
- a Pt/C catalyst in which platinum particles are supported on a carbon carrier is used as a typical anode catalyst.
- oxygen gas that permeates the polymer electrolyte membrane from the cathode side to the anode side reacts with the adsorbed hydrogen on the anode catalyst to generate hydrogen peroxide, which reacts with impurities such as divalent iron ions in the electrolyte membrane to generate hydroxyl radicals, which decompose the electrolyte membrane and accelerate the degradation of the electrolyte membrane.
- the fuel cell described in Patent Document 1 uses a PtCo/C catalyst in which alloy particles of platinum and a transition metal such as cobalt, which has a low rate of hydrogen peroxide generation, are highly dispersed on a carbon carrier.
- Patent Document 1 the fuel cell described in Patent Document 1 is merely configured to suppress the rate at which hydrogen peroxide is produced, and is unable to sufficiently reduce the amount of hydrogen peroxide produced.
- a fuel cell comprises a polymer electrolyte membrane, an anode electrode and a cathode electrode arranged on either side of the polymer electrolyte membrane, and a pair of separators arranged opposite the anode electrode and cathode electrode, forming an anode flow path through which fuel gas flows facing the anode electrode and a cathode flow path through which oxidant gas flows facing the cathode electrode.
- the anode electrode contains a first catalyst that promotes the oxidation reaction of hydrogen and a second catalyst that promotes the decomposition reaction of hydrogen peroxide.
- the second catalyst is a ceria-zirconia sintered material.
- the present invention makes it possible to sufficiently reduce the amount of hydrogen peroxide generated.
- FIG. 1 is a perspective view showing a schematic overall configuration of a fuel cell stack having fuel cells according to an embodiment of the present invention
- 2 is a perspective view showing a schematic configuration of an integrated electrode assembly included in the fuel cell stack of FIG. 1
- FIG. 2 is a partial cross-sectional view showing an example of the configuration of the fuel cell of FIG. 1
- FIG. 4 is a diagram for explaining the effect of suppressing deterioration of the electrolyte membrane by adding a second catalyst.
- FIG. 4 is a diagram for explaining the effect of improving the durability of the electrolyte membrane by adding a second catalyst.
- a fuel cell according to an embodiment of the present invention is a cell capable of generating electricity as a unit element constituting a laminate of a fuel cell stack, and is also called a unit cell or a power generating cell.
- a fuel cell stack is a component of a fuel cell.
- a fuel cell is mounted, for example, in a vehicle and can generate electricity to drive the vehicle.
- the overall configuration of a fuel cell stack will be described in brief.
- FIG. 1 is a perspective view showing a schematic overall configuration of a fuel cell stack 100 having a fuel cell 1 according to an embodiment of the present invention.
- the three mutually orthogonal axial directions shown in the figure are defined below as the front-rear direction, the left-right direction, and the up-down direction, and the configuration of each part is explained according to these definitions. These directions are not necessarily the same as the front-rear direction, the left-right direction, and the up-down direction of a vehicle.
- the front-rear direction in FIG. 1 may be the front-rear direction, the left-right direction, or the up-down direction of a vehicle.
- the fuel cell stack 100 has a cell stack 101 formed by stacking a number of fuel cells 1 in the front-rear direction, and end units 102 arranged at both the front and rear ends of the cell stack 101, and has an approximately rectangular parallelepiped shape overall.
- the length of the cell stack 101 in the left-right direction is longer than its length in the up-down direction.
- FIG. 1 shows a single fuel cell 1.
- the fuel cell 1 has a unitized electrode assembly (UEA) 2, which is a membrane electrode structure including an electrolyte membrane and electrodes, and separators 3, 3 arranged on both the front and rear sides of the unitized electrode assembly 2 and sandwiching the unitized electrode assembly 2.
- the unitized electrode assemblies 2 and the separators 3 are arranged alternately in the front-rear direction.
- Separator 3 has a pair of front and rear thin metal plates with a corrugated cross section, which are joined together at their outer peripheries. Separator 3 is made of a conductive material with excellent corrosion resistance, such as stainless steel. Inside separator 3, a cooling flow path through which a cooling medium flows is formed by press molding or the like, and the power generation surface of fuel cell 1 is cooled by the flow of the cooling medium. Water, for example, can be used as the cooling medium.
- the surface (front and rear) of separator 3 facing integrated electrode assembly 2 is unevenly configured to form a gas flow path between integrated electrode assembly 2.
- the separator 3 on the front side of the integrated electrode assembly 2 is, for example, an anode side separator (anode separator), and an anode flow path through which fuel gas flows is formed between the anode separator 3 and the integrated electrode assembly 2.
- the separator 3 on the rear side of the integrated electrode assembly 2 is, for example, a cathode side separator (cathode separator), and a cathode flow path through which oxidizer gas flows is formed between the cathode separator 3 and the integrated electrode assembly 2.
- hydrogen gas can be used as the fuel gas
- air can be used as the oxidizer gas.
- the fuel gas and the oxidizer gas are referred to as reactant gases without distinguishing between them.
- FIG. 2 is a perspective view showing the schematic configuration of the integrated electrode assembly 2.
- the integrated electrode assembly 2 has a membrane electrode assembly (MEA) 20 having a substantially rectangular shape, and a frame 21 that supports the membrane electrode assembly 20.
- the membrane electrode assembly 20 has an electrolyte membrane, an anode electrode provided on the front surface of the electrolyte membrane, and a cathode electrode provided on the rear surface of the electrolyte membrane.
- the electrolyte membrane is, for example, a solid polymer electrolyte membrane, and a thin film of perfluorosulfonic acid containing water can be used. It is not limited to fluorine-based electrolytes, and hydrocarbon-based electrolytes can also be used.
- the anode electrode has a catalyst layer formed on the front surface of the electrolyte membrane and a gas diffusion layer formed on the front surface of the catalyst layer.
- the cathode electrode has a catalyst layer formed on the rear surface of the electrolyte membrane and a gas diffusion layer formed on the rear surface of the catalyst layer.
- the catalyst layer of each electrode contains a catalytic metal that promotes the electrochemical reaction between hydrogen contained in the fuel gas and oxygen contained in the oxidant gas, an electrolyte with proton conductivity, and carbon particles with electron conductivity.
- the gas diffusion layer of each electrode is composed of a conductive material with gas permeability, such as a carbon porous body.
- the fuel gas (hydrogen) supplied through the anode flow path and gas diffusion layer is ionized by the action of a catalyst and passes through the electrolyte membrane to move to the cathode electrode side.
- the electrons generated at this time pass through an external circuit and are extracted as electrical energy.
- the oxidant gas (oxygen) supplied through the cathode flow path and gas diffusion layer reacts with the hydrogen ions guided from the anode electrode and the electrons that have moved from the anode electrode to generate water.
- the generated water provides an appropriate humidity to the electrolyte membrane, and excess water is discharged outside the integrated electrode assembly 2.
- the frame 21 is a thin plate with a generally rectangular shape, and is made of insulating resin, rubber, or the like.
- a generally rectangular opening 21a is provided in the center of the frame 21, and the membrane electrode assembly 20 is provided to cover the entire opening 21a.
- three through holes 211-213 that penetrate the frame 21 in the front-to-rear direction are opened in a line up in the vertical direction, and on the right side of the opening 21a, three through holes 214-216 that penetrate the frame 21 in the front-to-rear direction are opened in a line up in the vertical direction.
- the separators 3 at the front and rear of the integrated electrode assembly 2 are provided with through holes 311-316 that penetrate the separators 3 in the front-rear direction at positions corresponding to the through holes 211-216 in the frame 21.
- the through holes 311-316 are connected to the through holes 211-216 in the frame 21, respectively.
- the collection of the through holes 211-216 and 311-316 that communicate with each other forms flow paths PA1-PA6 (indicated by arrows for convenience) that penetrate the cell stack 101 and extend in the front-rear direction.
- the flow paths PA1-PA6 are sometimes called manifolds (exhaust manifolds).
- the flow paths PA1-PA6 are connected to a manifold external to the fuel cell stack 100.
- Flow path PA1 (solid arrow) extending forward through through holes 211, 311 is a fuel gas supply flow path.
- Flow path PA6 (solid arrow) extending rearward through through holes 216, 316 is a fuel gas exhaust flow path.
- Fuel gas supply flow path PA1 and fuel gas exhaust flow path PA6 are connected to the anode flow path facing the front surface of the membrane electrode assembly 20, and as shown by the solid arrow, fuel gas flows left and right through the anode flow path via fuel gas supply flow path PA1 and fuel gas exhaust flow path PA6.
- the fuel gas flowing through fuel gas exhaust flow path PA6 is the fuel gas after a portion of it has been used at the anode electrode, and is sometimes called fuel exhaust gas.
- the flow path PA4 (dotted arrow) extending forward through the through holes 214, 314 is an oxidant gas supply flow path.
- the flow path PA3 (dotted arrow) extending rearward through the through holes 213, 313 is an oxidant gas discharge flow path.
- the oxidant gas supply flow path PA4 and the oxidant gas discharge flow path PA3 are connected to the cathode flow path facing the rear surface of the membrane electrode assembly 20, and as shown by the dotted arrow, the oxidant gas flows left and right through the cathode flow path via the oxidant gas supply flow path PA4 and the oxidant gas discharge flow path PA3.
- the oxidant gas flowing through the oxidant gas discharge flow path PA3 is the oxidant gas after a portion of it has been used at the cathode electrode, and this is sometimes called oxidant exhaust gas.
- the fuel exhaust gas and the oxidant exhaust gas are sometimes called reaction exhaust gas without distinguishing between them.
- Flow path PA5 (dash-dotted arrow) extending forward through through holes 215, 315 is a cooling medium supply flow path.
- Flow path PA2 (dash-dotted arrow) extending rearward through through holes 212, 312 is a cooling medium discharge flow path.
- Cooling medium supply flow path PA5 and cooling medium discharge flow path PA2 are connected to the cooling flow path inside separator 3, and the cooling medium flows through the cooling flow path via cooling medium supply flow path PA5 and cooling medium discharge flow path PA2.
- the end units 102 arranged on both the front and rear sides of the cell stack 101 each have a terminal plate 4, an insulating plate 5, and an end plate 6.
- the front end unit 102 is sometimes called the dry side end unit, and the rear end unit 102 is sometimes called the wet side end unit.
- the pair of front and rear terminal plates 4, 4 are arranged on both the front and rear sides of the cell stack 101, sandwiching them.
- the pair of front and rear insulating plates 5, 5 are arranged on both the front and rear sides of the terminal plate 4, 4.
- the pair of front and rear end plates 6, 6 are arranged on both the front and rear sides of the insulating plate 5, 5, sandwiching them.
- the terminal plate 4 is a roughly rectangular metal plate member, and has a terminal portion for extracting the power generated by the electrochemical reaction in the cell stack 101.
- the insulating plate 5 is a roughly rectangular non-conductive resin or rubber plate member, and electrically insulates the terminal plate 4 from the end plate 6.
- the end plate 6 is a metal or high-strength resin plate member, and a connecting member elongated in the front-rear direction that connects the front and rear end plates 6, 6 to each other is fixed to the end plate 6 by a bolt, for example.
- the fuel cell stack 100 is held in a state where it is pressed in the front-rear direction by the end plates 6, 6 via the connecting member.
- the rear end unit 102 has a number of through holes 102a-102f that penetrate the end unit 102 in the front-rear direction.
- the through holes 102a-102f include a through hole that penetrates the terminal plate 4, a through hole that penetrates the insulating plate 5, and a through hole that penetrates the end plate 6, but in FIG. 1, for convenience, these are collectively shown as through holes 102a-102f.
- the through hole 102a is opened on an extension of the fuel gas supply flow path PA1 and communicates with the fuel gas supply flow path PA1.
- the through hole 102b is opened on an extension of the cooling medium discharge flow path PA2 and communicates with the cooling medium discharge flow path PA2.
- the through hole 102c is opened on an extension of the oxidizing gas discharge flow path PA3 and communicates with the oxidizing gas discharge flow path PA3.
- the through hole 102d is opened on an extension of the oxidizing gas supply flow path PA4 and communicates with the oxidizing gas supply flow path PA4.
- the through hole 102e is opened on an extension of the cooling medium supply passage PA5 and is connected to the cooling medium supply passage PA5.
- the through hole 102f is opened on an extension of the fuel gas discharge passage PA6 and is connected to the fuel gas discharge passage PA6.
- a fuel gas tank that stores high-pressure fuel gas is connected to through-hole 102a via an ejector, injector, etc., and the fuel gas in the fuel gas tank is supplied to fuel cell stack 100 via through-hole 102a.
- a gas-liquid separator is connected to through-hole 102f, and the fuel gas (fuel exhaust gas) discharged through through-hole 102f is separated into fuel gas and water by the gas-liquid separator. The separated fuel gas is sucked in through the ejector and supplied again to fuel cell stack 100. The separated water is discharged to the outside via a drain passage.
- a compressor for supplying oxidant gas is connected to through-hole 102d, and the oxidant gas compressed by the compressor is supplied to the fuel cell stack 100 through through-hole 102d.
- the oxidant gas (oxidant exhaust gas) flows out from through-hole 102c.
- a pump for supplying a cooling medium is connected to through-hole 102b, and the cooling medium is supplied to the fuel cell stack 100 through through-hole 102b.
- the cooling medium is discharged from through-hole 102e.
- the discharged cooling medium is cooled by heat exchange in the radiator and is supplied again to the fuel cell stack 100 through through-hole 102b.
- the above is the general configuration of the fuel cell stack 100.
- the fuel cell stack 100 is housed in a roughly box-shaped case and mounted on the vehicle.
- FIG. 3 is a partial cross-sectional view showing an example of the configuration of a fuel cell 1.
- the membrane electrode assembly 20 of the integrated electrode assembly 2 has an electrolyte membrane 22, an anode electrode 23 provided on the front surface of the electrolyte membrane 22, and a cathode electrode 24 provided on the rear surface of the electrolyte membrane 22.
- the front surface of the membrane electrode assembly 20, i.e., the surface of the anode electrode 23, constitutes the anode surface 20a of the membrane electrode assembly 20.
- the rear surface of the membrane electrode assembly 20, i.e., the surface of the cathode electrode 24, constitutes the cathode surface 20b of the membrane electrode assembly 20.
- the separator 3 has a pair of front and rear thin plates 3a, 3b.
- the anode flow path An through which the fuel gas flows, is formed between the rear thin plate 3a of the anode separator 3 on the front side of the integrated electrode assembly 2 and the anode surface 20a of the membrane electrode assembly 20.
- the cathode flow path Ca through which the oxidizer gas flows, is formed between the front thin plate 3b of the cathode separator 3 on the rear side of the integrated electrode assembly 2 and the cathode surface 20b of the membrane electrode assembly 20.
- the cooling flow path Co through which the cooling medium flows, is formed between the pair of front and rear thin plates 3a, 3b of the separator 3.
- hydrogen which is the fuel gas flowing through the anode flow path An, is ionized by an oxidation reaction of the following formula (i).
- the hydrogen ions generated at the anode electrode 23 pass through the electrolyte membrane 22 and move to the cathode electrode 24.
- oxygen in the oxidant gas flowing through the cathode flow path Ca reacts with the hydrogen ions from the anode electrode 23 by a reduction reaction of the following formula (ii), generating water.
- a portion of the water generated at the cathode electrode 24 is supplied to the electrolyte membrane 22 to moisten the electrolyte membrane 22.
- the oxygen that has permeated the electrolyte membrane 22 and reached the anode electrode 23 reacts with the hydrogen ions produced by the oxidation reaction of formula (i) and the adsorbed hydrogen before being ionized, through the reduction reactions of the following formulas (iii) to (v), to generate hydrogen peroxide.
- the membrane electrode assembly 20 of the integrated electrode assembly 2, which includes the electrolyte membrane 22, is maintained in a wet state and is disposed adjacent to the separator 3, which is made of a material such as stainless steel that contains iron as a main component. For this reason, impurities such as divalent iron ions are inevitably present in the membrane electrode assembly 20.
- these divalent iron ions react with hydrogen peroxide generated by the reduction reactions of formulas (iii) to (v) to generate hydroxyl radicals (.OH). The hydroxyl radicals decompose and deteriorate the electrolyte membrane 22.
- a catalyst that decomposes hydrogen peroxide is added to the anode electrode 23, and the fuel cell 1 is configured as follows so that the final amount of hydrogen peroxide generated can be sufficiently reduced.
- the catalyst layer of the anode electrode 23 is formed by mixing a powdered catalyst and an ionomer that bonds the catalyst powders together in a solvent such as water or alcohol to prepare a paste-like catalyst ink, applying this catalyst ink to the electrolyte membrane 22, and then drying to remove the solvent.
- a solvent such as water or alcohol
- the ionomer for example, a polymer electrolyte similar to that of the electrolyte membrane 22 can be used.
- the catalyst to be mixed into the catalytic ink includes a first catalyst that promotes the oxidation reaction of hydrogen as shown in formula (i) and a second catalyst that promotes the decomposition reaction of hydrogen peroxide.
- a first catalyst for example, a platinum catalyst (Pt/C) supported on a carbon carrier such as carbon black can be used.
- An alloy catalyst (PtCo/C) in which alloy particles of platinum and a transition metal such as cobalt are supported on a carbon carrier may also be used as the first catalyst.
- a ceria ( CeO2 ) zirconia ( ZrO2 ) sintered material (CZ) can be used as the second catalyst.
- the weight ratio of cerium (Ce) contained in the second catalyst to platinum (Pt) contained in the first catalyst is preferably 0.2 or more. Furthermore, from the viewpoint of ensuring the amount of the first catalyst that promotes the hydrogen oxidation reaction (proton production reaction) shown in formula (i) and ensuring a sufficient amount of power generation, the weight ratio of cerium contained in the second catalyst to platinum contained in the first catalyst is preferably 0.4 or less. In other words, the weight ratio of cerium contained in the second catalyst to platinum contained in the first catalyst is preferably 0.2 or more and 0.4 or less.
- the fuel cell 1 includes an electrolyte membrane 22, an anode electrode 23 and a cathode electrode 24 disposed on both sides of the electrolyte membrane 22, and a pair of separators 3 disposed opposite the anode electrode 23 and the cathode electrode 24, forming an anode flow path An through which a fuel gas flows facing the anode electrode 23 and a cathode flow path Ca through which an oxidant gas flows facing the cathode electrode 24 (FIG. 3).
- the anode electrode 23 includes a first catalyst that promotes an oxidation reaction of hydrogen and a second catalyst that promotes a decomposition reaction of hydrogen peroxide.
- the second catalyst is a ceria-zirconia sintered material (CZ).
- CZ ceria-zirconia sintered material
- the first catalyst is a platinum catalyst (Pt) or an alloy catalyst (PtCo) of platinum and a transition metal such as cobalt. This sufficiently promotes the hydrogen oxidation reaction (proton production reaction) shown in formula (i), ensuring sufficient power generation.
- the weight ratio of cerium (Ce) contained in the second catalyst to platinum (Pt) contained in the first catalyst is 0.2 or more. This ensures sufficient decomposition performance of hydrogen peroxide and can sufficiently reduce the final amount of hydrogen peroxide generated.
- the weight ratio of cerium (Ce) contained in the second catalyst to platinum (Pt) contained in the first catalyst is 0.2 or more and 0.4 or less. This ensures the amount of Pt that promotes the hydrogen oxidation reaction (proton production reaction) shown in formula (i), and ensures sufficient power generation.
- the separator 3 is a metal separator containing iron.
- impurities such as divalent iron ions are inevitably present in the membrane electrode assembly 20 of the integrated electrode assembly 2 including the electrolyte membrane 22, and these impurities react with the hydrogen peroxide generated in the anode electrode 23 to generate hydroxyl radicals (.OH) that decompose and deteriorate the electrolyte membrane 22.
- hydroxyl radicals .OH
- CZ as a second catalyst
- FIG. 3 and other figures show an example of separators 3, 3 having a pair of thin plates 3a, 3b and forming an anode flow path An, a cathode flow path Ca, and a cooling flow path Co, but the pair of separators arranged opposite the anode electrode and the cathode electrode, facing the anode electrode to form an anode flow path through which fuel gas flows, and facing the cathode electrode to form a cathode flow path through which oxidizer gas flows, are not limited to this.
- Each separator 3 may not form a cooling flow path Co, and is not limited to having a pair of thin plates 3a, 3b.
- a metal catalyst supported on a carbon carrier is used as the first catalyst, but the first catalyst that promotes the oxidation reaction of hydrogen is not limited to this.
- it may be a highly dispersed metal catalyst without using a carrier, a metal catalyst supported on a carrier other than carbon, or a combination of a carbon carrier and a carrier other than carbon.
- Fig. 4 is a diagram for explaining the effect of suppressing deterioration of the electrolyte membrane 22 by adding the second catalyst.
- Fig. 5 is a diagram for explaining the effect of improving the durability of the electrolyte membrane 22 by adding the second catalyst.
- Figs. 4 and 5 show test results when durability tests were conducted on the fuel cell 1 with different compositions of the catalyst layer of the anode electrode 23.
- the durability test was performed on a fuel cell cell 1 (unit cell (power generation area: 12.5 cm2)) with a specified amount of iron added to the catalyst layer of the anode electrode 23 (iron-containing compounds such as ferrous sulfate (II) heptahydrate were added when preparing the catalyst ink) under OCV conditions, where an open circuit voltage (OCV) was maintained at which no current flows in the external circuit.
- iron-containing compounds such as ferrous sulfate (II) heptahydrate were added when preparing the catalyst ink
- OCV open circuit voltage
- the temperature of the unit cell and the humidity of the supply gas were adjusted to perform the test under specified high temperature and low humidity conditions (110°C, RH 25%, 150 kPa (absolute pressure)) that accelerate the chemical deterioration of the electrolyte membrane 22.
- Figure 4 shows the comparative results of the decomposition rate (fluorine release) of the electrolyte membrane 22 estimated based on the quantitative results of fluorine ions, which are decomposition products of the electrolyte membrane 22, contained in wastewater collected during a durability test for a specified period of time (e.g., 150 hours).
- the quantitative determination of fluorine ions was performed by ion chromatography.
- perfluorosulfonic acid constituting the electrolyte membrane 22 decomposes, decomposition products containing fluorine are generated, and fluorine ions are eluted into the wastewater.
- the more fluorine ions in the wastewater the faster the decomposition rate of the electrolyte membrane 22, and vice versa.
- Figure 5 shows a comparison of the time it takes for the crossover current of the electrolyte membrane 22 to rise to a predetermined value and reach a gas cross leak state, as measured by the Linear Sweep Voltammetry (LSV) method.
- LSV Linear Sweep Voltammetry
- Comparative Example 1 A durability test was carried out on the fuel cell 1 in which the catalyst layer of the anode electrode 23 was composed only of the first catalyst, and the first catalyst was a platinum catalyst (Pt/C) supported on a carbon carrier. In Fig. 4 and Fig. 5, the test result of Comparative Example 1 is used as the reference value.
- Example 1 A durability test was performed on a fuel cell 1 in which the catalyst layer of the anode electrode 23 was composed of a first catalyst and a second catalyst, the first catalyst being Pt/C, and the second catalyst being a ceria-zirconia sintered material (CZ).
- the Pt content in the catalyst layer of the anode electrode 23 was the same as in Comparative Examples 1 to 3.
- the weight ratio of Ce (cerium) in CZ (CeO 2 -ZrO 2 ) to Pt in the catalyst layer of the anode electrode 23 was 0.2. As shown in FIG.
- Example 4 in Example 1, the fluorine release in the wastewater was reduced by 82% compared to Comparative Example 1, and it was confirmed that the decomposition and deterioration of the electrolyte membrane 22 was significantly suppressed compared to Comparative Example 1. Also, as shown in FIG. 5, it was confirmed that the gas cross leak arrival time was extended by more than twice as long as that of Comparative Example 1, and the durability of the electrolyte membrane 22 was significantly improved. It is believed that the addition of CZ as the second catalyst sufficiently promoted the decomposition reaction of hydrogen peroxide, significantly suppressed the decomposition and deterioration of the electrolyte membrane 22, and significantly improved the durability.
- Example 2 A durability test was performed on a fuel cell 1 in which the catalyst layer of the anode electrode 23 was composed of a first catalyst and a second catalyst, the first catalyst being PtCo/C, and the second catalyst being CZ.
- the Pt content in the catalyst layer of the anode electrode 23 was the same as in Comparative Examples 1 to 3 and Example 1.
- the weight ratio of Ce in CZ to Pt in the catalyst layer of the anode electrode 23 was 0.2.
- the fluorine release in the wastewater was reduced by 95% compared to Comparative Example 1, and it was confirmed that the decomposition and deterioration of the electrolyte membrane 22 was further suppressed than in Example 1. Also, as shown in FIG.
- Example 5 it was confirmed that the gas cross leak arrival time was extended by more than four times compared to Comparative Example 1, and the durability of the electrolyte membrane 22 was further improved than in Example 1. It is considered that the application of Co to the first catalyst reduced the generation rate of hydrogen peroxide, and the addition of CZ as the second catalyst sufficiently promoted the decomposition reaction of hydrogen peroxide, and the decomposition and deterioration of the electrolyte membrane 22 was further suppressed than in Example 1, and the durability was improved.
- Fuel cell 2 Integrated electrode assembly, 3 Separator, 20 Membrane electrode assembly, 20a Anode surface, 20b Cathode surface, 22 Electrolyte membrane, 23 Anode electrode, 24 Cathode electrode, An Anode flow path, Ca Cathode flow path, Co Cooling flow path
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、固体高分子形燃料電池(PEFC(Polymer Electrolyte Fuel Cell))の燃料電池セルに関する。 The present invention relates to a fuel cell of a polymer electrolyte fuel cell (PEFC (Polymer Electrolyte Fuel Cell)).
従来より、電解質膜の劣化を抑制するようにした燃料電池が知られている(例えば特許文献1参照)。PEFCでは、一般的なアノード触媒として、白金粒子を炭素担体に担持したPt/C触媒が用いられる。この場合、カソード側から高分子電解質膜を透過してアノード側へと移動した酸素ガスがアノード触媒上の吸着水素と反応することで過酸化水素が生成し、過酸化水素と電解質膜中の二価鉄イオン等の不純物とが反応することでヒドロキシラジカルが発生し、電解質膜が分解されることで電解質膜の劣化が促進される。特許文献1記載の燃料電池では、過酸化水素の生成速度が低いコバルト等の遷移金属と白金との合金粒子を炭素担体に高分散したPtCo/C触媒を用いている。
Fuel cells designed to suppress electrolyte membrane degradation have been known for some time (see, for example, Patent Document 1). In PEFCs, a Pt/C catalyst in which platinum particles are supported on a carbon carrier is used as a typical anode catalyst. In this case, oxygen gas that permeates the polymer electrolyte membrane from the cathode side to the anode side reacts with the adsorbed hydrogen on the anode catalyst to generate hydrogen peroxide, which reacts with impurities such as divalent iron ions in the electrolyte membrane to generate hydroxyl radicals, which decompose the electrolyte membrane and accelerate the degradation of the electrolyte membrane. The fuel cell described in
しかしながら、上記特許文献1記載の燃料電池は、過酸化水素の生成速度を抑えるように構成されているに過ぎず、上記特許文献1記載の燃料電池では、過酸化水素の発生量を十分に低減することができない。
However, the fuel cell described in
本発明の一態様である燃料電池セルは、高分子電解質膜と、高分子電解質膜の両面に配置されたアノード電極およびカソード電極と、アノード電極およびカソード電極に対向して配置され、アノード電極に面して燃料ガスが流れるアノード流路を形成するとともに、カソード電極に面して酸化剤ガスが流れるカソード流路を形成する一対のセパレータと、を備える。アノード電極は、水素の酸化反応を促進する第1触媒と、過酸化水素の分解反応を促進する第2触媒と、を含む。第2触媒は、セリアジルコニア焼結材である。 A fuel cell according to one embodiment of the present invention comprises a polymer electrolyte membrane, an anode electrode and a cathode electrode arranged on either side of the polymer electrolyte membrane, and a pair of separators arranged opposite the anode electrode and cathode electrode, forming an anode flow path through which fuel gas flows facing the anode electrode and a cathode flow path through which oxidant gas flows facing the cathode electrode. The anode electrode contains a first catalyst that promotes the oxidation reaction of hydrogen and a second catalyst that promotes the decomposition reaction of hydrogen peroxide. The second catalyst is a ceria-zirconia sintered material.
本発明によれば、過酸化水素の発生量を十分に低減することができる。 The present invention makes it possible to sufficiently reduce the amount of hydrogen peroxide generated.
以下、図1~図5を参照して本発明の実施形態について説明する。本発明の実施形態に係る燃料電池セルは、燃料電池スタックの積層体を構成する単位要素としての発電可能なセルであり、単位セル、発電セルと呼ぶこともある。燃料電池スタックは、燃料電池の構成要素である。燃料電池は、例えば車両に搭載され、車両駆動用の電力を発生することができる。まず、燃料電池スタックの全体構成を概略的に説明する。 Below, an embodiment of the present invention will be described with reference to Figures 1 to 5. A fuel cell according to an embodiment of the present invention is a cell capable of generating electricity as a unit element constituting a laminate of a fuel cell stack, and is also called a unit cell or a power generating cell. A fuel cell stack is a component of a fuel cell. A fuel cell is mounted, for example, in a vehicle and can generate electricity to drive the vehicle. First, the overall configuration of a fuel cell stack will be described in brief.
図1は、本発明の実施形態に係る燃料電池セル1を有する燃料電池スタック100の全体構成を概略的に示す斜視図である。以下では、便宜上、図示のように互いに直交する三軸方向を、前後方向、左右方向および上下方向と定義し、この定義に従い各部の構成を説明する。これらの方向は、車両の前後方向、左右方向および上下方向と同一であるとは限らない。例えば図1の前後方向は、車両の前後方向であってもよく、左右方向であってもよく、上下方向であってもよい。
FIG. 1 is a perspective view showing a schematic overall configuration of a
図1に示すように、燃料電池スタック100は、複数の燃料電池セル1を前後方向に積層して構成されたセル積層体101と、セル積層体101の前後両端部に配置されたエンドユニット102とを有し、全体が略直方体形状を呈する。セル積層体101の左右方向の長さは、上下方向の長さよりも長い。図1には、便宜上、単一の燃料電池セル1が示される。燃料電池セル1は、電解質膜と電極とを含む膜電極構造体である一体化電極アッセンブリ(UEA;Unitized Electrode Assembly)2と、一体化電極アッセンブリ2の前後両側に配置され、一体化電極アッセンブリ2を挟持するセパレータ3,3と、を有する。一体化電極アッセンブリ2とセパレータ3とは、前後方向に交互に配置される。
As shown in FIG. 1, the
セパレータ3は、断面が波板状の前後一対の金属製の薄板を有し、これら薄板の外周同士を接合して一体に構成される。セパレータ3には耐腐食性に優れた導電性の材料が用いられ、例えばステンレス等を用いることができる。セパレータ3の内部には、冷却媒体が流れる冷却流路がプレス成形などによって形成され、冷却媒体の流れにより燃料電池セル1の発電面が冷却される。冷却媒体としては例えば水を用いることができる。一体化電極アッセンブリ2に対向するセパレータ3の表面(前面および後面)は、一体化電極アッセンブリ2との間にガス流路を形成するように凹凸状に構成される。
一体化電極アッセンブリ2の前側のセパレータ3は、例えばアノード側のセパレータ(アノードセパレータ)であり、アノードセパレータ3と一体化電極アッセンブリ2との間に、燃料ガスが流れるアノード流路が形成される。一体化電極アッセンブリ2の後側のセパレータ3は、例えばカソード側のセパレータ(カソードセパレータ)であり、カソードセパレータ3と一体化電極アッセンブリ2との間に、酸化剤ガスが流れるカソード流路が形成される。燃料ガスとしては例えば水素ガスを、酸化剤ガスとしては例えば空気を用いることができる。燃料ガスと酸化剤ガスとを区別せずに、これらを反応ガスと呼ぶこともある。
The
図2は、一体化電極アッセンブリ2の概略構成を示す斜視図である。図2に示すように、一体化電極アッセンブリ2は、略矩形状の膜電極接合体(MEA;Membrane Electrode Assembly)20と、膜電極接合体20を支持するフレーム21と、を有する。膜電極接合体20は、電解質膜と、電解質膜の前面に設けられたアノード電極と、電解質膜の後面に設けられたカソード電極とを有する。
Figure 2 is a perspective view showing the schematic configuration of the integrated
電解質膜は、例えば固体高分子電解質膜であり、水分を含んだパーフルオロスルホン酸の薄膜を用いることができる。フッ素系電解質に限らず、炭化水素系電解質を用いることもできる。 The electrolyte membrane is, for example, a solid polymer electrolyte membrane, and a thin film of perfluorosulfonic acid containing water can be used. It is not limited to fluorine-based electrolytes, and hydrocarbon-based electrolytes can also be used.
アノード電極は、電解質膜の前面に形成された触媒層と触媒層の前面に形成されたガス拡散層とを有する。カソード電極は、電解質膜の後面に形成された触媒層と触媒層の後面に形成されたガス拡散層とを有する。各電極の触媒層には、燃料ガスに含まれる水素と酸化剤ガスに含まれる酸素の電気化学反応を促進する触媒金属、プロトン伝導性を有する電解質、および電子伝導性を有するカーボン粒子等が含まれる。各電極のガス拡散層は、ガス透過性を有する導電性部材、例えばカーボン多孔質体により構成される。 The anode electrode has a catalyst layer formed on the front surface of the electrolyte membrane and a gas diffusion layer formed on the front surface of the catalyst layer. The cathode electrode has a catalyst layer formed on the rear surface of the electrolyte membrane and a gas diffusion layer formed on the rear surface of the catalyst layer. The catalyst layer of each electrode contains a catalytic metal that promotes the electrochemical reaction between hydrogen contained in the fuel gas and oxygen contained in the oxidant gas, an electrolyte with proton conductivity, and carbon particles with electron conductivity. The gas diffusion layer of each electrode is composed of a conductive material with gas permeability, such as a carbon porous body.
アノード電極では、アノード流路およびガス拡散層を介して供給された燃料ガス(水素)が、触媒の作用によってイオン化され、電解質膜を通過してカソード電極側へ移動する。このとき生じた電子は、外部回路を通過し、電気エネルギとして取り出される。カソード電極では、カソード流路およびガス拡散層を介して供給された酸化剤ガス(酸素)と、アノード電極から導かれた水素イオンおよびアノード電極から移動した電子とが反応し、水が生成される。生成された水は、電解質膜に適度な湿度を与え、余剰な水は一体化電極アッセンブリ2の外部へ排出される。
At the anode electrode, the fuel gas (hydrogen) supplied through the anode flow path and gas diffusion layer is ionized by the action of a catalyst and passes through the electrolyte membrane to move to the cathode electrode side. The electrons generated at this time pass through an external circuit and are extracted as electrical energy. At the cathode electrode, the oxidant gas (oxygen) supplied through the cathode flow path and gas diffusion layer reacts with the hydrogen ions guided from the anode electrode and the electrons that have moved from the anode electrode to generate water. The generated water provides an appropriate humidity to the electrolyte membrane, and excess water is discharged outside the integrated
フレーム21は、略矩形状を呈する薄板であり、絶縁性を有する樹脂やゴム等により構成される。フレーム21の中央部には、略矩形状の開口部21aが設けられ、開口部21aの全体を覆うように膜電極接合体20が設けられる。フレーム21の開口部21aの左側には、フレーム21を前後方向に貫通する3つの貫通孔211~213が上下方向に並んで開口され、開口部21aの右側には、フレーム21を前後方向に貫通する3つの貫通孔214~216が上下方向に並んで開口される。
The
図1に示すように、一体化電極アッセンブリ2の前後のセパレータ3には、フレーム21の貫通孔211~216に対応する位置に、セパレータ3を前後方向に貫通する貫通孔311~316がそれぞれ開口される。貫通孔311~316は、フレーム21の貫通孔211~216にそれぞれ連通する。これら互いに連通する貫通孔211~216,311~316の集合により、セル積層体101を貫通して前後方向に延在する流路PA1~PA6(便宜上、矢印で示す)が形成される。流路PA1~PA6は、マニホールド(排出マニホールド)と呼ばれることもある。流路PA1~PA6は、燃料電池スタック100の外部のマニホールドに接続される。
As shown in FIG. 1, the
貫通孔211,311を介して前方に延びる流路PA1(実線矢印)は、燃料ガス供給流路である。貫通孔216,316を介して後方に延びる流路PA6(実線矢印)は、燃料ガス排出流路である。燃料ガス供給流路PA1および燃料ガス排出流路PA6は、膜電極接合体20の前面に対向するアノード流路と連通し、実線矢印に示すように、燃料ガス供給流路PA1と燃料ガス排出流路PA6とを介して、アノード流路を左右方向に燃料ガスが流れる。燃料ガス排出流路PA6を流れる燃料ガスは、アノード電極で一部が使用された後の燃料ガスであり、これを燃料排ガスと呼ぶことがある。
Flow path PA1 (solid arrow) extending forward through through
貫通孔214,314を介して前方に延びる流路PA4(点線矢印)は、酸化剤ガス供給流路である。貫通孔213,313を介して後方に延びる流路PA3(点線矢印)は、酸化剤ガス排出流路である。酸化剤ガス供給流路PA4および酸化剤ガス排出流路PA3は、膜電極接合体20の後面に対向するカソード流路と連通し、点線矢印に示すように、酸化剤ガス供給流路PA4と酸化剤ガス排出流路PA3とを介して、カソード流路を左右方向に酸化剤ガスが流れる。酸化剤ガス排出流路PA3を流れる酸化剤ガスは、カソード電極で一部が使用された後の酸化剤ガスであり、これを酸化剤排ガスと呼ぶことがある。燃料排ガスと酸化剤排ガスとを区別せずに、これらを反応排ガスと呼ぶこともある。
The flow path PA4 (dotted arrow) extending forward through the through
貫通孔215,315を介して前方に延びる流路PA5(一点鎖線矢印)は、冷却媒体供給流路である。貫通孔212,312を介して後方に延びる流路PA2(一点鎖線矢印)は、冷却媒体排出流路である。冷却媒体供給流路PA5および冷却媒体排出流路PA2は、セパレータ3の内部の冷却流路と連通しており、冷却媒体供給流路PA5と冷却媒体排出流路PA2とを介して、冷却流路を冷却媒体が流れる。
Flow path PA5 (dash-dotted arrow) extending forward through through
セル積層体101の前後両側に配置されたエンドユニット102は、それぞれターミナルプレート4と、絶縁プレート5と、エンドプレート6とを有する。なお、前側のエンドユニット102をドライ側エンドユニット、後側のエンドユニット102をウェット側エンドユニットと呼ぶこともある。前後一対のターミナルプレート4,4は、セル積層体101を挟んでその前後両側に配置される。前後一対の絶縁プレート5,5は、ターミナルプレート4,4を挟んでその前後両側に配置される。前後一対のエンドプレート6,6は、絶縁プレート5,5を挟んでその前後両側に配置される。
The
ターミナルプレート4は、金属製の略矩形状の板状部材であり、セル積層体101で電気化学反応により生成された電力を取り出すための端子部を有する。絶縁プレート5は、非導電性を有する樹脂製またはゴム製の略矩形状の板状部材であり、ターミナルプレート4とエンドプレート6とを電気的に絶縁する。エンドプレート6は、金属製または高強度に構成された樹脂製の板状部材であり、エンドプレート6には、例えば前後のエンドプレート6,6同士を連結する前後方向細長の連結部材がボルトにより固定される。燃料電池スタック100は、連結部材を介してエンドプレート6,6により前後方向に押圧された状態で、保持される。
The
後側のエンドユニット102には、エンドユニット102を前後方向に貫通する複数の貫通孔102a~102fが開口される。なお、貫通孔102a~102fは、それぞれターミナルプレート4を貫通する貫通孔、絶縁プレート5を貫通する貫通孔およびエンドプレート6を貫通する貫通孔を含むが、図1では、便宜上、これらをまとめて貫通孔102a~102fとして示す。貫通孔102aは、燃料ガス供給流路PA1の延長線上に開口され、燃料ガス供給流路PA1に連通する。貫通孔102bは、冷却媒体排出流路PA2の延長線上に開口され、冷却媒体排出流路PA2に連通する。貫通孔102cは、酸化剤ガス排出流路PA3の延長線上に開口され、酸化剤ガス排出流路PA3に連通する。貫通孔102dは、酸化剤ガス供給流路PA4の延長線上に開口され、酸化剤ガス供給流路PA4に連通する。貫通孔102eは、冷却媒体供給流路PA5の延長線上に開口され、冷却媒体供給流路PA5に連通する。貫通孔102fは、燃料ガス排出流路PA6の延長線上に開口され、燃料ガス排出流路PA6に連通する。
The
より詳しくは、貫通孔102aには、エジェクタ、インジェクタなどを介して、高圧の燃料ガスが貯留された燃料ガスタンクが接続され、燃料ガスタンク内の燃料ガスが貫通孔102aを介して燃料電池スタック100に供給される。貫通孔102fには、気液分離機が接続され、貫通孔102fを介して排出された燃料ガス(燃料排ガス)は、気液分離機で燃料ガスと水とに分離される。分離された燃料ガスは、エジェクタを介して吸い込まれ、燃料電池スタック100に再び供給される。分離された水は、ドレン流路を介して外部に排出される。
More specifically, a fuel gas tank that stores high-pressure fuel gas is connected to through-
貫通孔102dには、酸化剤ガス供給用のコンプレッサが接続され、コンプレッサで圧縮された酸化剤ガスが貫通孔102dを介して燃料電池スタック100に供給される。貫通孔102cからは、酸化剤ガス(酸化剤排ガス)が外部に流出する。貫通孔102bには、冷却媒体供給用のポンプが接続され、貫通孔102bを介して燃料電池スタック100に冷却媒体が供給される。貫通孔102eからは冷却媒体が排出される。排出された冷却媒体は、ラジエータでの熱交換により冷却され、貫通孔102bを介して再び燃料電池スタック100に供給される。
A compressor for supplying oxidant gas is connected to through-
以上が燃料電池スタック100の概略構成である。燃料電池スタック100は略ボックス状のケースに収納され、車両に搭載される。
The above is the general configuration of the
図3は、燃料電池セル1の構成の一例を示す部分断面図である。図3に示すように、一体化電極アッセンブリ2の膜電極接合体20は、電解質膜22と、電解質膜22の前面に設けられたアノード電極23と、電解質膜22の後面に設けられたカソード電極24とを有する。膜電極接合体20の前面、すなわちアノード電極23の表面は、膜電極接合体20のアノード面20aを構成する。膜電極接合体20の後面、すなわちカソード電極24の表面は、膜電極接合体20のカソード面20bを構成する。セパレータ3は、前後一対の薄板3a,3bを有する。
Figure 3 is a partial cross-sectional view showing an example of the configuration of a
燃料ガスが流れるアノード流路Anは、一体化電極アッセンブリ2の前側のアノードセパレータ3の後側の薄板3aと、膜電極接合体20のアノード面20aとの間に形成される。酸化剤ガスが流れるカソード流路Caは、一体化電極アッセンブリ2の後側のカソードセパレータ3の前側の薄板3bと、膜電極接合体20のカソード面20bとの間に形成される。冷却媒体が流れる冷却流路Coは、セパレータ3の前後一対の薄板3a,3bの間に形成される。
The anode flow path An, through which the fuel gas flows, is formed between the rear
アノード電極23では、下式(i)の酸化反応により、アノード流路Anを流通する燃料ガスである水素がイオン化される。アノード電極23で生成された水素イオンは、電解質膜22を通過してカソード電極24に移動する。カソード電極24では、下式(ii)の還元反応により、カソード流路Caを流通する酸化剤ガス中の酸素とアノード電極23からの水素イオンとが反応し、水が生成される。カソード電極24で生成された水の一部は、電解質膜22に供給され、電解質膜22を湿潤させる。
H2→2H++2e- (i)
O2+4H++4e-→2H2O (ii)
At the
H 2 →2H + +2e - (i)
O 2 +4H + +4e - →2H 2 O (ii)
カソード流路Caを流通する酸化剤ガス中の酸素の一部は、ガス透過性を有する固体高分子電解質膜等の材質で構成された電解質膜22を透過してアノード電極23に移動する。アノード電極23では、下式(iii)~(v)の還元反応により、電解質膜22を透過してアノード電極23に到達した酸素と、式(i)の酸化反応により生成した水素イオンやイオン化される前の吸着水素とが反応して過酸化水素が発生する。
O2+2H++2e-→H2O2 (iii)
O2+H2(ads)→H2O2 (iv)
O2+2H(ads)→H2O2 (v)
A portion of the oxygen in the oxidant gas flowing through the cathode flow channel Ca permeates the
O 2 +2H + +2e - →H 2 O 2 (iii)
O 2 +H 2 (ads)→H 2 O 2 (iv)
O 2 +2H (ads) → H 2 O 2 (v)
電解質膜22を含む一体化電極アッセンブリ2の膜電極接合体20は、湿潤状態に維持されるとともに、主成分として鉄を含有するステンレス等の材質で構成されたセパレータ3に隣接して配置される。このため、膜電極接合体20には二価鉄イオン等の不純物が不可避的に存在する。アノード電極23では、このような二価鉄イオンと式(iii)~(v)の還元反応により生成した過酸化水素とが反応してヒドロキシラジカル(・OH)が発生する。ヒドロキシラジカルは、電解質膜22を分解し、劣化させる。
The
電解質膜22の耐久性を向上するには、このようなヒドロキシラジカルを発生させる過酸化水素の発生量を十分に低減する必要がある。そこで、本実施形態では、アノード電極23に過酸化水素を分解する触媒を添加することで、最終的な過酸化水素の発生量を十分に低減することができるよう、以下のように燃料電池セル1を構成する。
In order to improve the durability of the
<アノード電極の触媒層の組成>
アノード電極23の触媒層は、粉末状の触媒と、触媒粉末同士を接着するアイオノマとを、水やアルコール等の溶媒に混合してペースト状の触媒インクを調製し、この触媒インクを電解質膜22に塗布した後に乾燥させて溶媒を除去することにより形成される。アイオノマとしては、例えば電解質膜22と同様の高分子電解質を用いることができる。
<Composition of the catalytic layer of the anode electrode>
The catalyst layer of the
触媒インクに混合する触媒は、式(i)に示す水素の酸化反応を促進する第1触媒と、過酸化水素の分解反応を促進する第2触媒とを含む。第1触媒としては、例えばカーボンブラック等の炭素担体に担持された白金触媒(Pt/C)を用いることができる。白金とコバルト等の遷移金属との合金粒子を炭素担体に担持した合金触媒(PtCo/C)を第1触媒として用いてもよい。第2触媒としては、例えばセリア(CeO2)ジルコニア(ZrO2)焼結材(CZ)を用いることができる。 The catalyst to be mixed into the catalytic ink includes a first catalyst that promotes the oxidation reaction of hydrogen as shown in formula (i) and a second catalyst that promotes the decomposition reaction of hydrogen peroxide. As the first catalyst, for example, a platinum catalyst (Pt/C) supported on a carbon carrier such as carbon black can be used. An alloy catalyst (PtCo/C) in which alloy particles of platinum and a transition metal such as cobalt are supported on a carbon carrier may also be used as the first catalyst. As the second catalyst, for example, a ceria ( CeO2 ) zirconia ( ZrO2 ) sintered material (CZ) can be used.
過酸化水素の十分な分解性能を確保する観点から、第1触媒に含まれる白金(Pt)に対する第2触媒に含まれるセリウム(Ce)の重量比は、0.2以上とすることが好ましい。また、式(i)に示す水素の酸化反応(プロトン生成反応)を促進する第1触媒の量を確保し、十分な発電量を確保する観点から、第1触媒に含まれる白金に対する第2触媒に含まれるセリウムの重量比は、0.4以下とすることが好ましい。すなわち、第1触媒に含まれる白金に対する第2触媒に含まれるセリウムの重量比は、0.2以上かつ0.4以下とすることが好ましい。 From the viewpoint of ensuring sufficient decomposition performance of hydrogen peroxide, the weight ratio of cerium (Ce) contained in the second catalyst to platinum (Pt) contained in the first catalyst is preferably 0.2 or more. Furthermore, from the viewpoint of ensuring the amount of the first catalyst that promotes the hydrogen oxidation reaction (proton production reaction) shown in formula (i) and ensuring a sufficient amount of power generation, the weight ratio of cerium contained in the second catalyst to platinum contained in the first catalyst is preferably 0.4 or less. In other words, the weight ratio of cerium contained in the second catalyst to platinum contained in the first catalyst is preferably 0.2 or more and 0.4 or less.
本実施形態によれば以下のような作用効果を奏することができる。
(1)燃料電池セル1は、電解質膜22と、電解質膜22の両面に配置されたアノード電極23およびカソード電極24と、アノード電極23およびカソード電極24に対向して配置され、アノード電極23に面して燃料ガスが流れるアノード流路Anを形成するとともに、カソード電極24に面して酸化剤ガスが流れるカソード流路Caを形成する一対のセパレータ3と、を備える(図3)。アノード電極23は、水素の酸化反応を促進する第1触媒と、過酸化水素の分解反応を促進する第2触媒と、を含む。第2触媒は、セリアジルコニア焼結材(CZ)である。アノード電極23に第2触媒としてCZを添加し、アノード電極23における過酸化水素の分解反応を促進することで、最終的な過酸化水素の発生量を十分に低減することができる。これにより、電解質膜22の分解劣化を十分に抑制し、耐久性を十分に向上することができる。
According to this embodiment, the following advantageous effects can be obtained.
(1) The
(2)第1触媒は、白金触媒(Pt)または白金とコバルト等の遷移金属との合金触媒(PtCo)である。これにより、式(i)に示す水素の酸化反応(プロトン生成反応)が十分に促進され、十分な発電量を確保することができる。 (2) The first catalyst is a platinum catalyst (Pt) or an alloy catalyst (PtCo) of platinum and a transition metal such as cobalt. This sufficiently promotes the hydrogen oxidation reaction (proton production reaction) shown in formula (i), ensuring sufficient power generation.
(3)第1触媒に含まれる白金(Pt)に対する第2触媒に含まれるセリウム(Ce)の重量比は、0.2以上である。これにより、過酸化水素の十分な分解性能を確保し、最終的な過酸化水素の発生量を十分に低減することができる。 (3) The weight ratio of cerium (Ce) contained in the second catalyst to platinum (Pt) contained in the first catalyst is 0.2 or more. This ensures sufficient decomposition performance of hydrogen peroxide and can sufficiently reduce the final amount of hydrogen peroxide generated.
(4)第1触媒に含まれる白金(Pt)に対する第2触媒に含まれるセリウム(Ce)の重量比は、0.2以上かつ0.4以下である。これにより、式(i)に示す水素の酸化反応(プロトン生成反応)を促進するPtの量を確保し、十分な発電量を確保することができる。 (4) The weight ratio of cerium (Ce) contained in the second catalyst to platinum (Pt) contained in the first catalyst is 0.2 or more and 0.4 or less. This ensures the amount of Pt that promotes the hydrogen oxidation reaction (proton production reaction) shown in formula (i), and ensures sufficient power generation.
(5)セパレータ3は、鉄を含有する金属セパレータである。金属セパレータを用いる場合、電解質膜22を含む一体化電極アッセンブリ2の膜電極接合体20に二価鉄イオン等の不純物が不可避的に存在し、アノード電極23で生成する過酸化水素と反応することで、電解質膜22を分解劣化させるヒドロキシラジカル(・OH)が発生する。このような金属セパレータを用いる燃料電池セル1であっても、アノード電極23に第2触媒としてCZを添加し、過酸化水素の分解反応を促進することで、最終的な過酸化水素の発生量を十分に低減し、電解質膜22の分解劣化を十分に抑制することができる。
(5) The
上記実施形態では、図3等で、一対の薄板3a,3bを有し、アノード流路Anとカソード流路Caと冷却流路Coとを形成するセパレータ3,3を例示したが、アノード電極およびカソード電極に対向して配置され、アノード電極に面して燃料ガスが流れるアノード流路を形成するとともに、カソード電極に面して酸化剤ガスが流れるカソード流路を形成する一対のセパレータは、このようなものに限らない。各セパレータ3は、冷却流路Coを形成しないものであってもよく、一対の薄板3a,3bを有するものに限らない。
In the above embodiment, FIG. 3 and other figures show an example of
上記実施形態では、第1触媒として炭素担体に担持された金属触媒を用いたが、水素の酸化反応を促進する第1触媒は、このようなものに限らない。例えば、担体を用いずに金属触媒を高分散させたものであってもよく、炭素以外の担体に金属触媒を担持したものであってもよく、炭素担体と炭素以外の担体とを併用したものであってもよい。 In the above embodiment, a metal catalyst supported on a carbon carrier is used as the first catalyst, but the first catalyst that promotes the oxidation reaction of hydrogen is not limited to this. For example, it may be a highly dispersed metal catalyst without using a carrier, a metal catalyst supported on a carrier other than carbon, or a combination of a carbon carrier and a carrier other than carbon.
以上の説明はあくまで一例であり、本発明の特徴を損なわない限り、上述した実施形態および変形例により本発明が限定されるものではない。上記実施形態と変形例の1つまたは複数を任意に組み合わせることも可能であり、変形例同士を組み合わせることも可能である。 The above description is merely an example, and the present invention is not limited to the above-mentioned embodiment and modifications as long as the characteristics of the present invention are not impaired. It is also possible to arbitrarily combine one or more of the above-mentioned embodiment and modifications, and it is also possible to combine modifications together.
<第2触媒の添加効果>
図4は、第2触媒の添加による電解質膜22の劣化抑制効果について説明するための図である。図5は、第2触媒の添加による電解質膜22の耐久性向上効果について説明するための図である。図4および図5は、アノード電極23の触媒層の組成を変えて燃料電池セル1の耐久性試験を行ったときの試験結果を示す。
<Effect of adding second catalyst>
Fig. 4 is a diagram for explaining the effect of suppressing deterioration of the
耐久性試験は、アノード電極23の触媒層に所定量の鉄を添加(触媒インク調製時に硫酸鉄(II)七水和物等の鉄を含む化合物を添加)した燃料電池セル1(単位セル(発電面積:12.5cm2))について、外部回路に電流が流れない開回路電圧(OCV(Open Circuit Voltage))に維持するOCV条件で行った。また、単位セルの温度および供給ガスの湿度を調整し、電解質膜22の化学劣化が加速される所定の高温低湿条件(110℃、RH25%、150kPa(絶対圧力))で行った。
The durability test was performed on a fuel cell cell 1 (unit cell (power generation area: 12.5 cm2)) with a specified amount of iron added to the catalyst layer of the anode electrode 23 (iron-containing compounds such as ferrous sulfate (II) heptahydrate were added when preparing the catalyst ink) under OCV conditions, where an open circuit voltage (OCV) was maintained at which no current flows in the external circuit. In addition, the temperature of the unit cell and the humidity of the supply gas were adjusted to perform the test under specified high temperature and low humidity conditions (110°C, RH 25%, 150 kPa (absolute pressure)) that accelerate the chemical deterioration of the
図4は、所定時間(例えば150時間)の耐久性試験中に採取された排水に含まれる、電解質膜22の分解生成物であるフッ素イオンの定量結果に基づいて推定された、電解質膜22の分解速度(フッ素リリース)の比較結果を示す。フッ素イオンの定量は、イオンクロマトグラフィにより行った。電解質膜22を構成するパーフルオロスルホン酸が分解すると、フッ素を含む分解生成物が発生し、排水中にフッ素イオンが溶出する。排水中のフッ素イオンが多いほど電解質膜22の分解速度が大きく、排水中のフッ素イオンが少ないほど電解質膜22の分解速度が小さい。
Figure 4 shows the comparative results of the decomposition rate (fluorine release) of the
図5は、リニアスイープボルタンメトリ(LSV(Linear Sweep Voltammetry))法により測定された、電解質膜22のクロスオーバー電流が所定値まで上昇し、ガスクロスリーク状態に至るまでの到達時間の比較結果を示す。反応ガスが電解質膜22を通り抜けるガスクロスリーク状態に至ると、OCVが漏れ電流に対応する所定電圧まで低下する。ガスクロスリーク到達時間が長いほど、電解質膜22の寿命が長く、耐久性が高い。ガスクロスリーク到達時間が短いほど、電解質膜22の寿命が短く、耐久性が低い。
Figure 5 shows a comparison of the time it takes for the crossover current of the
[比較例1]
アノード電極23の触媒層の組成を第1触媒のみとし、第1触媒を炭素担体に担持された白金触媒(Pt/C)とした燃料電池セル1について耐久性試験を行った。図4および図5では、比較例1の試験結果を基準値としている。
[Comparative Example 1]
A durability test was carried out on the
[比較例2]
アノード電極23の触媒層の組成を第1触媒のみとし、第1触媒を炭素担体に担持された白金コバルト合金触媒(PtCo/C)とした燃料電池セル1について耐久性試験を行った。アノード電極23の触媒層におけるPt含有量は、比較例1と同等とした。図4に示すように、比較例2では、排水中のフッ素リリースが比較例1に対して65%低減されており、比較例1よりも電解質膜22の分解劣化が抑制されることが確認された。また、図5に示すように、比較例1よりもガスクロスリーク到達時間が長く、電解質膜22の耐久性が向上することが確認された。第1触媒にCoを適用したことで、過酸化水素の生成速度が低下し、電解質膜22の分解劣化が抑制され、耐久性が向上したと考えられる。
[Comparative Example 2]
A durability test was performed on a
[比較例3]
アノード電極23の触媒層の組成を第1触媒および第2触媒とし、第1触媒をPt/C、第2触媒をセリア(CeO2)とした燃料電池セル1について耐久性試験を行った。アノード電極23の触媒層におけるPt含有量は、比較例1,2と同等とした。また、アノード電極23の触媒層におけるPtに対するセリア(CeO2)中のCe(セリウム)の重量比は、0.2とした。図4に示すように、比較例3では、排水中のフッ素リリースが比較例1に対して57%低減されており、比較例1よりも電解質膜22の分解劣化が抑制されることが確認された。また、図5に示すように、比較例1よりもガスクロスリーク到達時間が長く、電解質膜22の耐久性が向上することが確認された。第2触媒を添加したことで、過酸化水素の分解反応が促進され、電解質膜22の分解劣化が抑制され、耐久性が向上したと考えられる。
[Comparative Example 3]
A durability test was performed on a
[実施例1]
アノード電極23の触媒層の組成を第1触媒および第2触媒とし、第1触媒をPt/C、第2触媒をセリアジルコニア焼結材(CZ)とした燃料電池セル1について耐久性試験を行った。アノード電極23の触媒層におけるPt含有量は、比較例1~3と同等とした。また、アノード電極23の触媒層におけるPtに対するCZ(CeO2-ZrO2)中のCe(セリウム)の重量比は、0.2とした。図4に示すように、実施例1では、排水中のフッ素リリースが比較例1に対して82%低減されており、比較例1よりも電解質膜22の分解劣化が大幅に抑制されることが確認された。また、図5に示すように、ガスクロスリーク到達時間が比較例1に対して2倍以上に延び、電解質膜22の耐久性が大幅に向上することが確認された。第2触媒としてCZを添加したことで、過酸化水素の分解反応が十分に促進され、電解質膜22の分解劣化が大幅に抑制され、耐久性が大幅に向上したと考えられる。
[Example 1]
A durability test was performed on a
[実施例2]
アノード電極23の触媒層の組成を第1触媒および第2触媒とし、第1触媒をPtCo/C、第2触媒をCZとした燃料電池セル1について耐久性試験を行った。アノード電極23の触媒層におけるPt含有量は、比較例1~3および実施例1と同等とした。また、アノード電極23の触媒層におけるPtに対するCZ中のCeの重量比は、0.2とした。図4に示すように、実施例2では、排水中のフッ素リリースが比較例1に対して95%低減されており、実施例1よりもさらに電解質膜22の分解劣化が抑制されることが確認された。また、図5に示すように、ガスクロスリーク到達時間が比較例1に対して4倍以上に延び、実施例1よりもさらに電解質膜22の耐久性が向上することが確認された。第1触媒にCoを適用したことで過酸化水素の生成速度が低下するとともに、第2触媒としてCZを添加したことで過酸化水素の分解反応が十分に促進され、実施例1よりもさらに電解質膜22の分解劣化が抑制され、耐久性が向上したと考えられる。
[Example 2]
A durability test was performed on a
1 燃料電池セル、2 一体化電極アッセンブリ、3 セパレータ、20 膜電極接合体、20a アノード面、20b カソード面、22 電解質膜、23 アノード電極、24 カソード電極、An アノード流路、Ca カソード流路、Co 冷却流路 1 Fuel cell, 2 Integrated electrode assembly, 3 Separator, 20 Membrane electrode assembly, 20a Anode surface, 20b Cathode surface, 22 Electrolyte membrane, 23 Anode electrode, 24 Cathode electrode, An Anode flow path, Ca Cathode flow path, Co Cooling flow path
Claims (7)
前記高分子電解質膜の両面に配置されたアノード電極およびカソード電極と、
前記アノード電極および前記カソード電極に対向して配置され、前記アノード電極に面して燃料ガスが流れるアノード流路を形成するとともに、前記カソード電極に面して酸化剤ガスが流れるカソード流路を形成する一対のセパレータと、を備え、
前記アノード電極は、
水素の酸化反応を促進する第1触媒と、
過酸化水素の分解反応を促進する第2触媒と、を含み、
前記第2触媒は、セリアジルコニア焼結材であることを特徴とする燃料電池セル。 A polymer electrolyte membrane;
an anode electrode and a cathode electrode disposed on either side of the polymer electrolyte membrane;
a pair of separators disposed opposite the anode and the cathode, the separators facing the anode to form an anode flow path through which a fuel gas flows, and the separators facing the cathode to form a cathode flow path through which an oxidant gas flows,
The anode electrode is
A first catalyst that promotes an oxidation reaction of hydrogen;
and a second catalyst that promotes the decomposition reaction of hydrogen peroxide,
The second catalyst is a ceria-zirconia sintered material.
前記第1触媒は、白金触媒であることを特徴とする燃料電池セル。 The fuel cell according to claim 1 ,
The fuel cell, wherein the first catalyst is a platinum catalyst.
前記第1触媒は、白金と遷移金属との合金触媒であることを特徴とする燃料電池セル。 The fuel cell according to claim 1 ,
The first catalyst is an alloy catalyst of platinum and a transition metal.
前記遷移金属は、コバルトであることを特徴とする燃料電池セル。 The fuel cell according to claim 3 ,
The fuel cell is characterized in that the transition metal is cobalt.
前記第1触媒に含まれる白金に対する前記第2触媒に含まれるセリウムの重量比は、0.2以上であることを特徴とする燃料電池セル。 The fuel cell according to any one of claims 2 to 4,
A fuel cell, wherein a weight ratio of cerium contained in the second catalyst to platinum contained in the first catalyst is 0.2 or more.
前記第1触媒に含まれる白金に対する前記第2触媒に含まれるセリウムの重量比は、0.2以上かつ0.4以下であることを特徴とする燃料電池セル。 The fuel cell according to any one of claims 2 to 4,
A fuel cell, wherein a weight ratio of cerium contained in the second catalyst to platinum contained in the first catalyst is 0.2 or more and 0.4 or less.
前記セパレータは、鉄を含有する金属セパレータであることを特徴とする燃料電池セル。 The fuel cell according to any one of claims 1 to 4,
The fuel cell, wherein the separator is a metal separator containing iron.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023056160 | 2023-03-30 | ||
JP2023-056160 | 2023-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024202863A1 true WO2024202863A1 (en) | 2024-10-03 |
Family
ID=92905334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/007296 WO2024202863A1 (en) | 2023-03-30 | 2024-02-28 | Fuel battery cell |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024202863A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007510278A (en) * | 2003-10-31 | 2007-04-19 | ユーティーシー フューエル セルズ,エルエルシー | Method for manufacturing membrane electrode assembly having membrane and hydrogen peroxide decomposition catalyst |
JP2008103247A (en) * | 2006-10-20 | 2008-05-01 | Toyota Motor Corp | Adhesive for fuel cell and fuel cell |
JP2010192169A (en) * | 2009-02-16 | 2010-09-02 | Toyota Motor Corp | Fuel cell constituent member and its manufacturing method |
JP2011509506A (en) * | 2008-01-03 | 2011-03-24 | ユーティーシー パワー コーポレイション | Protective and deposited layers for polymer electrolyte fuel cells |
JP2011119217A (en) * | 2009-11-30 | 2011-06-16 | Hyundai Motor Co Ltd | Electrode for polymer electrolyte fuel cell and manufacturing method of membrane/electrode assembly utilizing the same |
JP2017199535A (en) * | 2016-04-27 | 2017-11-02 | 株式会社Flosfia | Fuel cell separator and method for producing the same |
KR102044875B1 (en) * | 2019-02-08 | 2019-11-14 | 한국에너지기술연구원 | Catalyst layer including radical scavenger for polymer electrolyte membrane fuel cell |
JP2020129541A (en) * | 2014-05-20 | 2020-08-27 | ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited | Membrane electrode assembly |
US20210376362A1 (en) * | 2020-06-01 | 2021-12-02 | Hyundai Motor Company | Fuel Cell Including a Durability Enhancing Layer and Method of Manufacturing the Same |
-
2024
- 2024-02-28 WO PCT/JP2024/007296 patent/WO2024202863A1/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007510278A (en) * | 2003-10-31 | 2007-04-19 | ユーティーシー フューエル セルズ,エルエルシー | Method for manufacturing membrane electrode assembly having membrane and hydrogen peroxide decomposition catalyst |
JP2008103247A (en) * | 2006-10-20 | 2008-05-01 | Toyota Motor Corp | Adhesive for fuel cell and fuel cell |
JP2011509506A (en) * | 2008-01-03 | 2011-03-24 | ユーティーシー パワー コーポレイション | Protective and deposited layers for polymer electrolyte fuel cells |
JP2010192169A (en) * | 2009-02-16 | 2010-09-02 | Toyota Motor Corp | Fuel cell constituent member and its manufacturing method |
JP2011119217A (en) * | 2009-11-30 | 2011-06-16 | Hyundai Motor Co Ltd | Electrode for polymer electrolyte fuel cell and manufacturing method of membrane/electrode assembly utilizing the same |
JP2020129541A (en) * | 2014-05-20 | 2020-08-27 | ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited | Membrane electrode assembly |
JP2017199535A (en) * | 2016-04-27 | 2017-11-02 | 株式会社Flosfia | Fuel cell separator and method for producing the same |
KR102044875B1 (en) * | 2019-02-08 | 2019-11-14 | 한국에너지기술연구원 | Catalyst layer including radical scavenger for polymer electrolyte membrane fuel cell |
US20210376362A1 (en) * | 2020-06-01 | 2021-12-02 | Hyundai Motor Company | Fuel Cell Including a Durability Enhancing Layer and Method of Manufacturing the Same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100167099A1 (en) | Membrance electrode assembly (mea) structure and manufacturing method thereof | |
KR20190118355A (en) | The composition for manufacturing electrode of membrane-electrode assembly for fuel cell and method for manufacturing electrode of membrane-electrode assembly for fuel cell using the same | |
JP2005216701A (en) | Membrane electrode for fuel cell and fuel cell | |
KR100836383B1 (en) | Fuel cell system | |
US20100092826A1 (en) | Fuel cell and fuel cell system | |
JP2005251434A (en) | Fuel cell system and fuel cell control method | |
JP4821147B2 (en) | Fuel cell and fuel cell system | |
KR101582378B1 (en) | Recovery method of coolant leak in polymer electrolyte membrane fuel cell | |
KR20070097473A (en) | Fuel Cell Generator | |
EP2405515B1 (en) | Fuel cell separator and fuel cell including same | |
KR101101497B1 (en) | Manufacturing method of high temperature fuel cell electrode and membrane electrode assembly manufactured by the method | |
US20240234747A9 (en) | Method for producing catalyst layers for fuel cells | |
WO2024202863A1 (en) | Fuel battery cell | |
JP5204382B2 (en) | Cathode catalyst layer, membrane catalyst assembly, cathode gas diffusion electrode, membrane electrode assembly and polymer electrolyte fuel cell using the same | |
JP2002110190A (en) | Fuel cell | |
US8568941B2 (en) | Fuel cell separator and fuel cell including same | |
JPWO2006006607A1 (en) | Polymer electrolyte fuel cell | |
JP2009170175A (en) | Membrane electrode structure and fuel cell | |
JP2021170484A (en) | Fuel cell system | |
CN114388815B (en) | Fuel cell | |
US7976993B2 (en) | Fuel composition for fuel cell and fuel cell using the same | |
JP5044909B2 (en) | Fuel cell | |
JP2005235461A (en) | Polymer electrolyte membrane / electrode assembly | |
JP3818312B2 (en) | Electric car | |
KR20040042195A (en) | Polyelectrolyte nanocomposite membrane and the preparation method thereof and the fuel cell using the prepared polyelectrolyte nanocomposite membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24779003 Country of ref document: EP Kind code of ref document: A1 |