WO2024202314A1 - Ultraviolet ray irradiation device - Google Patents
Ultraviolet ray irradiation device Download PDFInfo
- Publication number
- WO2024202314A1 WO2024202314A1 PCT/JP2023/045407 JP2023045407W WO2024202314A1 WO 2024202314 A1 WO2024202314 A1 WO 2024202314A1 JP 2023045407 W JP2023045407 W JP 2023045407W WO 2024202314 A1 WO2024202314 A1 WO 2024202314A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- reflecting
- ultraviolet
- irradiation device
- emitting tube
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/08—Radiation
- A61L2/10—Ultraviolet radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/16—Disinfection, sterilisation or deodorisation of air using physical phenomena
- A61L9/18—Radiation
- A61L9/20—Ultraviolet radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J65/00—Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
Definitions
- the present invention relates to an ultraviolet irradiation device.
- inactivation is a concept that encompasses killing bacteria or eliminating the infectiousness and toxicity of viruses.
- interest in hygiene management has increased significantly, and there is a demand for more efficient inactivation processing of bacteria or viruses. Therefore, the applicant has proposed an ultraviolet irradiation device that can be used for applications such as the above-mentioned inactivation (see Patent Document 1 below).
- a known ultraviolet irradiation device has a configuration in which a light source such as an excimer lamp that emits ultraviolet light is disposed inside a housing, as described in the above Patent Document 1.
- FIG. 15 is an exploded perspective view of the main casing 2a and lid 2b of the housing 2 in the ultraviolet irradiation device 100 according to Patent Document 1.
- FIG. 15 also shows an X-Y-Z coordinate system in which the axial direction of the light-emitting tube 3 of the excimer lamp is the X direction, and the plane perpendicular to the X direction is the YZ plane.
- the ultraviolet light emitted from the excimer lamp is extracted to the outside of the housing 2 through a light extraction surface 10 provided on the housing 2, and is irradiated onto the space or object to be irradiated.
- the excimer lamp shown in FIG. 15 emits ultraviolet light from the light-emitting tube 3 when a voltage is applied to a pair of electrode blocks (11, 12) that are arranged so as to contact the wall surface of the light-emitting tube 3. At this time, since the ultraviolet light travels in all directions, the ultraviolet light emitted from the excimer lamp includes ultraviolet light that does not travel directly to the light extraction surface 10 provided on the housing 2. From the viewpoint of efficiently irradiating ultraviolet light into the space to be irradiated, it is preferable that more ultraviolet light is extracted from the light extraction surface 10 than the total amount of ultraviolet light emitted by the excimer lamp.
- Patent Document 1 proposes reducing the angle of incidence of ultraviolet light on the optical filter 21 in consideration of the characteristics of the optical filter 21 arranged on the light extraction surface 10. More specifically, the electrodes (11, 12) on which the light-emitting tube 3 of the excimer lamp is mounted are provided with tapered surfaces (11b, 12b) that are inclined with respect to the light extraction surface 10. As a result, ultraviolet light incident on the tapered surfaces is reflected towards the light extraction surface 10, and can be incident on the light extraction surface 10 at a small angle of incidence.
- ultraviolet light emitted from the light-emitting tube 3 and incident on the tapered surfaces (11b, 12b) is extracted to the outside of the housing 2 from the light extraction surface 10.
- ultraviolet light is emitted from the light-emitting tube 3 in all directions, and therefore some ultraviolet light has a component that travels in the axial direction (X direction) of the light-emitting tube 3.
- the inventor therefore realized that there is room for further improvement in the ultraviolet light extraction efficiency of conventional ultraviolet irradiation devices.
- the present invention aims to provide an ultraviolet irradiation device with high ultraviolet extraction efficiency.
- the ultraviolet irradiation device comprises: A housing and a light extraction surface provided on a side surface of the housing; an excimer lamp including a straight arc tube housed in the housing, and a first electrode and a second electrode arranged to apply a voltage to the arc tube and spaced apart from each other in a first direction parallel to a tube axis of the arc tube; a reflecting member having a first reflecting surface facing a center portion of the arc tube and reflecting ultraviolet light having a component traveling in the first direction, and reflecting at least a portion of the ultraviolet light emitted by the excimer lamp;
- the first reflecting surface of the reflecting member is characterized in that, with respect to the first direction, it is arranged between a first reference point located near a first end of the light-emitting tube on the first electrode side and a second reference point located near a second end located opposite the first end.
- vicinity refers to a position that is a predetermined distance away from the end of the light-emitting tube (the first end or the second end) toward the outside in the first direction.
- predetermined distance refers to a distance equivalent to half the distance in the first direction between the end and the electrode closer to the end.
- the ultraviolet light emitted from the excimer lamp includes ultraviolet light that does not travel directly to the light extraction surface provided on the housing. Specifically, this includes ultraviolet light that has a component that travels in a first direction from the light-emitting tube. Ultraviolet light traveling in a first direction from the light-emitting tube is likely to reach the inner wall surface of the housing rather than the light extraction surface. Ultraviolet light that reaches the inner wall surface of the housing in this way is absorbed by the inner wall surface of the housing, and is hardly extracted from the light extraction surface.
- ultraviolet light emitted from the excimer lamp and having a component traveling in a first direction is reflected by the first reflecting surface.
- the ultraviolet light reflected by the first reflecting surface is reflected toward the center of the light-emitting tube in the first direction.
- the reflecting member changes the traveling direction of the ultraviolet light incident on the reflecting surface, so that at least a portion of the ultraviolet light traveling toward the inner wall surface of the housing is reflected toward the light extraction surface, and the amount of ultraviolet light extracted from the light extraction surface increases. This improves the ultraviolet light extraction efficiency of the ultraviolet irradiation device.
- the first reflecting surface between the first reference point and the second reference point, more ultraviolet light can be reflected than when the first reflecting surface is positioned farther away from the light-emitting tube.
- the first reflecting surface may be disposed between the first electrode and the first reference point, or between the second electrode and the second reference point.
- ultraviolet rays are generated due to the application of a voltage to a pair of electrodes. More specifically, the application of this voltage generates a discharge plasma inside the light-emitting tube, exciting the atoms or molecules of the light-emitting gas into an excimer state, and ultraviolet rays are emitted when this returns to the ground state. Because the discharge plasma is generated between the first and second electrodes, ultraviolet rays are mainly generated in the space between the pair of electrodes inside the light-emitting tube.
- the first reflecting surface is positioned on the opposite side of the center of the light-emitting tube from the pair of electrodes, as mentioned above.
- the reflecting member may have a plurality of the first reflecting surfaces, and the plurality of first reflecting surfaces may face each other in the first direction.
- Ultraviolet rays that have a component traveling in a first direction include ultraviolet rays that travel toward the first end of the light-emitting tube and ultraviolet rays that travel toward the opposite, second end. With the above configuration, both types of ultraviolet rays are reflected, making it possible to extract more ultraviolet rays.
- the first reflecting surface may be inclined with respect to the light extraction surface, so that the ultraviolet light incident on the first reflecting surface may be reflected toward the light extraction surface.
- the ultraviolet light irradiation device is configured so that ultraviolet light emitted from the excimer lamp and traveling in a direction different from the light extraction surface is directed toward the light extraction surface with a small number of reflections.
- ultraviolet light incident on the first reflecting surface is reflected toward the light extraction surface.
- the above configuration is preferable because it makes it easier for ultraviolet light reflected by the first reflecting surface to be directed toward the light extraction surface.
- the reflecting member may have a second reflecting surface facing the center of the light-emitting tube, which reflects ultraviolet light having a component traveling in a second direction perpendicular to the first direction on a plane parallel to the light extraction surface.
- ultraviolet light is emitted from the light-emitting tube in all directions.
- the second reflecting surface reflects a portion of the ultraviolet light having a component traveling in the second direction, changing the direction of travel of the ultraviolet light, so that, for example, at least a portion of the ultraviolet light traveling toward the inner wall surface of the housing is reflected toward the light extraction surface. This increases the amount of ultraviolet light extracted from the light extraction surface, improving the efficiency of extracting ultraviolet light.
- the reflecting member may have a plurality of the second reflecting surfaces, and the plurality of second reflecting surfaces may face each other in the second direction.
- the second reflecting surface may be inclined with respect to the light extraction surface, so that the ultraviolet light incident on the second reflecting surface may be reflected toward the light extraction surface.
- the first reflecting surface may be located between the light emitting tube and the light extraction surface in a third direction perpendicular to the light extraction surface.
- the first reflecting surface is disposed at a position according to the above configuration. The same applies to the second reflecting surface.
- the reflecting member may include the first reflecting surface that is positioned away from the light emitting tube in a second direction perpendicular to the first direction on a plane parallel to the light extraction surface when viewed in the first direction.
- Ultraviolet rays emitted from the light-emitting tube at a small angle relative to the light extraction surface tend to head toward the inner wall of the housing and are difficult to extract from within the housing.
- ultraviolet rays that have a component traveling in the first direction and travel at a small angle relative to the light extraction surface can be reflected at a position that is offset from the light-emitting tube in the second direction when viewed in the first direction. This increases the amount of ultraviolet rays reflected toward the light extraction surface, and as a result, more ultraviolet rays are extracted from the light extraction surface.
- the reflective member may be made of an insulating material.
- the reflective member is conductive, there is a concern that an unintended discharge path may be formed between the reflective member and the electrodes. There is also a concern that if the reflective member is displaced due to an impact from movement, etc., the two may come into contact and cause a short circuit. In view of these concerns, it is preferable that the reflective member be made of an insulating material.
- the reflective member may be made of polytetrafluoroethylene.
- Polytetrafluoroethylene is characterized by its ease of processing, such as cutting, and can be used to create reflective components in any shape.
- PTFE is also an ideal material for reflective components because of its insulating properties.
- the present invention provides an ultraviolet irradiation device with high ultraviolet extraction efficiency.
- FIG. 1 is a perspective view showing a schematic external view of an embodiment of an ultraviolet irradiation device
- FIG. 2 is an exploded perspective view of a main casing and a cover of the housing of the ultraviolet irradiation device shown in FIG. 1
- FIG. 2B is a perspective view of the main casing shown in FIG. 2A with the reflecting member disassembled
- FIG. 2 is a perspective view showing a schematic structure of an electrode block.
- 11 is a plan view illustrating a schematic structure of the reflecting member when viewed from the +Z direction.
- FIG. 11 is a cross-sectional view showing a schematic arrangement of a reflective member in a housing when viewed in the Y direction.
- FIG. 4 is a cross-sectional view showing a schematic arrangement of a reflective member in a housing when viewed in the X direction.
- FIG. 13 is a plan view showing another example of the configuration of the reflecting member.
- FIG. 11 is a perspective view showing a schematic appearance of an ultraviolet irradiation device according to a second embodiment.
- FIG. 8 is an exploded perspective view of the ultraviolet irradiating device shown in FIG. 7 , showing a main casing and a lid.
- 2 is a perspective view showing a schematic structure of an electrode block, an arc tube, and a reflecting member provided in the ultraviolet irradiation device.
- FIG. 10 is an exploded perspective view of the electrode block and the reflecting member 4 shown in FIG. 9.
- FIG. 9 is a cross-sectional view showing a schematic arrangement of a reflective member in a housing when viewed in the X direction.
- FIG. 13 is a plan view showing another example of the configuration of the reflecting member.
- FIG. 11 is a perspective
- FIG. 10 is a cross-sectional view showing a schematic arrangement of a reflective member in a housing when viewed in the Z direction.
- FIG. 11 is a cross-sectional view showing a schematic arrangement of a reflective member in a housing when viewed in the Y direction.
- FIG. 11 is a perspective view showing another configuration example of the reflecting member according to the second embodiment.
- FIG. 11 is a cross-sectional view showing yet another configuration example of the reflective member according to the second embodiment.
- 13 is a perspective view of an ultraviolet irradiation device showing another example of the configuration of a reflective member.
- FIG. FIG. 1 is a perspective view showing a schematic structure of an ultraviolet irradiation device 100 according to Patent Document 1.
- the explanation will be given with reference to the X-Y-Z coordinate system in which the tube axis direction of the light-emitting tube 3 of the excimer lamp is the X direction, and the plane perpendicular to the X direction is the YZ plane. More specifically, the direction perpendicular to the X direction on a plane parallel to the light extraction surface 10 is the Y direction, and the direction perpendicular to the X and Y directions is the Z direction.
- the X direction corresponds to the "first direction”
- the Y direction corresponds to the "second direction”
- the Z direction corresponds to the "third direction”.
- FIG. 1 is a perspective view showing a schematic external appearance of one embodiment of an ultraviolet irradiation device according to the present invention.
- FIG. 2A is an exploded perspective view of the main casing 2a and the cover 2b of the housing 2 of the ultraviolet irradiation device 1 in FIG. 1.
- FIG. 2B is an exploded perspective view of the reflective member 4 (described later) from the main casing 2a in FIG. 2A.
- the ultraviolet irradiation device 1 has a housing 2 with a light extraction surface 10 formed on the side. Also, as shown in FIGS. 2A and 2B, the housing 2 has a main casing portion 2a and a cover portion 2b, and houses the light-emitting tube 3 of the excimer lamp, electrode blocks (11, 12), and a reflecting member 4. In FIGS. 2A and 2B, the light-emitting tube 3 is hatched with solid lines to make it easier to understand.
- the arc tube 3 of the excimer lamp is made of a dielectric material such as quartz glass, and the arc tube 3 is filled with an emitting gas containing krypton gas and chlorine gas.
- the arc tube 3 has a straight tube shape.
- the total length of the arc tube 3 in the X direction is 70 mm. Note that the number of arc tubes 3 housed in the housing 2 is not limited in the present invention.
- FIG. 3 is a perspective view showing a schematic structure of the electrode blocks (11, 12).
- the electrode block 11 is configured to have a mounting area 11a on which the light-emitting tube 3 of the excimer lamp is mounted (see also FIG. 2B), and a tapered surface 11b formed at a position spaced apart from the light-emitting tube 3 in the Y direction and inclined with respect to the XY plane.
- the electrode block 12 has a mounting area 12a and a tapered surface 12b. The effect of the tapered surfaces (11b, 12b) will be described later with reference to FIG. 5B.
- the electrode block 11 corresponds to the "first electrode” and the electrode block 12 corresponds to the "second electrode.”
- the electrode blocks (11, 12) are made of a conductive material, preferably a material that is reflective to ultraviolet light L1.
- both electrode blocks (11, 12) are made of a metal material such as aluminum, an aluminum alloy, or stainless steel.
- the distance between the electrode blocks (11, 12) is 6 mm.
- the light extraction surface 10 is made of a glass material such as quartz glass in order to extract the ultraviolet light L1 emitted from the light-emitting tube 3 to the outside of the housing 2.
- the light extraction surface 10 may also be made of an opening.
- the light emitting tube 3 contains krypton gas and chlorine gas as light emitting gases. Therefore, ultraviolet light L1 with a main emission wavelength in the range of 200 nm to 240 nm is obtained from the light emitting tube 3.
- the "main emission wavelength” refers to a wavelength band that shows a light intensity of 40% or more of the highest light intensity (peak intensity) in the emission spectrum.
- Ultraviolet rays with wavelengths between 200nm and 240nm have a high protein absorption coefficient, and most of them are absorbed by the surface of human skin (e.g. the stratum corneum). For this reason, ultraviolet rays with wavelengths in this range have the characteristic that they do not easily penetrate deep into the skin, and have an extremely low impact on the human body.
- an optical filter 21 that suppresses the transmission of ultraviolet light in the range of 240 nm to 300 nm is disposed on the light extraction surface 10 (see FIG. 2A).
- the optical filter is disposed on the light extraction surface” includes cases where the optical filter is disposed integrally with the light extraction surface, as well as cases where the optical filter is disposed at a position spaced apart from the light extraction surface by several mm to several tens of mm in the Z direction.
- “Suppressing transmission” refers to lowering the ratio of the light intensity of ultraviolet light having a wavelength of 240 to 300 nm to the light intensity of ultraviolet light having a wavelength of 200 nm to 240 nm among the ultraviolet light that has passed through the optical filter.
- the optical filter 21 is composed of a dielectric multilayer film in which a thin layer of silica (SiO 2 ) and a thin layer of hafnia (HfO 2 ) are laminated.
- the reflective member 4 is made of, for example, polytetrafluoroethylene (PTFE) and has reflective surfaces (4x, 4y) that are reflective to ultraviolet light L1.
- the reflective member 4 is disposed on the +Z side of the main body casing 2a (see FIG. 2B).
- FIG. 4 is a plan view showing a schematic structure of the reflecting member 4 when viewed from the +Z direction.
- the reflecting member 4 has two reflecting surfaces 4x arranged opposite each other in the X direction, and two reflecting surfaces 4y arranged opposite each other in the Y direction.
- the reflecting surfaces 4x correspond to the "first reflecting surface” and the reflecting surfaces 4y correspond to the "second reflecting surface.”
- FIG. 5A and 5B are cross-sectional views showing the arrangement of the reflective member 4 in the housing 2.
- FIG. 5A is a drawing when viewed in the Y direction
- FIG. 5B is a drawing when viewed in the X direction.
- the reflective surface (4x, 4y) is disposed between the light-emitting tube 3 and the light extraction surface 10 in the Z direction, and faces the center side of the light-emitting tube 3.
- the reflective surface (4x, 4y) is inclined with respect to the light extraction surface 10.
- the reflective member 4 is sandwiched between the main casing part 2a and the electrode blocks (11, 12), and the reflective surface (4x, 4y) abuts against the electrode blocks (11, 12) (see also FIG. 2A).
- the reflective surface 4x abuts against the electrode blocks (11, 12) and the light-emitting tube 3 (see FIG. 5A).
- the reflective surface 4y abuts against the electrode blocks (11, 12), but the reflective surface 4y may also abut against the electrode blocks (11, 12) and the light-emitting tube 3 (see FIG. 5B).
- the method of installing the reflective member 4 is not limited, and it is optional whether or not the reflective surfaces (4x, 4y) abut against the electrode blocks (11, 12) or the light-emitting tube 3.
- the reflecting surface 4x is located between the first reference point P1 and the second reference point P2 in the X direction (see FIG. 5A).
- the first reference point P1 is an imaginary point located at a distance d1 in the -X direction from the first end 5a on the -X side of the light-emitting tube 3.
- the distance d1 corresponds to half the distance d2 between the first end 5a and the electrode block 11.
- the second reference point P2 is an imaginary point located at a distance d3 in the +X direction from the second end 5b on the +X side of the light-emitting tube 3.
- the distance d3 corresponds to half the distance d4 between the second end 5b and the electrode block 12.
- the distances d2 and d4 are both 17 mm.
- the distances d2 and d4 may be different.
- the -X side reflective surface 4x is located between the first end 5a and the electrode block 11 in the X direction
- the +X side reflective surface 4x is located between the second end 5b and the electrode block 12 in the X direction.
- ultraviolet light L1 is mainly generated between the pair of electrode blocks (11, 12), so taking the -X side as an example, it is preferable that the reflective surface 4x is located between the first end 5a and the electrode block 11.
- the reflective member 4 is, for example, composed of a sheet-like material.
- An example of a manufacturing procedure for the reflective member 4 will be described with reference to FIG. 4.
- a substantially rectangular sheet made of a material that is reflective to ultraviolet light L1 is prepared.
- a typically rectangular area 31 is cut out from the center of the sheet by cutting or other processing to obtain a frame-like sheet.
- the cutout portion 30 is formed.
- the area corresponding to the reflective surface (4x, 4y) is then folded toward the -Z side to form the reflective member 4.
- the reflective member 4 can be made of a sheet material made of fine particles of a fluororesin material such as polytetrafluoroethylene (PTFE) as described above. PTFE is particularly suitable as it is easy to process, such as by cutting and bending.
- the reflective member 4 can also be made by forming a reflective film that reflects ultraviolet light L1 on any sheet material.
- the reflective film is, for example, a coating film of the above-mentioned fluororesin material. In this case, the reflective film forms the reflective surfaces (4x, 4y).
- the PTFE exhibits diffuse reflectivity with respect to ultraviolet light L1. It is believed that at least a portion of the diffuse light reflected by the reflective surfaces (4x, 4y) exhibiting diffuse reflectivity travels toward the light extraction surface 10, and therefore it is expected that the efficiency of extracting ultraviolet light L1 from the light extraction surface 10 will be improved.
- the reflective surfaces (4x, 4y) exhibiting diffuse reflectivity improve the efficiency of extracting ultraviolet light L1 from the light extraction surface 10 even if the alignment of the reflective surfaces (4x, 4y) with respect to the light extraction surface 10 or the light-emitting tube 3 is slightly misaligned.
- the reflective surfaces (4x, 4y) exhibiting diffuse reflectivity have the effect of simplifying the alignment of the reflective surfaces (4x, 4y) with respect to the light extraction surface 10 or the light-emitting tube 3.
- the reflective member 4 may be made of silicone resin, or may have a ceramic film containing silica or alumina as a reflective film.
- the reflective surfaces (4y, 4z) may be textured to form reflective surfaces that exhibit diffuse reflectivity.
- the reflective surfaces (4x, 4y) may be configured to specularly reflect the ultraviolet light L1.
- the reflective member 4 may be configured from a sheet material made of a metal such as aluminum.
- the reflective member 4 has insulating properties.
- a dielectric multilayer film that reflects the ultraviolet light L1 may be configured by alternately laminating dielectric films with different refractive indices on any insulating sheet material. In this case, the dielectric multilayer film forms the reflective surfaces (4x, 4y).
- ultraviolet light L1 that has a component traveling in the X direction and does not travel directly to the light extraction surface 10 is reflected by the reflective surface 4x (see FIG. 5A). This increases the amount of ultraviolet light L1 traveling toward the light extraction surface 10, improving the extraction efficiency of ultraviolet light L1 from the light extraction surface 10.
- multiple reflective surfaces 4x are arranged facing each other, as shown in FIG. 5A.
- the amount of ultraviolet light L1 reflected by the reflecting surface 4x that travels toward the light extraction surface 10 can be increased.
- the optical filter 21 is made of a dielectric multilayer film, it exhibits incidence angle dependency, in which the transmittance of ultraviolet light decreases as the incidence angle increases. For this reason, from the viewpoint of reducing the incidence angle of ultraviolet light on the optical filter 21, it is preferable that the reflecting surface 4x be tilted with respect to the light extraction surface 10.
- ultraviolet light L1 traveling toward the inner wall of the housing 2 on the +Z side of the light-emitting tube 3 can be reflected by the reflective surface 4x.
- the reflective surface 4y reflects ultraviolet light L1 having a component traveling in the Y direction. This improves the efficiency of extracting ultraviolet light L1 from the light extraction surface 10.
- the same discussion as for the reflective surface 4x can be applied to the fact that the multiple reflective surfaces 4y are arranged facing each other, are inclined with respect to the light extraction surface 10, and are arranged on the +Z side of the light-emitting tube 3.
- the electrode blocks (11, 12) have tapered surfaces (11b, 12b) that are inclined relative to the light extraction surface 10. As shown in FIG. 5B, the electrode block 11 has tapered surface 11b, so that ultraviolet light L2 emitted from the light-emitting tube 3 and incident on tapered surface 11b is reflected toward the light extraction surface 10.
- tapered surface 12b of electrode block 12 A similar discussion can be made about tapered surface 12b of electrode block 12.
- the tapered surfaces (11b, 12b) form the reflective surface 4y, and the electrode blocks (11, 12) also serve as the reflective member 4.
- Example 1 In this verification, the configuration of the first embodiment described above was adopted as Example 1.
- the irradiance of ultraviolet light L1 was measured using an illuminometer consisting of an ultraviolet integrating light meter (UIT-250) manufactured by Ushio Inc. and a separate type light receiver (VUV-S172) manufactured by Ushio Inc. that has been calibrated with light having a wavelength of 222 nm. The irradiance was measured at a position 50 mm away from the light extraction surface 10 on the +Z side.
- UAT-250 ultraviolet integrating light meter
- VUV-S172 separate type light receiver
- Comparative Example 1 As a comparative example 1, the irradiance of the ultraviolet light L1 in the case where the reflecting member 4 was not arranged was verified. The conditions of Comparative Example 1 were the same as those of Example 1, except that the reflecting member 4 was removed from within the housing 2 .
- the irradiance of the ultraviolet light extracted from the light extraction surface 10 was approximately 1.2 times that in the absence of the reflecting member 4 (Comparative Example 1).
- the configuration according to the first embodiment described above makes it possible to realize an ultraviolet irradiation device with high ultraviolet extraction efficiency.
- the reflecting surfaces (4x, 4y) are inclined with respect to the light extraction surface 10.
- the present invention is not limited to this, and the reflecting surfaces (4x, 4y) may be arranged perpendicular to the light extraction surface 10. Even if the reflecting surfaces (4x, 4y) are not inclined with respect to the light extraction surface 10, it can be understood that the ultraviolet light L1 is reflected by the reflecting surfaces (4x, 4y) and the proportion of ultraviolet light absorbed by, for example, the inner wall of the housing 2, relative to the ultraviolet light emitted from the light-emitting tube 3, is reduced, thereby improving the efficiency of extracting ultraviolet light from the light extraction surface 10.
- the reflecting member 4 has multiple reflecting surfaces 4x, but the reflecting surface 4x may be a single surface. Even if the reflecting surface 4x is arranged only on the +X side of the light-emitting tube 3, the ultraviolet light L1 is reflected by the reflecting surface 4x, and the amount of ultraviolet light traveling toward the light extraction surface 10 increases, which is presumably the result of improving the ultraviolet light extraction efficiency of the ultraviolet light irradiation device.
- the reflecting surface 4y may be a single surface. Also, it is optional whether or not the reflecting member 4 has a reflecting surface 4y.
- the reflective surfaces (4x, 4y) are described as being composed of an integrated frame-shaped reflective member 4.
- the reflective surfaces (4x, 4y) may be composed of multiple separate sheet members.
- FIG. 6 is a plan view showing another example configuration of the reflective member 4. Based on the above verification results, it is presumed that the efficiency of extracting ultraviolet light can be improved even when the reflective member 4 is composed of multiple separate members.
- TLVs threshold limit values
- the TLV As the TLV is relaxed, it is expected that ultraviolet light will be irradiated at a higher output, and therefore it is believed that a higher output ultraviolet light irradiation device will be required as the TLV is relaxed.
- ultraviolet light in the wavelength range of 200 nm to 240 nm that has a low impact on the human body is emitted, while the efficiency of extracting ultraviolet light from the housing 2 is increased.
- the configuration described with reference to the first embodiment can meet the demand for higher output ultraviolet light irradiation devices that accompanies the relaxation of the TLV.
- FIG. 7 is a perspective view showing a schematic appearance of an ultraviolet irradiation device 1 according to a second embodiment.
- FIG. 8 is a perspective view showing the main casing 2a and the cover 2b of the housing 2 of the ultraviolet irradiation device 1 disassembled from FIG. 7.
- FIG. 9 is a perspective view showing a schematic structure of the electrode block (11, 12), the light emitting tube 3, and the reflecting member 4 provided in the ultraviolet irradiation device 1
- FIG. 10 is a perspective view showing the electrode block (11, 12) and the reflecting member 4 disassembled according to FIG. 9.
- the ultraviolet irradiation device is configured by arranging the reflecting member 4, electrode blocks (11, 12), and light emitting tube 3 of the excimer lamp in this order relative to the main casing 2a.
- one light emitting tube 3 of the excimer lamp is housed inside the housing 2.
- the electrode blocks (11, 12) do not have tapered surfaces (11b, 12b).
- FIGS. 11 and 12 are cross-sectional views that show the arrangement of the reflective member 4 within the housing 2.
- FIG. 11 is a drawing when viewed in the Y direction
- FIG. 12 is a drawing when viewed in the X direction.
- the reflective member 4 is made of a single member that has a U-shape when viewed in the Y direction. Therefore, the reflective member 4 has a reflective surface 4x that faces the center of the light-emitting tube 3 and faces each other in the X direction, and a reflective surface 4z that is located on the -Z side of the light-emitting tube 3.
- the ultraviolet light L1 is generated between the electrode blocks (11, 12)
- the first end 5a of the light-emitting tube 3 is located on the -X side of the electrode block 11, and a part of the light-emitting tube 3 is arranged to protrude from the electrode block 11 to the -X side. Therefore, for example, if the reflecting surface 4x has a rectangular shape, it is difficult to bring the reflecting surface 4x close to the electrode block 11.
- the reflecting member 4 has a cutout portion 32 that avoids interference with the light-emitting tube 3.
- the reflecting surface 4x is U-shaped when viewed in the X direction, and is arranged at a position offset from the light-emitting tube 3 in the Y direction. This makes it possible to prevent interference between the light-emitting tube 3 and the reflecting surface 4x, and the reflecting surface 4x can be brought close to the electrode block 11 and arranged between the first end 5a and the electrode block 11. The same applies to the reflecting surface 4x on the +X side.
- the reflective surface 4x is U-shaped, but the cutout 32 may be a hole for inserting the light emitting tube 3, and the reflective surface 4x may be O-shaped.
- the reflective member 4 can be formed by processing a sheet-like member made of, for example, PTFE, as described above with reference to FIG. 4. By processing the sheet-like member, it is possible to easily form a shape that matches the arrangement of the light emitting tube 3 and the electrode blocks (11, 12), as described above.
- the reflecting surface 4x reflects ultraviolet light L1 that has a component traveling in the X direction. This increases the amount of ultraviolet light L1 traveling toward the light extraction surface 10, improving the efficiency of extracting ultraviolet light L1 from the light extraction surface 10.
- the reflecting surface 4x is disposed at a position offset in the Y direction from the light emitting tube 3 when viewed in the X direction. Therefore, as shown in Figures 11 and 12, the reflecting surface 4x can reflect ultraviolet light La1 that has a component traveling in the X direction and travels at a small angle with respect to the XY plane. In this way, according to this embodiment, ultraviolet light La1 can be reflected even at a position offset in the Y direction from the light emitting tube 3 when viewed in the X direction.
- the reflecting surface 4z also reflects the ultraviolet light Lb1 that is emitted from the light-emitting tube 3 and travels toward the -Z side toward the light extraction surface 10 (see FIG. 11). This allows the ultraviolet light Lb1 that travels toward the -Z side to be reflected toward the light extraction surface.
- the reflective member 4 is configured to reflect ultraviolet rays L1 having a component traveling in the X direction, as well as ultraviolet rays La1 having a small angle with respect to the Y direction, and ultraviolet rays Lb1 traveling to the -Z side. This increases the amount of ultraviolet rays traveling toward the light extraction surface 10, further improving the efficiency of extracting ultraviolet rays from the light extraction surface 10.
- FIG. 13 is a perspective view showing another example of the configuration of the reflecting member 4 according to the second embodiment.
- the reflecting member 4 may further include reflecting surfaces 4y that face each other in the Y direction.
- FIG. 14A is a cross-sectional view showing yet another example configuration of the reflecting member 4 according to the second embodiment.
- the reflecting surface 4x may be inclined with respect to the XY plane on the -Z side of the reflecting surface 4x. This configuration is preferable because even if the ultraviolet light L1 is reflected by the reflecting surface 4x and travels toward the -Z side, the reflecting surface 4z reflects the ultraviolet light toward the light extraction surface.
- the reflective surface 4x is described as being disposed between the first ends 5a and 5b of the light-emitting tube 3 in the X direction, but the reflective surface 4x may be disposed outside the light-emitting tube 3 between the first reference point P1 and the second reference point P2.
- Fig. 14B is a perspective view of the ultraviolet irradiation device 1 showing another example of the configuration of the reflective member 4, following Fig. 2A.
- a block material having a frame shape and a tapered surface inclined relative to the light extraction surface 10 may be placed inside the housing 2 as the reflective member 4.
- the tapered surface corresponds to the reflective surface (4x, 4y).
- the reflective member 4 can be fixed with any member such as a screw (not shown).
- the constituent material of the reflective member 4 is the same as that described above.
- the peak wavelength of the ultraviolet light can be varied by selecting the type of luminous gas filled in the light emitting tube 3.
- the combination of luminous gas and peak wavelength is KrCl (222 nm), KrBr (207 nm), XeCl (308 nm), and XeBr (283 nm).
- the optical filter 21 can be of any configuration.
- Reference Signs List 1 100: ultraviolet irradiation device 2: housing 2a: main casing 2b: lid 3: light emitting tube 4: reflecting member 4x, 4y, 4z: reflecting surface 5a: first end 5b: second end 10: light extraction surface 11, 12: electrode block 11a, 12a: mounting area 11b, 12b: tapered surface 21: optical filter 30: notch 31: area 32: notch P1: first reference point P2: second reference point
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
Abstract
Description
本発明は、紫外線照射装置に関する。 The present invention relates to an ultraviolet irradiation device.
従来、紫外線を照射することで、例えば空間中に存在する菌又はウイルスを不活化する技術が知られている。ここで、「不活化」とは、菌を死滅させる又はウイルスの感染力や毒性を失わせることを包括する概念である。近年、COVID-19に代表される感染症の蔓延とも相まって、衛生管理に対する関心が著しく高まっており、より効率的な菌又はウイルスの不活化処理が求められている。そこで、本出願人は、例えば上記の不活化などの用途に利用できる紫外線照射装置を提案している(下記、特許文献1参照)。
Conventionally, there is known a technology for inactivating bacteria or viruses present in air, for example, by irradiating them with ultraviolet light. Here, "inactivation" is a concept that encompasses killing bacteria or eliminating the infectiousness and toxicity of viruses. In recent years, coupled with the spread of infectious diseases such as COVID-19, interest in hygiene management has increased significantly, and there is a demand for more efficient inactivation processing of bacteria or viruses. Therefore, the applicant has proposed an ultraviolet irradiation device that can be used for applications such as the above-mentioned inactivation (see
紫外線照射装置は、上記特許文献1に記載されているような、紫外線を出射するエキシマランプなどの光源が筐体内に配置されてなる構成が知られている。図15は、特許文献1に係る紫外線照射装置100において、筐体2の本体ケーシング部2aと蓋部2bとを分解して示した斜視図である。図15では、エキシマランプの発光管3の管軸方向をX方向とし、X方向に直交する平面をYZ平面とする、X-Y-Z座標系が併記されている。エキシマランプから出射された紫外線は、筐体2に設けられた光取り出し面10から筐体2外部に取り出され、照射対象の空間又は物に対して照射される。
A known ultraviolet irradiation device has a configuration in which a light source such as an excimer lamp that emits ultraviolet light is disposed inside a housing, as described in the
図15に示す構成のエキシマランプは、発光管3の壁面に接触するように配置された一対の電極ブロック(11,12)に電圧が印加されることによって、発光管3から紫外線を出射する。この際、紫外線はあらゆる方向に向かって進行するため、エキシマランプから出射した紫外線には、筐体2に設けられた光取り出し面10に直接進行しない紫外線が含まれる。照射対象の空間等に効率的に紫外線を照射する観点からは、エキシマランプが出射した紫外線の総量に対して、より多くの紫外線が光取り出し面10から取り出されることが好ましい。
The excimer lamp shown in FIG. 15 emits ultraviolet light from the light-emitting
特許文献1は、光取り出し面10に配置された光学フィルタ21の特性に鑑みて、光学フィルタ21に対する紫外線の入射角を減少させることを提案している。より詳細には、エキシマランプの発光管3が載置された電極(11,12)に、光取り出し面10に対して傾斜するテーパ面(11b,12b)を設ける構成である。これにより、当該テーパ面に入射された紫外線は、光取り出し面10に向かって反射されて、小さい入射角で光取り出し面10に入射することができる。
つまり、図15に係る構成において、発光管3から出射され、テーパ面(11b,12b)に入射した紫外線は、光取り出し面10から筐体2の外部に取り出される。しかし、前述の通り、発光管3からは、あらゆる方向に紫外線が出射されるため、発光管3の管軸方向(X方向)に進行する成分を有する紫外線も存在する。そこで、本発明者は、従来の紫外線照射装置では、紫外線の取り出し効率をさらに向上させる余地が存在することに気が付いた。
In other words, in the configuration shown in FIG. 15, ultraviolet light emitted from the light-emitting
上記事情に鑑み、本発明は、紫外線の取り出し効率が高い紫外線照射装置を提供することを目的とする。 In view of the above circumstances, the present invention aims to provide an ultraviolet irradiation device with high ultraviolet extraction efficiency.
本発明に係る紫外線照射装置は、
筐体と、
前記筐体の側面に設けられた光取り出し面と、
前記筐体内に収容された直管状の発光管と、前記発光管の管軸に平行な第一方向に関して互いに離間して配置された、前記発光管に電圧を印加する第一電極及び第二電極と、を有するエキシマランプと、
前記発光管の中央部側に面し、前記第一方向に進行する成分を有する紫外線を反射する第一反射面を有し、前記エキシマランプが発する紫外線の少なくとも一部を反射する反射部材と、を備え、
前記反射部材の前記第一反射面は、前記第一方向に関して、前記発光管の前記第一電極側の第一端の近傍に位置する第一基準点と、前記第一端とは反対側に位置する第二端の近傍に位置する第二基準点との間に配置されたことを特徴とする。
The ultraviolet irradiation device according to the present invention comprises:
A housing and
a light extraction surface provided on a side surface of the housing;
an excimer lamp including a straight arc tube housed in the housing, and a first electrode and a second electrode arranged to apply a voltage to the arc tube and spaced apart from each other in a first direction parallel to a tube axis of the arc tube;
a reflecting member having a first reflecting surface facing a center portion of the arc tube and reflecting ultraviolet light having a component traveling in the first direction, and reflecting at least a portion of the ultraviolet light emitted by the excimer lamp;
The first reflecting surface of the reflecting member is characterized in that, with respect to the first direction, it is arranged between a first reference point located near a first end of the light-emitting tube on the first electrode side and a second reference point located near a second end located opposite the first end.
ここで、「近傍」とは、第一方向に関し、発光管の端部(前記第一端又は前記第二端)から、外側に向かって所定の距離だけ離間した位置を意味する。なお、所定の距離とは、当該端部と当該端部に近い側の電極との第一方向に関する離間距離の半分に相当する距離を意味する。 Here, "vicinity" refers to a position that is a predetermined distance away from the end of the light-emitting tube (the first end or the second end) toward the outside in the first direction. Note that the predetermined distance refers to a distance equivalent to half the distance in the first direction between the end and the electrode closer to the end.
前述の通り、エキシマランプから出射した紫外線には、筐体に設けられた光取り出し面に直接進行しない紫外線が含まれる。具体的には、発光管から第一方向に進行する成分を有する紫外線が挙げられる。発光管から第一方向に進行する紫外線は、光取り出し面側ではなく、筐体の内壁面に到達する可能性が高い。このように筐体の内壁面に到達した紫外線は、筐体の内壁面によって吸収されることで、光取り出し面からはほとんど取り出されない。 As mentioned above, the ultraviolet light emitted from the excimer lamp includes ultraviolet light that does not travel directly to the light extraction surface provided on the housing. Specifically, this includes ultraviolet light that has a component that travels in a first direction from the light-emitting tube. Ultraviolet light traveling in a first direction from the light-emitting tube is likely to reach the inner wall surface of the housing rather than the light extraction surface. Ultraviolet light that reaches the inner wall surface of the housing in this way is absorbed by the inner wall surface of the housing, and is hardly extracted from the light extraction surface.
これに対し、上記構成によれば、エキシマランプから出射され、第一方向に進行する成分を有する紫外線が、第一反射面によって反射される。第一反射面によって反射された紫外線は、第一方向に関して、発光管の中央部側に反射される。つまり、反射部材によって、反射面に入射した紫外線の進行方向が変更されることで、筐体の内壁面に向かって進行する紫外線の少なくとも一部が光取り出し面側へと反射されることになり、光取り出し面から取り出される紫外線が増加する。これにより、紫外線照射装置の紫外線の取り出し効率が高められる。 In contrast, with the above configuration, ultraviolet light emitted from the excimer lamp and having a component traveling in a first direction is reflected by the first reflecting surface. The ultraviolet light reflected by the first reflecting surface is reflected toward the center of the light-emitting tube in the first direction. In other words, the reflecting member changes the traveling direction of the ultraviolet light incident on the reflecting surface, so that at least a portion of the ultraviolet light traveling toward the inner wall surface of the housing is reflected toward the light extraction surface, and the amount of ultraviolet light extracted from the light extraction surface increases. This improves the ultraviolet light extraction efficiency of the ultraviolet irradiation device.
また、第一反射面が、前記第一基準点及び前記第二基準点の間に配置されることで、第一反射面が発光管から遠い位置に位置する場合よりも、より多くの紫外線を反射することができる。 In addition, by positioning the first reflecting surface between the first reference point and the second reference point, more ultraviolet light can be reflected than when the first reflecting surface is positioned farther away from the light-emitting tube.
前記第一反射面は、前記第一電極と前記第一基準点との間、又は前記第二電極と前記第二基準点との間に配置されても構わない。 The first reflecting surface may be disposed between the first electrode and the first reference point, or between the second electrode and the second reference point.
前述の通り、エキシマランプでは、一対の電極に対する電圧の印加に起因して紫外線が発生する。より詳細には、当該電圧の印加によって、発光管内に放電プラズマが発生して発光ガスの原子又は分子が励起されてエキシマ状態となり、これが基底状態に戻る際に紫外線が発せられる。放電プラズマは第一電極及び第二電極の間で発生するため、紫外線は、主に、発光管内の一対の電極に挟まれた空間において発生する。したがって、発光管の中央部、特に一対の電極に挟まれた空間から出射される紫外線を反射するために、第一反射面は、上記の通り、一対の電極よりも発光管の中央部とは反対側に配置されることが好ましい。 As mentioned above, in an excimer lamp, ultraviolet rays are generated due to the application of a voltage to a pair of electrodes. More specifically, the application of this voltage generates a discharge plasma inside the light-emitting tube, exciting the atoms or molecules of the light-emitting gas into an excimer state, and ultraviolet rays are emitted when this returns to the ground state. Because the discharge plasma is generated between the first and second electrodes, ultraviolet rays are mainly generated in the space between the pair of electrodes inside the light-emitting tube. Therefore, in order to reflect ultraviolet rays emitted from the center of the light-emitting tube, particularly from the space between the pair of electrodes, it is preferable that the first reflecting surface is positioned on the opposite side of the center of the light-emitting tube from the pair of electrodes, as mentioned above.
前記反射部材は前記第一反射面を複数有し、複数の前記第一反射面は前記第一方向に関して互いに向かい合っても構わない。 The reflecting member may have a plurality of the first reflecting surfaces, and the plurality of first reflecting surfaces may face each other in the first direction.
第一方向に進行する成分を有する紫外線には、発光管の第一端側に進行する紫外線と、その反対側の第二端側に進行する紫外線とが含まれる。上記構成によれば、両者の紫外線を反射することで、より多くの紫外線を取り出すことができる。 Ultraviolet rays that have a component traveling in a first direction include ultraviolet rays that travel toward the first end of the light-emitting tube and ultraviolet rays that travel toward the opposite, second end. With the above configuration, both types of ultraviolet rays are reflected, making it possible to extract more ultraviolet rays.
前記第一反射面は前記光取り出し面に対して傾斜して、前記第一反射面に入射された前記紫外線を前記光取り出し面側に反射しても構わない。 The first reflecting surface may be inclined with respect to the light extraction surface, so that the ultraviolet light incident on the first reflecting surface may be reflected toward the light extraction surface.
一般的に、反射面に入射した紫外線は、全てが反射されることなく、少なからず反射面で吸収される。これに鑑みると、紫外線照射装置は、エキシマランプから出射されて、光取り出し面とは異なる方向に向かって進行する紫外線が、少ない反射回数で光取り出し面に向かうように構成されることが好ましい。これに対し、第一反射面が光取り出し面に対して傾斜することで、第一反射面に入射された紫外線は光取り出し面側に反射される。このため、上記構成は、第一反射面で反射された紫外線が光取り出し面に向かいやすくなり、好適である。 Generally, ultraviolet light incident on a reflecting surface is not reflected in its entirety, but rather is absorbed by the reflecting surface to some extent. In view of this, it is preferable that the ultraviolet light irradiation device is configured so that ultraviolet light emitted from the excimer lamp and traveling in a direction different from the light extraction surface is directed toward the light extraction surface with a small number of reflections. In contrast, by tilting the first reflecting surface with respect to the light extraction surface, ultraviolet light incident on the first reflecting surface is reflected toward the light extraction surface. For this reason, the above configuration is preferable because it makes it easier for ultraviolet light reflected by the first reflecting surface to be directed toward the light extraction surface.
前記反射部材は、前記発光管の中央部側に面し、光取り出し面に平行な平面上で前記第一方向に直交する第二方向に進行する成分を有する紫外線を反射する第二反射面を備えても構わない。 The reflecting member may have a second reflecting surface facing the center of the light-emitting tube, which reflects ultraviolet light having a component traveling in a second direction perpendicular to the first direction on a plane parallel to the light extraction surface.
前述の通り、紫外線は発光管からあらゆる方向に出射される。上記構成によれば、第二反射面によって、前記第二方向に進行する成分を有する紫外線の一部が反射されて、紫外線の進行方向が変更されることで、例えば筐体の内壁面に向かって進行する紫外線の少なくとも一部が光取り出し面側へと反射される。これにより、光取り出し面から取り出される紫外線が増加し、紫外線の取り出し効率が高められる。 As mentioned above, ultraviolet light is emitted from the light-emitting tube in all directions. With the above configuration, the second reflecting surface reflects a portion of the ultraviolet light having a component traveling in the second direction, changing the direction of travel of the ultraviolet light, so that, for example, at least a portion of the ultraviolet light traveling toward the inner wall surface of the housing is reflected toward the light extraction surface. This increases the amount of ultraviolet light extracted from the light extraction surface, improving the efficiency of extracting ultraviolet light.
前記反射部材は前記第二反射面を複数有し、複数の前記第二反射面は前記第二方向に関して互いに向かい合っても構わない。 The reflecting member may have a plurality of the second reflecting surfaces, and the plurality of second reflecting surfaces may face each other in the second direction.
また、前記第二反射面は前記光取り出し面に対して傾斜して、前記第二反射面に入射された前記紫外線を前記光取り出し面側に反射しても構わない。 The second reflecting surface may be inclined with respect to the light extraction surface, so that the ultraviolet light incident on the second reflecting surface may be reflected toward the light extraction surface.
前記第一反射面は、前記光取り出し面に直交する第三方向に関して、前記発光管と前記光取り出し面の間に位置しても構わない。 The first reflecting surface may be located between the light emitting tube and the light extraction surface in a third direction perpendicular to the light extraction surface.
前記第三方向に関してエキシマランプと光取り出し面の間の位置で、紫外線が筐体の内壁等に入射して吸収されることを抑制する観点から、前記第一反射面が、上記構成に係る位置に配置されることが好ましい。なお、第二反射面についても同様である。 In order to prevent ultraviolet light from being incident on the inner wall of the housing or the like and being absorbed at a position between the excimer lamp and the light extraction surface in the third direction, it is preferable that the first reflecting surface is disposed at a position according to the above configuration. The same applies to the second reflecting surface.
前記反射部材は、前記第一方向に見た時に、前記発光管から前記光取り出し面に平行な平面上で前記第一方向に直交する第二方向に外れた位置にある前記第一反射面を含んでも構わない。 The reflecting member may include the first reflecting surface that is positioned away from the light emitting tube in a second direction perpendicular to the first direction on a plane parallel to the light extraction surface when viewed in the first direction.
発光管から、光取り出し面に対する角度が小さい状態で出射された紫外線は、筐体の内壁に向かいやすく、筐体内から取り出されにくい。これに対し、上記構成によれば、第一方向に見た時に発光管から第二方向に外れた位置において、第一方向に進行する成分を有しつつ、光取り出し面に対する角度が小さい状態で進行する紫外線を反射できる。これにより、光取り出し面側に反射される紫外線が増加する結果、より多くの紫外線が光取り出し面から取り出される。 Ultraviolet rays emitted from the light-emitting tube at a small angle relative to the light extraction surface tend to head toward the inner wall of the housing and are difficult to extract from within the housing. In contrast, with the above configuration, ultraviolet rays that have a component traveling in the first direction and travel at a small angle relative to the light extraction surface can be reflected at a position that is offset from the light-emitting tube in the second direction when viewed in the first direction. This increases the amount of ultraviolet rays reflected toward the light extraction surface, and as a result, more ultraviolet rays are extracted from the light extraction surface.
前記反射部材は、絶縁性材料で構成されても構わない。 The reflective member may be made of an insulating material.
前述の通り、電極には高周波の高電圧が印加される。このため、反射部材が導電性を示す場合、反射部材と電極間で意図しない放電経路が形成される懸念がある。また、移動などの衝撃で反射部材の位置がずれた際に両者が接触して短絡する懸念もある。これらの懸念に鑑みると、反射部材は絶縁性材料で構成されることが好ましい。 As mentioned above, a high-frequency high voltage is applied to the electrodes. For this reason, if the reflective member is conductive, there is a concern that an unintended discharge path may be formed between the reflective member and the electrodes. There is also a concern that if the reflective member is displaced due to an impact from movement, etc., the two may come into contact and cause a short circuit. In view of these concerns, it is preferable that the reflective member be made of an insulating material.
前記反射部材はポリテトラフルオロエチレンで構成されても構わない。 The reflective member may be made of polytetrafluoroethylene.
ポリテトラフルオロエチレン(PTFE)は、カッティング等の加工が容易という特徴があり、任意の形状で反射部材を構成できる。また、PTFEは絶縁性を示す観点からも、反射部材として好適な材料である。 Polytetrafluoroethylene (PTFE) is characterized by its ease of processing, such as cutting, and can be used to create reflective components in any shape. PTFE is also an ideal material for reflective components because of its insulating properties.
本発明によれば、紫外線の取り出し効率が高い紫外線照射装置が提供される。 The present invention provides an ultraviolet irradiation device with high ultraviolet extraction efficiency.
[第一実施形態]
本発明に係る紫外線照射装置の第一実施形態につき、適宜図面を参照して説明する。なお、以下の各図面は、模式的に図示されたものであり、図面上の寸法比と実際の寸法比は必ずしも一致していない。また、各図面間においても、寸法比は必ずしも一致していない。
[First embodiment]
A first embodiment of an ultraviolet irradiation device according to the present invention will be described with reference to the drawings. Note that the following drawings are schematic illustrations, and the dimensional ratios in the drawings do not necessarily match the actual dimensional ratios. Furthermore, the dimensional ratios between the drawings do not necessarily match.
以下の各図では、前述した図15と同様に、エキシマランプの発光管3の管軸方向をX方向とし、X方向に直交する平面をYZ平面とした、X-Y-Z座標系を参照して説明される。より詳細には、光取り出し面10に平行な平面上でX方向に対して直交する方向をY方向とし、X方向及びY方向に直交する方向をZ方向とする。X方向が「第一方向」に対応し、Y方向が「第二方向」に対応し、Z方向が「第三方向」に対応する。
In the following figures, as in FIG. 15 described above, the explanation will be given with reference to the X-Y-Z coordinate system in which the tube axis direction of the light-emitting
また、以下の説明では、方向を表現する際に正負の向きを区別する場合には、「+X方向」、「-X方向」のように、正負の符号を付して記載される。また、正負の向きを区別せずに方向を表現する場合には、単に「X方向」と記載される。すなわち、本明細書において、単に「X方向」と記載されている場合には、「+X方向」と「-X方向」の双方が含まれる。Y方向及びZ方向についても同様である。 In addition, in the following description, when a positive or negative direction needs to be distinguished, it is described with a positive or negative sign, such as "+X direction" and "-X direction". When a direction is described without distinguishing between positive and negative directions, it is simply described as "X direction". In other words, in this specification, when it is simply described as "X direction", both the "+X direction" and the "-X direction" are included. The same applies to the Y direction and the Z direction.
また、以下の図において、図15を参照して上述したのと同一の要素については、同一の符号を付して、その説明が適宜簡略化される。 In addition, in the following figures, the same elements as those described above with reference to FIG. 15 are given the same reference numerals, and their explanations are appropriately simplified.
図1は、本発明に係る紫外線照射装置の一実施形態の外観を模式的に示す斜視図である。また、図2Aは、図1の紫外線照射装置1の筐体2の本体ケーシング部2aと蓋部2bとを分解した斜視図である。図2Bは、図2Aに係る本体ケーシング部2aから、後述する反射部材4を分解した斜視図である。
FIG. 1 is a perspective view showing a schematic external appearance of one embodiment of an ultraviolet irradiation device according to the present invention. FIG. 2A is an exploded perspective view of the
図1に示すように、紫外線照射装置1は、側面に光取り出し面10が形成された筐体2を備える。また、図2A及び図2Bに示すように、筐体2は、本体ケーシング部2aと蓋部2bとを備え、エキシマランプの発光管3と、電極ブロック(11,12)と、反射部材4を収容する。図2A及び図2Bでは、理解を容易にする観点から、発光管3に実線によるハッチングが施されている。
As shown in FIG. 1, the
本実施形態におけるエキシマランプの発光管3は石英ガラス等の誘電体で形成され、発光管3にはクリプトンガス及び塩素ガスを含む発光ガスが封入される。本実施形態において、発光管3は直管状を呈する。一例として、本実施形態では、X方向に係る発光管3の全長は70mmである。なお、筐体2内に収容される発光管3の本数は、本発明において限定されない。
In this embodiment, the
電極ブロック11及び電極ブロック12は、X方向に互いに離間して配置され、各発光管3に対して給電するための電極を構成する。図3は、電極ブロック(11,12)の構造を模式的に示す斜視図である。図3に示すように、電極ブロック11は、エキシマランプの発光管3が載置される載置領域11aと(図2Bも参照)、発光管3に対してY方向に離れた位置に形成され、XY平面に対して傾斜したテーパ面11bとを有して構成される。同様に、電極ブロック12は、載置領域12aとテーパ面12bとを有する。テーパ面(11b,12b)の効果については、図5Bを参照して後述される。本実施形態では、電極ブロック11が、「第一電極」に対応し、電極ブロック12が「第二電極」に対応する。
The electrode blocks 11 and 12 are spaced apart from each other in the X direction and form electrodes for supplying power to each light-emitting
電極ブロック(11,12)は、導電性の材料からなり、好ましくは、紫外線L1に対する反射性を示す材料からなる。一例として、電極ブロック(11,12)は、共に、アルミニウム、アルミニウム合金、ステンレスなどの金属材料で構成される。 The electrode blocks (11, 12) are made of a conductive material, preferably a material that is reflective to ultraviolet light L1. As an example, both electrode blocks (11, 12) are made of a metal material such as aluminum, an aluminum alloy, or stainless steel.
一例として、本実施形態では、電極ブロック(11,12)の離間距離は6mmである。 As an example, in this embodiment, the distance between the electrode blocks (11, 12) is 6 mm.
電極ブロック(11,12)に対して高周波の高電圧が印加されることで、発光管3から紫外線L1が得られる。光取り出し面10は、発光管3内で発せられた紫外線L1を筐体2の外部に取り出すために、石英ガラス等のガラス材料で構成される。なお、光取り出し面10は、開口で構成されても構わない。
By applying a high-frequency high voltage to the electrode blocks (11, 12), ultraviolet light L1 is obtained from the light-emitting
前述の通り、発光管3は、発光ガスとしてクリプトンガス及び塩素ガスを含む。このため、発光管3から、主たる発光波長が200nm~240nmの範囲に属する紫外線L1が得られる。ここで、「主たる発光波長」とは、発光スペクトルにおいて、最も高い光強度(ピーク強度)に対して40%以上の光強度を示す波長帯域をいう。
As mentioned above, the
波長200nm~240nmの範囲に属する紫外線は、タンパク質の吸収係数が高く、大部分が人の皮膚表面(例えば角質層)で吸収される。このため、上記波長範囲に属する紫外線は、皮膚内部まで浸透し難く、人体に対する影響が極めて低いという特徴がある。 Ultraviolet rays with wavelengths between 200nm and 240nm have a high protein absorption coefficient, and most of them are absorbed by the surface of human skin (e.g. the stratum corneum). For this reason, ultraviolet rays with wavelengths in this range have the characteristic that they do not easily penetrate deep into the skin, and have an extremely low impact on the human body.
なお、主たる発光波長が200nm~240nmの範囲に属する紫外線を発するエキシマランプにおいても、ごくわずかながら、人体に影響を及ぼすおそれのある波長帯(波長240nm~300nm)の紫外線が出射され得る。これに鑑みて、本実施形態では、波長240nm~300nmの範囲に属する紫外線の透過を抑制する光学フィルタ21が光取り出し面10に配置されている(図2A参照)。
Even excimer lamps that emit ultraviolet light with a main emission wavelength in the range of 200 nm to 240 nm may emit a small amount of ultraviolet light in a wavelength range (240 nm to 300 nm) that may have an adverse effect on the human body. In view of this, in this embodiment, an
ここで、「光学フィルタが光取り出し面に配置される」とは、光取り出し面に対して光学フィルタが一体化されて配置される場合の他、光学フィルタが光取り出し面に対してZ方向に数mm~十数mm程度離間した位置に配置される場合を含む。また、「透過を抑制する」とは、光学フィルタを通過した紫外線のうち、波長200nm~240nmの波長範囲内の紫外線の光強度に対して、波長240~300nmの範囲内の紫外線の光強度の比率を低下させることを指す。光学フィルタ21は、一例として、シリカ(SiO2)の薄膜層とハフニア(HfO2)の薄膜層とが積層された誘電体多層膜から構成される。
Here, "the optical filter is disposed on the light extraction surface" includes cases where the optical filter is disposed integrally with the light extraction surface, as well as cases where the optical filter is disposed at a position spaced apart from the light extraction surface by several mm to several tens of mm in the Z direction. "Suppressing transmission" refers to lowering the ratio of the light intensity of ultraviolet light having a wavelength of 240 to 300 nm to the light intensity of ultraviolet light having a wavelength of 200 nm to 240 nm among the ultraviolet light that has passed through the optical filter. As an example, the
反射部材4は、例えばポリテトラフルオロエチレン(PTFE)から構成され、紫外線L1に対して反射性を示す反射面(4x,4y)を有する。反射部材4は、本体ケーシング部2aの+Z側に配置される(図2B参照)。
The
図4は、+Z方向から見た際の反射部材4の構造を模式的に示す平面図である。図4に示すように、反射部材4は、X方向に関して互いに向かい合って配置された2つの反射面4xと、Y方向に関して互いに向かい合って配置された2つの反射面4yを有する。本実施形態において、反射面4xが「第一反射面」に対応し、反射面4yが「第二反射面」に対応する。
FIG. 4 is a plan view showing a schematic structure of the reflecting
図5A及び図5Bは、筐体2内における、反射部材4の配置の態様を模式的に示す断面図である。図5AはY方向に見た時の図面であり、図5BはX方向に見た時の図面である。図5A及び図5Bに示すように、反射面(4x,4y)は、Z方向に関して発光管3と光取り出し面10の間に配置され、発光管3の中央部側に面する。また、本実施形態では、反射面(4x,4y)は光取り出し面10に対して傾斜する。反射部材4は、本体ケーシング部2aと電極ブロック(11,12)に挟持されており、反射面(4x,4y)は、電極ブロック(11,12)に当接している(図2Aも参照)。
5A and 5B are cross-sectional views showing the arrangement of the
より詳細には、反射面4xは、電極ブロック(11,12)及び発光管3に対して当接する(図5A参照)。一方で、本実施形態では、反射面4yは電極ブロック(11,12)に当接するが、反射面4yが電極ブロック(11,12)及び発光管3に対して当接するものとされても構わない(図5B参照)。なお、本発明において、反射部材4の設置方法は限定されず、反射面(4x,4y)が電極ブロック(11,12)又は発光管3に対して当接するか否かは任意である。
More specifically, the
また、反射面4xは、X方向に関して第一基準点P1と第二基準点P2の間に位置する(図5A参照)。第一基準点P1は、発光管3の-X側の第一端5aから、-X方向に距離d1離間した位置にある仮想点である。距離d1は、第一端5aと電極ブロック11の離間距離d2の半分の距離に相当する。また、第二基準点P2は、発光管3の+X側の第二端5bから、+X方向に距離d3離間した位置にある仮想点である。距離d3は、第二端5bと電極ブロック12の離間距離d4の半分の距離に相当する。
The reflecting
なお、一例として、本実施形態では、離間距離d2及び離間距離d4は共に17mmとされる。なお、離間距離d2と離間距離d4は異なっていても構わない。 In this embodiment, as an example, the distances d2 and d4 are both 17 mm. The distances d2 and d4 may be different.
本実施形態では、-X側の反射面4xは、X方向に関して第一端5aと電極ブロック11との間に位置し、+X側の反射面4xは、X方向に関して第二端5bと電極ブロック12との間に位置する。前述したように、紫外線L1は、主に、一対の電極ブロック(11,12)の間で発生するため、-X側を例にとると、反射面4xが、第一端5a及び電極ブロック11の間に配置されることが好ましい。
In this embodiment, the -X side
反射部材4は、例えばシート状の部材から構成される。図4を参照しながら、反射部材4の作製手順の一例を説明する。まず、紫外線L1に対して反射性を示す材料からなる、略矩形状のシートを準備する。そして、カッティング等の加工によって、当該シートの中央部から、典型的には矩形状の領域31を切り抜いて、フレーム状を呈するシートを得る。次に、切り込み部30を形成する。そして、反射面(4x,4y)に対応する領域を-Z側に折り曲げることによって、反射部材4を構成することができる。
The
反射部材4は、前述の通りポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂材料の微粒子からなるシート材で構成できる。特にPTFEはカッティング、折り曲げなどの加工が容易であり、好適である。また、反射部材4は、任意のシート材に対して、紫外線L1を反射する反射膜を形成することで構成されても構わない。当該反射膜は、例えば上記フッ素系樹脂材料のコーティング膜である。この場合、反射膜が反射面(4x,4y)を形成する。
The
なお、PTFEは、紫外線L1に対して拡散反射性を示す。拡散反射性を示す反射面(4x,4y)で反射された拡散光の少なくとも一部は、光取り出し面10に向かうように進行すると考えられるため、光取り出し面10からの紫外線L1の取り出し効率が高まることが期待できる。つまり、反射面(4x,4y)が拡散反射性を示すことで、光取り出し面10又は発光管3に対する反射面(4x,4y)の位置合わせが僅かにずれたとしても、光取り出し面10からの紫外線L1の取り出し効率が良くなる。言い換えれば、反射面(4x,4y)が拡散反射性を示すことで、光取り出し面10又は発光管3に対する反射面(4x,4y)の位置合わせが簡便になるという効果が得られる。
PTFE exhibits diffuse reflectivity with respect to ultraviolet light L1. It is believed that at least a portion of the diffuse light reflected by the reflective surfaces (4x, 4y) exhibiting diffuse reflectivity travels toward the
反射面(4x,4y)で紫外線L1を拡散反射する観点から、反射部材4は、シリコーン樹脂で構成されても構わないし、反射膜としてシリカ又はアルミナ等を含んで構成されたセラミック膜を有するものとしても構わない。また、反射面(4y,4z)に対して凹凸加工を施すことにより、拡散反射性を示す反射面を構成しても構わない。
From the viewpoint of diffusively reflecting ultraviolet light L1 on the reflective surfaces (4x, 4y), the
なお、反射面(4x,4y)は、紫外線L1を正反射するものとされてもよい。一例として、反射部材4は、例えばアルミニウム等の金属からなるシート材でも構成できる。しかし、電極ブロック(11,12)と反射部材間での放電経路の形成を抑制する観点からは、反射部材4は、絶縁性を有することが好ましい。この観点から、例えば、任意の絶縁性のシート材に、屈折率の異なる誘電体膜を交互に積層して、紫外線L1を反射する誘電体多層膜を構成しても構わない。この場合、当該誘電体多層膜が反射面(4x,4y)を形成する。
The reflective surfaces (4x, 4y) may be configured to specularly reflect the ultraviolet light L1. As an example, the
以下、図5A及び図5Bを参照しつつ、発光管3が発する紫外線の進行の態様について説明する。
Below, we will explain the mode of travel of the ultraviolet light emitted by the light-emitting
反射面4xが、第一基準点P1と第二基準点P2との間に配置されることで、X方向に進行する成分を有し、光取り出し面10に直接進行しない紫外線L1が、反射面4xで反射される(図5A参照)。これにより、光取り出し面10側に進行する紫外線L1が増加し、光取り出し面10からの紫外線L1の取り出し効率が向上する。また、+X方向及び-X方向のそれぞれに進行する紫外線L1を反射する観点から、図5Aに示すように、複数の反射面4xが、互いに向かい合って配置されることが好ましい。
By arranging the
さらに、反射面4xが光取り出し面10に対して傾斜されることで、反射面4xで反射された紫外線L1において、光取り出し面10に向かって進行する紫外線L1を増加することができる。なお、光学フィルタ21が誘電体多層膜から構成される場合、入射角が大きくなると紫外線の透過率が低下する入射角依存性を示す。このため、光学フィルタ21に対する紫外線の入射角を小さくする観点から、反射面4xが光取り出し面10に対して傾斜することが好ましい。
Furthermore, by tilting the reflecting
また、反射面4xが、Z方向に関して発光管3と光取り出し面10の間に配置されることにより、発光管3よりも+Z側で、筐体2の内壁に向かって進行する紫外線L1を反射面4xで反射することができる。
In addition, by arranging the
図5Bに示すように、反射面4yによって、Y方向に進行する成分を有する紫外線L1が反射される。これにより、光取り出し面10からの紫外線L1の取り出し効率が向上する。複数の反射面4yが、互いに向かい合って配置される点、光取り出し面10に対して傾斜する点、及び発光管3よりも+Z側に配置される点については、反射面4xについて述べたのと同様の議論が可能である。
As shown in FIG. 5B, the
前述した通り、電極ブロック(11,12)は、光取り出し面10に対して傾斜するテーパ面(11b,12b)を有する。図5Bに示すように、電極ブロック11が、テーパ面11bを有することで、発光管3から出射されて、テーパ面11bに入射した紫外線L2が、光取り出し面10側に反射される。電極ブロック12が有するテーパ面12bについても同様の議論が可能である。この場合、テーパ面(11b,12b)が反射面4yを構成し、電極ブロック(11,12)が反射部材4を兼ねる。
As mentioned above, the electrode blocks (11, 12) have tapered surfaces (11b, 12b) that are inclined relative to the
[検証]
上述した構成に係る紫外線照射装置1において、筐体2から取り出される紫外線L1の放射照度の検証を行ったので、以下において説明する。
[verification]
In the
(実施例1)
本検証では、実施例1として上記第一実施形態の構成が採用された。
Example 1
In this verification, the configuration of the first embodiment described above was adopted as Example 1.
紫外線L1の放射照度は、ウシオ電機社製の紫外線積算光量計(UIT-250)と、波長222nmの光で校正済のウシオ電機社製のセパレート型受光器(VUV-S172)とを含んで構成された照度計を用いて測定された。また、放射照度の測定位置は、光取り出し面10から+Z側に50mm離間した位置で行われた。
The irradiance of ultraviolet light L1 was measured using an illuminometer consisting of an ultraviolet integrating light meter (UIT-250) manufactured by Ushio Inc. and a separate type light receiver (VUV-S172) manufactured by Ushio Inc. that has been calibrated with light having a wavelength of 222 nm. The irradiance was measured at a position 50 mm away from the
(比較例1)
比較例1として、反射部材4を配置しない場合の紫外線L1の放射照度が検証された。
比較例1の条件は、筐体2内から反射部材4が取り除かれた点を除き、実施例1と同様である。
(Comparative Example 1)
As a comparative example 1, the irradiance of the ultraviolet light L1 in the case where the reflecting
The conditions of Comparative Example 1 were the same as those of Example 1, except that the reflecting
[検証結果]
本検証で得られた放射照度の対比結果を下記表1に示す。表1では、比較例1を基準とした、放射照度の相対値が示されている。
[Verification results]
The results of the comparison of irradiance obtained in this verification are shown in the following Table 1. In Table 1, the relative values of irradiance are shown with Comparative Example 1 as the standard.
表1に示すように、反射部材4が配置されることによって(実施例1)、光取り出し面10から取り出される紫外線の放射照度が、反射部材4が無い場合(比較例1)の約1.2倍となった。
As shown in Table 1, by providing the reflecting member 4 (Example 1), the irradiance of the ultraviolet light extracted from the
[考察]
上記の結果は、反射部材4が配置され、反射面(4x,4y)で紫外線L1が反射されることによって、光取り出し面10側に向かって進行する紫外線L1が増加したためと考えられる。つまり、反射部材4を配置することで、光取り出し面10からの紫外線L1の取り出し効率が高められたことが理解できる。
[Discussion]
The above result is believed to be due to the fact that the reflecting
つまり、上記第一実施形態に係る構成によれば、紫外線の取り出し効率が高い紫外線照射装置を実現できる。 In other words, the configuration according to the first embodiment described above makes it possible to realize an ultraviolet irradiation device with high ultraviolet extraction efficiency.
なお、上記第一実施形態においては、反射面(4x,4y)は、光取り出し面10に対して傾斜するものとされた。しかし、本発明はこれに限定されず、反射面(4x,4y)は光取り出し面10に対して垂直に配置されても構わない。反射面(4x,4y)が、光取り出し面10に対して傾斜しない場合でも、紫外線L1が反射面(4x,4y)で反射されることで、発光管3から出射された紫外線に対して、例えば筐体2の内壁等に吸収される紫外線の割合が減少するため、光取り出し面10からの紫外線の取り出し効率が高められることが理解できる。
In the first embodiment, the reflecting surfaces (4x, 4y) are inclined with respect to the
また、上記においては、反射部材4は、複数の反射面4xを有するものとされたが、反射面4xは一枚であっても構わない。仮に、反射面4xが、発光管3の+X側にのみ配置された場合でも、当該反射面4xで紫外線L1が反射されて、光取り出し面10側に進行する紫外線が増加する結果、紫外線照射装置の紫外線の取り出し効率が高められると推察される。
In addition, in the above, the reflecting
同様に、反射面4yは一枚であっても構わない。また、反射部材4が反射面4yを備えるか否かは任意である
Similarly, the reflecting
さらに、上記においては、反射面(4x,4y)が、フレーム状を呈する一体の反射部材4から構成されるものとして説明した。しかし、例えば図6に示すように、反射面(4x,4y)は、分離された複数のシート部材から構成されても構わない。図6は、反射部材4の別構成例を示す平面図である。上記の検証結果に基づけば、反射部材4が分離された複数の部材から構成された場合でも、紫外線の取り出し効率が高められると推察される。
Furthermore, in the above description, the reflective surfaces (4x, 4y) are described as being composed of an integrated frame-shaped
本願出願日の時点では、ACGIH(American Conference of Governmental Industrial Hygienists:米国産業衛生専門家会議)等によって、人体に対する1日(8時間)あたりの紫外線の照射量に関して、推奨の許容限界値(TLV:Threshold Limit Value)が定められている。しかし、昨今では、人体に対する紫外線照射の影響が明らかになるに連れて、人体に対する照射の影響が低い、例えば200nm~240nmの波長範囲の紫外線については、TLVが緩和されてきている。 As of the filing date of this application, the American Conference of Governmental Industrial Hygienists (ACGIH) and other organizations have established recommended threshold limit values (TLVs) for the amount of ultraviolet radiation that the human body can be exposed to per day (8 hours). However, as the effects of ultraviolet radiation on the human body have become clearer in recent years, the TLVs have been relaxed for ultraviolet radiation in the wavelength range of 200 nm to 240 nm, for example, where the effects of exposure on the human body are low.
TLVが緩和されることで、より高い出力での紫外線の照射が行われると想定されるため、TLVの緩和に伴って、より高出力の紫外線照射装置が求められると考えられる。これに対し、上記第一実施形態では、波長200nm~240nmの範囲に属し、人体に対する影響が低い紫外線を出射しつつ、筐体2からの紫外線の取り出し効率が高められている。つまり、上記第一実施形態を参照して述べた構成によれば、TLVの緩和に伴う紫外線照射装置の高出力化の要求にも応えることができる。
As the TLV is relaxed, it is expected that ultraviolet light will be irradiated at a higher output, and therefore it is believed that a higher output ultraviolet light irradiation device will be required as the TLV is relaxed. In contrast, in the first embodiment, ultraviolet light in the wavelength range of 200 nm to 240 nm that has a low impact on the human body is emitted, while the efficiency of extracting ultraviolet light from the
[第二実施形態]
以下、本発明に係る紫外線照射装置の第二実施形態について、図7~図10を参照しながら、第一実施形態と異なる部分を中心に説明する。
[Second embodiment]
Hereinafter, a second embodiment of the ultraviolet irradiating device according to the present invention will be described with reference to FIGS. 7 to 10, focusing on the differences from the first embodiment.
図7は、第二実施形態に係る紫外線照射装置1の外観を模式的に示す斜視図である。図8は、図7から紫外線照射装置1の筐体2の本体ケーシング部2aと蓋部2bとを分解した斜視図である。また、図9は、紫外線照射装置1が備える電極ブロック(11,12)と発光管3と反射部材4の構造を模式的に示す斜視図であり、図10は、図9に係る電極ブロック(11,12)と反射部材4を分解した斜視図である。
FIG. 7 is a perspective view showing a schematic appearance of an
本実施形態に係る紫外線照射装置は、図9及び図10に示すように、本体ケーシング部2aに対して、反射部材4、電極ブロック(11,12)、エキシマランプの発光管3の順で各部材を配置されて構成される。本実施形態では、筐体2内にエキシマランプの発光管3が1本収容される。なお、第一実施形態と異なり、電極ブロック(11,12)にテーパ面(11b,12b)は形成されていない。
As shown in Figures 9 and 10, the ultraviolet irradiation device according to this embodiment is configured by arranging the reflecting
図11及び図12は、筐体2内における、反射部材4の配置の態様を模式的に示す断面図である。図11はY方向に見た時の図面であり、図12はX方向に見た時の図面である。図11に示すように、反射部材4はY方向に見た際にコの字状を呈する一の部材からなる。このため、反射部材4は、発光管3の中央部側に面し、X方向に関して互いに向かい合う反射面4xと、発光管3の-Z側に位置する反射面4zを有する。
FIGS. 11 and 12 are cross-sectional views that show the arrangement of the
前述の通り、紫外線L1は電極ブロック(11,12)の間で発生するため、反射面4xを電極ブロック(11,12)に近づけて配置することが好ましい。しかし、-X側を例に説明すると、発光管3の第一端5aは、電極ブロック11より-X側に位置し、発光管3の一部が電極ブロック11から-X側に突出して配置されている。したがって、例えば反射面4xが矩形状を呈する場合、反射面4xを電極ブロック11に近づけることが困難となる。これに鑑みて、本実施形態では、図12に示すように、反射部材4は発光管3との干渉を避ける切り欠き部32を有する。具体的には、反射面4xはX方向に見た時にU字状を呈するものとされ、発光管3からY方向に外れた位置に配置されている。これにより、発光管3と反射面4xの配置の干渉を防ぐことができ、反射面4xを電極ブロック11に近づけて、第一端5aと電極ブロック11との間に配置できる。+X側の反射面4xについても同様である。なお、上記では反射面4xはU字状としたが、切り欠き部32が発光管3を挿し込む用の穴とされて、反射面4xがO字状を呈するものとされても構わない。
As mentioned above, since the ultraviolet light L1 is generated between the electrode blocks (11, 12), it is preferable to arrange the reflecting
反射部材4は、図4を参照して前述したのと同様に、例えばPTFEからなるシート状の部材を加工することで構成できる。シート状の部材を加工することで、上記の通り、発光管3及び電極ブロック(11,12)の配置に合わせた形状を容易に構成できる。
The
図11に示すように、反射面4xは、X方向に進行する成分を有する紫外線L1を反射する。これにより、光取り出し面10側に進行する紫外線L1が増加し、光取り出し面10からの紫外線L1の取り出し効率が向上する。
As shown in FIG. 11, the reflecting
また、前述の通り、反射面4xは、X方向に見た時に発光管3からY方向に外れた位置に含んで配置されている。このため、反射面4xは、図11及び図12に示すように、X方向に進行する成分を有しつつ、XY平面に対する角度が小さい状態で進行する紫外線La1を反射することができる。このように、本実施形態によれば、X方向に見た時に発光管3からY方向に外れた位置においても紫外線La1を反射できる。
As mentioned above, the reflecting
また、反射面4zは、発光管3から出射されて、-Z側に進行した紫外線Lb1を、光取り出し面10側に反射する(図11参照)。これにより、-Z側に進行した紫外線Lb1を光取り出し面側に反射できる。
The reflecting
上記の通り、第二実施形態に係る紫外線照射装置1では、反射部材4が、X方向に進行する成分を有する紫外線L1に加え、Y方向に対する角度が小さい紫外線La1、及び-Z側に進行した紫外線Lb1を反射する構成である。このため、光取り出し面10側に進行する紫外線が増加され、光取り出し面10からの紫外線の取り出し効率がより高められる。
As described above, in the
また、図13は、第二実施形態に係る反射部材4の別構成例を示す斜視図である。図13に示すように、反射部材4は、Y方向に関して互いに向かい合う反射面4yをさらに備えるものとされても構わない。
FIG. 13 is a perspective view showing another example of the configuration of the reflecting
さらに、図14Aは、第二実施形態に係る反射部材4のさらに別の構成例を示す断面図である。図14Aに示すように、反射面4xは、反射面4xの-Z側のXY平面に対して傾斜しても構わない。この構成によれば、紫外線L1が、反射面4xで反射されて-Z側に進行する場合でも、反射面4zが当該紫外線を光取り出し面側に反射するため、好適である。
Furthermore, FIG. 14A is a cross-sectional view showing yet another example configuration of the reflecting
[変形例]
以下、本発明に係る紫外線照射装置の変形例について説明する。
[Modification]
Modifications of the ultraviolet irradiation device according to the present invention will now be described.
〈1〉 上記においては、反射面4xは、X方向に関して発光管3の第一端5a及び5bの間に配置されるものとして説明したが、反射面4xは、第一基準点P1と第二基準点P2との間において、発光管3の外側に配置されても構わない。
<1> In the above, the
〈2〉 また、上記において、反射部材4はシート状を呈する部材を加工して構成されるものとして説明したが、本発明において、反射部材4の形状は限定されない。図14Bは、図2Aに倣って、反射部材4の別構成例を示す紫外線照射装置1の斜視図である。例えば、図14Bに示すように、フレーム状を呈し、光取り出し面10に対して傾斜するテーパ面を有するブロック材が反射部材4として筐体2内に配置されても構わない。当該テーパ面が反射面(4x,4y)に対応する。反射部材4は、図示しないネジ等の任意の部材で固定可能である。なお、反射部材4の構成材料については前述したのと同様である。
<2> Although the
〈3〉 上記においては、人に対する影響が低い、主たる発光波長が200nm~240nmの範囲に属する紫外線について言及した。しかし、紫外線照射装置が、物体、又は人の存在が想定されない空間に対して紫外線を照射する場合も想定される。つまり、エキシマランプが出射する紫外線の波長は限定されない。 〈3〉 In the above, reference was made to ultraviolet rays with a main emission wavelength in the range of 200 nm to 240 nm, which has a low impact on humans. However, it is also conceivable that the ultraviolet irradiation device may irradiate ultraviolet rays onto a space where the presence of objects or people is not expected. In other words, there are no limitations on the wavelength of ultraviolet rays emitted by the excimer lamp.
例えば、発光管3に封入される発光ガス種を選択することで、紫外線のピーク波長を異ならせることができる。一例として、発光ガスとピーク波長の組み合わせは、KrCl(222nm)、KrBr(207nm)、XeCl(308nm)、XeBr(283nm)である。
For example, the peak wavelength of the ultraviolet light can be varied by selecting the type of luminous gas filled in the
〈4〉 上記実施形態において、光学フィルタ21は任意の構成である。
<4> In the above embodiment, the
〈5〉 上述した紫外線照射装置1が備える構成は、あくまで一例であり、本発明は、図示された各構成に限定されない。
<5> The configuration of the
1,100 : 紫外線照射装置
2 : 筐体
2a : 本体ケーシング部
2b : 蓋部
3 : 発光管
4 : 反射部材
4x,4y,4z : 反射面
5a : 第一端
5b : 第二端
10 : 光取り出し面
11,12 : 電極ブロック
11a,12a : 載置領域
11b,12b : テーパ面
21 : 光学フィルタ
30 : 切り込み部
31 : 領域
32 : 切り欠き部
P1 : 第一基準点
P2 : 第二基準点
Claims (11)
前記筐体の側面に設けられた光取り出し面と、
前記筐体内に収容された直管状の発光管と、前記発光管の管軸に平行な第一方向に関して互いに離間して配置された、前記発光管に電圧を印加する第一電極及び第二電極と、を有するエキシマランプと、
前記発光管の中央部側に面し、前記第一方向に進行する成分を有する紫外線を反射する第一反射面を有し、前記エキシマランプが発する紫外線の少なくとも一部を反射する反射部材と、を備え、
前記反射部材の前記第一反射面は、前記第一方向に関して、前記発光管の前記第一電極側の第一端の近傍に位置する第一基準点と、前記第一端とは反対側に位置する第二端の近傍に位置する第二基準点との間に配置されたことを特徴とする、紫外線照射装置。 A housing and
a light extraction surface provided on a side surface of the housing;
an excimer lamp including a straight arc tube housed in the housing, and a first electrode and a second electrode arranged to apply a voltage to the arc tube and spaced apart from each other in a first direction parallel to a tube axis of the arc tube;
a reflecting member having a first reflecting surface facing a center portion of the arc tube and reflecting ultraviolet light having a component traveling in the first direction, and reflecting at least a portion of the ultraviolet light emitted by the excimer lamp;
an ultraviolet irradiation device, characterized in that the first reflection surface of the reflection member is disposed, with respect to the first direction, between a first reference point located near a first end of the light-emitting tube on the first electrode side and a second reference point located near a second end located opposite the first end.
10. The ultraviolet irradiation device according to claim 9, wherein the reflecting member is made of polytetrafluoroethylene.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380084226.1A CN120322253A (en) | 2023-03-30 | 2023-12-19 | Ultraviolet irradiation device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023055607A JP2024143104A (en) | 2023-03-30 | 2023-03-30 | Ultraviolet irradiation equipment |
JP2023-055607 | 2023-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024202314A1 true WO2024202314A1 (en) | 2024-10-03 |
Family
ID=92904724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/045407 WO2024202314A1 (en) | 2023-03-30 | 2023-12-19 | Ultraviolet ray irradiation device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2024143104A (en) |
CN (1) | CN120322253A (en) |
WO (1) | WO2024202314A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05182635A (en) * | 1991-12-27 | 1993-07-23 | Toshiba Lighting & Technol Corp | UV irradiation device |
JP2008221170A (en) * | 2007-03-15 | 2008-09-25 | Bridgestone Corp | Ultraviolet ray irradiation apparatus |
JP2010237055A (en) * | 2009-03-31 | 2010-10-21 | Iwasaki Electric Co Ltd | Weather resistance test equipment |
JP2014194913A (en) * | 2013-03-29 | 2014-10-09 | Iwasaki Electric Co Ltd | Irradiation device |
JP2022163467A (en) * | 2021-04-14 | 2022-10-26 | ウシオ電機株式会社 | Ultraviolet light irradiation device, method for using ultraviolet light irradiation device, and method for irradiation with ultraviolet light |
-
2023
- 2023-03-30 JP JP2023055607A patent/JP2024143104A/en active Pending
- 2023-12-19 CN CN202380084226.1A patent/CN120322253A/en active Pending
- 2023-12-19 WO PCT/JP2023/045407 patent/WO2024202314A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05182635A (en) * | 1991-12-27 | 1993-07-23 | Toshiba Lighting & Technol Corp | UV irradiation device |
JP2008221170A (en) * | 2007-03-15 | 2008-09-25 | Bridgestone Corp | Ultraviolet ray irradiation apparatus |
JP2010237055A (en) * | 2009-03-31 | 2010-10-21 | Iwasaki Electric Co Ltd | Weather resistance test equipment |
JP2014194913A (en) * | 2013-03-29 | 2014-10-09 | Iwasaki Electric Co Ltd | Irradiation device |
JP2022163467A (en) * | 2021-04-14 | 2022-10-26 | ウシオ電機株式会社 | Ultraviolet light irradiation device, method for using ultraviolet light irradiation device, and method for irradiation with ultraviolet light |
Also Published As
Publication number | Publication date |
---|---|
JP2024143104A (en) | 2024-10-11 |
CN120322253A (en) | 2025-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI841791B (en) | UV irradiation device | |
CN112673454B (en) | Ultraviolet irradiation device | |
TWI683601B (en) | System and method for separation of pump light and collected light in a laser pumped light source | |
EP4331629A1 (en) | Ultraviolet light emission device, method for using ultraviolet light emission device, and ultraviolet light emission method | |
JP2006040867A (en) | Excimer lamp apparatus | |
KR20230049711A (en) | Ultraviolet light irradiation device, method of using ultraviolet light irradiation device, and ultraviolet light irradiation method | |
US11694888B2 (en) | Ultraviolet irradiation device | |
WO2024202314A1 (en) | Ultraviolet ray irradiation device | |
CN218853160U (en) | Ultraviolet irradiation device | |
US20220059336A1 (en) | Uv irradiation apparatus | |
JPH02189805A (en) | Microwave excitation type electrodeless light emitting device | |
JP7474422B2 (en) | Ultraviolet irradiation equipment | |
US11929248B1 (en) | Far-UVC light source with an internal dielectric coating filter arranged on the interior side of electrode | |
JP7713273B2 (en) | Ultraviolet light emitting element and ultraviolet light irradiation device | |
CN115458387A (en) | High-efficient safe excimer germicidal lamp | |
WO2024209844A1 (en) | Ultraviolet light radiation device | |
WO2023204180A1 (en) | Microbe or virus inactivation device, treatment device, discharge lamp | |
CN117100884A (en) | UV irradiation device | |
WO2023239981A1 (en) | Far ultraviolet lamp and system with optical diffuser | |
JP2024038673A (en) | discharge lamp | |
WO2024024376A1 (en) | Inactivation apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23930933 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: CN2023800842261 Country of ref document: CN |