[go: up one dir, main page]

WO2024201650A1 - Optical fiber and optical amplifier - Google Patents

Optical fiber and optical amplifier Download PDF

Info

Publication number
WO2024201650A1
WO2024201650A1 PCT/JP2023/012185 JP2023012185W WO2024201650A1 WO 2024201650 A1 WO2024201650 A1 WO 2024201650A1 JP 2023012185 W JP2023012185 W JP 2023012185W WO 2024201650 A1 WO2024201650 A1 WO 2024201650A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
core region
region
light
holes
Prior art date
Application number
PCT/JP2023/012185
Other languages
French (fr)
Japanese (ja)
Inventor
悠途 寒河江
和秀 中島
隆 松井
泰志 坂本
雅樹 和田
崇嘉 森
航平 大本
太郎 岩屋
諒太 今田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2023/012185 priority Critical patent/WO2024201650A1/en
Publication of WO2024201650A1 publication Critical patent/WO2024201650A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/032Optical fibres with cladding with or without a coating with non solid core or cladding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers

Definitions

  • This disclosure relates to optical fibers and optical amplifiers.
  • Non-Patent Document 1 discloses a rare-earth doped fiber in which a rare-earth element is added to the core region in order to amplify the signal light propagating through the core region.
  • pumping light is introduced into the cladding region and excites rare-earth ions in all core regions contained in the rare-earth doped fiber. Therefore, multiple signal lights can be amplified simultaneously with a single pumping light source.
  • the pumping light has a uniform light intensity distribution in the cladding region, and there is pumping light that does not overlap with the core region. Since the pumping light that does not overlap with the core region does not contribute to the amplification of the signal light propagating through the core region, there is a problem in that the pumping efficiency decreases.
  • the present disclosure has been made in consideration of the above problems. Its purpose is to provide an optical fiber and an optical amplifier that can reduce the pumping light that does not overlap the core region and improve the pumping efficiency so that the pumping light contributes to the amplification of the signal light propagating through the core region.
  • an optical fiber comprises a core region doped with rare earth ions, a plurality of holes having a central axis parallel to the central axis of the core region and arranged to surround the core region, and a cladding region arranged to contain the core region and the plurality of holes therein and having a refractive index lower than that of the core region.
  • An optical amplifier includes the optical fiber described above, an excitation light source that emits excitation light that excites rare earth ions, an optical coupler that introduces the signal light and excitation light into one end of the optical fiber, and an optical splitter that splits the signal light from the light output from the other end of the optical fiber.
  • the present disclosure it is possible to reduce the amount of pump light that does not overlap the core region, thereby improving pump efficiency, so that the pump light contributes to the amplification of the signal light propagating through the core region.
  • FIG. 1 is a cross-sectional view illustrating the structure of an optical fiber according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view showing the structure of an optical fiber according to a modified example of the present disclosure.
  • FIG. 3 is a schematic diagram showing the intensity distribution of pump light in an optical fiber that does not include holes.
  • FIG. 4 is a schematic diagram illustrating the intensity distribution of excitation light in an optical fiber according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing the intensity distribution of excitation light when the contribution of the photonic crystal structure is taken into account in an optical fiber according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram illustrating a configuration of an optical amplifier according to an embodiment of the present disclosure.
  • FIG. 1 is a cross-sectional view showing the structure of an optical fiber according to an embodiment of the present disclosure.
  • Fig. 2 is a cross-sectional view showing the structure of an optical fiber according to a modified example of the present disclosure.
  • Figs. 1 and 2 show cross-sectional views of a cross section perpendicular to the extending direction (direction of the central axis) of the optical fiber FB.
  • the optical fiber FB includes a core region 10, holes 20, and a cladding region 30.
  • the core region 10 is doped with rare earth ions.
  • rare earth ions that may be doped into the core region 10 of the optical fiber FB include, but are not limited to, Er 3+ , Pr 3+ , Tm 3+ , Yb 3+ , Nd 3+ , and Dy 3+ .
  • the rare earth ions are selected according to the band of the signal light to be amplified. Multiple types of rare earth ions may be doped.
  • the number and arrangement of the core regions 10 in the optical fiber FB are not limited to the examples shown in Figs. 1 and 2.
  • the optical fiber FB may have any number of core regions 10.
  • the multiple core regions 10 may be arranged in a circular ring shape, or in a square or hexagonal close-packed arrangement.
  • the air holes 20 have a central axis parallel to the central axis of the core region 10 and are arranged to surround the core region 10.
  • a plurality of air holes 20 are arranged in the optical fiber FB.
  • a photonic crystal structure can be obtained by regularly arranging the air holes 20 in the cladding region 30.
  • FIG. 1 shows a 54-hole structure as the photonic crystal structure, in which seven holes near the center of a row of hexagonally close-packed holes 20 are missing.
  • FIG. 2 shows a 54-hole structure as the photonic crystal structure, in which one hole near the center of a row of hexagonally close-packed holes 20 is missing.
  • the photonic crystal structure is not limited to the examples given here, and may be a hexagonally close-packed or square arrangement.
  • an excitation light guide region RA is formed near the core region 10.
  • the excitation light guide region RA is a part of the cladding region 30, and is a region surrounded by the air holes 20.
  • the photonic crystal structure limits the mode of the excitation light propagating in the excitation light guide region RA.
  • rare earth ions can be excited in all of the core regions 10 arranged in the excitation light guide region RA.
  • the pumping light can be concentrated in the pumping light guide region RA so that the pumping light contributes to the amplification of the signal light propagating through the core region 10.
  • the pumping light that does not overlap the core region 10 can be reduced, and the pumping efficiency by the optical fiber FB can be improved.
  • the diameter of each air hole 20 may be 2 ⁇ m or more. This is because if the diameter of the air hole 20 were shorter than the wavelength of the light passing through the optical fiber FB, the air hole 20 itself would scatter the light passing through the optical fiber FB, increasing the scattering loss. Furthermore, the diameter of the air hole 20 is set to 2 ⁇ m or more in consideration of the controllability of the air hole 20 when forming the optical fiber FB by performing the drawing process (drawing) in which the base material is heated and stretched.
  • the refractive index of the holes 20 may be lower than the refractive index of the cladding region 30. This prevents a decrease in the coupling efficiency (optical amplification efficiency) between the excitation light and the signal light.
  • the cladding region 30 is arranged so as to include the core region 10 and the multiple holes 20 therein, and has a lower refractive index than the core region 10.
  • the core region 10 and the above-mentioned excitation light guide region RA are arranged near the center of the cladding region 30.
  • Fig. 3 is a schematic diagram showing the intensity distribution of pump light in an optical fiber without holes.
  • Fig. 4 is a schematic diagram showing the intensity distribution of pump light in an optical fiber according to an embodiment of the present disclosure.
  • the intensity distribution of the excitation light EL is shown on a straight line along the radial direction of the optical fiber FB.
  • the intensity distribution of the signal light SL is also shown.
  • the pumping light EL spreads throughout the cladding region 30, resulting in pumping light EL that does not overlap with the core region.
  • the pumping light EL that does not overlap with the core region does not contribute to the amplification of the signal light SL propagating through the core region, resulting in reduced pumping efficiency.
  • the pumping light EL is concentrated in the pumping light guide region RA. Therefore, the pumping light EL that does not overlap with the core region 10 is reduced. As a result, the pumping light EL contributes to the amplification of the signal light SL propagating through the core region 10, and the pumping efficiency by the optical fiber FB is improved.
  • FIG. 5 is a schematic diagram showing the intensity distribution of the excitation light EL when the contribution of the photonic crystal structure is taken into account in an optical fiber according to an embodiment of the present disclosure.
  • the photonic crystal structure limits the number of modes of the excitation light EL, making it possible to increase the intensity of the excitation light EL in the core region.
  • the pump light EL propagates in the fundamental mode, but the number of modes of the pump light EL may be two or more, i.e., a multimode state.
  • the signal light SL is coupled between the cores.
  • the gain deviation between the cores caused by the non-uniform intensity distribution of the pump light EL can be averaged.
  • FIG. 6 is a schematic diagram showing the configuration of an optical amplifier according to an embodiment of the present disclosure.
  • the optical amplifier AP includes a pumping light source LD, an isolator TS1, an optical coupler PC, the optical fiber FB described in the above embodiment, and an isolator TS2.
  • the excitation light source LD emits excitation light.
  • the excitation light is light that excites the rare earth ions added to the optical fiber FB.
  • the isolator TS1 introduces the excitation light from the excitation light source LD to the optical coupler PC.
  • the isolator TS1 blocks the light traveling from the optical coupler PC to the excitation light source LD.
  • the optical coupler PC introduces the signal light and the pumping light into one end of the optical fiber FB.
  • the optical coupler PC introduces the signal light into the core region 10 of the optical fiber FB, and introduces the pumping light into the pumping light guide region RA of the cladding region 30, which is surrounded by holes 20.
  • the optical coupler PC may be provided with a position adjustment mechanism (not shown) that adjusts the position at which the excitation light is introduced into the excitation light guide region RA.
  • the position adjustment mechanism may control the position in the cross section of the excitation light guide region RA where the excitation light is coupled, and excite a predetermined number of modes of the excitation light.
  • the signal light input to one end of the optical fiber FB together with the pump light is amplified while traveling through the optical fiber FB and is output from the other end of the optical fiber FB.
  • the isolator TS2 (optical splitter) splits the signal light from the light output from the other end of the optical fiber FB.
  • the split signal light is introduced into the output optical fiber B2.
  • the isolator TS2 blocks the pump light traveling from the optical fiber FB to the output optical fiber B2.
  • the optical fiber according to this embodiment comprises a core region doped with rare earth ions, a plurality of holes having a central axis parallel to the central axis of the core region and arranged so as to surround the core region, and a cladding region arranged so as to contain the core region and the plurality of holes therein, and having a refractive index lower than that of the core region.
  • the optical fiber according to this embodiment may have a photonic crystal structure in which a plurality of holes are regularly arranged in a cross section perpendicular to the central axis of the core region.
  • the photonic crystal structure limits the mode of the excitation light propagating in the excitation light waveguide region. In particular, since the excitation light propagates in a limited mode in the excitation light waveguide region, rare earth ions can be excited in all of the core regions arranged in the excitation light waveguide region.
  • the pump light can be concentrated in the pump light guide region so that the pump light contributes to the amplification of the signal light propagating through the core region. As a result, the amount of pump light that does not overlap the core region can be reduced, improving the pumping efficiency of the optical fiber.
  • the optical fiber according to this embodiment may have a plurality of holes arranged in a square or hexagonal close-packed arrangement in a cross section perpendicular to the central axis of the core region. This makes it possible to effectively concentrate the excitation light in the excitation light guide region. As a result, the excitation light that does not overlap the core region can be reduced, and the excitation efficiency of the optical fiber can be improved.
  • the diameter of each air hole may be 2 ⁇ m or more. This suppresses the air holes themselves from scattering the light passing through the optical fiber, and prevents the installation of air holes from increasing scattering loss. Furthermore, the controllability of the air holes can be maintained during the elongation process in which the base material is heated and elongated.
  • the refractive index of the air holes may be lower than the refractive index of the cladding region. This prevents a decrease in the coupling efficiency (optical amplification efficiency) with the signal light in the optical fiber having air holes.
  • the optical amplifier according to this embodiment includes the optical fiber described above, an excitation light source that emits excitation light that excites rare earth ions, an optical coupler that introduces signal light and excitation light into one end of the optical fiber, and an optical splitter that splits the signal light from the light output from the other end of the optical fiber. This makes it possible to amplify with high efficiency the signal light input to one end of the optical fiber together with the excitation light.
  • the optical coupler may introduce the signal light into the core region and introduce the pump light into a pump light guide region in the cladding region that is surrounded by holes. This makes it possible to increase the intensity of the pump light in the core region. Furthermore, the position in the cross section of the pump light guide region where the pump light is coupled can be controlled, making it possible to excite a predetermined number of modes of the pump light. Furthermore, it is possible to average out the gain deviation between cores caused by the non-uniform intensity distribution of the pump light.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

This optical fiber is provided with: a core region to which rare earth ions are added; a plurality of holes that each have a center axis parallel to the center axis of the core region, the plurality of holes being disposed so as to surround the core region; and a clad region that is disposed so as to include the core region and the plurality of holes in the interior thereof, the clad region having a refractive index lower than that of the core region.

Description

光ファイバ及び光増幅器Optical Fibers and Optical Amplifiers

 本開示は、光ファイバ及び光増幅器に関する。 This disclosure relates to optical fibers and optical amplifiers.

 非特許文献1には、コア領域を伝搬する信号光を増幅させるために、コア領域に希土類元素を添加した希土類添加ファイバが開示されている。クラッド励起型の希土類添加ファイバにおいて、励起光はクラッド領域に導入され、希土類添加ファイバに内包されるすべてのコア領域にて希土類イオンを励起する。そのため、1台の励起光の光源で複数の信号光を一括で増幅することができる。 Non-Patent Document 1 discloses a rare-earth doped fiber in which a rare-earth element is added to the core region in order to amplify the signal light propagating through the core region. In a cladding-pumped rare-earth doped fiber, pumping light is introduced into the cladding region and excites rare-earth ions in all core regions contained in the rare-earth doped fiber. Therefore, multiple signal lights can be amplified simultaneously with a single pumping light source.

M. Wada et al., “High Density Few-mode Multicore Fibre Amplifier for Energy Efficient SDM Transmission,” ECOC2019 W.2.C.5 (2019)M. Wada et al., “High Density Few-mode Multicore Fiber Amplifier for Energy Efficient SDM Transmission,” ECOC2019 W.2.C.5 (2019)

 非特許文献1に開示される光ファイバによれば、励起光はクラッド領域内で均一な光強度分布となってしまい、コア領域にオーバーラップしない励起光が存在する。コア領域にオーバーラップしない励起光はコア領域を伝搬する信号光の増幅に寄与しないため、励起効率が低下してしまうという問題がある。 In the optical fiber disclosed in Non-Patent Document 1, the pumping light has a uniform light intensity distribution in the cladding region, and there is pumping light that does not overlap with the core region. Since the pumping light that does not overlap with the core region does not contribute to the amplification of the signal light propagating through the core region, there is a problem in that the pumping efficiency decreases.

 本開示は、上記問題に鑑みてなされたものである。その目的とするところは、コア領域を伝搬する信号光の増幅に励起光が寄与するよう、コア領域にオーバーラップしない励起光を減少させ、励起効率を向上させることが可能な、光ファイバ及び光増幅器を提供することにある。 The present disclosure has been made in consideration of the above problems. Its purpose is to provide an optical fiber and an optical amplifier that can reduce the pumping light that does not overlap the core region and improve the pumping efficiency so that the pumping light contributes to the amplification of the signal light propagating through the core region.

 上述した課題を解決するために、本開示の一態様に係る光ファイバは、希土類イオンを添加したコア領域と、コア領域の中心軸に対して平行な中心軸を有し、コア領域を囲むように配置された複数の空孔と、コア領域及び複数の空孔を内部に含むように配置され、コア領域よりも低い屈折率を有するクラッド領域と、を備える。 In order to solve the above-mentioned problems, an optical fiber according to one embodiment of the present disclosure comprises a core region doped with rare earth ions, a plurality of holes having a central axis parallel to the central axis of the core region and arranged to surround the core region, and a cladding region arranged to contain the core region and the plurality of holes therein and having a refractive index lower than that of the core region.

 本開示の一態様に係る光増幅器は、上述の光ファイバと、希土類イオンを励起させる励起光を出射する励起光源と、信号光及び励起光を光ファイバの一端に導入する光結合器と、光ファイバの他端から出力される光から信号光を分波する光分波器と、を備える。 An optical amplifier according to one aspect of the present disclosure includes the optical fiber described above, an excitation light source that emits excitation light that excites rare earth ions, an optical coupler that introduces the signal light and excitation light into one end of the optical fiber, and an optical splitter that splits the signal light from the light output from the other end of the optical fiber.

 本開示によれば、コア領域を伝搬する信号光の増幅に励起光が寄与するよう、コア領域にオーバーラップしない励起光を減少させ、励起効率を向上させることができる。 According to the present disclosure, it is possible to reduce the amount of pump light that does not overlap the core region, thereby improving pump efficiency, so that the pump light contributes to the amplification of the signal light propagating through the core region.

図1は、本開示の実施形態に係る光ファイバの構造を示す断面図である。FIG. 1 is a cross-sectional view illustrating the structure of an optical fiber according to an embodiment of the present disclosure. 図2は、本開示の変形例に係る光ファイバの構造を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of an optical fiber according to a modified example of the present disclosure. 図3は、空孔を含まない場合における、光ファイバ内の励起光の強度分布を示す模式図である。FIG. 3 is a schematic diagram showing the intensity distribution of pump light in an optical fiber that does not include holes. 図4は、本開示の実施形態に係る光ファイバ内の励起光の強度分布を示す模式図である。FIG. 4 is a schematic diagram illustrating the intensity distribution of excitation light in an optical fiber according to an embodiment of the present disclosure. 図5は、本開示の実施形態に係る光ファイバ内において、フォトニッククリスタル構造の寄与を考慮した場合の励起光の強度分布を示す模式図である。FIG. 5 is a schematic diagram showing the intensity distribution of excitation light when the contribution of the photonic crystal structure is taken into account in an optical fiber according to an embodiment of the present disclosure. 図6は、本開示の実施形態に係る光増幅器の構成を示す模式図である。FIG. 6 is a schematic diagram illustrating a configuration of an optical amplifier according to an embodiment of the present disclosure.

 次に、図面を参照して、本開示の実施の形態を詳細に説明する。説明において、同一のものには同一符号を付して重複説明を省略する。 Next, an embodiment of the present disclosure will be described in detail with reference to the drawings. In the description, the same parts will be given the same reference numerals and duplicate explanations will be omitted.

 [光ファイバの構成]
 図1は、本開示の実施形態に係る光ファイバの構造を示す断面図である。図2は、本開示の変形例に係る光ファイバの構造を示す断面図である。図1,2では、光ファイバFBの延在する方向(中心軸の方向)に直交する断面での断面図が示されている。光ファイバFBは、コア領域10と、空孔20と、クラッド領域30と、を備える。
[Optical fiber configuration]
Fig. 1 is a cross-sectional view showing the structure of an optical fiber according to an embodiment of the present disclosure. Fig. 2 is a cross-sectional view showing the structure of an optical fiber according to a modified example of the present disclosure. Figs. 1 and 2 show cross-sectional views of a cross section perpendicular to the extending direction (direction of the central axis) of the optical fiber FB. The optical fiber FB includes a core region 10, holes 20, and a cladding region 30.

 コア領域10は、希土類イオンが添加されている。光ファイバFBのコア領域10に添加される希土類イオンとしては、Er3+,Pr3+,Tm3+,Yb3+,Nd3+,Dy3+などがあるがこれらに限らない。増幅したい信号光の帯域に応じて希土類イオンを選択する。複数種類の希土類イオンを添加してもよい。 The core region 10 is doped with rare earth ions. Examples of rare earth ions that may be doped into the core region 10 of the optical fiber FB include, but are not limited to, Er 3+ , Pr 3+ , Tm 3+ , Yb 3+ , Nd 3+ , and Dy 3+ . The rare earth ions are selected according to the band of the signal light to be amplified. Multiple types of rare earth ions may be doped.

 なお、光ファイバFBが有するコア領域10の数、及び、配置は、図1,2に示す例に限定されない。例えば、光ファイバFBは、任意の個数のコア領域10を有するものであってもよい。また、光ファイバFBにおいて、複数のコア領域10は、円環状に配置されていてもよいし、正方配置あるいは六方最密配置で配置されていてもよい。 The number and arrangement of the core regions 10 in the optical fiber FB are not limited to the examples shown in Figs. 1 and 2. For example, the optical fiber FB may have any number of core regions 10. In addition, in the optical fiber FB, the multiple core regions 10 may be arranged in a circular ring shape, or in a square or hexagonal close-packed arrangement.

 空孔20は、コア領域10の中心軸に対して平行な中心軸を有し、コア領域10を囲むように配置される。空孔20は、光ファイバFBに複数配置される。クラッド領域30に空孔20を規則的に配置することでフォトニッククリスタル構造を得ることができる。 The air holes 20 have a central axis parallel to the central axis of the core region 10 and are arranged to surround the core region 10. A plurality of air holes 20 are arranged in the optical fiber FB. A photonic crystal structure can be obtained by regularly arranging the air holes 20 in the cladding region 30.

 なお、図1では、フォトニッククリスタル構造として、六方最密配置の空孔20の列から中心付近の7孔分を欠乏させた54孔構造が示されている。また、図2では、フォトニッククリスタル構造として、六方最密配置の空孔20の列から中心付近の1孔分を欠乏させた54孔構造が示されている。フォトニッククリスタル構造は、ここに挙げた例に限定されず、六方最密配置であってもよいし、正方配置であってもよい。 In addition, FIG. 1 shows a 54-hole structure as the photonic crystal structure, in which seven holes near the center of a row of hexagonally close-packed holes 20 are missing. Also, FIG. 2 shows a 54-hole structure as the photonic crystal structure, in which one hole near the center of a row of hexagonally close-packed holes 20 is missing. The photonic crystal structure is not limited to the examples given here, and may be a hexagonally close-packed or square arrangement.

 コア領域10を囲むようにコア領域10が配置されることで、コア領域10の付近に励起光導波領域RAが形成される。励起光導波領域RAは、クラッド領域30の一部であって、空孔20によって囲まれた領域である。 By arranging the core region 10 so as to surround the core region 10, an excitation light guide region RA is formed near the core region 10. The excitation light guide region RA is a part of the cladding region 30, and is a region surrounded by the air holes 20.

 フォトニッククリスタル構造により、励起光導波領域RAを伝搬する励起光のモードが限定される。特に、励起光導波領域RAにおいて限定されたモードで励起光が伝搬するため、励起光導波領域RAに配置されている全てのコア領域10において、希土類イオンを励起することができる。 The photonic crystal structure limits the mode of the excitation light propagating in the excitation light guide region RA. In particular, since the excitation light propagates in a limited mode in the excitation light guide region RA, rare earth ions can be excited in all of the core regions 10 arranged in the excitation light guide region RA.

 さらに、光ファイバFBの設計段階でフォトニッククリスタル構造を適宜変更することで、光ファイバFB内での電界強度分布を選択することができる。つまり、コア領域10を伝搬する信号光の増幅に励起光が寄与するよう、励起光導波領域RAに励起光を集中させることができる。その結果、コア領域10にオーバーラップしない励起光を減少させ、光ファイバFBによる励起効率を向上させることができる。 Furthermore, by appropriately modifying the photonic crystal structure during the design stage of the optical fiber FB, it is possible to select the electric field intensity distribution within the optical fiber FB. In other words, the pumping light can be concentrated in the pumping light guide region RA so that the pumping light contributes to the amplification of the signal light propagating through the core region 10. As a result, the pumping light that does not overlap the core region 10 can be reduced, and the pumping efficiency by the optical fiber FB can be improved.

 なお、1つの空孔20の直径は2μm以上であってもよい。これは、空孔20の直径が光ファイバFBを通過する光の波長よりも短くなってしまうと、空孔20自体が光ファイバFBを通過する光を散乱してしまい、散乱損失が増大してしまうためである。さらに、母材を加熱して引き延ばす延伸工程(線引き)を行って光ファイバFBを形成する際の、空孔20の制御性を考慮して、空孔20の直径を2μm以上としている。 The diameter of each air hole 20 may be 2 μm or more. This is because if the diameter of the air hole 20 were shorter than the wavelength of the light passing through the optical fiber FB, the air hole 20 itself would scatter the light passing through the optical fiber FB, increasing the scattering loss. Furthermore, the diameter of the air hole 20 is set to 2 μm or more in consideration of the controllability of the air hole 20 when forming the optical fiber FB by performing the drawing process (drawing) in which the base material is heated and stretched.

 また、空孔20の屈折率は、クラッド領域30の屈折率よりも低いものであってもよい。これにより、励起光の信号光との結合効率(光増幅効率)が低下することが抑制される。 The refractive index of the holes 20 may be lower than the refractive index of the cladding region 30. This prevents a decrease in the coupling efficiency (optical amplification efficiency) between the excitation light and the signal light.

 クラッド領域30は、コア領域10及び複数の空孔20を内部に含むように配置され、コア領域10よりも低い屈折率を有する。なお、コア領域10及び上述の励起光導波領域RAは、クラッド領域30の中心付近に配置される。 The cladding region 30 is arranged so as to include the core region 10 and the multiple holes 20 therein, and has a lower refractive index than the core region 10. The core region 10 and the above-mentioned excitation light guide region RA are arranged near the center of the cladding region 30.

 [励起光の分布]
 次に、クラッド領域30における空孔20の配置の有無に起因する励起光の分布の変化を説明する。図3は、空孔を含まない場合における、光ファイバ内の励起光の強度分布を示す模式図である。図4は、本開示の実施形態に係る光ファイバ内の励起光の強度分布を示す模式図である。
[Excitation light distribution]
Next, a description will be given of changes in the distribution of pump light caused by the presence or absence of holes 20 in the cladding region 30. Fig. 3 is a schematic diagram showing the intensity distribution of pump light in an optical fiber without holes. Fig. 4 is a schematic diagram showing the intensity distribution of pump light in an optical fiber according to an embodiment of the present disclosure.

 図3,4は、いずれも、光ファイバFBの径方向に沿った直線上での励起光ELの強度分布が示されている。参考のため、信号光SLの強度分布も合わせて示されている。 In both Figures 3 and 4, the intensity distribution of the excitation light EL is shown on a straight line along the radial direction of the optical fiber FB. For reference, the intensity distribution of the signal light SL is also shown.

 図3に示されるように、空孔20が配置されていないクラッド領域30では、励起光ELがクラッド領域30の全体に広がってしまい、コア領域にオーバーラップしない励起光ELが生じる。コア領域にオーバーラップしない励起光ELはコア領域を伝搬する信号光SLの増幅に寄与しないため、励起効率が低下してしまう。 As shown in FIG. 3, in the cladding region 30 where no air holes 20 are arranged, the pumping light EL spreads throughout the cladding region 30, resulting in pumping light EL that does not overlap with the core region. The pumping light EL that does not overlap with the core region does not contribute to the amplification of the signal light SL propagating through the core region, resulting in reduced pumping efficiency.

 一方、図4に示されるように、空孔20が配置されているクラッド領域30では、励起光ELが励起光導波領域RAに集中する。そのため、コア領域10にオーバーラップしない励起光ELは減少する。その結果、コア領域10を伝搬する信号光SLの増幅に励起光ELが寄与するようになり、光ファイバFBによる励起効率が向上する。 On the other hand, as shown in FIG. 4, in the cladding region 30 where the air holes 20 are arranged, the pumping light EL is concentrated in the pumping light guide region RA. Therefore, the pumping light EL that does not overlap with the core region 10 is reduced. As a result, the pumping light EL contributes to the amplification of the signal light SL propagating through the core region 10, and the pumping efficiency by the optical fiber FB is improved.

 図5は、本開示の実施形態に係る光ファイバ内において、フォトニッククリスタル構造の寄与を考慮した場合の励起光ELの強度分布を示す模式図である。フォトニッククリスタル構造により励起光ELのモード数が限定され、コア領域における励起光ELの強度を増加させることができる。 FIG. 5 is a schematic diagram showing the intensity distribution of the excitation light EL when the contribution of the photonic crystal structure is taken into account in an optical fiber according to an embodiment of the present disclosure. The photonic crystal structure limits the number of modes of the excitation light EL, making it possible to increase the intensity of the excitation light EL in the core region.

 なお、図5では、一例として励起光ELが基本モードで伝搬する例を示したが、励起光ELのモード数は2以上のマルチモード状態でも構わない。なお、コア領域10の間の距離を25μm以下にすることで、信号光SLはコア間で結合する。その結果、励起光ELの不均一な強度分布に起因するコア間の利得偏差を平均化することができる。 In FIG. 5, an example is shown in which the pump light EL propagates in the fundamental mode, but the number of modes of the pump light EL may be two or more, i.e., a multimode state. By setting the distance between the core regions 10 to 25 μm or less, the signal light SL is coupled between the cores. As a result, the gain deviation between the cores caused by the non-uniform intensity distribution of the pump light EL can be averaged.

 [光増幅器の構成]
 次に、上述した実施形態で説明した光ファイバFBを用いた光増幅器APを説明する。図6は、本開示の実施形態に係る光増幅器の構成を示す模式図である。光増幅器APは、励起光源LDと、アイソレータTS1と、光結合器PCと、上述した実施形態で説明した光ファイバFBと、アイソレータTS2と、を備える。
[Configuration of optical amplifier]
Next, an optical amplifier AP using the optical fiber FB described in the above embodiment will be described. Fig. 6 is a schematic diagram showing the configuration of an optical amplifier according to an embodiment of the present disclosure. The optical amplifier AP includes a pumping light source LD, an isolator TS1, an optical coupler PC, the optical fiber FB described in the above embodiment, and an isolator TS2.

 励起光源LDは、励起光を出射する。励起光は光ファイバFBに添加された希土類イオンを励起する光である。 The excitation light source LD emits excitation light. The excitation light is light that excites the rare earth ions added to the optical fiber FB.

 アイソレータTS1は、励起光源LDからの励起光を光結合器PCに導入する。なお、アイソレータTS1は、光結合器PCから励起光源LDに向かう光を遮断する。 The isolator TS1 introduces the excitation light from the excitation light source LD to the optical coupler PC. The isolator TS1 blocks the light traveling from the optical coupler PC to the excitation light source LD.

 光結合器PCは、信号光及び励起光を光ファイバFBの一端に導入する。なお、光結合器PCは、信号光を光ファイバFBのコア領域10に導入し、励起光を、クラッド領域30のうち、空孔20によって囲まれた励起光導波領域RAに導入する。 The optical coupler PC introduces the signal light and the pumping light into one end of the optical fiber FB. The optical coupler PC introduces the signal light into the core region 10 of the optical fiber FB, and introduces the pumping light into the pumping light guide region RA of the cladding region 30, which is surrounded by holes 20.

 光結合器PCは、励起光が励起光導波領域RAに導入される位置を調整する位置調整機構(不図示)を備えるものであってもよい。位置調整機構は、励起光が結合する励起光導波領域RAの断面内の位置を制御し、所定の励起光のモード数を励振するものであってもよい。 The optical coupler PC may be provided with a position adjustment mechanism (not shown) that adjusts the position at which the excitation light is introduced into the excitation light guide region RA. The position adjustment mechanism may control the position in the cross section of the excitation light guide region RA where the excitation light is coupled, and excite a predetermined number of modes of the excitation light.

 励起光と共に光ファイバFBの一端に入力された信号光は、光ファイバFBを伝達する間に増幅され、光ファイバFBの他端から出射される。 The signal light input to one end of the optical fiber FB together with the pump light is amplified while traveling through the optical fiber FB and is output from the other end of the optical fiber FB.

 アイソレータTS2(光分波器)は、光ファイバFBの他端から出力される光から信号光を分波する。分波された信号光は、出力側光ファイバB2に導入される。なお、アイソレータTS2は、光ファイバFBから出力側光ファイバB2に向かう励起光を遮断する。 The isolator TS2 (optical splitter) splits the signal light from the light output from the other end of the optical fiber FB. The split signal light is introduced into the output optical fiber B2. The isolator TS2 blocks the pump light traveling from the optical fiber FB to the output optical fiber B2.

 [実施形態の効果]
 以上詳細に説明したように、本実施形態に係る光ファイバは、希土類イオンを添加したコア領域と、コア領域の中心軸に対して平行な中心軸を有し、コア領域を囲むように配置された複数の空孔と、コア領域及び複数の空孔を内部に含むように配置され、コア領域よりも低い屈折率を有するクラッド領域と、を備える。
[Effects of the embodiment]
As described above in detail, the optical fiber according to this embodiment comprises a core region doped with rare earth ions, a plurality of holes having a central axis parallel to the central axis of the core region and arranged so as to surround the core region, and a cladding region arranged so as to contain the core region and the plurality of holes therein, and having a refractive index lower than that of the core region.

 これにより、コア領域を伝搬する信号光の増幅に励起光が寄与するよう、コア領域にオーバーラップしない励起光を減少させ、励起効率を向上させることができる。 This reduces the amount of pump light that does not overlap the core region, improving pump efficiency so that the pump light contributes to the amplification of the signal light propagating through the core region.

 また、本実施形態に係る光ファイバは、コア領域の中心軸に垂直な断面において、複数の空孔が規則的に配置されてフォトニッククリスタル構造を形成しているものであってもよい。フォトニッククリスタル構造により、励起光導波領域を伝搬する励起光のモードが限定される。特に、励起光導波領域において限定されたモードで励起光が伝搬するため、励起光導波領域に配置されている全てのコア領域において、希土類イオンを励起することができる。 The optical fiber according to this embodiment may have a photonic crystal structure in which a plurality of holes are regularly arranged in a cross section perpendicular to the central axis of the core region. The photonic crystal structure limits the mode of the excitation light propagating in the excitation light waveguide region. In particular, since the excitation light propagates in a limited mode in the excitation light waveguide region, rare earth ions can be excited in all of the core regions arranged in the excitation light waveguide region.

 さらに、光ファイバの設計段階でフォトニッククリスタル構造を適宜変更することで、光ファイバ内での電界強度分布を選択することができる。つまり、コア領域を伝搬する信号光の増幅に励起光が寄与するよう、励起光導波領域に励起光を集中させることができる。その結果、コア領域にオーバーラップしない励起光を減少させ、光ファイバによる励起効率を向上させることができる。 Furthermore, by appropriately modifying the photonic crystal structure during the optical fiber design stage, it is possible to select the electric field intensity distribution within the optical fiber. In other words, the pump light can be concentrated in the pump light guide region so that the pump light contributes to the amplification of the signal light propagating through the core region. As a result, the amount of pump light that does not overlap the core region can be reduced, improving the pumping efficiency of the optical fiber.

 さらに、本実施形態に係る光ファイバは、コア領域の中心軸に垂直な断面において、複数の空孔が正方配置又は六方最密配置されているものであってもよい。これにより、効果的に、励起光導波領域に励起光を集中させることができる。その結果、コア領域にオーバーラップしない励起光を減少させ、光ファイバによる励起効率を向上させることができる。 Furthermore, the optical fiber according to this embodiment may have a plurality of holes arranged in a square or hexagonal close-packed arrangement in a cross section perpendicular to the central axis of the core region. This makes it possible to effectively concentrate the excitation light in the excitation light guide region. As a result, the excitation light that does not overlap the core region can be reduced, and the excitation efficiency of the optical fiber can be improved.

 また、本実施形態に係る光ファイバにおいて、1つの空孔の直径は2μm以上であってもよい。これにより、空孔自体が光ファイバを通過する光を散乱することが抑制され、空孔の設置によって散乱損失が増加することを防ぐことができる。さらに、母材を加熱して引き延ばす延伸工程における、空孔の制御性を維持できる。 Furthermore, in the optical fiber according to this embodiment, the diameter of each air hole may be 2 μm or more. This suppresses the air holes themselves from scattering the light passing through the optical fiber, and prevents the installation of air holes from increasing scattering loss. Furthermore, the controllability of the air holes can be maintained during the elongation process in which the base material is heated and elongated.

 さらに、本実施形態に係る光ファイバにおいて、空孔の屈折率はクラッド領域の屈折率よりも低いものであってもよい。これにより、空孔を有する光ファイバにおける、信号光との結合効率(光増幅効率)が低下することが抑制される。 Furthermore, in the optical fiber according to this embodiment, the refractive index of the air holes may be lower than the refractive index of the cladding region. This prevents a decrease in the coupling efficiency (optical amplification efficiency) with the signal light in the optical fiber having air holes.

 また、本実施形態に係る光増幅器は、上述の光ファイバと、希土類イオンを励起させる励起光を出射する励起光源と、信号光及び励起光を光ファイバの一端に導入する光結合器と、光ファイバの他端から出力される光から信号光を分波する光分波器と、を備える。これにより、励起光と共に光ファイバの一端に入力された信号光を高効率で増幅することができる。 The optical amplifier according to this embodiment includes the optical fiber described above, an excitation light source that emits excitation light that excites rare earth ions, an optical coupler that introduces signal light and excitation light into one end of the optical fiber, and an optical splitter that splits the signal light from the light output from the other end of the optical fiber. This makes it possible to amplify with high efficiency the signal light input to one end of the optical fiber together with the excitation light.

 さらに、本実施形態に係る光増幅器において、光結合器は、信号光をコア領域に導入し、励起光を、クラッド領域のうち、空孔によって囲まれた励起光導波領域に導入するものであってもよい。これにより、コア領域における励起光の強度を増加させることができる。さらには、励起光が結合する励起光導波領域の断面内の位置が制御され、所定の励起光のモード数を励振することができる。そして、励起光の不均一な強度分布に起因するコア間の利得偏差を平均化することができる。 Furthermore, in the optical amplifier according to this embodiment, the optical coupler may introduce the signal light into the core region and introduce the pump light into a pump light guide region in the cladding region that is surrounded by holes. This makes it possible to increase the intensity of the pump light in the core region. Furthermore, the position in the cross section of the pump light guide region where the pump light is coupled can be controlled, making it possible to excite a predetermined number of modes of the pump light. Furthermore, it is possible to average out the gain deviation between cores caused by the non-uniform intensity distribution of the pump light.

 以上、実施形態に沿って本開示の内容を説明したが、本開示はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。この開示の一部をなす論述および図面は本開示を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例および運用技術が明らかとなろう。 The contents of the present disclosure have been described above in accordance with the embodiments, but it will be apparent to those skilled in the art that the present disclosure is not limited to these descriptions, and that various modifications and improvements are possible. The descriptions and drawings that form part of this disclosure should not be understood as limiting the present disclosure. Various alternative embodiments, examples, and operational techniques will be apparent to those skilled in the art from this disclosure.

 本開示はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本開示の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 This disclosure naturally includes various embodiments not described here. Therefore, the technical scope of this disclosure is determined only by the invention-specific matters related to the scope of the claims that are appropriate from the above explanation.

 10  コア領域
 20  空孔
 30  クラッド領域
 RA  励起光導波領域
 AP  光増幅器
 B1  入力側光ファイバ
 B2  出力側光ファイバ
 FB  光ファイバ
 LD  励起光源
 PC  光結合器
 TS1,TS2 アイソレータ(光分波器)
REFERENCE SIGNS LIST 10 core region 20 air hole 30 cladding region RA pumping light guide region AP optical amplifier B1 input optical fiber B2 output optical fiber FB optical fiber LD pumping light source PC optical coupler TS1, TS2 isolator (optical splitter)

Claims (7)

 希土類イオンを添加したコア領域と、
 前記コア領域の中心軸に対して平行な中心軸を有し、前記コア領域を囲むように配置された複数の空孔と、
 前記コア領域及び複数の前記空孔を内部に含むように配置され、前記コア領域よりも低い屈折率を有するクラッド領域と、
を備える光ファイバ。
a core region doped with rare earth ions;
a plurality of holes having central axes parallel to a central axis of the core region and arranged to surround the core region;
a cladding region arranged to contain the core region and the plurality of holes therein, the cladding region having a refractive index lower than that of the core region;
An optical fiber comprising:
 前記コア領域の中心軸に垂直な断面において、複数の前記空孔は、規則的に配置されてフォトニッククリスタル構造を形成している、請求項1に記載の光ファイバ。 The optical fiber according to claim 1, wherein the plurality of holes are regularly arranged in a cross section perpendicular to the central axis of the core region to form a photonic crystal structure.  前記断面において、複数の前記空孔は、正方配置又は六方最密配置されている、請求項2に記載の光ファイバ。 The optical fiber according to claim 2, wherein the plurality of holes are arranged in a square or hexagonal close-packed manner in the cross section.  1つの前記空孔の直径は2μm以上である、請求項1に記載の光ファイバ。 The optical fiber according to claim 1, wherein the diameter of each of the holes is 2 μm or more.  前記空孔の屈折率は前記クラッド領域の屈折率よりも低い、請求項1に記載の光ファイバ。 The optical fiber of claim 1, wherein the refractive index of the holes is lower than the refractive index of the cladding region.  請求項1~5のいずれか一項に記載の光ファイバと、
 前記希土類イオンを励起させる励起光を出射する励起光源と、
 信号光及び前記励起光を前記光ファイバの一端に導入する光結合器と、
 前記光ファイバの他端から出力される光から前記信号光を分波する光分波器と、
を備える光増幅器。
An optical fiber according to any one of claims 1 to 5;
an excitation light source that emits excitation light for exciting the rare earth ions;
an optical coupler that introduces the signal light and the pumping light into one end of the optical fiber;
an optical demultiplexer that demultiplexes the signal light from the light output from the other end of the optical fiber;
An optical amplifier comprising:
 前記光結合器は、
  前記信号光を前記コア領域に導入し、
  前記励起光を、前記クラッド領域のうち、前記空孔によって囲まれた励起光導波領域に導入する、請求項6に記載の光増幅器。
The optical coupler includes:
Introducing the signal light into the core region;
7. The optical amplifier according to claim 6, wherein the pumping light is introduced into a pumping light guide region of the cladding region surrounded by the holes.
PCT/JP2023/012185 2023-03-27 2023-03-27 Optical fiber and optical amplifier WO2024201650A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/012185 WO2024201650A1 (en) 2023-03-27 2023-03-27 Optical fiber and optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/012185 WO2024201650A1 (en) 2023-03-27 2023-03-27 Optical fiber and optical amplifier

Publications (1)

Publication Number Publication Date
WO2024201650A1 true WO2024201650A1 (en) 2024-10-03

Family

ID=92904038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012185 WO2024201650A1 (en) 2023-03-27 2023-03-27 Optical fiber and optical amplifier

Country Status (1)

Country Link
WO (1) WO2024201650A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004077891A (en) * 2002-08-20 2004-03-11 Mitsubishi Cable Ind Ltd Photonic crystal fiber and design method thereof
JP2005500583A (en) * 2001-08-30 2005-01-06 クリスタル ファイバー アクティーゼルスカブ High numerical aperture optical fiber, its manufacturing method and its use
WO2005017582A1 (en) * 2003-08-13 2005-02-24 Nippon Telegraph And Telephone Corporation Optical fiber and production method thereof
US7340140B1 (en) * 2005-06-07 2008-03-04 The Boeing Company Er/Yb double clad photonic crystal fiber
JP2008130686A (en) * 2006-11-17 2008-06-05 Rohm Co Ltd Fiber laser
JP2008141066A (en) * 2006-12-04 2008-06-19 Hitachi Cable Ltd Optical fiber for fiber laser device and fiber laser device
JP2009060097A (en) * 2007-08-07 2009-03-19 Hitachi Cable Ltd OPTICAL FIBER FOR FIBER LASER, MANUFACTURING METHOD THEREOF, AND FIBER LASER
WO2009107414A1 (en) * 2008-02-27 2009-09-03 古河電気工業株式会社 Optical transmission system and multi-core optical fiber
JP2010517112A (en) * 2007-01-31 2010-05-20 コーニング インコーポレイテッド Large numerical aperture fiber
WO2012172997A1 (en) * 2011-06-16 2012-12-20 古河電気工業株式会社 Multicore amplifying optical fiber
WO2013145142A1 (en) * 2012-03-27 2013-10-03 富士通株式会社 Dispersion compensator
WO2014141766A1 (en) * 2013-03-14 2014-09-18 株式会社フジクラ Photonic bandgap fiber and fiber laser device using same
CN104215367A (en) * 2014-08-28 2014-12-17 天津大学 Multi-dimensional stress photonic crystal fiber testing device and method
KR20160130021A (en) * 2015-04-30 2016-11-10 한국광기술원 double-clad fiber and fiber laser using the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005500583A (en) * 2001-08-30 2005-01-06 クリスタル ファイバー アクティーゼルスカブ High numerical aperture optical fiber, its manufacturing method and its use
JP2004077891A (en) * 2002-08-20 2004-03-11 Mitsubishi Cable Ind Ltd Photonic crystal fiber and design method thereof
WO2005017582A1 (en) * 2003-08-13 2005-02-24 Nippon Telegraph And Telephone Corporation Optical fiber and production method thereof
US7340140B1 (en) * 2005-06-07 2008-03-04 The Boeing Company Er/Yb double clad photonic crystal fiber
JP2008130686A (en) * 2006-11-17 2008-06-05 Rohm Co Ltd Fiber laser
JP2008141066A (en) * 2006-12-04 2008-06-19 Hitachi Cable Ltd Optical fiber for fiber laser device and fiber laser device
JP2010517112A (en) * 2007-01-31 2010-05-20 コーニング インコーポレイテッド Large numerical aperture fiber
JP2009060097A (en) * 2007-08-07 2009-03-19 Hitachi Cable Ltd OPTICAL FIBER FOR FIBER LASER, MANUFACTURING METHOD THEREOF, AND FIBER LASER
WO2009107414A1 (en) * 2008-02-27 2009-09-03 古河電気工業株式会社 Optical transmission system and multi-core optical fiber
WO2012172997A1 (en) * 2011-06-16 2012-12-20 古河電気工業株式会社 Multicore amplifying optical fiber
WO2013145142A1 (en) * 2012-03-27 2013-10-03 富士通株式会社 Dispersion compensator
WO2014141766A1 (en) * 2013-03-14 2014-09-18 株式会社フジクラ Photonic bandgap fiber and fiber laser device using same
CN104215367A (en) * 2014-08-28 2014-12-17 天津大学 Multi-dimensional stress photonic crystal fiber testing device and method
KR20160130021A (en) * 2015-04-30 2016-11-10 한국광기술원 double-clad fiber and fiber laser using the same

Similar Documents

Publication Publication Date Title
US6990282B2 (en) Photonic crystal fibers
JP5827949B2 (en) Multimode fiber
CN101288211B (en) Optical fibre laser
US6826335B1 (en) Multi-fibre arrangements for high power fibre lasers and amplifiers
US8564877B2 (en) Photonic bandgap fiber and fiber amplifier
US7286283B2 (en) Optical fiber coupling arrangement
US8947768B2 (en) Master oscillator—power amplifier systems
US8498044B2 (en) Amplification optical fiber, and optical fiber amplifier and resonator using the same
JP2017188689A (en) Multi-core erbium-doped fiber amplifier
JP2017055130A (en) Multicore fibers for transmission and amplification, and schemes for launching pump light to amplifier cores
US20050207455A1 (en) Method and apparatus for efficient coupling of pump light into fiber amplifiers
Abedin et al. State-of-the-art multicore fiber amplifiers for space division multiplexing
JP6294486B2 (en) Ultra high power single mode fiber laser system
EP2625753B1 (en) High power neodymium fiber lasers and amplifiers
US9716365B2 (en) High power neodymium fiber lasers and amplifiers
US9673589B2 (en) Amplification optical fiber and optical fiber amplifier
JP2009129989A (en) OPTICAL FIBER FOR FIBER LASER, MANUFACTURING METHOD THEREOF, AND FIBER LASER
WO2024201650A1 (en) Optical fiber and optical amplifier
JP2014099453A (en) Amplifying multi-core optical fiber and multi-core optical fiber amplifier
WO2022202768A1 (en) Laser device and processing device
US10444428B2 (en) Optical fiber and optical transmission system
CN110663146B (en) Large power cladding pumping single mode fiber Raman laser
WO2024195031A1 (en) Optical fiber and optical amplifier
US20250105578A1 (en) Optical fiber for amplification, optical amplifier, and method for controlling optical amplifier
WO2013002787A1 (en) High power raman-based fiber laser system and method of operating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23930290

Country of ref document: EP

Kind code of ref document: A1