[go: up one dir, main page]

WO2024199512A1 - 一种逆变器设备 - Google Patents

一种逆变器设备 Download PDF

Info

Publication number
WO2024199512A1
WO2024199512A1 PCT/CN2024/085105 CN2024085105W WO2024199512A1 WO 2024199512 A1 WO2024199512 A1 WO 2024199512A1 CN 2024085105 W CN2024085105 W CN 2024085105W WO 2024199512 A1 WO2024199512 A1 WO 2024199512A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
switch device
inverter
circuit substrate
pressure strip
Prior art date
Application number
PCT/CN2024/085105
Other languages
English (en)
French (fr)
Inventor
陈东
马征
王晨
石磊
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2024199512A1 publication Critical patent/WO2024199512A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/02Arrangements of circuit components or wiring on supporting structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor

Definitions

  • the present application relates to the field of electrical technology, and more specifically, to an inverter device.
  • electronic devices related to new energy such as photovoltaic inverters and motor drivers
  • These electronic devices usually include chassis, electronic devices, and printed circuit boards.
  • Electronic devices are electrically connected through printed circuit boards, and electronic devices and printed circuit boards form circuits.
  • the chassis is used to prevent rain, moisture, dust, etc. from penetrating into the chassis and damaging the circuits.
  • the switch device is one of the devices that generate a lot of heat.
  • the switch device can contact the bottom plate of the chassis lower shell through the thermal interface material (TIM). This requires that the switch device and the bottom plate of the chassis lower shell be contacted first, and then the switch device is electrically connected to the printed circuit board through the wave soldering manufacturing process or the manual welding process.
  • TIM thermal interface material
  • the reliability of manual welding is poor, and the wave soldering manufacturing process requires a large space to be reserved at the position of the printed circuit board corresponding to the switch device, and the entire chassis lower shell is required to undergo the wave soldering manufacturing process on the assembly line, which will reduce the compactness of the printed circuit board and the production efficiency of electronic equipment.
  • the present application provides an inverter and an electronic device that can have both excellent heat dissipation performance and a convenient manufacturing process.
  • an inverter device which includes: an inverter circuit, a housing, a first component and a second component.
  • the inverter circuit includes: a circuit substrate, a switch device and a plug-in device.
  • the switch device includes a body and pins
  • the plug-in device includes a body and pins
  • the pins of the switch device and the pins of the plug-in device are installed on the same surface of the circuit substrate.
  • the housing is used to form a first cavity, and the inverter circuit is accommodated in the first cavity.
  • the surface of the bottom plate of the housing facing the circuit substrate includes a supporting component, and the body of the switch device is supported by the supporting component, and the supporting component is made of a heat-conducting material.
  • the first component is located between the body of the switch device and the supporting component, and the first component is made of a heat-conducting insulating material.
  • the second component is used to connect the body of the switch device and the supporting component.
  • the inverter circuit is used to convert the direct current input to the inverter device into alternating current.
  • the inverter circuit can achieve conversion between different voltage levels through switching devices.
  • the switching device is used to achieve the conversion from DC to AC, or to achieve the conversion from AC to DC; or to achieve the conversion from low voltage to high voltage; or to achieve the conversion from high voltage to low voltage.
  • the plug-in device in the inverter circuit can be used to assist in the conversion from DC to AC.
  • This application supports mounting the pins of the switch device and the pins of the plug-in device on the same surface of the circuit substrate through the wave soldering manufacturing process.
  • the switch device and the plug-in device do not require additional installation operations. Since the switch device does not require additional manual soldering process or wave soldering manufacturing process, this can improve the reliability of the switch device, and can also improve the compactness of the inverter circuit and the production efficiency of the inverter equipment.
  • the present application can realize an inverter device with both a convenient manufacturing process and excellent heat dissipation performance.
  • the second component includes any one of the following: a pressure strip component, a heat sink component, and a fastener.
  • the present application can ensure that the distance between the body of the switch device and the support component is shortened as much as possible, thereby improving the heat dissipation efficiency of the switch device.
  • the second component is a pressure strip component
  • the body of the switch device is placed between the pressure strip component and the support component
  • the pressure strip component is used to press the body of the switch device toward the support component
  • the present application can ensure that the distance between the body of the switching device and the supporting component is shortened as much as possible after the inverter circuit is first installed in the housing, thereby improving the heat dissipation efficiency of the switching device.
  • the second component is a heat sink component
  • the body of the switch device is fixed to the heat sink component
  • the heat sink component is connected to the support component.
  • the first component is located between the body of the switch device and the heat sink component, or between the heat sink component and the support component.
  • the body of the switch device can be supported on the support component through a heat sink component.
  • the heat sink component is used to pull the body of the switch device toward the support component.
  • the present application can ensure that the distance between the body of the switching device and the supporting component is shortened as much as possible after the inverter circuit is first installed in the housing, thereby improving the heat dissipation efficiency of the switching device.
  • the second component is a fastener
  • the body of the switch device, or the pressure strip component, or the heat sink component is placed between the fastener and the support component.
  • fastener can be used to press the body of the switch device, the pressure strip component or the heat sink component toward the supporting component.
  • the above-mentioned fasteners can be objects such as screws and nuts.
  • the present application can ensure that the distance between the body of the switching device and the supporting component is shortened as much as possible after the inverter circuit is first installed in the housing, thereby improving the heat dissipation efficiency of the switching device.
  • the support component includes: a first surface and a second surface.
  • the first surface contacts a surface of the bottom plate of the housing facing the circuit substrate, and the second surface is used to place the body of the switch device.
  • the first surface is used to connect to the shell, and the second surface is used to place the body of the switching device.
  • the pressure strip component includes: a fixing portion and a connecting portion.
  • the fixing portion is used to compress the contact between the body of the switch device and the supporting component, the body of the switch device is located between the fixing portion and the supporting component, and the connecting portion is connected to the supporting component through a fastener.
  • the regular block structure includes a fixing part and a connecting part
  • the fixing part is used to press the contact between the body of the switch device and the supporting part
  • the connecting part is used to connect with the supporting part through a fastener, etc.
  • the fastener can be an object such as a screw.
  • the fixing part is located at the center of the regular block
  • the connecting part is located on both sides of the regular block.
  • the present application supports connecting the pressure strip component and the supporting component, and can also be used to tighten the contact between the body of the switch device and the supporting component.
  • the form of the thermally conductive insulating material includes any one of the following: a ceramic sheet, a thermally conductive insulating film, a thermally conductive insulating pad, a thermally conductive insulating adhesive, and a thermally conductive insulating tape.
  • the present application can achieve better heat dissipation of the switching device to the surrounding environment.
  • the inverter device further includes: a power magnetic device, the power magnetic device includes a body and pins, and the pins of the power magnetic device are installed on the same surface.
  • the present application can save the connection cable between the power magnetic device and the circuit substrate, thereby reducing the material cost and manufacturing cost of the power magnetic device.
  • the position of the electrical connection between the power magnetic device and the circuit substrate is fixed, and there will be no electrical connection error, thereby improving production efficiency.
  • the surface includes a first plane and a second plane, and the first plane and the second plane are respectively located on two sides of the supporting component.
  • the present application can leave a certain blank space between the circuit substrate and the bottom plate of the shell, which is beneficial to the heat dissipation of the circuit substrate; at the same time, electronic devices with different heat generation can be placed in the space between the first plane and the circuit substrate, and in the space between the second plane and the circuit substrate, respectively, thereby facilitating the heat dissipation design of different electronic devices and improving the reliability of low-temperature-resistant electronic devices.
  • the first plane is flush with the second plane.
  • the support component is integrated with the bottom plate of the shell.
  • the first plane includes a second cavity, and the body of the inserted device is entirely or partially located in the second cavity.
  • part or all of the plug-in device is located in the cavity, which can reduce electromagnetic interference between the plug-in device and other electronic devices, and reduce the heat dissipation effect between the plug-in device and other heating devices, thereby facilitating heat dissipation design.
  • the second plane includes a third cavity, and the body of the power magnetic device is entirely or partially located in the third cavity.
  • part or all of the power magnetic device is located in the cavity, which can reduce electromagnetic interference between the power magnetic device and other electronic devices, and reduce the heat dissipation effect between the plug-in device and other heat-generating devices, thereby facilitating heat dissipation design.
  • the heat sink is made of metal.
  • a surface of the bottom plate facing away from the circuit substrate includes a heat dissipation component.
  • an electronic device comprising the inverter device according to the first aspect and any one of the first aspects, a communication unit and a control unit.
  • the communication unit is used to input an instruction and send the instruction to the control unit.
  • the control unit is used to control the inverter device according to the instruction.
  • the electronic device also includes: a transformer unit, which is used to convert the input voltage of the electronic device into a DC voltage, and provide the DC voltage to the inverter device described in the first aspect and any one of the first aspect; or, the transformer device is used to convert the voltage provided by the inverter device described in the first aspect and any one of the first aspect into a DC voltage, and provide the DC voltage to other devices, such as an energy storage system or a battery pack.
  • a transformer unit which is used to convert the input voltage of the electronic device into a DC voltage, and provide the DC voltage to the inverter device described in the first aspect and any one of the first aspect
  • the transformer device is used to convert the voltage provided by the inverter device described in the first aspect and any one of the first aspect into a DC voltage, and provide the DC voltage to other devices, such as an energy storage system or a battery pack.
  • FIG. 1 is a schematic diagram of an application scenario 100 according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an inverter device 200 .
  • FIG. 3 is a schematic structural diagram of an inverter device 300 according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a pressure strip component 400 according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a pressure strip component 500 according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a pressure strip component 600 according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a heat sink component 700 according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a heat sink component 800 according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a heat sink component 900 according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an inverter device 1000 according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an inverter device 1100 according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an inverter device 1200 according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an electronic device 1300 according to an embodiment of the present application.
  • An inverter is a device that can convert direct current into alternating current. It is generally composed of an inverter bridge, a controller, and a filter circuit. Inverters can be widely used in many fields, as shown in Figure 1.
  • FIG1 is a schematic diagram of an application scenario 100 of an embodiment of the present application.
  • the inverter device can be applied to scenarios such as energy storage systems, photovoltaic power generation systems, and power grids.
  • the inverter device converts the direct current output by the photovoltaic power generation system into alternating current, and transmits the alternating current to a power grid or a load.
  • the inverter device converts the electrical energy stored in the energy storage system from direct current to alternating current, and transmits it to a power grid or a load.
  • FIG2 For the internal structure of the inverter device, see FIG2 .
  • FIG2 is a schematic diagram of the structure of an inverter device 200.
  • the inverter device 200 includes: an upper cover 210, a housing 220, a printed circuit board 230, plug-in components 240 (eg, filter capacitors and filter inductors) and a switch component 250.
  • plug-in components 240 eg, filter capacitors and filter inductors
  • the switch device 250 is one of the main devices that generate a lot of heat. In order to better diffuse the heat generated by the switch device 250 to the surrounding environment through the housing 220, the switch device 250 needs to contact the housing 220 through the TIM, that is, the switch device 250 is arranged between the printed circuit board 230 and the housing 220. Due to the less heat generated, the plug-in device 240 is installed on the top surface of the printed circuit board 230, that is, the plug-in device 240 is arranged between the upper cover 210 and the printed circuit board 230.
  • the body of the plug-in device 240 is placed on the top surface of the printed circuit board 230, and the pins of the plug-in device 240 are soldered to the bottom surface of the printed circuit board 230 through a wave soldering manufacturing process.
  • the plug-in device 240 does not need additional Installation operation.
  • the body of the switch device 250 contacts the housing 220 through TIM, its pins need to be electrically connected to the printed circuit board 230 through a manual welding process or a wave soldering manufacturing process.
  • the reliability of the manual welding process is poor, and the wave soldering manufacturing process requires a large space to be reserved at the position of the printed circuit board 230 corresponding to the switch device 250, and requires the entire housing 220 to be subjected to a wave soldering manufacturing process on an assembly line, which reduces the compactness of the printed circuit board 230 and the production efficiency of the inverter device 200.
  • the above structure can ensure a certain heat dissipation performance, but the manufacturing process is not convenient enough, which will bring about problems such as low production efficiency and high overall cost.
  • the present application provides an inverter device that can have both excellent heat dissipation performance and a convenient manufacturing process.
  • FIG3 is a schematic diagram of the structure of the inverter device 300 of the embodiment of the present application.
  • the inverter device 300 includes: an upper cover 310 (this is an optional structure), a housing 320, an inverter circuit, a first component 370 and a second component 380.
  • the inverter circuit includes: a circuit substrate 340, a plug-in device 350 and a switch device 360.
  • the plane of the bottom plate of the housing 320 facing the circuit substrate 340 includes a support component 330.
  • the above-mentioned inverter circuit can be used to convert the direct current input to the inverter device 300 into alternating current.
  • the plug-in device 350 refers to a device with pins, such as filter capacitors, filter inductors, common-mode inductors, bus capacitors, resistors, overcurrent/short-circuit protection devices, overtemperature protection devices, lightning arresters, etc.
  • the switch device 360 includes but is not limited to: insulated gate bipolar transistors (IGBT), high-power transistors, bidirectional transistors, thyristors, gate turn-off thyristors (GTO) devices, and metal-oxide-semiconductor field-effect transistors (MOSFET).
  • IGBT insulated gate bipolar transistors
  • GTO gate turn-off thyristors
  • MOSFET metal-oxide-semiconductor field-effect transistors
  • the inverter circuit can be used to achieve conversion between different voltage levels through the switch device 360.
  • the switch device 360 can be used to achieve conversion from direct current to alternating current, or can be used to achieve conversion from alternating current to direct current; or can be used to achieve conversion from low voltage to high voltage; or can be used to achieve conversion from high voltage to low voltage.
  • the plug-in device 350 can be used to assist in achieving conversion from direct current to alternating current.
  • the housing 320 is used to form a cavity 1 , and the cavity 1 is used to accommodate the aforementioned inverter circuit.
  • the first component 370 is made of a heat-conducting insulating material. By arranging the first component 370 between the body of the switch device 360 and the support component 330 , it can not only be used to achieve an insulating connection between the body of the switch device 360 and the support component 330 , but also be used to conduct the heat generated by the switch device 360 to the support component 330 .
  • the form of the thermally conductive insulating material used to form the first component 370 includes but is not limited to: a ceramic sheet, a thermally conductive insulating film, a thermally conductive insulating pad, a thermally conductive insulating adhesive, and a thermally conductive insulating tape, etc. It is understood that the present application does not limit other possible materials of the first component 370.
  • the second component 380 is disposed between the body of the switch device 360 and the support component 330 , and can be used to connect the body of the switch device 360 and the support component 330 , and can play a role in fixing the connection between the body of the switch device 360 and the support component 330 .
  • first component and the second component may include: the first component is located between the second component and the supporting component; or the first component is located between the body of the switch device and the second component, which is not limited.
  • the second component 380 includes at least one of the following: a pressure strip component, a heat sink component, and a fastener, etc., which will be described in detail below.
  • the pins of the switch device 360 and the pins of the plug-in device 350 are installed on the same surface of the circuit substrate 340 (such as a surface of the circuit substrate 340 facing the upper cover 310, or the top surface of the circuit substrate 340), and the body of the switch device 360 and the body of the plug-in device 350 are relative to another surface of the circuit substrate 340 (such as a surface of the circuit substrate 340 facing the bottom plate of the shell 320, or the bottom surface of the circuit substrate 340).
  • the pins of the plug-in device 350 and the pins of the switch device 360 are both mounted on the same surface of the circuit substrate 340, that is, the pins of the plug-in device 350 and the pins of the switch device 360 are both soldered to the top surface of the circuit substrate 340.
  • the cross-textured circles shown in FIG3 can be used to represent the solder joints between the pins of the switch device 360 or the plug-in device 350 and the top surface of the circuit substrate 340.
  • the above-mentioned support component 330 is made of heat-conducting material.
  • the support component 330 can be integrated with the bottom plate of the housing 320, or can be an independent component.
  • the support component 330 includes a first surface and a second surface.
  • the first surface is connected to the surface of the bottom plate of the housing 320 facing the circuit substrate 340, and the second surface is used to place the body of the switch device 360.
  • There is a certain angle between the first surface and the second surface (which can be 0°, 90°, or other angles).
  • the first surface and the second surface please refer to the description below.
  • the support component 330 By setting the support component 330 to include a first surface and a second surface, the first surface is used to connect to the housing 320, and the second surface is used to place the body of the switch device 360, and there is a certain height between the first surface and the second surface, which can achieve the body of the switch device 360 and The contact of the housing 320 conducts the heat generated by the switch device 360 to the housing 320 and the ground through the support component 330 .
  • the pressure strip component includes: a fixing portion and a connecting portion.
  • the fixing portion is used to compress the contact between the body of the switch device 360 and the support component 330, the body of the switch device 360 is located between the fixing portion and the support component 330, and the connecting portion is connected to the support component 330 through a fastener.
  • the regular block structure includes a fixed part and a connecting part
  • the fixed part is used to compress the contact between the body of the switch device 360 and the support component 330
  • the connecting part is used to connect with the support component 360 through a fastener, etc.
  • the fastener can be an object such as a screw.
  • the fixed part is located at the center of the regular block
  • the connecting part is located on both sides of the regular block.
  • the fastener can also belong to the composition of the pressure strip component, which is not limited.
  • the present application supports connecting the pressure strip component and the supporting component, and can also be used to tighten the contact between the body of the switch device and the supporting component.
  • the insertion device 350 is generally light in weight and can be suspended between the circuit substrate 340 and the bottom plate of the housing 320 , without the need to add a structure similar to the support component 330 .
  • TIM materials such as thermally conductive insulating glue and thermally conductive insulating pads may be added between the plug-in device 350 and the bottom plate of the housing 320 , which can improve the heat dissipation efficiency of the plug-in device 350 to the surrounding environment.
  • the circuit substrate 340 may be a printed circuit board (PCB).
  • PCB printed circuit board
  • the circuit substrate 340 may be a multi-layer circuit board or a single-sided circuit board, which is not limited.
  • the present application Before installing the inverter circuit (or the circuit substrate 340) to the housing 320, the present application supports pre-installing the first component 370 and the second component 380. After installing the inverter circuit (or the circuit substrate 340), use a tool such as a screwdriver to pass through the through hole on the circuit substrate 340 and tighten the fixing screws of the second component 380 to keep the second component 380 and the support component 330 tightly connected, thereby ensuring that the distance between the body of the switch device 360 and the support component 330 is as short as possible, thereby improving the heat dissipation efficiency of the switch device 360.
  • a tool such as a screwdriver
  • the present application supports mounting the pins of the switch device 360 and the pins of the plug-in device 350 on the same surface of the circuit substrate 340 through a wave soldering manufacturing process, and when the inverter circuit is mounted downwardly into the cavity formed by the housing 320, no additional mounting operation is required for the switch device 360 and the plug-in device 350. Since the switch device 360 does not require an additional manual soldering process or a wave soldering manufacturing process, the reliability of the switch device 360 can be improved, and the compactness of the inverter circuit and the production efficiency of the inverter device can also be improved.
  • the present application can realize an inverter device with both a convenient manufacturing process and excellent heat dissipation performance.
  • the inverter 300 shown in FIG. 3 will be further described below in conjunction with other drawings.
  • FIG4 is a schematic diagram of the structure of the pressure strip component 400 of an embodiment of the present application.
  • the pressure strip component 400 is an example of the second component 380.
  • the body of the switch device 360 is placed on the support component 330.
  • the pins of the switch device 360 penetrate through the through holes on the circuit substrate 340 to the top surface of the circuit substrate 340 (the penetration path can be seen in the white dotted line shown in FIG4) and complete the welding.
  • the pressure strip component 400 is pre-installed between the switch device 360 and the circuit substrate 340.
  • the circuit substrate 340 After installing the circuit substrate 340, use a tool such as a screwdriver to pass through the through holes on the circuit substrate 340, tighten the fixing screws of the pressure strip component 400, so that the pressure strip component 400 and the support component 330 remain tightly connected, and press the body of the switch device 360 against the top surface of the support component 330.
  • the body of the switch device 360 is located between the pressure strip 400 and the top surface of the support component 330 , and the switch device 360 can also contact the top surface of the support component 330 through the first component 370 (such as a ceramic sheet, a thermally conductive insulating film, etc., TIM).
  • the first component 370 such as a ceramic sheet, a thermally conductive insulating film, etc., TIM
  • the present application can ensure that the distance between the body of the switch device 360 and the support component 330 is shortened as much as possible after the circuit substrate is first installed in the housing, thereby improving the heat dissipation efficiency of the switch device 360.
  • the first surface and the second surface of the supporting component are two parallel surfaces.
  • the supporting component is a cube, and the upper and lower surfaces of the cube are the second surface and the first surface respectively.
  • the fixed part and the connecting part of the pressure strip component are on the same plane, the connecting part includes a through hole, and the pressure strip component is connected to the supporting component through the through hole and fasteners at the connecting part.
  • the pressure strip component presses the contact between the body of the switch device and the supporting component through the fixed part.
  • the fixed part is the part of the pressure strip structure excluding the through hole
  • the connecting part is the part of the pressure strip component including the through hole.
  • FIG5 is a schematic diagram of the structure of a pressure strip component 500 according to an embodiment of the present application.
  • the pressure strip component 500 is another example of the second component 380.
  • the pressure strip component 500 is different from the pressure strip component 400.
  • the top surface of the support component 330 includes a boss, which includes a side wall perpendicular to the top surface of the support component 330.
  • the pressure strip component 500 includes a pressing surface parallel to the side wall, and a mounting surface parallel to the top surface of the support component 330.
  • the pressing surface of the pressure strip component 500 presses the body of the switch device 360 toward the side wall of the boss.
  • the pressing surface of the pressure strip component 500 is set at a corresponding position to the body of the switch device 360, and can be an elastic The reed etc. are provided, thereby simplifying the installation and ensuring that the distance between the body of the switch device 360 and the support component 330 and the boss is shortened as much as possible.
  • the boss may be designed to be integrated with the support component 330, or may be a separate structural component, and may be pre-installed on the support component 330 and contacted through TIM.
  • the switch device 360 since the body of the switch device 360 maintains a vertical arrangement relationship with the top surface of the support component 330, the switch device 360 also maintains a vertical arrangement relationship with the circuit substrate 340, which can reduce the board area occupied by the switch device 360 on the circuit substrate 340 and improve the compactness of the circuit substrate 340.
  • the pins of the switch device 360 also maintain a vertical arrangement relationship with the circuit substrate 340, so the manufacturing process of welding the switch device 360 on the circuit substrate 340 can be completed without bending the pins of the switch device 360, thereby improving production efficiency.
  • the first surface and the second surface of the supporting component are two surfaces perpendicular to each other.
  • the supporting component is a cube including a boss, and one side surface of the boss is the second surface.
  • the fixed part and the connecting part of the pressure strip component are not in the same plane, the connecting part includes a through hole, and the pressure strip component is connected to the supporting component through the through hole and fasteners at the connecting part.
  • the pressure strip component presses the contact between the body of the switch device and the supporting component through the fixed part.
  • the fixed part is the part of the pressure strip structure other than the through hole
  • the connecting part is the part of the pressure strip component including the through hole.
  • FIG6 is a schematic diagram of the structure of a pressure strip component 600 of an embodiment of the present application.
  • the pressure strip component 600 is another example of the second component 380.
  • the pressure strip component 600 is different from the pressure strip component 400 and the pressure strip component 500.
  • the top surface of the support component 330 includes a boss, which includes a side wall that maintains a preset angle (for example, any angle value between 90° and 180°) with the top surface of the support component 330.
  • the pressure strip component 600 includes a pressing surface parallel to the side wall, and a mounting surface parallel to the top surface of the support component 330.
  • the pressing surface of the pressure strip component 600 presses the body of the switch device 360 toward the side wall of the boss.
  • the pressing surface of the pressure strip component 600 is arranged at a corresponding position of the body of the switch device 360, and can be a reed with elasticity, etc., so as to simplify the installation and ensure that the distance between the body of the switch device 360 and the support component 330 and the boss is as short as possible.
  • the boss may be designed to be integrated with the support component 330, or may be a separate structural component, and may be pre-installed on the support component 330 and contacted through TIM.
  • the present application can reduce the board area occupied by the switch device 360 on the circuit substrate 340 , which is beneficial to improving the compactness of the circuit substrate 340 .
  • the first surface and the second surface of the support component are two surfaces satisfying a certain angle.
  • the support component is a cube including a boss, and one side surface of the boss is the second surface.
  • the fixed part and the connecting part of the pressure strip component are not in the same plane, the connecting part includes a through hole, and the pressure strip component is connected to the supporting component through the through hole and fasteners at the connecting part.
  • the pressure strip component presses the contact between the body of the switch device and the supporting component through the fixed part.
  • the fixed part is the part of the pressure strip structure other than the through hole
  • the connecting part is the part of the pressure strip component including the through hole.
  • the first component 370 can be located between the pressure strip component and the supporting component.
  • FIG. 7 is a schematic diagram of the structure of the heat sink component 700 of the embodiment of the present application.
  • the heat sink component 700 is an example of the second component 380.
  • the body of the switch device 360 is pre-installed with the heat sink component 700 by adhesive fixing.
  • the pins of the switch device 360 penetrate through the through holes on the circuit substrate 340 to the top surface of the circuit substrate 340 (the penetration path can be seen in the black dotted line shown in FIG. 7) and complete the welding.
  • the heat sink component 700 is pre-installed between the switch device 360 and the circuit substrate 340.
  • the heat sink component 700 is simultaneously placed between the switch device 360 and the top surface of the support component 330, and a tool such as a screwdriver is used to pass through the through holes on the circuit substrate 340 to tighten the fixing screws of the heat sink component 700 so that the heat sink component 700 and the support component 330 are kept tightly connected, and the body of the switch device 360 is pulled toward the top surface of the support component 330.
  • the heat sink component 700 is located between the body of the switch device 360 and the top surface of the support component 330.
  • the switch device 360 can also contact the heat sink component 700 through the first component 370 (such as a ceramic sheet, a thermally conductive insulating film, etc., TIM).
  • the heat sink component 700 can contact the top surface of the support component 330 through the TIM.
  • the present application can ensure that the distance between the body of the switch device and the supporting component is as short as possible after the circuit substrate is first installed in the housing, thereby improving the heat dissipation efficiency of the switch device.
  • FIG 8 is a schematic diagram of the structure of a heat sink component 800 according to an embodiment of the present application.
  • the heat sink component 800 is another example of the second component 380.
  • the heat sink component 800 includes a mounting surface parallel to the top surface of the support component 330 and a bonding surface parallel to the body of the switch device 360.
  • the bonding surface of the heat sink component 800 maintains a vertical setting relationship with the mounting surface.
  • the switch device 360 is pre-installed on the bonding surface of the heat sink component 800 by adhesive fixing. After the circuit substrate 340 is installed, the heat sink component 800 is simultaneously placed between the switch device 360 and the top surface of the support component 330.
  • a tool such as a screwdriver is used to pass through the through hole on the circuit substrate 340 to tighten the fixing screws of the heat sink component 800, so that the heat sink component 800 and the top surface of the support component 330 are kept tightly connected, and the body of the switch device 360 is pulled toward the top surface of the support component 330.
  • the switch device 360 since the body of the switch device 360 maintains a vertical arrangement relationship with the top surface of the support component 330, the switch device 360 also maintains a vertical arrangement relationship with the circuit substrate 340, which can reduce the board area occupied by the switch device 360 on the circuit substrate 340 and improve the compactness of the circuit substrate 340.
  • the pins of the switch device 360 also maintain a vertical arrangement relationship with the circuit substrate 340, so the manufacturing process of welding the switch device 360 on the circuit substrate 340 can be completed without bending the pins of the switch device 360, thereby improving production efficiency.
  • FIG9 is a schematic diagram of the structure of a heat sink component 900 of an embodiment of the present application.
  • the heat sink component 900 is another example of the second component 380.
  • the heat sink component 900 is different from the heat sink component 700 and the heat sink component 800.
  • the heat sink component 900 includes a mounting surface parallel to the top surface of the support component 330 and a bonding surface parallel to the body of the switch device 360.
  • the switch device 360 is pre-installed on the bonding surface of the heat sink component 900 by adhesive fixing.
  • the heat sink component 900 is placed between the switch device 360 and the top surface of the support component 330 at the same time.
  • a tool such as a screwdriver is used to pass through the through hole on the circuit substrate 340 to tighten the fixing screws of the heat sink component 900 to keep the heat sink component 900 and the top surface of the support component 330 tightly connected, and the body of the switch device 360 is pulled toward the top surface of the support component 330.
  • the present application can reduce the board area occupied by the switch device 360 on the circuit substrate 340 , which is beneficial to improving the compactness of the circuit substrate 340 .
  • heat sink components shown in FIG. 7 to FIG. 9 are only understood as examples, and the present application does not limit other possible structural forms of the heat sink components other than those shown in FIG. 7 to FIG. 9 .
  • the heat sink component shown in FIG. 7 to FIG. 9 is made of a metal material. This is advantageous in enhancing the efficiency of conducting the heat generated by the switching device to the supporting component.
  • the first component 370 can be located between the heat sink component and the support component; or, the first component 370 is located between the body of the switch device and the heat sink component.
  • FIG10 is a schematic diagram of the structure of the inverter device 1000 of the embodiment of the present application.
  • the inverter device 1000 includes: an upper cover 1010 (which is an optional structure), a housing 1020, a support component 1030, a circuit substrate 1040, a plug-in device 1050, a switch device 1060, a first component 1070, a second component 1080, and a power magnetic device 1090.
  • an upper cover 1010 which is an optional structure
  • a housing 1020 which is an optional structure
  • a support component 1030 for the description of other components of the inverter component 1000 except the power magnetic device 1090, please refer to the above description, which will not be repeated here.
  • the power magnetic device 1090 is welded to the bottom surface of the circuit substrate 1040 through a wave soldering manufacturing process, or is pre-installed on the bottom surface of the circuit substrate 1040 by means of screws/nuts. For the latter, it is necessary to open a through hole on the circuit substrate 1040 at a position corresponding to the fixing screw of the power magnetic device 1090.
  • the power magnetic device 1090 is tightly connected to the bottom plate of the housing 1020 by means of fixing screws, and contacts the top surface of the bottom plate of the housing 1020 through the TIM.
  • the fixing screws of the power magnetic device 1090 By tightening the fixing screws of the power magnetic device 1090, the distance between the power magnetic device 1090 and the top surface of the bottom plate of the housing 1020 can be shortened, and the heat dissipation efficiency of the power magnetic device 1090 can be improved.
  • the present application supports pre-fastening the power magnetic device 1090 to the bottom plate of the housing 1020 by means of fixing screws, and contacting the top surface of the bottom plate of the housing 1020 by means of TIM.
  • the power magnetic device 1090 is electrically connected to the circuit substrate 1040 by means of screws/nuts.
  • the power magnetic device 1090 may be suspended between the circuit substrate 1040 and the bottom plate of the housing 1020 , or may be connected to the bottom plate of the housing 1020 , which is not limited to this.
  • the present application can save the connection cable between the power magnetic device and the circuit substrate 1040, thereby reducing the material cost and manufacturing cost of the power magnetic device.
  • the position of the electrical connection between the power magnetic device and the circuit substrate 1040 is fixed, and there will be no electrical connection errors, thereby improving production efficiency.
  • TIM such as thermal conductive insulating glue, thermal conductive insulating pads, etc., contact is made, which is conducive to the power magnetic device to dissipate heat to the surrounding environment through the bottom plate of the housing 1020.
  • FIG11 is a schematic diagram of the structure of an inverter device 1100 according to an embodiment of the present application.
  • the inverter device 1100 includes: an upper cover 1110 (which is an optional structure), a housing 1120, a support component 1130, a circuit substrate 1140, a plug-in device 1150, a switch device 1160, The first component 1170, the second component 1180, the power magnetic device 1190, the cavity 2 and the cavity 3.
  • cavity 2 and cavity 3 are respectively located on two sides of the support component 1130 , specifically, cavity 2 is located on a first plane, and cavity 3 is located on a second plane.
  • the first plane and the second plane are respectively located on two sides of the support component 1130 .
  • the present application can leave a certain blank space between the circuit substrate 1140 and the bottom plate of the housing 1120, which is beneficial to the heat dissipation of the circuit substrate 1140.
  • electronic devices with different heat generation can be placed in the space between the first plane and the circuit substrate, and in the space between the second plane and the circuit substrate, respectively, so as to facilitate the heat dissipation design of different electronic devices and improve the reliability of low temperature resistant electronic devices.
  • the first plane is flush with the second plane, which is beneficial to the flatness of the bottom plate of the housing 1120, thereby reducing the cost of the housing.
  • part or all of the plug-in device 1150 and the power magnetic device 1190 are respectively located in cavity 2 and cavity 3, which can avoid electromagnetic interference between the power magnetic device 1190 and the plug-in device 1150.
  • part or all of the body of the plug-in device 1150 is placed in the cavity 2, and part or all of the body of the power magnetic device 1190 is placed in the cavity 3. Due to the arrangement of the cavity 2 and the cavity 3, the present application can reduce the mutual influence of heat dissipation between the power magnetic device 1190 placed in the cavity 2 and the plug-in device 1150 placed in the cavity 3 and the switch device 1160 not placed in the accommodation cavity as much as possible, thereby facilitating heat dissipation design.
  • FIG11 is described by taking the inverter 1100 including cavity 2 and cavity 3 as an example, but does not limit the number of accommodating cavities included in the inverter 1100.
  • the inverter 1100 only includes any one between cavity 2 and cavity 3, and may also include cavity 4, etc., which is not limited.
  • part or all of the plug-in device 1150 is located in the cavity 2, which can reduce the electromagnetic interference between the plug-in device 1150 and other electronic devices, and reduce the heat dissipation effect between the plug-in device 1150 and other heat-generating devices, thereby facilitating the heat dissipation design.
  • part or all of the power magnetic device 1190 is located in the cavity 3, which can reduce the electromagnetic interference between the power magnetic device 1190 and other electronic devices, and reduce the heat dissipation effect between the power magnetic device 1190 and other heat-generating devices, thereby facilitating the heat dissipation design.
  • the power magnetic device 1190 may be suspended between the circuit substrate 1140 and the bottom plate of the housing 1120 , or may be connected to the bottom plate of the housing 1120 , which is not limited to this.
  • FIG 12 is a schematic diagram of the structure of the inverter device 1200 of an embodiment of the present application.
  • the inverter device 1200 includes: a circuit substrate (divided into a top surface and a bottom surface), a capacitor, an inductor, a cavity 2, a cavity 3, a power magnetic device, a switching device, a bottom plate (divided into a top surface and a bottom surface) and a comb-shaped component.
  • the capacitor and the inductor are an example of the aforementioned plug-in components
  • the comb-shaped component is an example of a heat dissipation component included on the bottom surface of the bottom plate of the shell.
  • the present application can further improve the heat dissipation efficiency of the inverter device.
  • the comb-shaped component shown in Figure 12 is an example of a heat dissipation component, and the present application does not limit other possible structures.
  • the aforementioned inverter devices 300 to 1200 may also include fasteners, which are used to fix the connection between at least one of the switch device, the pressure strip component or the heat sink component and the support component (or, the body of the switch device, the pressure strip component or the heat sink component is placed between part or all of the fasteners and the support component).
  • the aforementioned fasteners can be used to press the body of the switch device, the pressure strip component or the heat sink component toward the support component.
  • the aforementioned fasteners can be objects such as screws and nuts that are used to play a fastening role.
  • FIG13 is a schematic diagram of the structure of an electronic device 1300 according to an embodiment of the present application.
  • the electronic device 1300 includes: an inverter device 1310, a communication unit 1320, and a control unit 1330.
  • the inverter device 1310 is any one of the aforementioned inverters 300 to 1200, which is used to implement the function of the inverter device.
  • the communication unit 1320 is used to input an instruction and send the instruction to the control unit 1330.
  • the control unit 1330 is used to control the aforementioned inverter device 1310 according to the instruction.
  • the above-mentioned voltage transformation unit 1340 can also be used to convert the voltage of the inverter device 1310 into a DC voltage, and provide the DC voltage to other devices, such as an energy storage system or a battery pack.
  • the disclosed devices or components can be implemented in other ways.
  • the device or component embodiments described above are only exemplary.
  • the division of the units is only a logical function division.
  • there may be other divisions for example, multiple units or components may be combined or integrated into another system, or some features may be ignored or not performed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Inverter Devices (AREA)

Abstract

本申请提供一种逆变器设备,该逆变器设备包括:逆变电路、壳体、第一部件以及第二部件。该逆变电路包括:电路基板、开关器件以及插装器件。开关器件的引脚与插装器件的引脚安装于电路基板的同一个表面。逆变电路安装在该壳体所形成的腔体内。壳体的底板面向电路基板的表面包括支撑部件,开关器件的本体承载于支撑部件。第一部件位于开关器件的本体和支撑部件之间,第一部件是由导热绝缘材料构成的。第二部件用于连接开关器件的本体与支撑部件。通过将开关器件的引脚与插装器件的引脚安装在电路基板的同一个表面,又设置第一部件与第二部件,本申请可以通过便捷的制造工艺完成逆变器设备的制造,又可以保障逆变器设备中开关器件的散热性。

Description

一种逆变器设备
本申请要求于2023年3月30日提交中国专利局、申请号为202310357655.3、申请名称为“一种逆变器设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电气技术领域,更具体地,涉及一种逆变器设备。
背景技术
随着新能源技术的蓬勃发展,光伏逆变器与电机驱动器等与新能源相关的电子设备得到人们的广泛关注。这些电子设备通常包括机箱、电子器件以及印刷电路板。电子器件通过印刷电路板电气连接,电子器件与印刷电路板构成电路,机箱用于避免雨水、湿气、灰尘等渗透到机箱内对电路进行破坏。
上述的这些电子设备在工作时,电路会产生损耗,该损耗主要体现在电子器件会产生大量热量,开关器件是产生大量热量的器件之一。为了更好地散热,开关器件可以通过热界面材料(thermal interface material,TIM)与机箱下壳底板接触,这就要求先完成开关器件与机箱下壳底板的接触,再通过选波焊制造过程或者人工焊接过程将开关器件电气连接至印刷电路板。然而,人工焊接的可靠性较差,选波焊制造过程则要求在印刷电路板对应开关器件的位置预留较大空间,并且要求将整个机箱下壳在流水线上进行选波焊制造过程,这会降低印刷电路板的紧凑度以及电子设备的生产效率。
因此,如何兼具优良的散热性能与便捷的制造工艺是目前亟待解决的问题。
发明内容
本申请提供一种逆变器与电子设备,能够兼具优良的散热性能与便捷的制造工艺。
第一方面,提供了一种逆变器设备,该逆变器设备包括:逆变电路、壳体、第一部件以及第二部件。该逆变电路包括:电路基板、开关器件以及插装器件。开关器件包括本体与引脚,插装器件包括本体与引脚,开关器件的引脚与插装器件的引脚安装于电路基板的同一个表面。壳体用于形成第一腔体,该逆变电路容纳于第一腔体。壳体的底板面向电路基板的表面包括支撑部件,开关器件的本体承载于支撑部件,该支撑部件是由导热材料构成的。第一部件位于开关器件的本体与支撑部件之间,第一部件是由导热绝缘材料构成的。第二部件用于连接开关器件的本体与支撑部件。其中,该逆变电路用于将输入至逆变器设备的直流电转换为交流电。
具体而言,通过开关器件,逆变电路可以实现不同电压等级之间的转换。譬如,开关器件用于实现直流电到交流电的转换,或者,用于实现交流电到直流电的转换;或者,用于实现从低压电到高压电的转换;或者,用于实现从高压电到低压电的转换。逆变电路中的插装器件能够用于辅助实现从直流电到交流电的转换。
本申请支持通过波峰焊制造过程将开关器件的引脚与插装器件的引脚安装在电路基板的同一个表面,在将逆变电路向下安装至壳体所形成的腔体时,开关器件与插装器件无需额外的安装操作。由于开关器件无需额外的人工焊接过程或者选波焊制造过程,这可以提升开关器件的可靠性,还可以提高逆变电路的紧凑度以及逆变器设备的生产效率。
通过上述结构,本申请可以能够实现逆变器设备兼具便捷的制造工艺与优良的散热性能。
一种可能的实现中,该第二部件包括以下任意一项:压条部件,散热块部件,以及,紧固件。
通过压条部件、散热块部件以及紧固件中的任意一项,本申请可以保证开关器件的本体与支撑部件之间的距离尽可能缩短,从而能够提高开关器件的散热效率。
一种可能的实现中,该第二部件为压条部件,开关器件的本体安放于压条部件与支撑部件之间,该压条部件用于将开关器件的本体压向支撑部件。
通过压条部件,本申请可以在逆变电路先行安装至壳体后,仍保证开关器件的本体与支撑部件之间的距离尽可能缩短,从而能够提高开关器件的散热效率。
一种可能的实现中,该第二部件为散热块部件,开关器件的本体固定于散热块部件,该散热块部件与支撑部件连接。其中,第一部件位于开关器件的本体与散热块部件之间,或者,第一部件位于散热块部件与支撑部件之间。
具体而言,开关器件的本体可以通过散热块部件承载于支撑部件。该散热块部件用于将开关器件的本体拉向支撑部件。
通过散热块部件,本申请可以在逆变电路先行安装至壳体后,仍保证开关器件的本体与支撑部件之间的距离尽可能缩短,从而能够提高开关器件的散热效率。
一种可能的实现中,该第二部件为紧固件,开关器件的本体,或者,压条部件,或者,散热块部件,安放于紧固件与支撑部件之间。
可以理解,上述的紧固件能够用于将开关器件的本体、压条部件或者散热块部件压向支撑部件。
具体而言,上述的紧固件可以为螺钉、螺母等物体。
通过紧固件,本申请可以在逆变电路先行安装至壳体后,仍保证开关器件的本体与支撑部件之间的距离尽可能缩短,从而能够提高开关器件的散热效率。
一种可能的实现中,该支撑部件包括:第一表面和第二表面。第一表面与该壳体的底板面向电路基板的表面接触,第二表面用于安放开关器件的本体。
通过设置支撑部件包括第一表面和第二表面,第一表面用于连接壳体,第二表面用于安放开关器件的本体,第一表面和第二表面之间具备一定的高度,这可以实现开关器件的本体和壳体的接触,进而将开关器件产生的热量通过支撑部件传导至壳体以及地面。
一种可能的实现中,该压条部件包括:固定部分和连接部分。固定部分用于压紧开关器件的本体和支撑部件的接触,开关器件的本体位于固定部分和支撑部件之间,连接部分通过紧固件和支撑部件连接。
具体而言,当上述的压条部件为一个规则块状体结构(可以参见图4)时,规则块状体结构包括固定部分和连接部分,固定部分用于压紧开关器件的本体和支撑部件的接触,连接部分用于通过紧固件等与支撑部件连接,该紧固件可以为螺钉等物体。其中,对于该规则块状体而言,固定部分位于该规则块状体的中心,连接部分位于该规则块状体的两侧。当压条部件为其他结构时(可以参见图5或者图6),上述的固定部分和连接部分分别为不同的部分。
通过上述结构,本申请支持将压条部件和支撑部件连接,且还可以用于压紧开关器件的本体和支撑部件之间的接触。
一种可能的实现中,该导热绝缘材料的形态包括以下任意一项:陶瓷片,导热绝缘膜,导热绝缘垫,导热绝缘胶,以及,导热绝缘胶带。
如此,本申请能够实现开关器件更好向周围环境进行散热。
一种可能的实现中,该逆变器设备还包括:功率磁器件,该功率磁器件包括本体与引脚,该功率磁器件的引脚安装于该同一个表面。
通过上述的功率磁器件的安装方式,本申请可以省去功率磁器件与电路基板之间的连接线缆,从而降低功率磁器件的物料成本和制造成本。并且,功率磁器件与电路基板之间的电气连接的位置固定,不会出现电气连接错误的情况,从而能够提高生产效率。
一种可能的实现中,该表面包括第一平面和第二平面,第一平面和第二平面分别位于支撑部件的两侧。
通过设置第一平面与第二平面,本申请可以在电路基板与壳体的底板之间留有一定的空白空间,这有利于电路基板的散热性;同时可以分别在第一平面与电路基板之间的空间,以及在第二平面与电路基板之间的空间,安放不同发热量的电子器件,从而便于对不同的电子器件进行散热设计,并提高低耐温电子器件的可靠性。
一种可能的实现中,第一平面与第二平面齐平。
如此,这有利于壳体底板的平整性,从而降低壳体的成本。
一种可能的实现中,该支撑部件与该壳体的底板呈一体化。
如此,便于制造工艺的便捷性。
一种可能的实现中,该第一平面包括第二腔体,插装器件的本体全部或部分位于第二腔体。
通过在第一平面上设置腔体,插装器件的部分或者全部位于腔体中,这可以降低插装器件与其余电子器件之间的电磁干扰,并降低插装器件与其余发热器件之间的散热影响,从而有利于散热设计。
一种可能的实现中,该第二平面包括第三腔体,该功率磁器件的本体全部或部分位于第三腔体。
通过在第二平面上设置腔体,功率磁器件的部分或者全部位于腔体中,这可以降低功率磁器件与其余电子器件之间的电磁干扰,并降低插装器件与其余发热器件之间的散热影响,从而有利于散热设计。
一种可能的实现中,该散热块的材质为金属材料。
如此,这有利于增强将开关器件产生的热量向支撑部件进行传导的效率。
一种可能的实现中,该底板背向电路基板的表面包括散热部件。
如此,这有利于增强上述逆变器设备向周围环境进行散热的效率。
第二方面,提供了一种电子设备,包括第一方面以及第一方面中任一项所述的逆变器设备、通信单元以及控制单元。该通信单元用于输入指令,并将该指令发送至该控制单元。该控制单元用于根据该指令对前述的逆变器设备进行控制。
一种可能的实现中,该电子设备还包括:变压单元,用于将该电子设备的输入电压转换为直流电压,并将该直流电压提供给第一方面以及第一方面中任一项所述的逆变器设备;或者,变压设备用于将第一方面以及第一方面中任一项所述的逆变器设备提供的电压转换为直流电压,并将直流电压提供给其他设备,比如,储能系统或者电池包。
附图说明
图1是本申请实施例的应用场景100的示意图。
图2是一种逆变器设备200的结构示意图。
图3是本申请实施例的逆变器设备300的结构示意图。
图4是本申请实施例的压条部件400的结构示意图。
图5是本申请实施例的压条部件500的结构示意图。
图6是本申请实施例的压条部件600的结构示意图。
图7是本申请实施例的散热块部件700的结构示意图。
图8是本申请实施例的散热块部件800的结构示意图。
图9是本申请实施例的散热块部件900的结构示意图。
图10是本申请实施例的逆变器设备1000的结构示意图。
图11是本申请实施例的逆变器设备1100的结构示意图。
图12是本申请实施例的逆变器设备1200的结构示意图。
图13是本申请实施例的电子设备1300的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
逆变器是一种能够将直流电转换为交流电的装置,其一般是由逆变桥、控制器和滤波电路组成。逆变器可以广泛应用于许多领域,具体可以参见图1。
图1是本申请实施例的应用场景100的示意图。如图1所示,逆变器设备可以应用于:储能系统、光伏发电系统、电网等场景中。当逆变器设备应用于光伏发电系统场景时,逆变器设备将光伏发电系统所输出的直流电转换为交流电,并将该交流电输送至电网或者负载。当逆变器设备应用于储能系统时,逆变器设备将储能系统所储存的电能由直流电转换为交流电,并将其输送至电网或者负载。关于逆变器设备的内部结构可以参见图2。
图2是一种逆变器设备200的结构示意图。如图2所示,逆变器设备200包括:上盖210、壳体220、印刷电路板230、插装器件240(譬如,滤波电容与滤波电感等器件)以及开关器件250。
当逆变器设备200工作时,印刷电路板230、插装器件240以及开关器件250会产生大量热量。开关器件250是产生大量热量的主要器件之一。为了更好地将开关器件250产生的热量通过壳体220扩散到周围环境中,开关器件250需要通过TIM与壳体220接触,即:开关器件250设置于印刷电路板230与壳体220之间。由于产生热量较少,插装器件240安装于印刷电路板230的顶面,即:插装器件240设置于上盖210与印刷电路板230之间。
具体而言,插装器件240的本体安放于印刷电路板230的顶面,插装器件240的引脚通过波峰焊制造工艺焊接在印刷电路板230的底面。当将印刷电路板230安装于壳体220内时,插装器件240无需额外的 安装操作。开关器件250的本体通过TIM与壳体220接触后,还需要将其引脚通过人工焊接过程或者选波焊制造过程电气连接于印刷电路板230。然而,人工焊接工艺的可靠性较差,选波焊制造工艺则要求在印刷电路板230对应开关器件250的位置预留较大空间,并且要求将整个壳体220在流水线上进行选波焊制造过程,这会降低印刷电路板230的紧凑度以及逆变器设备200的生产效率。
对于逆变器设备200,上述结构可以保障一定的散热性能,但是制造工艺不够便捷,会带来生产效率低、总体成本高等问题。
有鉴于此,本申请提供一种逆变器设备,能够兼具优良的散热性能与便捷的制造工艺。
下文将结合附图对本申请实施例的逆变器设备进行描述。
图3是本申请实施例的逆变器设备300的结构示意图。如图3所示,逆变器设备300包括:上盖310(这是可选的结构)、壳体320、逆变电路、第一部件370以及第二部件380。其中,逆变电路包括:电路基板340、插装器件350以及开关器件360。壳体320的底板面向电路基板340的平面包括支撑部件330。其中,上述的逆变电路可以用于将输入至逆变器设备300的直流电转换为交流电。
具体而言,插装器件350是指具备引脚的器件,例如,滤波电容、滤波电感、共模电感、母线电容、电阻器、过流/短路保护器件、过温保护器件、防雷器等器件。开关器件360包括但不限定:绝缘栅门极晶体管(insulated gate bipolar transistor,IGBT)、大功率晶体管、双向晶体管、晶闸管、可断晶闸管(gate turn-off thyristor,GTO)器件、金属氧化物半导体场效应晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET)。
其中,通过开关器件360,逆变电路可以用于实现不同电压等级之间的转换。譬如,开关器件360能够用于实现直流电到交流电的转换,或者,能够用于实现交流电到直流电的转换;或者,能够用于实现从低压电到高压电的转换;或者,能够用于实现从高压电到低压电的转换。插装器件350能够用于辅助实现从直流电到交流电的转换。
如图3所示,壳体320用于形成一个腔体1,该腔体1用于容纳前述的逆变电路。
如图3所示,第一部件370是由导热绝缘材料构成的。通过将第一部件370设置于开关器件360的本体与支撑部件330之间,这不仅可以用于实现开关器件360的本体与支撑部件330之间的绝缘连接,还可以用于将开关器件360产生的热量传导至支撑部件330。
一个可能的实现,用于构成第一部件370的导热绝缘材料的形态包括但不限定:陶瓷片,导热绝缘膜,导热绝缘垫,导热绝缘胶,以及,导热绝缘胶带等。可以理解,本申请不限定第一部件370的其他可能材料。
如图3所示,第二部件380设置于开关器件360的本体与支撑部件330之间,其能够用于连接开关器件360的本体与支撑部件330,能够起到固定开关器件360的本体与支撑部件330之间的连接的作用。
可以理解,第一部件与第二部件之间的相对关系可以包括:第一部件位于第二部件与支撑部件之间;或者,第一部件位于开关器件的本体与第二部件之间,对此不予限定。
一个可能的实现中,第二部件380包括以下至少一项:压条部件、散热块部件以及紧固件等,具体将在下文进行描述。
如图3所示,开关器件360的引脚与插装器件350的引脚安装于电路基板340的同一个表面(如电路基板340朝向上盖310的一个表面,或者为电路基板340的顶面),开关器件360的本体与插装器件350的本体相对于电路基板340的另一个表面(如电路基板340朝向壳体320的底板的一个表面,或者为电路基板340的底面)。
如图3所示,插装器件350的引脚与开关器件360的引脚均安装于电路基板340的相同一个表面,即,插装器件350的引脚与开关器件360的引脚均焊接于电路基板340的顶面。图3中所示的交叉纹理圆形可以用于表征开关器件360或者插装器件350的引脚与电路基板340顶面之间的焊点。
可以理解,上述的支撑部件330是由导热材料构成的。可选地,支撑部件330可以与壳体320的底板呈一体化,也可以为独立的部件。
一个可能的实现中,支撑部件330包括第一表面和第二表面。第一表面与壳体320的底板面向电路基板340的表面连接,第二表面用于安放开关器件360的本体。其中,第一表面和第二表面之间具备一定的角度(可以为0°,也可以为90°,也可以为其他角度)。关于第一表面和第二表面的描述可以参见下文描述。通过设置支撑部件330包括第一表面和第二表面,第一表面用于连接壳体320,第二表面用于安放开关器件360的本体,第一表面和第二表面之间具备一定的高度,这可以实现开关器件360的本体和 壳体320的接触,进而将开关器件360产生的热量通过支撑部件330传导至壳体320以及地面。
一个可能的实现中,压条部件包括:固定部分和连接部分。固定部分用于压紧开关器件360的本体和支撑部件330的接触,开关器件360的本体位于固定部分和支撑部件330之间,连接部分通过紧固件和支撑部件330连接。
当压条部件为一个规则块状体结构(参见图4)时,规则块状体结构包括固定部分和连接部分,固定部分用于压紧开关器件360的本体和支撑部件330的接触,连接部分用于通过紧固件等与支撑部件360连接,该紧固件可以为螺钉等物体。对于该规则块状体而言,固定部分位于该规则块状体的中心,连接部分位于该规则块状体的两侧。当压条部件为其他结构时(参见图5或者图6),固定部分和连接部分分别为不同的部分。其中,紧固件也可以属于压条部件的组成,对此不予限定。
通过上述压条结构,本申请支持将压条部件和支撑部件连接,且还可以用于压紧开关器件的本体和支撑部件之间的接触。
可以理解,插装器件350的质量一般较轻,其可以悬空于电路基板340与壳体320的底板之间,并不需要增加如支撑部件330类似的结构。
可选地,插装器件350与壳体320的底板之间可以增加导热绝缘胶、导热绝缘垫等TIM材料,这能够提升插装器件350向周围环境的散热效率。
可以理解,电路基板340可以为印刷电路板(printed circuit board,PCB)。当电路基板340为PCB时,其可以为多层线路板,也可以为单面线路板,对此不予限定。
在安装逆变电路(或者为电路基板340)至壳体320之前,本申请支持预先安装第一部件370与第二部件380。在安装逆变电路(或者为电路基板340)后,使用螺丝刀等工具穿过电路基板340上的通孔,将第二部件380的固定螺钉拧紧,使第二部件380与支撑部件330之间保持紧固连接,从而保证开关器件360的本体与支撑部件330之间的距离尽可能缩短,进而提高开关器件360的散热效率。
本申请支持通过波峰焊制造过程将开关器件360的引脚与插装器件350的引脚安装在电路基板340的同一个表面,在将逆变电路向下安装至壳体320所形成的腔体时,开关器件360与插装器件350无需额外的安装操作。由于开关器件360无需额外的人工焊接过程或者选波焊制造过程,这可以提升开关器件360的可靠性,还可以提高逆变电路的紧凑度以及逆变器设备的生产效率。
通过上述结构,本申请能够实现逆变器设备兼具便捷的制造工艺与优良的散热性能。
下文将结合其他附图对图3所示的逆变器300做进一步的描述。
图4是本申请实施例的压条部件400的结构示意图。压条部件400为第二部件380的一种示例。如图4所示,开关器件360的本体置于支撑部件330之上。开关器件360的引脚通过电路基板340上的通孔穿透到电路基板340的顶面(穿透路径可以参见图4所示的白色虚线)并完成焊接。在安装电路基板340之前,压条部件400预先安装在开关器件360与电路基板340之间。在安装电路基板340之后,使用螺丝刀等工具穿过电路基板340上的通孔,将压条部件400的固定螺钉拧紧,以使得压条部件400与支撑部件330之间保持紧固连接,并将开关器件360的本体压向支撑部件330的顶面。开关器件360的本体位于压条400与支撑部件330的顶面之间,开关器件360还可以通过第一部件370(如陶瓷片、导热绝缘膜等TIM)与支撑部件330的顶面接触。
通过压条部件,本申请可以在电路基板先行安装至壳体后,仍保证开关器件360的本体与支撑部件330之间的距离尽可能缩短,从而能够提高开关器件360的散热效率。
在图4所示的结构中,支撑部件的第一表面和第二表面为相互平行的两个表面,换言之,支撑部件为一个立方体,该立方体的上下两个表面分别为第二表面和第一表面。
由图4可知,压条部件的固定部分和连接部分处于同一个平面上,连接部分包括通孔,压条部件通过连接部分处的通孔和紧固件等和支撑部件连接。压条部件通过固定部分压紧开关器件的本体和支撑部件的接触。在图4中,固定部分为压条结构中除通孔以外的部分,连接部分为压条部件中包括通孔的部分。
图5是本申请实施例的压条部件500的结构示意图。压条部件500为第二部件380的另一种示例。压条部件500不同于压条部件400。如图5所示,支撑部件330的顶面包括凸台,其包括垂直于支撑部件330的顶面的侧壁。压条部件500包括与该侧壁平行的压紧面,以及与支撑部件330的顶面平行的安装面。
当压条部件500的安装面与支撑部件330的顶面紧固后,压条部件500的压紧面将开关器件360的本体压向凸台的侧壁。压条部件500的压紧面设置在与开关器件360的本体的对应位置,可以为具有弹性 的簧片等,从而有利于简化安装,并能够保证开关器件360的本体与支撑部件330以及凸台之间的距离尽可能缩短。
可选地,上述的凸台可以与支撑部件330一体化设计,也可以为单独的结构件,并且预先安装在支撑部件330并通过TIM接触。
具体而言,由于开关器件360的本体与支撑部件330的顶面保持垂直设置关系,因此开关器件360与电路基板340之间也保持垂直设置关系,这可以减小开关器件360在电路基板340上的占板面积,提高电路基板340的紧凑度。同时,开关器件360的引脚也与电路基板340之间保持垂直设置关系,因此无需对开关器件360的引脚进行折弯,即可完成开关器件360焊接在电路基板340上的制造过程,进而能够提高生产效率。
在图5所示的结构中,支撑部件的第一表面和第二表面为相互垂直的两个表面,换言之,支撑部件为包括凸台的立方体,凸台的一个侧面为第二表面。
由图5可知,压条部件的固定部分和连接部分不处于同一个平面,连接部分包括通孔,压条部件通过连接部分处的通孔和紧固件等和支撑部件连接。压条部件通过固定部分压紧开关器件的本体和支撑部件的接触。在图5中,固定部分为压条结构中除通孔以外的部分,连接部分为压条部件中包括通孔的部分。
图6是本申请实施例的压条部件600的结构示意图。压条部件600为第二部件380的又一种示例。压条部件600不同于压条部件400与压条部件500。如图6所示,支撑部件330的顶面包括凸台,其包括与支撑部件330的顶面之间保持预设角度(例如,可以为90°~180°中的任意一个角度值)的侧壁。压条部件600包括与该侧壁平行的压紧面,以及与支撑部件330的顶面平行的安装面。
当压条部件600的安装面与支撑部件330的顶面紧固后,压条部件600的压紧面将开关器件360的本体压向凸台的侧壁。压条部件600的压紧面设置再与开关器件360的本体的对应位置,可以为具有弹性的簧片等,从而有利于简化安装,并能够保证开关器件360的本体与支撑部件330以及凸台之间的距离尽可能缩短。
可选地,上述的凸台可以与支撑部件330一体化设计,也可以为单独的结构件,并且预先安装在支撑部件330并通过TIM接触。
通过上述的支撑部件330与压条部件600,本申请能够降低开关器件360在电路基板340上的占板面积,这有利于提高电路基板340的紧凑度。
在图6所示的结构中,支撑部件的第一表面和第二表面为满足一定夹角的两个表面,换言之,支撑部件为包括凸台的立方体,凸台的一个侧面为第二表面。
由图6可知,压条部件的固定部分和连接部分不处于同一个平面,连接部分包括通孔,压条部件通过连接部分处的通孔和紧固件等和支撑部件连接。压条部件通过固定部分压紧开关器件的本体和支撑部件的接触。在图6中,固定部分为压条结构中除通孔以外的部分,连接部分为压条部件中包括通孔的部分。需要说明的是,图4~图6所示的压条部件仅作为示例理解,本申请不限定图4~图6所示的压条部件之外的其他可能结构形式。
可以理解,在图4~图6所示的压条部件中,第一部件370可以位于压条部件与支撑部件之间。
图7是本申请实施例的散热块部件700的结构示意图。散热块部件700为第二部件380的一种示例。如图7所示,开关器件360的本体通过粘胶固定方式预先与散热块部件700安装在一起。开关器件360的引脚通过电路基板340上的通孔穿透到电路基板340的顶面(穿透路径可以参见图7所示的黑色虚线)并完成焊接。在安装电路基板340之前,散热块部件700预先安装在开关器件360与电路基板340之间。在安装电路基板340之后,散热块部件700同时被安置于开关器件360与支撑部件330的顶面之间,且使用螺丝刀等工具穿过电路基板340上的通孔,将散热块部件700的固定螺钉拧紧,以便使得散热块部件700与支撑部件330之间保持紧固连接,并将开关器件360的本体拉向支撑部件330的顶面。散热块部件700位于开关器件360的本体与支撑部件330的顶面之间,开关器件360还可以通过第一部件370(如陶瓷片、导热绝缘膜等TIM)与散热块部件700接触。其中,散热块部件700可以通过TIM与支撑部件330的顶面接触。
通过上述的散热块部件,本申请可以在电路基板先行安装至壳体后,仍保证开关器件的本体与支撑部件之间的距离尽可能缩短,从而能够提高开关器件的散热效率。
图8是本申请实施例的散热块部件800的结构示意图。散热块部件800为第二部件380的又一种示例。 如图8所示,散热块部件800包括与支撑部件330的顶面平行的安装面以及与开关器件360的本体平行的粘接面,散热块部件800的粘接面与安装面之间保持垂直设置关系。开关器件360通过粘胶固定方式预先安装在散热块部件800的粘接面上。在安装电路基板340之后,散热块部件800同时被安置于开关器件360和支撑部件330的顶面之间,此时使用螺丝刀等工具穿过电路基板340上的通孔,将散热块部件800的固定螺钉拧紧,使散热块部件800与支撑部件330的顶面之间保持紧固连接,并将开关器件360的本体拉向支撑部件330的顶面。
具体而言,由于开关器件360的本体与支撑部件330的顶面保持垂直设置关系,因此开关器件360与电路基板340之间也保持垂直设置关系,这可以减小开关器件360在电路基板340上的占板面积,提高电路基板340的紧凑度。同时,开关器件360的引脚也与电路基板340之间保持垂直设置关系,因此无需对开关器件360的引脚进行折弯,即可完成开关器件360焊接在电路基板340上的制造过程,进而能够提高生产效率。
图9是本申请实施例的散热块部件900的结构示意图。散热块部件900为第二部件380的再一种示例。散热块部件900不同于散热块部件700与散热块部件800。如图9所示,散热块部件900包括与支撑部件330的顶面平行的安装面以及与开关器件360的本体平行的粘接面,散热块部件900的粘接面与安装面之间存在预设角度,该预设角度为90°~180°中的任意一个角度值。开关器件360通过粘胶固定方式预先安装在散热块部件900的粘接面上。在安装电路基板340之后,散热块部件900同时被安置于开关器件360和支撑部件330的顶面之间,此时使用螺丝刀等工具穿过电路基板340上的通孔,将散热块部件900的固定螺钉拧紧,使散热块部件900与支撑部件330的顶面之间保持紧固连接,并将开关器件360的本体拉向支撑部件330的顶面。
通过散热块部件900,本申请能够降低开关器件360在电路基板340上的占板面积,这有利于提高电路基板340的紧凑度。
需要说明的是,图7~图9所示的散热块部件仅作为示例理解,本申请不限定图7~图9所示的散热块部件之外的其他可能结构形式。
一个可能的实现中,图7~图9所示的散热块部件是由金属材料制成的,如此,可以如此,这有利于增强将开关器件产生的热量向支撑部件进行传导的效率。
可以理解,在图7~图7所示的散热块部件中,第一部件370可以位于散热块部件与支撑部件之间;或者,第一部件370位于开关器件的本体与散热块部件之间。
图10是本申请实施例的逆变器设备1000的结构示意图。如图10所示,逆变器设备1000包括:上盖1010(这是可选的结构)、壳体1020、支撑部件1030、电路基板1040、插装器件1050、开关器件1060、第一部件1070、第二部件1080以及功率磁器件1090。关于逆变器部件1000中除功率磁器件1090之外的其他组成部分的描述可以参见前述描述,在此不再赘述。
如图10所示,功率磁器件1090通过波峰焊制造过程焊接在电路基板1040的底面,或者,通过螺钉/螺母方式预先安装在电路基板1040的底面上。对于后者,需要在电路基板1040上与功率磁器件1090固定螺钉对应位置开设通孔。在安装电路基板1040后,功率磁器件1090通过固定螺钉方式与壳体1020的底板保持紧固连接,并通过TIM与壳体1020的底板的顶面接触。通过将功率磁器件1090的固定螺钉拧紧,可以缩短功率磁器件1090与壳体1020的底板的顶面之间的距离,能够提高功率磁器件1090的散热效率。
可选地,在安装电路基板1040之前,本申请支持将功率磁器件1090预先通过固定螺钉方式与壳体1020的底板保持紧固连接,并且通过TIM与壳体1020的底板的顶面接触。在安装电路基板1040后,功率磁器件1090再通过螺钉/螺母方式与电路基板1040保持电气连接。
需要说明的是,功率磁器件1090可以悬空于电路基板1040与壳体1020的底板之间,也可以与壳体1020的底板之间存在连接关系,对此不予限定。
通过上述的功率磁器件的安装方式,本申请可以省去功率磁器件与电路基板1040之间的连接线缆,从而降低功率磁器件的物料成本和制造成本。并且,功率磁器件与电路基板1040之间的电气连接的位置固定,不会出现电气连接错误的情况,从而能够提高生产效率。另外,通过TIM,如导热绝缘胶、导热绝缘垫等进行接触,这有利于功率磁器件通过壳体1020的底板向周围环境进行散热。
图11是本申请实施例的逆变器设备1100的结构示意图。如图11所示,逆变器设备1100包括:上盖1110(这是可选的结构)、壳体1120、支撑部件1130、电路基板1140、插装器件1150、开关器件1160、 第一部件1170、第二部件1180、功率磁器件1190、腔体2以及腔体3。关于逆变器1100中除腔体2与腔体3之外的其他组成部分的描述可以参见前述描述,在此不再赘述。
如图11所示,腔体2与腔体3分别位于支撑部件1130的两侧,具体地,腔体2位于第一平面之上,腔体3位于第二平面之上。其中,第一平面与第二平面分别位于支撑部件1130的两侧。
通过设置第一平面与第二平面,本申请可以在电路基板1140与壳体1120的底板之间留有一定的空白空间,这有利于电路基板1140的散热性。同时,可以分别在第一平面与电路基板之间的空间,以及在第二平面与电路基板之间的空间,安放不同发热量的电子器件,从而便于对不同的电子器件进行散热设计,并提高低耐温电子器件的可靠性。
可选地,第一平面与第二平面齐平,这有利于壳体1120的底板的平整性,从而降低壳体的成本。
可选地,通过在第一平面与第二平面上分别设置腔体2与腔体3,插装器件1150与功率磁器件1190的部分或者全部分别位于腔体2与腔体3内,这可以避免功率磁器件1190与插装器件1150之间的电磁干扰。
在安装电路基板1140之后,插装器件1150的本体部分或者全部安置于腔体2内,功率磁器件1190的本体部分或者全部安置于腔体3内。由于腔体2与腔体3的设置,本申请可以使得安置于腔体2内的功率磁器件1190与安置于腔体3内的插装器件1150以及与没有安置于容纳腔内的开关器件1160之间散热的相互影响尽可能的降低,从而有利于散热设计。
可以理解,图11是以逆变器1100包括腔体2与腔体3为例进行描述,但是不限定逆变器1100所包括的容纳腔的数量。譬如,逆变器1100仅包括腔体2与腔体3之间的任意一个,也还可以包括腔体4等等,对此不予限定。
可以理解,当在第一平面设置腔体2时,插装器件1150的部分或者全部位于腔体2中,这可以降低插装器件1150与其余电子器件之间的电磁干扰,并降低插装器件1150与其余发热器件之间的散热影响,从而有利于散热设计。
可以理解,当在第二平面设置腔体3时,功率磁器件1190的部分或者全部位于腔体3中,这可以降低功率磁器件1190与其余电子器件之间的电磁干扰,并降低功率磁器件1190与其余发热器件之间的散热影响,从而有利于散热设计。
需要说明的是,功率磁器件1190可以悬空于电路基板1140与壳体1120的底板之间,也可以与壳体1120的底板之间存在连接关系,对此不予限定。
图12是本申请实施例的逆变器设备1200的结构示意图。如图12所示,逆变器设备1200包括:电路基板(分为顶面与底面)、电容、电感、腔体2、腔体3、功率磁器件、开关器件、底板(分为顶面与底面)以及梳状部件。其中,电容与电感是前述的插装器件的一种示例,梳状部件是壳体的底板的底面所包括的散热部件的一种示例。通过在壳体的底板的底面设置散热部件,本申请可以进一步地提升逆变器设备的散热效率。其中,图12中所示的梳状部件是作为散热部件的一个示例,本申请不限定其他的可能结构。
需要说明的是,前述的逆变器设备300~逆变器设备1200还可以包括紧固件,其用于固定开关器件、压条部件或者散热块部件中的至少一项与支撑部件之间的连接(或者,开关器件的本体、压条部件或者散热块部件置于部分或者全部的紧固件与支撑部件之间)。换言之,上述的紧固件能够用于将开关器件的本体、压条部件或者散热块部件压向支撑部件。其中,上述的紧固件可以为螺钉、螺母等用于发挥紧固作用的物体。
图13是本申请实施例的电子设备1300的结构示意图。如图13所示,电子设备1300包括:逆变器设备1310、通信单元1320以及控制单元1330。其中,逆变器设备1310以为前述的逆变器300~逆变器1200中的任意一项,其用于实现逆变器设备的功能。该通信单元1320用于输入指令,并将该指令发送至该控制单元1330。该控制单元1330用于根据该指令对前述的逆变器设备1310进行控制。
一种可能的实现中,该电子设备1300还包括:变压单元1340,用于将该电子设备1300的输入电压转换为直流电压,并将该直流电压提供给逆变器设备1310。
可选地,上述的变压单元1340还可以用于将逆变器设备1310的电压转换为直流电压,并将该直流电压提供给其他设备,譬如,储能系统或者电池包等。
可以理解,在本申请所提供的几个实施例中,所揭露的装置或者部件可以通过其它的方式实现。例如,以上所描述的装置或者部件实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划 分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种逆变器设备,其特征在于,包括:
    逆变电路,所述逆变电路包括电路基板、开关器件以及插装器件,所述开关器件包括引脚与本体,所述插装器件包括引脚与本体,所述开关器件的引脚与所述插装器件的引脚安装在所述电路基板的同一个表面;
    壳体,用于形成第一腔体,所述逆变电路容纳于所述第一腔体内,所述壳体的底板面向所述电路基板的表面包括支撑部件,所述开关器件的本体承载于所述支撑部件,所述支撑部件是由导热材料构成的;
    第一部件,位于所述开关器件的本体与所述支撑部件之间,所述第一部件是由导热绝缘材料构成的;
    第二部件,用于连接所述开关器件的本体与所述支撑部件;
    其中,所述逆变电路用于将输入至所述逆变器设备的直流电转换为交流电。
  2. 根据权利要求1所述的逆变器设备,其特征在于,所述第二部件包括以下任意一项:
    压条部件,散热块部件,以及,紧固件。
  3. 根据权利要求2所述的逆变器设备,其特征在于,
    所述第二部件为压条部件,所述开关器件的本体位于所述压条部件与所述支撑部件之间,所述压条部件用于将所述开关器件的本体压向所述支撑部件;
    所述第一部件位于所述压条部件与所述支撑部件之间。
  4. 根据权利要求2所述的逆变器设备,其特征在于,
    所述第二部件为散热块部件,所述开关器件的本体固定于所述散热块部件,所述散热块部件与所述支撑部件连接;
    所述第一部件位于所述开关器件的本体与所述散热块部件之间,或者,
    所述第一部件位于所述散热块部件与所述支撑部件之间。
  5. 根据权利要求2或3所述的逆变器设备,其特征在于,所述压条部件包括:
    固定部分和连接部分;
    所述固定部分用于压紧所述开关器件的本体和所述支撑部件的接触,所述开关器件的本体位于所述固定部分和所述支撑部件之间,
    所述连接部分通过所述紧固件和所述支撑部件连接。
  6. 根据权利要求1至5中任一项所述的逆变器设备,其特征在于,所述支撑部件包括:
    第一表面和第二表面;
    所述第一表面与所述壳体的底板面向所述电路基板的表面接触,
    所述第二表面用于安放所述开关器件的本体。
  7. 根据权利要求2至6中任一项所述的逆变器设备,其特征在于,所述散热块部件的构成材料包括金属材料。
  8. 根据权利要求1至7中任一项所述的逆变器设备,其特征在于,所述逆变电路还包括:
    功率磁器件,所述功率磁器件包括引脚与本体,所述功率磁器件的引脚安装于所述同一个平面。
  9. 根据权利要求1至8中任一项所述的逆变器设备,其特征在于,
    所述壳体的底板面向所述电路基板的表面包括第一平面和第二平面,所述第一平面与所述第二平面分别位于所述支撑部件的两侧。
  10. 根据权利要求9所述的逆变器设备,其特征在于,所述第一平面与所述第二平面齐平。
  11. 根据权利要求9或10所述的逆变器设备,其特征在于,所述第一平面包括第二腔体,所述插装器件的本体全部或部分位于所述第二腔体。
  12. 根据权利要求9至11中任一项所述的逆变器设备,其特征在于,所述第二平面包括第三腔体,所述功率磁器件的本体全部或部分位于所述第三腔体。
PCT/CN2024/085105 2023-03-30 2024-03-30 一种逆变器设备 WO2024199512A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310357655.3 2023-03-30
CN202310357655.3A CN116488477A (zh) 2023-03-30 2023-03-30 一种逆变器设备

Publications (1)

Publication Number Publication Date
WO2024199512A1 true WO2024199512A1 (zh) 2024-10-03

Family

ID=87224327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/085105 WO2024199512A1 (zh) 2023-03-30 2024-03-30 一种逆变器设备

Country Status (2)

Country Link
CN (1) CN116488477A (zh)
WO (1) WO2024199512A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116488477A (zh) * 2023-03-30 2023-07-25 华为数字能源技术有限公司 一种逆变器设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159204A (ja) * 2005-12-01 2007-06-21 Ishikawajima Harima Heavy Ind Co Ltd インバータ装置
CN201657566U (zh) * 2010-02-09 2010-11-24 浙江沪龙电机有限公司 基于igbt模块的固定件
CN208924125U (zh) * 2018-09-12 2019-05-31 深圳市麦格米特能源技术有限公司 一种电子设备及其光伏逆变器
CN210120493U (zh) * 2019-07-26 2020-02-28 浙江飞鹏车辆配件有限公司 车载逆变器
CN114823546A (zh) * 2022-03-26 2022-07-29 华为数字能源技术有限公司 功率模块及其制造方法、功率变换器和供电设备
CN218483141U (zh) * 2022-09-20 2023-02-14 深圳市华宝新能源股份有限公司 一种逆变器散热结构及储能电源
CN116488477A (zh) * 2023-03-30 2023-07-25 华为数字能源技术有限公司 一种逆变器设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159204A (ja) * 2005-12-01 2007-06-21 Ishikawajima Harima Heavy Ind Co Ltd インバータ装置
CN201657566U (zh) * 2010-02-09 2010-11-24 浙江沪龙电机有限公司 基于igbt模块的固定件
CN208924125U (zh) * 2018-09-12 2019-05-31 深圳市麦格米特能源技术有限公司 一种电子设备及其光伏逆变器
CN210120493U (zh) * 2019-07-26 2020-02-28 浙江飞鹏车辆配件有限公司 车载逆变器
CN114823546A (zh) * 2022-03-26 2022-07-29 华为数字能源技术有限公司 功率模块及其制造方法、功率变换器和供电设备
CN218483141U (zh) * 2022-09-20 2023-02-14 深圳市华宝新能源股份有限公司 一种逆变器散热结构及储能电源
CN116488477A (zh) * 2023-03-30 2023-07-25 华为数字能源技术有限公司 一种逆变器设备

Also Published As

Publication number Publication date
CN116488477A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
CN109427707B (zh) 一种功率器件的三维封装结构及封装方法
CN107591377B (zh) 一种功率器件的多dbc封装结构及封装方法
EP1212927B1 (en) A printed circuit board assembly
EP4411811A2 (en) Power device, power device assembly, and related apparatus
WO2024114220A1 (zh) 一种金属基板散热结构和光伏功率优化器
CN101834544A (zh) 一种用于高频开关电源同步整流电路结构
WO2024199512A1 (zh) 一种逆变器设备
CN110060991B (zh) 智能功率模块及空调器
CN207690782U (zh) 功率模块及空调器
WO2019189450A1 (ja) 電力変換装置
CN103763852A (zh) 电源板及具有电源板的主板
JP3797040B2 (ja) 半導体装置
JP3259576B2 (ja) スイッチング電源用整流部の組立構造
JP4631179B2 (ja) 半導体装置およびこれを用いたインバータ装置
CN214672591U (zh) 一种功率器件封装结构
CN212969598U (zh) 开放散热式固态继电器
WO2023276267A1 (ja) 電力変換装置
CN214708464U (zh) 控制器
TW200926948A (en) Power module package structure
CN210137281U (zh) 直流-直流变换器的功率模组
CN208924125U (zh) 一种电子设备及其光伏逆变器
JP5024439B2 (ja) 半導体装置
CN221652877U (zh) 一种功率器件的安装结构及开关电源
CN204857704U (zh) 功率模块的散热连接结构
CN210470138U (zh) 自带散热板的驱动模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24778297

Country of ref document: EP

Kind code of ref document: A1