[go: up one dir, main page]

WO2024197803A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2024197803A1
WO2024197803A1 PCT/CN2023/085431 CN2023085431W WO2024197803A1 WO 2024197803 A1 WO2024197803 A1 WO 2024197803A1 CN 2023085431 W CN2023085431 W CN 2023085431W WO 2024197803 A1 WO2024197803 A1 WO 2024197803A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
layer
light
display panel
emitting device
Prior art date
Application number
PCT/CN2023/085431
Other languages
English (en)
French (fr)
Inventor
赵德江
黄维
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2023/085431 priority Critical patent/WO2024197803A1/zh
Priority to CN202380008530.8A priority patent/CN119384693A/zh
Priority to US18/768,018 priority patent/US20240363060A1/en
Publication of WO2024197803A1 publication Critical patent/WO2024197803A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/502LED transmitters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/16Use of wireless transmission of display information
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/18Use of optical transmission of display information

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display panel and a display device.
  • Visible light communication also known as Li-Fi.
  • Li-Fi has higher bandwidth and higher efficiency than Wi-Fi.
  • the spectrum bandwidth of visible light is 10,000 times that of current electromagnetic waves, so the bandwidth of a single data channel of Li-Fi can be very high, and it can accommodate more channels for parallel transmission, so it will not affect the wireless transmission speed when multiple devices are connected to the Internet at the same time.
  • the application of visible light communication is not widespread enough.
  • the purpose of the present disclosure is to provide a display panel and a manufacturing method thereof, and a display device, which integrate display and emission of light signals.
  • a display panel comprising a plurality of sub-pixels, wherein each of the sub-pixels comprises at least one first light-emitting device.
  • the display panel further comprises:
  • a first substrate comprising a first region, wherein the plurality of sub-pixels are located in the first region;
  • a device layer disposed on one side of the first substrate, comprising a plurality of the first light-emitting devices
  • a first driving unit and a second driving unit wherein the second driving unit is connected to the first driving unit and the first light-emitting device, the first driving unit is used to output a driving current, and the second driving unit is used to generate an oscillating current in response to the driving current output by the first driving unit and output it to the first light-emitting device, so as to control the first light-emitting device to be repeatedly turned on or off, so that the first light-emitting device emits a light signal while displaying.
  • the frequency of the oscillating current generated by the second driving unit is not less than 10 5 Hz.
  • the display panel further includes:
  • a first driving layer disposed on one side of the first substrate, the first driving layer comprising the second driving unit, and the second driving unit is located in the first area;
  • the first light emitting device is located on a side of the first driving layer away from the first substrate, and the first light emitting device is located in the first area;
  • the first light emitting devices and the second driving units are arranged in a one-to-one correspondence.
  • the first driving layer further includes a first driving unit, and the first driving unit is located in the first area;
  • first driving units There are multiple first driving units, and in a direction perpendicular to the first substrate, the first light emitting devices and the first driving units are arranged in a one-to-one correspondence.
  • the display panel further includes a first driving chip, and the first driving unit is integrated in the first driving chip;
  • the first driving layer further includes a plurality of leads, and the first driving chip is connected to each of the first light emitting devices and each of the second driving units through the leads.
  • the display panel further includes:
  • a first driving layer disposed on one side of the first substrate, the first driving layer comprising a plurality of leads;
  • first driving unit is integrated into the first driving chip
  • second driving unit is integrated into the second driving chip
  • first driving chip and the second driving chip are connected to each of the first light-emitting devices through the lead wires
  • the first light emitting device is located on a side of the first driving layer away from the first substrate, and the first light emitting device is located in the first area.
  • the display panel further includes:
  • a first driving layer disposed on one side of the first substrate, the first driving layer comprising a plurality of leads;
  • a third driving chip wherein the first driving unit and the second driving unit are integrated into the third driving chip, and the third driving chip is connected to each of the first light-emitting devices through the lead wires;
  • the first light emitting device is located on the first driving layer away from the first substrate.
  • the first light emitting device is located on one side of the board, and the first light emitting device is located in the first area.
  • a single sub-pixel further includes a second light-emitting device, and the device layer further includes the second light-emitting device;
  • the display panel further includes:
  • a third driving unit connected to the second light emitting device, and configured to output a driving current to the second light emitting device
  • a control unit is connected to the first driving unit and the third driving unit, and is used to control the first light emitting device to emit a light signal within one frame time displayed by the second light emitting device.
  • the number of switching times of the first light emitting device is not less than 10 6 .
  • the display panel further includes:
  • a first driving layer disposed on one side of the first substrate, the first driving layer comprising the third driving unit, and the third driving unit is located in the first area;
  • the second light emitting device is located on a side of the first driving layer away from the first substrate, and the second light emitting device is located in the first area;
  • third driving units there are multiple third driving units, and in a direction perpendicular to the first substrate, the second light emitting devices and the third driving units are arranged in a one-to-one correspondence.
  • the display panel further includes a plurality of photoelectric converters for receiving optical signals transmitted from the outside and converting the optical signals into electrical signals for output.
  • the display panel further comprises a signal shielding layer, the signal shielding layer has a plurality of openings, and the plurality of photoelectric converters are disposed in each of the openings in a one-to-one correspondence;
  • the thickness of the signal shielding layer is not less than the height of the photoelectric converter.
  • the display panel further comprises a covering layer, and the covering layer is provided on one side of the light receiving surface of the photoelectric converter;
  • the cover layer comprises a first cover layer and a second cover layer which are sequentially stacked in a direction away from the photoelectric converter, and the refractive index of the first cover layer is smaller than the refractive index of the second cover layer;
  • the surface of the cover layer away from the photoelectric converter has a plurality of arc-shaped grooves.
  • the arc-shaped grooves are arranged in one-to-one correspondence with the photoelectric converters.
  • the display panel further includes a plurality of photoelectric converters, and the photoelectric converters are located in the first area;
  • the plurality of photoelectric converters are dispersedly located in the plurality of sub-pixels;
  • the first region includes a first sub-region and a second sub-region located outside the first sub-region, the plurality of sub-pixels are located in the first sub-region, and the photoelectric converter is located in the second sub-region.
  • the display panel when the first region includes a first sub-region and a second sub-region located outside the first sub-region, and the photoelectric converter is located in the second sub-region, the display panel further includes:
  • the barrier dam is disposed on one side of the first substrate and surrounds the periphery of the first sub-region.
  • the barrier dam is located between the first sub-region and the second sub-region.
  • the display panel further includes:
  • a cover plate is arranged on a side of the first light emitting device and the photoelectric conversion device away from the first substrate.
  • the display panel further includes:
  • an encapsulation layer provided on a side of the first light-emitting device and the photoelectric conversion device away from the first substrate, wherein the orthographic projections of the first light-emitting device and the photoelectric conversion device on the first substrate are located within the orthographic projection of the encapsulation layer on the first substrate;
  • the encapsulation layer includes a first inorganic layer, an organic layer, and a second inorganic layer which are sequentially stacked in a direction away from the first substrate.
  • the display panel when the first region includes a first sub-region and a second sub-region located outside the first sub-region, and the photoelectric converter is located in the second sub-region, the display panel further includes:
  • a second driving backplane disposed on one side of the first substrate and located in the second sub-area, the second driving backplane comprising a second substrate and a fourth driving unit disposed on one side of the second substrate, the fourth driving unit being used to provide a driving signal to the photoelectric converter, the photoelectric converter being disposed on a side of the fourth driving unit away from the second substrate;
  • the first substrate is a glass substrate
  • the second substrate is a single crystal silicon substrate.
  • a method for manufacturing a display panel comprising:
  • the device layer is disposed on one side of the first substrate and comprises a plurality of first light-emitting devices, wherein the first light-emitting devices are located in the first area;
  • the second driving unit is connected to the first driving unit and the first light-emitting device, the first driving unit is used to output a driving current, and the second driving unit is used to generate an oscillating current in response to the driving current output by the first driving unit and output it to the first light-emitting device, so as to control the first light-emitting device to be repeatedly turned on or off, so that the first light-emitting device emits a light signal while displaying.
  • the method for manufacturing a display panel further includes:
  • a photoelectric converter is formed, wherein the photoelectric converter is located in the first region.
  • a display device comprising the display panel as described in the first aspect.
  • the display panel provided by the present disclosure includes at least one first light-emitting device in a single sub-pixel, and a second driving unit is connected to the first driving unit and the first light-emitting device.
  • the first driving unit is used to output a driving current
  • the second driving unit is used to generate an oscillating current in response to the driving current output by the first driving unit and output it to the first light-emitting device, and control the first light-emitting device to be repeatedly turned on or off, so that the first light-emitting device emits a light signal while displaying.
  • the display panel integrates display and signal emission into one, and can not only be used to display images, but also can be used as a signal source to emit light signals, and use light signals for communication. It has various functions and can meet insufficient application requirements.
  • FIG1 is a schematic diagram of the optical communication principle in the related art
  • FIG2 is a schematic plan view of a first substrate base plate in an exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of the planar distribution of sub-pixels and driving units of a display panel in an exemplary embodiment of the present disclosure
  • FIG4 is a schematic diagram of a planar distribution of sub-pixels and driving units of a display panel in another exemplary embodiment of the present disclosure
  • FIG5 is a schematic diagram of a planar distribution of sub-pixels and driving units of a display panel in another exemplary embodiment of the present disclosure
  • FIG6 is a schematic diagram of a planar distribution of sub-pixels and driving units of a display panel in another exemplary embodiment of the present disclosure
  • FIG7 is a schematic diagram of a planar distribution of sub-pixels and driving units of a display panel in another exemplary embodiment of the present disclosure
  • FIG8 is a schematic diagram of a planar distribution of sub-pixels and photoelectric converters in another exemplary embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of the cross-sectional distribution of sub-pixels and photoelectric converters in a display panel in an exemplary embodiment of the present disclosure.
  • FIG10 is a schematic diagram of a display panel cover package in an exemplary embodiment of the present disclosure.
  • FIG11 is a schematic diagram of a display panel thin film package in an exemplary embodiment of the present disclosure.
  • FIG12 is a schematic diagram of the cross-sectional distribution of sub-pixels in a display panel in an exemplary embodiment of the present disclosure
  • FIG13 is a schematic diagram of a cross-sectional distribution of photoelectric converters in a display panel in an exemplary embodiment of the present disclosure
  • FIG14 is a schematic cross-sectional view of a display panel in another exemplary embodiment of the present disclosure.
  • FIG15 is a schematic diagram of the structure around the photoelectric converter in an exemplary embodiment of the present disclosure.
  • FIG16 is a schematic diagram of a structure in which a first light emitting device is connected to a first driving backplane in an exemplary embodiment of the present disclosure
  • FIG17 is a schematic diagram of a structure in which a photoelectric converter is connected to a first driving backplane in an exemplary embodiment of the present disclosure
  • FIG. 18 is a schematic diagram of a structure in which a first light emitting device is connected to a first driving backplane in another exemplary embodiment of the present disclosure
  • FIG. 19 is a schematic diagram of a structure in which a photoelectric converter is connected to a second driving backplane in an exemplary embodiment of the present disclosure.
  • the main components in the figure are described as follows: 100-first substrate; 110-first region; 111-first sub-region; 112-second sub-region; 120- Second area; 200-first driving layer; 201-first lead; 202-second lead; 203-third lead Wire; 204- fourth lead; 205- active layer; 206- first gate insulating layer; 207- first gate metal layer; 208- second gate insulating layer; 209- second gate metal layer; 210- interlayer dielectric layer; 211- source and drain metal layer; 212- first planarization layer; 213- transfer layer; 214- second planarization layer; 300- cover plate; 301- barrier dam; 302- first barrier dam; 303- second barrier dam; 304- support structure; 400- encapsulation layer; 500- second substrate; 501- n well; 502- p well; 503- first doped region; 504- second doped region; 505- gate insulating layer; 506- gate layer; 507-first planarization layer; 50
  • a structure When a structure is “on” another structure, it may mean that the structure is formed integrally on the other structure, or that the structure is “directly” disposed on the other structure, or that the structure is “indirectly” disposed on the other structure.
  • the “connection” is set on other structures.
  • Visible light wireless communication is a technology that uses light sources to transmit data wirelessly. By controlling the light-emitting device to flash millions of times per second, light represents 1 and off represents 0. Since the flashing frequency is too high, the human eye cannot detect it. Only the photoelectric converter can detect these changes. Therefore, a communication mechanism is formed in which the light-emitting device sends signals and the photosensitive sensor receives signals.
  • the schematic diagram of visible light wireless communication is shown in Figure 1.
  • the data signal sent by the transmitter is transmitted to the light-emitting device, such as LED, after passing through the modulator.
  • the light-emitting device converts the received data signal (electrical signal) into an optical signal and then sends it out.
  • the optical receiver such as APD (avalanche diode), receives the optical signal and converts it into an electrical signal, which is then transmitted to the receiving end via the modulator.
  • a light emitting device can be used as a transmitter of wireless communication to emit light data, and a receiver receives the data through a photoelectric converter.
  • the transmitter has a single function.
  • the present disclosure provides a display panel, including a plurality of sub-pixels 10, wherein a single sub-pixel 10 includes at least one first light-emitting device 11.
  • the display panel also includes a first substrate 100, a device layer, a first driving unit 21, and a second driving unit 22, wherein the first substrate 100 includes a first region 110 and a second region 120 located outside the first region 110, and a plurality of sub-pixels 10 are located in the first region 110; the device layer is disposed on one side of the first substrate 100, and includes a plurality of first light-emitting devices 11.
  • the second driving unit 22 connects the first driving unit 21 and the first light-emitting device 11, the first driving unit 21 is used to output a driving current, and the second driving unit 22 is used to generate an oscillating current in response to the driving current output by the first driving unit 21 and output it to the first light-emitting device 11, and control the first light-emitting device 11 to be repeatedly turned on or off, so that the first light-emitting device 11 emits a light signal while displaying.
  • a single sub-pixel 10 includes at least one first light-emitting device 11, the second driving unit 22 connects the first driving unit 21 and the first light-emitting device 11, the first driving unit 21 is used to output a driving current, the second driving unit 22 is used to respond to the driving current output by the first driving unit 21 to generate an oscillating current and output it to the first light-emitting device 11, control the first light-emitting device 11 to be repeatedly turned on or off, so that the first light-emitting device 11 emits a light signal while displaying.
  • the display panel integrates display and signal transmission into one. It can not only be used to display images, but also can be used as a signal source to emit light signals and use light signals for communication. It has diverse functions and can meet various application needs.
  • the display panel provided by the present disclosure includes a plurality of sub-pixels 10, a first driving unit 21, and a second driving unit 22.
  • the plurality of sub-pixels 10 may be arranged in an array.
  • a single sub-pixel 10 includes at least one first light-emitting device 11.
  • the first light-emitting device 11 may be an OLED, a micro LED, a mini LED, etc.
  • the first light-emitting device 11 is a micro LED.
  • the second driving unit 22 is connected to the first driving unit 21 and the first light-emitting device 11, and the first driving unit 21 is used to output a driving current.
  • the second driving unit 22 is used to generate an oscillating current in response to the driving current output by the first driving unit 21 and output it to the first light-emitting device 11, control the first light-emitting device 11 to be repeatedly turned on or off, so that the first light-emitting device 11 emits a light signal while displaying.
  • the driving current output by the first driving unit 21 is used to control the lighting and grayscale of the first light-emitting device 11, so that the first light-emitting device 11 completes the display.
  • the first driving unit 21 delivers a driving current to light up the first light-emitting device 11
  • the second driving unit 22 will be activated, and an oscillating current will be generated under the driving current.
  • the frequency of the oscillating current is very high, which can make the first light-emitting device 11 turn on (light up) and turn off quickly, but it cannot be detected by the human eye, and it is still a normal display screen visually.
  • the first light-emitting device 11 emits a visible light signal that flickers in light and dark under the action of the oscillating current. This visible light signal that flickers in light and dark can transmit data information and realize visible light communication.
  • the second driving unit 22 may be an oscillating circuit, which generates an oscillating current at a frequency of not less than 10 5 Hz.
  • the second driving unit 22 may be used to control the switching frequency of the first light-emitting device 11, and the switching frequency of the first light-emitting device 11 controlled by the second driving unit 22 may be not less than 10 5 Hz.
  • the second driving unit 22 includes components such as a coil, a resistor, and a capacitor, and may also include a transistor, etc.
  • the transistor may be a thin film transistor (TFT) or a metal oxide semiconductor field effect transistor (MOS).
  • TFT thin film transistor
  • MOS metal oxide semiconductor field effect transistor
  • different types of transistors are used to enable the first light-emitting device 11 to achieve different switching frequencies. For example, using a thin film transistor, the switching frequency of the first light-emitting device 11 can reach 10 6 to 10 8 Hz, which is very high and helps to obtain a higher signal transmission rate.
  • the first drive unit 21 and the second drive unit 22 can be arranged at different positions of the display panel in different ways. The following will describe in detail the arrangement of the first drive unit 21 and the second drive unit 22 in conjunction with the film structure of the display panel.
  • the first driving unit 21 and the second driving unit 22 may be distributed in the first area 110 , or may be connected to the display panel by being integrated into a chip, or may be distributed in the second area 120 .
  • the second driving unit 22 is located in the first area 110.
  • the display panel also includes a first driving layer 200, which is arranged on one side of the first base substrate 100.
  • the first driving layer 200 and the first base substrate 100 can be combined to form a first driving backplane.
  • the first driving layer 200 includes a second driving unit 22, and the second driving unit 22 is located in the first area 110.
  • the first light-emitting device 11 is located on the side of the first driving layer 200 away from the first base substrate 100; the number of the second driving units 22 is multiple, and in the direction perpendicular to the first base substrate 100, the first light-emitting device 11 and the second driving unit 22 are arranged one by one. That is, each first light-emitting device 11 is connected to a corresponding second driving unit 22, and the second driving unit 22 provides an oscillating current to the first light-emitting device 11 one by one.
  • the first driving unit 21 is used to control the lighting and gray scale of the first light emitting device 11.
  • the first light emitting device 11 can be driven passively, actively or semi-actively for display.
  • the first light emitting device 11 may be actively driven or semi-actively driven.
  • the first driving layer 200 further includes a first driving unit 21, and the first driving unit 21 is located in the first region 110; there are multiple first driving units 21, and in a direction perpendicular to the first base substrate 100, the first light emitting device 11 and the first driving unit 21 are arranged one by one.
  • the first driving unit 21 includes elements such as transistors and capacitors.
  • the transistor may be a thin film transistor (TFT) or a metal oxide semiconductor field effect transistor (MOS).
  • TFT thin film transistor
  • MOS metal oxide semiconductor field effect transistor
  • the thin film transistor can be a top-gate thin film transistor or a bottom-gate thin film transistor, and the present disclosure does not limit this.
  • the thin film transistor material can be an amorphous silicon thin film transistor, a low-temperature polysilicon thin film transistor, or an oxide thin film transistor, and the present disclosure does not limit this.
  • the thin film transistor can be an N-type thin film transistor or a P-type thin film transistor, and the present disclosure does not limit this.
  • each thin film transistor and storage capacitor can be formed by film layers such as an active layer, a gate insulating layer, a gate metal layer, an interlayer dielectric layer, and a source-drain metal layer.
  • the thin film transistor may include a semiconductor layer located in the active layer, a gate insulating layer, a gate located in the gate metal layer, an interlayer dielectric layer, and a source-drain electrode layer located in the source-drain metal layer, and the source-drain electrode layer is composed of the source and drain of the thin film transistor.
  • the semiconductor layer includes a channel region and a source contact region and a drain contact region on both sides of the channel region.
  • the source passes through the interlayer dielectric layer to connect to the source contact region
  • the drain passes through the interlayer dielectric layer to connect to the drain contact region.
  • the gate and the channel region are isolated by the gate insulating layer.
  • the positional relationship of each film layer can be determined according to the film layer structure of the thin film transistor.
  • the first driving layer 200 may include an active layer, a gate insulating layer, a gate metal layer, an interlayer dielectric layer, and a source-drain metal layer stacked in sequence, and the thin film transistor formed in this way is a top-gate thin film transistor.
  • the first driving layer 200 may include a gate metal layer, a gate insulating layer, an active layer, an interlayer dielectric layer and a source-drain metal layer stacked in sequence, and the thin film transistor formed in this way is a bottom-gate thin film transistor.
  • the first driving layer 200 may also adopt a dual-gate structure, that is, the gate metal layer may include a first gate metal layer 207 and a second gate metal layer 209, and the gate insulating layer may include a first gate insulating layer 206 for isolating the active layer 205 and the first gate metal layer 207, and a second gate insulating layer 208 for isolating the first gate metal layer 207 and the second gate metal layer 209.
  • the gate metal layer may include a first gate metal layer 207 and a second gate metal layer 209
  • the gate insulating layer may include a first gate insulating layer 206 for isolating the active layer 205 and the first gate metal layer 207, and a second gate insulating layer 208 for isolating the first gate metal layer 207 and the second gate metal layer 209.
  • the first driving layer 200 may include an active layer 205, a first gate insulating layer 206, a first gate metal layer 207, a second gate insulating layer 208, a second gate metal layer 209, an interlayer dielectric layer 210, and a source-drain metal layer 211 stacked sequentially on one side of the first base substrate 100.
  • the first driving layer 200 may also include a first planarization layer 212, a transfer layer 213, and a second planarization layer 214 stacked sequentially in a direction away from the first base substrate 100.
  • the first light-emitting device 11 may be connected to the source-drain metal layer 211 through the transfer layer 213.
  • the first light emitting device 11 may be passively driven.
  • the display panel further includes a first driving chip 30, and the first driving unit 21 is integrated in the first driving chip 30; as shown in FIG16 , in this embodiment, the first driving layer 200 includes a plurality of leads in addition to the second driving unit 22, and the first driving chip 30 is connected to each first light emitting device 11 and each second driving unit 22 through the leads.
  • the first driving layer 200 further includes a lead layer, and the lead layer may be provided on a side of the second driving unit 22 away from the first substrate 100.
  • the lead layer may include a first lead 201 and a second lead 202, and the first lead 201 may be connected to the second driving unit 22.
  • the first electrode of the first light-emitting device 11 is connected, and the second lead 202 can be connected to the second electrode of the first light-emitting device 11.
  • the second driving unit 22 can be connected to the first light-emitting device 11 through the first lead 201 or the second lead 202
  • the first driving chip 30 can be connected to the first light-emitting device 11 through the first lead 201 or the second lead 202, or connected to the second driving unit 22 through the first lead 201 or the second lead 202.
  • the specific connection method can be set according to actual needs and is not specifically limited here.
  • the first driving layer 200 can also include multiple lead layers, and the adjacent two lead layers are separated by an insulating layer. Multiple leads can be distributed in different lead layers.
  • the first driving layer 200 also includes a first lead layer, an insulating layer, and a second lead layer stacked in sequence in a direction away from the first substrate, and the first lead layer can be provided on the side of the second driving unit 22 away from the first substrate 100.
  • the first lead layer includes multiple first leads 201
  • the second lead layer includes multiple second leads 202.
  • the first lead 201 can be connected to the first electrode of the first light-emitting device 11
  • the second lead 202 can be connected to the second electrode of the first light-emitting device 11.
  • the second driving unit 22 can be connected to the first light-emitting device 11 through the first lead 201 or the second lead 202, and the first driving chip 30 can be connected to the first light-emitting device 11 through the first lead 201 or the second lead 202, and can also be connected to the second driving unit 22 through the first lead 201 or the second lead 202.
  • the specific connection method can be set according to actual needs and is not specifically limited here.
  • the second driving unit 22 is not located in the first area 110.
  • the first driving unit 21 may also not be located in the first area 110, that is, the first light emitting device 11 is passively driven.
  • the display panel includes a first driving layer 200, a first driving chip 30, and a second driving chip 31, wherein the first driving layer 200 is disposed on one side of the first substrate 100, and the first driving layer 200 includes a plurality of leads.
  • the first driving unit 21 is integrated in the first driving chip 30, and the second driving unit 22 is integrated in the second driving chip 31, and the first driving chip 30 and the second driving chip 31 are connected to each first light-emitting device 11 through leads.
  • the first driving layer 200 includes a lead layer, and the lead layer may include a first lead 201 and a second lead 202, the first lead 201 may be connected to the first electrode of the first light-emitting device 11, and the second lead 202 may be connected to the second electrode of the first light-emitting device 11, and further,
  • the second driving chip 31 can be connected to the first light emitting device 11 through the first lead 201 or the second lead 202, and the first driving chip 30 can be connected to the first light emitting device 11 through the first lead 201 or the second lead 202.
  • the first driving layer 200 can also include multiple lead layers, and an insulating layer is further provided between two adjacent lead layers. Connecting vias can be provided in the insulating layer to connect some leads in different lead layers to each other.
  • the display panel includes a first driving layer 200 and a third driving chip 32.
  • the first driving layer 200 is disposed on one side of the first substrate 100.
  • the first driving layer 200 includes a plurality of leads.
  • the first driving unit 21 and the second driving unit 22 are integrated in the third driving chip 32.
  • the third driving chip 32 is connected to each first light-emitting device 11 through leads.
  • the first driving layer 200 includes a lead layer, which may include a first lead 201 and a second lead 202.
  • the first lead 201 may be connected to the first electrode of the first light-emitting device 11, and the second lead 202 may be connected to the second electrode of the first light-emitting device 11.
  • the driving chip may be connected to the first light-emitting device 11 through the first lead 201 or the second lead 202.
  • the first driving layer 200 may also include multiple lead layers, and an insulating layer is further disposed between two adjacent lead layers.
  • a connecting via may be disposed in the insulating layer to interconnect some leads in different lead layers.
  • a single sub-pixel 10 may include a second light-emitting device 12 in addition to the first light-emitting device 11.
  • the device layer includes the second light-emitting device 12.
  • the second light-emitting device 12 may be an OLED, a micro LED, a mini LED, etc.
  • the display panel also includes a third driving unit 22 and a control unit 20, and the third driving unit 22 is connected to the second light-emitting device 12, and the third driving unit 22 is used to output a driving current to the second light-emitting device 12.
  • the control unit 20 is connected to the first driving unit 21 and the third driving unit 22, and is used to control the first light-emitting device 11 to emit a light signal within a frame time displayed by the second light-emitting device 12.
  • the driving current output by the third driving unit 22 is used to control the lighting and grayscale of the second light emitting device 12 so that the second light emitting device 12 can complete the display.
  • the second light emitting device 12 can be driven by active or passive driving.
  • the second light emitting device 12 is driven by active driving to ensure the stability of the display panel display.
  • the first driving layer 200 also includes a third driving unit 22, and the third driving unit 22 is located in the first area 110.
  • the number of the third driving units 22 is multiple, and the third driving unit 22 is perpendicular to the first substrate 100. In the direction, the second light emitting device 12 and the third driving unit 22 are arranged in a one-to-one correspondence.
  • the third driving unit 22 includes components such as transistors and capacitors.
  • the transistor can be a thin film transistor (TFT) or a metal oxide semiconductor field effect transistor (MOS).
  • the third driving unit 22 can be a TFT compensation circuit, such as an 8T2C pixel circuit.
  • T represents a thin film transistor
  • C represents a capacitor
  • 8 and 2 represent the number of thin film transistors and capacitors, respectively.
  • the control unit 20 is connected to the first driving unit 21 and the third driving unit 22, and is used to control the first light-emitting device 11 to emit a light signal within a frame time displayed by the second light-emitting device 12.
  • the first light-emitting device 11 can be controlled to repeatedly switch on and off to emit a light signal within a frame time displayed by the second light-emitting device 12.
  • the number of switches of the first light-emitting device 11 is not less than 10 6 .
  • the frequency of the display signal of the second light-emitting device 12 can be 60 to 120 Hz, and the first light-emitting device 11 can flash 10 8 times within a frame time.
  • the control unit 20 can also control the first light-emitting device 11 and the second light-emitting device 12 to display synchronously.
  • the combination of the first light-emitting device 11 and the second light-emitting device 12 helps to transmit light signals for communication while ensuring stable display of the display panel.
  • the third driving unit 22 is located in the first area 110, and the first driving unit 21 and the second driving unit 22 are integrated into the third driving chip 32.
  • the display panel also includes a first peripheral control chip 34 and a second peripheral control chip 35, wherein the first peripheral control chip 34 is connected to the third driving unit 22 for transmitting display signals to the second light-emitting device 12, and the control unit 20 is integrated into the second peripheral control chip 35.
  • the second peripheral control chip 35 is connected to the first peripheral control chip 34 and the third driving chip 32 to control the first light-emitting device 11 to emit light signals within one frame time displayed by the second light-emitting device 12 through the first peripheral control chip 34 and the third driving chip 32.
  • both the first light emitting device 11 and the second light emitting device 12 can be driven actively or passively, for example, both can be driven actively or passively at the same time, or one can be driven actively and the other can be driven passively.
  • the control unit 20, the first driving unit 21 and the third driving unit 22 and the position distribution among them can be changed with the different driving modes of the first light emitting device 11 and the second light emitting device 12, as long as the control unit 20 can control the first light emitting device 11 to emit a light signal within one frame time displayed by the second light emitting device 12.
  • the display panel may have other functions in addition to integrating display and emission of light signals.
  • the display panel further includes a plurality of photoelectric converters 40 for receiving optical signals transmitted from the outside and converting the optical signals into electrical signals for output.
  • the display panel can be used not only as a transmitting end in optical communication for transmitting optical signals, but also as a receiving end in optical communication for receiving optical signals.
  • the photoelectric converter 40 may include a first electrode, a first semiconductor layer, a photoelectric conversion layer, a second semiconductor layer, and a second electrode.
  • the photoelectric converter 40 may be a PIN diode.
  • the first electrode may be a P electrode, and the second electrode may be an N electrode accordingly.
  • the first semiconductor layer may be a P-type semiconductor layer, and the second semiconductor layer may be an N-type semiconductor layer accordingly.
  • the photoelectric conversion layer may be an I (Intrinsic) semiconductor layer.
  • I semiconductor layer (photoelectric conversion layer) of the PIN diode receives light of a corresponding wavelength, a photocurrent is generated.
  • the PIN diode has a high responsiveness, a fast response speed, a wide frequency band, a low operating voltage, a simple bias circuit, and can withstand a high reverse voltage under reverse bias, so the linear output range is wide.
  • the PIN photodiode can be connected to a transimpedance amplifier. After the PIN diode converts the optical signal into a current signal, the transimpedance amplifier converts the current signal into a voltage signal and amplifies it to the required amplitude, which helps to improve the signal-to-noise ratio and reduce the bit error rate.
  • the photoelectric converter 40 can also be an APD diode, that is, an avalanche diode.
  • an APD diode Compared with a PIN diode, an APD diode has an additional avalanche layer.
  • the avalanche layer is arranged between the photoelectric conversion layer and the second semiconductor layer. Under the action of the electric field, the avalanche layer undergoes an avalanche breakdown, the carrier energy increases, and it constantly collides with the crystal atoms, so that the electrons in the covalent bonds are excited to form free electron-hole pairs. The newly generated carriers generate free electron-hole pairs through collisions. This is the multiplication effect. Under the action of the multiplication effect, carriers 1 generate 2, 2 generate 4, and increase like an avalanche.
  • the APD diode utilizes the avalanche multiplication effect of carriers to amplify the photoelectric signal to improve the sensitivity of detection. Compared with the PIN diode, the APD diode has an additional avalanche layer, and the photogenerated current will be amplified by this area. Therefore, the ADP photodiode has the advantages of high power and high efficiency.
  • the display panel further includes a signal shielding layer 41 , the signal shielding layer 41 has a plurality of openings, and a plurality of photoelectric converters 40 are disposed in each opening in a one-to-one correspondence.
  • the thickness of the signal shielding layer 41 is not less than the height of the photoelectric converter 40.
  • the signal shielding layer 41 is used to prevent surrounding stray light from entering the photoelectric converter 40 and interfering with the reception of the optical signal by the photoelectric converter 40.
  • the material of the signal shielding layer 41 may include black resin or a reflective material with a reflective function.
  • the display panel also includes a covering layer 42, which is arranged on one side of the light receiving surface of the photoelectric converter 40.
  • the covering layer 42 includes a first covering layer 43 and a second covering layer 44 which are stacked in sequence in a direction away from the photoelectric converter 40, and the refractive index of the first covering layer 43 is less than the refractive index of the second covering layer 44.
  • the surface of the covering layer 42 away from the photoelectric converter 40 has a plurality of arc-shaped grooves 45, and the arc-shaped grooves 45 are arranged one by one with the photoelectric converter 40.
  • the covering layer 42 helps to prevent the light from the side from entering the photoelectric converter 40 and interfering with the photoelectric converter 40, while the arc-shaped grooves 45 on the top help to better receive the light signal emitted from the outside and can be evenly diffused to the light receiving surface of the entire photoelectric converter 40.
  • the display panel further includes a fourth driving unit 24 for providing a driving signal to the photoelectric converter 40.
  • the fourth driving unit 24 may be distributed in various positions in the display panel, and may be located in the first region 110 of the first base substrate 100, or may be disposed at the periphery of the first base substrate 100 or in the second region 120 of the first base substrate 100.
  • the fourth driving unit 24 is located at the periphery of the first substrate 100 or the second area 120.
  • the display panel further includes a fourth driving chip 33, and the fourth driving unit 24 is integrated in the fourth driving chip 33.
  • the fourth driving chip 33 can be connected to the photoelectric converter 40 through the lead in the first driving layer 200.
  • the lead layer in the first driving layer 200 further includes a third lead 203 and a fourth lead 204, wherein the third lead 203 connects the fourth driving chip 33 and the first pole of the photoelectric converter 40, and the fourth lead 204 connects the fourth driving chip 33 and the second pole of the photoelectric converter 40.
  • the fourth driving unit 24 is located in the first area 110 of the first base substrate 100.
  • the fourth driving unit 24 can be formed in the first driving layer 200. That is, when the first driving layer 200 is formed on one side of the first base substrate 100, the fourth driving unit 24 and other structures in the first driving layer 200, such as the first driving unit 21, can be formed at the same time.
  • the first base substrate 100 can be a glass substrate or a single crystal silicon substrate.
  • the fourth driving unit 24 may also be formed separately, that is, not formed in the first driving layer 200.
  • the display panel further includes a second driving backplane, which is disposed on one side of the first base substrate 100 and is located in the second sub-area 112.
  • the second driving backplane includes a second base substrate 500 and a fourth driving unit 24 disposed on one side of the second base substrate 500.
  • the photoelectric converter 40 is disposed on a side of the fourth driving unit 24 away from the second base substrate 500.
  • the first base substrate 100 may be a glass substrate
  • the second base substrate 500 may be a single crystal silicon substrate.
  • the second substrate 500 has a p-well 502 and an n-well 501, which can be used to form an N-type transistor and a P-type transistor, respectively.
  • a first doping region 503 can be formed in the p-well 502, and the first doping region 503 includes a source doping region and a drain doping region.
  • a second doping region 504 can be formed in the n-well 501, and the second doping region 504 includes a source doping region and a drain doping region.
  • the second driving backplane also includes a gate insulating layer 505, a gate layer 506, a first planarization layer 507, and a source-drain layer 508 stacked in a direction away from the second substrate 500.
  • a via hole is provided in the first planarization layer 507, and the source-drain layer 508 can be connected to the first doping region 503 and the second doping region 504 through the via hole.
  • the second driving backplane also includes a second planarization layer 509, a transfer layer 510 and a third planarization layer 511 arranged on the side of the source and drain layer 508 away from the second thorough substrate. Vias may also be set in the third planarization layer 511 and the second planarization layer 509, and the photoelectric converter 40 is connected to the source and drain layer 508 through the transfer layer 510.
  • the photoelectric converter 40 is located in the first region 110 , and the photoelectric converter 40 and the plurality of sub-pixels 10 may be distributed in various locations.
  • a plurality of photoelectric converters 40 are dispersed in a plurality of sub-pixels 10.
  • the photoelectric converters 40 and the sub-pixels 10 are arranged alternately, or every two, three or five sub-pixels 10 form a pixel unit, and the pixel units and the photoelectric converters 40 are arranged alternately.
  • the first region 110 includes a first sub-region 111 and a second sub-region 112 located outside the first sub-region 111, a plurality of sub-pixels 10 are located in the first sub-region 111, and the photoelectric converter 40 is located in the second sub-region 112. That is, the central region of the display panel is roughly the display and signal transmission region, and the edge region is roughly the signal receiving region.
  • the display panel further includes a barrier dam 301, which is disposed on one side of the first base substrate 100 and surrounds the outer portion of the first sub-region 111.
  • the barrier dam 301 is located between the first sub-area 111 and the second sub-area 112 to prevent external water vapor from entering and causing corrosion.
  • the barrier dam 301 can be formed of a glue material with a water and oxygen barrier function, which can not only isolate water and oxygen but also play a connecting role.
  • the barrier dam 301 may include a first barrier dam 302 and a second barrier dam 303, and the second barrier dam 303 is arranged on a side of the first barrier dam 302 away from the first sub-area 111.
  • the width of the first barrier dam 302 and the second barrier dam 303 can be 10 ⁇ m-300 ⁇ m, which can be adjusted accordingly according to the size of the display panel.
  • the display panel may be packaged by means of cover packaging or thin film packaging.
  • the display panel further includes a cover plate 300, which is disposed on the side of the first light-emitting device 11 and the photoelectric converter 40 away from the first substrate 100.
  • the barrier dam 301 may be connected between the cover plate 300 and the first substrate 100.
  • the display panel may further include a support structure 304, which is located between the first substrate 100 and the cover plate 300, and the height of the support structure 304 may be set roughly according to the size of the first light-emitting device 11, the second light-emitting device 12 and the photoelectric converter 40.
  • the size of the first light-emitting device 11 and the second light-emitting device 12 may be 10 ⁇ m-30 ⁇ m, with a resolution of 4k to 32k; the height of the photoelectric converter 40 may be 3 ⁇ m-10 ⁇ m, and the height of the support structure 304 may be 3 ⁇ m-15 ⁇ m.
  • the display panel further includes an encapsulation layer 400, which is disposed on a side of the first light emitting device 11 and the photoelectric converter 40 away from the first base substrate 100, and the orthographic projections of the first light emitting device 11 and the photoelectric converter 40 on the first base substrate 100 are located within the orthographic projections of the encapsulation layer 400 on the first base substrate 100.
  • the encapsulation layer 400 includes a first inorganic layer, an organic layer, and a second inorganic layer stacked in sequence in a direction away from the first base substrate 100.
  • the first inorganic layer may be a silicon dioxide layer, a silicon nitride layer, or a silicon oxynitride layer, etc., and the thickness may be 800nm-1200nm, such as 1000nm.
  • the organic layer may be an epoxy resin layer, and the thickness may be 5 ⁇ m-10 ⁇ m.
  • the second inorganic layer may be a silicon dioxide layer, a silicon nitride layer, or a silicon oxynitride layer, etc., and the thickness may be 200nm-500nm, such as 300nm.
  • the present disclosure further provides a method for manufacturing a display panel, comprising:
  • Step S100 providing a first substrate 100, including a first region 110 and a second region 120 located outside the first region 110;
  • Step S200 forming a first driving unit 21 and a second driving unit 22;
  • Step S300 forming a device layer, the device layer is arranged on one side of the first base substrate 100, and includes a plurality of first light-emitting devices 11, and the first light-emitting devices 11 are located in the first area 110;
  • the second driving unit 22 is connected to the first driving unit 21 and the first light-emitting device 11, the first driving unit 21 is used to output a driving current, and the second driving unit 22 is used to generate an oscillating current in response to the driving current output by the first driving unit 21 and output it to the first light-emitting device 11, so as to control the first light-emitting device 11 to be repeatedly turned on or off, so that the first light-emitting device 11 emits a light signal while displaying.
  • the method for manufacturing a display panel further includes:
  • step S400 a photoelectric converter 40 is formed.
  • the photoelectric converter 40 is located in the first region 110 .
  • the first drive layer 200 is formed on one side of the first base substrate 100, and the first drive layer 200 includes the first drive unit 21 or/and the second drive unit 22.
  • the first base substrate 100 and the first drive layer 200 are combined to form a first drive backplane.
  • the first light-emitting devices 11 can be made separately on another substrate, and then transferred to the first drive backplane by transfer.
  • the first light-emitting devices 11 can be micro LEDs.
  • the photoelectric converter 40 can be made separately on another substrate, and then transferred to the first drive backplane by transfer. Of course, the photoelectric converter 40 can also be made directly on the first drive backplane without transfer.
  • a fourth driving unit 24 for providing a driving signal to the photoelectric converter 40 may be formed when the photoelectric converter 40 is formed.
  • the step includes:
  • Step S410 providing a second base substrate 500
  • Step S420 forming a second driving layer on one side of the second base substrate 500, the second driving layer including a fourth driving unit 24;
  • step S430 a photoelectric converter 40 is formed on a side of the second driving layer away from the second base substrate 500 .
  • the second substrate 500 may be a single crystal silicon substrate.
  • the fourth driving unit 24 may include a transistor device, which may be a metal oxide semiconductor field effect transistor (MOS). Further, the second driving layer may also include other data processing units, such as a filter circuit, etc., to filter the electrical signal converted by the photoelectric converter 40.
  • the second substrate 500 has a p-well 502 and an n-well 501, which can be used to form an N-type transistor and a P-type transistor respectively.
  • a first doping region 503 may be formed in the p-well 502, and the first doping region 503 includes a source doping region and a drain doping region.
  • a second doping region 504 may be formed in the n-well 501, and the second doping region 504 includes a source doping region and a drain doping region.
  • the second driving layer also includes a gate insulating layer 505, a gate layer 506, a first planarization layer 507, and a source and drain layer 508 stacked in a direction away from the second substrate 500.
  • the first planarization layer 507 is provided with via holes, and the source-drain layer 508 can be connected to the first doping region 503 and the second doping region 504 through the via holes.
  • the second driving layer also includes a second planarization layer 509, a transfer layer 510, and a third planarization layer 511, which are arranged on the side of the source-drain layer 508 away from the second substrate. Vias can also be provided in the third planarization layer 511 and the second planarization layer 509, and the photoelectric converter 40 is connected to the source-drain layer 508 through the transfer layer 510.
  • the second base substrate 500, the second driving layer and the photoelectric converter 40 are uniformly transferred to the first driving backplane, specifically to the second region 120.
  • the first base substrate 100 may be a glass substrate.
  • the first light-emitting device 11 can also be made separately on another substrate, and then transferred to the first drive backplane by transfer.
  • the photoelectric converter 40 can also be made separately on another substrate, and then transferred to the first drive backplane by transfer, or it can be made directly on the first drive backplane without transfer.
  • the first light-emitting device 11 and the photoelectric converter 40 can be connected to the corresponding drive backplane by means of face-up or flip-up.
  • the photoelectric converter 40 in addition to being transferred to the first driving backplane, can also be transferred to the cover plate 300 , and then the cover plate 300 and the first driving backplane are assembled to form a display panel.
  • the embodiment of the present disclosure also provides a display device, including a display panel, which can be a display panel of any of the above embodiments. Its specific structure and beneficial effects can be referred to the embodiment of the display panel above, and will not be repeated here.
  • the display device of the present disclosure can be a mobile phone, a tablet Computers, televisions and other electronic devices are not listed here one by one.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板及其制作方法、显示装置,属于显示技术领域。显示面板,包括多个子像素(10),子像素(10)包括至少一个第一发光器件(11):第一衬底基板(100),包括第一区域(110),多个子像素(10)位于第一区域(110);器件层,包括多个第一发光器件(11);第一驱动单元(21)和第二驱动单元(22),第一驱动单元(21)用于输出驱动电流,第二驱动单元(22)用于响应第一驱动单元(21)输出的驱动电流后产生震荡电流并输出至第一发光器件(11),控制第一发光器件(11)反复开启或关闭,使第一发光器件(11)在显示的同时发射出光信号。显示面板可在显示的同时作为信号源发射光信号。

Description

显示面板及显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板及显示装置。
背景技术
可见光通信(visible light communication,VLC),又称为Li-Fi。Li-Fi相比于Wi-Fi拥有给更高的带宽和更高的效率。可见光的频谱带宽是目前电磁波带宽的10000倍,所以Li-Fi的单个数据信道的带宽就可以很高,也可以容纳更多的信道作并行传输,因此在多台设备同时上网时不会影响无线传输速度。然而,目前,可见光通信的应用不够广泛。
所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种显示面板及其制作方法、显示装置,将显示和发射光信号集成于一体。
为实现上述发明目的,本公开采用如下技术方案:
根据本公开的第一个方面,提供一种显示面板,包括多个子像素,单个所述子像素包括至少一个第一发光器件:所述显示面板还包括:
第一衬底基板,包括第一区域,所述多个子像素位于所述第一区域;
器件层,设于所述第一衬底基板的一侧,包括多个所述第一发光器件;
第一驱动单元和第二驱动单元,所述第二驱动单元连接所述第一驱动单元和所述第一发光器件,所述第一驱动单元用于输出驱动电流,所述第二驱动单元用于响应所述第一驱动单元输出的驱动电流后产生震荡电流并输出至所述第一发光器件,控制所述第一发光器件反复开启或关闭,使所述第一发光器件在显示的同时发射出光信号。
在本公开的一种示例性实施例中,所述第二驱动单元产生的震荡电流的频率不小于105Hz。
在本公开的一种示例性实施例中,所述显示面板还包括:
第一驱动层,设于所述第一衬底基板的一侧,所述第一驱动层包括所述第二驱动单元,所述第二驱动单元位于所述第一区域;
其中,所述第一发光器件位于所述第一驱动层远离所述第一衬底基板的一侧,且所述第一发光器件位于所述第一区域;
所述第二驱动单元的数量为多个,在垂直于所述第一衬底基板方向上,所述第一发光器件和所述第二驱动单元一一对应设置。
在本公开的一种示例性实施例中,所述第一驱动层还包括第一驱动单元,所述第一驱动单元位于所述第一区域;
所述第一驱动单元的数量为多个,在垂直于所述第一衬底基板方向上,所述第一发光器件和所述第一驱动单元一一对应设置。
在本公开的一种示例性实施例中,所述显示面板还包括第一驱动芯片,所述第一驱动单元集成于所述第一驱动芯片;
所述第一驱动层还包括多条引线,所述第一驱动芯片通过所述引线与各所述第一发光器件以及各所述第二驱动单元连接。
在本公开的一种示例性实施例中,所述显示面板还包括:
第一驱动层,设于所述第一衬底基板的一侧,所述第一驱动层包括多条引线;
第一驱动芯片和第二驱动芯片,所述第一驱动单元集成于所述第一驱动芯片,所述第二驱动单元集成于所述第二驱动芯片,所述第一驱动芯片和所述第二驱动芯片通过所述引线与各所述第一发光器件连接;
其中,所述第一发光器件位于所述第一驱动层远离所述第一衬底基板的一侧,且所述第一发光器件位于所述第一区域。
在本公开的一种示例性实施例中,所述显示面板还包括:
第一驱动层,设于所述第一衬底基板的一侧,所述第一驱动层包括多条引线;
第三驱动芯片,所述第一驱动单元和所述第二驱动单元集成于所述第三驱动芯片,所述第三驱动芯片通过所述引线与各所述第一发光器件连接;
其中,所述第一发光器件位于所述第一驱动层远离所述第一衬底基 板的一侧,且所述第一发光器件位于所述第一区域。
在本公开的一种示例性实施例中,单个所述子像素还包括第二发光器件,所述器件层还包括所述第二发光器件;
所述显示面板还包括:
第三驱动单元,与所述第二发光器件连接,所述第三驱动单元用于输出驱动电流至所述第二发光器件;
控制单元,与所述第一驱动单元以及所述第三驱动单元连接,用于控制所述第一发光器件在所述第二发光器件显示的一帧时间内发射光信号。
在本公开的一种示例性实施例中,在所述第二发光器件显示的一帧时间内,所述第一发光器件的开关次数不小于106
在本公开的一种示例性实施例中,所述显示面板还包括:
第一驱动层,设于所述第一衬底基板的一侧,所述第一驱动层包括所述第三驱动单元,所述第三驱动单元位于所述第一区域;
其中,所述第二发光器件位于所述第一驱动层远离所述第一衬底基板的一侧,且所述第二发光器件位于所述第一区域;
所述第三驱动单元的数量为多个,在垂直于所述第一衬底基板方向上,所述第二发光器件和所述第三驱动单元一一对应设置。
在本公开的一种示例性实施例中,所述显示面板还包括多个光电转换器,用于接收外界传输的光信号并将该光信号转换为电信号后输出。
在本公开的一种示例性实施例中,所述显示面板还包括信号遮挡层,所述信号遮挡层具有多个开口,多个所述光电转换器一一对应地设置于各所述开口内;
其中,所述信号遮挡层的厚度不小于所述光电转换器的高度。
在本公开的一种示例性实施例中,所述显示面板还包括覆盖层,所述覆盖层设于所述光电转换器光接收面的一侧;
所述覆盖层包括沿远离所述光电转换器方向依次层叠设置的第一覆盖层和第二覆盖层,所述第一覆盖层的折射率小于所述第二覆盖层的折射率;
所述覆盖层的远离所述光电转换器的表面具有多个弧形凹槽,所述 弧形凹槽与所述光电转换器一一对应设置。
在本公开的一种示例性实施例中,所述显示面板还包括多个光电转换器,所述光电转换器位于所述第一区域;
其中,多个所述光电转换器分散位于所述多个子像素中;或
所述第一区域包括第一子区和位于第一子区外围的第二子区,所述多个子像素位于所述第一子区,所述光电转换器位于所述第二子区。
在本公开的一种示例性实施例中,当所述第一区域包括第一子区和位于第一子区外围的第二子区,所述光电转换器位于所述第二子区时,所述显示面板还包括:
阻隔坝,设于所述第一衬底基板的一侧,并围设在所述第一子区的外围,所述阻隔坝位于第一子区和第二子区之间。
在本公开的一种示例性实施例中,所述显示面板还包括:
盖板,设于所述第一发光器件和所述光电转换器件远离所述第一衬底基板的一侧。
在本公开的一种示例性实施例中,所述显示面板还包括:
封装层,设于所述第一发光器件和所述光电转换器件远离所述第一衬底基板的一侧,所述第一发光器件和所述光电转换器件在所述第一衬底基板上的正投影位于所述封装层在所述第一衬底基板上的正投影之内;
所述封装层包括沿远离所述第一衬底基板方向依次层叠设置的第一无机层、有机层和第二无机层。
在本公开的一种示例性实施例中,当所述第一区域包括第一子区和位于第一子区外围的第二子区,所述光电转换器位于所述第二子区时,所述显示面板还包括:
第二驱动背板,设于所述第一衬底基板的一侧,且位于所述第二子区,所述第二驱动背板包括第二衬底基板和设于所述的第二衬底基板一侧的第四驱动单元,所述第四驱动单元用于向所述光电转换器提供驱动信号,所述光电转换器设于所述第四驱动单元远离所述第二衬底基板的一侧;
其中,所述第一衬底基板为玻璃基板,所述第二衬底基板为单晶硅基板。
根据本公开第二个方面,提供一种显示面板的制作方法,包括:
提供第一衬底基板,包括第一区域和位于所述第一区域外围的第二区域;
形成第一驱动单元和第二驱动单元;
形成器件层,所述器件层设于所述第一衬底基板的一侧,包括多个第一发光器件,所述第一发光器件位于所述第一区域;
其中,所述第二驱动单元连接所述第一驱动单元和所述第一发光器件,所述第一驱动单元用于输出驱动电流,所述第二驱动单元用于响应所述第一驱动单元输出的驱动电流后产生震荡电流并输出至所述第一发光器件,控制所述第一发光器件反复开启或关闭,使所述第一发光器件在显示的同时发射出光信号。
在本公开的一种示例性实施例中,显示面板的制作方法还包括:
形成光电转换器,所述光电转换器位于所述第一区域。
根据本公开第三个方面,提供一种显示装置,包括如第一方面所述的显示面板。
本公开提供的显示面板,单个子像素包括至少一个第一发光器件,第二驱动单元连接第一驱动单元和第一发光器件,第一驱动单元用于输出驱动电流,第二驱动单元用于响应第一驱动单元输出的驱动电流后产生震荡电流并输出至第一发光器件,控制第一发光器件反复开启或关闭,使第一发光器件在显示的同时发射出光信号。该显示面板将显示和发射信号集成为一体,不仅可用于显示画面,还可作为信号源发射光信号,利用光信号进行通讯,功能多样,可满足不足的应用需求。
附图说明
通过参照附图详细描述其示例实施方式,本公开的上述和其它特征及优点将变得更加明显。
图1是相关技术中光通讯原理示意图;
图2是本公开示例性实施例中第一衬底基板平面示意图;
图3是本公开示例性实施例中显示面板子像素和各驱动单元平面分布示意图;
图4是本公开另一示例性实施例中显示面板子像素和各驱动单元平面分布示意图;
图5是本公开另一示例性实施例中显示面板子像素和各驱动单元平面分布示意图;
图6是本公开另一示例性实施例中显示面板子像素和各驱动单元平面分布示意图;
图7是本公开另一示例性实施例中显示面板子像素和各驱动单元平面分布示意图;
图8是本公开另一示例性实施例中子像素、光电转换器平面分布示意图;
图9是本公开示例性实施例中显示面板中子像素和光电转换器截面分布示意图;
图10是本公开示例性实施例中显示面板盖板封装示意图;
图11是本公开示例性实施例中显示面板薄膜封装示意图;
图12是本公开示例性实施例中显示面板中子像素截面分布示意图;
图13是本公开示例性实施例中显示面板中光电转换器截面分布示意图;
图14是本公开另一示例性实施例中显示面板截面示意图;
图15是本公开示例性实施例中光电转换器周围结构示意图;
图16是本公开示例性实施例中第一发光器件连接第一驱动背板结构示意图;
图17是本公开示例性实施例中光电转换器连接第一驱动背板结构示意图;
图18是另一本公开示例性实施例中第一发光器件连接第一驱动背板结构示意图;
图19是本公开示例性实施例中光电转换器连接第二驱动背板结构示意图。
图中主要元件附图标记说明如下:
100-第一衬底基板;110-第一区域;111-第一子区;112-第二子区;120-
第二区域;200-第一驱动层;201-第一引线;202-第二引线;203-第三引 线;204-第四引线;205-有源层;206-第一栅极绝缘层;207-第一栅金属层;208-第二栅极绝缘层;209-第二栅金属层;210-层间电介质层;211-源漏金属层;212-第一平坦化层;213-转接层;214-第二平坦化层;300-盖板;301-阻隔坝;302-第一阻隔坝;303-第二阻隔坝;304-支撑结构;400-封装层;500-第二衬底基板;501-n阱;502-p阱;503-第一掺杂区;504-第二掺杂区;505-栅绝缘层;506-栅极层;507-第一平坦化层;508-源漏层;509-第二平坦化层;510-转接层;511-第三平坦化层;10-子像素;11-第一发光器件;12-第二发光器件;21-第一驱动单元;22-第二驱动单元;23-第三驱动单元;24-第四驱动单元;30-第一驱动芯片;31-第二驱动芯片;32-第三驱动芯片;33-第四驱动芯片;34-第一外围控制芯片;35-第二外围控制芯片;40-光电转换器;41-信号遮挡层;42-覆盖层;43-第一覆盖层;44-第二覆盖层;45-弧形凹槽。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本公开将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有所述特定细节中的一个或更多,或者可以采用其它的方法、组元、材料等。在其它情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本公开的主要技术创意。
当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间 接”设置在其它结构上。
用语“一个”、“一”、“所述”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。用语“第一”和“第二”等仅作为标记使用,不是对其对象的数量限制。
可见光无线通信是一种利用光源的无线光传输数据技术。通过控制发光器件以每秒数百万次的频率闪烁,亮表示1,灭表示0,由于闪烁频率太高,人眼无法察觉,只有光电转换器能检测到这些变化,因此,形成了以发光器件发送信号,光敏传感器接收信号的通信机制。可见光无线通讯的原理图如图1所示,发射端发出的数据信号经过调制器后传输至发光器件,如LED,发光器件将接收到的数据信号(电信号)转换为光信号后发出,光接收器,如APD(雪崩二极管)接收该光信号后将该光信号转换为电信号,经由调制器等传输至接收端。
相关技术中,可通过发光器件作为无线通信的发送端发光数据,接收端通过光电转换器接收数据。然而发送端功能单一。
如图2和图3所示,本公开提供一种显示面板,包括多个子像素10,单个子像素10包括至少一个第一发光器件11。显示面板还包括第一衬底基板100、器件层、第一驱动单元21和第二驱动单元22,其中,第一衬底基板100包括第一区域110和位于第一区域110外围的第二区域120,多个子像素10位于第一区域110;器件层设于第一衬底基板100的一侧,包括多个第一发光器件11。第二驱动单元22连接第一驱动单元21和第一发光器件11,第一驱动单元21用于输出驱动电流,第二驱动单元22用于响应第一驱动单元21输出的驱动电流后产生震荡电流并输出至第一发光器件11,控制第一发光器件11反复开启或关闭,使第一发光器件11在显示的同时发射出光信号。
本公开提供的显示面板,单个子像素10包括至少一个第一发光器件11,第二驱动单元22连接第一驱动单元21和第一发光器件11,第一驱动单元21用于输出驱动电流,第二驱动单元22用于响应第一驱动单元21输出的驱动电流后产生震荡电流并输出至第一发光器件11,控制第一发光器件11反复开启或关闭,使第一发光器件11在显示的同时发射出光信号。 该显示面板将显示和发射信号集成为一体,不仅可用于显示画面,还可作为信号源发射光信号,利用光信号进行通讯,功能多样,可满足不足的应用需求。
下面将结合附图和具体实施例对本公开提供的显示面板的各部件进行详细说明:
如图2和图3所示,本公开提供的显示面板包括多个子像素10、第一驱动单元21和第二驱动单元22。多个子像素10可阵列排列。单个子像素10包括至少一个第一发光器件11。第一发光器件11可以为OLED、micro LED、mini LED等。优选地,第一发光器件11为micro LED。
第二驱动单元22连接第一驱动单元21和第一发光器件11,第一驱动单元21用于输出驱动电流。第二驱动单元22用于响应第一驱动单元21输出的驱动电流后产生震荡电流并输出至第一发光器件11,控制第一发光器件11反复开启或关闭,使第一发光器件11在显示的同时发射出光信号。具体地,第一驱动单元21输出的驱动电流用于控制第一发光器件11的点亮和灰阶,以使第一发光器件11完成显示。当第一驱动单元21输送驱动电流可点亮第一发光器件11时,第二驱动单元22就会被激活,在该驱动电流下产生震荡电流,该震荡电流的频率很高,可使第一发光器件11快速的开启(点亮)和关闭,但人眼无法察觉,在视觉上仍是正常的显示画面。在该正常显示画面下,第一发光器件11在震荡电流的作用下发出明暗闪烁的可见光信号,这种明暗闪烁的可见光信号能够传递数据信息,实现可见光通讯。
第二驱动单元22可以为震荡电路,其产生震荡电流的频率不小于105Hz。第二驱动单元22可用于控制第一发光器件11的开关频率,第二驱动单元22控制第一发光器件11的开关频率可不小于105Hz。在本公开一些实施例中,第二驱动单元22包含线圈、电阻、电容等元件,还可以包括晶体管等。该晶体管可以是薄膜晶体管(TFT),也可以为金属氧化物半导体场效应晶体管(MOS)。通常情况下,使用不同种类的晶体管可使第一发光器件11达到不同的开关频率。如,使用薄膜晶体管,第一发光器件11的开关频率可达到106~108Hz,该频率很高,有助于获得较高的信号传递速率。
如图3至图8所示,第一驱动单元21和第二驱动单元22可通过不同的方式设置在显示面板的不同位置。下面将结合显示面板的膜层结构,详细说明第一驱动单元21和第二驱动单元22的设置方式。
本公开中,第一驱动单元21和第二驱动单元22可分布于第一区域110也可通过集成在芯片的方式与显示面板连接或分布在第二区域120。
如图3、图4、图16、图18所示,在本公开一些实施例中,第二驱动单元22位于第一区域110。具体地,显示面板还包括第一驱动层200,设于第一衬底基板100的一侧,第一驱动层200和第一衬底基板100可组合形成第一驱动背板,第一驱动层200包括第二驱动单元22,第二驱动单元22位于第一区域110。第一发光器件11位于第一驱动层200远离第一衬底基板100的一侧;第二驱动单元22的数量为多个,在垂直于第一衬底基板100方向上,第一发光器件11和第二驱动单元22一一对应设置。即,每个第一发光器件11对应连接一个第二驱动单元22,第二驱动单元22一一对应地向第一发光器件11提供震荡电流。
第一驱动单元21用于控制第一发光器件11的点亮和灰阶。在该类实施例中,第一发光器件11可采用无源驱动、有源驱动或半有源驱动方式进行显示。
具体在一实施例中,如图4所示,第一发光器件11可采用有源驱动或半有源驱动。在此实施例中,第一驱动层200还包括第一驱动单元21,第一驱动单元21位于第一区域110;第一驱动单元21的数量为多个,在垂直于第一衬底基板100方向上,第一发光器件11和第一驱动单元21一一对应设置。
第一驱动单元21包括晶体管、电容等元件。可选地,晶体管可以为薄膜晶体管(TFT),也可以为金属氧化物半导体场效应晶体管(MOS)。
以第一驱动单元21和第二驱动单元22中所包含的晶体管为薄膜晶体管为例,在膜层结构上,薄膜晶体管可以为顶栅型薄膜晶体管或者底栅型薄膜晶体管,本公开对此不做限制。在薄膜晶体管材料上,薄膜晶体管可以为非晶硅薄膜晶体管、低温多晶硅薄膜晶体管或者氧化物薄膜晶体管,本公开对此不做限制。在薄膜晶体管的导通条件上,薄膜晶体管可以为N型薄膜晶体管或者P型薄膜晶体管,本公开对此也不做限制。第一驱动层 200中,各个薄膜晶体管和存储电容可以由有源层、栅极绝缘层、栅金属层、层间电介质层、源漏金属层等膜层形成。其中,薄膜晶体管可以包括位于有源层的半导体层、栅极绝缘层、位于栅金属层的栅极、层间电介质层、位于源漏金属层的源漏电极层,源漏电极层由薄膜晶体管的源极和漏极组成。半导体层包括沟道区以及沟道区两侧的源极接触区和漏极接触区,源极穿过层间电介质层以与源极接触区连接,漏极穿过层间电介质层以与漏极接触区连接,栅极和沟道区被栅极绝缘层隔离。其中,各个膜层的位置关系可以根据薄膜晶体管的膜层结构确定。举例而言,第一驱动层200可以包括依次层叠设置的有源层、栅极绝缘层、栅金属层、层间电介质层和源漏金属层,如此所形成的薄膜晶体管为顶栅型薄膜晶体管。再举例而言,第一驱动层200可以包括依次层叠设置的栅金属层、栅极绝缘层、有源层、层间电介质层和源漏金属层,如此所形成的薄膜晶体管为底栅型薄膜晶体管。
如图18所示,第一驱动层200还可以采用双栅极结构,即栅金属层可以包括第一栅金属层207和第二栅金属层209,栅极绝缘层可以包括用于隔离有源层205和第一栅金属层207的第一栅极绝缘层206,以及包括用于隔离第一栅金属层207和第二栅金属层209的第二栅极绝缘层208。举例而言,第一驱动层200可以包括依次层叠设置于第一衬底基板100一侧的有源层205、第一栅极绝缘层206、第一栅金属层207、第二栅极绝缘层208、第二栅金属层209、层间电介质层210、源漏金属层211。进一步地,第一驱动层200还可以包括沿远离第一衬底基板100方向依次层叠设置的第一平坦化层212、转接层213和第二平坦化层214。第一发光器件11件可通过转接层213连接至源漏金属层211。
如图3所示,在另一实施例中,第一发光器件11可采用无源驱动。在此实施例中,显示面板还包括第一驱动芯片30,第一驱动单元21集成于第一驱动芯片30;如图16所示,在该实施例中,第一驱动层200除包括第二驱动单元22外,还包括多条引线,第一驱动芯片30通过引线与各第一发光器件11以及各第二驱动单元22连接。举例而言,第一驱动层200还包括引线层,引线层可设于第二驱动单元22远离第一衬底基板100的一侧。该引线层可包括第一引线201和第二引线202,第一引线201可与 第一发光器件11的第一电极连接,第二引线202可与第一发光器件11的第二电极连接,进一步地,第二驱动单元22可通过第一引线201或第二引线202与第一发光器件11连接,第一驱动芯片30可通过第一引线201或第二引线202与第一发光器件11连接,或通过第一引线201或第二引线202与第二驱动单元22连接,具体连接方式可根据实际需求进行设定,在此不做特殊限定。此外,第一驱动层200也可包括多层引线层,相邻两层引线层之间通过绝缘层隔开。多条引线可分布在不同的引线层。如第一驱动层200还包括沿远离第一衬底基板方向依次层叠设置的第一引线层、绝缘层和第二引线层,第一引线层可设于第二驱动单元22远离第一衬底基板100的一侧。第一引线层包括多条第一引线201,第二引线层包括多条第二引线202。同样,第一引线201可与第一发光器件11的第一电极连接,第二引线202可与第一发光器件11的第二电极连接。第二驱动单元22可通过第一引线201或第二引线202与第一发光器件11连接,第一驱动芯片30可通过第一引线201或第二引线202与第一发光器件11连接,也可通过第一引线201或第二引线202与第二驱动单元22连接,具体连接方式可根据实际需求进行设定,在此不做特殊限定。
其中,第一驱动芯片30可位于第一衬底基板100的外围,通过连接结构与第一衬底基板100连接。第一驱动芯片30也设于第一衬底基板100上,如第一驱动芯片30位于第二区域120。
如图5至图8所示,在本公开另一些实施例中,第二驱动单元22不位于第一区域110。在该类实施例中,第一驱动单元21也可不位于第一区域110,即第一发光器件11采用无源驱动。
如图5、图16所示,在一实施例中,显示面板包括第一驱动层200、第一驱动芯片30和第二驱动芯片31,其中,第一驱动层200设于第一衬底基板100的一侧,第一驱动层200包括多条引线。第一驱动单元21集成于第一驱动芯片30,第二驱动单元22集成于第二驱动芯片31,第一驱动芯片30和第二驱动芯片31通过引线与各第一发光器件11连接。举例而言,在该实施例中,第一驱动层200包括引线层,该引线层可包括第一引线201和第二引线202,第一引线201可与第一发光器件11的第一电极连接,第二引线202可与第一发光器件11的第二电极连接,进一步地, 第二驱动芯片31可通过第一引线201或第二引线202与第一发光器件11连接,第一驱动芯片30可通过第一引线201或第二引线202与第一发光器件11连接。当然,第一驱动层200也可包括多层引线层,相邻两层引线层之间还设置有绝缘层。绝缘层中可设置连接过孔,以使不同引线层中的部分引线相互连接。
如图6、图16所示,在另一实施例中,显示面板包括第一驱动层200和第三驱动芯片32,第一驱动层200设于第一衬底基板100的一侧,第一驱动层200包括多条引线;第一驱动单元21和第二驱动单元22集成于第三驱动芯片32,第三驱动芯片32通过引线与各第一发光器件11连接。举例而言,在该实施例中,第一驱动层200包括引线层,该引线层可包括第一引线201和第二引线202,第一引线201可与第一发光器件11的第一电极连接,第二引线202可与第一发光器件11的第二电极连接,进一步地,驱动芯片可通过第一引线201或第二引线202与第一发光器件11连接。当然,第一驱动层200也可包括多层引线层,相邻两层引线层之间还设置有绝缘层。绝缘层中可设置连接过孔,以使不同引线层中的部分引线相互连接。
如图2、图7所示,在本公开另一一些实施例中,单个子像素10除包括第一发光器件11外,还可包括第二发光器件12。器件层包括第二发光器件12。第二发光器件12可以为OLED、micro LED、mini LED等。在该类实施例中,显示面板还包括第三驱动单元22和控制单元20,第三驱动单元22与第二发光器件12连接,第三驱动单元22用于输出驱动电流至第二发光器件12。控制单元20与第一驱动单元21以及第三驱动单元22连接,用于控制第一发光器件11在第二发光器件12显示的一帧时间内发射光信号。
第三驱动单元22输出的驱动电流用于控制第二发光器件12的点亮和灰阶,以使第二发光器件12完成显示。在该类实施例中,第二发光器件12可采用有源驱动无源驱动,优选地,第二发光器件12采用有源驱动,以保证显示面板显示画面的稳定性。以第二发光器件12采用有源驱动为例,第一驱动层200还包括第三驱动单元22,第三驱动单元22位于第一区域110。第三驱动单元22的数量为多个,在垂直于第一衬底基板100 方向上,第二发光器件12和第三驱动单元22一一对应设置。第三驱动单元22包括晶体管、电容等元件。可选地,晶体管可以为薄膜晶体管(TFT),也可以为金属氧化物半导体场效应晶体管(MOS)。举例而言,第三驱动单元22可以为TFT补偿电路,如8T2C像素电路。8T2C中T表示薄膜晶体管,C表示电容,8和2分别代表薄膜晶体管和电容的数量。
在该类实施例中,控制单元20与第一驱动单元21以及第三驱动单元22连接,用于控制第一发光器件11在第二发光器件12显示的一帧时间内发射光信号。具体地,可控制第一发光器件11在第二发光器件12显示的一帧时间内反复开关来发射光信号。如在第二发光器件12显示的一帧时间内,第一发光器件11的开关次数不小于106。通常情况下,第二发光器件12显示信号的频率可以为60~120HZ,在其中的一帧时间当中第一发光器件11可以闪烁108次。进一步地,同一子像素中,第一发光器件11在发射光信号时,其亮度与第二发光器件12相同。优选地,控制单元20还可控制第一发光器件11和第二发光器件12同步显示。
第一发光器件11和第二发光器件12结合,有助于在保证显示面板稳定显示的同时,发射光信号进行通讯。以第一发光器件11为无源驱动,第二发光器件12为有源驱动为例,在该实施例中,第三驱动单元22位于第一区域110,第一驱动单元21和第二驱动单元22集成于第三驱动芯片32。进一步地,显示面板还包括第一外围控制芯片34和第二外围控制芯片35,其中,第一外围控制芯片34与第三驱动单元22连接,用于向第二发光器件12传输显示信号,控制单元20集成于第二外围控制芯片35。第二外围控制芯片35与第一外围控制芯片34以及第三驱动芯片32连接,以通过第一外围控制芯片34和第三驱动芯片32控制第一发光器件11在第二发光器件12显示的一帧时间内发射光信号。
在此需说明的是,无论是第一发光器件11还是第二发光器件12均可采用有源或无源驱动,如,两者可同时采用有源驱动或无源驱动,也可一者采用有源驱动一者采用无源驱动。控制单元20、第一驱动单元21和第三驱动单元22以及三者间的位置分布可随着第一发光器件11和第二发光器件12驱动方式的不同有所改变,只要能使控制单元20控制第一发光器件11在第二发光器件12显示的一帧时间内发射光信号即可。
在本公开中,显示面板除集显示和发射光信号于一体外,还可兼具其他功能。
如图1、图8、图9至14所示在本公开一些实施例中,显示面板还包括多个光电转换器40,用于接收外界传输的光信号并将该光信号转换为电信号后输出。在该类实施例中,显示面板不仅可作为光通讯中的发射端,用于发射光信号,也可作为光通讯的接收端,用于接收光信号。光电转换器40可以是包括第一极、第一半导体层、光电转化层、第二半导体层和第二极。
光电转换器40可以是PIN二极管。第一极可以是P电极,相应地第二极可以是N电极,第一半导体层可以是P型半导体层,相应地,第二半导体层可以是N型半导体层。光电转化层可以是I(Intrinsic)半导体层。PIN二极管的I半导体层(光电转化层)接收对应波长的光照时,产生光生电流。PIN二极管的响应度高响应速度快,频带也较宽工作电压低,偏置电路简单,在反偏压下可承受较高的反向电压,所以线性输出范围宽,其不足之处是I半导体层(光电转化层)电阻很大,二极管的的输出电流小,一般多为零点几微安至数微安,所以,本公开中,PIN光电二极管可连接跨阻放大器,PIN二极管将将光信号转为电流信号后,跨阻放大器将电流信号转为电压信号并放大到所需幅值,有助于提高提高信噪比,减少误码率。
光电转换器40也可以是APD二极管,即雪崩二极管。与PIN二极管相比,APD二极管多了雪崩层。雪崩层设于光电转化层和第二半导体层之间。雪崩层在电场作用下发生雪崩击穿,载流子能量增大,不断与晶体原子相碰,使共价键中的电子激发形成自由电子-空穴对。新产生的载流子又通过碰撞产生自由电子-空穴对,这就是倍增效应,在倍增效应的作用下,载流子1生2,2生4,像雪崩一样增加。APD二极管就是利用了载流子的雪崩倍增效应来放大光电信号以提高检测的灵敏度。APD二极管与PIN二极管相比,APD二极管多了雪崩层,光生电流会被该区域放大,因此ADP光电二极管具有功率大、效率高等优点。
如图14所示,进一步地,显示面板还包括信号遮挡层41,信号遮挡层41具有多个开口,多个光电转换器40一一对应地设置于各开口内。其 中,信号遮挡层41的厚度不小于光电转换器40的高度。信号遮挡层41用于避免周围的杂光进入光电转换器40,干扰光电转换器40的对光信号的接收。信号遮挡层41的材料可包括黑色树脂或具有反射功能的反光材料。
显示面板还包括覆盖层42,覆盖层42设于光电转换器40光接收面的一侧。覆盖层42包括沿远离光电转换器40方向依次层叠设置的第一覆盖层43和第二覆盖层44,第一覆盖层43的折射率小于第二覆盖层44的折射率。覆盖层42的远离光电转换器40的表面具有多个弧形凹槽45,弧形凹槽45与光电转换器40一一对应设置。该覆盖层42有助于防止侧面的光不能够进入光电转换器40,对光电转换器40进行干扰,而顶部的弧形凹槽45则有助于更好地接收外部发出的光信号并能够均匀的扩散到整个光电转换器40的光接收面。
如图2、图8所示,在本公开一些实施例中,显示面板还包括第四驱动单元24,用于向光电转换器40提供驱动信号。第四驱动单元24在显示面板中位置分布可以有多种,其可以位于第一衬底基板100的第一区域110,也可以设于第一衬底基板100的外围或位于第一衬底基板100的第二区域120。
在本公开一些实施例中,第四驱动单元24位于第一衬底基板100的外围或第二区域120,在该类实施例中,显示面板还包括第四驱动芯片33,第四驱动单元24集成于第四驱动芯片33。在该类实施例中,第四驱动芯片33可通过第一驱动层200中的引线与光电转换器40连接。如图17所示,第一驱动层200中的引线层还包括第三引线203和第四引线204,其中,第三引线203连接第四驱动芯片33和光电转换器40的第一极,第四引线204连接第四驱动芯片33和光电转换器40的第二极。
在本公开另一些实施例中,第四驱动单元24位于第一衬底基板100的的第一区域110。在该类实施例中,第四驱动单元24可形成于第一驱动层200中。即在第一衬底基板100一侧制作形成第一驱动层200时,可同时形成第四驱动单元24和第一驱动层200中的其他结构,如第一驱动单元21等。在该实施例中,第一衬底基板100可以是玻璃基板或单晶硅基板。
此外,第四驱动单元24也可单独形成,即不形成于第一驱动层200中。如图10、图11、图14、图18和图19所示,举例而言,显示面板还包括第二驱动背板,设于第一衬底基板100的一侧,且位于第二子区112,第二驱动背板包括第二衬底基板500和设于的第二衬底基板500一侧的第四驱动单元24,光电转换器40设于第四驱动单元24远离第二衬底基板500的一侧。在此实施例中,第一衬底基板100可以为玻璃基板,第二衬底基板500为单晶硅基板。
在该实施例中,第二衬底基板500具有p阱502和n阱501,可分别用于形成N型晶体管和P型晶体管。p阱502内可形成第一掺杂区503,该第一掺杂区503包括源极掺杂区和漏极掺杂区,n阱501内可形成第二掺杂区504,第二掺杂区504包括源极掺杂区和漏极掺杂区。第二驱动背板还包括沿远离第二衬底基板500方向层叠设置的栅绝缘层505、栅极层506、第一平坦化层507和源漏层508。第一平坦化层507中设有过孔,源漏层508可通过过孔与第一掺杂区503、第二掺杂区504连接。进一步地,第二驱动背板还包括设于源漏层508远离第二彻底基板一侧的第二平坦化层509、转接层510和第三平坦化层511,第三平坦化层511和第二平坦化层509中也可设置过孔,光电转换器40通过转接层510与源漏层508连接。
在本公开中,光电转换器40位于第一区域110,光电转换器40和多个子像素10的位置分布可以有多种。
如图8所示,在一些实施例中,多个光电转换器40分散位于多个子像素10中。如,光电转换器40和子像素10交替排列,或每两个、三个子像素10或五个组合形成一个像素单元,像素单元与光电转换器40交替排列。
如图2、图10、图11、图14在另一些实施例中,第一区域110包括第一子区111和位于第一子区111外围的第二子区112,多个子像素10位于第一子区111,光电转换器40位于第二子区112。即,显示面板的中心区域大致为显示和信号发射区,边缘区域大致为信号接收区。
如图10和图14所示,在一些实施例中,显示面板还包括阻隔坝301,该阻隔坝301设于第一衬底基板100的一侧,并围设在第一子区111的外 围,阻隔坝301位于第一子区111和第二子区112之间,用于防止外界水汽进入造成腐蚀。阻隔坝301可采用具有阻隔水氧功能的胶材料形成,在起到隔绝水氧作用的同时,还可起到连接作用。进一步地,阻隔坝301可包括第一阻隔坝302和第二阻隔坝303,第二阻隔坝303围设在第一阻隔坝302远离第一子区111的一侧。在平行于第一衬底基板100方向上,第一阻隔坝302和第二阻隔坝303的宽度可以为10μm-300μm,具体可根据显示面板的尺寸做相应调节。
在本公开一些实施例中,显示面板可采用盖板封装或薄膜封装等方式进行封装。如图10和图14所示,在一实施例中,显示面板还包括盖板300,设于第一发光器件11和光电转换器40件远离第一衬底基板100的一侧。在该实施例中,阻隔坝301可连接于盖板300和第一衬底基板100之间。进一步地,显示面板还可包括支撑结构304,支撑结构304位于第一衬底基板100和盖板300之间,支撑结构304的高度可大致根据第一发光器件11、第二发光器件12和光电转换器40件的尺寸进行设定。如,第一发光器件11和第二发光器件12的尺寸可以为10μm-30μm,分辨率为4k~32k;光电转换器40的高度可以为3μm-10μm,支撑结构304的高度可以为3μm-15μm。
如图11所示,在另一实施例中,显示面板还包括封装层400,设于第一发光器件11和光电转换器40件远离第一衬底基板100的一侧,第一发光器件11和光电转换器40件在第一衬底基板100上的正投影位于封装层400在第一衬底基板100上的正投影之内。封装层400包括沿远离第一衬底基板100方向依次层叠设置的第一无机层、有机层和第二无机层。其中,第一无机层可以为二氧化硅层、氮化硅层或氮氧化硅层等,厚度可以为800nm-1200nm,如1000nm。有机层可以为环氧树脂层,厚度为5μm-10μm。第二无机层可以为二氧化硅层、氮化硅层或氮氧化硅层等,厚度为200nm-500nm,如300nm。
如图2、图3、图9至图14所示,本公开还提供一种显示面板的制作方法,包括:
步骤S100,提供第一衬底基板100,包括第一区域110和位于第一区域110外围的第二区域120;
步骤S200,形成第一驱动单元21和第二驱动单元22;
步骤S300,形成器件层,器件层设于第一衬底基板100的一侧,包括多个第一发光器件11,第一发光器件11位于第一区域110;
其中,第二驱动单元22连接第一驱动单元21和第一发光器件11,第一驱动单元21用于输出驱动电流,第二驱动单元22用于响应第一驱动单元21输出的驱动电流后产生震荡电流并输出至第一发光器件11,控制第一发光器件11反复开启或关闭,使第一发光器件11在显示的同时发射出光信号。
在本公开一些实施例中,显示面板的制作方法还包括:
步骤S400,形成光电转换器40,光电转换器40位于第一区域110。
在本公开中,第一驱动单元21和第二驱动单元22在显示面板中的位置分布可以有多种,具体可参见上述关于显示面板的任意实施例,在此不详细赘述,不同位置分布可采用不同的制作步骤。
以显示面板包括第一驱动层200,第一驱动层200包括第一驱动单元21或/和第二驱动单元22为例。在第一衬底基板100的一侧形成第一驱动层200,第一驱动层200包括第一驱动单元21或/和第二驱动单元22,第一衬底基板100和第一驱动层200组合形成第一驱动背板。如图9、图10和图11所示,第一发光器件11件可单独制作在另一基板上,随后通过转印的方式转印至第一驱动背板上,第一发光器件11件可以为micro LED。光电转换器40可单独制作在另一块基板上,随后通过转印的方式转印至第一驱动背板上。当然,光电转换器40也可直接做在第一驱动背板上,而不通过转印的方式。
如图19所示,以光电转换器40单独制作在另一基板上为例,在形成光电转换器40时可形成用于向光电转换器40提供驱动信号的第四驱动单元24,该步骤包括:
步骤S410,提供第二衬底基板500;
步骤S420,于第二衬底基板500的一侧形成第二驱动层,第二驱动层包括第四驱动单元24;
步骤S430,于第二驱动层远离第二衬底基板500的一侧形成光电转换器40。
其中,该第二衬底基板500可以是单晶硅基板。第四驱动单元24中可包括晶体管器件,该晶体管可以为金属氧化物半导体场效应晶体管(MOS)。进一步地,第二驱动层中还可包括其他数据处理单元,如滤波电路等,以对光电转换器40转换后的电信号进行滤波处理。第二衬底基板500具有p阱502和n阱501,可分别用于形成N型晶体管和P型晶体管。p阱502内可形成第一掺杂区503,该第一掺杂区503包括源极掺杂区和漏极掺杂区,n阱501内可形成第二掺杂区504,第二掺杂区504包括源极掺杂区和漏极掺杂区。第二驱动层还包括沿远离第二衬底基板500方向层叠设置的栅绝缘层505、栅极层506、第一平坦化层507和源漏层508。第一平坦化层507中设有过孔,源漏层508可通过过孔与第一掺杂区503、第二掺杂区504连接。进一步地,第二驱动层还包括设于源漏层508远离第二彻底基板一侧的第二平坦化层509、转接层510和第三平坦化层511,第三平坦化层511和第二平坦化层509中也可设置过孔,光电转换器40通过转接层510与源漏层508连接。
在该实施例中,将第二衬底基板500、第二驱动层和光电转换器40统一转印至第一驱动背板上,具体转印至第二区域120。其中,第一衬底基板100可以为玻璃基板。
在此需说明的是,当第一驱动单元21和第二驱动单元22不位于第一区域110时,即当第一驱动层200不包括第一驱动单元21和第二驱动单元22,只包括引线时,第一发光器件11件也可单独制作在另一基板上,随后通过转印的方式转印至第一驱动背板上。光电转换器40同样可单独制作在另一块基板上,随后通过转印的方式转印至第一驱动背板上,也可直接做在第一驱动背板上,而不通过转印的方式。在本公开中,第一发光器件11和光电转换器40可通过正装或倒装等方式连接在对应驱动背板上。
此外,如图13和图14所示,除通过转印至第一驱动背板或外,光电转换器40也可通过转印至盖板300上,之后通过将盖板300和第一驱动背板对盒的方法制作形成显示面板。
本公开实施方式还提供一种显示装置,包括显示面板,该显示面板可为上述任意实施方式的显示面板,其具体结构和有益效果可参考上文中显示面板的实施方式,在此不再赘述。本公开的显示装置可以是手机、平板 电脑、电视等电子设备,在此不再一一列举。
需要说明的是,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等,均应视为本公开的一部分。
应可理解的是,本公开不将其应用限制到本说明书提出的部件的详细结构和布置方式。本公开能够具有其他实施方式,并且能够以多种方式实现并且执行。前述变形形式和修改形式落在本公开的范围内。应可理解的是,本说明书公开和限定的本公开延伸到文中和/或附图中提到或明显的两个或两个以上单独特征的所有可替代组合。所有这些不同的组合构成本公开的多个可替代方面。本说明书的实施方式说明了已知用于实现本公开的最佳方式,并且将使本领域技术人员能够利用本公开。

Claims (21)

  1. 一种显示面板,其中,包括多个子像素,单个所述子像素包括至少一个第一发光器件:所述显示面板还包括:
    第一衬底基板,包括第一区域,所述多个子像素位于所述第一区域;
    器件层,设于所述第一衬底基板的一侧,包括多个所述第一发光器件;
    第一驱动单元和第二驱动单元,所述第二驱动单元连接所述第一驱动单元和所述第一发光器件,所述第一驱动单元用于输出驱动电流,所述第二驱动单元用于响应所述第一驱动单元输出的驱动电流后产生震荡电流并输出至所述第一发光器件,控制所述第一发光器件反复开启或关闭,使所述第一发光器件在显示的同时发射出光信号。
  2. 根据权利要求1所述的显示面板,其中,所述第二驱动单元产生的震荡电流的频率不小于105Hz。
  3. 根据权利要求1所述的显示面板,其中,所述显示面板还包括:
    第一驱动层,设于所述第一衬底基板的一侧,所述第一驱动层包括所述第二驱动单元,所述第二驱动单元位于所述第一区域;
    其中,所述第一发光器件位于所述第一驱动层远离所述第一衬底基板的一侧,且所述第一发光器件位于所述第一区域;
    所述第二驱动单元的数量为多个,在垂直于所述第一衬底基板方向上,所述第一发光器件和所述第二驱动单元一一对应设置。
  4. 根据权利要求3所述的显示面板,其中,所述第一驱动层还包括第一驱动单元,所述第一驱动单元位于所述第一区域;
    所述第一驱动单元的数量为多个,在垂直于所述第一衬底基板方向上,所述第一发光器件和所述第一驱动单元一一对应设置。
  5. 根据权利要求3所述的显示面板,其中,所述显示面板还包括第一驱动芯片,所述第一驱动单元集成于所述第一驱动芯片;
    所述第一驱动层还包括多条引线,所述第一驱动芯片通过所述引线与各所述第一发光器件以及各所述第二驱动单元连接。
  6. 根据权利要求1所述的显示面板,其中,所述显示面板还包括:
    第一驱动层,设于所述第一衬底基板的一侧,所述第一驱动层包括 多条引线;
    第一驱动芯片和第二驱动芯片,所述第一驱动单元集成于所述第一驱动芯片,所述第二驱动单元集成于所述第二驱动芯片,所述第一驱动芯片和所述第二驱动芯片通过所述引线与各所述第一发光器件连接;
    其中,所述第一发光器件位于所述第一驱动层远离所述第一衬底基板的一侧,且所述第一发光器件位于所述第一区域。
  7. 根据权利要求1所述的显示面板,其中,所述显示面板还包括:
    第一驱动层,设于所述第一衬底基板的一侧,所述第一驱动层包括多条引线;
    第三驱动芯片,所述第一驱动单元和所述第二驱动单元集成于所述第三驱动芯片,所述第三驱动芯片通过所述引线与各所述第一发光器件连接;
    其中,所述第一发光器件位于所述第一驱动层远离所述第一衬底基板的一侧,且所述第一发光器件位于所述第一区域。
  8. 根据权利要求1所述的显示面板,其中,单个所述子像素还包括第二发光器件,所述器件层还包括所述第二发光器件;
    所述显示面板还包括:
    第三驱动单元,与所述第二发光器件连接,所述第三驱动单元用于输出驱动电流至所述第二发光器件;
    控制单元,与所述第一驱动单元以及所述第三驱动单元连接,用于控制所述第一发光器件在所述第二发光器件显示的一帧时间内发射光信号。
  9. 根据权利要求8所述的显示面板,其中,在所述第二发光器件显示的一帧时间内,所述第一发光器件的开关次数不小于106
  10. 根据权利要求8所述的显示面板,其中,所述显示面板还包括:
    第一驱动层,设于所述第一衬底基板的一侧,所述第一驱动层包括所述第三驱动单元,所述第三驱动单元位于所述第一区域;
    其中,所述第二发光器件位于所述第一驱动层远离所述第一衬底基板的一侧,且所述第二发光器件位于所述第一区域;
    所述第三驱动单元的数量为多个,在垂直于所述第一衬底基板方向 上,所述第二发光器件和所述第三驱动单元一一对应设置。
  11. 根据权利要求1所述的显示面板,其中,所述显示面板还包括多个光电转换器,用于接收外界传输的光信号并将该光信号转换为电信号后输出。
  12. 根据权利要求11所述的显示面板,其中,所述显示面板还包括信号遮挡层,所述信号遮挡层具有多个开口,多个所述光电转换器一一对应地设置于各所述开口内;
    其中,所述信号遮挡层的厚度不小于所述光电转换器的高度。
  13. 根据权利要求11所述的显示面板,其中,所述显示面板还包括覆盖层,所述覆盖层设于所述光电转换器光接收面的一侧;
    所述覆盖层包括沿远离所述光电转换器方向依次层叠设置的第一覆盖层和第二覆盖层,所述第一覆盖层的折射率小于所述第二覆盖层的折射率;
    所述覆盖层的远离所述光电转换器的表面具有多个弧形凹槽,所述弧形凹槽与所述光电转换器一一对应设置。
  14. 根据权利要求1任一项所述的显示面板,其中,所述显示面板还包括多个光电转换器,所述光电转换器位于所述第一区域;
    其中,多个所述光电转换器分散位于所述多个子像素中;或
    所述第一区域包括第一子区和位于第一子区外围的第二子区,所述多个子像素位于所述第一子区,所述光电转换器位于所述第二子区。
  15. 根据权利要求14所述的显示面板,其中,当所述第一区域包括第一子区和位于第一子区外围的第二子区,所述光电转换器位于所述第二子区时,所述显示面板还包括:
    阻隔坝,设于所述第一衬底基板的一侧,并围设在所述第一子区的外围,所述阻隔坝位于第一子区和第二子区之间。
  16. 根据权利要求14所述的显示面板,其中,所述显示面板还包括:
    盖板,设于所述第一发光器件和所述光电转换器件远离所述第一衬底基板的一侧。
  17. 根据权利要求14所述的显示面板,其中,所述显示面板还包括:
    封装层,设于所述第一发光器件和所述光电转换器件远离所述第一 衬底基板的一侧,所述第一发光器件和所述光电转换器件在所述第一衬底基板上的正投影位于所述封装层在所述第一衬底基板上的正投影之内;
    所述封装层包括沿远离所述第一衬底基板方向依次层叠设置的第一无机层、有机层和第二无机层。
  18. 根据权利要求14所述的显示面板,其中,当所述第一区域包括第一子区和位于第一子区外围的第二子区,所述光电转换器位于所述第二子区时,所述显示面板还包括:
    第二驱动背板,设于所述第一衬底基板的一侧,且位于所述第二子区,所述第二驱动背板包括第二衬底基板和设于所述的第二衬底基板一侧的第四驱动单元,所述第四驱动单元用于向所述光电转换器提供驱动信号,所述光电转换器设于所述第四驱动单元远离所述第二衬底基板的一侧;
    其中,所述第一衬底基板为玻璃基板,所述第二衬底基板为单晶硅基板。
  19. 一种显示面板的制作方法,其中,包括:
    提供第一衬底基板,包括第一区域和位于所述第一区域外围的第二区域;
    形成第一驱动单元和第二驱动单元;
    形成器件层,所述器件层设于所述第一衬底基板的一侧,包括多个第一发光器件,所述第一发光器件位于所述第一区域;
    其中,所述第二驱动单元连接所述第一驱动单元和所述第一发光器件,所述第一驱动单元用于输出驱动电流,所述第二驱动单元用于响应所述第一驱动单元输出的驱动电流后产生震荡电流并输出至所述第一发光器件,控制所述第一发光器件反复开启或关闭,使所述第一发光器件在显示的同时发射出光信号。
  20. 根据权利要求19所述的显示面板的制作方法,其中,显示面板的制作方法还包括:
    形成光电转换器,所述光电转换器位于所述第一区域。
  21. 一种显示装置,其中,包括如权利要求1-18任一项所述的显示面板。
PCT/CN2023/085431 2023-03-31 2023-03-31 显示面板及显示装置 WO2024197803A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2023/085431 WO2024197803A1 (zh) 2023-03-31 2023-03-31 显示面板及显示装置
CN202380008530.8A CN119384693A (zh) 2023-03-31 2023-03-31 显示面板及显示装置
US18/768,018 US20240363060A1 (en) 2023-03-31 2024-07-10 Display panel and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/085431 WO2024197803A1 (zh) 2023-03-31 2023-03-31 显示面板及显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/768,018 Continuation US20240363060A1 (en) 2023-03-31 2024-07-10 Display panel and display device

Publications (1)

Publication Number Publication Date
WO2024197803A1 true WO2024197803A1 (zh) 2024-10-03

Family

ID=92903076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085431 WO2024197803A1 (zh) 2023-03-31 2023-03-31 显示面板及显示装置

Country Status (3)

Country Link
US (1) US20240363060A1 (zh)
CN (1) CN119384693A (zh)
WO (1) WO2024197803A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1670802A (zh) * 2004-03-19 2005-09-21 株式会社半导体能源研究所 显示装置和电子设备
CN109727579A (zh) * 2017-10-31 2019-05-07 乐金显示有限公司 电致发光显示器
CN110556072A (zh) * 2018-05-31 2019-12-10 三星电子株式会社 显示面板以及显示面板的驱动方法
CN110634433A (zh) * 2018-06-01 2019-12-31 三星电子株式会社 显示面板
CN113396452A (zh) * 2019-03-29 2021-09-14 三星电子株式会社 显示面板和显示面板的驱动方法
CN113646824A (zh) * 2019-03-29 2021-11-12 科锐Led公司 发光二极管和发光二极管显示器的有源控制
US20230099833A1 (en) * 2020-02-27 2023-03-30 Kyocera Corporation Display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1670802A (zh) * 2004-03-19 2005-09-21 株式会社半导体能源研究所 显示装置和电子设备
CN109727579A (zh) * 2017-10-31 2019-05-07 乐金显示有限公司 电致发光显示器
CN110556072A (zh) * 2018-05-31 2019-12-10 三星电子株式会社 显示面板以及显示面板的驱动方法
CN110634433A (zh) * 2018-06-01 2019-12-31 三星电子株式会社 显示面板
CN113396452A (zh) * 2019-03-29 2021-09-14 三星电子株式会社 显示面板和显示面板的驱动方法
CN113646824A (zh) * 2019-03-29 2021-11-12 科锐Led公司 发光二极管和发光二极管显示器的有源控制
US20230099833A1 (en) * 2020-02-27 2023-03-30 Kyocera Corporation Display device

Also Published As

Publication number Publication date
CN119384693A (zh) 2025-01-28
US20240363060A1 (en) 2024-10-31

Similar Documents

Publication Publication Date Title
US20070138951A1 (en) Photo sensor and organic light-emitting display using the same
CN110349981B (zh) 一种显示屏集成红外像素的光侦测装置
WO2018066225A1 (ja) 撮像表示装置及びウェアラブルデバイス
US7816713B2 (en) CMOS image sensor having thiophene derivatives
US11791433B2 (en) Single photon avalanche diode
CN111312161B (zh) 像素驱动电路以及显示面板
US7012239B2 (en) Silicon optoelectronic device and image input/output device using the silicon optoelectronic device
CN101563789B (zh) 具红外线抑制的光传感器及将传感器用于背光控制
US20090072248A1 (en) Light emitting display device and method of fabricating the same
TW200623221A (en) Novel poly diode structure for photo diode
WO2024197803A1 (zh) 显示面板及显示装置
KR100729047B1 (ko) 포토 다이오드를 구비하는 유기 발광 표시장치
US8553741B2 (en) Integrated rare earth devices
CN114363542B (zh) 感光电路结构和光学器件
CN101388405B (zh) 发光显示装置及其制造方法
US9357188B2 (en) Photography and projection apparatus and light emitting and sensing module
JP2005339406A (ja) タッチパネル
KR20230164090A (ko) 표시 장치, 전자 기기, 및 반도체 장치의 제작 방법
KR102493317B1 (ko) 엑스레이 영상감지소자
KR20220114879A (ko) 이미지 센싱 장치
KR100859693B1 (ko) 이미지 센서
US20240047489A1 (en) Single photon avalanche diode
CN114500893A (zh) 图像传感器及其控制方法、显示面板
CN115775840A (zh) 光电传感器件和显示面板
KR20200136800A (ko) 전하 펌프 장치 및 이를 포함하는 이미지 센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23929389

Country of ref document: EP

Kind code of ref document: A1