[go: up one dir, main page]

WO2024197673A1 - 参考信号传输方法和通信装置 - Google Patents

参考信号传输方法和通信装置 Download PDF

Info

Publication number
WO2024197673A1
WO2024197673A1 PCT/CN2023/084897 CN2023084897W WO2024197673A1 WO 2024197673 A1 WO2024197673 A1 WO 2024197673A1 CN 2023084897 W CN2023084897 W CN 2023084897W WO 2024197673 A1 WO2024197673 A1 WO 2024197673A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
communication device
channel
reference signal
resource
Prior art date
Application number
PCT/CN2023/084897
Other languages
English (en)
French (fr)
Inventor
刘永
张渭乐
晏泽宇
徐静
姜伊昇
傅金澍
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2023/084897 priority Critical patent/WO2024197673A1/zh
Publication of WO2024197673A1 publication Critical patent/WO2024197673A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to the field of communications, and more specifically, to a reference signal transmission method and a communication device.
  • two communication devices can measure and estimate the state of the channel between the two communication devices through the transmission of reference signals, thereby determining the precoding used for data transmission to reduce the impact of channel fading during data transmission.
  • the accuracy of the channel state obtained by the communication device directly affects the reliability of data transmission.
  • the distribution of reference signals determines the accuracy of the channel state obtained by the communication device.
  • the reference signal is mainly transmitted by uniformly distributing the reference signal in the time domain and/or frequency domain.
  • the accuracy requirements for channel estimation are getting higher and higher, while the current reference signal transmission method is not flexible enough to meet the development needs of wireless communication.
  • the embodiments of the present application provide a reference signal transmission method and a communication device, which can improve the accuracy of channel estimation and resource utilization.
  • a reference signal transmission method is provided.
  • the method can be executed by a communication device, which can be a communication device or a component configured in the communication device (such as a chip or a chip system).
  • a communication device can be a communication device or a component configured in the communication device (such as a chip or a chip system).
  • the following describes the method by taking the first communication device executing the method as an example.
  • the method includes: a first communication device determines a reference signal resource based on at least one channel characteristic information and at least one energy scale information, the at least one channel characteristic information is used to characterize the channel between the first communication device and the second communication device, any one of the channel characteristic information is used to indicate the corresponding relationship between the energy component of the channel and the transmission resource, the reference signal resource includes multiple resource units in the transmission resource, and in the corresponding relationship indicated by one or more of the channel characteristic information, the energy indicated by one or more of the energy scale information corresponds to one of the resource units.
  • the first communication device sends first information to the second communication device, and the first information is used to indicate the at least one energy scale information.
  • the first communication device sends a reference signal to the second communication device, or the first communication device receives a reference signal from the second communication device, wherein the reference signal is carried on the reference signal resource.
  • sending information/signal only refers to the direction of information/signal transmission, including direct transmission via the air interface and indirect transmission via the air interface by the processing unit, so “sending” can also be understood as the “output” of the chip interface.
  • receiving information/signal only refers to the direction of information/signal transmission, including direct reception via the air interface and indirect reception via the air interface by the processing unit, so “receiving” can also be understood as the "input" of the chip interface.
  • the first communication device can flexibly adjust the distribution of reference signals used for channel estimation between the first communication device and the second communication device based on channel characteristics, which can improve the accuracy of channel estimation and resource utilization, and can achieve high-precision channel estimation in mobility scenarios with a more reasonable reference signal resource overhead that matches the environment.
  • the reference signal resources determined by the above scheme of this application may be non-uniformly distributed, and the first communication device and the second communication device can achieve the same way by exchanging energy scaling information. Determine the reference signal resources and reach a consensus on the reference signal resources to achieve high-precision and efficient channel estimation.
  • the transmission resource is a time domain resource and/or a frequency domain resource.
  • the first communication device determines the reference signal resource according to at least one channel characteristic information and at least one energy scaling information, including: the first communication device determines the reference signal resource according to the at least one channel characteristic information, the at least one energy scaling information and the minimum resource interval information. Wherein, the interval between any two resource units in the reference signal resource is greater than or equal to the interval indicated by the minimum resource interval information.
  • a minimum resource interval is set, and resource units that meet the requirements are screened so that the interval between any two resource units in the reference signal resources determined by the first communication device is greater than or equal to the minimum resource interval. Unnecessary reference signal resource overhead can be reduced.
  • the minimum resource interval information is predefined or determined by the first communication device.
  • the method further includes: the first communication device sends second information to the second communication device, where the second information is used to indicate the at least one channel characteristic information.
  • the first communication device also notifies the second communication device of at least one channel characteristic information used to determine the reference signal resource, so that the reference signal resources determined by the first communication device and the second communication device based on the same channel characteristic information and energy scaling information are the same, so that the two communication devices reach a consensus on the reference signal resource for transmitting the reference signal, so that the reference signal is reliably transmitted.
  • the at least one channel characteristic information used to determine the reference signal resource can be predefined, determined according to a predefined method, or transmitted to the first communication device and/or the second communication device by other communication devices (such as a third communication device).
  • the channel characteristic information is used to indicate information of a basis function used to characterize the corresponding relationship, and the information of the basis function includes one or more of the following information:
  • the channel characteristic information can specifically indicate the information of the basis function, so that the second communication device can determine at least one basis function used to characterize the channel based on the channel characteristic information, and thereby determine the reference signal resource based on the at least one basis function and at least one energy scale information.
  • the method further includes: the first communication device receives third information from the second communication device, the third information being used to indicate one or more of a position, a speed, or a moving direction of the second communication device.
  • the first communication device determines the at least one channel characteristic information based on the third information.
  • the first communication device can determine at least one channel characteristic information used to characterize the channel based on the perception information (such as one or more of position, speed or moving direction) obtained from the second communication device, so that the at least one channel characteristic information can more accurately characterize the channel between the first communication device and the second communication device.
  • the perception information such as one or more of position, speed or moving direction
  • the method also includes: the first communication device determines a set of candidate channel characteristic information based on channel state information between multiple communication devices and the first communication device, and one or more of the position information, speed information, or moving direction information of the multiple communication devices, and the candidate channel characteristic information set includes the at least one channel characteristic information.
  • the first communication device can fit the channel characteristics of its environment based on historical prior information to obtain a set of candidate channel characteristic information, so that the first communication device can realize channel modeling of its environment and based on the environment.
  • the model is adjusted in real time according to the changes. Therefore, channel characteristic information used to characterize different communication devices communicating with the first communication device can be determined based on the channel model, and reference signal resource design matching the speed, position and environment of the communication device can be realized, so as to achieve high-precision channel estimation in mobility scenarios.
  • the method of determining the candidate channel characteristic information set can be a method of obtaining a channel model by model training using artificial intelligence.
  • the transmission resources include time domain resources
  • the channel includes at least one transmission path
  • the channel characteristic information is used to indicate the correspondence between the energy component of the channel in one of the transmission paths and the time resources.
  • different channel characteristic information can characterize the change of the channel energy component on a transmission path over time, and the characteristics of the multipath channel can be characterized by multiple channel characteristic information.
  • a reference signal transmission method is provided.
  • the method can be executed by a communication device, which can be a communication device or a component configured in the communication device (such as a chip or a chip system).
  • a communication device can be a communication device or a component configured in the communication device (such as a chip or a chip system).
  • the following describes the method by taking the second communication device executing the method as an example.
  • the method includes: a second communication device receives first information from a first communication device, the first information is used to indicate at least one energy scale information.
  • the second communication device determines a reference signal resource based on at least one channel characteristic information and the at least one energy scale information, the at least one channel characteristic information is used to characterize the channel between the first communication device and the second communication device, any one of the channel characteristic information is used to characterize the corresponding relationship between the energy component of the channel and the transmission resource, the reference signal resource includes multiple resource units in the transmission resource, and in the corresponding relationship indicated by one or more of the channel characteristic information, the energy indicated by one or more of the energy scale information corresponds to one of the resource units.
  • the second communication device receives a reference signal from the first communication device, or the second communication device sends a reference signal to the first communication device, wherein the reference signal is carried on the reference signal resource.
  • the transmission resource is a time domain resource and/or a frequency domain resource.
  • the second communication device determines the reference signal resource according to at least one channel characteristic information and at least one energy scaling information, including: the second communication device determines the reference signal resource according to the at least one channel characteristic information, the at least one energy scaling information and the minimum resource interval information. Wherein, the interval between any two resources in the reference signal resource is greater than or equal to the interval indicated by the minimum resource interval information.
  • the minimum resource interval information is predefined or acquired from the first communication device.
  • the method further includes: the second communication device receives second information from the first communication device, and the second information is used to indicate the at least one channel characteristic information.
  • the channel characteristic information is used to indicate information of a basis function used to characterize the corresponding relationship, and the information of the basis function includes one or more of the following information:
  • the method further includes: the second communication device determines channel state characteristic information based on the reference signal, where the channel state characteristic information is used to indicate a state of the channel corresponding to the reference signal.
  • the second communication device determines channel information based on the channel state characteristic information and the at least one channel characteristic information.
  • the method also includes: the second communication device sends third information to the first communication device, the third information is used to indicate one or more of the position, speed or moving direction of the second communication device, and the third information is used to determine the at least one channel characteristic information.
  • the transmission resources include time domain resources
  • the channel includes at least one transmission path
  • the channel characteristic information is used to indicate the correspondence between the energy component of the channel in one of the transmission paths and the time resources.
  • a communication device in a third aspect, may include a module corresponding to the method/operation/step/action described in the first aspect or any one of the embodiments of the first aspect.
  • the module may be a hardware circuit, or software, or a combination of a hardware circuit and software.
  • the device includes: a processing unit, configured to determine a reference signal resource based on at least one channel characteristic information and at least one energy scale information, wherein the at least one channel characteristic information is used to characterize a channel between a first communication device and a second communication device, and any one of the channel characteristic information is used to indicate a corresponding relationship between an energy component of the channel and a transmission resource, and the reference signal resource includes a plurality of resource units in the transmission resource, and in one or more corresponding relationships indicated by the channel characteristic information, one or more energies indicated by the energy scale information correspond to one of the resource units.
  • a transceiver unit configured to send first information to the second communication device, wherein the first information is used to indicate the at least one energy scale information.
  • the transceiver unit is also configured to send a reference signal to the second communication device, or the first communication device receives a reference signal from the second communication device, wherein the reference signal is carried on the reference signal resource.
  • the processing unit is specifically configured to determine a reference signal resource based on the at least one channel characteristic information, the at least one energy scale information, and the minimum resource interval information, wherein the interval between any two resource units in the reference signal resource is greater than or equal to the interval indicated by the minimum resource interval information.
  • the transceiver unit is further configured to receive third information from the second communication device, the third information being used to indicate one or more of a position, a speed, or a moving direction of the second communication device.
  • the processing unit is further configured to determine the at least one channel characteristic information based on the third information.
  • the processing unit is also used to determine a set of candidate channel characteristic information based on channel state information between multiple communication devices and the first communication device, and one or more of the position information, speed information, or moving direction information of the multiple communication devices, and the candidate channel characteristic information set includes the at least one channel characteristic information.
  • a communication device may include a module corresponding to the method/operation/step/action described in the second aspect or any one of the embodiments of the second aspect.
  • the module may be a hardware circuit, or software, or a combination of a hardware circuit and software.
  • the device includes: a transceiver unit, configured to receive first information from a first communication device, the first information being used to indicate at least one energy scale information.
  • a processing unit configured to determine a reference signal resource based on at least one channel characteristic information and the at least one energy scale information, the at least one channel characteristic information being used to characterize a channel between the first communication device and the second communication device, any one of the channel characteristic information being used to characterize a correspondence between an energy component of the channel and a transmission resource, the reference signal resource including a plurality of resource units in the transmission resource, and in one or more correspondences indicated by the channel characteristic information, one or more of the energy scale information indicating an energy component of the channel is relative to one of the resource units.
  • the transceiver unit is further configured to receive a reference signal from the first communication device, or the second communication device sends a reference signal to the first communication device, wherein the reference signal is carried on the reference signal resource.
  • the processing unit is further used to determine the reference signal resource based on the at least one channel characteristic information, the at least one energy scale information and the minimum resource interval information.
  • the interval between any two resources in the reference signal resources is greater than or equal to the interval indicated by the minimum resource interval information.
  • the transceiver unit is further used to receive second information from the first communication device, and the second information is used to indicate the at least one channel characteristic information.
  • the processing unit is further configured to determine channel state characteristic information based on the reference signal, where the channel state characteristic information is used to indicate a state of the channel corresponding to the reference signal. And, the processing unit is further configured to determine, based on the channel state characteristic information and the at least one channel characteristic information,
  • the processing unit is also used to determine a set of candidate channel characteristic information based on channel state information between multiple communication devices and the first communication device, and one or more of the position information, speed information, or moving direction information of the multiple communication devices, and the candidate channel characteristic information set includes the at least one channel characteristic information.
  • a communication device comprising a processor.
  • the processor can implement the method in the first aspect or any possible implementation of the first aspect, or implement the method in the second aspect or any possible implementation of the second aspect.
  • the communication device also includes a memory, and the processor is coupled to the memory, and can be used to execute instructions in the memory to implement the method in the first aspect or any possible implementation of the first aspect, or implement the method in the second aspect or any possible implementation of the second aspect.
  • the communication device also includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface can be a transceiver, a pin, a circuit, a bus, a module or other types of communication interfaces, without limitation.
  • the communication device is a communication device (eg, the communication device may be a terminal device or a network device).
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip configured in a communication device.
  • the communication interface may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a processor comprising: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is used to receive a signal through the input circuit and transmit a signal through the output circuit, so that the processor executes the method in the first aspect or any possible implementation of the first aspect, or executes the method in the second aspect and any possible implementation of the second aspect.
  • the processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a trigger, and various logic circuits.
  • the input signal received by the input circuit can be, for example, but not limited to, received and input by a receiver
  • the signal output by the output circuit can be, for example, but not limited to, output to a transmitter and transmitted by the transmitter
  • the input circuit and the output circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • a computer program product which includes: a computer program (also referred to as code, or instruction), which, when executed, enables a computer to execute the method in the above-mentioned first aspect or any possible implementation of the first aspect, or to execute the above-mentioned second aspect and any possible implementation of the second aspect.
  • a computer program also referred to as code, or instruction
  • a computer-readable storage medium which stores a computer program (also referred to as code, or instruction).
  • a computer program also referred to as code, or instruction.
  • a communication system comprising at least one first communication device mentioned above and at least one second communication device mentioned above.
  • FIG1 is a schematic block diagram of a communication system applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG3 is a schematic flowchart of a reference signal transmission method provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a basis function for characterizing a channel provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of determining reference signal resources provided in an embodiment of the present application.
  • FIG6 is a schematic structural diagram of the communication device of the present application.
  • FIG. 7 is another schematic structural diagram of the communication device of the present application.
  • “/" can indicate that the objects associated before and after are in an "or” relationship, for example, A/B can indicate A or B; “and/or” can be used to describe that there are three relationships between the associated objects, for example, A and/or B can indicate: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the words “first” and “second” can be used to distinguish. The words “first” and “second” do not limit the quantity and execution order, and the words “first” and “second” do not necessarily limit the difference.
  • the words “exemplary” or “for example” are used to indicate examples, illustrations or explanations, and any embodiment or design described as “exemplary” or “for example” should not be interpreted as being more preferred or more advantageous than other embodiments or design.
  • the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific way for easy understanding.
  • at least one (kind) can also be described as one (kind) or more (kinds), and more (kinds) can be two (kinds), three (kinds), four (kinds) or more (kinds), and the present application does not impose any limitation.
  • LTE long term evolution
  • 5G 5G system or new radio (NR)
  • NTN non-terrestrial networks
  • future communication systems such as the sixth generation mobile communication system, etc.
  • LTE long term evolution
  • 5G 5G system or new radio
  • NTN non-terrestrial networks
  • future communication systems such as the sixth generation mobile communication system, etc.
  • LTE long term evolution
  • 5G 5G system or new radio
  • NTN non-terrestrial networks
  • future communication systems such as the sixth generation mobile communication system, etc.
  • 6 generation mobile communication system etc.
  • FIG1 is a schematic diagram of an architecture of a communication system 100 applicable to an embodiment of the present application.
  • the communication system 100 may include at least one network device (such as 110a, 110b, 110c in FIG1 ), and may also include at least A terminal device (such as 120a-120g in FIG1).
  • Network devices can be connected to each other by wired or wireless means.
  • FIG1 is only a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices.
  • the first communication device provided in the embodiment of the present application may be a network device, or a module (such as a chip or a chip system) configured in the network device.
  • the network device may be an access network device, such as a base station, a node B, an evolved node B (eNodeB or eNB), a transmission reception point (TRP), a next generation node B (gNB) in a fifth generation (5G) mobile communication system, an access network device in an open radio access network (O-RAN or open RAN), a next generation base station in a sixth generation (6G) mobile communication system, or a base station in a future mobile communication system, or an access node in a wireless fidelity (WiFi) system, etc.
  • 5G fifth generation
  • OFD open radio access network
  • 6G sixth generation
  • WiFi wireless fidelity
  • the network device may be a satellite (such as 110a in FIG. 1 ), or a macro base station (such as 110b in FIG. 1 ), and the access network device may also be a micro base station or an indoor station (such as 110c in FIG. 1 ), or a relay node or a donor node, etc.
  • the specific technology and specific device form used by the network device are not limited in this application.
  • part or all of the functions of the network device can be on a non-terrestrial network (NTN) platform (NTN platform includes but is not limited to satellite, unmanned aircraft system (UAS), high altitude platform station (HAPS), etc.), or part or all of the functions of the network device are on the ground, and the NTN platform is responsible for forwarding signals between the UE and the access network device.
  • NTN platform includes but is not limited to satellite, unmanned aircraft system (UAS), high altitude platform station (HAPS), etc.
  • UAS unmanned aircraft system
  • HAPS high altitude platform station
  • the first communication device provided in the implementation of the present application may also be a module or unit that completes part of the functions of the network device, for example, it may be a centralized unit (CU), a distributed unit (DU), a centralized unit control plane (CU-CP) module, or a centralized unit user plane (CU-UP) module.
  • the first communication device may also be an antenna unit (radio unit, RU), etc.
  • the first communication device may also be an open radio access network (ORAN) architecture, etc., and the present application does not limit the specific type of the first communication device.
  • OFD open radio access network
  • the first communication device shown in the embodiment of the present application may be an access network device in the ORAN, or a module in the access network device, etc.
  • CU may also be referred to as an open (open, O)-CU
  • DU may also be referred to as an O-DU
  • CU-DU may also be referred to as an O-CU-DU
  • CU-UP may also be referred to as an O-CU-UP
  • RU may also be referred to as an O-RU.
  • the receiving operation of the first communication device described in the embodiment may be an input operation
  • the sending operation may be an output operation
  • the receiving of a signal (such as data/signaling/signal, etc.) from the second communication device may be indirectly obtained through transmission by other devices
  • the sending of a signal to the second communication device may be indirectly transmitted to the second communication device through transmission by other devices.
  • This application does not limit this.
  • the second communication device provided in the embodiment of the present application may be a terminal device, or a module (such as a chip or a chip system) configured in the terminal device.
  • the terminal device may also be referred to as a terminal, including but not limited to: user equipment (UE), a mobile station, or a mobile terminal.
  • UE user equipment
  • the terminal device can be widely used in various scenarios for communication.
  • the scenario includes, for example, but is not limited to at least one of the following scenarios: enhanced mobile broadband (eMBB), ultra-reliable low-latency communication (URLLC), massive machine-type communications (mMTC), device-to-device (D2D), vehicle to everything (V2X), machine-type communication (MTC), Internet of Things (IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, or smart city.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low-latency communication
  • mMTC massive machine-type communications
  • D2D device-to-device
  • V2X vehicle to everything
  • MTC machine-type communication
  • IOT Internet of Things
  • virtual reality augmented reality
  • industrial control autonomous driving
  • telemedicine smart grid
  • smart furniture smart office
  • smart wear smart transportation
  • smart city smart city.
  • Terminal device The device may be a mobile phone (such as mobile phones 120a, 120d, 120f in FIG1 ), a tablet computer, a computer with wireless transceiver function (such as computer 120g in FIG1 ), a wearable device, a vehicle (such as 120b in FIG1 ), a drone, a helicopter, an airplane (such as 120c in FIG1 ), a ship, a robot, a mechanical arm, or a smart home device (such as printer 120e in FIG1 ), etc.
  • This application does not limit the specific technology and specific device form adopted by the terminal device.
  • the network equipment and/or terminal equipment can be fixed or movable.
  • the network equipment and/or terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; or can be deployed on the water surface; or can be deployed on aircraft, balloons and artificial satellites in the air.
  • This application does not limit the environment/scenario in which the network equipment and terminal equipment are located.
  • the network equipment and terminal equipment can be deployed in the same or different environments/scenarios, for example, the network equipment and terminal equipment are deployed on land at the same time; or, the network equipment is deployed on land and the terminal equipment is deployed on the water surface, etc., and examples are not given one by one.
  • the current transmission method of uniformly distributed reference signals lacks transmission flexibility and may have large reference signal resource overhead, which affects throughput. For example, in scenarios where the relative speed between communication devices is high and multipath is rich, there are both time-selective fading and frequency-selective fading, which increases the reference signal resource overhead and makes channel estimation more difficult.
  • the present application proposes that for the same scene, in the case of relative speed between communication devices, the time-varying channel has spatial and temporal continuity, such as the generation and death process of the energy components of the signal between two communication devices with relative speed on multiple transmission paths in the channel over time is continuous, that is, the energy components of the signal on each transmission path are linearly related to time.
  • the signal energy components of the terminal device on different transmission paths at different locations may be different, but the change process of the signal energy on each path is from weak to strong and then weak as the terminal device moves (that is, over time). And, for the same location in the same scene, the scatterer distribution is approximately the same, and the Doppler spectrum between terminal devices with different relative speeds between network devices is linearly related.
  • the network equipment can fit the channel characteristics based on the characteristics of the environment, and flexibly adjust the distribution of reference signals used by terminal devices for channel estimation based on the channel characteristics, thereby improving the accuracy and resource utilization of channel estimation, and achieving higher-precision channel estimation in mobility scenarios with a more reasonable reference signal resource overhead that matches the environment.
  • FIG3 is a schematic flow chart of a reference signal transmission method 200 provided in an embodiment of the present application.
  • the method 200 includes but is not limited to the following steps:
  • the first communication device determines a reference signal resource based on N channel characteristic information and M energy scaling information, where the N channel characteristic information are used to characterize the channel between the first communication device and the second communication device, and any one of the channel characteristic information is used to indicate the correspondence between the energy component of the channel and the transmission resource, wherein the reference signal resource includes multiple resource units in the transmission resource, and in the correspondence indicated by one or more channel characteristic information, the energy indicated by one or more energy scaling information corresponds to a resource unit in the reference signal resource.
  • N and M are positive integers.
  • Each of the N channel characteristic information is used to indicate the corresponding relationship between the energy component of the channel and the transmission resource.
  • the combination of the N channel characteristic information can characterize the channel between the first communication device and the second communication device, that is, characterize the corresponding relationship between the total energy of the channel between the first communication device and the second communication device and the transmission resource.
  • the transmission resources are time domain resources and/or frequency domain resources.
  • each channel characteristic information is used to indicate the relationship between the energy component of the channel and time.
  • the channel between the first communication device and the second communication device includes N signal transmission paths, one channel characteristic information is specifically used to indicate the corresponding relationship between the energy component of the channel in one transmission path and the time resource.
  • the combination of the N channel characteristic information can characterize the change of the total energy of the channel including the N transmission paths over time.
  • the transmission resource is a frequency domain resource
  • the N channel characteristic information respectively represent the corresponding relationships corresponding to different Doppler frequency offsets.
  • Each channel characteristic information is used to indicate the relationship between the energy component corresponding to each Doppler frequency offset and the frequency variation.
  • the combination of the N channel characteristic information can characterize the change of the total energy of the channel with different Doppler frequency offsets with the frequency.
  • the transmission resources include time resources and frequency resources
  • a channel characteristic information is used to indicate the correspondence between the channel energy and the time-frequency resources
  • the combination of the N channel characteristic information can represent the correspondence between the total channel energy and the time-frequency resources.
  • the scheme provided by the present application is mainly explained by taking the transmission resource as a time resource as an example.
  • the implementation method of the transmission resource as a time resource can refer to the implementation method of the transmission resource as a frequency resource or a time-frequency resource, and the present application will not go into details one by one.
  • one channel characteristic information among the N channel characteristic information is used to indicate a basis function, and the basis function characterizes the correspondence between the energy component of the channel indicated by the channel characteristic information and time.
  • the N channel characteristic information indicate N basis functions, that is, the combination of the N basis functions can be used to characterize the channel between the first communication device and the second communication device.
  • the function types of the N basis functions may be the same or different.
  • the function types of the N basis functions may include, but are not limited to, one or more types of Gaussian envelope complex sine function, Rayleigh distribution function, or model function obtained by artificial intelligence modeling.
  • any one of the N basis functions represents the change of the energy component of the channel on one of the N transmission paths between the first communication device and the second communication device over time.
  • the N transmission paths may be the N transmission paths with the strongest energy between the first communication device and the second communication device.
  • the four basis functions shown in FIG4 are basis function 0, basis function 1, basis function 2, and basis function 3.
  • the four basis functions may respectively represent the change of the energy component of the channel on the four transmission paths between the first communication device and the second communication device over time.
  • the four transmission paths may be the change of the energy component of the channel on the four transmission paths in the example shown in FIG2 over time.
  • the superposition of the four basis functions may characterize the change of the total energy of the channel between the first communication device and the second communication device over time.
  • the four basis functions may be the change of the energy of the channel on the four transmission paths over time in a future period of time, so that the first communication device can determine the reference signal resource for transmitting the reference signal based on the possible change of the channel, thereby more accurately performing channel estimation to improve the reliability of signal transmission.
  • any one of the N basis functions can also represent the change of the energy component of the channel on one of the N transmission paths between the first communication device and the second communication device with the position of the second communication device (or the distance relative to a reference point).
  • the N channel characteristic information may be preconfigured or determined by the first communication device.
  • the N channel characteristic information may be preconfigured in the first communication device.
  • the first communication device is an access network device, and the access network device may be preconfigured with the N channel characteristic information that matches the environment where the access network device is located.
  • Channel characteristic information The access network device may determine the reference signal resource based on the pre-configured N channel characteristic information.
  • the N channel characteristic information may be determined by the first communication device.
  • the first communication device may acquire third information, where the third information is used to indicate one or more of the position, speed, or moving direction of the second communication device.
  • the first communication device may determine the N channel characteristic information based on the third information.
  • the third information may be perception information of the second communication device carried by the perception signal, the second communication device sends a perception signal carrying the third information to the first communication device, and the first communication device may measure the perception signal to obtain the third information.
  • the third information may be communication information sent by the second communication device to the first communication device. This application is not limited to this.
  • the first communication device After the first communication device obtains the third information of the second communication device, it can determine N channel characteristic information used to characterize the channel between the first communication device and the second communication device in the candidate channel characteristic information set based on one or more of the location, speed or moving direction of the second communication device.
  • the candidate channel feature information set is a channel feature information set corresponding to the environment where the first communication device is located.
  • the first communication device may determine the candidate channel feature information set based on historical prior information.
  • the historical prior information may include, but is not limited to, perception information and channel state information of multiple communication devices that have historically communicated with the first communication device.
  • the perception information may include, but is not limited to, one or more of the speed, position, and moving direction of the multiple communication devices.
  • the first communication device may determine, based on historical prior information, a set of candidate basis functions corresponding to the environment in which the first communication device is located.
  • One candidate channel characteristic information in the above channel characteristic information set is used to indicate a candidate basis function in the candidate basis function set.
  • a basis function set may be predefined, and the first communication device may determine a candidate basis function set corresponding to the environment where the first communication device is located in the predefined basis function set based on historical prior information.
  • a set of candidate values of at least one characteristic parameter of the basis function may be predefined.
  • the first communication device may select a candidate value of each characteristic parameter from the set of candidate values of the at least one characteristic parameter based on historical prior information, determine a candidate basis function corresponding to the environment in which the first communication device is located, and obtain a set of candidate basis functions.
  • the first communication device can determine the correspondence between the channel energy components and time/position on different signal transmission paths on the mobile route based on the historical prior information of multiple communication devices with the same or approximately the same mobile route. For a transmission path, the first communication device can determine the type of basis function representing the correspondence, the time center corresponding to the maximum energy of the basis function, the frequency information of the basis function (such as the floating frequency), and one or more of the fading characteristic information of the basis function based on the correspondence between the channel energy components and time/position on the transmission path, so that the basis function can more accurately determine the correspondence between the channel energy components and time/position on the transmission path.
  • the first communication device can determine the parameter value that enables the basis function to more accurately represent the correspondence in the candidate value set of each characteristic parameter.
  • a Gaussian envelope complex sine function can be used to characterize the change of the energy component h(t) of a channel on a transmission path over time t, that is, the corresponding relationship between the energy component h(t) and time t, if the corresponding relationship satisfies:
  • the characteristic parameters of the Gaussian envelope complex sine function may include an attenuation coefficient ⁇ , a time center T, and a frequency center ⁇ .
  • the first communication device determines the channel energy component and the time/position on the transmission path based on the historical prior information.
  • the first communication device determines the values of the three characteristic parameters of the attenuation coefficient ⁇ , the time center T, and the frequency center ⁇ to obtain a Gaussian envelope complex sine function that can more accurately characterize the corresponding relationship.
  • the first communication device can determine the parameter value that enables the basis function to more accurately characterize the corresponding relationship from the candidate value set of each characteristic parameter.
  • the first communication device may determine M pieces of energy scaling information, and thereby determine reference signal resources based on the N pieces of channel characteristic information and the M pieces of energy scaling information.
  • the first communication device can determine M energy scaling information based on the correspondence between energy components of the channels on N paths and time/position, that is, based on the possible changes of the energy components of the channels on each path over time, so that a reference signal is transmitted at the time corresponding to the energy indicated by the M energy scaling information in the N corresponding relationships, and more accurate channel information can be measured based on the reference signal.
  • the first communication device may determine two energy scaling information capable of acquiring the change characteristics of each path based on the change characteristics of the four transmission paths, such as the two energy scaling information respectively indicating energy h1 and energy h2 , and the first communication device then determines the time corresponding to energy h1 and energy h2 in the four basis functions. For example, as shown in FIG5 , the first communication device may determine the time corresponding to energy h1 and the time corresponding to energy h2 in each of the four basis functions, and determine time t1 to t10 .
  • the first communication device may determine a reference signal resource, which includes 10 resource units, i.e., 10 time units, and the 10 time units are respectively time unit t1 to time unit t10 .
  • the time unit may be a time domain symbol, such as an orthogonal frequency division multiplexing (OFDM) symbol.
  • the time unit may be a time domain symbol group containing a predefined number of time domain symbols, such as a time slot, a subframe, etc.
  • the present application is not limited thereto, and the time unit may also be microseconds, milliseconds, or seconds.
  • the basis function is a Gaussian envelope complex sine function
  • the basis function h(t,i) satisfies the following formula:
  • i is a basis function identifier, i is equal to 0, 1, 2 or 3.
  • the first communication device may determine time unit t1 to time unit t10 .
  • the first communication device determines the reference signal resource according to N channel characteristic information and M energy scaling information, including: the first communication device determines the reference signal resource according to the N channel characteristic information, the M energy scaling information and the minimum resource interval information.
  • the interval between any two resource units in the reference signal resource is greater than or equal to the interval indicated by the minimum resource interval information (i.e., the minimum resource interval).
  • the first communication device determines, based on the N channel characteristic information and the M energy scale information, that there may be similar resource units between the resource units in the reference signal resources, and the channel characteristics corresponding to the similar resource units are similar, so the minimum resource interval is set, and the resource units that meet the requirements are screened, so that the interval between any two resource units in the reference signal resources determined by the first communication device is greater than or equal to the minimum resource interval, so as to reduce unnecessary reference signal resource overhead.
  • the minimum resource interval may be predefined. Or the minimum resource interval is determined by the first communication device on demand. For example, the first communication device may determine the minimum resource interval based on the accuracy of the channel estimation corresponding to the service demand. And/or the first communication device may determine the minimum resource interval based on the communication resource utilization rate. This application is not limited to this. Certainly.
  • the first communication device determines a total of 10 time units from t1 to t10 as shown in FIG5.
  • the first communication device can determine the size of the time interval between two adjacent time units and the minimum resource interval according to the order of time. If the time interval between two adjacent time units is greater than or equal to the minimum resource interval, the two time units are retained. If the time interval between two adjacent time units is less than the minimum resource interval, the time unit with the earlier time is retained in the two time units, and the time unit with the later time is deleted.
  • the first communication device retains the earlier time unit t1 , and if the time interval between t1 and t3 is greater than the minimum resource interval, t1 and t3 are retained, and so on. Or if the time interval between two adjacent time units is less than the minimum resource interval, the first communication device can retain the later time unit and delete the earlier time unit.
  • the first communication device may retain the time unit determined based on the basis function with a higher priority based on the priority between N basis functions if the time interval between two adjacent time units is less than the minimum resource interval; and retain the time unit with the earlier or later time unit if the two time units are time units determined based on the same basis function.
  • the priorities between the basis functions may be determined based on the fading characteristics of the basis functions.
  • the priority between the basis functions can be determined based on the roll-off coefficient, and it can be stipulated that the basis function with a larger roll-off coefficient has a higher priority.
  • the priority between basis functions can be determined based on the energy range (ie, the difference between the maximum energy value and the minimum energy value) of the basis function within a preset time period. For example, the greater the energy range, the higher the priority.
  • the first communication device sends first information to the second communication device, where the first information is used to indicate at least one energy scale information.
  • the second communication device receives the first information from the first communication device.
  • the second communication device determines the M energy scale information according to the first information.
  • the M energy scaling information are M energy values
  • the first information may include the M energy values, or multiple candidate energy values and identifiers of each candidate energy value may be predefined or preconfigured, and the first information includes M identifiers, and the candidate energy values corresponding to the M identifiers are the M energy values.
  • multiple candidate energy value sets and identifiers of each candidate energy value set may be predefined, and each candidate energy value set includes at least one energy value, and the first information includes an identifier, and the candidate energy value set corresponding to the identifier includes the M energy values.
  • the present application is not limited to this, and the first information may also indicate the M energy scaling information in other ways.
  • the second communication device determines a reference signal resource according to the N channel characteristic information and the M energy scaling information.
  • the N channel characteristic information may be preconfigured, or the first communication device sends second information to the second communication device, the second information being used to indicate the N channel characteristic information. After receiving the second information, the second communication device determines the N channel characteristic information according to the second information.
  • the N channel characteristic information includes information of basis functions used to characterize the corresponding relationship between energy components of the channel and transmission resources.
  • the basis function information includes one or more of the following information:
  • a basis function set may be predefined, the channel characteristic information includes the identifier of the basis function, and the second communication device may determine N basis functions corresponding to the N identifiers in the basis function set according to the identifiers of the basis functions included in the N channel characteristic information. The second communication device may determine the parameter according to the N basis functions and the M energy scale information.
  • a candidate value set of at least one characteristic parameter of a basis function may be predefined.
  • One channel characteristic information in the N channel characteristic information includes an identifier of a candidate value of each characteristic parameter of a basis function, and the second communication device may determine the N basis functions according to the N channel characteristic information and the candidate value set of each characteristic parameter of the basis function.
  • the type of basis function may be predefined, and one of the N channel characteristic information includes parameter values of each characteristic parameter of a basis function determined by the first communication device.
  • the second communication device may determine N basis functions based on the type of predefined basis function and the N channel characteristic information.
  • the second communication device determines the reference signal resource in the same manner as the first communication device, which can be implemented as described above and will not be repeated here.
  • the first communication device and the second communication device determine the same reference signal resource in the same manner, thereby reaching a consensus on the reference signal resource.
  • the second communication device determines the reference signal resource in the same manner.
  • the minimum resource interval information may be predefined or obtained by the second communication device from the first communication device.
  • channel characteristic information may be carried in the same information sent from the first communication device to the second communication device, or carried in different information, which is not limited in the present application.
  • S304 The first communication device and the second communication device transmit a reference signal on the reference signal resource.
  • the first communication device sends a reference signal to the second communication device, where the reference signal is carried on the reference signal resource.
  • the first communication device sends a reference signal to the second communication device on a reference signal resource, and correspondingly, the second communication device receives the reference signal on the reference signal resource.
  • the second communication device may determine channel state characteristic information based on the reference signal, the channel state characteristic information being used to indicate the state of the channel corresponding to the reference signal, and obtain channel information based on the channel state characteristic information and N channel characteristic information used to determine the reference signal resource.
  • the second communication device sends a reference signal to the first communication device, where the reference signal is carried on the above-mentioned reference signal resource.
  • the first communication device sends a reference signal to the second communication device on a reference signal resource, and correspondingly, the first communication device receives the reference signal on the reference signal resource.
  • the first communication device may determine channel state characteristic information based on the reference signal, the channel state characteristic information being used to indicate the state of the channel corresponding to the reference signal, and then obtain channel information based on the channel state characteristic information and N channel characteristic information used to determine the reference signal resource.
  • the first communication device may be configured in a network device, and the second communication device may be configured in a terminal device.
  • the first communication device may be configured in a terminal device, and the second communication device may be configured in a network device.
  • the first communication device and the second communication device may be configured in two different terminal devices or different network devices, respectively, and this application does not limit this.
  • the first communication device may be a network device
  • the second communication device may be a terminal device.
  • the network device executes S301 and determines the reference signal resource, it sends first information to the terminal device, and the terminal device executes S303 to determine the reference signal resource according to the first information.
  • the reference signal resource can be a downlink reference signal resource
  • the network device sends a downlink reference signal in the reference signal resource, and accordingly, the terminal device receives the reference signal from the network device in the reference signal resource.
  • the reference signal resource may be an uplink reference signal resource
  • the terminal device sends an uplink reference signal in the reference signal resource
  • the network end device receives the reference signal from the terminal device in the reference signal resource, and obtains the uplink channel information according to the reference signal.
  • the first communication device may be a terminal device, and the second communication device may be a network device.
  • the terminal device executes S301 and determines the reference signal resource, it sends first information to the network device, and the network device executes S303 to determine the reference signal resource according to the first information.
  • the reference signal resource may be a downlink reference signal resource or an uplink reference signal resource.
  • the first communication device can fit the channel characteristics based on the characteristics of the environment in which it is located, and flexibly adjust the distribution of the reference signal used for channel estimation between the first communication device and the second communication device based on the channel characteristics, which can improve the accuracy of channel estimation and resource utilization, and can achieve higher-precision channel estimation in mobility scenarios with a more reasonable reference signal resource overhead that matches the environment.
  • a communication device can predict the channel between the communication device and the target communication device through a basis function set fitting time-frequency analysis method based on historical prior information, that is, the Doppler spectra and channel characteristics of other communication devices of different speeds communicating with the communication device at the same position.
  • the first communication device can predict the channel between the communication device and the second communication device based on this method, and obtain multiple channel characteristic information for characterizing the channel, so as to determine the reference signal resources.
  • Bp is the adaptive expansion coefficient
  • hp (t) is the basis function.
  • the communication device can obtain Bp and hp (t) of each iteration through iteration and exhaustive search based on historical prior information.
  • the N iterate adaptive expansion coefficients and the N iterate basis functions obtained through the N iterateth iteration are the basis function set for characterizing the channel, 1 ⁇ p ⁇ N iterate .
  • Gaussian envelope complex sine function as a basis function as an example to introduce the method of iteratively searching for adaptive expansion coefficients and basis functions. It should be understood that the present application is not limited to this, and in a specific embodiment, other functions and a combination of multiple different types of functions can also be selected to characterize the channel between communication devices.
  • the Gaussian envelope complex sine function corresponding to the pth iteration can be expressed as follows:
  • the parameter variables ⁇ p , T p and ⁇ p are the inverse of the variance of the Gaussian envelope of the pth iteration, the time center of the Gaussian function and the frequency center of the Gaussian function respectively.
  • the goal of each iteration is to search for the optimal ⁇ p , T p and ⁇ p .
  • the network device can use the perception information and channel characteristics of N MT terminal devices communicating with the network device as historical prior information for predicting the channel characteristics of the target terminal device.
  • the channel sampling number (or snapshot number) of terminal device i MT is for
  • r update is the channel update rate (or the sampling rate of the channel in time)
  • L path is the sampling path length.
  • CFR channel frequency response
  • the number of subcarriers N c in this application, represents the set of complex matrices with A rows and B columns,
  • the column vector is The frequency response vector obtained by sampling the channel of the terminal device i MT at a sampling time.
  • the channel frequency response of terminal device i MT is The (1+k ⁇ i MT )th column That is, the sampling channel frequency response of terminal device 1 The k+1th column of
  • the network device may need to obtain the number of time points (or the number of sampling positions) L slot of the channel frequency response of the target terminal, obtain the first L slot columns of each channel frequency response of the N MT channel frequency responses of the N MT terminal devices as historical prior information, the first L slot columns of the channel frequency response of the terminal device i MT among the N MT terminal devices may be H (i) (:,1:L slot ), and the initial residual s 0 is obtained by superimposing the first L slot columns of each channel frequency response in the NMT channel frequency responses, and s 0 satisfies:
  • the L slot column vectors in s 0 are respectively initial estimated values of the channel frequency response corresponding to the target terminal device's future L slot sampling moments (or the locations of the L slot sampling moments).
  • the network device will determine that the iteration interruption condition is met after a certain iteration (such as the N iterateth iteration), and the N iterate adaptive expansion coefficients and N iterate basis functions obtained through the N iterateth iteration are the basis function set used to characterize the channel. For each iteration, the network device performs S exhaustive searches, and the search range of ⁇ p,s and T p,s and the step size of the exhaustive search in each iteration can be reduced successively with the number of exhaustive searches.
  • the parameter variables ⁇ p,s and T p,s are the inverse of the variance of the Gaussian envelope of the sth exhaustive search in the pth iteration and the time center of the Gaussian function, respectively.
  • the search range and search step size of each search for ⁇ p,s and T p,s in the pth iteration may be as shown in Table 1.
  • the above introduces the scope of exhaustive search and the compensation of exhaustive search in each iteration.
  • the specific iteration method is described below.
  • the network device obtains the CFR matrix R p,s modulated by Gaussian envelope, which can be expressed as follows:
  • represents the Hadamard product, represents convolution
  • Nc is the number of subcarriers in the communication band
  • Equation 1 Equation 1
  • the modulation CFR vector on the cth subcarrier is Then the adaptive expansion coefficient corresponding to the cth subcarrier is
  • the above calculation is equivalent to
  • the L slot point discrete Fourier transform (DFT) is is a DFT matrix, and the fast Fourier transform (FFT) algorithm can be used to improve the calculation efficiency.
  • DFT discrete Fourier transform
  • FFT fast Fourier transform
  • the equivalent adaptive expansion coefficient in the frequency band (or the equivalent adaptive expansion coefficient of N c subcarriers) B p,s is recorded as:
  • the network device may define a storage matrix ⁇ p,s , whose number of rows is equal to the number of combinations of ⁇ p,s and T p,s values found in the s-th exhaustive search, i.e., the number of combinations of ⁇ p,s and T p,s values found by the network device in the s-th exhaustive search within the search range of ⁇ p,s and T p,s based on the search step corresponding to the s-th exhaustive search.
  • the l-th row of ⁇ p,s corresponds to the l-th pair of ⁇ p,s and T p, s found in the s-th exhaustive search, i.e., the number of combinations of ⁇ p,s and T p,s found in the search range of ⁇ p,s with the l-th step size. and the value obtained by taking the lth step length within the search range of T p,s
  • the lth row of ⁇ p, s ⁇ p,s (l,:) can be expressed as follows
  • ⁇ p,s (l,:) also includes [B p,s ] max is the largest element in B p,s , and the index of [B p,s ] max in B p,s is denoted by m. If m>L slot , then otherwise,
  • the optimal parameter obtained by the last exhaustive search in the pth iteration is recorded as the optimal parameter obtained in the pth iteration.
  • each row corresponds to a Gaussian envelope complex sine function (in this example, the Gaussian envelope complex sine function is a discrete function), and an element in each row represents the value of the Gaussian envelope complex sine function at the sampling moment corresponding to the column where the element is located (that is, the channel energy component corresponding to the sampling moment).
  • the basis function set includes a total of N iterate Gaussian envelope complex sine functions.
  • the N iterate Gaussian envelope complex sine functions can be used to characterize the channel between the network device and the target terminal device.
  • a Gaussian envelope complex sine function is used to characterize the correspondence between the energy component of the channel and time/position on a transmission path of the channel between the network device and the target terminal device.
  • the network device After the network device determines the basis function set, it can determine the reference signal resource based on the energy scale information and the basis function set.
  • the network device may prioritize the basis functions in the basis function set based on the range (i.e., the difference between the maximum and minimum values) of the basis functions in the basis function set, such as the larger the range of the basis function, the higher the priority.
  • the network device may determine the range of each row vector (i.e., a Gaussian envelope complex sine function) in the basis function set ⁇ bf , and then reorder the rows in which each row vector is located in ⁇ bf based on the range of each row vector.
  • the row in which the row vector with a larger range is located has a smaller sequence number and a higher priority.
  • the rearranged matrix is recorded as The network device can reorder the matrix For any row in , all elements in the row are normalized using the maximum value in the row.
  • the normalized matrix is recorded as The network device can be specifically based on Ne energy scale information and the reordered and normalized basis function set. Determine the reference signal resource.
  • the Ne energy scaling information can be recorded as an energy scaling vector by Taking the normalized Gaussian envelope complex sine function in the r dth row in as an example, r d is an integer less than or equal to N iterate and greater than 0.
  • the network device determines the column number of the largest value in the row
  • the row amplitude is divided into two parts, and the column number ranges of the two parts are and
  • the network device sets the column number of the amplitude The corresponding sampling time is used as a resource unit of the reference signal resource. For example, the network device can use the sequence number Store the column number set corresponding to the r dth Gaussian envelope middle.
  • the network device can obtain the column number set corresponding to the resource unit of the reference signal resource corresponding to each Gaussian envelope complex sine function r d through the above operation, that is,
  • the resource units of the reference signal resources determined by the above method can be screened based on the priority of the Gaussian envelope complex sine function corresponding to each column number set and the minimum interval information of the reference signal resource elements to obtain the resource elements ultimately included in the reference signal resources.
  • the network device may use the column number set corresponding to the Gaussian envelope complex sine function with the highest priority as a reference set, traverse the resource elements corresponding to the column numbers in the column number sets corresponding to other Gaussian envelope complex sine functions, and obtain a final column number set corresponding to the resource elements finally included in the reference signal resource, so that the interval between any two resource elements corresponding to the column numbers in the final column number set is greater than the minimum interval.
  • the network device defines a column number set Column number collection
  • the column number set corresponding to the Gaussian envelope complex sine function with the highest priority is included, that is,
  • the column number set corresponding to the Gaussian envelope complex sine function of the first row vector (i.e., r d 1) in
  • Network devices are grouped based on column numbers and the minimum interval T min between resource elements, and traverse the resource elements corresponding to each function in the order of priority from large to small including the complex sine function, that is, traverse the resource elements corresponding to each column number in the corresponding column number set in the order of r d values from large to small (that is, the values of r d are 2, ..., N iterate in sequence).
  • the network device may determine the minimum interval T min between the resource elements according to the reference signal resource overhead requirement, or The minimum interval may be predefined, which is not limited in this application.
  • the network device screening the resource elements in the reference signal resource based on the minimum interval between the resource elements is an optional implementation method of the solution provided by the present application.
  • resource element screening may not be performed, and the network device may not prioritize the basis functions in the basis function set. For example, after normalizing each row of the basis function set ⁇ bf with the maximum value of the row, the amplitude of the two-part column number range of each row is compared with the energy scale to determine the reference signal resource, that is, include This application does not limit this.
  • the network device may send second information to the target terminal device, where the second information is used to indicate the basis function set.
  • the second information may indicate the parameters of each basis function in the basis function set, such as the parameters of the basis function r d include the attenuation coefficient Time Center and frequency center.
  • the present application does not limit the indication method of the second information, and the second information may indicate the identification of each parameter, or indicate the value of each parameter, etc.
  • the second information may indicate the identification of the basis function in the basis function set used to characterize the channel between the network device and the target terminal device in the predefined candidate basis function set, and the target terminal device may determine each basis function, that is, the parameter of each basis function based on the second information.
  • the network device and the terminal device may reach a consensus on the basis function set used to characterize the channel between the network device and the target terminal device through the second information.
  • the network device sends first information to the terminal device, where the first information is used to indicate the Ne energy scaling information, so that after receiving the first information, the terminal device reaches a consensus with the network device on the Ne energy scaling information.
  • the network device may indicate the minimum interval T min to the target terminal device, or the network device and the terminal device may screen the resource elements based on the predefined minimum interval T min by default.
  • the terminal device may obtain the basis function set and Ne energy scale information to determine the reference signal resource, and the terminal device may screen the resource elements in the reference signal resource based on the minimum interval T min to obtain the final reference signal resource.
  • the terminal device may also default not to screen based on the minimum interval T min , so that the reference signal resource can be determined based on the basis function set and Ne energy scaling information, that is, the final reference signal resource.
  • the present application does not limit the manner in which the network device indicates Ne energy scaling information and the minimum interval T min .
  • the network device and the terminal device can reach a consensus on the basis function set and Ne energy scaling information (or also including the minimum interval Tmin ), and determine the reference signal resource in the same way, the reference signal resource determined by the network device and the terminal device is the same, and the network device and the terminal device reach a consensus on the reference signal resource.
  • the network device may send the reference signal to the terminal device on the reference signal resource, and the terminal device may receive the reference signal on the reference signal resource.
  • the target terminal device determines the channel information based on the reference signal.
  • the reference signal corresponding to the c-th subcarrier The adaptive expansion coefficient corresponding to the resource element is recorded as in, express Therefore, in practice, the adaptive extension of the channel frequency response H c corresponding to the subcarrier can be recorded as
  • H c H(c,:)
  • n c is a zero-mean complex additive Gaussian white noise vector.
  • the target terminal device obtains the estimated value of c c according to the least squares (LS) method for
  • the estimated value of H c is in, for The conjugate transpose of for The inverse matrix of .
  • the first communication device can fit the channel characteristics based on prior information, and flexibly determine the distribution of reference signals used for channel estimation between the communication device based on the position and/or speed of different communication devices, which can improve the accuracy of channel estimation and resource utilization, and can achieve high-precision channel estimation in mobility scenarios with a more reasonable reference signal resource overhead that matches the environment.
  • the reference signal resources determined by the above scheme of this application may be unevenly distributed, and the communication devices and communication devices can determine the reference signal resources in the same way through the interaction of channel characteristic information and energy scale information between the first communication device and the second communication device, thereby reaching a consensus on the reference signal resources. High-precision and efficient channel estimation is achieved.
  • the base station and the terminal include hardware structures and/or software modules corresponding to the execution of each function. It should be easily appreciated by those skilled in the art that, in combination with the units and method steps of each example described in the embodiments disclosed in this application, the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application scenario and design constraints of the technical solution.
  • Figures 6 and 7 are schematic diagrams of the structures of possible communication devices provided by the embodiments of the present application. These communication devices can be used to implement the functions of the first communication device or the second communication device in the above method embodiment, and thus can also achieve the beneficial effects possessed by the above method embodiment.
  • the communication device can be one of the terminal devices 120a-120g as shown in Figure 1, or it can be the network device 110a or 110b as shown in Figure 1, or it can be a module (such as a chip) applied to a terminal device or a network device.
  • the communication device 600 includes a transceiver unit 620, which can be used to receive or send information.
  • the communication device 600 may also include a processing unit 610, which can be used to process instructions or data to implement corresponding operations.
  • the transceiver unit 620 in the communication device 600 can be the input/output interface or circuit of the chip, and the processing unit 610 in the communication device 600 can be the processor in the chip.
  • the communication device 600 may further include a storage unit, which may be used to store instructions or data, and the processing unit 610 may execute the instructions or data stored in the storage unit to enable the communication device to implement corresponding operations.
  • a storage unit which may be used to store instructions or data
  • the processing unit 610 may execute the instructions or data stored in the storage unit to enable the communication device to implement corresponding operations.
  • the communication device 600 may be used to implement the first communication device in the method embodiment shown in FIG. 3 .
  • the processing unit 610 is used to determine a reference signal resource based on at least one channel characteristic information and at least one energy scaling information, wherein the at least one channel characteristic information is used to characterize a channel between a first communication device and a second communication device, and any one of the channel characteristic information is used to indicate a correspondence between an energy component of the channel and a transmission resource, and the reference signal resource includes a plurality of resource units in the transmission resource, and in one or more correspondences indicated by the channel characteristic information, one or more energies indicated by the energy scaling information correspond to one of the resource units.
  • the transceiver unit 620 is used to send first information to the second communication device, and the first information includes the at least one energy scaling information.
  • the transceiver unit 62 is also used to send a reference signal to the second communication device, or the first communication device receives a reference signal from the second communication device, wherein the reference signal is carried on the reference signal resource.
  • the communication device 600 can be used to implement the second communication device in the method embodiment shown in FIG. 3 above.
  • the transceiver unit 620 is used to receive the first information from the first communication device, and the first information includes at least one energy scale information.
  • the processing unit 610 is used to determine the reference signal resource according to at least one channel characteristic information and the at least one energy scale information, the at least one channel characteristic information is used to characterize the channel between the first communication device and the second communication device, any one of the channel characteristic information is used to characterize the corresponding relationship between the energy component of the channel and the transmission resource, the reference signal resource includes multiple resource units in the transmission resource, and in the corresponding relationship indicated by one or more of the channel characteristic information, the energy indicated by one or more of the energy scale information corresponds to one of the resource units.
  • the transceiver unit 620 is also used to receive a reference signal from the first communication device, or the second communication device sends a reference signal to the first communication device, wherein the reference signal is carried on the reference signal resource.
  • processing unit 610 and the transceiver unit 620 For a more detailed description of the processing unit 610 and the transceiver unit 620, reference may be made to the relevant description in the method embodiment shown in FIG. 3 .
  • the transceiver unit 620 in the communication device 600 can be implemented through a communication interface (such as a transceiver, a transceiver circuit, an input/output interface, or a pin, etc.).
  • a communication interface such as a transceiver, a transceiver circuit, an input/output interface, or a pin, etc.
  • the transceiver can be composed of a receiver and/or a transmitter.
  • the processing unit 610 in the communication device 600 can be implemented by at least one processor, and the processing unit 610 in the communication device 600 can also be implemented by at least one logic circuit.
  • the communication device 600 also includes a storage unit, which can be implemented by a memory.
  • the network device module implements the function of the network device in the above-mentioned method embodiment.
  • the network device module receives information from other modules in the network device (such as a radio frequency module or an antenna), and the information is sent by the terminal to the network device; or, the network device module sends information to other modules in the network device (such as a radio frequency module or an antenna), and the information is sent by the network device to the terminal.
  • the network device module here can be a baseband chip of the network device, or it can be a DU or other module.
  • the DU here can be a DU under the open radio access network (O-RAN) architecture.
  • OF-RAN open radio access network
  • the communication device 700 includes a processor 710 and an interface circuit 720.
  • the processor 710 and the interface circuit 720 are coupled to each other.
  • the interface circuit 720 may be a transceiver or an input/output interface.
  • the communication device 700 may further include a memory 730 for storing instructions executed by the processor 710 or storing input data required by the processor 710 to execute instructions or storing data generated after the processor 710 executes instructions.
  • the processor 710 is used to implement the function of the processing unit 610
  • the interface circuit 720 is used to implement the function of the transceiver unit 620 .
  • the chip can implement the function of the second communication device in the above method embodiment.
  • the chip receives information from other modules (such as a radio frequency module or an antenna) in the terminal device.
  • the information is sent by the network device to the terminal device; or, the chip sends information to other modules in the terminal device (such as a radio frequency module or an antenna), and the information is sent by the terminal device to the network device.
  • the module can implement the function of the first communication device in the above method embodiment.
  • the module receives information from other modules in the network device (such as a radio frequency module or an antenna), and the information is sent by the terminal device to the network device; or the module sends information to other modules in the terminal device (such as a radio frequency module or an antenna), and the information is sent by the network device to the terminal device.
  • processors in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuits
  • FPGA field programmable gate arrays
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented in hardware or in software instructions that can be executed by a processor.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium can also be a component of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in an access network device or a terminal device.
  • the processor and the storage medium can also be present in an access network device or a terminal device as discrete components.
  • the embodiment of the application also provides a computer program product, which includes: computer program code, when the computer program code is executed by one or more processors, the device including the processor executes the method shown in Figure 3.
  • the computer program product includes one or more computer programs or instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, a network device, a user device or other programmable device.
  • an embodiment of the present application also provides a computer-readable storage medium, which stores the above-mentioned computer program or instructions.
  • the device including the processor executes the method shown in Figure 3.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program or instruction may be transmitted from one website, computer, server or data center to another website, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that integrates one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; it may also be a semiconductor medium, such as a solid-state drive.
  • the computer-readable storage medium may be a volatile or non-volatile storage medium, or may include both volatile and non-volatile types of storage media.
  • the embodiment of the present application also provides a communication system, including the aforementioned
  • the system may further include one or more second communication devices.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the devices described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of this solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种参考信号传输方法和通信装置,该方法包括:第一通信装置根据用于表征第一通信装置与第二通信装置之间的信道的N个信道特征信息和M个能量标度信息确定参考信号资源。任意一个信道特征信息用于指示信道的能量分量与传输资源的对应关系,该参考信号资源包括传输资源中的多个资源单元,在一个或多个信道特征信息指示的对应关系中一个或多个能量标度信息指示的能量与一个资源单元相对应。第一通信装置向第二通信装置发送包括至少一个能量标度信息的第一信息。第一通信装置与第二通信装置在该参考信号资源上传输参考信号。能够提高信道估计的精度及资源利用率。

Description

参考信号传输方法和通信装置 技术领域
本申请涉及通信领域,并且更具体地,涉及一种参考信号传输方法和通信装置。
背景技术
在无线通信网络中,两个通信设备可以通过参考信号的传输,测量估计得到两个通信设备之间的信道的状态,从而确定数据传输采用的预编码,以减小数据传输时的信道衰落影响。通信装置获取到的信道状态的准确性,直接影响数据传输的可靠性。而参考信号的分布决定了通信设备获取到的信道状态的准确性。
目前,主要采用参考信号在时域和/或频域均匀分布的方式进行参考信号传输。然而随着无线通信的广泛应用,对信道估计的精度要求越来越高,而当前参考信号的传输方式灵活性不足,难以满足无线通信的发展需求。
发明内容
本申请实施例提供一种参考信号传输方法和通信装置,能够提高信道估计的精度及资源利用率。
第一方面,提供了一种参考信号传输方法,该方法可以由通信装置执行,该通信装置可以是通信设备或者可以是配置于通信设备的组件(如芯片或芯片系统)执行,以下以第一通信装置执行该方法为例进行说明。
该方法包括:第一通信装置根据至少一个信道特征信息和至少一个能量标度信息,确定参考信号资源,该至少一个信道特征信息用于表征该第一通信装置与第二通信装置之间的信道,任意一个该信道特征信息用于指示该信道的能量分量与传输资源的对应关系,该参考信号资源包括该传输资源中的多个资源单元,在一个或多个该信道特征信息指示的对应关系中一个或多个该能量标度信息指示的能量与一个该资源单元相对应。该第一通信装置向该第二通信装置发送第一信息,该第一信息用于指示该至少一个能量标度信息。该第一通信装置向该第二通信装置发送参考信号,或该第一通信装置接收来自该第二通信装置的参考信号,其中,该参考信号承载在所述参考信号资源上。
应理解,在本申请中,“发送信息/信号”,仅表示信息/信号传递的走向,包括空口直接发送,也包括处理单元通过空口间接发送,所以“发送”也可以理解为芯片接口的“输出”。同理,“接收信息/信号”,仅表示信息/信号传递的走向,包括空口直接接收,也包括处理单元通过空口间接接收,所以“接收”也可以理解为芯片接口的“输入”。
根据上述方案,相较于传统的均匀参考信号资源的固定配置,第一通信装置可以基于信道特征灵活地调整与第二通信装置之间用于信道估计的参考信号的分布,能够提高信道估计的精度及资源利用率,以及,能够以与环境相匹配的较合理的参考信号资源开销实现较高精度的移动性场景下的信道估计。并且通过本本申请的上述方案确定的参考信号资源可能非均匀分布的,第一通信装置与第二通信装置通过交互能量标度信息实现以相同方式 确定参考信号资源从而对参考信号资源达成共识。实现高精度、高效地信道估计。
结合第一方面,在第一方面的某些实现方式中,该传输资源是时域资源和/或频域资源。
结合第一方面,在第一方面的某些实现方式中,该第一通信装置根据至少一个信道特征信息和至少一个能量标度信息,确定参考信号资源,包括:该第一通信装置根据该至少一个信道特征信息、该至少一个能量标度信息和最小资源间隔信息,确定参考信号资源。其中,该参考信号资源中的任意两个资源单元之间的间隔大于或等于该最小资源间隔信息指示的间隔。
根据上述方案,由于相近的资源单元对应的信道特征相近,因此设定最小资源间隔,筛选满足需求的资源单元,使得第一通信装置确定的参考信号资源中任意两个资源单元之间的间隔大于或等于最小资源间隔。能够减小不必要的参考信号资源开销。
结合第一方面,在第一方面的某些实现方式中,该最小资源间隔信息为预定义的、或由该第一通信装置确定的。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一通信装置向该第二通信装置发送第二信息,该第二信息用于指示该至少一个信道特征信息。
根据上述方案,第一通信装置还向第二通信装置通知用于确定参考信号资源的至少一个信道特征信息,使得第一通信装置和第二通信装置基于相同的信道特征信息和能量标度信息确定的参考信号资源相同,从而使得两个通信装置对传输参考信号的参考信号资源达成共识,以便参考信号可靠传输。应理解,本申请并不限于此,用于确定参考信号资源的该至少一个信道特性信息可以是预定义的、根据预定义方式确定的或者由其他通信装置(如第三通信装置)传递给第一通信装置和/或第二通信装置的。
结合第一方面,在第一方面的某些实现方式中,该信道特征信息用于指示用于表征该对应关系的基函数的信息,该基函数的信息包括以下一种或多种信息:
该基函数的标识、该基函数的函数类型信息、该基函数表征的对应关系中最大能量对应的资源信息、该基函数的频率信息或基函数的衰落特征信息。
根据上述方案,信道特征信息可以具体指示基函数的信息,使得第二通信装置可以基于信道特征信息确定用于表征信道的至少一个基函数,从而基于该至少一个基函数和至少一个能量标度信息确定参考信号资源。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一通信装置接收来自该第二通信装置的第三信息,该第三信息用于指示该第二通信装置的位置、速度或移动方向中的一项或多项。该第一通信装置根据该第三信息,确定该至少一个信道特征信息。
根据上述方案,第一通信装置可以根据从第二通信装置获取到的感知信息(如位置、速度或移动方向中的一项或多项),确定用于表征信道的至少一个信道特征信息,使得该至少一个信道特征信息能够更精确地表征第一通信装置与第二通信装置之间的信道。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一通信装置根据多个通信装置与该第一通信装置之间的信道状态信息、以及该多个通信装置的位置信息、速度信息或移动方向信息中的一项或多项,确定候选信道特征信息集合,该候选信道特征信息集合包括该至少一个信道特征信息。
根据上述方案,第一通信装置可以基于历史先验信息,拟合其所在环境的信道特征,得到候选信道特征信息集合,实现第一通信装置对其所在环境实现信道建模以及基于环境 变化进行实时模型调整。从而可以基于信道模型确定用于表征与第一通信装置通信的不同通信装置的信道特征信息,实现与通信装置的速度、位置及其所在环境相匹配的参考信号资源设计,能够实现较高精度的移动性场景下的信道估计。该确定候选信道特征信息集合的方式可以是采用人工智能的方式进行模型训练得到信道模型的方式。
结合第一方面,在第一方面的某些实现方式中,该传输资源包括时域资源,该信道包括至少一个传输路径,一个该信道特征信息用于指示该信道在一个该传输路径中的能量分量与时间资源的对应关系。
根据上述方案,当传输资源包括时域资源时,不同信道特征信息可以表征一个传输路径上信道能量分量随时间的变化,能够通过多个信道特征信息表征多径信道的特征。
第二方面,提供了一种参考信号传输方法,该方法可以由通信装置执行,该通信装置可以是通信设备或者可以是配置于通信设备的组件(如芯片或芯片系统)执行,以下以第二通信装置执行该方法为例进行说明。
该方法包括:第二通信装置接收来自第一通信装置的第一信息,该第一信息用于指示至少一个能量标度信息。该第二通信装置根据至少一个信道特征信息和该至少一个能量标度信息,确定参考信号资源,该至少一个信道特征信息用于表征该第一通信装置与该第二通信装置之间的信道,任意一个该信道特征信息用于表征该信道的能量分量与传输资源的对应关系,该参考信号资源包括该传输资源中的多个资源单元,在一个或多个该信道特征信息指示的对应关系中一个或多个该能量标度信息指示的能量与一个该资源单元相对应。该第二通信装置接收来自该第一通信装置的参考信号,或该第二通信装置向该第一通信装置发送参考信号,其中,该参考信号承载在该参考信号资源上。
结合第二方面,在第二方面的某些实现方式中,该传输资源是时域资源和/或频域资源。
结合第二方面,在第二方面的某些实现方式中,该第二通信装置根据至少一个信道特征信息和至少一个能量标度信息,确定参考信号资源,包括:该第二通信装置根据该至少一个信道特征信息、该至少一个能量标度信息和最小资源间隔信息,确定该参考信号资源。其中,该参考信号资源中的任意两个资源之间的间隔大于或等于该最小资源间隔信息指示的间隔。
结合第二方面,在第二方面的某些实现方式中,该最小资源间隔信息为预定义的或从该第一通信装置获取到的。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该第二通信装置接收来自该第一通信装置的第二信息,该第二信息用于指示该至少一个信道特征信息。
结合第二方面,在第二方面的某些实现方式中,该信道特征信息用于指示用于表征该对应关系的基函数的信息,该基函数的信息包括以下一种或多种信息:
该基函数的标识、该基函数的函数类型信息、该基函数表征的对应关系中最大能量对应的资源信息、该基函数的频率信息或该基函数的衰落特征信息。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:第二通信装置根据该参考信号,确定信道状态特性信息,该信道状态特性信息用于指示该参考信号对应的该信道的状态。该第二通信装置根据该信道状态特性信息和该至少一个信道特征信息,确定信道信息。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该第二通信装置向该第一通信装置发送第三信息,该第三信息用于指示该第二通信装置的位置、速度或移动方向中的一项或多项,该第三信息用于确定该至少一个信道特征信息。
结合第二方面,在第二方面的某些实现方式中,该传输资源包括时域资源,该信道包括至少一个传输路径,一个该信道特征信息用于指示该信道在一个该传输路径中的能量分量与时间资源的对应关系。
第三方面,提供了一种通信装置,一种设计中,该装置可以包括执行第一方面或第一方面中任一种实施方式中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:处理单元,用于根据至少一个信道特征信息和至少一个能量标度信息,确定参考信号资源,该至少一个信道特征信息用于表征第一通信装置与第二通信装置之间的信道,任意一个该信道特征信息用于指示该信道的能量分量与传输资源的对应关系,该参考信号资源包括该传输资源中的多个资源单元,在一个或多个该信道特征信息指示的对应关系中一个或多个该能量标度信息指示的能量与一个该资源单元相对应。收发单元,用于向该第二通信装置发送第一信息,该第一信息用于指示该至少一个能量标度信息。该收发单元还用于向该第二通信装置发送参考信号,或该第一通信装置接收来自该第二通信装置的参考信号,其中,该参考信号承载在该参考信号资源上。
应理解,第三方面中传输资源、最小时间间隔、信道特征信息的具体实施方式可以参考第一方面的描述,在此不再赘述。
结合第三方面,在第三方面的某些实现方式中,该处理单元具体用于根据该至少一个信道特征信息、该至少一个能量标度信息和最小资源间隔信息,确定参考信号资源。其中,该参考信号资源中的任意两个资源单元之间的间隔大于或等于该最小资源间隔信息指示的间隔。
结合第三方面,在第三方面的某些实现方式中,该收发单元还用于接收来自该第二通信装置的第三信息,该第三信息用于指示该第二通信装置的位置、速度或移动方向中的一项或多项。该处理单元还用于根据该第三信息,确定该至少一个信道特征信息。
结合第三方面,在第三方面的某些实现方式中,该处理单元还用于根据多个通信装置与该第一通信装置之间的信道状态信息、以及该多个通信装置的位置信息、速度信息或移动方向信息中的一项或多项,确定候选信道特征信息集合,该候选信道特征信息集合包括该至少一个信道特征信息。
第四方面,提供了一种通信装置,一种设计中,该装置可以包括执行第二方面或第二方面中任一种实施方式中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置包括:收发单元,用于接收来自第一通信装置的第一信息,该第一信息用于指示至少一个能量标度信息。处理单元,用于根据至少一个信道特征信息和该至少一个能量标度信息,确定参考信号资源,该至少一个信道特征信息用于表征该第一通信装置与第二通信装置之间的信道,任意一个该信道特征信息用于表征该信道的能量分量与传输资源的对应关系,该参考信号资源包括该传输资源中的多个资源单元,在一个或多个该信道特征信息指示的对应关系中一个或多个该能量标度信息指示的能量与一个该资源单元相对 应。该收发单元还用于接收来自该第一通信装置的参考信号,或该第二通信装置向该第一通信装置发送参考信号,其中,该参考信号承载在该参考信号资源上。
应理解,第四方面中传输资源、最小时间间隔、信道特征信息的具体实施方式可以参考第二方面的描述,在此不再赘述。
结合第四方面,在第四方面的某些实施方式中,该处理单元还用于根据该至少一个信道特征信息、该至少一个能量标度信息和最小资源间隔信息,确定该参考信号资源。
其中,该参考信号资源中的任意两个资源之间的间隔大于或等于该最小资源间隔信息指示的间隔。
结合第四方面,在第四方面的某些实施方式中,该收发单元还用于接收来自该第一通信装置的第二信息,该第二信息用于指示该至少一个信道特征信息。
结合第四方面,在第四方面的某些实施方式中,该处理单元还用于根据该参考信号,确定信道状态特性信息,该信道状态特性信息用于指示该参考信号对应的该信道的状态。以及,该处理单元还用于根据该信道状态特性信息和该至少一个信道特征信息,
确定信道信息。
结合第四方面,在第四方面的某些实施方式中,该处理单元还用于根据多个通信装置与该第一通信装置之间的信道状态信息、以及该多个通信装置的位置信息、速度信息或移动方向信息中的一项或多项,确定候选信道特征信息集合,该候选信道特征信息集合包括该至少一个信道特征信息。
第五方面,提供了一种通信装置,包括处理器。该处理器可以实现上述第一方面或第一方面中任一种可能的实现方式中的方法,或者实现上述第二方面以及第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器,该处理器与该存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第一方面中任一种可能的实现方式中的方法,或者实现上述第二方面以及第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。本申请中,通信接口可以是收发器、管脚、电路、总线、模块或其它类型的通信接口,不予限制。
在一种实现方式中,该通信装置为通信设备(如通信设备可以是终端设备或网络设备)。当该通信装置为通信设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为配置于通信设备中的芯片。当该通信装置为配置于通信设备中的芯片时,该通信接口可以是输入/输出接口。
可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
第六方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该处理器执行上述第一方面或第一方面中任一种可能的实现方式中的方法,或者执行上述第二方面以及第二方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请对处理器及各 种电路的具体实现方式不做限定。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面或第一方面中任一种可能的实现方式中的方法,或者执行上述第二方面以及第二方面中任一种可能实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面或第一方面中任一种可能的实现方式中的方法,或者执行上述第二方面以及第二方面中任一种可能实现方式中的方法。
第九方面,提供了一种通信系统,包括前述的至少一个第一通信装置和前述的至少一个第二通信装置。
附图说明
图1是适用于本申请实施例提供的通信系统的示意性框图。
图2是本申请实施例的应用场景的一个示意图。
图3是本申请实施例提供的参考信号传输方法的示意性流程图。
图4是本申请实施例提供的用于表征信道的基函数的示意图。
图5是本申请实施例提供的确定参考信号资源的示意图。
图6是本申请的通信装置的一个示意性结构图。
图7是本申请的通信装置的另一个示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
在本申请实施例中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。为了便于描述本申请实施例的技术方案,在本申请实施例中,可以采用“第一”、“第二”等字样进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。在本申请实施例中,至少一个(种)还可以描述为一个(种)或多个(种),多个(种)可以是两个(种)、三个(种)、四个(种)或者更多个(种),本申请不做限制。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、5G系统或新无线(new radio,NR)、非陆地网络(non-terrestrial networks,NTN)以及未来的通信系统,如第六代移动通信系统等。本申请对此不作限定。
图1是适用于本申请实施例的通信系统100的一个架构示意图。如图1所示,该通信系统100可以包括至少一个网络设备(如图1中的110a、110b、110c),还可以包括至少 一个终端设备(如图1中的120a-120g)。网络设备和网络设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备等。
本申请实施例提供的第一通信装置可以是网络设备,或配置于网络设备的模块(如芯片或芯片系统)。网络设备可以是接入网设备,如基站(base station)、节点B(Node B)、演进型节点B(evolved NodeB,eNodeB或eNB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代节点B(next generation NodeB,gNB)、开放无线接入网(open radio access network,O-RAN或open RAN)中的接入网设备、第六代(6th generation,6G)移动通信系统中的下一代基站、或者是未来移动通信系统中的基站、或无线保真(wireless fidelity,WiFi)系统中的接入节点等。网络设备可以是卫星(如图1中的110a),也可以是宏基站(如图1中的110b),接入网设备还可以是微基站或室内站(如图1中的110c),还可以是中继节点或施主节点等。本申请中对网络设备所采用的具体技术和具体设备形态不做限定。其中,本申请实施例中,网络设备的部分或全部功能可以在非陆地网络(non-terrestrial networks,NTN)平台(NTN平台包括但不限于卫星、无人机系统(unmanned aircraft system,UAS)、高空通信平台(high altitude platform station,HAPS)等)上,或者网络设备的部分或全部功能在地面上,NTN平台负责转发UE与接入网设备之间的信号。
本申请实施提供的第一通信装置还可以是完成网络设备部分功能的模块或单元,例如,可以是集中式单元(central unit,CU)、分布式单元(distributed unit,DU)、集中单元控制面(CU control plane,CU-CP)模块、或集中单元用户面(CU user plane,CU-UP)模块等。在又一些部署中,第一通信装置还可以是天线单元(radio unit,RU)等。在又一些部署中,第一通信装置还可以是开放的无线接入网(open radio access network,ORAN)架构等等,本申请对于第一通信装置的具体类型不作限定。示例性的,在第一通信装置是ORAN架构时,本申请实施例所示的第一通信装置可以是ORAN中的接入网设备,或者是接入网设备中的模块等。在ORAN系统中,CU还可以称为开放(open,O)-CU,DU还可以称为O-DU,CU-DU还可以称为O-CU-DU,CU-UP还可以称为O-CU-UP,RU还可以称为O-RU。实施例中描述的第一通信装置的接收操作在具体实施中可以是输入操作,发送操作可以是输出操作,以及从第二通信装置接收信号(如数据/信令/信号等)可以是通过其他装置传递间接获取到的,向第二通信装置发送信号可以是通过其他装置传递间接到达第二通信装置的。本申请对此不作限定。
本申请实施例提供的第二通信装置可以是终端设备,或配置于终端设备的模块(如芯片或芯片系统)。终端设备也可以称为终端,包括但不限于:用户设备(user equipment,UE)、移动台、或移动终端等。终端设备可以广泛应用于各种场景进行通信。该场景例如包括但不限于以下至少一个场景:增强移动宽带(enhanced mobile broadband,eMBB)、超高可靠性超低时延通信(ultra-reliable low-latency communication,URLLC)、大规机器类型通信(massive machine-type communications,mMTC)、设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)、机器类型通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、或智慧城市等。终端设 备可以是手机(如图1中的手机120a、120d、120f)、平板电脑、带无线收发功能的电脑(如图1中的电脑120g)、可穿戴设备、车辆(如图1所示的120b)、无人机、直升机、飞机(如图1中的120c)、轮船、机器人、机械臂、或智能家居设备(如图1中的打印机120e)等。本申请对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备和/或终端设备可以是固定位置的,也可以是可移动的。网络设备和/或终端设备可以部署在陆地上,包括室内或室外、手持或车载;或者可以部署在水面上;或者可以部署在空中的飞机、气球和人造卫星上。本申请对网络设备和终端设备所处的环境/场景不做限定。网络设备和终端设备可以部署在相同的或不同的环境/场景,例如,网络设备和终端设备同时部署在陆地上;或者,网络设备部署在陆地上,终端设备部署在水面上等,不再一一举例。
目前均匀分布的参考信号(如时域和/或频域等间隔分布)的传输方式,传输灵活性不足、可能存在参考信号资源开销较大,影响吞吐量的情况。例如,在通信设备之间相对速度较高以及多径较为丰富的场景中,同时存在时间选择性衰落和频率选择性衰落,参考信号资源开销变大且信道估计难度较大。
本申请提出对于同一场景中,对于通信设备之间存在相对速度的情况,该时变信道具有空间、时间连续性,如具有相对速度的两个通信设备之间的信号随着时间的推移在信道中多条传输路径上的能量分量的生灭过程具有连续性,即信号在各条传输路径上的能量分量与时间成线性关系。如图2所示,作为终端设备的汽车与网络设备之间的信号存在多条传输路径,如图2所示的反射路径0、反射路径1、反射路径2和直达路径3。终端设备进入网络设备的覆盖范围到再次离开网络设备的覆盖范围的过程中,终端设备在不同位置的不同传输路径上的信号能量分量可能不同,但各路径上的信号能量的变化过程均是随着终端设备的移动(即随时间推移)由弱变强,再变弱。以及,对于同一场景的同一位置,散射体分布近似相同,与网络设备之间的相对速度不同的终端设备之间的多普勒谱成线性关系。因此,网络设备可以基于所在环境特性拟合信道特征,基于信道特征灵活地调整终端设备用于信道估计的参考信号的分布,能够提高信道估计的精度及资源利用率,以及,能够以与环境相匹配的较合理的参考信号资源开销实现较高精度的移动性场景下的信道估计。
图3是本申请实施例提供的参考信号传输方法200的示意性流程图。该方法200包括但不限于如下步骤:
S301,第一通信装置根据N个信道特征信息和M个能量标度信息,确定参考信号资源,该N个信道特征信息用于表征第一通信装置与第二通信装置之间的信道,任意一个信道特征信息用于指示该信道的能量分量与传输资源的对应关系,其中,参考信号资源包括该传输资源中的多个资源单元,在一个或多个信道特征信息指示的对应关系中一个或多个能量标度信息指示的能量与参考信号资源中的一个资源单元相对应。
其中,N、M为正整数。N个信道特征信息中的每个信道特征信息用于指示信道的能量分量与传输资源的对应关系。该N个信道特征信息的组合可以表征第一通信装置与第二通信装置之间的信道,即表征第一通信装置与第二通信装置之间信道的总能量与传输资源之间的对应关系。
示例性地,传输资源是时域资源和/或频域资源。
例如,该传输资源为时域资源,则每个信道特性信息用于指示信道的能量分量随时间的变化关系,如第一通信装置与第二通信装置之间的信道包括N个信号传输路径,一个信道特征信息具体用于指示信道在一个传输路径中的能量分量与时间资源的对应关系。该N个信道特征信息的组合可以表征包括该N个传输路径的信道的总能量随时间的变化。
再例如,该传输资源为频域资源,N个信道特征信息分别表示不同多普勒频偏对应的对应关系,每个信道特征信息用于指示每种多普勒频偏对应的能量分量随频率的变化关系,该N个信道特征信息的组合可以表征不同多普勒频偏的信道的总能量随频率的变化。
再例如,该传输资源包括时间资源和频率资源,则一个信道特征信息用于指示信道的能量与时频资源的对应关系,该N个信道特征信息的组合可以表征信道的总能量与时频资源的对应关系。
应理解,本申请实施例中主要以传输资源是时间资源为例对本申请提供的方案进行说明,可以参考传输资源为时间资源的实施方式对传输资源为频率资源或时频资源进行实施,本申请不再一一赘述。
在一种实施方式中,该N个信道特征信息中的一个信道特征信息用于指示一个基函数,通过基函数表征信道特征信息指示的信道的能量分量与时间的对应关系,该N个信道特征信息指示了N个基函数,即该N个基函数的组合可以用于表征第一通信装置与第二通信装置之间的信道。
可选地,该N个基函数的函数类型可以相同或也可以不同。示例性地,该N个基函数的函数类型可以包括但不限于高斯包络复正弦函数、瑞利分布函数、或通过人工智能建模得到的模型函数中的一种或多种类型。
以基函数的函数类型为高斯包络复正弦函数、传输资源为时域资源为例,该N个基函数中的任一个基函数表示第一通信装置与第二通信装置之间的N个传输路径中的一个传输路径上信道的能量分量随时间的变化。如该N个传输路径可以是第一通信装置与第二通信装置之间能量最强的N个传输路径。如图4所示的4个基函数分别为基函数0、基函数1、基函数2和基函数3。该4个基函数可以分别表示第一通信装置与第二通信装置之间的4个传输路径上信道的能量分量随时间的变化。比如,该4个传输路径可以是图2所示示例中的4个传输路径上信道的能量分量随时间的变化。该4个基函数的叠加可以表征第一通信装置与第二通信装置之间的信道的总能量随时间的变化。具体地,该4个基函数可以是表征未来一段时间内该4个传输路径上信道的能量随时间的变化情况,使得第一通信装置可以基于信道可能的变化情况,确定用于传输参考信号的参考信号资源,从而更准确地进行信道估计,以提高信号传输的可靠性。
应理解,考虑到第一通信装置与第二通信装置之间的相对速度,如第一通信装置为位置固定,第二通信装置相较于第一通信装置具有一定的移动速度,第二通信装置的位置随时间变化。因此,该N个基函数中的任一个基函数也可以表示第一通信装置与第二通信装置之间的N个传输路径中的一个传输路径上信道的能量分量随第二通信装置的位置(或相对于某一参照点距离)的变化情况。
该N个信道特征信息可以是预配置的,或由第一通信装置确定的。
一个示例中,该N个信道特征信息可以是预配置在第一通信装置的。例如,第一通信装置是接入网设备,接入网设备可以预配置有与该接入网设备所在环境相匹配的该N个 信道特征信息。接入网设备可以基于预配置的该N个信道特征信息确定参考信号资源。
另一个示例中,该N个信道特征信息可以是由第一通信装置确定的。
第一通信装置可以获取第三信息,该第三信息用于指示第二通信装置的位置、速度或移动方向中的一项或多项。第一通信装置可以根据该第三信息,确定该N个信道特征信息。
示例性地,该第三信息可以是感知信号携带的第二通信装置的感知信息,第二通信装置向第一通信装置发送携带第三信息的感知信号,第一通信装置可以测量感知信号,得到该第三信息。或者,该第三信息可以是第二通信装置向第一通信装置发送的通信信息。本申请对此不作限定。
第一通信装置获取到第二通信装置的第三信息后,可以根据第二通信装置所在位置、速度或移动方向中的一项或多项,在候选信道特征信息集合中确定用于表征第一通信装置与第二通信装置之间信道的N个信道特征信息。
该候选信道特征信息集合是第一通信装置所在环境对应的信道特征信息集合。第一通信装置可以基于历史先验信息,确定该候选信道特征信息集合。该历史先验信息可以包括但不限于历史上与第一通信装置通信的多个通信装置的感知信息及信道状态信息。其中,该感知信息可以包括但不限于多个通信装置的速度、位置和移动方向中的一项或多项。
具体地,第一通信装置可以基于历史先验信息,确定该第一通信装置所在环境对应的候选基函数集合。上述信道特征信息集合中的一个候选信道特征信息用于指示该候选基函数集合中的一个候选基函数。
一个示例中,可以预定义基函数集合,第一通信装置可以基于历史先验信息,在预定义的基函数集合中确定与该第一通信装置所在环境相对应的候选基函数集合。
另一个示例中,可以预定义基函数的至少一种特征参数的候选值集合。第一通信装置可以基于历史先验信息,在该至少一个特征参数的候选值集合中选择每种特征参数的候选值,确定与该第一通信装置所在环境相对应的候选基函数,得到候选基函数集合。
例如,第一通信装置可以基于移动路线相同或近似相同的多个通信装置的历史先验信息,确定该移动路线上不同信号传输路径上的信道能量分量与时间/位置的对应关系,对于一个传输路径,第一通信装置可以基于该传输路径上的信道能量分量与时间/位置的对应关系,确定表征该对应关系的基函数的类型、基函数的最大能量对应的时间中心、基函数的频率信息(如浮动频率)以及基函数的衰落特征信息中的一项或多项等,以便基函数能够较准确定表示该传输路径上的信道能量分量与时间/位置的对应关系。第一通信装置可以在各特征参数的候选值集合中确定能够使得基函数较准确地表征对应关系的参数值。
以基函数的类型是高斯包络复正弦函数为例,一个高斯包络复正弦函数可以用于表征一个传输路径上的信道的能量分量h(t)随时间t的变化,即能量分量h(t)与时间t的对应关系,如该对应关系满足:
其中,该高斯包络复正弦函数的特征参数可以包括衰减系数α、时间中心T和频率中心Ω,第一通信装置基于历史先验信息确定该传输路径上的信道能量分量与时间/位置 的对应关系,第一通信装置通过确定衰减系数α、时间中心T和频率中心Ω三个特征参数的取值,得到能够较准确地表征该对应关系的高斯包络复正弦函数。如第一通信装置可以在各特征参数的候选值集合中确定能够使得基函数较准确地表征对应关系的参数值。
以上仅为示例,在具体实施中,还可以是仅预定义基函数的一种或多种类型,由第一通信装置计算得到基函数的各特征参数的取值。本申请对此不作限定。
第一通信装置可以确定M个能量标度信息,从而基于N个信道特征信息和M个能量标度信息,确定参考信号资源。
第一通信装置可以根据N个路径上信道的能量分量与时间/位置的对应关系,即根据各路径上信道的能量分量随时间的可能变化情况,确定M个能量标度信息,使得在N个对应关系中该M个能量标度信息指示的能量对应的时间上传输参考信号,能够基于该参考信号测量得到较准确的信道信息。
例如,以图4所示的用于表征4个传输路径上的信道的能量分量随时间变化的4个基函数为例,第一通信装置可以根据基于4个传输路径的变化特征,确定能够获取到各路径变化特征的2个能量标度信息,如该2个能量标度信息分别指示能量h1和能量h2,第一通信装置再确定4个基函数中与能量h1、能量h2对应的时间,例如图5所示,第一通信装置可以确定该4个基函数中的每个基函数中能量h1对应的时间以及能量h2对应的时间,确定时间t1至t10,第一通信装置可以确定参考信号资源,该参考信号资源包括10个资源单元,即10个时间单元,该10个时间单元分别为时间单元t1至时间单元t10。示例性地,时间单元可以是时域符号,如正交频分复用(orthogonal frequency division multiplexing,OFDM符号。或者时间单元可以是包含预定义数量的时域符号的时域符号组,如时隙、子帧等。但本申请不限于此,时间单元还可以是微秒、毫秒或秒。
如基函数为高斯包络复正弦函数,基函数h(t,i)满足下式:
其中,i为基函数标识,i等于0、1、2或3。第一通信装置可以确定h(t,i)=h1时的时间以及h(t,i)=h2时的时间第一通信装置可以确定时间单元t1至时间单元t10
一种实施方式中,该第一通信装置根据N个信道特征信息和M个能量标度信息,确定参考信号资源,包括:第一通信装置根据N个信道特征信息、M个能量标度信息以及最小资源间隔信息,确定参考信号资源。参考信号资源中的任意两个资源单元之间的间隔大于或等于该最小资源间隔信息指示的间隔(即最小资源间隔)。
该第一通信装置根据N个信道特征信息和M个能量标度信息,确定的参考信号资源中的资源单元之间可能存在相近的资源单元,相近的资源单元对应的信道特征相近,因此设定最小资源间隔,筛选满足需求的资源单元,使得第一通信装置确定的参考信号资源中任意两个资源单元之间的间隔大于或等于最小资源间隔。以减小不必要的参考信号资源开销。
示例性地,最小资源间隔可以是预定义的。或者最小资源间隔是由第一通信装置按需确定的。比如,第一通信装置可以根据业务需求对应的信道估计的精度,确定最小资源间隔。和/或第一通信装置可以基于通信资源利用率确定该最小资源间隔。本申请对此不作限 定。
例如,第一通信装置确定了如图5所示的t1至t10共10个时间单元,第一通信装置可以按照时间的先后顺序判断两个相邻时间单元之间的时间间隔与最小资源间隔之间的大小,若两个相邻时间单元之间的时间间隔大于或等于最小资源间隔,则保留该两个时间单元,若两个相邻时间单元之间的时间间隔小于最小资源间隔,则在该两个时间单元中保留时间在前的时间单元,删除时间在后的时间单元。如t1与t2之间的时间间隔小于最小资源间隔,则第一通信装置保留时间在前的时间单元t1,而t1与t3之间的时间间隔大于最小资源间隔,则保留t1与t3,以此类推。或者若两个相邻时间单元之间的时间间隔小于最小资源间隔,第一通信装置可以保留时间在后的时间单元,删除时间在前的时间单元。
再例如,第一通信装置可以根据N个基函数之间的优先级,若两个相邻时间单元之间的时间间隔小于最小资源间隔,则保留基于高优先级的基函数确定的时间单元,若该两个时间单元是基于同一基函数确定的时间单元,则保留时间在前或时间在后的时间单元。
一种实施方式中,基函数之间的优先级可以基于基函数的衰落特征确定。
例如,基函数为高斯包络复正弦函数,则可以基于滚降系数确定基函数之间的优先级,可以规定滚降系数越大的基函数优先级越高。
再例如,基函数之间的优先级可以基于基函数在预设时间段内的能量极差(即能量最大值与最小值之间的差值)确定。如能量极差越大优先级越高。
S302,第一通信装置向第二通信装置发送第一信息,该第一信息用于指示至少一个能量标度信息。
相应地,第二通信装置接收来自第一通信装置的该第一信息。第二通信装置根据该第一信息,确定该M个能量标度信息。
例如,该M个能量标度信息为M个能量值,第一信息可以包括该M个能量值,或者可以预定义或预配置多个候选能量值和每个候选能量值的标识,该第一信息包括M个标识,该M个标识对应的候选能量值为该M个能量值。再或者,可以预定义多个候选能量值集合和每个候选能量值集合的标识,每个候选能量值集合包括至少一个能量值,该第一信息包括一个标识,该标识对应的候选能量值集合包含该M个能量值。但本申请不限于此,第一信息还可以采用其他方式指示该M个能量标度信息。
S303,第二通信装置根据N个信道特征信息和M个能量标度信息,确定参考信号资源。
该N个信道特征信息可以是预配置的,或者,第一通信装置向第二通信装置发送第二信息,该第二信息用于指示该N个信道特征信息。第二通信装置接收到第二信息后,根据第二信息确定该N个信道特征信息。
该N个信道特征信息包括用于表征信道的能量分量与传输资源的对应关系的基函数的信息。该基函数的信息包括以下一种或多种信息:
基函数的标识、基函数的函数类型信息、基函数表征的对应关系中最大能量对应的资源信息、基函数的频率信息或基函数的衰落特征信息。
例如,可以预定义基函数集合,信道特征信息中包括基函数的标识,第二通信装置可以根据该N个信道特征信息中包含的基函数的标识,在基函数集合中确定与N个标识相对应的N个基函数。第二通信装置可以根据该N个基函数和M个能量标度信息,确定参 考信号资源。
再例如,可以预定义基函数的至少一种特征参数的候选值集合。该N个信道特征信息中一个信道特征信息包括一个基函数的每种特征参数的候选值的标识,第二通信装置可以根据该N个信道特征信息和基函数的每种特征参数的候选值集合确定N个基函数。
再例如,可以预定义基函数的类型,该N个信道特征信息中一个信道特征信息包括第一通信装置确定的一个基函数的每种特征参数的参数值。第二通信装置可以根据预定义基函数的类型和该N个信道特征信息确定N个基函数。
第二通信装置确定参考信号资源的方式与第一通信装置确定参考信号资源的方式相同,具体可以前文中的描述进行实施,在此不再赘述。第一通信装置与第二通信装置采用相同的方式确定的参考信号资源相同,实现对参考信号资源达成共识。
若第一通信装置基于N个信道特征信息、M个能量标度信息和最小资源间隔信息,确定参考信号资源,则第二通信装置采用相同的方式确定参考信号资源。该最小资源间隔信息可以是预定义的,或者是第二通信装置从第一通信装置获取到的。
应理解,信道特征信息、能量标度信息和最小资源间隔信息中的一种或多种信息可以承载在由第一通信装置向第二通信装置发送的同一信息中,或者分别承载在不同信息中。本申请对此不作限定。
S304,第一通信装置与第二通信装置在该参考信号资源上传输参考信号。
一种实施方式中,第一通信装置向第二通信装置发送参考信号,该参考信号承载在上述参考信号资源上。
第一通信装置在参考信号资源上向第二通信装置发送参考信号,相应地,该第二通信装置在该参考信号资源上接收该参考信号。
第二通信装置可以根据该参考信号确定信道状态特性信息,该信道状态特性信息用于指示参考信号对应的信道的状态。该第二通信装置再根据该信道状态特性信息和用于确定参考信号资源的N个信道特征信息,得到信道信息。
另一种实施方式中,第二通信装置向第一通信装置发送参考信号,该参考信号承载在上述参考信号资源上。
第一通信装置在参考信号资源上向第二通信装置发送参考信号,相应地,该第一通信装置在该参考信号资源上接收该参考信号。
第一通信装置可以根据该参考信号确定信道状态特性信息,该信道状态特性信息用于指示参考信号对应的信道的状态。该第一通信装置再根据该信道状态特性信息和用于确定参考信号资源的N个信道特征信息,得到信道信息。
在具体实施中,图2所示实施例中第一通信装置可以配置于网络设备、第二通信装置可以配置于终端设备。或者第一通信装置可以配置于终端设备、第二通信装置可以配置于网络设备。再或者,第一通信装置和第二通信装置可以分别配置于不同的两个终端设备或不同的网络设备,本申请对此不作限定。
例如,第一通信装置可以是网络设备,第二通信装置可以是终端设备。网络设备执行S301,确定参考信号资源后,向终端设备发送第一信息,由终端设备根据第一信息执行S303确定该参考信号资源。如该参考信号资源可以下行参考信号资源,则网络设备在该参考信号资源发送下行参考信号,相应地,终端设备在该参考信号资源接收来自网络设备的该参 考信号,根据该参考信号得到下行信道信息。或者该参考信号资源可以上行参考信号资源,则终端设备在该参考信号资源发送上行参考信号,相应地,网络端设备在该参考信号资源接收来自终端设备的该参考信号,根据该参考信号得到上行信道信息。
再例如,第一通信装置可以是终端设备,第二通信装置可以是网络设备。终端设备执行S301,确定参考信号资源后,向网络设备发送第一信息,网络设备根据第一信息执行S303确定该参考信号资源。该参考信号资源可以下行参考信号资源,或上行参考信号资源。
根据上述方案,第一通信装置可以基于所在环境特性拟合信道特征,基于信道特征灵活地调整与第二通信装置之间用于信道估计的参考信号的分布,能够提高信道估计的精度及资源利用率,以及,能够以与环境相匹配的较合理的参考信号资源开销实现较高精度的移动性场景下的信道估计。
下面介绍本申请实施例提供的一种基于历史先验信息确定该传输路径上的信道能量分量与时间/位置的对应关系的方式,应理解本申请不限于此。
通过多普勒(Doppler)谱的特性可知,同一场景中的相同位置处散射体分布近似相同,且不同速度的通信装置之间的Doppler谱成线性关系。本申请提出通信装置可以根据历史先验信息,即与该通信装置通信的不同速度的其他通信装置在同一位置处的Doppler谱和信道特征,通过基函数集合拟合时频分析方法预测与目标通信装置之间的信道。如前文实施例中,第一通信装置可以基于该方法预测与第二通信装置之间的信道,得到用于表征该信道的多个信道特征信息,以便确定参考信号资源。
基于自适应展开理论,较好的基函数设计可以实现残差能量以指数衰减收敛到0,信道htarget(t)可以基于自适应基函数集合被很好重建。
其中,Bp是自适应展开系数,hp(t)为基函数,通信装置可以基于历史先验信息,通过迭代、穷举搜索得到每次迭代的Bp和hp(t),第p次迭代后的残差为sp=sp-1-Bp-1hp-1(t),若满足迭代中断条件:其中,ξ为预设的误差容忍极限,表示X的2范数的平方,即表示X的内积。如通信装置在第Niterate次迭代后满足迭代中断条件,则通过Niterate次迭代得到的Niterate个自适应展开系数和Niterate个基函数为用于表征信道的基函数集合,1≤p≤Niterate
下面以高斯包络复正弦函数作为基函数为例介绍迭代搜索自适应展开系数和基函数的方式。应理解,本申请并不限于此,在具体实施例中也可以选择其他函数以及多种不同类型的函数结合用于表征通信装置之间的信道。如第p次迭代对应的高斯包络复正弦函数可以表示如下:
其中,参数变量αp、Tp和Ωp分别是第p次迭代的高斯包络的方差的倒数、高斯函数的时间中心以及高斯函数的频率中心。每次迭代的目标是搜索得到最优得αp、Tp和Ωp
以下以网络设备确定目标终端设备的信道特征为例进行详细说明。网络设备可以以与该网络设备通信的NMT个终端设备的感知信息和信道特征作为预测目标终端设备的信道特征的历史先验信息。以终端设备1的速度为其他终端设备的速度的整数倍为例,如终端设备1的速度为终端设备iMT(iMT=2、3、…、NMT)的iMT倍。则终端设备iMT的速度可以表示为:
故终端设备iMT的信道采样数(或者称为快照数)
其中,rupdate为信道更新率(或者称为信道在时间上的采样率),Lpath为采样路径长度。终端设备iMT的信道频率响应(channel frequency response,CFR)记为
其中,子载波数Nc,在本申请中,表示A行B列的复数矩阵的集合,中的个列向量是个采样时刻对终端设备iMT的信道采样得到的频率响应向量。
由于终端设备1的速度为终端设备iMT的iMT倍且NMT个终端设备采样路径等长,均为Lpath,因此终端设备iMT的信道频率响应的第(1+k·iMT)列即是终端设备1的采样信道频率响应的第k+1列,即
其中,1:iMT:
网络设备可以需要获取的目标终端的信道频率响应的采用时刻数量(或者说采样位置数量)Lslot,获取作为历史先验信息的该NMT个终端设备的NMT个信道频率响应中每个信道频率响应的前Lslot列,该NMT个终端设备中的终端设备iMT的信道频率响应的前Lslot列可以为H(i)(:,1:Lslot),以该NMT个信道频率响应中每个信道频率响应的前Lslot列的叠加作初始残差s0,s0满足:
即s0中的Lslot个列向量分别为目标终端设备未来Lslot个采样时刻(或者说Lslot个采样时刻所在的位置)对应的信道频率响应的初始估计值。
网络设备基于初始残差s0进行αp、Tp和Ωp的迭代搜索,以便得到每次迭代确定的最优αp、Tp和Ωp,如前文描述p为迭代次数的标识,p=1、2、…、Ninterate
如前文介绍,网络设备将在某一次(如第Niterate次)迭代后确定满足迭代中断条件,并通过该Niterate次迭代得到的Niterate个自适应展开系数和Niterate个基函数为用于表征信道的基函数集合。对于每次迭代,网络设备进行S次穷举搜索,且每次迭代中αp,s和Tp,s的搜索范围和穷举搜索的步长可以随着穷举搜索的次数依次减小。其中,参数变量αp,s、Tp,s 分别是第p次迭代中第s次穷举搜索的高斯包络的方差的倒数和高斯函数的时间中心。p=1、2、…、Ninterate,其中,Ninterate≤Imax,Imax是预定义的最大迭代次数,穷举搜索次数的标识s=1,2,,S,S为最大搜索次数。
示例性地,第p次迭代中每次搜索αp,s和Tp,s的搜索范围和搜索的步长可以如表1所示,表1以搜索次数S=3为例,其中,首次穷举搜索s=1时,网络设备在较大αp,s和Tp,s的搜索范围,以较大步长,搜索到次优参数如网络设备以步长为10,在αp,1∈[0,A],Tp,1∈[0,Lslot-1]的搜索范围内搜索到次优参数然后,第2次穷举搜索s=2时,缩小搜索范围以更小步长进一步搜索到次优参数如网络设备以步长为1,在

的搜索范围内搜索得到次优参数最后,在本次迭代中最后一次搜索s=3时,在

的搜索范围内搜索到的最优参数
表1
以上对每次迭代中穷举搜索的范围和穷举搜索的补偿进行了介绍。下面具体迭代方式进行描述。网络设备获取经过高斯包络调制的CFR矩阵Rp,s,可以表示如下:
其中,⊙表示哈达玛(Hadamard)积,表示卷积,Nc为通信频带中的子载波数,为高斯包络函数集合,记作:
为高斯包络函数,记作:
其中,n=0,1,…,Lslot-1
以第c个子载波为例,第c个子载波上的调制CFR矢量为则对应第c个子载波的自适应扩展系数为
上式计算形式上等效于的Lslot点离散傅里叶变换(discrete fourier transform,DFT),即为DFT矩阵,可以利用快速傅里叶变换(fast fourier transform,FFT)算法以提高计算效率。
为综合分析每对穷举搜索到的αp,s和Tp,s的取值对自适应扩展系数的影响,将频带内等效自适应扩展系数(或者称为Nc个子载波的等效自适应扩展系数)Bp,s记为:
其中,|X|为对矩阵或矢量X中每个元素取模,<X>2为对矩阵或矢量X中每个元素取平方。网络设备可以定义一个存储矩阵Λp,s,其行数与第s次穷举搜索到的αp,s和Tp,s取值的组合的数量相等,即网络设备在第s次穷举搜索中基于第s次穷举搜索对应的搜索步长分别在αp,s和Tp,s的搜索范围内搜索到的αp,s和Tp,s取值的组合的数量。Λp,s的第l行,即Λp,s(l,:)对应第s次穷举搜索时搜索到的第l对αp,s和Tp,s的组合,即在搜索αp,s的搜索范围内以第l倍步长得到的及在搜索Tp,s的搜索范围内以第l倍步长得到的Λp,s的第l行Λp,s(l,:)可以表示如下
其中,Λp,s(l,:)还包括[Bp,s]max为Bp,s中的最大元素,[Bp,s]max在Bp,s中的索引记作m。若m>Lslot,则否则,
网络设备在第s次穷举结束得到Λp,s后,将Λp,s首列中最大值所在行的参数记为 可以确定第p次迭代中第s次穷举搜索的基函数矢量为hp,s=[hp,s(0)hp,s(1)hp,s(Lslot-1)],其中,
以及,最优的等效自适应扩展系数为
重复上述过程,直至最后一次(即第S次)搜索后获得hp,S表明第p次迭代中最后一次穷举搜索完成。为便于描述,将第p次迭代中最后一次穷举搜索得到的最优参数记为第p次迭代得到的最优参数则该第p次迭代后确定的基函数hp=hp,S、相应的自适应扩展网络设备可以定义最优参数矩阵其第p行用于存储第p次迭代得到的最优参数即Γpm的第p行记作以及网络设备还可以定义基函数矩阵该基函数矩阵Γbf的第p行用于存储第p次迭代后确定的基函数hp,即Γbf的第p行记作Γbf(p,:)=hp
最后,第p次迭代后的残差为若满足中断条件则网络设备停止迭代。否则,进行下一次迭代,即重复上述过程,直至满足中断条件或达到最大迭代次数(即p=Imax=Niterate),则网络设备停止迭代。如第Niterate次迭代后得到的残差sP满足中断条件或达到最大迭代次数,1≤Niterate≤Imax,网络设备得到基函数集合其中,每行对应一个高斯包络复正弦函数(该示例中,高斯包络复正弦函数为离散函数),每行中一个元素表示该元素所在列对应的采样时刻该高斯包络复正弦函数的取值(即该采样时刻对应的信道能量分量),该基函数集合共包括Niterate个高斯包络复正弦函数,该Niterate个高斯包络复正弦函数可以用于表征网络设备与目标终端设备之间信道,一个高斯包络复正弦函数用于表征网络设备与目标终端设备之间信道的一条传输路径上信道的能量分量与时间/位置的对应关系。
网络设备确定基函数集合后,可以基于能量标度信息和基函数集合,确定参考信号资源。
一种可选地实施方式中,网络设备可以基于基函数集合中基函数的极差(即最大值与最小值的差值)大小,对基函数集合中的基函数进行优先级排序,如基函数的极差越大优先级越高。示例性地,网络设备可以确定基函数集合Γbf中每一行向量(即一个高斯包络复正弦函数)的极差大小,再基于各行向量的极差大小对各行向量在Γbf中的所在行进行重新排序,极差越大的行向量所在行的序号越小、优先级越高,重排后的矩阵记为网络设备可以对重排序后的矩阵中的任一行,采用该行中的最大值对所在行的所有元素进行归一化,归一化后的矩阵记为网络设备具体可以基于Ne个能量标度信息和该重排序及归一化处理后的基函数集合确定参考信号资源。示例性地,该Ne个能量标度信息可以记作一个能量标度矢量中第rd行的归一化的高斯包络复正弦函数为例,rd为小于或等于Niterate且大于0的整数。
网络设备确定该行中最大幅值所在的列序号将该行幅值分为两部分,该两部分的列序号范围分别为
在列序号范围个幅值(即信道能量分量)中,对于每个能量标度其中ie=1、2、…Ne,若第一个(即列序号为1的幅值)小于能量 标度e(ie),则确定该个幅值中与e(ie)的取值最接近的幅值,即其中,[X]min为矩阵(或矢量)X的最小值。网络设备将该幅值中的列序号对应采样时刻作为参考信号资源的一个资源单元。如网络设备可以将该列序号存入对应第rd个高斯包络的列序号集合中,否则,不存入。比如,ie=1,若第一个小于能量标度则确定该个幅值中与最接近的幅值,即网络设备将该幅值的列序号对应采样时刻作为参考信号资源的一个资源单元。如网络设备可以将该列序号存入对应第rd个高斯包络的列序号集合中。
其次,在列序号范围个幅值中,对于每个能量标度其中ie=1、2、…Ne,若最后一个(列序号为Lslot的幅值)小于能量标度e(ie),则确定个幅值中与e(i)的取值最接近的幅值,即中的列序号对应的采样时刻作为参考信号资源的一个资源单元,将存入否则,不存入。
网络设备基于Ne个能量标度信息和基函数集合,通过上述操作可以得到每个高斯包络复正弦函数rd对应的参考信号资源的资源单元对应的列序号集合,即
一种可选实施方式中,为了控制参考信号资源的资源开销,可以基于每个列序号集合对应的高斯包络复正弦函数的优先级和参考信号资源元素的最小间隔信息,上述方式确定的参考信号资源的资源单元进行筛选,得到参考信号资源最终包含的资源元素。
网络设备可以以优先级最高的高斯包络复正弦函数对应的列序号集合作为参考集合,遍历其他高斯包络复正弦函数对应的列序号集合中的列序号对应的资源元素,得到参考信号资源最终包含的资源元素对应的最终列序号集合。使得该最终列序号集合中的任意两个列序号对应的两个资源元素之间的间隔大于最小间隔。
示例性地,网络设备定义列序号集合列序号集合中包括优先级最高的高斯包络复正弦函数对应的列序号集合,即中的第一行向量(即rd=1)的高斯包络复正弦函数对应的列序号集合网络设备基于列序号集合和资源元素之间的最小间隔Tmin,按照高斯包括复正弦函数的优先级由大到小的顺序,遍历各函数对应的资源元素,即按照rd的取值由大到小的顺序依次(即rd的取值依次为2、…、Niterate)遍历相应的列序号集合中的每个列序号对应的资源元素。以中元素为例,当trd对应的资源元素与中每个列序号对应的资源元素的间隔均大于Tmin时,将存入否则,不存入当遍历完每个列序号集合结束后,得到的列序号集合即为参考信号资源对应的最终的列序号集合。
网络设备可以根据参考信号资源开销需求,确定该资源元素之间的最小间隔Tmin,或 该最小间隔可以是预定义的,本申请对此不作限定。
应理解,网络设备基于资源元素之间的最小间隔对参考信号资源中的资源元素进行筛选为本申请提供的方案的一种可选实施方式,在具体实施中,为了获取更高精度的信道信息,也可以不进行资源元素筛选,则网络设备可以不对基函数集合中的基函数进行优先级排序,如对基函数集合Γbf每一行采用该行最大值归一化后,对每行的两部分列序号范围的幅值与能量标度比较后,确定参考信号资源,即包括本申请对此不作限定。
网络设备在确定用于表征网络设备与目标终端设备之间的信道的基函数集合后,网络设备可以向目标终端设备发送第二信息,该第二信息用于指示该基函数集合,如该第二信息可以指示该基函数集合中每个基函数的参数,如基函数rd的参数包括衰减系数时间中心和频率中心本申请对第二信息的指示方式不作限定,第二信息可以指示各参数的标识、或指示各参数的取值等。或者,第二信息可以指示在预定义的候选基函数集合中,指示用于表征网络设备与目标终端设备的信道的基函数集合中的基函数在候选基函数集合中的标识,目标终端设备可以基于第二信息确定每个基函数,即每个基函数的参数。网络设备和终端设备可以通过第二信息可以对用于表征网络设备与目标终端设备的信道的该基函数集合达成共识。
以及,网络设备还向终端设备发送第一信息,该第一信息用于指示上述Ne个能量标度信息,使得终端设备接收到该第一信息后,与网络设备对该Ne个能量标度信息达成共识。
若网络设备还基于最小间隔Tmin对参考信号资源中的资源元素进行筛选,则网络设备可以向目标终端设备指示该最小间隔Tmin,或者网络设备与终端设备默认基于预定义的最小间隔Tmin对资源元素进行筛选。则终端设备获取到基函数集合和Ne个能量标度信息可以确定参考信号资源,终端设备再基于最小间隔Tmin对该参考信号资源中的资源元素进行筛选,得到最终的参考信号资源。
若网络设备不基于最小间隔Tmin对参考信号资源中的资源元素进行筛选,终端设备也可以默认不基于最小间隔Tmin进行筛选,从而基于基函数集合和Ne个能量标度信息可以确定参考信号资源,即为最终的参考信号资源。
应理解,本申请对网络设备指示Ne个能量标度信息和最小间隔Tmin的方式不作限定。
由于网络设备与终端设备对基函数集合和Ne个能量标度信息(或者还包括最小间隔Tmin)能够达成共识,且采用相同的方式确定参考信号资源,使得网络设备与终端设备确定的参考信号资源相同,实现网络设备与终端设备对参考信号资源达成共识。
网络设备可以在该参考信号资源上向终端设备发送该参考信号,终端设备在该参考信资源上接收该参考信号。
目标终端设备基于该参考信号确定信道信息。以第c个子载波为例,对应第c个子载波的参考信号的个资源元素对应的自适应扩展系数记为其中,表示中包含的元素个数。故实际中该子载波对应的信道频率响应Hc的自适应扩展可以记为
其中,为基函数集合Γbf的子矩阵,是网络设备根据中包含的列序号,在Γbf中依次提取列序号对应的列向量得到的Niterate列的矩阵。目标终端设备与网络设备之间的信道频率响应记作H,则Hc为H的第c行,记作Hc=H(c,:)nc为零均值复加性高斯白噪声矢量。目标终端设备根据最小二乘(least square,LS)法,得cc的估计值
故Hc的估值为其中,的共轭转置,的逆矩阵。
根据上述方案,相较于传统的均匀参考信号资源的固定配置,第一通信装置可以基于基于先验信息拟合信道特征,基于不同通信装置的位置和/或速度等信息灵活地确定与该通信装置之间用于信道估计的参考信号的分布,能够提高信道估计的精度及资源利用率,以及,能够以与环境相匹配的较合理的参考信号资源开销实现较高精度的移动性场景下的信道估计。并且通过本本申请的上述方案确定的参考信号资源可能非均匀分布的,通信装置与通信装置可以通过第一通信装置与第二通信装置通过交互信道特征信息和能量标度信息实现以相同方式确定参考信号资源从而对参考信号资源达成共识。实现高精度、高效地信道估计。
可以理解的是,为了实现上述实施例中功能,基站和终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图6和图7为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中第一通信装置或第二通信装置的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端设备120a-120g中的一个,也可以是如图1所示的网络设备110a或110b,还可以是应用于终端设备或网络设备的模块(如芯片)。
该通信装置600包括收发单元620,该收发单元620可以用于接收或发送信息,该通信装置600还可以包括处理单元610,该处理单元610可以用于处理指令或者数据,以实现相应的操作。
应理解,当该通信装置600为配置于(或用于)通信设备中的芯片时,该通信装置600中的收发单元620可以为芯片的输入/输出接口或电路,该通信装置600中的处理单元610可以为芯片中的处理器。
可选地,通信装置600还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元610可以执行该存储单元中存储的指令或者数据,以使该通信装置实现相应的操作。
该通信装置600可以用于实现上述图3所示的方法实施例中的第一通信装置,当该通信装置600用于实现上述图3所示的方法实施例中的第一通信装置的功能时:处理单元 610,用于根据至少一个信道特征信息和至少一个能量标度信息,确定参考信号资源,该至少一个信道特征信息用于表征第一通信装置与第二通信装置之间的信道,任意一个该信道特征信息用于指示该信道的能量分量与传输资源的对应关系,该参考信号资源包括该传输资源中的多个资源单元,在一个或多个该信道特征信息指示的对应关系中一个或多个该能量标度信息指示的能量与一个该资源单元相对应。收发单元620用于向该第二通信装置发送第一信息,该第一信息包括该至少一个能量标度信息。该收发单元62还用于向该第二通信装置发送参考信号,或该第一通信装置接收来自该第二通信装置的参考信号,其中,该参考信号承载在该参考信号资源上。
该通信装置600可以用于实现上述图3所示的方法实施例中的第二通信装置,当该通信装置600可以用于实现上述图3所示的方法实施例中的第二通信装置的功能时:收发单元620,用于接收来自第一通信装置的第一信息,该第一信息包括至少一个能量标度信息。处理单元610,用于根据至少一个信道特征信息和该至少一个能量标度信息,确定参考信号资源,该至少一个信道特征信息用于表征该第一通信装置与第二通信装置之间的信道,任意一个该信道特征信息用于表征该信道的能量分量与传输资源的对应关系,该参考信号资源包括该传输资源中的多个资源单元,在一个或多个该信道特征信息指示的对应关系中一个或多个该能量标度信息指示的能量与一个该资源单元相对应。该收发单元620还用于接收来自该第一通信装置的参考信号,或该第二通信装置向该第一通信装置发送参考信号,其中,该参考信号承载在该参考信号资源上。
有关上述处理单元610和收发单元620更详细的描述可以参考图3所示的方法实施例中相关描述。
应理解,该通信装置600中的收发单元620为可通过通信接口(如收发器、收发电路、输入/输出接口、或管脚等)实现,当通信接口是收发器时,收发器可以由接收器和/或发送器组成。该通信装置600中的处理单元610可通过至少一个处理器实现,该通信装置600中的处理单元610还可以通过至少一个逻辑电路实现。可选地,该通信装置600还包括存储单元,该存储单元可以由存储器实现。
当上述通信装置为应用于网络设备的模块时,该网络设备模块实现上述方法实施例中网络设备的功能。该网络设备模块从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给网络设备的;或者,该网络设备模块向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端的。这里的网络设备模块可以是网络设备的基带芯片,也可以是DU或其他模块,这里的DU可以是开放式无线接入网(open radio access network,O-RAN)架构下的DU。
如图7所示,通信装置700包括处理器710和接口电路720。处理器710和接口电路720之间相互耦合。可以理解的是,接口电路720可以为收发器或输入输出接口。可选的,通信装置700还可以包括存储器730,用于存储处理器710执行的指令或存储处理器710运行指令所需要的输入数据或存储处理器710运行指令后产生的数据。
当通信装置700用于实现图7所示的方法时,处理器710用于实现上述处理单元610的功能,接口电路720用于实现上述收发单元620的功能。
当上述通信装置为应用于终端设备的芯片时,该芯片可以实现上述方法实施例中第二通信装置的功能。该芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信 息是网络设备发送给终端设备的;或者,该芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的模块时,该模块可以实现上述方法实施例中第一通信装置的功能。该模块从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该模块向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(网络设备plication Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以在硬件中实现,也可以在可由处理器执行的软件指令中实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备或终端设备中。处理器和存储介质也可以作为分立组件存在于接入网设备或终端设备中。
根据申请实施例提供的方法,本申请实施例还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码由一个或多个处理器执行时,使得包括该处理器的装置执行如图3所示的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。
根据本申请实施例提供的方法,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储上述计算机程序或指令,当该计算机程序或指令由一个或多个处理器运行时,使得包括该处理器的装置执行如图3所示中的方法。
如上述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,包括前述的一个 或多个第一通信装置。还系统还可以进一步包括前述的一个或多个第二通信装置。
在本申请所提供的几个中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本方案的目的。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (41)

  1. 一种参考信号传输方法,其特征在于,包括:
    第一通信装置根据至少一个信道特征信息和至少一个能量标度信息,确定参考信号资源,所述至少一个信道特征信息用于表征所述第一通信装置与第二通信装置之间的信道,任意一个所述信道特征信息用于指示所述信道的能量分量与传输资源的对应关系,所述参考信号资源包括所述传输资源中的多个资源单元,在一个或多个所述信道特征信息指示的对应关系中一个或多个所述能量标度信息指示的能量与一个所述资源单元相对应;
    所述第一通信装置向所述第二通信装置发送第一信息,所述第一信息用于指示所述至少一个能量标度信息;
    所述第一通信装置向所述第二通信装置发送参考信号,或所述第一通信装置接收来自所述第二通信装置的参考信号,其中,所述参考信号承载在所述参考信号资源上。
  2. 根据权利要求1所述的方法,其特征在于,所述传输资源是时域资源和/或频域资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一通信装置根据至少一个信道特征信息和至少一个能量标度信息,确定参考信号资源,包括:
    所述第一通信装置根据所述至少一个信道特征信息、所述至少一个能量标度信息和最小资源间隔信息,确定参考信号资源,
    其中,所述参考信号资源中的任意两个资源单元之间的间隔大于或等于所述最小资源间隔信息指示的间隔。
  4. 根据权利要求3所述的方法,其特征在于,所述最小资源间隔信息为预定义的、或由所述第一通信装置确定的。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置向所述第二通信装置发送第二信息,所述第二信息用于指示所述至少一个信道特征信息。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述信道特征信息用于指示用于表征所述对应关系的基函数的信息,所述基函数的信息包括以下一种或多种信息:
    所述基函数的标识、所述基函数的函数类型信息、所述基函数表征的对应关系中最大能量对应的资源信息、所述基函数的频率信息或基函数的衰落特征信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收来自所述第二通信装置的第三信息,所述第三信息用于指示所述第二通信装置的位置、速度或移动方向中的一项或多项;
    所述第一通信装置根据所述第三信息,确定所述至少一个信道特征信息。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置根据多个通信装置与所述第一通信装置之间的信道状态信息、以及所述多个通信装置的位置信息、速度信息或移动方向信息中的一项或多项,确定候选信道特征信息集合,所述候选信道特征信息集合包括所述至少一个信道特征信息。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述传输资源包括时域资源,所述信道包括至少一个传输路径,一个所述信道特征信息用于指示所述信道在一个所述传输路径中的能量分量与时间资源的对应关系。
  10. 一种参考信号传输方法,其特征在于,包括:
    第二通信装置接收来自第一通信装置的第一信息,所述第一信息用于指示至少一个能量标度信息;
    所述第二通信装置根据至少一个信道特征信息和所述至少一个能量标度信息,确定参考信号资源,所述至少一个信道特征信息用于表征所述第一通信装置与所述第二通信装置之间的信道,任意一个所述信道特征信息用于表征所述信道的能量分量与传输资源的对应关系,所述参考信号资源包括所述传输资源中的多个资源单元,在一个或多个所述信道特征信息指示的对应关系中一个或多个所述能量标度信息指示的能量与一个所述资源单元相对应;
    所述第二通信装置接收来自所述第一通信装置的参考信号,或所述第二通信装置向所述第一通信装置发送参考信号,其中,所述参考信号承载在所述参考信号资源上。
  11. 根据权利要求10所述的方法,其特征在于,所述传输资源是时域资源和/或频域资源。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第二通信装置根据至少一个信道特征信息和至少一个能量标度信息,确定参考信号资源,包括:
    所述第二通信装置根据所述至少一个信道特征信息、所述至少一个能量标度信息和最小资源间隔信息,确定所述参考信号资源,
    其中,所述参考信号资源中的任意两个资源之间的间隔大于或等于所述最小资源间隔信息指示的间隔。
  13. 根据权利要求12所述的方法,其特征在于,所述最小资源间隔信息为预定义的或从所述第一通信装置获取到的。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收来自所述第一通信装置的第二信息,所述第二信息用于指示所述至少一个信道特征信息。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述信道特征信息用于指示用于表征所述对应关系的基函数的信息,所述基函数的信息包括以下一种或多种信息:
    所述基函数的标识、所述基函数的函数类型信息、所述基函数表征的对应关系中最大能量对应的资源信息、所述基函数的频率信息或所述基函数的衰落特征信息。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置根据所述参考信号,确定信道状态特性信息,所述信道状态特性信息用于指示所述参考信号对应的所述信道的状态;
    所述第二通信装置根据所述信道状态特性信息和所述至少一个信道特征信息,确定信道信息。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置向所述第一通信装置发送第三信息,所述第三信息用于指示所述第二通信装置的位置、速度或移动方向中的一项或多项,所述第三信息用于确定所述至少一个信道特征信息。
  18. 根据权利要求10至17中任一项所述的方法,其特征在于,所述传输资源包括时域 资源,所述信道包括至少一个传输路径,一个所述信道特征信息用于指示所述信道在一个所述传输路径中的能量分量与时间资源的对应关系。
  19. 一种参考信号传输装置,其特征在于,包括:
    处理单元,用于根据至少一个信道特征信息和至少一个能量标度信息,确定参考信号资源,所述至少一个信道特征信息用于表征第一通信装置与第二通信装置之间的信道,任意一个所述信道特征信息用于指示所述信道的能量分量与传输资源的对应关系,所述参考信号资源包括所述传输资源中的多个资源单元,在一个或多个所述信道特征信息指示的对应关系中一个或多个所述能量标度信息指示的能量与一个所述资源单元相对应;
    收发单元,用于向所述第二通信装置发送第一信息,所述第一信息用于指示所述至少一个能量标度信息;
    所述收发单元还用于向所述第二通信装置发送参考信号,或所述第一通信装置接收来自所述第二通信装置的参考信号,其中,所述参考信号承载在所述参考信号资源上。
  20. 根据权利要求19所述的装置,其特征在于,所述传输资源是时域资源和/或频域资源。
  21. 根据权利要求19或20所述的装置,其特征在于,所述处理单元具体用于根据所述至少一个信道特征信息、所述至少一个能量标度信息和最小资源间隔信息,确定参考信号资源,
    其中,所述参考信号资源中的任意两个资源单元之间的间隔大于或等于所述最小资源间隔信息指示的间隔。
  22. 根据权利要求21所述的装置,其特征在于,所述最小资源间隔信息为预定义的、或由所述第一通信装置确定的。
  23. 根据权利要求19至22中任一项所述的装置,其特征在于,
    所述收发单元还用于向所述第二通信装置发送第二信息,所述第二信息用于指示所述至少一个信道特征信息。
  24. 根据权利要求19至23中任一项所述的装置,其特征在于,所述信道特征信息用于指示用于表征所述对应关系的基函数的信息,所述基函数的信息包括以下一种或多种信息:
    所述基函数的标识、所述基函数的函数类型信息、所述基函数表征的对应关系中最大能量对应的资源信息、所述基函数的频率信息或基函数的衰落特征信息。
  25. 根据权利要求19至24中任一项所述的装置,其特征在于,
    所述收发单元还用于接收来自所述第二通信装置的第三信息,所述第三信息用于指示所述第二通信装置的位置、速度或移动方向中的一项或多项;
    所述处理单元还用于根据所述第三信息,确定所述至少一个信道特征信息。
  26. 根据权利要求19至25中任一项所述的装置,其特征在于,
    所述处理单元还用于根据多个通信装置与所述第一通信装置之间的信道状态信息、以及所述多个通信装置的位置信息、速度信息或移动方向信息中的一项或多项,确定候选信道特征信息集合,所述候选信道特征信息集合包括所述至少一个信道特征信息。
  27. 根据权利要求19至26中任一项所述的装置,其特征在于,所述传输资源包括时域资源,所述信道包括至少一个传输路径,一个所述信道特征信息用于指示所述信道在一个所述传输路径中的能量分量与时间资源的对应关系。
  28. 一种参考信号传输装置,其特征在于,包括:
    收发单元,用于接收来自第一通信装置的第一信息,所述第一信息用于指示至少一个能量标度信息;
    处理单元,用于根据至少一个信道特征信息和所述至少一个能量标度信息,确定参考信号资源,所述至少一个信道特征信息用于表征所述第一通信装置与第二通信装置之间的信道,任意一个所述信道特征信息用于表征所述信道的能量分量与传输资源的对应关系,所述参考信号资源包括所述传输资源中的多个资源单元,在一个或多个所述信道特征信息指示的对应关系中一个或多个所述能量标度信息指示的能量与一个所述资源单元相对应;
    所述收发单元还用于接收来自所述第一通信装置的参考信号,或所述第二通信装置向所述第一通信装置发送参考信号,其中,所述参考信号承载在所述参考信号资源上。
  29. 根据权利要求28所述的装置,其特征在于,所述传输资源是时域资源和/或频域资源。
  30. 根据权利要求28或29所述的装置,其特征在于,所述处理单元还用于根据所述至少一个信道特征信息、所述至少一个能量标度信息和最小资源间隔信息,确定所述参考信号资源,
    其中,所述参考信号资源中的任意两个资源之间的间隔大于或等于所述最小资源间隔信息指示的间隔。
  31. 根据权利要求30所述的装置,其特征在于,所述最小资源间隔信息为预定义的或从所述第一通信装置获取到的。
  32. 根据权利要求28至31中任一项所述的装置,其特征在于,
    所述收发单元还用于接收来自所述第一通信装置的第二信息,所述第二信息用于指示所述至少一个信道特征信息。
  33. 根据权利要求28至32中任一项所述的装置,其特征在于,所述信道特征信息用于指示用于表征所述对应关系的基函数的信息,所述基函数的信息包括以下一种或多种信息:
    所述基函数的标识、所述基函数的函数类型信息、所述基函数表征的对应关系中最大能量对应的资源信息、所述基函数的频率信息或所述基函数的衰落特征信息。
  34. 根据权利要求28至33中任一项所述的装置,其特征在于,所述处理单元还用于:
    根据所述参考信号,确定信道状态特性信息,所述信道状态特性信息用于指示所述参考信号对应的所述信道的状态;
    根据所述信道状态特性信息和所述至少一个信道特征信息,确定信道信息。
  35. 根据权利要求28至34中任一项所述的装置,其特征在于,
    所述收发单元还用于向所述第一通信装置发送第三信息,所述第三信息用于指示所述第二通信装置的位置、速度或移动方向中的一项或多项,所述第三信息用于确定所述至少一个信道特征信息。
  36. 根据权利要求28至35中任一项所述的装置,其特征在于,所述传输资源包括时域资源,所述信道包括至少一个传输路径,一个所述信道特征信息用于指示所述信道在一个所述传输路径中的能量分量与时间资源的对应关系。
  37. 一种通信装置,包括至少一个处理器,所述至少一个处理器用于执行如权利要求1至9中任一项所述的方法,或执行权利要求10至18中任一项所述的方法。
  38. 一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求1至9中任一项所述的方法,或执行权利要求10至18中任一项所述的方法。
  39. 一种通信装置,其特征在于,包括至少一个处理器和通信接口;
    所述通信接口用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至9中任一项所述的方法,或实现权利要求10至18中任一项所述的方法。
  40. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序,当所述计算机程序被运行时,使得计算机执行如权利要求1至18中任一项所述的方法。
  41. 一种通信系统,其特征在于,包括如权利要求19至27中任一项所述的通信装置和如权利要求28至36中任一项所述的通信装置。
PCT/CN2023/084897 2023-03-29 2023-03-29 参考信号传输方法和通信装置 WO2024197673A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/084897 WO2024197673A1 (zh) 2023-03-29 2023-03-29 参考信号传输方法和通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/084897 WO2024197673A1 (zh) 2023-03-29 2023-03-29 参考信号传输方法和通信装置

Publications (1)

Publication Number Publication Date
WO2024197673A1 true WO2024197673A1 (zh) 2024-10-03

Family

ID=92902969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084897 WO2024197673A1 (zh) 2023-03-29 2023-03-29 参考信号传输方法和通信装置

Country Status (1)

Country Link
WO (1) WO2024197673A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901874A (zh) * 2020-04-13 2020-11-06 中兴通讯股份有限公司 一种参考信号资源的配置方法、装置、设备及储存介质
CN113541905A (zh) * 2018-05-11 2021-10-22 中兴通讯股份有限公司 信道配置、功控方法和装置、用户设备、基站及存储介质
CN113645707A (zh) * 2021-09-08 2021-11-12 京信网络系统股份有限公司 网络资源分配方法、装置、系统、计算机设备和存储介质
US20220183048A1 (en) * 2020-12-09 2022-06-09 Qualcomm Incorporated Candidate uplink grants for channel access

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113541905A (zh) * 2018-05-11 2021-10-22 中兴通讯股份有限公司 信道配置、功控方法和装置、用户设备、基站及存储介质
CN111901874A (zh) * 2020-04-13 2020-11-06 中兴通讯股份有限公司 一种参考信号资源的配置方法、装置、设备及储存介质
US20220183048A1 (en) * 2020-12-09 2022-06-09 Qualcomm Incorporated Candidate uplink grants for channel access
CN113645707A (zh) * 2021-09-08 2021-11-12 京信网络系统股份有限公司 网络资源分配方法、装置、系统、计算机设备和存储介质

Similar Documents

Publication Publication Date Title
US20230361842A1 (en) Improving precoding
US10903888B2 (en) Configuration method and configuration device for reference signal and communication node
KR101414665B1 (ko) 부분 채널 상태 정보를 이용한 다층 빔포밍
US20190036738A1 (en) Methods of performing communications, mobile terminal devices, and baseband modems
US10243634B2 (en) Method and device for dual layer beamforming
US10904040B2 (en) Channel estimation in communications
WO2014047163A1 (en) Methods and apparatuses for channel estimation in wireless networks
WO2024197673A1 (zh) 参考信号传输方法和通信装置
US20230198814A1 (en) Method and apparatus for evaluating performance of channel estimation in communication system
WO2023273781A1 (zh) 通信方法及装置
US12213092B2 (en) High resolution timing advance estimation based on PRACH
CN116195214B (zh) 一种干扰控制方法及装置
WO2023136838A1 (en) Complexity reduction for open radio access network radio unit uplink receiver
CN113824486A (zh) 无人机通信系统的性能评估方法、装置、计算机设备和存储介质
WO2024140616A1 (zh) 通信方法、装置、芯片、芯片模组及存储介质
WO2023197326A1 (en) Methods, devices, and computer readable medium for communication
US12113614B2 (en) AIML positioning receiver for flexible carrier aggregation
WO2024216546A1 (en) Signal processing for multiple-input-multiple-output (mimo) communication
WO2023184326A1 (en) Resource grouping information indication for time-domain channel reporting and resource selection
US20240380463A1 (en) Methods and systems for compressed csi for virtual wideband channels
WO2023115300A1 (en) Dynamic over-the-air testing
KR20240101202A (ko) 통신 시스템에서 신호 수신 방법 및 장치
CN118473617A (zh) 用于灵活载波聚合的aiml定位接收器
WO2024132092A1 (en) Network node and method in a wireless communications network
CN119233407A (zh) 一种多频段通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23929271

Country of ref document: EP

Kind code of ref document: A1