[go: up one dir, main page]

WO2024195873A1 - Control system, work machine, and control method - Google Patents

Control system, work machine, and control method Download PDF

Info

Publication number
WO2024195873A1
WO2024195873A1 PCT/JP2024/011509 JP2024011509W WO2024195873A1 WO 2024195873 A1 WO2024195873 A1 WO 2024195873A1 JP 2024011509 W JP2024011509 W JP 2024011509W WO 2024195873 A1 WO2024195873 A1 WO 2024195873A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
fuel cell
work machine
storage device
control system
Prior art date
Application number
PCT/JP2024/011509
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 山脇
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2024195873A1 publication Critical patent/WO2024195873A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P1/00Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading
    • B60P1/04Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading with a tipping movement of load-transporting element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables

Definitions

  • the present disclosure relates to a control system, a work machine, and a control method.
  • This application claims priority based on Japanese Patent Application No. 2023-047059, filed in Japan on March 23, 2023, the contents of which are incorporated herein by reference.
  • Machines equipped with fuel cells that use hydrogen gas as fuel are being considered.
  • Machines powered by fuel cells usually have batteries to limit the amount of fuel cell they carry and to absorb regenerative power when going downhill. For this reason, the machine's control device needs to perform energy management to appropriately distribute the energy between the fuel cell and the battery.
  • Patent Document 1 discloses a technology that uses an adaptive algorithm to change the output ratio between a fuel cell and a battery in a hybrid system that uses a fuel cell and a battery.
  • a range extender system is known as a method for operating a power supply system equipped with a fuel cell and a power storage device.
  • the range extender system constantly outputs a constant amount of power from the fuel cell, and the difference between the power required to drive a work machine and the power output by the fuel cell is compensated for by charging or discharging the power storage device.
  • the power may be insufficient or excessive, depending on the operating state of the machine and the state of the power storage device.
  • An object of the present disclosure is to provide a control system, a work machine, and a control method that are capable of appropriately determining the power that should be output by a fuel cell mounted on the work machine.
  • control system is a control system for controlling a work machine having a fuel cell and a power storage device and having a work implement, and includes a required power determination unit that determines the amount of required power required to operate the work machine, and a fuel cell control unit that controls the fuel cell to output power greater than the standard generated power when the sum of the standard generated power of the fuel cell and the maximum dischargeable power of the power storage device is less than the required power.
  • control system can appropriately determine the power that should be output by the fuel cell mounted on the work machine.
  • FIG. 1 is a perspective view that illustrates a working machine according to a first embodiment.
  • 1 is a schematic block diagram showing the configuration of a power system and a drive system provided in a work machine according to a first embodiment.
  • 2 is a schematic block diagram showing the configuration of a control system provided in the work machine according to the first embodiment.
  • FIG. FIG. 4 is a block diagram showing a calculation algorithm performed by a control amount determiner according to the first embodiment.
  • 3 is a flowchart showing a control method for a work machine according to the first embodiment.
  • FIG. 1 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
  • FIG. 11 is a perspective view of a work machine according to a second embodiment.
  • FIG. 11 is a schematic block diagram showing the configuration of a power system and a drive system provided in a work machine according to a second embodiment.
  • FIG. 1 is a perspective view that shows a schematic diagram of a work machine 10 according to a first embodiment.
  • the work machine 10 includes a dump body 11, a vehicle body 12, and a traveling device 13.
  • the dump body 11 is a member on which a load is loaded. At least a portion of the dump body 11 is positioned above the vehicle body 12.
  • the dump body 11 performs a dumping operation and a lowering operation. Through the dumping operation and the lowering operation, the dump body 11 is adjusted to a dumping position and a loaded position.
  • the dump position refers to a position in which the dump body 11 is raised.
  • the loaded position refers to a position in which the dump body 11 is lowered.
  • the dump body 11 is an example of a work machine.
  • the dump operation refers to an operation in which the dump body 11 is moved away from the vehicle body 12 and tilted in the dumping direction.
  • the dumping direction is toward the rear of the vehicle body 12.
  • the dump operation includes lifting the front end of the dump body 11 and tilting the dump body 11 rearward.
  • the dump operation causes the loading surface of the dump body 11 to tilt downward toward the rear.
  • the lowering operation refers to the operation of bringing the dump body 11 closer to the vehicle body 12.
  • the lowering operation includes lowering the front end of the dump body 11.
  • the dump body 11 When performing soil removal operations, the dump body 11 performs a dumping operation to change from a loaded position to a dumping position. If a load is loaded on the dump body 11, the load is discharged rearward from the rear end of the dump body 11 by the dumping operation. When loading operations are performed, the dump body 11 is adjusted to the loaded position.
  • the vehicle body 12 includes a vehicle body frame.
  • the vehicle body 12 supports the dump body 11.
  • the vehicle body 12 is supported by the running gear 13.
  • the traveling device 13 supports the vehicle body 12.
  • the traveling device 13 drives the work machine 10.
  • the traveling device 13 drives the work machine 10 forward or backward. At least a portion of the traveling device 13 is disposed below the vehicle body 12.
  • the traveling device 13 has a pair of front wheels and a pair of rear wheels.
  • the front wheels are steered wheels, and the rear wheels are driven wheels. Note that the combination of steered wheels and driven wheels is not limited to this, and the traveling device 13 may be four-wheel drive or four-wheel steering.
  • the power system 14 includes a hydrogen tank 141, a hydrogen supply device 142, a fuel cell 143, a battery 144, a DCDC converter 145, and a retarder grid 146.
  • the retarder grid 146 is an example of a consumption device that consumes surplus power.
  • the hydrogen supply device 142 supplies hydrogen gas filled in the hydrogen tank 141 to the fuel cell 143.
  • the fuel cell 143 generates electric power by electrochemically reacting hydrogen supplied from the hydrogen supply device 142 with oxygen contained in the outside air.
  • the battery 144 stores the electric power generated in the fuel cell 143.
  • the battery 144 is an example of an electric power storage device.
  • the battery 144 is provided with a monitoring device (not shown) that monitors the state of the battery 144.
  • the work machine 10 may be provided with another electric power storage device such as a capacitor instead of the battery 144.
  • the monitoring device determines the maximum chargeable power and the maximum dischargeable power based on various state quantities of the battery 144, such as the temperature, charging rate, and voltage of the battery 144, in order to prevent the battery 144 from failing. For example, the maximum chargeable power and the maximum dischargeable power have smaller values as the temperature of the battery 144 increases.
  • the DCDC converter 145 outputs electric power from the fuel cell 143 or the battery 144 connected thereto in accordance with an instruction from the control system 16 (see FIG. 3).
  • the retarder grid 146 converts regenerative power from the drivetrain 15 into thermal energy when the battery 144 cannot be charged.
  • the power output by the power system 14 is output to the drive system 15 via the bus B.
  • the drive system 15 has an inverter 151, a pump drive motor 152, a hydraulic pump 153, a hoist cylinder 154, an inverter 155, and a travel drive motor 156.
  • the inverter 151 converts the DC current from the bus B into three-phase AC current and supplies it to the pump drive motor 152.
  • the pump drive motor 152 drives the hydraulic pump 153.
  • the hydraulic oil discharged from the hydraulic pump 153 is supplied to the hoist cylinder 154 via a control valve (not shown).
  • the hoist cylinder 154 is operated by the hydraulic oil being supplied to the hoist cylinder 154.
  • the hoist cylinder 154 performs a dumping operation or a lowering operation of the dump body 11.
  • the inverter 155 converts the DC current from the bus B into three-phase AC current and supplies it to the travel drive motor 156.
  • the rotational force generated by the travel drive motor 156 is transmitted to the drive wheels of the travel device 13.
  • the travel drive motor 156 performs power running to travel the work machine 10, and regenerative running to generate regenerative power to decelerate the work machine 10.
  • FIG. 3 is a schematic block diagram showing the configuration of the control system 16 equipped in the work machine 10 according to the first embodiment.
  • the control system 16 is equipped with a measuring device 161, an operating device 162, and a control device 163.
  • the measurement device 161 collects data relating to the operating state and traveling state of the work machine 10.
  • the measurement device 161 includes a temperature sensor that measures the temperature of the battery 144, a fuel gauge that measures the charging rate of the battery 144, a current sensor that measures the passing current of the inverter 155, and a voltage sensor that measures the voltage of the bus B.
  • the operation device 162 is provided in the driver's cab and receives operations by the operator.
  • the operation device 162 includes an accelerator pedal, a brake pedal, a steering wheel, a dump lever, and the like.
  • the control device 163 drives the work machine 10 in accordance with the amount of operation of the operating device 162 .
  • the control device 163 includes a data acquisition unit 171, a standard determination unit 172, a vehicle body control unit 173, a required power calculation unit 174, a regenerative power identification unit 175, a battery capacity identification unit 176, a control amount determination unit 177, a fuel cell control unit 178, and a battery control unit 179.
  • the control device 163 is an example of a control system.
  • the data acquisition unit 171 acquires measurement data from the measuring device 161 .
  • the standard determination unit 172 determines a standard generated power, which is a standard for the power to be output from the fuel cell 143, based on the measurement data of the charging rate of the battery 144 acquired by the data acquisition unit 171. Specifically, the standard determination unit 172 determines a lower standard generated power value as the charging rate of the battery 144 increases, and determines a higher standard generated power value as the charging rate of the battery 144 decreases. In other words, the standard determination unit 172 determines the standard generated power value using a range extender method. The standard generated power value monotonically decreases (does not monotonically increase) with respect to the charging rate of the battery 144.
  • the vehicle body control unit 173 generates a control signal for controlling the work machine 10 based on the amount of operation of the operating device 162. For example, the vehicle body control unit 173 generates control signals for controlling the steering, accelerator, brakes, vessel operation, etc. of the traveling device 13.
  • the required power calculation unit 174 calculates the required power required in the power system 14 based on the control signal generated by the vehicle body control unit 173.
  • the required power calculation unit 174 is an example of a required power determination unit.
  • the regenerative power identifying unit 175 identifies the regenerative power generated by the work machine 10 based on the measurement data of the voltage of the bus B and the current passing through the inverter 155 acquired by the data acquiring unit 171 .
  • the battery capacity identification unit 176 identifies the maximum chargeable power and the maximum dischargeable power determined by a monitoring device for the battery 144 based on the measurement data of the state quantity of the battery 144 acquired by the data acquisition unit 171.
  • the battery capacity identification unit 176 may identify the maximum chargeable power and the maximum dischargeable power by inquiring about the maximum chargeable power and the maximum dischargeable power from the monitoring device for the battery 144.
  • the control amount determination unit 177 determines the power generated by the fuel cell 143 and the charging or discharging power of the battery 144 based on the required power, the regenerative power, the standard power generated by the fuel cell 143, and the maximum chargeable power and maximum dischargeable power of the battery 144. The method of determining the control amount by the control amount determination unit 177 will be described later.
  • the fuel cell control unit 178 controls the fuel cell 143 to generate power in accordance with the power generation determined by the control amount determination unit 177. In other words, the fuel cell control unit 178 controls the amount of hydrogen supplied by the hydrogen supply device 142 so that the fuel cell 143 outputs the power generation determined by the control amount determination unit 177.
  • the battery control unit 179 controls the DCDC converter 145 connected to the battery 144 so as to discharge the discharge power determined by the control amount determination unit 177 to the battery 144, or to charge the battery 144 with the charge power determined by the control amount determination unit 177.
  • the battery control unit 179 is an example of a power storage device control unit.
  • Fig. 4 is a block diagram showing a calculation algorithm by the control amount determiner 177 according to the first embodiment.
  • the control amount determination unit 177 includes a first subtraction block 181 , a second subtraction block 182 , a MAX block 183 , a first MIN block 184 , a third subtraction block 186 , an addition block 188 , a second MIN block 187 , a third MIN block 189 , and a fourth subtraction block 190 .
  • the first subtraction block 181 subtracts the maximum dischargeable power from the subtracted required power.
  • the required power is the value obtained by subtracting the regenerative power from the required power
  • the regenerative power is the value obtained by subtracting the required power from the regenerative power.
  • the required power is equal to the value obtained by multiplying the regenerative power by -1.
  • the MAX block 183 determines the larger of the standard generated power and the calculation result of the first subtraction block 181. In other words, if the net required power can be covered within the discharge capacity of the battery 144 when the fuel cell 143 is made to generate the standard generated power, the MAX block 183 outputs the standard generated power. If the net required power cannot be covered within the discharge capacity of the battery 144 when the fuel cell 143 is made to generate the standard generated power, the MAX block 183 outputs the difference between the required power and the maximum dischargeable power of the battery 144.
  • the first MIN block 184 determines the smaller of the calculation result of the MAX block 183 and the calculation result of the second subtraction block 182. In other words, if the standard generated power can be absorbed within the charging capacity of the battery 144 when the fuel cell 143 is made to generate standard generated power, the first MIN block 184 outputs the standard generated power. If the standard generated power cannot be absorbed within the charging capacity of the battery 144 when the fuel cell 143 is made to generate standard generated power, the first MIN block 184 outputs the difference between the maximum chargeable power of the battery 144 and the regenerative power. However, if the calculation result is a negative number, the first MIN block 184 outputs zero as the calculation result. The calculation result of the first MIN block 184 indicates the total generated power of the fuel cell 143.
  • a third subtraction block 186 subtracts the result of the calculation by the first MIN block 184 from the required power.
  • the second MIN block 187 specifies the smaller of the calculation result of the third subtraction block 186 and the maximum dischargeable power as the discharge power of the battery 144.
  • the second MIN block 187 determines the difference between the total power generation power of the fuel cell 143 and the net required power as the discharge power.
  • the second MIN block 187 determines the maximum dischargeable power as the discharge power.
  • the addition block 188 adds the calculation result of the first MIN block 184 and the subtracted regenerative power.
  • the third MIN block 189 specifies the smaller of the maximum chargeable power or the calculation result of the addition block 188 as the charging power for the battery 144. In other words, when the sum of the total power generated by the fuel cell 143 and the regenerative power balance exceeds the maximum chargeable power, the third MIN block 189 determines the maximum chargeable power as the charging power. When the sum of the total power generated by the fuel cell 143 and the regenerative power balance does not exceed the maximum chargeable power, the third MIN block 189 determines the sum of the total power generated by the fuel cell 143 and the regenerative power balance as the charging power.
  • the fourth subtraction block 190 identifies the result of subtracting the calculation result of the third MIN block 189 from the calculation result of the addition block 188 as the surplus power to be consumed by the retarder grid 146.
  • FIG. 5 is a flowchart showing a method for controlling the work machine 10 according to the first embodiment.
  • the data acquisition unit 171 of the control device 163 acquires the measured values of the temperature of the battery 144, the charging rate of the battery 144, the current passing through the inverter 155, and the voltage of the bus bar B from the measuring device 161, and acquires the operation amount from the operation device 162 (step S1).
  • the standard determination unit 172 determines the standard generated power, which is the standard for the power to be output by the fuel cell 143, based on the measurement data of the charging rate of the battery 144 acquired in step S1 (step S2).
  • the vehicle body control unit 173 generates a control signal for controlling the work machine 10 based on the operation amount acquired in step S1 (step S3).
  • the required power calculation unit 174 calculates the required power based on the control signal generated in step S3 (step S4).
  • the regenerative power identification unit 175 identifies the regenerative power based on the measurement data of the voltage of the bus B and the current passing through the inverter 155 acquired in step S1 (step S5).
  • the battery capacity determination unit 176 determines the maximum chargeable power and maximum dischargeable power of the battery 144 based on the measurement data of the state quantity of the battery 144 acquired in step S1 (step S6).
  • the control quantity determination unit 177 determines the generated power of the fuel cell 143, the charging or discharging power of the battery 144, and the surplus power consumed by the retarder grid 146 based on the standard generated power calculated in step S2, the required power calculated in step S4, the regenerative power calculated in step S5, and the maximum chargeable power and maximum dischargeable power identified in step S6 (step S7).
  • the fuel cell control unit 178 controls the fuel cell 143 to generate power according to the generated power determined in step S7 (step S8). If the generated power determined in step S7 is zero, the fuel cell control unit 178 may stop the power generation of the fuel cell 143.
  • the battery control unit 179 also controls the DCDC converter 145 according to the discharge power or charge power determined in step S7 (step S9).
  • the control device 163 functions as follows.
  • the required power calculation unit 174 determines the magnitude of the required power required for the operation of the work machine 10.
  • the fuel cell control unit 178 controls the fuel cell 143 to output power larger than the standard generated power.
  • the fuel cell control unit 178 controls the fuel cell 143 to output power equal to the difference between the required power and the maximum dischargeable power of the battery 144.
  • the control device 163 can determine the power that the fuel cell 143 should output so that a power shortage does not occur depending on the working state of the work machine 10 or the state of the battery 144. For example, when the operator accelerates the work machine 10, the work machine 10 may require more required power. Also, for example, when the work machine 10 travels uphill, the work machine 10 may require more required power. Furthermore, for example, a decrease in the charging rate or an increase in temperature of the battery 144 may cause the maximum dischargeable power of the battery 144 to decrease. At this time, if the required power exceeds the sum of the standard generated power of the fuel cell 143 and the maximum dischargeable power of the battery 144, the control device 163 can increase the output of the fuel cell 143.
  • control device 163 can appropriately determine the power that should be output by the fuel cell 143 mounted on the work machine 10.
  • the fuel cell control unit 178 may control the fuel cell 143 to output power that is greater than the difference between the required power and the maximum dischargeable power of the battery 144.
  • the control device 163 functions as follows.
  • the regenerative power identification unit 175 identifies the magnitude of the regenerative power generated by the work machine 10.
  • the fuel cell control unit 178 controls the fuel cell 143 to output power less than the standard power generation or to stop power generation.
  • the fuel cell control unit 178 controls the fuel cell 143 to output power equal to the difference between the maximum chargeable power and the regenerative power.
  • the control device 163 can determine the power that the fuel cell 143 should output so that regeneration lapse due to the power generated by the fuel cell 143 does not occur. For example, when the operator decelerates the work machine 10, the travel drive motor 156 may generate more regenerative power. Also, for example, when the work machine 10 travels downhill, the work machine 10 may generate more regenerative power. Furthermore, for example, an increase in the charging rate or temperature of the battery 144 may cause the maximum chargeable power of the battery 144 to decrease. In this case, the control device 163 can limit the output of the fuel cell 143 if the sum of the regenerative power and the standard power generation of the fuel cell 143 exceeds the maximum chargeable power of the battery 144.
  • control device 163 can appropriately determine the power that should be output by the fuel cell 143 mounted on the work machine 10.
  • the fuel cell control unit 178 may control the fuel cell 143 to output power that is smaller than the power difference between the maximum dischargeable power of the battery 144 and the regenerative power.
  • FIG. 6 is a schematic block diagram illustrating a computer configuration according to at least one embodiment.
  • the computer 90 comprises a processor 91 , a main memory 92 , a storage 93 , and an interface 94 .
  • the above-mentioned control device 163 is implemented in the computer 90.
  • the operations of the above-mentioned processing units are stored in the storage 93 in the form of a program.
  • the processor 91 reads the program from the storage 93, loads it in the main memory 92, and executes the above-mentioned processing in accordance with the program.
  • the processor 91 also secures storage areas in the main memory 92 corresponding to the above-mentioned storage units in accordance with the program. Examples of the processor 91 include a CPU (Central Processing Unit), a GPU (Graphic Processing Unit), and a microprocessor.
  • the program may be for implementing part of the functions to be performed by the computer 90.
  • the program may be for implementing the functions by combining with other programs already stored in the storage or with other programs implemented in other devices.
  • the computer 90 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration.
  • PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • part or all of the functions implemented by the processor 91 may be implemented by the integrated circuit.
  • Such an integrated circuit is also included as an example of a processor.
  • the computer 90 may be virtualized on one or more computers.
  • Examples of storage 93 include a magnetic disk, a magneto-optical disk, an optical disk, and a semiconductor memory.
  • Storage 93 may be an internal medium directly connected to the bus of computer 90, or an external medium connected to computer 90 via interface 94 or a communication line.
  • computer 90 that receives the program may expand the program into main memory 92 and execute the above-mentioned processing.
  • storage 93 is a non-transitory tangible storage medium.
  • the program may also be one that realizes some of the functions described above. Furthermore, the program may be one that realizes the functions described above in combination with other programs already stored in storage 93, that is, a so-called differential file (differential program).
  • System Configuration 7 is a perspective view of a work machine 10 according to the second embodiment.
  • the work machine 10 according to the second embodiment is, for example, a hydraulic excavator.
  • the work machine 10 includes a traveling body 210, a rotating body 220, a work implement 230, a cab 240, and a machine room 250.
  • the traveling body 210 and the rotating body 220 form a vehicle body.
  • the running body 210 supports the work machine 10 so that the work machine 10 can run.
  • the running body 210 has a pair of left and right tracks.
  • the work machine 10 moves forward, turns, or reverses by rotation of the pair of tracks.
  • the rotating body 220 is rotatably supported by the running body 210.
  • the rotating body 220 is rotated relative to the running body 210 by a swing motor 256 described later.
  • the rotating body 220 supports a work machine 230, a cab 240, a machine room 250, and a fuel cell 143.
  • the working implement 230 is operably supported on the body of the work machine 10.
  • the working implement 230 includes a boom 231, an arm 232, and an attachment 233 which is a working tool.
  • the attachment 233 is an example of a working tool. In the example shown in FIG. 1, the attachment 233 is a bucket.
  • the base end of the boom 231 is rotatably attached to the rotating body 220.
  • the base end of the arm 232 is rotatably attached to the tip of the boom 231.
  • the attachment 233 is rotatably attached to the tip of the arm 232.
  • the work machine 230 is driven by a number of actuators.
  • the actuators include, for example, a boom cylinder 231C, an arm cylinder 232C, and an attachment cylinder 233C.
  • the boom cylinder 231C is a hydraulic cylinder for driving the boom 231.
  • a base end of the boom cylinder 231C is attached to the rotating body 220.
  • a tip end of the boom cylinder 231C is attached to the boom 231.
  • the arm cylinder 232C is a hydraulic cylinder for driving the arm 232.
  • a base end of the arm cylinder 232C is attached to the boom 231.
  • a tip end of the arm cylinder 232C is attached to the arm 232.
  • the attachment cylinder 233C is a hydraulic cylinder for driving the attachment 233.
  • a base end of the attachment cylinder 233C is attached to the arm 232.
  • a tip end of the attachment cylinder 233C is attached to the attachment 233.
  • the operator's cab 240 of the work machine 10 is equipped with an operating device 162 for operating the work machine 10 .
  • the operation device 162 is provided in the cab 240 and receives operations by an operator.
  • the operation device 162 includes, for example, operation levers for operating the revolving body 220, the boom 231, the arm 232, and the attachment 233, a foot pedal for operating the running body 210, a travel lever for operating the running body 210, and the like.
  • FIG 8 is a schematic block diagram showing the configuration of the power system 14 and drive system 15 of the work machine 10 according to the second embodiment.
  • the drive system 15 has an inverter 151, a pump drive motor 152, a hydraulic pump 153, a hydraulic actuator 255, an inverter 155, and a swing motor 256.
  • the inverter 151 converts DC current from the bus B into three-phase AC current and supplies it to the pump drive motor 152.
  • the pump drive motor 152 generates power for driving the work machine 230 and the traveling body 210.
  • the pump drive motor 152 rotates by the supplied three-phase AC current and drives the hydraulic pump 153.
  • the hydraulic pump 153 discharges hydraulic oil to be supplied to the hydraulic actuator 255.
  • the hydraulic oil discharged from the hydraulic pump 153 is supplied to the hydraulic actuator 255 via a control valve (not shown).
  • the hydraulic actuator 255 is driven by the supplied hydraulic oil.
  • the hydraulic actuator 255 includes a boom cylinder 231C, an arm cylinder 232C, an attachment cylinder 233C, and a hydraulic travel motor 234.
  • the rotational force generated by the hydraulic travel motor 234 is transmitted to the traveling body 210.
  • the inverter 155 converts the direct current from the bus B into a three-phase alternating current and supplies it to the swing motor 256.
  • the swing motor 256 generates power for swinging the swing body 220.
  • the swing motor 256 rotates by the supplied three-phase AC power and swings the swing body 220 relative to the traveling body 210.
  • the swing motor 256 performs a power running operation for driving the swing body 220 to swing, and a regenerative operation for generating regenerative power to brake the swing body 220.
  • the control device 163 (see FIG. 3) according to the second embodiment causes the traveling body 210 to travel in accordance with the amount of operation of the operating device 162.
  • the control device 163 drives the working machine 230 in accordance with the amount of operation of the operating device 162.
  • the control device 163 causes the rotating body 220 to rotate in accordance with the amount of operation of the operating device 162.
  • the vehicle body control unit 173 (see FIG. 3) according to the second embodiment generates control signals for controlling the running of the running body 210, the drive of the work machine 230, and the rotation of the rotating body 220, depending on the amount of operation of the operating device 162.
  • the control device 163 can determine the power to be output by the fuel cell 143 so that a power shortage does not occur depending on the working state of the work machine 10 or the state of the battery 144.
  • the work machine 10 may require more power when operating a plurality of motors. For example, when the operator performs a combined operation on the work machine 10 by simultaneously rotating the revolving body 220 and driving the work implement 230, the work machine 10 requires more power. More specifically, when the revolving body 220 is rotated while raising the boom 231 or the arm 232 with a load loaded on the attachment 233, the work machine 10 requires more power.
  • the control device 163 can increase the output of the fuel cell 143 when the required power exceeds the sum of the standard generated power of the fuel cell 143 and the maximum dischargeable power of the battery 144. In other words, the control device 163 can appropriately determine the electric power that should be output by the fuel cell 143 mounted on the work machine 10 .
  • the control device 163 can determine the power to be output by the fuel cell 143 so that regeneration lapse due to the power generated by the fuel cell 143 does not occur. For example, when braking the revolving body 220 with excavation material loaded on the attachment 233, the revolving motor 256 may generate more regenerative power. For example, when braking the revolving body 220 placed on a slope, the revolving motor 256 may generate more regenerative power. For example, the maximum chargeable power of the battery 144 may decrease due to an increase in the charging rate or temperature of the battery 144.
  • control device 163 can limit the output of the fuel cell 143 when the sum of the regenerative power and the standard power generated by the fuel cell 143 exceeds the maximum chargeable power of the battery 144. In other words, the control device 163 can appropriately determine the power to be output by the fuel cell 143 mounted on the work machine 10.
  • control device 163 may be configured by a single computer 90. Moreover, the control device 163 may function as the control device 163 by distributing the configuration of the control device 163 among multiple computers 90, and the multiple computers 90 cooperate with each other. In this case, some of the computers 90 constituting the control device 163 may be mounted inside the work machine 10, and other computers 90 may be provided outside the work machine 10. For example, when the work machine 10 according to the other embodiments is remotely operated, configurations other than the fuel cell control unit 178 and the battery control unit 179 may be provided in a remote computer 90.
  • the standard determination unit 172 of the control device 163 determines the standard generated power based on the charging rate of the battery 144, but is not limited to this.
  • the standard generated power may be determined independently of the charging rate of the battery 144.
  • the regenerative power identifying unit 175 in the embodiment described above identifies the regenerative power generated by the work machine 10 based on the measurement data of the voltage of the bus bar B and the current passing through the inverter 155 acquired by the data acquisition unit 171, but is not limited to this.
  • the measurement device 161 may include a current sensor that measures the current passing through the inverter 151, and the regenerative power identifying unit 175 may identify the regenerative power generated by the work machine 10 based on the measurement data of the current passing through the inverter 151.
  • the work machine 10 according to the embodiment described above is equipped with a retarder grid 146 that consumes surplus power, but is not limited to this.
  • the work machine 10 according to other embodiments may not be equipped with a retarder grid 146, and may be configured so that surplus power is consumed by the pump drive motor 152 or an auxiliary device mounted on the work machine 10.
  • a dump truck or a hydraulic excavator is used as an example of the work machine 10 having a fuel cell 143 and a battery 144 and a work implement, but this is not limited to this.
  • the work machine according to other embodiments may be other work machines such as a bulldozer, a wheel loader, a crane, a forklift, or a motor grader.
  • the vehicle body control unit 173 generates a control signal for controlling the work machine 10 based on the amount of operation of the operation device 162, but this is not limited to this.
  • the vehicle body control unit 173 may generate a control signal for controlling the work machine 10 based on an operation command transmitted from the external control system.
  • the measurement device 161 may further collect data on the position and orientation of the work machine 10, the topography around the work machine 10, and the work plan.
  • the control device 163 may have an operation signal generation unit for generating an operation signal based on the measurement data collected by the measurement device 162.
  • the vehicle body control unit 173 may generate a control signal for controlling the work machine 10 based on the operation command generated by the operation signal generation unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This control system (163) controls a work machine (10) having a work device as well as being provided with a fuel cell (143) and a power storage device (144). The control system is provided with: a required power determination unit (174) that determines the magnitude of required power necessary for the operation of the work machine; and a fuel cell control unit (178) that controls the fuel cell, on the basis of the standard generation power of the fuel cell, the maximum dischargeable power of the power storage device, and the required power.

Description

制御システム、作業機械および制御方法CONTROL SYSTEM, WORK MACHINE AND CONTROL METHOD

 本開示は、制御システム、作業機械および制御方法に関する。
 本願は、2023年3月23日に日本に出願された特願2023-047059号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a control system, a work machine, and a control method.
This application claims priority based on Japanese Patent Application No. 2023-047059, filed in Japan on March 23, 2023, the contents of which are incorporated herein by reference.

 水素ガスを燃料として用いる燃料電池を搭載する機械が検討されている。燃料電池で駆動する機械は通常、燃料電池の搭載量を抑え、また降坂における回生電力を吸収させるために、バッテリを備える。そのため、機械の制御装置は、燃料電池とバッテリのエネルギーを適切に分配するエネルギーマネジメントを行う必要がある。 Machines equipped with fuel cells that use hydrogen gas as fuel are being considered. Machines powered by fuel cells usually have batteries to limit the amount of fuel cell they carry and to absorb regenerative power when going downhill. For this reason, the machine's control device needs to perform energy management to appropriately distribute the energy between the fuel cell and the battery.

 特許文献1には、燃料電池とバッテリとを用いたハイブリッドシステムにおいて、燃料電池とバッテリの出力比率をアダプティブアルゴリズムにより変化させる技術が開示されている。 Patent Document 1 discloses a technology that uses an adaptive algorithm to change the output ratio between a fuel cell and a battery in a hybrid system that uses a fuel cell and a battery.

中国特許出願公開第108556672号明細書China Patent Publication No. 108556672

 燃料電池と蓄電装置とを備える電源システムの稼働方法として、レンジエクステンダ方式が知られている。レンジエクステンダ方式は、燃料電池から常に一定の電力を出力させ、作業機械の駆動に必要な電力と燃料電池が出力する電力との差分を、蓄電装置の充電または放電で賄う方式である。しかしながら、機械の動作状態や蓄電装置の状態によっては電力の過不足が生じる可能性がある。
 本開示の目的は、作業機械に搭載された燃料電池が出力すべき電力を適切に決定することができる制御システム、作業機械および制御方法を提供することにある。
A range extender system is known as a method for operating a power supply system equipped with a fuel cell and a power storage device. The range extender system constantly outputs a constant amount of power from the fuel cell, and the difference between the power required to drive a work machine and the power output by the fuel cell is compensated for by charging or discharging the power storage device. However, there is a possibility that the power may be insufficient or excessive, depending on the operating state of the machine and the state of the power storage device.
An object of the present disclosure is to provide a control system, a work machine, and a control method that are capable of appropriately determining the power that should be output by a fuel cell mounted on the work machine.

 本開示の一態様によれば、制御システムは、燃料電池と蓄電装置とを備えるとともに作業機を有する作業機械を制御する制御システムであって、前記作業機械の稼働に必要な必要電力の大きさを決定する必要電力決定部と、前記燃料電池の標準発電電力と前記蓄電装置の最大放電可能電力の和が前記必要電力より小さい場合に、前記標準発電電力より大きい電力を出力するように前記燃料電池を制御する燃料電池制御部と、を備える。 According to one aspect of the present disclosure, the control system is a control system for controlling a work machine having a fuel cell and a power storage device and having a work implement, and includes a required power determination unit that determines the amount of required power required to operate the work machine, and a fuel cell control unit that controls the fuel cell to output power greater than the standard generated power when the sum of the standard generated power of the fuel cell and the maximum dischargeable power of the power storage device is less than the required power.

 上記態様によれば、制御システムは、作業機械に搭載された燃料電池が出力すべき電力を適切に決定することができる。 According to the above aspect, the control system can appropriately determine the power that should be output by the fuel cell mounted on the work machine.

第一の実施形態に係る作業機械を模式的に示す斜視図である。1 is a perspective view that illustrates a working machine according to a first embodiment. 第一の実施形態に係る作業機械が備える動力系および駆動系の構成を示す概略ブロック図である。1 is a schematic block diagram showing the configuration of a power system and a drive system provided in a work machine according to a first embodiment. 第一の実施形態に係る作業機械が備える制御系の構成を示す概略ブロック図である。2 is a schematic block diagram showing the configuration of a control system provided in the work machine according to the first embodiment. FIG. 第1の実施形態に係る制御量決定部による演算アルゴリズムを示すブロック図である。FIG. 4 is a block diagram showing a calculation algorithm performed by a control amount determiner according to the first embodiment. 第一の実施形態に係る作業機械の制御方法を示すフローチャートである。3 is a flowchart showing a control method for a work machine according to the first embodiment. 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。FIG. 1 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment. 第二の実施形態に係る作業機械の斜視図である。FIG. 11 is a perspective view of a work machine according to a second embodiment. 第二の実施形態に係る作業機械が備える動力系および駆動系の構成を示す概略ブロック図である。FIG. 11 is a schematic block diagram showing the configuration of a power system and a drive system provided in a work machine according to a second embodiment.

〈第一の実施形態〉
《システムの構成》
 以下、図面を参照しながら実施形態について詳しく説明する。
 図1は、第一の実施形態に係る作業機械10を模式的に示す斜視図である。作業機械10は、ダンプボディ11と、車体12と、走行装置13とを備える。
First Embodiment
System Configuration
Hereinafter, the embodiments will be described in detail with reference to the drawings.
1 is a perspective view that shows a schematic diagram of a work machine 10 according to a first embodiment. The work machine 10 includes a dump body 11, a vehicle body 12, and a traveling device 13.

 ダンプボディ11は、積荷が積載される部材である。ダンプボディ11の少なくとも一部は、車体12よりも上方に配置される。ダンプボディ11は、ダンプ動作及び下げ動作する。ダンプ動作及び下げ動作により、ダンプボディ11は、ダンプ姿勢及び積載姿勢に調整される。ダンプ姿勢とは、ダンプボディ11が上昇している姿勢をいう。積載姿勢とは、ダンプボディ11が下降している姿勢をいう。ダンプボディ11は作業機の一例である。 The dump body 11 is a member on which a load is loaded. At least a portion of the dump body 11 is positioned above the vehicle body 12. The dump body 11 performs a dumping operation and a lowering operation. Through the dumping operation and the lowering operation, the dump body 11 is adjusted to a dumping position and a loaded position. The dump position refers to a position in which the dump body 11 is raised. The loaded position refers to a position in which the dump body 11 is lowered. The dump body 11 is an example of a work machine.

 ダンプ動作とは、ダンプボディ11を車体12から離隔させてダンプ方向に傾斜させる動作をいう。ダンプ方向は、車体12の後方である。実施形態において、ダンプ動作は、ダンプボディ11の前端部を上昇させて、ダンプボディ11を後方に傾斜させることを含む。ダンプ動作により、ダンプボディ11の積載面は、後方に向かって下方に傾斜する。 The dump operation refers to an operation in which the dump body 11 is moved away from the vehicle body 12 and tilted in the dumping direction. The dumping direction is toward the rear of the vehicle body 12. In the embodiment, the dump operation includes lifting the front end of the dump body 11 and tilting the dump body 11 rearward. The dump operation causes the loading surface of the dump body 11 to tilt downward toward the rear.

 下げ動作とは、ダンプボディ11を車体12に接近させる動作をいう。実施形態において、下げ動作は、ダンプボディ11の前端部を下降させることを含む。 The lowering operation refers to the operation of bringing the dump body 11 closer to the vehicle body 12. In the embodiment, the lowering operation includes lowering the front end of the dump body 11.

 排土作業を実施する場合、ダンプボディ11は、積載姿勢からダンプ姿勢に変化するように、ダンプ動作する。ダンプボディ11に積荷が積載されている場合、積荷は、ダンプ動作により、ダンプボディ11の後端部から後方に排出される。積込作業が実施される場合、ダンプボディ11は、積載姿勢に調整される。 When performing soil removal operations, the dump body 11 performs a dumping operation to change from a loaded position to a dumping position. If a load is loaded on the dump body 11, the load is discharged rearward from the rear end of the dump body 11 by the dumping operation. When loading operations are performed, the dump body 11 is adjusted to the loaded position.

 車体12は、車体フレームを含む。車体12は、ダンプボディ11を支持する。車体12は、走行装置13に支持される。 The vehicle body 12 includes a vehicle body frame. The vehicle body 12 supports the dump body 11. The vehicle body 12 is supported by the running gear 13.

 走行装置13は、車体12を支持する。走行装置13は、作業機械10を走行させる。走行装置13は、作業機械10を前進又は後進させる。走行装置13の少なくとも一部は、車体12よりも下方に配置される。走行装置13は、一対の前輪と一対の後輪とを備える。前輪は操舵輪であり、後輪は駆動輪である。なお、操舵輪と駆動輪の組み合わせはこれに限られず、走行装置13は、四輪駆動、四輪操舵であってもよい。 The traveling device 13 supports the vehicle body 12. The traveling device 13 drives the work machine 10. The traveling device 13 drives the work machine 10 forward or backward. At least a portion of the traveling device 13 is disposed below the vehicle body 12. The traveling device 13 has a pair of front wheels and a pair of rear wheels. The front wheels are steered wheels, and the rear wheels are driven wheels. Note that the combination of steered wheels and driven wheels is not limited to this, and the traveling device 13 may be four-wheel drive or four-wheel steering.

 図2は、第一の実施形態に係る作業機械10が備える動力系14および駆動系15の構成を示す概略ブロック図である。動力系14は、水素タンク141、水素供給装置142、燃料電池143、バッテリ144、DCDCコンバータ145、リターダグリッド146を備える。リターダグリッド146は余剰電力を消費する消費装置の一例である。
 水素供給装置142は、水素タンク141に充填された水素ガスを燃料電池143に供給する。燃料電池143は、水素供給装置142から供給される水素と外気に含まれる酸素とを電気化学反応させて電力を発生する。バッテリ144は、燃料電池143において発生した電力を蓄える。バッテリ144は蓄電装置の一例である。バッテリ144には、バッテリ144の状態を監視する図示しない監視装置が設けられる。なお、他の実施形態においては、作業機械10はバッテリ144に代えてキャパシタなどの他の蓄電装置を備えてもよい。監視装置は、バッテリ144の故障を防ぐためにバッテリ144の温度、充電率、電圧などのバッテリ144の様々な状態量に基づいて最大充電可能電力および最大放電可能電力を決定する。例えば、最大充電可能電力および最大放電可能電力は、バッテリ144の温度が高いほど小さい値となる。DCDCコンバータ145は、制御系16(図3参照)からの指示に従って接続される燃料電池143またはバッテリ144から電力を出力させる。リターダグリッド146は、バッテリ144への充電ができない場合に、駆動系15からの回生電力を熱エネルギーに変換する。
2 is a schematic block diagram showing the configuration of the power system 14 and drive system 15 provided in the work machine 10 according to the first embodiment. The power system 14 includes a hydrogen tank 141, a hydrogen supply device 142, a fuel cell 143, a battery 144, a DCDC converter 145, and a retarder grid 146. The retarder grid 146 is an example of a consumption device that consumes surplus power.
The hydrogen supply device 142 supplies hydrogen gas filled in the hydrogen tank 141 to the fuel cell 143. The fuel cell 143 generates electric power by electrochemically reacting hydrogen supplied from the hydrogen supply device 142 with oxygen contained in the outside air. The battery 144 stores the electric power generated in the fuel cell 143. The battery 144 is an example of an electric power storage device. The battery 144 is provided with a monitoring device (not shown) that monitors the state of the battery 144. Note that in other embodiments, the work machine 10 may be provided with another electric power storage device such as a capacitor instead of the battery 144. The monitoring device determines the maximum chargeable power and the maximum dischargeable power based on various state quantities of the battery 144, such as the temperature, charging rate, and voltage of the battery 144, in order to prevent the battery 144 from failing. For example, the maximum chargeable power and the maximum dischargeable power have smaller values as the temperature of the battery 144 increases. The DCDC converter 145 outputs electric power from the fuel cell 143 or the battery 144 connected thereto in accordance with an instruction from the control system 16 (see FIG. 3). The retarder grid 146 converts regenerative power from the drivetrain 15 into thermal energy when the battery 144 cannot be charged.

 動力系14が出力した電力は、母線Bを介して駆動系15へ出力される。駆動系15は、インバータ151と、ポンプ駆動モータ152と、油圧ポンプ153と、ホイストシリンダ154と、インバータ155と、走行駆動モータ156とを有する。インバータ151は、母線Bからの直流電流を三相交流電流に変換してポンプ駆動モータ152に供給する。ポンプ駆動モータ152は、油圧ポンプ153を駆動する。油圧ポンプ153から吐出された作動油は、図示しない制御弁を介してホイストシリンダ154に供給される。作動油がホイストシリンダ154に供給されることにより、ホイストシリンダ154が作動する。ホイストシリンダ154は、ダンプボディ11をダンプ動作又は下げ動作させる。インバータ155は、母線Bからの直流電流を三相交流電流に変換して走行駆動モータ156に供給する。走行駆動モータ156が発生した回転力は、走行装置13の駆動輪に伝達される。走行駆動モータ156は、作業機械10を走行させる力行運転と、回生電力を発生させて作業機械10を減速させる回生運転を行う。 The power output by the power system 14 is output to the drive system 15 via the bus B. The drive system 15 has an inverter 151, a pump drive motor 152, a hydraulic pump 153, a hoist cylinder 154, an inverter 155, and a travel drive motor 156. The inverter 151 converts the DC current from the bus B into three-phase AC current and supplies it to the pump drive motor 152. The pump drive motor 152 drives the hydraulic pump 153. The hydraulic oil discharged from the hydraulic pump 153 is supplied to the hoist cylinder 154 via a control valve (not shown). The hoist cylinder 154 is operated by the hydraulic oil being supplied to the hoist cylinder 154. The hoist cylinder 154 performs a dumping operation or a lowering operation of the dump body 11. The inverter 155 converts the DC current from the bus B into three-phase AC current and supplies it to the travel drive motor 156. The rotational force generated by the travel drive motor 156 is transmitted to the drive wheels of the travel device 13. The travel drive motor 156 performs power running to travel the work machine 10, and regenerative running to generate regenerative power to decelerate the work machine 10.

 作業機械10は、動力系14および駆動系15を制御する制御系16を備える。図3は、第一の実施形態に係る作業機械10が備える制御系16の構成を示す概略ブロック図である。制御系16は、計測装置161、操作装置162、制御装置163を備える。 The work machine 10 is equipped with a control system 16 that controls the power system 14 and the drive system 15. FIG. 3 is a schematic block diagram showing the configuration of the control system 16 equipped in the work machine 10 according to the first embodiment. The control system 16 is equipped with a measuring device 161, an operating device 162, and a control device 163.

 計測装置161は、作業機械10の稼働状態および走行状態に関するデータを収集する。計測装置161は、バッテリ144の温度を計測する温度センサ、バッテリ144の充電率を計測する残量計、インバータ155の通過電流を計測する電流センサ、および母線Bの電圧を計測する電圧センサを含む。
 操作装置162は、運転室に設けられ、オペレータによる操作を受け付ける。操作装置162は、アクセルペダル、ブレーキペダル、ステアリングホイール、ダンプレバーなどを備える。
 制御装置163は、操作装置162の操作量に従って、作業機械10を駆動させる。
The measurement device 161 collects data relating to the operating state and traveling state of the work machine 10. The measurement device 161 includes a temperature sensor that measures the temperature of the battery 144, a fuel gauge that measures the charging rate of the battery 144, a current sensor that measures the passing current of the inverter 155, and a voltage sensor that measures the voltage of the bus B.
The operation device 162 is provided in the driver's cab and receives operations by the operator. The operation device 162 includes an accelerator pedal, a brake pedal, a steering wheel, a dump lever, and the like.
The control device 163 drives the work machine 10 in accordance with the amount of operation of the operating device 162 .

 制御装置163は、データ取得部171、標準決定部172、車体制御部173、必要電力算出部174、回生電力特定部175、バッテリ能力特定部176、制御量決定部177、燃料電池制御部178、バッテリ制御部179を備える。制御装置163は、制御システムの一例である。 The control device 163 includes a data acquisition unit 171, a standard determination unit 172, a vehicle body control unit 173, a required power calculation unit 174, a regenerative power identification unit 175, a battery capacity identification unit 176, a control amount determination unit 177, a fuel cell control unit 178, and a battery control unit 179. The control device 163 is an example of a control system.

 データ取得部171は、計測装置161から計測データを取得する。
 標準決定部172は、データ取得部171が取得したバッテリ144の充電率の計測データに基づいて、燃料電池143に出力させる電力の標準である標準発電電力を決定する。具体的には、標準決定部172は、バッテリ144の充電率が高いほど標準発電電力を低い値に決定し、バッテリ144の充電率が低いほど標準発電電力を高い値に決定する。つまり標準決定部172はレンジエクステンダ方式により標準発電電力を決定する。標準発電電力は、バッテリ144の充電率に対して単調減少(単調非増加)である。
The data acquisition unit 171 acquires measurement data from the measuring device 161 .
The standard determination unit 172 determines a standard generated power, which is a standard for the power to be output from the fuel cell 143, based on the measurement data of the charging rate of the battery 144 acquired by the data acquisition unit 171. Specifically, the standard determination unit 172 determines a lower standard generated power value as the charging rate of the battery 144 increases, and determines a higher standard generated power value as the charging rate of the battery 144 decreases. In other words, the standard determination unit 172 determines the standard generated power value using a range extender method. The standard generated power value monotonically decreases (does not monotonically increase) with respect to the charging rate of the battery 144.

 車体制御部173は、操作装置162の操作量により、作業機械10を制御するための制御信号を生成する。例えば車体制御部173は、走行装置13のステアリング、アクセル、ブレーキ、ベッセル動作などを制御する制御信号を生成する。 The vehicle body control unit 173 generates a control signal for controlling the work machine 10 based on the amount of operation of the operating device 162. For example, the vehicle body control unit 173 generates control signals for controlling the steering, accelerator, brakes, vessel operation, etc. of the traveling device 13.

 必要電力算出部174は、車体制御部173が生成する制御信号に基づいて動力系14において必要とされる必要電力を算出する。必要電力算出部174は、必要電力決定部の一例である。
 回生電力特定部175は、データ取得部171が取得した母線Bの電圧およびインバータ155の通過電流の計測データに基づいて、作業機械10が発生させる回生電力を特定する。
The required power calculation unit 174 calculates the required power required in the power system 14 based on the control signal generated by the vehicle body control unit 173. The required power calculation unit 174 is an example of a required power determination unit.
The regenerative power identifying unit 175 identifies the regenerative power generated by the work machine 10 based on the measurement data of the voltage of the bus B and the current passing through the inverter 155 acquired by the data acquiring unit 171 .

 バッテリ能力特定部176は、データ取得部171が取得したバッテリ144の状態量の計測データに基づいて、バッテリ144の監視装置によって決定される最大充電可能電力および最大放電可能電力を特定する。バッテリ能力特定部176は、バッテリ144の監視装置に最大充電可能電力および最大放電可能電力を照会することで、最大充電可能電力および最大放電可能電力を特定してもよい。 The battery capacity identification unit 176 identifies the maximum chargeable power and the maximum dischargeable power determined by a monitoring device for the battery 144 based on the measurement data of the state quantity of the battery 144 acquired by the data acquisition unit 171. The battery capacity identification unit 176 may identify the maximum chargeable power and the maximum dischargeable power by inquiring about the maximum chargeable power and the maximum dischargeable power from the monitoring device for the battery 144.

 制御量決定部177は、必要電力、回生電力、燃料電池143の標準発電電力、ならびにバッテリ144の最大充電可能電力および最大放電可能電力に基づいて、燃料電池143の発電電力、およびバッテリ144の充電電力または放電電力を決定する。制御量決定部177による制御量の決定方法については後述する。 The control amount determination unit 177 determines the power generated by the fuel cell 143 and the charging or discharging power of the battery 144 based on the required power, the regenerative power, the standard power generated by the fuel cell 143, and the maximum chargeable power and maximum dischargeable power of the battery 144. The method of determining the control amount by the control amount determination unit 177 will be described later.

 燃料電池制御部178は、制御量決定部177が決定した発電電力に従って発電するように燃料電池143を制御する。つまり、燃料電池制御部178は、燃料電池143が制御量決定部177が決定した発電電力を出力するように、水素供給装置142による水素の供給量を制御する。
 バッテリ制御部179は、制御量決定部177が決定した放電電力をバッテリ144に放電させ、または制御量決定部177が決定した充電電力をバッテリ144に充電させるように、バッテリ144に接続されたDCDCコンバータ145を制御する。バッテリ制御部179は、蓄電装置制御部の一例である。
The fuel cell control unit 178 controls the fuel cell 143 to generate power in accordance with the power generation determined by the control amount determination unit 177. In other words, the fuel cell control unit 178 controls the amount of hydrogen supplied by the hydrogen supply device 142 so that the fuel cell 143 outputs the power generation determined by the control amount determination unit 177.
The battery control unit 179 controls the DCDC converter 145 connected to the battery 144 so as to discharge the discharge power determined by the control amount determination unit 177 to the battery 144, or to charge the battery 144 with the charge power determined by the control amount determination unit 177. The battery control unit 179 is an example of a power storage device control unit.

 ここで、第1の実施形態に係る制御量決定部177の計算について説明する。図4は、第1の実施形態に係る制御量決定部177による演算アルゴリズムを示すブロック図である。
 制御量決定部177は、第一減算ブロック181、第二減算ブロック182、MAXブロック183、第一MINブロック184、第三減算ブロック186、加算ブロック188、第二MINブロック187、第三MINブロック189、第四減算ブロック190を備える。
Here, a description will be given of the calculation by the control amount determiner 177 according to the first embodiment. Fig. 4 is a block diagram showing a calculation algorithm by the control amount determiner 177 according to the first embodiment.
The control amount determination unit 177 includes a first subtraction block 181 , a second subtraction block 182 , a MAX block 183 , a first MIN block 184 , a third subtraction block 186 , an addition block 188 , a second MIN block 187 , a third MIN block 189 , and a fourth subtraction block 190 .

 第一減算ブロック181は、差引必要電力から最大放電可能電力を減算する。
 第二減算ブロック182は、最大充電可能電力から差引回生電力を減算する。
 なお、図4に示す差引回生電力および差引必要電力は、必要電力算出部174が算出した必要電力と回生電力特定部175が特定した回生電力の差によって表される。具体的には、差引必要電力は、必要電力から回生電力を減算した値であり、差引回生電力は、回生電力から必要電力を減算した値である。つまり、差引必要電力と、差引回生電力に-1を乗算した値は等しい。
The first subtraction block 181 subtracts the maximum dischargeable power from the subtracted required power.
The second subtraction block 182 subtracts the regenerative power from the maximum chargeable power.
4 are represented by the difference between the required power calculated by the required power calculation unit 174 and the regenerative power identified by the regenerative power identification unit 175. Specifically, the required power is the value obtained by subtracting the regenerative power from the required power, and the regenerative power is the value obtained by subtracting the required power from the regenerative power. In other words, the required power is equal to the value obtained by multiplying the regenerative power by -1.

 MAXブロック183は、標準発電電力と、第一減算ブロック181の演算結果のうち大きい方を特定する。つまり、MAXブロック183は、燃料電池143に標準発電電力を発電させた場合に、バッテリ144の放電能力の範囲内で差引必要電力を賄えるならば、標準発電電力を出力する。MAXブロック183は、燃料電池143に標準発電電力を発電させた場合に、バッテリ144の放電能力の範囲内で差引必要電力を賄えないならば、必要電力とバッテリ144の最大放電可能電力の差を出力する。 The MAX block 183 determines the larger of the standard generated power and the calculation result of the first subtraction block 181. In other words, if the net required power can be covered within the discharge capacity of the battery 144 when the fuel cell 143 is made to generate the standard generated power, the MAX block 183 outputs the standard generated power. If the net required power cannot be covered within the discharge capacity of the battery 144 when the fuel cell 143 is made to generate the standard generated power, the MAX block 183 outputs the difference between the required power and the maximum dischargeable power of the battery 144.

 第一MINブロック184は、MAXブロック183の演算結果と第二減算ブロック182の演算結果とのうち小さい方を特定する。つまり、第一MINブロック184は、燃料電池143に標準発電電力を発電させた場合に、バッテリ144の充電能力の範囲内で差引回生電力を吸収できるならば、標準発電電力を出力する。第一MINブロック184は、燃料電池143に標準発電電力を発電させた場合に、バッテリ144の充電能力の範囲内で差引回生電力を吸収できないならば、バッテリ144の最大充電可能電力と差引回生電力の差を出力する。ただし、第一MINブロック184は、演算結果が負数となる場合にはゼロを演算結果として出力する。なお、第一MINブロック184の演算結果は、燃料電池143の総発電電力を示す。 The first MIN block 184 determines the smaller of the calculation result of the MAX block 183 and the calculation result of the second subtraction block 182. In other words, if the standard generated power can be absorbed within the charging capacity of the battery 144 when the fuel cell 143 is made to generate standard generated power, the first MIN block 184 outputs the standard generated power. If the standard generated power cannot be absorbed within the charging capacity of the battery 144 when the fuel cell 143 is made to generate standard generated power, the first MIN block 184 outputs the difference between the maximum chargeable power of the battery 144 and the regenerative power. However, if the calculation result is a negative number, the first MIN block 184 outputs zero as the calculation result. The calculation result of the first MIN block 184 indicates the total generated power of the fuel cell 143.

 第三減算ブロック186は、必要電力から第一MINブロック184の演算結果を減算する。
 第二MINブロック187は、第三減算ブロック186の演算結果と最大放電可能電力のうち小さい方をバッテリ144の放電電力として特定する。つまり、第二MINブロック187は、燃料電池143が標準発電電力で発電する場合に、燃料電池143の総発電電力と差引必要電力の差の電力を放電電力に決定する。第二MINブロック187は、燃料電池143が標準発電電力より大きな電力で発電する場合に、最大放電可能電力を放電電力に決定する。
A third subtraction block 186 subtracts the result of the calculation by the first MIN block 184 from the required power.
The second MIN block 187 specifies the smaller of the calculation result of the third subtraction block 186 and the maximum dischargeable power as the discharge power of the battery 144. In other words, when the fuel cell 143 generates power at the standard power generation power, the second MIN block 187 determines the difference between the total power generation power of the fuel cell 143 and the net required power as the discharge power. When the fuel cell 143 generates power greater than the standard power generation power, the second MIN block 187 determines the maximum dischargeable power as the discharge power.

 加算ブロック188は、第一MINブロック184の演算結果と差引回生電力とを加算する。
 第三MINブロック189は、最大充電可能電力と加算ブロック188の演算結果のうち小さい方をバッテリ144の充電電力として特定する。つまり、第三MINブロック189は、燃料電池143の総発電電力と差引回生電力の和が最大充電可能電力を超える場合に、最大充電可能電力を充電電力に決定する。第三MINブロック189は、燃料電池143の総発電電力と差引回生電力の和が最大充電可能電力を超えない場合に、燃料電池143の総発電電力と差引回生電力の和を充電電力に決定する。
The addition block 188 adds the calculation result of the first MIN block 184 and the subtracted regenerative power.
The third MIN block 189 specifies the smaller of the maximum chargeable power or the calculation result of the addition block 188 as the charging power for the battery 144. In other words, when the sum of the total power generated by the fuel cell 143 and the regenerative power balance exceeds the maximum chargeable power, the third MIN block 189 determines the maximum chargeable power as the charging power. When the sum of the total power generated by the fuel cell 143 and the regenerative power balance does not exceed the maximum chargeable power, the third MIN block 189 determines the sum of the total power generated by the fuel cell 143 and the regenerative power balance as the charging power.

 第四減算ブロック190は、加算ブロック188の演算結果から第三MINブロック189の演算結果を減算した結果を、リターダグリッド146で消費すべき余剰電力として特定する。 The fourth subtraction block 190 identifies the result of subtracting the calculation result of the third MIN block 189 from the calculation result of the addition block 188 as the surplus power to be consumed by the retarder grid 146.

 なお、制御量決定部177の算出結果である放電電力および充電電力は、必ず少なくとも一方がゼロとなる。 Note that at least one of the discharge power and charge power calculated by the control amount determination unit 177 will always be zero.

 図5は、第一の実施形態に係る作業機械10の制御方法を示すフローチャートである。 第1の実施形態に係る作業機械10が走行を開始すると、制御装置163のデータ取得部171は、計測装置161からバッテリ144の温度、バッテリ144の充電率、インバータ155の通過電流、および母線Bの電圧の計測値を取得し、操作装置162から操作量を取得する(ステップS1)。 FIG. 5 is a flowchart showing a method for controlling the work machine 10 according to the first embodiment. When the work machine 10 according to the first embodiment starts traveling, the data acquisition unit 171 of the control device 163 acquires the measured values of the temperature of the battery 144, the charging rate of the battery 144, the current passing through the inverter 155, and the voltage of the bus bar B from the measuring device 161, and acquires the operation amount from the operation device 162 (step S1).

 次に、標準決定部172は、ステップS1で取得したバッテリ144の充電率の計測データに基づいて、燃料電池143に出力させる電力の標準である標準発電電力を決定する(ステップS2)。車体制御部173は、ステップS1で取得した操作量により、作業機械10を制御するための制御信号を生成する(ステップS3)。 Next, the standard determination unit 172 determines the standard generated power, which is the standard for the power to be output by the fuel cell 143, based on the measurement data of the charging rate of the battery 144 acquired in step S1 (step S2). The vehicle body control unit 173 generates a control signal for controlling the work machine 10 based on the operation amount acquired in step S1 (step S3).

 必要電力算出部174は、ステップS3で生成した制御信号に基づいて必要電力を算出する(ステップS4)。また回生電力特定部175は、ステップS1で取得した母線Bの電圧およびインバータ155の通過電流の計測データに基づいて回生電力を特定する(ステップS5)。 The required power calculation unit 174 calculates the required power based on the control signal generated in step S3 (step S4). The regenerative power identification unit 175 identifies the regenerative power based on the measurement data of the voltage of the bus B and the current passing through the inverter 155 acquired in step S1 (step S5).

 バッテリ能力特定部176は、ステップS1で取得したバッテリ144の状態量の計測データに基づいて、バッテリ144の最大充電可能電力および最大放電可能電力を特定する(ステップS6)。 The battery capacity determination unit 176 determines the maximum chargeable power and maximum dischargeable power of the battery 144 based on the measurement data of the state quantity of the battery 144 acquired in step S1 (step S6).

 制御量決定部177は、ステップS2で算出した標準発電電力、ステップS4で算出した必要電力、ステップS5で算出した回生電力、ステップS6で特定した最大充電可能電力および最大放電可能電力に基づいて、燃料電池143の発電電力、バッテリ144の充電電力または放電電力、およびリターダグリッド146に消費される余剰電力を決定する(ステップS7)。 The control quantity determination unit 177 determines the generated power of the fuel cell 143, the charging or discharging power of the battery 144, and the surplus power consumed by the retarder grid 146 based on the standard generated power calculated in step S2, the required power calculated in step S4, the regenerative power calculated in step S5, and the maximum chargeable power and maximum dischargeable power identified in step S6 (step S7).

 燃料電池制御部178は、ステップS7で決定した発電電力に従って発電するように燃料電池143を制御する(ステップS8)。なお、ステップS7で決定した発電電力がゼロである場合、燃料電池制御部178は、燃料電池143の発電を停止させてもよい。またバッテリ制御部179は、ステップS7で決定した放電電力または充電電力に従ってDCDCコンバータ145を制御する(ステップS9)。 The fuel cell control unit 178 controls the fuel cell 143 to generate power according to the generated power determined in step S7 (step S8). If the generated power determined in step S7 is zero, the fuel cell control unit 178 may stop the power generation of the fuel cell 143. The battery control unit 179 also controls the DCDC converter 145 according to the discharge power or charge power determined in step S7 (step S9).

《作用・効果》
 このように、第一の実施形態に係る制御装置163は、以下のように機能する。必要電力算出部174は、作業機械10の稼働に必要な必要電力の大きさを決定する。燃料電池制御部178は、燃料電池143の標準発電電力とバッテリ144の最大放電可能電力の和が必要電力より小さい場合に、標準発電電力より大きい電力を出力するように燃料電池143を制御する。具体的には、燃料電池制御部178は、標準発電電力と最大放電可能電力の和が必要電力より小さい場合に、必要電力とバッテリ144の最大放電可能電力の差の電力を出力するように燃料電池143を制御する。これにより、制御装置163は、作業機械10の作業状態やバッテリ144の状態によって電力の不足が生じないよう、燃料電池143が出力すべき電力を決定することができる。例えば、オペレータが作業機械10を加速させるときに、作業機械10は、より多くの必要電力を必要とする場合がある。また、例えば、作業機械10が上り坂を走行するときに、作業機械10は、より多くの必要電力を必要とする場合がある。また、例えば、バッテリ144の充電率の低下や温度の上昇によって、バッテリ144の最大放電可能電力が低下する場合がある。このとき、制御装置163は、必要電力が燃料電池143の標準発電電力とバッテリ144の最大放電可能電力の和を超える場合に、燃料電池143の出力を増加させることができる。すなわち、制御装置163は、作業機械10に搭載された燃料電池143が出力すべき電力を適切に決定することができる。なお、他の実施形態においては、燃料電池制御部178は、必要電力とバッテリ144の最大放電可能電力の差の電力より大きい電力を出力するように燃料電池143を制御してもよい。
<Action and Effects>
In this manner, the control device 163 according to the first embodiment functions as follows. The required power calculation unit 174 determines the magnitude of the required power required for the operation of the work machine 10. When the sum of the standard generated power of the fuel cell 143 and the maximum dischargeable power of the battery 144 is smaller than the required power, the fuel cell control unit 178 controls the fuel cell 143 to output power larger than the standard generated power. Specifically, when the sum of the standard generated power and the maximum dischargeable power is smaller than the required power, the fuel cell control unit 178 controls the fuel cell 143 to output power equal to the difference between the required power and the maximum dischargeable power of the battery 144. In this way, the control device 163 can determine the power that the fuel cell 143 should output so that a power shortage does not occur depending on the working state of the work machine 10 or the state of the battery 144. For example, when the operator accelerates the work machine 10, the work machine 10 may require more required power. Also, for example, when the work machine 10 travels uphill, the work machine 10 may require more required power. Furthermore, for example, a decrease in the charging rate or an increase in temperature of the battery 144 may cause the maximum dischargeable power of the battery 144 to decrease. At this time, if the required power exceeds the sum of the standard generated power of the fuel cell 143 and the maximum dischargeable power of the battery 144, the control device 163 can increase the output of the fuel cell 143. In other words, the control device 163 can appropriately determine the power that should be output by the fuel cell 143 mounted on the work machine 10. Note that in other embodiments, the fuel cell control unit 178 may control the fuel cell 143 to output power that is greater than the difference between the required power and the maximum dischargeable power of the battery 144.

 また、第一の実施形態に係る制御装置163は、以下のように機能する。回生電力特定部175は、作業機械10が生じる回生電力の大きさを特定する。燃料電池制御部178は、燃料電池143の標準発電電力と回生電力の和がバッテリ144の最大充電可能電力より大きい場合に、標準発電電力より小さい電力を出力するように、または発電を停止するように燃料電池143を制御する。具体的には、燃料電池制御部178は、標準発電電力と回生電力の和が最大充電可能電力より大きい場合に、最大充電可能電力と回生電力の差の電力を出力するように燃料電池143を制御する。これにより、制御装置163は、燃料電池143の発電電力による回生失効が発生しないように、燃料電池143が出力すべき電力を決定することができる。例えば、オペレータが作業機械10を減速させるときに、走行駆動モータ156は、より多くの回生電力を発生させる場合がある。また、例えば、作業機械10が下り坂を走行するときに、作業機械10は、より多くの回生電力を発生させる場合がある。また、例えば、バッテリ144の充電率の上昇や温度の上昇によって、バッテリ144の最大充電可能電力が低下する場合がある。このとき、制御装置163は、回生電力と燃料電池143の標準発電電力との和がバッテリ144の最大充電可能電力を超える場合に、燃料電池143の出力を制限させることができる。すなわち、制御装置163は、作業機械10に搭載された燃料電池143が出力すべき電力を適切に決定することができる。なお、他の実施形態においては、燃料電池制御部178は、バッテリ144の最大放電可能電力と回生電力の差の電力より小さい電力を出力するように燃料電池143を制御してもよい。 The control device 163 according to the first embodiment functions as follows. The regenerative power identification unit 175 identifies the magnitude of the regenerative power generated by the work machine 10. When the sum of the standard power generation and the regenerative power of the fuel cell 143 is greater than the maximum chargeable power of the battery 144, the fuel cell control unit 178 controls the fuel cell 143 to output power less than the standard power generation or to stop power generation. Specifically, when the sum of the standard power generation and the regenerative power is greater than the maximum chargeable power, the fuel cell control unit 178 controls the fuel cell 143 to output power equal to the difference between the maximum chargeable power and the regenerative power. This allows the control device 163 to determine the power that the fuel cell 143 should output so that regeneration lapse due to the power generated by the fuel cell 143 does not occur. For example, when the operator decelerates the work machine 10, the travel drive motor 156 may generate more regenerative power. Also, for example, when the work machine 10 travels downhill, the work machine 10 may generate more regenerative power. Furthermore, for example, an increase in the charging rate or temperature of the battery 144 may cause the maximum chargeable power of the battery 144 to decrease. In this case, the control device 163 can limit the output of the fuel cell 143 if the sum of the regenerative power and the standard power generation of the fuel cell 143 exceeds the maximum chargeable power of the battery 144. In other words, the control device 163 can appropriately determine the power that should be output by the fuel cell 143 mounted on the work machine 10. Note that in other embodiments, the fuel cell control unit 178 may control the fuel cell 143 to output power that is smaller than the power difference between the maximum dischargeable power of the battery 144 and the regenerative power.

〈コンピュータ構成〉
 図6は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータ90は、プロセッサ91、メインメモリ92、ストレージ93、インタフェース94を備える。
 上述の制御装置163は、コンピュータ90に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ93に記憶されている。プロセッサ91は、プログラムをストレージ93から読み出してメインメモリ92に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ91は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ92に確保する。プロセッサ91の例としては、CPU(Central Processing Unit)、GPU(Graphic Processing Unit)、マイクロプロセッサなどが挙げられる。
Computer Configuration
FIG. 6 is a schematic block diagram illustrating a computer configuration according to at least one embodiment.
The computer 90 comprises a processor 91 , a main memory 92 , a storage 93 , and an interface 94 .
The above-mentioned control device 163 is implemented in the computer 90. The operations of the above-mentioned processing units are stored in the storage 93 in the form of a program. The processor 91 reads the program from the storage 93, loads it in the main memory 92, and executes the above-mentioned processing in accordance with the program. The processor 91 also secures storage areas in the main memory 92 corresponding to the above-mentioned storage units in accordance with the program. Examples of the processor 91 include a CPU (Central Processing Unit), a GPU (Graphic Processing Unit), and a microprocessor.

 プログラムは、コンピュータ90に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージに既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、コンピュータ90は、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサ91によって実現される機能の一部または全部が当該集積回路によって実現されてよい。このような集積回路も、プロセッサの一例に含まれる。また、他の実施形態においては、コンピュータ90は、1または複数のコンピュータ上で仮想化されたものであってもよい。 The program may be for implementing part of the functions to be performed by the computer 90. For example, the program may be for implementing the functions by combining with other programs already stored in the storage or with other programs implemented in other devices. In another embodiment, the computer 90 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration. Examples of PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array). In this case, part or all of the functions implemented by the processor 91 may be implemented by the integrated circuit. Such an integrated circuit is also included as an example of a processor. In another embodiment, the computer 90 may be virtualized on one or more computers.

 ストレージ93の例としては、磁気ディスク、光磁気ディスク、光ディスク、半導体メモリ等が挙げられる。ストレージ93は、コンピュータ90のバスに直接接続された内部メディアであってもよいし、インタフェース94または通信回線を介してコンピュータ90に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ90に配信される場合、配信を受けたコンピュータ90が当該プログラムをメインメモリ92に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ93は、一時的でない有形の記憶媒体である。 Examples of storage 93 include a magnetic disk, a magneto-optical disk, an optical disk, and a semiconductor memory. Storage 93 may be an internal medium directly connected to the bus of computer 90, or an external medium connected to computer 90 via interface 94 or a communication line. In addition, when this program is distributed to computer 90 via a communication line, computer 90 that receives the program may expand the program into main memory 92 and execute the above-mentioned processing. In at least one embodiment, storage 93 is a non-transitory tangible storage medium.

 また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能をストレージ93に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。 The program may also be one that realizes some of the functions described above. Furthermore, the program may be one that realizes the functions described above in combination with other programs already stored in storage 93, that is, a so-called differential file (differential program).

〈第二の実施形態〉
 図7および図8を用いて、第二の実施形態について説明する。なお、第1実施形態と同様の構成には、同一の又は対応する符号を付して説明を省略する。
Second Embodiment
The second embodiment will be described with reference to Figures 7 and 8. Note that the same or corresponding reference numerals will be used to designate the same components as those in the first embodiment, and the description thereof will be omitted.

《システムの構成》
 図7は、第二の実施形態に係る作業機械10の斜視図である。第二の実施形態に係る作業機械10は、例えば油圧ショベルである。作業機械10は、走行体210と、旋回体220と、作業機230と、運転室240と、機械室250とを備える。走行体210と旋回体220とは、車体を構成する。
System Configuration
7 is a perspective view of a work machine 10 according to the second embodiment. The work machine 10 according to the second embodiment is, for example, a hydraulic excavator. The work machine 10 includes a traveling body 210, a rotating body 220, a work implement 230, a cab 240, and a machine room 250. The traveling body 210 and the rotating body 220 form a vehicle body.

 走行体210は、作業機械10を走行可能に支持する。走行体210は、左右一対の履帯を有する。作業機械10は一対の履帯の回転により前進し、旋回し、または後進する。
 旋回体220は、走行体210に旋回可能に支持される。旋回体220は、後述する旋回モータ256によって、走行体210に対して旋回する。旋回体220は、作業機230と、運転室240と、機械室250と、燃料電池143とを支持する。
The running body 210 supports the work machine 10 so that the work machine 10 can run. The running body 210 has a pair of left and right tracks. The work machine 10 moves forward, turns, or reverses by rotation of the pair of tracks.
The rotating body 220 is rotatably supported by the running body 210. The rotating body 220 is rotated relative to the running body 210 by a swing motor 256 described later. The rotating body 220 supports a work machine 230, a cab 240, a machine room 250, and a fuel cell 143.

 作業機230は、作業機械10の車体に動作可能に支持される。作業機230は、ブーム231、アーム232、及び作業具であるアタッチメント233を備える。アタッチメント233は作業具の一例である。図1に示す例におけるアタッチメント233は、バケットである。ブーム231の基端部は、旋回体220に回動可能に取り付けられる。アーム232の基端部は、ブーム231の先端部に回動可能に取り付けられる。アタッチメント233は、アーム232の先端部に回動可能に取り付けられる。 The working implement 230 is operably supported on the body of the work machine 10. The working implement 230 includes a boom 231, an arm 232, and an attachment 233 which is a working tool. The attachment 233 is an example of a working tool. In the example shown in FIG. 1, the attachment 233 is a bucket. The base end of the boom 231 is rotatably attached to the rotating body 220. The base end of the arm 232 is rotatably attached to the tip of the boom 231. The attachment 233 is rotatably attached to the tip of the arm 232.

 作業機230は、複数のアクチュエータによって駆動される。複数のアクチュエータは、例えば、ブームシリンダ231C、アームシリンダ232C、及びアタッチメントシリンダ233Cを備える。 The work machine 230 is driven by a number of actuators. The actuators include, for example, a boom cylinder 231C, an arm cylinder 232C, and an attachment cylinder 233C.

 ブームシリンダ231Cは、ブーム231を駆動するための油圧シリンダである。ブームシリンダ231Cの基端部は、旋回体220に取り付けられる。ブームシリンダ231Cの先端部は、ブーム231に取り付けられる。
 アームシリンダ232Cは、アーム232を駆動するための油圧シリンダである。アームシリンダ232Cの基端部は、ブーム231に取り付けられる。アームシリンダ232Cの先端部は、アーム232に取り付けられる。
 アタッチメントシリンダ233Cは、アタッチメント233を駆動するための油圧シリンダである。アタッチメントシリンダ233Cの基端部は、アーム232に取り付けられる。アタッチメントシリンダ233Cの先端部は、アタッチメント233に取り付けられる。
The boom cylinder 231C is a hydraulic cylinder for driving the boom 231. A base end of the boom cylinder 231C is attached to the rotating body 220. A tip end of the boom cylinder 231C is attached to the boom 231.
The arm cylinder 232C is a hydraulic cylinder for driving the arm 232. A base end of the arm cylinder 232C is attached to the boom 231. A tip end of the arm cylinder 232C is attached to the arm 232.
The attachment cylinder 233C is a hydraulic cylinder for driving the attachment 233. A base end of the attachment cylinder 233C is attached to the arm 232. A tip end of the attachment cylinder 233C is attached to the attachment 233.

 作業機械10の運転室240は、作業機械10を操作するための操作装置162を備える。
 操作装置162は、運転室240に設けられ、オペレータによる操作を受け付ける。操作装置162は、例えば、旋回体220、ブーム231、アーム232、及びアタッチメント233を操作するための操作レバー、走行体210を操作するためのフットペダル、走行体210を操作するための走行レバーなどを含む。
The operator's cab 240 of the work machine 10 is equipped with an operating device 162 for operating the work machine 10 .
The operation device 162 is provided in the cab 240 and receives operations by an operator. The operation device 162 includes, for example, operation levers for operating the revolving body 220, the boom 231, the arm 232, and the attachment 233, a foot pedal for operating the running body 210, a travel lever for operating the running body 210, and the like.

 図8は、第二の実施形態に係る作業機械10が備える動力系14および駆動系15の構成を示す概略ブロック図である。駆動系15は、インバータ151と、ポンプ駆動モータ152と、油圧ポンプ153と、油圧アクチュエータ255と、インバータ155と、旋回モータ256とを有する。インバータ151は、母線Bからの直流電流を三相交流電流に変換してポンプ駆動モータ152に供給する。ポンプ駆動モータ152は、作業機230および走行体210を駆動させるための動力を発生する。ポンプ駆動モータ152は、供給された三相交流電流によって回転し、油圧ポンプ153を駆動する。油圧ポンプ153は油圧アクチュエータ255に供給するための作動油を吐出する。油圧ポンプ153から吐出された作動油は、図示しない制御弁を介して油圧アクチュエータ255に供給される。油圧アクチュエータ255は供給された作動油によって駆動する。油圧アクチュエータ255は、ブームシリンダ231Cとアームシリンダ232Cとアタッチメントシリンダ233Cと油圧走行モータ234とを含む。油圧走行モータ234が発生した回転力は、走行体210に伝達される。インバータ155は、母線Bからの直流電流を三相交流電流に変換して旋回モータ256に供給する。旋回モータ256は、旋回体220を旋回させるための動力を発生する。旋回モータ256は供給された三相交流電力によって回転し、走行体210に対して旋回体220を旋回させる。旋回モータ256は、旋回体220を旋回駆動する力行運転と、回生電力を発生させて旋回体220を旋回制動させる回生運転を行う。 Figure 8 is a schematic block diagram showing the configuration of the power system 14 and drive system 15 of the work machine 10 according to the second embodiment. The drive system 15 has an inverter 151, a pump drive motor 152, a hydraulic pump 153, a hydraulic actuator 255, an inverter 155, and a swing motor 256. The inverter 151 converts DC current from the bus B into three-phase AC current and supplies it to the pump drive motor 152. The pump drive motor 152 generates power for driving the work machine 230 and the traveling body 210. The pump drive motor 152 rotates by the supplied three-phase AC current and drives the hydraulic pump 153. The hydraulic pump 153 discharges hydraulic oil to be supplied to the hydraulic actuator 255. The hydraulic oil discharged from the hydraulic pump 153 is supplied to the hydraulic actuator 255 via a control valve (not shown). The hydraulic actuator 255 is driven by the supplied hydraulic oil. The hydraulic actuator 255 includes a boom cylinder 231C, an arm cylinder 232C, an attachment cylinder 233C, and a hydraulic travel motor 234. The rotational force generated by the hydraulic travel motor 234 is transmitted to the traveling body 210. The inverter 155 converts the direct current from the bus B into a three-phase alternating current and supplies it to the swing motor 256. The swing motor 256 generates power for swinging the swing body 220. The swing motor 256 rotates by the supplied three-phase AC power and swings the swing body 220 relative to the traveling body 210. The swing motor 256 performs a power running operation for driving the swing body 220 to swing, and a regenerative operation for generating regenerative power to brake the swing body 220.

 第二の実施形態に係る制御装置163(図3参照)は、操作装置162の操作量に従って、走行体210を走行させる。制御装置163は、操作装置162の操作量に従って、作業機230を駆動させる。制御装置163は、操作装置162の操作量に従って、旋回体220を旋回させる。 The control device 163 (see FIG. 3) according to the second embodiment causes the traveling body 210 to travel in accordance with the amount of operation of the operating device 162. The control device 163 drives the working machine 230 in accordance with the amount of operation of the operating device 162. The control device 163 causes the rotating body 220 to rotate in accordance with the amount of operation of the operating device 162.

 第二の実施形態に係る車体制御部173(図3参照)は、操作装置162の操作量により、走行体210の走行、作業機230の駆動、および旋回体220の旋回などを制御する制御信号を生成する。 The vehicle body control unit 173 (see FIG. 3) according to the second embodiment generates control signals for controlling the running of the running body 210, the drive of the work machine 230, and the rotation of the rotating body 220, depending on the amount of operation of the operating device 162.

《作用・効果》
 以上説明したように、第二の実施形態に係る制御装置163は、作業機械10の作業状態やバッテリ144の状態によって電力の不足が生じないよう、燃料電池143が出力すべき電力を決定することができる。作業機械10は、複数のモータを動かすときに、より多くの必要電力を必要とする場合がある。例えば、オペレータが作業機械10に対して、旋回体220の旋回と作業機230の駆動とを同時に行う複合操作をするときに、作業機械10は、より多くの必要電力が必要になる。より詳しくは、アタッチメント233に積荷を積み込んだ状態で、ブーム231やアーム232を上げながら、旋回体220を旋回させるときに、作業機械10は、より多くの必要電力が必要になる。また、例えば、バッテリ144の充電率の低下や温度の上昇によって、バッテリ144の最大放電可能電力が低下する場合がある。このとき、制御装置163は、必要電力が燃料電池143の標準発電電力とバッテリ144の最大放電可能電力の和を超える場合に、燃料電池143の出力を増加させることができる。すなわち、制御装置163は、作業機械10に搭載された燃料電池143が出力すべき電力を適切に決定することができる。
<Action and Effects>
As described above, the control device 163 according to the second embodiment can determine the power to be output by the fuel cell 143 so that a power shortage does not occur depending on the working state of the work machine 10 or the state of the battery 144. The work machine 10 may require more power when operating a plurality of motors. For example, when the operator performs a combined operation on the work machine 10 by simultaneously rotating the revolving body 220 and driving the work implement 230, the work machine 10 requires more power. More specifically, when the revolving body 220 is rotated while raising the boom 231 or the arm 232 with a load loaded on the attachment 233, the work machine 10 requires more power. In addition, for example, the maximum dischargeable power of the battery 144 may decrease due to a decrease in the charging rate or an increase in temperature of the battery 144. At this time, the control device 163 can increase the output of the fuel cell 143 when the required power exceeds the sum of the standard generated power of the fuel cell 143 and the maximum dischargeable power of the battery 144. In other words, the control device 163 can appropriately determine the electric power that should be output by the fuel cell 143 mounted on the work machine 10 .

 また、第二の実施形態に係る制御装置163は、燃料電池143の発電電力による回生失効が発生しないように、燃料電池143が出力すべき電力を決定することができる。例えば、アタッチメント233に掘削物を積み込んだ状態で旋回体220を旋回制動させるときに、旋回モータ256は、より多くの回生電力を発生させる場合がある。また、例えば、斜面に配置された旋回体220を旋回制動させるときに、旋回モータ256は、より多くの回生電力を発生させる場合がある。また、例えば、バッテリ144の充電率の上昇や温度の上昇によって、バッテリ144の最大充電可能電力が低下する場合がある。このとき、制御装置163は、回生電力と燃料電池143の標準発電電力との和がバッテリ144の最大充電可能電力を超える場合に、燃料電池143の出力を制限させることができる。すなわち、制御装置163は、作業機械10に搭載された燃料電池143が出力すべき電力を適切に決定することができる。 The control device 163 according to the second embodiment can determine the power to be output by the fuel cell 143 so that regeneration lapse due to the power generated by the fuel cell 143 does not occur. For example, when braking the revolving body 220 with excavation material loaded on the attachment 233, the revolving motor 256 may generate more regenerative power. For example, when braking the revolving body 220 placed on a slope, the revolving motor 256 may generate more regenerative power. For example, the maximum chargeable power of the battery 144 may decrease due to an increase in the charging rate or temperature of the battery 144. In this case, the control device 163 can limit the output of the fuel cell 143 when the sum of the regenerative power and the standard power generated by the fuel cell 143 exceeds the maximum chargeable power of the battery 144. In other words, the control device 163 can appropriately determine the power to be output by the fuel cell 143 mounted on the work machine 10.

〈他の実施形態〉
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。すなわち、他の実施形態においては、上述の処理の順序が適宜変更されてもよい。また、一部の処理が並列に実行されてもよい。
 上述した実施形態に係る制御装置163は、単独のコンピュータ90によって構成されてもよい。また、制御装置163は、制御装置163の構成を複数のコンピュータ90に分けて配置し、複数のコンピュータ90が互いに協働することで制御装置163として機能してもよい。このとき、制御装置163を構成する一部のコンピュータ90が作業機械10の内部に搭載され、他のコンピュータ90が作業機械10の外部に設けられてもよい。例えば、他の実施形態に係る作業機械10が遠隔操作される場合、燃料電池制御部178およびバッテリ制御部179以外の構成が遠隔のコンピュータ90に設けられていてよい。
Other Embodiments
Although one embodiment has been described in detail above with reference to the drawings, the specific configuration is not limited to the above, and various design changes are possible. That is, in other embodiments, the order of the above-mentioned processes may be changed as appropriate. Also, some of the processes may be executed in parallel.
The control device 163 according to the embodiments described above may be configured by a single computer 90. Moreover, the control device 163 may function as the control device 163 by distributing the configuration of the control device 163 among multiple computers 90, and the multiple computers 90 cooperate with each other. In this case, some of the computers 90 constituting the control device 163 may be mounted inside the work machine 10, and other computers 90 may be provided outside the work machine 10. For example, when the work machine 10 according to the other embodiments is remotely operated, configurations other than the fuel cell control unit 178 and the battery control unit 179 may be provided in a remote computer 90.

 また、上述した実施形態に係る制御装置163の標準決定部172は、バッテリ144の充電率に基づいて、標準発電電力を決定するが、これに限られない。例えば、他の実施形態においては、標準発電電力がバッテリ144の充電率によらずに決定されてもよい。 In addition, the standard determination unit 172 of the control device 163 according to the embodiment described above determines the standard generated power based on the charging rate of the battery 144, but is not limited to this. For example, in other embodiments, the standard generated power may be determined independently of the charging rate of the battery 144.

 また、上述した実施形態に係る回生電力特定部175は、データ取得部171が取得した母線Bの電圧およびインバータ155の通過電流の計測データに基づいて、作業機械10が発生させる回生電力を特定するが、これに限られない。例えば、他の実施形態においては、計測装置161は、インバータ151の通過電流を計測する電流センサを含み、回生電力特定部175は、インバータ151の通過電流の計測データに基づいて、作業機械10が発生させる回生電力を特定してもよい。 The regenerative power identifying unit 175 in the embodiment described above identifies the regenerative power generated by the work machine 10 based on the measurement data of the voltage of the bus bar B and the current passing through the inverter 155 acquired by the data acquisition unit 171, but is not limited to this. For example, in another embodiment, the measurement device 161 may include a current sensor that measures the current passing through the inverter 151, and the regenerative power identifying unit 175 may identify the regenerative power generated by the work machine 10 based on the measurement data of the current passing through the inverter 151.

 また、上述した実施形態に係る作業機械10は、余剰電力を消費するリターダグリッド146を備えるが、これに限られない。例えば、他の実施形態に係る作業機械10は、リターダグリッド146を備えず、余剰電力をポンプ駆動モータ152や作業機械10に搭載された補機によって消費する構成であってもよい。 Furthermore, the work machine 10 according to the embodiment described above is equipped with a retarder grid 146 that consumes surplus power, but is not limited to this. For example, the work machine 10 according to other embodiments may not be equipped with a retarder grid 146, and may be configured so that surplus power is consumed by the pump drive motor 152 or an auxiliary device mounted on the work machine 10.

 また、上述した実施形態では、燃料電池143とバッテリ144とを備え、作業機を有する作業機械10としてダンプトラックや油圧ショベルを例示して説明したが、これに限られない。例えば、他の実施形態に係る作業機械はブルドーザ、ホイルローダ、クレーン、フォークリフト、モータグレーダなどの他の作業機械であってもよい。 In the above-described embodiment, a dump truck or a hydraulic excavator is used as an example of the work machine 10 having a fuel cell 143 and a battery 144 and a work implement, but this is not limited to this. For example, the work machine according to other embodiments may be other work machines such as a bulldozer, a wheel loader, a crane, a forklift, or a motor grader.

 また、上述した実施形態に係る車体制御部173は、操作装置162の操作量により、作業機械10を制御するための制御信号を生成することとしたが、これに限られない。例えば、作業機械10が外部の管制システムによって制御される場合、車体制御部173は、外部の管制システムから送信される操作指令に基づいて、作業機械10を制御するための制御信号を生成してもよい。また、例えば、作業機械10が自律運転する場合、計測装置161は、作業機械10の位置および方位と、作業機械10の周囲の地形と、作業計画と、に関するデータをさらに収集してもよい。制御装置163は、計測装置162が収集した計測データに基づいて、操作信号を生成するための操作信号生成部を有してもよい。車体制御部173は、操作信号生成部が生成した操作指令に基づいて、作業機械10を制御するための制御信号を生成してもよい。 In addition, the vehicle body control unit 173 according to the embodiment described above generates a control signal for controlling the work machine 10 based on the amount of operation of the operation device 162, but this is not limited to this. For example, when the work machine 10 is controlled by an external control system, the vehicle body control unit 173 may generate a control signal for controlling the work machine 10 based on an operation command transmitted from the external control system. Also, for example, when the work machine 10 operates autonomously, the measurement device 161 may further collect data on the position and orientation of the work machine 10, the topography around the work machine 10, and the work plan. The control device 163 may have an operation signal generation unit for generating an operation signal based on the measurement data collected by the measurement device 162. The vehicle body control unit 173 may generate a control signal for controlling the work machine 10 based on the operation command generated by the operation signal generation unit.

 10…作業機械 11…ダンプボディ 12…車体 13…走行装置 14…動力系 141…水素タンク 142…水素供給装置 143…燃料電池 144…バッテリ 145…DCDCコンバータ 146…リターダグリッド 15…駆動系 151…インバータ 152…ポンプ駆動モータ 153…油圧ポンプ 154…ホイストシリンダ 155…インバータ 156…走行駆動モータ 16…制御系 161…計測装置 162…操作装置 163…制御装置 171…データ取得部 172…標準決定部 173…車体制御部 174…必要電力算出部 175…回生電力特定部 176…バッテリ能力特定部 177…制御量決定部 178…燃料電池制御部 179…バッテリ制御部 181…第一減算ブロック 182…第二減算ブロック 183…MAXブロック 184…第一MINブロック 185…除算ブロック 186…第三減算ブロック 187…第二MINブロック 188…加算ブロック 189…第三MINブロック 190…第四減算ブロック 90…コンピュータ 91…プロセッサ 92…メインメモリ 93…ストレージ 94…インタフェース B…母線 10...Working machine 11...Dump body 12...Vehicle body 13...Traveling device 14...Power system 141...Hydrogen tank 142...Hydrogen supply device 143...Fuel cell 144...Battery 145...DC-DC converter 146...Retarder grid 15...Drive system 151...Inverter 152...Pump drive motor 153...Hydraulic pump 154...Hoist cylinder 155...Inverter 156...Travel drive motor 16...Control system 161...Measuring device 162...Operation device 163...Control device 171...Data acquisition unit 172...Standard determination unit 173...Vehicle control unit 174... Required power calculation section 175...Regenerative power determination section 176...Battery capacity determination section 177...Control amount determination section 178...Fuel cell control section 179...Battery control section 181...First subtraction block 182...Second subtraction block 183...MAX block 184...First MIN block 185...Division block 186...Third subtraction block 187...Second MIN block 188...Addition block 189...Third MIN block 190...Fourth subtraction block 90...Computer 91...Processor 92...Main memory 93...Storage 94...Interface B...Bus line

Claims (10)

 燃料電池と蓄電装置とを備えるとともに作業機を有する作業機械を制御する制御システムであって、
 前記作業機械の稼働に必要な必要電力の大きさを決定する必要電力決定部と、
 前記燃料電池の標準発電電力と前記蓄電装置の最大放電可能電力と前記必要電力とに基づいて、前記燃料電池を制御する燃料電池制御部と、
 を備える制御システム。
A control system for controlling a work machine having a fuel cell and a power storage device, the control system comprising:
a required power determination unit that determines the magnitude of required power necessary for operation of the work machine;
a fuel cell control unit that controls the fuel cell based on a standard generated power of the fuel cell, a maximum dischargeable power of the power storage device, and the required power;
A control system comprising:
 前記燃料電池制御部は、前記標準発電電力と前記最大放電可能電力の和が前記必要電力より小さい場合に、前記標準発電電力より大きい電力を出力するように前記燃料電池を制御する、
 請求項1に記載の制御システム。
the fuel cell control unit controls the fuel cell to output power larger than the standard power generation power when a sum of the standard power generation power and the maximum dischargeable power is smaller than the required power.
The control system of claim 1 .
 前記作業機械が生じる回生電力の大きさを特定する回生電力特定部を備え、
 前記燃料電池制御部は、前記標準発電電力と前記回生電力の和が前記蓄電装置の最大充電可能電力より大きい場合に、前記標準発電電力より小さい電力を出力し、または発電を停止するように前記燃料電池を制御する、
 請求項2に記載の制御システム。
a regenerative power identification unit that identifies the magnitude of regenerative power generated by the work machine,
the fuel cell control unit controls the fuel cell to output power less than the standard generated power or to stop generating power when the sum of the standard generated power and the regenerated power is greater than a maximum chargeable power of the power storage device.
The control system of claim 2.
 前記燃料電池制御部は、前記標準発電電力と前記蓄電装置の最大放電可能電力の和が、前記必要電力より大きく、かつ前記標準発電電力と前記回生電力の和が前記蓄電装置の最大充電可能電力より小さい場合に、前記標準発電電力を出力するように前記燃料電池を制御する、
 請求項3に記載の制御システム。
the fuel cell control unit controls the fuel cell to output the standard generated power when a sum of the standard generated power and a maximum dischargeable power of the power storage device is greater than the required power and a sum of the standard generated power and the regenerative power is smaller than a maximum chargeable power of the power storage device.
The control system of claim 3.
 前記蓄電装置の充電率に基づいて、前記標準発電電力を決定する標準決定部、
 を備える請求項1に記載の制御システム。
a standard determination unit that determines the standard generated power based on the charging rate of the power storage device;
The control system of claim 1 .
 前記燃料電池が出力する電力と前記必要電力の差の電力を放電するように、前記蓄電装置を制御する蓄電装置制御部、
 を備える請求項1に記載の制御システム。
a power storage device control unit that controls the power storage device so as to discharge an amount of power corresponding to a difference between the power output by the fuel cell and the required power;
The control system of claim 1 .
 前記燃料電池が出力する電力と前記回生電力の和の電力を充電するように、前記蓄電装置を制御する蓄電装置制御部、
 を備える請求項3に記載の制御システム。
a power storage device control unit that controls the power storage device so as to store the power equivalent to the sum of the power output by the fuel cell and the regenerative power;
The control system of claim 3 .
 前記作業機械は、余剰電力を消費する消費装置を備え、
 前記蓄電装置制御部は、前記燃料電池が出力する電力と前記回生電力の和の電力が前記最大充電可能電力より大きい場合に、前記最大充電可能電力を充電するように、前記蓄電装置を制御する、
 請求項7に記載の制御システム。
The work machine includes a consumption device that consumes surplus power,
the power storage device control unit controls the power storage device so as to charge the maximum chargeable power when a sum of the power output by the fuel cell and the regenerative power is greater than the maximum chargeable power.
8. The control system of claim 7.
 燃料電池と蓄電装置と請求項1から請求項7の何れか1項に記載の制御システムとを備え、作業機を有する作業機械。 A work machine having a fuel cell, a power storage device, and the control system described in any one of claims 1 to 7, and having a work implement.  燃料電池と蓄電装置とを備えるとともに作業機を有する作業機械の制御方法であって、
 前記作業機械の稼働に必要な必要電力の大きさを決定するステップと、
 前記燃料電池の標準発電電力と前記蓄電装置の最大放電可能電力と前記必要電力とに基づいて、前記燃料電池を制御するステップと、
 を備える制御方法。
A control method for a work machine including a fuel cell and a power storage device and having a work implement, comprising:
determining a required amount of electrical power required to operate the work machine;
controlling the fuel cell based on a standard power generation amount of the fuel cell, a maximum dischargeable power of the power storage device, and the required power;
A control method comprising:
PCT/JP2024/011509 2023-03-23 2024-03-22 Control system, work machine, and control method WO2024195873A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023047059 2023-03-23
JP2023-047059 2023-03-23

Publications (1)

Publication Number Publication Date
WO2024195873A1 true WO2024195873A1 (en) 2024-09-26

Family

ID=92842179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/011509 WO2024195873A1 (en) 2023-03-23 2024-03-22 Control system, work machine, and control method

Country Status (1)

Country Link
WO (1) WO2024195873A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193848A (en) * 2008-02-15 2009-08-27 Toyota Motor Corp Fuel cell system
JP2009295516A (en) * 2008-06-06 2009-12-17 Honda Motor Co Ltd Fuel cell system
JP2017225310A (en) * 2016-06-17 2017-12-21 三菱自動車工業株式会社 Power control unit for vehicular fuel cell
JP2018074887A (en) * 2016-11-04 2018-05-10 株式会社豊田自動織機 Fuel cell vehicle
JP2020174506A (en) * 2019-04-15 2020-10-22 トヨタ自動車株式会社 Fuel cell vehicle
WO2023022096A1 (en) * 2021-08-18 2023-02-23 株式会社小松製作所 Fuel cell system and work machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193848A (en) * 2008-02-15 2009-08-27 Toyota Motor Corp Fuel cell system
JP2009295516A (en) * 2008-06-06 2009-12-17 Honda Motor Co Ltd Fuel cell system
JP2017225310A (en) * 2016-06-17 2017-12-21 三菱自動車工業株式会社 Power control unit for vehicular fuel cell
JP2018074887A (en) * 2016-11-04 2018-05-10 株式会社豊田自動織機 Fuel cell vehicle
JP2020174506A (en) * 2019-04-15 2020-10-22 トヨタ自動車株式会社 Fuel cell vehicle
WO2023022096A1 (en) * 2021-08-18 2023-02-23 株式会社小松製作所 Fuel cell system and work machine

Similar Documents

Publication Publication Date Title
JP5340381B2 (en) Construction machine and industrial vehicle equipped with power supply system
CN102803036B (en) The control method of hybrid-type working machine and work mechanism
JP3782251B2 (en) Work machine with battery
JP5154578B2 (en) Hybrid construction machine
EP2918435B1 (en) Work vehicle
KR101776543B1 (en) Work machine
CN107921958B (en) Hybrid working machine
KR20100115706A (en) Hybrid type work machine
JP5922151B2 (en) Work machine
JP2002275945A (en) Hybrid construction machinery
KR101942674B1 (en) Hybrid construction machine
KR20140009290A (en) Hybrid construction machine
JP2002359935A (en) Charging/discharging control device for power storing part of hybrid work machine
JP2001003397A (en) Controller of hybrid construction machine
WO2024195873A1 (en) Control system, work machine, and control method
US11466432B2 (en) Work vehicle
WO2024142866A1 (en) Work machine
US20250010763A1 (en) Control system, work vehicle management device, control device, and method for controlling work vehicle
US20240336158A1 (en) Management device and management method
WO2024135614A1 (en) Work vehicle, control device, and control method
JP2025088460A (en) Work machine, fuel cell system and method for controlling a fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24775006

Country of ref document: EP

Kind code of ref document: A1