WO2024195081A1 - Water-electrolysis hydrogen production system and method for running water-electrolysis hydrogen production system - Google Patents
Water-electrolysis hydrogen production system and method for running water-electrolysis hydrogen production system Download PDFInfo
- Publication number
- WO2024195081A1 WO2024195081A1 PCT/JP2023/011385 JP2023011385W WO2024195081A1 WO 2024195081 A1 WO2024195081 A1 WO 2024195081A1 JP 2023011385 W JP2023011385 W JP 2023011385W WO 2024195081 A1 WO2024195081 A1 WO 2024195081A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water electrolysis
- water
- production system
- hydrogen
- hydrogen production
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
- C25B15/023—Measuring, analysing or testing during electrolytic production
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
Definitions
- the present invention relates to the structure and operation method of a water electrolysis hydrogen production system, and in particular to technology that is effective when applied to a large-scale water electrolysis hydrogen production system that is composed of multiple water electrolysis stacks connected in series.
- water electrolysis hydrogen production systems typically also include a dehumidifier to remove moisture from the hydrogen that comes out of the water electrolysis stack.
- Patent Document 1 discloses "a configuration for dehumidifying hydrogen containing water vapor produced in a high-pressure hydrogen production device 12 (a water electrolysis stack in this application) using a Peltier dehumidifier 94, and a control method thereof.”
- water electrolysis hydrogen production systems typically include a dehumidifier to ensure hydrogen quality in terms of moisture content.
- dehumidifiers generally use electronic cooling systems that use Peltier elements, thermal swing adsorption (TSA) systems that use an adsorbent for adsorption and regeneration, and pressure swing adsorption (PSA) systems, but all of these systems have issues such as high power consumption and complex equipment.
- TSA thermal swing adsorption
- PSA pressure swing adsorption
- the water used in water electrolysis must have high electrical insulation properties, so special water such as pure water or ultrapure water is required.
- special water such as pure water or ultrapure water is required.
- reducing the supply of this pure water and ultrapure water is also an important issue for the widespread use of hydrogen as an energy source.
- the object of the present invention is to provide a water electrolysis hydrogen production system and an operating method thereof that has multiple water electrolysis stacks to which water to be electrolyzed is supplied in series, and that can reduce the amount of water in the hydrogen discharged from the water electrolysis stacks while reducing the amount of pure water or ultrapure water supplied, with a relatively simple configuration.
- the present invention is characterized by comprising a plurality of water electrolysis stacks that generate hydrogen and oxygen by electrolysis of water and to which water to be electrolyzed is supplied in series, and a plurality of hydrogen release units that release the hydrogen generated in each of the plurality of water electrolysis stacks to the outside.
- the present invention is also a method for operating a water electrolysis hydrogen production system having multiple water electrolysis stacks to which water to be electrolyzed is supplied in series, and is characterized in that the amount of water electrolysis in each water electrolysis stack is determined based on either the position of the water electrolysis stack relative to the flow of the water to be electrolyzed, the flow rate of the water to be electrolyzed flowing into each of the multiple water electrolysis stacks, or the temperature of each of the multiple water electrolysis stacks.
- the present invention provides a water electrolysis hydrogen production system having multiple water electrolysis stacks to which water to be electrolyzed is supplied in series, which has a relatively simple configuration and is capable of reducing the amount of water in the hydrogen discharged from the water electrolysis stacks while reducing the amount of pure water or ultrapure water supplied, and a method for operating the system.
- FIG. 1 is a diagram showing a schematic configuration of a water electrolysis hydrogen production system according to a first embodiment of the present invention.
- FIG. FIG. 1 is a diagram showing a schematic configuration of a water electrolysis hydrogen production system according to a second embodiment of the present invention.
- FIG. 11 is a diagram showing a schematic configuration of a water electrolysis hydrogen production system according to a third embodiment of the present invention.
- FIG. 11 is a diagram showing a schematic configuration of a water electrolysis hydrogen production system according to a fourth embodiment of the present invention.
- FIG. 4B is a diagram showing a modification of FIG. 4A.
- FIG. 11 is a diagram showing a schematic configuration of a water electrolysis hydrogen production system according to a fifth embodiment of the present invention.
- FIG. 13 is a diagram showing a schematic configuration of a water electrolysis hydrogen production system according to a sixth embodiment of the present invention.
- FIG. 13 is a diagram showing a schematic configuration of a water electrolysis hydrogen production system according to a seventh embodiment of the present invention.
- FIG. 13 is a diagram showing a schematic configuration of a water electrolysis hydrogen production system according to an eighth embodiment of the present invention.
- FIG. 1 is a diagram showing a schematic configuration of a conventional water electrolysis hydrogen production system.
- FIG. 4 is a diagram showing the relationship between gas temperature and saturated water vapor pressure.
- Figure 9 is a diagram showing the schematic configuration of a conventional water electrolysis hydrogen production system.
- Figure 10 is a diagram showing the relationship between gas temperature and saturated water vapor pressure.
- a water electrolysis stack 2 produces oxygen (O2) and hydrogen (H2) by electrolyzing water (pure water: H2O ) supplied to the inlet of the anode (not shown), discharges the oxygen and excess water ( O2 , H2O ) from the outlet of the anode, and discharges hydrogen ( H2 ) from the outlet of the cathode (not shown).
- the power consumption of the water electrolysis stack 2 is, for example, 2 MW.
- the water electrolysis hydrogen production system comprises an oxygen gas-liquid separator 4 that separates the oxygen and excess water ( O2 , H2O ) discharged from the water electrolysis stack 2 and stores the water ( H2O ), an electric motor (water pump) 5 that circulates the water ( H2O ) stored in the oxygen gas-liquid separator 4 to the water electrolysis stack 2, a pure water supplier 6 that supplies pure water generated from city water to the oxygen gas-liquid separator 4, and a hydrogen gas-liquid separator 3 that removes the water ( H2O ) contained in the hydrogen ( H2 ) discharged from the water electrolysis stack 2.
- an oxygen gas-liquid separator 4 that separates the oxygen and excess water ( O2 , H2O ) discharged from the water electrolysis stack 2 and stores the water ( H2O )
- an electric motor (water pump) 5 that circulates the water ( H2O ) stored in the oxygen gas-liquid separator 4 to the water electrolysis stack 2
- a pure water supplier 6 that supplies pure water generated from city water to the
- the oxygen ( O2 ) and hydrogen ( H2 ) discharged from the water electrolysis stack 2 also contain water vapor ( H2O ).
- the oxygen ( O2 ) is released (exhausted) directly outside the water electrolysis hydrogen production system, but the hydrogen ( H2 ) is sent to a dehumidifier 9 to sufficiently reduce the amount of water vapor contained therein.
- the amount of water vapor contained in oxygen ( O2 ) and hydrogen ( H2 ) is equal to the amount of saturated water vapor determined by their respective temperatures. As shown in Figure 10, the amount of water vapor contained increases as the temperature of oxygen ( O2 ) or hydrogen ( H2 ) increases, and the higher the temperature, the greater the increase in the amount of water vapor.
- the dehumidifier 9 used to remove this water vapor (H 2 O) generally uses electronic cooling using Peltier elements, temperature swing adsorption (TSA) which uses an adsorbent for adsorption and regeneration, and pressure swing adsorption (PSA), but all of these have problems such as high power consumption and complicated equipment.
- TSA temperature swing adsorption
- PSA pressure swing adsorption
- FIG. 1 is a diagram showing the schematic configuration of a water electrolysis hydrogen production system 1 according to the present embodiment.
- water or water vapor H 2 O
- oxygen O 2
- hydrogen H 2
- the water electrolysis hydrogen production system 1 of this embodiment has four water electrolysis stacks 2, and the anode outlets and anode inlets are connected in sequence from the anode outlet (not shown) of the first (leftmost) water electrolysis stack 2 to the anode inlet (not shown) of the fourth (rightmost) water electrolysis stack 2, which is the last, and the water used for water electrolysis in each water electrolysis stack 2 is supplied in series from the first water electrolysis stack 2 to the fourth water electrolysis stack 2.
- the power consumption per water electrolysis stack 2 is, for example, 1/4 of the 2 MW of the water electrolysis stack 2 of a conventional water electrolysis hydrogen production system, i.e., 0.5 MW.
- an oxygen gas-liquid separator 4 that separates the oxygen and excess water discharged from the fourth water electrolysis stack 2 and stores the water
- an electric motor (water pump) 5 that circulates the water stored in the oxygen gas-liquid separator 4 to the water electrolysis stack 2
- a pure water supplier 6 that supplies pure water generated from city water to the oxygen gas-liquid separator 4
- a hydrogen gas-liquid separator 3 that removes moisture contained in the hydrogen discharged from each water electrolysis stack 2 after it is merged into one.
- it is equipped with one or more hydrogen bonding parts (hydrogen introduction parts of the hydrogen gas-liquid separator 3 in FIG. 1) that bond multiple hydrogen release parts 7 together, and a hydrogen gas-liquid separator 3 that is arranged after all the multiple hydrogen release parts 7 are bonded together.
- the pure water supply device 6 may be installed as a separate device independent of the water electrolysis hydrogen production system 1, as shown in FIG. 1.
- the hydrogen generated by water electrolysis in each water electrolysis stack 2 is sent directly from the hydrogen release section 7 of each water electrolysis stack 2 to the hydrogen gas-liquid separator 3.
- the oxygen and hydrogen discharged from the water electrolysis stack 2 contain water vapor.
- the oxygen is directly discharged (exhausted) from the oxygen release section 8 of the oxygen-liquid separator 4 to the outside of the water electrolysis hydrogen production system 1, but the hydrogen is sent to a dehumidifier 9 to sufficiently reduce the amount of water vapor contained therein.
- the flow rate of water sent to the water electrolysis stack 2 by the electric motor (water pump) 5 is equal to the flow rate of water required to operate one water electrolysis stack with a capacity equal to the total water electrolysis capacity of the four water electrolysis stacks 2.
- the four water electrolysis stacks 2 have the same water electrolysis capacity, and the temperatures of the oxygen, excess water, and hydrogen discharged from each water electrolysis stack 2 are 65°C for the first (leftmost) water electrolysis stack 2, 70°C for the second (second from the left) water electrolysis stack 2, 75°C for the third (third from the left) water electrolysis stack 2, and 80°C for the fourth (rightmost) water electrolysis stack 2.
- the amount of water vapor contained in the hydrogen discharged from each water electrolysis stack 2 decreases as the temperature of the hydrogen decreases, as shown in FIG. 10, so the amount of water vapor contained in the hydrogen discharged from the first to third water electrolysis stacks 2 is less than the amount of water vapor contained in the hydrogen discharged from the fourth water electrolysis stack 2.
- the configuration of the water electrolysis hydrogen production system 1 of this embodiment makes it possible to reduce the amount of water vapor contained in the hydrogen by lowering the temperature of the hydrogen discharged from the water electrolysis hydrogen production system 1 without using any special equipment.
- the four water electrolysis stacks 2 have the same water electrolysis capacity, but the present invention is not limited to this, and it is clear that the same effect can be obtained even if the amount of hydrogen discharged from each water electrolysis stack 2 is different.
- FIG. 2 is a diagram showing the schematic configuration of the water electrolysis hydrogen production system 1 according to the second embodiment.
- the water electrolysis hydrogen production system 1 of this embodiment differs from Example 1 (FIG. 1) in that it is provided with four hydrogen gas-liquid separators 3 (first to fourth) that remove moisture contained in each of the hydrogen discharged from each water electrolysis stack 2.
- each of the multiple hydrogen release units 7 is provided with a hydrogen gas-liquid separator 3.
- the rest of the configuration is the same as Example 1 (FIG. 1).
- black circles ( ⁇ ) in the figure indicate hydrogen bonding parts that connect each hydrogen release part 7.
- the moisture contained in hydrogen is unevenly distributed in the path through which the hydrogen is discharged, it may cause fluctuations in the flow rate of the hydrogen or obstruct the flow.
- each hydrogen gas-liquid separator 3 corresponding to each water electrolysis stack 2 as in this embodiment, the moisture in the path for discharging hydrogen can be reduced, thereby improving the operational stability of the water electrolysis hydrogen production system 1.
- FIG. 3 is a diagram showing the schematic configuration of the water electrolysis hydrogen production system 1 according to the third embodiment.
- the water electrolysis hydrogen production system 1 of this embodiment differs from that of embodiment 2 (FIG. 2) in that it is provided with three hydrogen gas-liquid separators 3 (first to third) for removing moisture immediately downstream of the location where the hydrogen discharged from each water electrolysis stack 2 joins in sequence.
- the rest of the configuration is the same as that of embodiment 2 (FIG. 2).
- the black circles ( ⁇ ) in the figure indicate hydrogen bonding parts that connect each hydrogen release part 7.
- the hydrogen released from the first (left end) to fourth (right end) water electrolysis stacks 2 has a different temperature, but when hydrogen of different temperatures is merged, the temperature of the hydrogen at the higher temperature drops, causing some of the water vapor contained in the hydrogen to condense and become water. This increases the amount of water contained in the hydrogen immediately downstream of the hydrogen merger. This increased water tends to be unevenly distributed in the hydrogen discharge path, and there is a risk that it will cause fluctuations in the hydrogen flow rate or obstruct the flow.
- the configuration of this embodiment allows water to be removed from areas where the amount of water contained in the hydrogen increases, improving the operational stability of the water electrolysis hydrogen production system 1.
- FIG. 4A is a diagram showing the general configuration of the water electrolysis hydrogen production system 1 according to this embodiment.
- Figure 4B is a diagram showing a modified example of Figure 4A.
- the water electrolysis hydrogen production system 1 of this embodiment differs from Example 1 (FIG. 1) in that it is equipped with four oxygen gas-liquid separators 4 (first to fourth) that separate the oxygen and excess water discharged from each water electrolysis stack 2 and store the water.
- all of the multiple oxygen release sections 8 are equipped with an oxygen gas-liquid separator 4.
- the rest of the configuration is the same as Example 1 (FIG. 1).
- black circles ( ⁇ ) in each figure indicate the hydrogen bonding parts that connect each hydrogen releasing part 7 and the oxygen bonding parts that connect each oxygen releasing part 8.
- the temperature of the oxygen discharged from each water electrolysis stack 2 is 65°C for the first (leftmost) water electrolysis stack 2, 70°C for the second (second from the left) water electrolysis stack 2, 75°C for the third (third from the left) water electrolysis stack 2, and 80°C for the fourth (rightmost) water electrolysis stack 2.
- the amount of water vapor contained in the oxygen discharged from each water electrolysis stack 2 decreases as the temperature of the oxygen decreases, as shown in FIG. 10, so the amount of water vapor contained in the oxygen discharged from the first to third water electrolysis stacks 2 is less than the amount of water vapor contained in the oxygen discharged from the fourth water electrolysis stack 2.
- the configuration of this embodiment makes it possible to reduce the amount of water vapor contained in the oxygen by lowering the temperature of the oxygen discharged from the water electrolysis hydrogen production system 1 without using any special equipment.
- oxygen contained in water can also be a factor that inhibits the water electrolysis reaction.
- an oxygen gas-liquid separator 4 for each water electrolysis stack 2 as in this embodiment, it is possible to reduce the amount of oxygen contained in the water supplied to the second (second from the left) to fourth (rightmost) water electrolysis stacks 2, thereby improving the stability of the water electrolysis reaction of the second to fourth water electrolysis stacks 2.
- a combination with the second embodiment is also possible, i.e., a configuration further including a hydrogen gas-liquid separator 3 corresponding to each water electrolysis stack 2 as in the second embodiment is also possible. It is clear that this can further improve the operational stability of the water electrolysis hydrogen production system 1, and does not go beyond the scope of the present invention.
- FIG. 5 is a diagram showing the general configuration of the water electrolysis hydrogen production system 1 of this embodiment.
- the configuration other than the controller 10 is the same as that of the first embodiment (FIG. 1).
- the controller 10 calculates, from the amount of water electrolysis required in the entire water electrolysis stack 2, The amount of water electrolysis of each of the first to fourth water electrolysis stacks 2 is determined so that the amount of water electrolysis of the first (leftmost) water electrolysis stack > the amount of water electrolysis of the second (second from the left) water electrolysis stack > the amount of water electrolysis of the third (third from the left) water electrolysis stack > the amount of water electrolysis of the fourth (rightmost) water electrolysis stack. At this time, the amount of water electrolysis of each water electrolysis stack 2 is determined based on predetermined parameters.
- FIG. 6 is a diagram showing the schematic configuration of the water electrolysis hydrogen production system 1 according to the sixth embodiment.
- the water electrolysis hydrogen production system 1 of this embodiment differs from that of Example 1 (FIG. 1) in that, in addition to the configuration of Example 1 (FIG. 1), it is equipped with a controller 10 and four flow meters 11 (first to fourth) that measure the flow rate of water supplied to each of the first to fourth water electrolysis stacks 2.
- the other configuration is the same as that of Example 1 (FIG. 1).
- the controller 10 is configured, for example, by a commonly used PID controller, and determines the amount of water electrolysis in each water electrolysis stack 2 according to the flow rate of water supplied to each water electrolysis stack 2 measured by the four flow meters 11.
- the more stable the water electrolysis stack is the greater the amount of water electrolysis can be achieved, making it possible to ensure both a sufficient amount of water electrolysis and stable operation in the entire water electrolysis stack.
- FIG. 7 is a diagram showing the general configuration of the water electrolysis hydrogen production system 1 of this embodiment.
- the configuration other than the controller 10 is the same as in the first embodiment (FIG. 1).
- black circles ( ⁇ ) in the figure indicate hydrogen bonding parts that connect each hydrogen release part 7.
- the controller 10 calculates, from the amount of water electrolysis required in the entire water electrolysis stack 2, The amount of water electrolysis of each of the first to fourth water electrolysis stacks 2 is determined so that the amount of water electrolysis of the first (leftmost) water electrolysis stack ⁇ the amount of water electrolysis of the second (second from the left) water electrolysis stack ⁇ the amount of water electrolysis of the third (third from the left) water electrolysis stack ⁇ the amount of water electrolysis of the fourth (rightmost) water electrolysis stack. At this time, the amount of water electrolysis of each water electrolysis stack 2 is determined based on predetermined parameters.
- FIG 8 is a diagram showing the schematic configuration of the water electrolysis hydrogen production system 1 of this example.
- the water electrolysis hydrogen production system 1 of this embodiment differs from that of Example 1 (FIG. 1) in that, in addition to the configuration of Example 1 (FIG. 1), it is equipped with a controller 10 and four thermometers (first to fourth) 12 that measure the temperatures of the first to fourth water electrolysis stacks 2, respectively.
- the other configurations are the same as those of Example 1 (FIG. 1).
- black circles ( ⁇ ) in the figure indicate hydrogen bonding parts that connect each hydrogen release part 7.
- the controller 10 is, for example, a commonly used PID controller, and determines the amount of water electrolysis in each water electrolysis stack 2 according to the temperature of each water electrolysis stack 2 measured by the four thermometers 12.
- the water electrolysis efficiency relative to the total amount of water electrolysis can be increased, and an efficient water electrolysis hydrogen production system 1 can be realized.
- the present invention is not limited to the above-described embodiments, but includes various modified examples.
- the above-described embodiments have been described in detail to clearly explain the present invention, and are not necessarily limited to those having all of the configurations described. It is also possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace part of the configuration of each embodiment with other configurations.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Automation & Control Theory (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
本発明は、水電解水素製造システムの構造とその運転方法に係り、特に、複数の水電解スタックを直列接続して構成する大規模な水電解水素製造システムに適用して有効な技術に関する。 The present invention relates to the structure and operation method of a water electrolysis hydrogen production system, and in particular to technology that is effective when applied to a large-scale water electrolysis hydrogen production system that is composed of multiple water electrolysis stacks connected in series.
近年、水素は次世代エネルギーとして注目されており、再生可能エネルギー等の二酸化炭素(CO2)フリーな電気と組み合わせることで、クリーンなエネルギーとしての活用が期待されている。電気の力で水を酸素と水素に分解して水素を製造する水電解水素製造システムに、再生可能エネルギー由来の電力を利用することで、製造時も使用時もCO2を排出しない、いわゆるグリーン水素を製造することができる。 In recent years, hydrogen has been attracting attention as the next generation of energy, and it is expected to be used as a clean energy source when combined with carbon dioxide ( CO2 )-free electricity from renewable energies. By using electricity derived from renewable energy sources in a water electrolysis hydrogen production system that uses electrical power to split water into oxygen and hydrogen to produce hydrogen, it is possible to produce so-called green hydrogen, which does not emit CO2 during either production or use.
そのため、脱炭素社会に向けた水素需要が高まっているが、製品としての水素は乾燥状態であることが望まれる。例えば、水素品質を規定した国際規格ISO14687の中で燃料電池自動車等に用いる水素中の水分濃度は5ppm以下と規定されている。一方、再生可能エネルギー由来の電力を用いたグリーン水素製造として有効な水電解水素製造システムでは、内蔵の水電解スタックにて水を含んだ状態で水素が製造される。 As a result, while demand for hydrogen is increasing in preparation for a decarbonized society, it is desirable for the hydrogen product to be in a dry state. For example, the international standard ISO14687, which specifies hydrogen quality, stipulates that the water concentration in hydrogen used in fuel cell vehicles and the like must be 5 ppm or less. Meanwhile, in water electrolysis hydrogen production systems, which are effective for producing green hydrogen using electricity derived from renewable energy sources, hydrogen is produced in a state that contains water in the built-in water electrolysis stack.
このため、水電解水素製造システムでは、水電解スタックから出てきた水素中の水分を除去する除湿装置を合わせて備えることが一般的である。 For this reason, water electrolysis hydrogen production systems typically also include a dehumidifier to remove moisture from the hydrogen that comes out of the water electrolysis stack.
本技術分野の背景技術として、例えば、特許文献1のような技術がある。特許文献1には、「高圧水素製造装置12(本願では水電解スタック)で製造された水蒸気を含んだ水素を、ペルチェ除湿器94で除湿する構成とその制御方法」が開示されている。
The background technology of this technical field is, for example, technology such as that of
上述したように、水電解水素製造システムでは、水分含有率に関する水素品質を担保するため、除湿装置が設置されるのが、一般的である。 As mentioned above, water electrolysis hydrogen production systems typically include a dehumidifier to ensure hydrogen quality in terms of moisture content.
しかしながら、除湿装置には、ペルチェ素子を用いた電子冷却式、吸着剤を用いて吸着と再生を行う温度変動吸着方式(TSA:Thermal Swing Adsorption)、圧力変動吸着方式(PSA:Pressure Swing Adsorption)が一般的に用いられるが、いずれも消費電力が大きい、装置が複雑となるといった課題がある。 However, dehumidifiers generally use electronic cooling systems that use Peltier elements, thermal swing adsorption (TSA) systems that use an adsorbent for adsorption and regeneration, and pressure swing adsorption (PSA) systems, but all of these systems have issues such as high power consumption and complex equipment.
また、水電解に用いる水は高い電気絶縁性が求められるため、純水もしくは超純水といった特殊な水が必要となるが、エネルギーとしての水素の普及には、これらの純水や超純水の供給量低減も重要な課題である。 In addition, the water used in water electrolysis must have high electrical insulation properties, so special water such as pure water or ultrapure water is required. However, reducing the supply of this pure water and ultrapure water is also an important issue for the widespread use of hydrogen as an energy source.
そこで、本発明の目的は、電解する水が直列に供給される複数の水電解スタックを有する水電解水素製造システムにおいて、比較的簡易な構成で水電解スタックより排出される水素中の水分量を低減しつつ、純水や超純水の供給量を低減可能な水電解水素製造システム及びその運転方法を提供することにある。 The object of the present invention is to provide a water electrolysis hydrogen production system and an operating method thereof that has multiple water electrolysis stacks to which water to be electrolyzed is supplied in series, and that can reduce the amount of water in the hydrogen discharged from the water electrolysis stacks while reducing the amount of pure water or ultrapure water supplied, with a relatively simple configuration.
上記課題を解決するために、本発明は、水の電気分解によって水素と酸素とを発生し、電解する水が直列に供給される複数の水電解スタックと、前記複数の水電解スタックの各々で発生した水素を外部へ放出する複数の水素放出部と、を備えることを特徴とする。 In order to solve the above problems, the present invention is characterized by comprising a plurality of water electrolysis stacks that generate hydrogen and oxygen by electrolysis of water and to which water to be electrolyzed is supplied in series, and a plurality of hydrogen release units that release the hydrogen generated in each of the plurality of water electrolysis stacks to the outside.
また、本発明は、電解する水が直列に供給される複数の水電解スタックを有する水電解水素製造システムの運転方法であって、前記電解する水の流れに対する水電解スタックの位置、前記複数の水電解スタックの各々に流入する前記電解する水の流量、前記複数の水電解スタックの各々の温度のいずれかに基づいて、各水電解スタックの水電解量を決めることを特徴とする。 The present invention is also a method for operating a water electrolysis hydrogen production system having multiple water electrolysis stacks to which water to be electrolyzed is supplied in series, and is characterized in that the amount of water electrolysis in each water electrolysis stack is determined based on either the position of the water electrolysis stack relative to the flow of the water to be electrolyzed, the flow rate of the water to be electrolyzed flowing into each of the multiple water electrolysis stacks, or the temperature of each of the multiple water electrolysis stacks.
本発明によれば、電解する水が直列に供給される複数の水電解スタックを有する水電解水素製造システムにおいて、比較的簡易な構成で水電解スタックより排出される水素中の水分量を低減しつつ、純水や超純水の供給量を低減可能な水電解水素製造システム及びその運転方法を実現することができる。 The present invention provides a water electrolysis hydrogen production system having multiple water electrolysis stacks to which water to be electrolyzed is supplied in series, which has a relatively simple configuration and is capable of reducing the amount of water in the hydrogen discharged from the water electrolysis stacks while reducing the amount of pure water or ultrapure water supplied, and a method for operating the system.
これにより、除湿装置及び水供給装置の小型化及び消費電力低減が図れる。 This allows the dehumidifier and water supply device to be made smaller and consume less power.
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations and advantages other than those mentioned above will become clear from the description of the embodiments below.
以下、図面を用いて本発明の実施例を説明する。なお、各図面において同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。 Below, an embodiment of the present invention will be described with reference to the drawings. Note that the same components in each drawing will be given the same reference numerals, and detailed descriptions of overlapping parts will be omitted.
本発明を分かり易くするため、先ず、図9及び図10を参照して、従来の水電解水素製造システムについて説明する。図9は、従来の水電解水素製造システムの概略構成を示す図である。図10は、気体温度と飽和水蒸気圧の関係を示す図である。 In order to make the present invention easier to understand, a conventional water electrolysis hydrogen production system will first be described with reference to Figures 9 and 10. Figure 9 is a diagram showing the schematic configuration of a conventional water electrolysis hydrogen production system. Figure 10 is a diagram showing the relationship between gas temperature and saturated water vapor pressure.
図9に示すように、従来の水電解水素製造システムでは、水電解スタック2はアノード(図示せず)の入口に供給される水(純水:H2O)を電気分解することで酸素(O2)及び水素(H2)を製造し、アノードの出口から酸素及び余剰の水(O2,H2O)を排出し、カソード(図示せず)の出口から水素(H2)を排出する。水電解スタック2の消費電力は、例えば2MWである。
9, in a conventional water electrolysis hydrogen production system, a
水電解水素製造システムは、水電解スタック2から排出される酸素及び余剰の水(O2,H2O)を分離し水(H2O)を貯留する酸素気液分離器4と、酸素気液分離器4に貯留される水(H2O)を水電解スタック2に循環させる電動機(水ポンプ)5と、酸素気液分離器4に市水から生成された純水を供給する純水供給器6と、水電解スタック2から排出される水素(H2)に含まれる水分(H2O)を除去する水素気液分離器3とを備えている。
The water electrolysis hydrogen production system comprises an oxygen gas-
水電解スタック2から排出される酸素(O2)と水素(H2)には、さらに水蒸気(H2O)が含まれており、酸素(O2)はそのまま水電解水素製造システム外へ放出(排気)されるが、水素(H2)は含まれる水蒸気量を十分に低減するため除湿装置9へ送られる。
The oxygen ( O2 ) and hydrogen ( H2 ) discharged from the
ここで、図9に示す従来の水電解水素製造システムでは、水電解スタック2に例えば60℃の水が供給されると、水電解反応の発熱により、水電解スタック2から排出される酸素(O2)、水素(H2)、水分(H2O)は、いずれも80℃で排出される。なお、温度はいずれも例示であって、水供給系統の構成や水電解水素製造システムの構成等によって異なる。
9, when water at 60°C is supplied to the
酸素(O2)中と水素(H2)中とに含まれる水蒸気量は、各々の温度によって決まる飽和水蒸気量と等しく、図10に示すように酸素(O2)や水素(H2)の温度が上がるほど含有する水蒸気量は増加し、温度が上がるほど水蒸気量の増加量も多くなる。 The amount of water vapor contained in oxygen ( O2 ) and hydrogen ( H2 ) is equal to the amount of saturated water vapor determined by their respective temperatures. As shown in Figure 10, the amount of water vapor contained increases as the temperature of oxygen ( O2 ) or hydrogen ( H2 ) increases, and the higher the temperature, the greater the increase in the amount of water vapor.
例えば80℃の水素(H2)には分圧比で約47%の水蒸気(H2O)が含まれている(大気圧環境下、80℃の飽和水蒸気圧=47.5kPa、大気圧=101.3kPaで算出)。この水蒸気(H2O)を取り除くための除湿装置9には、上述したように、ペルチェ素子を用いた電子冷却式、吸着剤を用いて吸着と再生を行う温度変動吸着方式(TSA)、圧力変動吸着方式(PSA)が一般的に用いられるが、いずれも消費電力が大きい、装置が複雑となるといった課題がある。また、酸素(O2)と水素(H2)によって持ち出される水蒸気分(H2O)を補うために、純水供給器6の供給能力や運転時の電力消費量の確保が必要となる。
For example, hydrogen (H 2 ) at 80°C contains about 47% water vapor (H 2 O) in partial pressure ratio (calculated under atmospheric pressure environment, saturated water vapor pressure at 80°C = 47.5 kPa, atmospheric pressure = 101.3 kPa). As described above, the
次に、図1を参照して、本発明の実施例1に係る水電解水素製造システムについて説明する。図1は、本実施例の水電解水素製造システム1の概略構成を示す図である。
Next, a water electrolysis hydrogen production system according to a first embodiment of the present invention will be described with reference to FIG. 1. FIG. 1 is a diagram showing the schematic configuration of a water electrolysis
以下、水または水蒸気(H2O)、酸素(O2)、水素(H2)を、単に、水または水蒸気、酸素、水素と表記する。 Hereinafter, water or water vapor (H 2 O), oxygen (O 2 ), and hydrogen (H 2 ) will be referred to simply as water or water vapor, oxygen, and hydrogen.
図1に示すように、本実施例の水電解水素製造システム1は、4つの水電解スタック2を備え、第1(左端)の水電解スタック2のアノード出口(図示せず)から最終となる第4(右端)の水電解スタック2のアノード入口(図示せず)までアノード出口とアノード入口が順に連通されており、各々の水電解スタック2で水電解に用いる水は、第1の水電解スタック2から第4の水電解スタック2まで順次直列に供給される。水電解スタック2の1台あたりの消費電力は、例えば従来の水電解水素製造システムの水電解スタック2の2MWの4分の1、すなわち0.5MWである。
As shown in FIG. 1, the water electrolysis
また、第4の水電解スタック2から排出される酸素及び余剰の水を分離し水を貯留する酸素気液分離器4と、酸素気液分離器4に貯留される水を水電解スタック2に循環させる電動機(水ポンプ)5と、酸素気液分離器4に市水から生成された純水を供給する純水供給器6と、各水電解スタック2から排出される水素を1つに合流した後、当該水素に含まれる水分を除去する水素気液分離器3とを備えている。つまり、複数の水素放出部7を結合する1つ以上の水素結合部(図1では水素気液分離器3の水素導入部)と、複数の水素放出部7がすべて結合された後に配置される水素気液分離器3を備えている。
Also, it is equipped with an oxygen gas-
なお、純水供給器6は、図1に示すように、水電解水素製造システム1とは独立して、別の装置として設置されていても良い。
In addition, the pure
各水電解スタック2で水電解により生成された水素は、各水電解スタック2の水素放出部7から水素気液分離器3へ直接送られる。
The hydrogen generated by water electrolysis in each
水電解スタック2から排出される酸素と水素には、水蒸気が含まれており、酸素は酸素気液分離器4の酸素放出部8からそのまま水電解水素製造システム1の外部へ放出(排気)されるが、水素は含まれる水蒸気量を十分に低減するため、除湿装置9へ送られる。
The oxygen and hydrogen discharged from the
電動機(水ポンプ)5により水電解スタック2へ送られる水の流量は、4つの水電解スタック2の水電解能力の合計値と等しい能力を持つ1つの水電解スタックを動作させるのに必要な水の流量と等しい。
The flow rate of water sent to the
4つの水電解スタック2は同じ水電解能力であり、この時、各水電解スタック2から排出される酸素及び余剰の水、水素の各温度は、第1(左端)の水電解スタック2では65℃、第2(左から2番目)の水電解スタック2では70℃、第3(左から3番目)の水電解スタック2では75℃、第4(右端)の水電解スタック2では80℃となる。
The four
各水電解スタック2から排出される水素に含まれる水蒸気量は、図10に示すように水素の温度が低いほど少なくなるため、第1から第3の水電解スタック2から排出される水素に含まれる水蒸気量は、第4の水電解スタック2から排出される水素に含まれる水蒸気量より少なくなる。また、各々の水電解スタック2から排出される水素は、等流量であり、各々65℃,70℃,75℃,80℃の温度となるため、合流後の水素は、略平均温度の72.5℃となり、80℃より低い温度であるため、分圧比で約34%の水蒸気を含むことになる(大気圧環境下、72.5℃の飽和水蒸気圧=34.8kPa、大気圧=101.3kPaで算出)。
The amount of water vapor contained in the hydrogen discharged from each
以上のように、本実施例の水電解水素製造システム1の構成によれば、特別な装置を用いることなく、水電解水素製造システム1から排出される水素の温度を低下させることで水素中含まれる水蒸気量を低減することができる。
As described above, the configuration of the water electrolysis
これにより、水素に含まれる水蒸気を取り除くための除湿装置の小型化や低消費電力に寄与することが可能となる。また、水素によって持ち出される水蒸気量を低減することで、純水供給器の小型化や消費電力低減も可能となる。 This will contribute to the miniaturization and lower power consumption of dehumidification equipment used to remove the water vapor contained in hydrogen. In addition, by reducing the amount of water vapor carried away by hydrogen, it will also be possible to miniaturize pure water supply devices and reduce their power consumption.
なお、本実施例では、4つの水電解スタック2は同じ水電解能力量としたが、本発明はこれに限るものではなく、各水電解スタック2から排出される水素量が各々異なっていても同様な効果を得られることは明白である。
In this embodiment, the four
図2を参照して、本発明の実施例2に係る水電解水素製造システムについて説明する。図2は、本実施例の水電解水素製造システム1の概略構成を示す図である。
The water electrolysis hydrogen production system according to the second embodiment of the present invention will be described with reference to FIG. 2. FIG. 2 is a diagram showing the schematic configuration of the water electrolysis
図2に示すように、本実施例の水電解水素製造システム1は、各水電解スタック2から排出される各々の水素に含まれる水分を除去する第1から第4の4つの水素気液分離器3を備えている点において、実施例1(図1)と異なっている。つまり、複数の水素放出部7の各々に水素気液分離器3を備えている。その他の構成は、実施例1(図1)と同様である。
As shown in FIG. 2, the water electrolysis
なお、図中の黒丸(●)は、各水素放出部7を結合する水素結合部を示している。
Note that the black circles (●) in the figure indicate hydrogen bonding parts that connect each
水素に含まれる水分は、水素を排出する経路中に偏在すると、水素の流量を変動させたり流れを阻害したりしてしまう恐れがある。 If the moisture contained in hydrogen is unevenly distributed in the path through which the hydrogen is discharged, it may cause fluctuations in the flow rate of the hydrogen or obstruct the flow.
そこで、本実施例のように、各水電解スタック2に対応した各水素気液分離器3を備えることで、水素を排出する経路中の水分を低減することができるため、水電解水素製造システム1の動作安定性を向上させることができる。
Therefore, by providing each hydrogen gas-
図3を参照して、本発明の実施例3に係る水電解水素製造システムについて説明する。図3は、本実施例の水電解水素製造システム1の概略構成を示す図である。
The water electrolysis hydrogen production system according to the third embodiment of the present invention will be described with reference to FIG. 3. FIG. 3 is a diagram showing the schematic configuration of the water electrolysis
図3に示すように、本実施例の水電解水素製造システム1は、各水電解スタック2から排出される各々の水素が順次合流した場所の直ぐ下流に水分を除去する第1から第3の3つの水素気液分離器3を備えている点において、実施例2(図2)と異なっている。その他の構成は、実施例2(図2)と同様である。
As shown in FIG. 3, the water electrolysis
なお、図中の黒丸(●)は、各水素放出部7を結合する水素結合部を示している。つまり、本実施例では、複数の水素放出部7を結合する複数の水素結合部(●)と、複数の水素結合部(●)の直ぐ後部すべてに水素気液分離器3を備えている。
The black circles (●) in the figure indicate hydrogen bonding parts that connect each
上述したように、第1(左端)から第4(右端)の水電解スタック2で放出される水素の温度は各々異なるが、温度の違う水素を合流させると、高温側の水素の温度が低下することで、当該水素に含まれる水蒸気の一部が凝縮して水となる。これにより、水素の合流部の直ぐ下流では水素に含まれる水分量が増加する。この増加した水は、水素を排出する経路中に偏在しやすく、水素の流量を変動させたり流れを阻害したりしてしまう恐れがある。
As mentioned above, the hydrogen released from the first (left end) to fourth (right end)
本実施例の構成によれば、水素に含まれる水分量が増加する部分で水を除去できるため、水電解水素製造システム1の動作安定性を向上させることができる。
The configuration of this embodiment allows water to be removed from areas where the amount of water contained in the hydrogen increases, improving the operational stability of the water electrolysis
図4A及び図4Bを参照して、本発明の実施例4に係る水電解水素製造システムについて説明する。図4Aは、本実施例の水電解水素製造システム1の概略構成を示す図である。図4Bは、図4Aの変形例を示す図である。
A water electrolysis hydrogen production system according to a fourth embodiment of the present invention will be described with reference to Figures 4A and 4B. Figure 4A is a diagram showing the general configuration of the water electrolysis
図4Aに示すように、本実施例の水電解水素製造システム1は、各水電解スタック2から排出される各々の酸素及び余剰の水を分離し水を貯留する第1から第4の4つの酸素気液分離器4を備えている点において、実施例1(図1)と異なっている。つまり、複数の酸素放出部8すべてに酸素気液分離器4を備えている。その他の構成は、実施例1(図1)と同様である。
As shown in FIG. 4A, the water electrolysis
なお、各図中の黒丸(●)は、各水素放出部7を結合する水素結合部、各酸素放出部8を結合する酸素結合部をそれぞれ示している。
Note that the black circles (●) in each figure indicate the hydrogen bonding parts that connect each
各水電解スタック2から排出される酸素の温度は、第1(左端)の水電解スタック2では65℃、第2(左から2番目)の水電解スタック2では70℃、第3(左から3番目)の水電解スタック2では75℃、第4(右端)の水電解スタック2では80℃となる。
The temperature of the oxygen discharged from each
各水電解スタック2から排出される酸素に含まれる水蒸気量は、図10に示すように酸素の温度が低いほど少なくなるため、第1から第3の水電解スタック2から排出される酸素に含まれる水蒸気量は、第4の水電解スタック2から排出される酸素に含まれる水蒸気量より少なくなる。また、各々の水電解スタック2から排出される酸素は、等流量であり、各々65℃,70℃,75℃,80℃の温度となるため、合流後の酸素は、略平均温度の72.5℃となり、80℃より低い温度であるため、この酸素には分圧比で約34%の水蒸気が含まれることになる(大気圧環境下、72.5℃の飽和水蒸気圧=34.8kPa、大気圧=101.3kPaで算出)。
The amount of water vapor contained in the oxygen discharged from each
本実施例の構成によれば、特別な装置を用いることなく、水電解水素製造システム1から排出される酸素の温度を低下させることで酸素中含まれる水蒸気量を低減することができる。
The configuration of this embodiment makes it possible to reduce the amount of water vapor contained in the oxygen by lowering the temperature of the oxygen discharged from the water electrolysis
これにより、酸素によって持ち出される水蒸気量を低減することができ、純水供給器の小型化や消費電力低減が可能となる。 This reduces the amount of water vapor carried away by oxygen, making it possible to make the pure water supply more compact and reduce power consumption.
また、水中に含まれる酸素は水電解反応を阻害する要因にもなる。本実施例のように、各水電解スタック2に対応した各酸素気液分離器4を備えることで、第2(左から2番目)から第4(右端)の水電解スタック2へ供給される水の中に含まれる酸素の量を低減することができ、第2から第4の水電解スタック2の水電解反応の安定性を向上させることができる。
Furthermore, oxygen contained in water can also be a factor that inhibits the water electrolysis reaction. By providing an oxygen gas-
なお、図4Bに示す変形例のように、実施例2(図2)との組み合わせ、すなわち実施例2の様に各水電解スタック2に対応した各水素気液分離器3をさらに備える構成も考えられる。より水電解水素製造システム1の動作安定性を向上させることができることは明白であり、本発明の範囲を超えるものではない。
As shown in the modified example in FIG. 4B, a combination with the second embodiment (FIG. 2) is also possible, i.e., a configuration further including a hydrogen gas-
図5を参照して、本発明の実施例5に係る水電解水素製造システム及びその運転方法について説明する。図5は、本実施例の水電解水素製造システム1の概略構成を示す図である。制御器10以外の構成は、実施例1(図1)と同様である。
With reference to FIG. 5, a water electrolysis hydrogen production system and its operating method according to a fifth embodiment of the present invention will be described. FIG. 5 is a diagram showing the general configuration of the water electrolysis
制御器10は、全水電解スタック2で必要となる水電解量から、
第1(左端)の水電解スタックの水電解量>第2(左から2番目)の水電解スタックの水電解量>第3(左から3番目)の水電解スタックの水電解量>第4(右端)の水電解スタックの水電解量
となるように、第1から第4の水電解スタック2の各々の水電解量を決定する。この時、各水電解スタック2の水電解量は、予め定められたパラメータに基づいて決定する。
The
The amount of water electrolysis of each of the first to fourth
本実施例では、水の流れに対して上流にある水電解スタック2ほど水の中に含まれる酸素量が少なく、上流にある水電解スタック2ほど水電解反応を安定的に動作させられることに着目している。そのため、各水電解スタック2に供給される水中に含まれる酸素量を予め算出し、水中に含まれる酸素量が少ないほど水電解量が高くなるように制御器10により設定する。
In this embodiment, attention is focused on the fact that the
これにより、より安定性の高い上流側にある水電解スタック2の水電解量を多くすることで、全水電解スタック2での水電解量確保と動作の安定性を両立させることが可能となる。
As a result, by increasing the amount of water electrolysis in the more stable upstream
なお、各水電解スタック2の水電解量を、供給される水流量や他の物理量に基づいて決定しても同様な効果が得られることは明白である。
It is clear that the same effect can be obtained by determining the amount of water electrolysis in each
図6を参照して、本発明の実施例6に係る水電解水素製造システム及びその運転方法について説明する。図6は、本実施例の水電解水素製造システム1の概略構成を示す図である。
A water electrolysis hydrogen production system and its operating method according to a sixth embodiment of the present invention will be described with reference to FIG. 6. FIG. 6 is a diagram showing the schematic configuration of the water electrolysis
図6に示すように、本実施例の水電解水素製造システム1は、実施例1(図1)の構成に加えて、制御器10と、第1から第4の各水電解スタック2に供給される水の流量を各々計測する第1から第4の4つの流量計11を備える点において、実施例1(図1)と異なっている。その他の構成は、実施例1(図1)と同様である。
As shown in FIG. 6, the water electrolysis
制御器10は、例えば一般的に用いられるPID制御器で構成され、4つの流量計11で計測した各水電解スタック2に供給される水の流量に応じて各水電解スタック2の水電解量を決定する。
The
これは、供給される水の流量が多いほど安定して高い水電解能力を発揮できる水電解スタック2の特性に基づくものである。
This is based on the characteristics of the
また、この時、水の流れに対して上流側にある水電解スタック2ほど供給される水の流量が多くなるのは必然のため、水の流れに対して上流側にある水電解スタック2ほど水電解量は多くなる。
In addition, at this time, the flow rate of water supplied to the
本実施例によれば、安定して高い水電解能力を発揮できる水電解スタックほど水電解量をより多くすることができるため、全水電解スタックでの水電解量確保と動作の安定性を両立させることができる。 According to this embodiment, the more stable the water electrolysis stack is, the greater the amount of water electrolysis can be achieved, making it possible to ensure both a sufficient amount of water electrolysis and stable operation in the entire water electrolysis stack.
図7を参照して、本発明の実施例7に係る水電解水素製造システム及びその運転方法について説明する。図7は、本実施例の水電解水素製造システム1の概略構成を示す図である。制御器10以外の構成は、実施例1(図1)と同様である。
With reference to FIG. 7, a water electrolysis hydrogen production system and its operating method according to a seventh embodiment of the present invention will be described. FIG. 7 is a diagram showing the general configuration of the water electrolysis
なお、図中の黒丸(●)は、各水素放出部7を結合する水素結合部を示している。
Note that the black circles (●) in the figure indicate hydrogen bonding parts that connect each
制御器10は、全水電解スタック2で必要となる水電解量から、
第1(左端)の水電解スタックの水電解量<第2(左から2番目)の水電解スタックの水電解量<第3(左から3番目)の水電解スタックの水電解量<第4(右端)の水電解スタックの水電解量
となるように、第1から第4の水電解スタック2の各々の水電解量を決定する。この時、各水電解スタック2の水電解量は、予め定められたパラメータに基づいて決定する。
The
The amount of water electrolysis of each of the first to fourth
本実施例では、水の流れに対して下流にある水電解スタック2ほど温度が高くなり、下流にある水電解スタック2ほど水電解反応を効率よく安定的に動作させられることに着目している。そのため、各水電解スタック2の温度を予め算出し、温度が高いほど水電解量が多くなるように制御器10により設定する。
In this embodiment, attention is focused on the fact that the temperature of the
これにより、全水電解量に対する水電解効率を上げることができ、効率の良い水電解水素製造システム1を実現することができる。
This makes it possible to increase the water electrolysis efficiency relative to the total amount of water electrolysis, realizing an efficient water electrolysis
なお、各水電解スタック2の水電解量を、温度以外の他の物理量に基づいて決定しても同様な効果が得られることは明白である。
It is clear that the same effect can be obtained by determining the amount of water electrolysis in each
図8を参照して、本発明の実施例8に係る水電解水素製造システム及びその運転方法について説明する。図8は、本実施例の水電解水素製造システム1の概略構成を示す図である。
With reference to Figure 8, a water electrolysis hydrogen production system and its operating method according to Example 8 of the present invention will be described. Figure 8 is a diagram showing the schematic configuration of the water electrolysis
図8に示すように、本実施例の水電解水素製造システム1は、実施例1(図1)の構成に加えて、制御器10と、第1から第4の各水電解スタック2の温度を各々計測する第1から第4の4つの温度計12を備える点において、実施例1(図1)と異なっている。その他の構成は、実施例1(図1)と同様である。
As shown in FIG. 8, the water electrolysis
なお、図中の黒丸(●)は、各水素放出部7を結合する水素結合部を示している。
Note that the black circles (●) in the figure indicate hydrogen bonding parts that connect each
制御器10は、例えば一般的に用いられるPID制御器で構成され、4つの温度計12で計測した各水電解スタック2の温度に応じて各水電解スタック2の水電解量を決定する。
The
これは、水電解スタック2の温度が高いほど安定して高い水電解能力を発揮できる水電解スタック2の特性に基づくものである。
This is based on the characteristics of the
また、この時、水の流れに対して下流側にある水電解スタック2ほど温度が高くなるのは必然のため、水の流れに対して下流側にある水電解スタック2ほど水電解量は多くなる。
In addition, at this time, the temperature of the
本実施例によれば、全水電解量に対する水電解効率を上げることができ、効率の良い水電解水素製造システム1を実現することができる。
According to this embodiment, the water electrolysis efficiency relative to the total amount of water electrolysis can be increased, and an efficient water electrolysis
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiments, but includes various modified examples. For example, the above-described embodiments have been described in detail to clearly explain the present invention, and are not necessarily limited to those having all of the configurations described. It is also possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace part of the configuration of each embodiment with other configurations.
1…水電解水素製造システム、2…水電解スタック、3…水素気液分離器、4…酸素気液分離器、5…電動機(水ポンプ)、6…純水供給器、7…水素放出部、8…酸素放出部、9…除湿装置、10…制御器、11…流量計、12…温度計。 1...Water electrolysis hydrogen production system, 2...Water electrolysis stack, 3...Hydrogen gas-liquid separator, 4...Oxygen gas-liquid separator, 5...Electric motor (water pump), 6...Pure water supply, 7...Hydrogen release section, 8...Oxygen release section, 9...Dehumidifier, 10...Controller, 11...Flow meter, 12...Thermometer.
Claims (13)
前記複数の水電解スタックの各々で発生した水素を外部へ放出する複数の水素放出部と、
を備えることを特徴とする水電解水素製造システム。 a plurality of water electrolysis stacks that generate hydrogen and oxygen by electrolysis of water and to which water to be electrolyzed is supplied in series;
a plurality of hydrogen release units configured to release hydrogen generated in each of the plurality of water electrolysis stacks to the outside;
A water electrolysis hydrogen production system comprising:
前記複数の水素放出部を結合する1つ以上の水素結合部と、
前記複数の水素放出部がすべて結合された後に配置される気液分離器と、を備えることを特徴とする水電解水素製造システム。 The water electrolysis hydrogen production system according to claim 1,
One or more hydrogen bonding portions connecting the plurality of hydrogen releasing portions;
a gas-liquid separator that is disposed behind all of the hydrogen release units.
前記複数の水素放出部の各々に気液分離器を備えることを特徴とする水電解水素製造システム。 The water electrolysis hydrogen production system according to claim 1,
A water electrolysis hydrogen production system comprising: a gas-liquid separator in each of the plurality of hydrogen release sections.
前記複数の水素放出部を結合する複数の水素結合部と、
前記複数の水素結合部の直ぐ後部すべてに気液分離器と、を備えることを特徴とする水電解水素製造システム。 The water electrolysis hydrogen production system according to claim 1,
A plurality of hydrogen bonding portions connecting the plurality of hydrogen releasing portions;
a gas-liquid separator provided immediately behind each of the plurality of hydrogen bonding sections.
前記複数の水電解スタックの各々で発生した酸素を外部へ放出する複数の酸素放出部を備えることを特徴とする水電解水素製造システム。 The water electrolysis hydrogen production system according to claim 1,
A water electrolysis hydrogen production system comprising a plurality of oxygen release units each releasing oxygen generated in each of the plurality of water electrolysis stacks to the outside.
前記複数の酸素放出部すべてに気液分離器を備えることを特徴とする水電解水素製造システム。 The water electrolysis hydrogen production system according to claim 5,
A water electrolysis hydrogen production system comprising: a gas-liquid separator provided in each of the plurality of oxygen release sections.
前記電解する水の流れに対して上流側にある水電解スタックほど水電解量を多くすることを特徴とする水電解水素製造システム。 The water electrolysis hydrogen production system according to claim 1,
A water electrolysis hydrogen production system, wherein the amount of water electrolysis is increased as the water electrolysis stack is located upstream of the flow of water to be electrolyzed.
前記複数の水電解スタックの各々に流入する前記電解する水の流量に応じて、当該水電解スタックの水電解量を決めることを特徴とする水電解水素製造システム。 The water electrolysis hydrogen production system according to claim 1,
a water electrolysis hydrogen production system, comprising: a water electrolysis stack configured to determine an amount of water electrolysis in each of the plurality of water electrolysis stacks in accordance with a flow rate of the water to be electrolyzed flowing into the respective stacks;
前記電解する水の流れに対して上流側にある水電解スタックほど水電解量を小さくすることを特徴とする水電解水素製造システム。 The water electrolysis hydrogen production system according to claim 1,
A water electrolysis hydrogen production system, wherein the amount of water electrolysis is reduced as the water electrolysis stack is located closer to the upstream side of the flow of water to be electrolyzed.
前記複数の水電解スタックの各々の温度に応じて、当該水電解スタックの水電解量を決めることを特徴とする水電解水素製造システム。 The water electrolysis hydrogen production system according to claim 1,
a water electrolysis hydrogen production system, comprising: a water electrolysis stack that determines an amount of water electrolysis performed by each of the plurality of water electrolysis stacks in accordance with a temperature of the respective stacks.
前記電解する水の流れに対する水電解スタックの位置、前記複数の水電解スタックの各々に流入する前記電解する水の流量、前記複数の水電解スタックの各々の温度のいずれかに基づいて、各水電解スタックの水電解量を決めることを特徴とする水電解水素製造システムの運転方法。 A method for operating a water electrolysis hydrogen production system having a plurality of water electrolysis stacks to which water to be electrolyzed is supplied in series, comprising the steps of:
a water electrolysis stack configured to generate hydrogen by electrolysis and a water electrolysis device configured to generate hydrogen from the water electrolysis stack;
前記電解する水の流れに対して上流側にある水電解スタックほど水電解量を多くすることを特徴とする水電解水素製造システムの運転方法。 A method for operating a water electrolysis hydrogen production system according to claim 11, comprising:
A method for operating a water electrolysis hydrogen production system, comprising the steps of: increasing the amount of water electrolysis by a water electrolysis stack located upstream of the water flow to be electrolyzed.
前記電解する水の流れに対して上流側にある水電解スタックほど水電解量を小さくすることを特徴とする水電解水素製造システムの運転方法。 A method for operating a water electrolysis hydrogen production system according to claim 11, comprising:
A method for operating a hydrogen production system using water electrolysis, comprising the steps of: reducing the amount of water electrolysis performed by a water electrolysis stack located at a more upstream side with respect to a flow of water to be electrolyzed.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2025508046A JPWO2024195081A1 (en) | 2023-03-23 | 2023-03-23 | |
PCT/JP2023/011385 WO2024195081A1 (en) | 2023-03-23 | 2023-03-23 | Water-electrolysis hydrogen production system and method for running water-electrolysis hydrogen production system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/011385 WO2024195081A1 (en) | 2023-03-23 | 2023-03-23 | Water-electrolysis hydrogen production system and method for running water-electrolysis hydrogen production system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024195081A1 true WO2024195081A1 (en) | 2024-09-26 |
Family
ID=92841499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/011385 WO2024195081A1 (en) | 2023-03-23 | 2023-03-23 | Water-electrolysis hydrogen production system and method for running water-electrolysis hydrogen production system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2024195081A1 (en) |
WO (1) | WO2024195081A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007031813A (en) * | 2005-07-29 | 2007-02-08 | Honda Motor Co Ltd | Water electrolysis system and operation method thereof |
WO2014128813A1 (en) * | 2013-02-21 | 2014-08-28 | パナソニック株式会社 | Hydrogen generating device and hydrogen generating unit, and energy system using same |
WO2015087691A1 (en) * | 2013-12-13 | 2015-06-18 | 富士フイルム株式会社 | Artificial-photosynthesis array |
JP2016506288A (en) * | 2012-12-03 | 2016-03-03 | アクシン ウォーター テクノロジーズ インコーポレイテッドAxine Water Technologies Inc. | Efficient treatment of wastewater using electrochemical cells |
JP2023016688A (en) * | 2021-07-21 | 2023-02-02 | 現代自動車株式会社 | Controller and method of water electrolysis stack module for renewable energy power generation device and water electrolysis system using the same |
-
2023
- 2023-03-23 JP JP2025508046A patent/JPWO2024195081A1/ja active Pending
- 2023-03-23 WO PCT/JP2023/011385 patent/WO2024195081A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007031813A (en) * | 2005-07-29 | 2007-02-08 | Honda Motor Co Ltd | Water electrolysis system and operation method thereof |
JP2016506288A (en) * | 2012-12-03 | 2016-03-03 | アクシン ウォーター テクノロジーズ インコーポレイテッドAxine Water Technologies Inc. | Efficient treatment of wastewater using electrochemical cells |
WO2014128813A1 (en) * | 2013-02-21 | 2014-08-28 | パナソニック株式会社 | Hydrogen generating device and hydrogen generating unit, and energy system using same |
WO2015087691A1 (en) * | 2013-12-13 | 2015-06-18 | 富士フイルム株式会社 | Artificial-photosynthesis array |
JP2023016688A (en) * | 2021-07-21 | 2023-02-02 | 現代自動車株式会社 | Controller and method of water electrolysis stack module for renewable energy power generation device and water electrolysis system using the same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2024195081A1 (en) | 2024-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11777125B2 (en) | Solid oxide fuel cell system with hydrogen pumping cell with carbon monoxide tolerant anodes and integrated shift reactor | |
US7060382B2 (en) | Fuel cell system with recycle of anode exhaust gas | |
JP2780879B2 (en) | Oxygen recovery from gas turbine exhaust streams. | |
JP6291402B2 (en) | Compressed hydrogen supply device | |
US11710841B2 (en) | Reaction device and fuel cell power generation system | |
US20110233072A1 (en) | Method Of Purifying A Hydrogen Stream USing An Electrochemical Cell | |
CA2618064A1 (en) | Fuel cell systems and methods for passively increasing hydrogen recovery through vacuum-assisted pressure swing adsorption | |
CN111742082A (en) | Hydrogen boost system | |
JP2017088490A (en) | Hydrogen production equipment | |
JP6698763B2 (en) | Liquefied carbon dioxide recovery fuel cell power generation system | |
WO2024195081A1 (en) | Water-electrolysis hydrogen production system and method for running water-electrolysis hydrogen production system | |
JP5912878B2 (en) | Hydrogen oxygen generator and operation method of hydrogen oxygen generator | |
JP2021136084A (en) | Nitrogen gas generation method and equipment for filtering fuel cell exhaust gas | |
JP7197374B2 (en) | Hydrogen production system | |
JP7102204B2 (en) | Fuel cell system | |
JP2021181073A (en) | Dehumidification system for water electrolysis, methane manufacturing system, and method for controlling dehumidification system for water electrolysis | |
JP2002319427A (en) | Electric power generating system and fuel cell power generating method | |
JP4996005B2 (en) | Humidifier for fuel cell | |
US20230420715A1 (en) | Fuel cell system and method of operating thereof at near one hundred percent fuel utilization | |
JP2020125511A (en) | Hydrogen production system | |
KR102729628B1 (en) | Carbon dioxide recovery system contained in flue gas being emitting from fuel cell energy generating system | |
JP2019147708A (en) | Hydrogen supply system, external hydrogen supply system and hydrogen power supply system | |
JP2021147647A (en) | Hydrogen production system | |
JP2021021118A (en) | Hydrogen production system, and method of operating hydrogen production system | |
JP2019149266A (en) | System for supplying hydrogen power |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23928660 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2025508046 Country of ref document: JP |