[go: up one dir, main page]

WO2024194950A1 - Adhesive film and connection structure - Google Patents

Adhesive film and connection structure Download PDF

Info

Publication number
WO2024194950A1
WO2024194950A1 PCT/JP2023/010692 JP2023010692W WO2024194950A1 WO 2024194950 A1 WO2024194950 A1 WO 2024194950A1 JP 2023010692 W JP2023010692 W JP 2023010692W WO 2024194950 A1 WO2024194950 A1 WO 2024194950A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
parts
conductive particles
adhesive film
adhesive
Prior art date
Application number
PCT/JP2023/010692
Other languages
French (fr)
Japanese (ja)
Inventor
由佳 伊藤
真弓 佐藤
隆広 福富
崇洋 福井
克明 星
弘行 伊澤
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to PCT/JP2023/010692 priority Critical patent/WO2024194950A1/en
Priority to TW113108798A priority patent/TW202440863A/en
Publication of WO2024194950A1 publication Critical patent/WO2024194950A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives

Definitions

  • the present invention relates to an adhesive film and a connection structure.
  • conductive adhesives are used to connect liquid crystal displays and TCPs (Tape Carrier Packages), FPCs (Flexible Printed Circuits) and TCPs, or FPCs and printed wiring boards.
  • Conductive adhesives may be required to have excellent connection reliability when connecting electronic components together at low pressure (e.g., 0.1 to 0.5 MPa).
  • Patent Document 1 describes that an isotropic conductive adhesive sheet formed from an adhesive containing a specific acrylic resin, a specific amount of an isocyanate-based curing agent, and a specific amount of dendritic conductive particles, in which the ratio of the adhesive sheet thickness to the median diameter D50 of the dendritic conductive particles is within a specific range, can be easily adhered to an adherend with high adhesion, has excellent electrical connection stability, and shows little change in resistance value after a heat cycle test.
  • One aspect of the present invention aims to provide an adhesive film that can keep the rate of resistance increase before and after a heat cycle test low.
  • One aspect of the present invention relates to an adhesive film that contains an adhesive component, first conductive particles that are dendritic conductive particles, and second conductive particles that are conductive particles other than the first conductive particles and have a non-conductive core and a conductive layer provided on the core, and the flow rate of the adhesive film is 10% to 50%.
  • the volume ratio of the content of the first conductive particles to the content of the second conductive particles may be 5/1 or more.
  • the total content of the first conductive particles and the second conductive particles may be 20 parts by volume or more per 100 parts by volume of the adhesive component content.
  • the total content of the first conductive particles and the second conductive particles may be 55 parts by volume or less per 100 parts by volume of the adhesive component content.
  • connection structure comprising a first electronic component having a first substrate and a first electrode formed on the first substrate, a second electronic component having a second substrate and a second electrode formed on the second substrate, and a connection member that electrically connects the first electrode and the second electrode to each other, the connection member including a cured product of the above-mentioned adhesive film.
  • an adhesive film that can suppress the rate of increase in resistance before and after a heat cycle test.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of an adhesive film.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a connection structure.
  • 1A to 1C are schematic diagrams showing a method for producing a mounting body for a reliability test.
  • FIG. 2 is a schematic diagram showing a method for measuring a connection resistance in a reliability test.
  • FIG. 2 is a schematic top view showing a laminate in peel strength measurement.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of an adhesive film.
  • the adhesive film 10 contains an adhesive component 11, first conductive particles 12 which are dendritic conductive particles, and second conductive particles 13 which are conductive particles having a non-conductive core and a conductive layer provided on the core.
  • the second conductive particles 13 are conductive particles other than the first conductive particles 12.
  • the first conductive particles 12 and the second conductive particles 13 are dispersed in the adhesive component 11.
  • the adhesive component 11 is composed of a material that is curable by, for example, heat or light, and may be a radical-curing adhesive, an epoxy-based adhesive, or a thermoplastic adhesive such as polyurethane or polyvinyl ester.
  • radical-curing adhesives are preferably used because they have characteristics such as excellent curing properties at low temperatures and in a short time.
  • Epoxy-based adhesives are also preferably used because they can be cured in a short time, have good connection workability, and have excellent adhesion.
  • Radically curable adhesives contain, for example, a radically polymerizable substance and a radical polymerization initiator, and may further contain thermoplastic resins, fillers, other additives, etc., as necessary.
  • the radical polymerizable substance can be any substance having a functional group that polymerizes by radicals, without any particular limitations.
  • Specific examples of radical polymerizable substances include (meth)acrylate compounds, maleimide compounds, citraconic imide resins, and nadimide resins. These radical polymerizable substances may be in the form of a monomer or oligomer, or may be in the form of a mixture of a monomer and an oligomer.
  • Examples of (meth)acrylate compounds include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, isobutyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, 2-hydroxy-1,3-di(meth)acryloxypropane, 2,2-bis[4-((meth)acryloxy)propane, Examples of such acrylates include 2,2-bis[4-((meth)acryloxymethoxy)phenyl]propane, 2,2-bis[4-((meth)acryloxypolyethoxy)phenyl]propane, dicyclopentenyl (meth)acrylate, tricyclodecanyl (meth)acrylate, dimethyloltricyclodecane di(meth)acrylate
  • radical polymerizable substances other than (meth)acrylate compounds for example, compounds described in International Publication No. 2009/063827 can be suitably used.
  • the radical polymerizable substances may be used alone or in combination of two or more.
  • the content of the radical polymerizable substance may be 10 parts by volume or more, 20 parts by volume or more, 30 parts by volume or more, or 40 parts by volume or more, and may be 80 parts by volume or less, 70 parts by volume or less, or 60 parts by volume or less, relative to a total amount of 100 parts by volume of the adhesive component 11.
  • the content of the radical polymerizable substance may be 30 parts by volume or more, 40 parts by volume or more, or 50 parts by volume or more, and may be 90 parts by volume or less, 80 parts by volume or less, or 70 parts by volume or less, per 100 parts by volume of the total of the radical polymerizable substance and the thermoplastic resin that is blended as necessary.
  • the radical polymerization initiator can be any compound that decomposes when heated or irradiated with light to generate free radicals.
  • Specific examples include peroxide compounds and azo compounds. These compounds are appropriately selected depending on the intended connection temperature, connection time, pot life, etc.
  • radical polymerization initiators include diacyl peroxides, peroxydicarbonates, peroxy esters (e.g., 2,5-dimethyl-2,5-di(2-ethylhexanoylperoxy)hexane), peroxy ketals, dialkyl peroxides, hydroperoxides, and silyl peroxides.
  • peroxy esters, dialkyl peroxides, hydroperoxides, and silyl peroxides are preferred, and peroxy esters that provide high reactivity are more preferred.
  • the radical polymerization initiators may be used alone or in combination of two or more.
  • the content of the radical polymerization initiator may be 1 part by volume or more and 10 parts by volume or less per 100 parts by volume of the total of the radical polymerizable substance and the thermoplastic resin that is blended as necessary.
  • Epoxy adhesives contain, for example, epoxy resins and curing agents, and may further contain thermoplastic resins, fillers, other additives, etc., as necessary.
  • epoxy resins examples include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol A novolac type epoxy resins, bisphenol F novolac type epoxy resins, alicyclic epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, hydantoin type epoxy resins, isocyanurate type epoxy resins, aliphatic chain epoxy resins, etc.
  • These epoxy resins may be halogenated or hydrogenated, and may have a structure in which an acryloyl group or a methacryloyl group is added to the side chain. These epoxy resins may be used alone or in combination of two or more.
  • the epoxy resin content may be 10 parts by volume or more, 20 parts by volume or more, or 30 parts by volume or more, and may be 70 parts by volume or less, 60 parts by volume or less, or 50 parts by volume or less, relative to a total amount of 100 parts by volume of the adhesive component 11.
  • the epoxy resin content may be 20 parts by volume or more, 30 parts by volume or more, or 40 parts by volume or more, and 80 parts by volume or less, 70 parts by volume or less, or 60 parts by volume or less, per 100 parts by volume of the total of the epoxy resin and the thermoplastic resin blended as necessary.
  • the curing agent is not particularly limited as long as it can cure the epoxy resin, and examples include anionic polymerization catalyst-type curing agents, cationic polymerization catalyst-type curing agents, polyaddition-type curing agents, etc. Among these, anionic or cationic polymerization catalyst-type curing agents are preferred because they have excellent fast curing properties and do not require consideration of chemical equivalents.
  • anionic or cationic polymerizable catalyst-type curing agents include imidazoles, hydrazides, boron trifluoride-amine complexes, onium salts (aromatic sulfonium salts, aromatic diazonium salts, aliphatic sulfonium salts, etc.), aminimides, diaminomaleonitrile, melamine and its derivatives, polyamine salts, dicyandiamide, etc., and modified versions of these can also be used.
  • polyaddition-type curing agents include polyamines, polymercaptans, polyphenols, acid anhydrides, etc.
  • Latent hardeners that are microencapsulated by coating these hardeners with polymeric substances such as polyurethanes and polyesters, thin metal films such as nickel and copper, and inorganic substances such as calcium silicate are preferred because they can extend the usable time.
  • Hardeners can be used alone or in combination of two or more types.
  • the amount of the curing agent may be 0.05 parts by volume or more and 20 parts by volume or less per 100 parts by volume of the total of the epoxy resin and the thermoplastic resin that is mixed as necessary.
  • the adhesive component 11 may contain a thermoplastic resin.
  • a thermoplastic resin When the radical curing adhesive or epoxy adhesive contains a thermoplastic resin, it is possible to easily impart film properties to the adhesive.
  • the thermoplastic resin include phenoxy resin, polyvinyl formal resin, polystyrene resin, polyvinyl butyral resin, polyester resin, polyamide resin, xylene resin, polyurethane resin, polyester urethane resin, phenol resin, and terpene phenol resin.
  • the compounds described in International Publication No. 2009/063827 can be suitably used as the thermoplastic resin.
  • the thermoplastic resin may be used alone or in combination of two or more types.
  • the amount of the thermoplastic resin may be 10 parts by volume or more, 15 parts by volume or more, or 20 parts by volume or more, and may be 50 parts by volume or less, 40 parts by volume or less, or 30 parts by volume or less, relative to a total amount of 100 parts by volume of the adhesive component 11.
  • An example of a radical curing adhesive is a thermal radical curing adhesive that contains a radical polymerizing material that contains a radical polymerizing substance that is liquid at 30°C, a radical polymerization initiator, and a thermoplastic resin. Thermal radical curing adhesives tend to have low viscosity.
  • An example of an epoxy-based adhesive is an epoxy-based adhesive that contains a thermosetting material that contains an epoxy resin that is liquid at 30°C, a curing agent, and a thermoplastic resin.
  • the adhesive component 11 may contain a filler.
  • An example of the filler is non-conductive particles.
  • the non-conductive particles may be inorganic non-conductive particles or organic non-conductive particles.
  • An example of the inorganic non-conductive particles is silica particles.
  • the filler content may be 1 volume % or more, or 3 volume % or more, and may be 25 volume % or less, or 20 volume % or less, based on the total volume of the adhesive film 10.
  • Adhesive component 11 may contain other additives as necessary. Examples of other additives include coupling agents and components that relieve internal stress. If adhesive component 11 further contains a component that relieves internal stress, when it is used to connect an IC chip to a glass substrate, a flexible printed circuit board (FPC), or the like, it can suppress warping of the substrate caused by the difference in linear expansion coefficient between the IC chip and the substrate. Specific examples of components that relieve internal stress include acrylic rubber and elastomer components.
  • the first conductive particles 12 are dendritic and have one main axis and multiple branches branching out two-dimensionally or three-dimensionally from the main axis.
  • the first conductive particles 12 may be made of a metal such as copper or silver, and may be, for example, silver-coated copper particles in which copper particles are coated with silver.
  • the first conductive particles 12 may be known, and specifically, for example, are available as ACBY-2 (Mitsui Mining & Smelting Co., Ltd.), CE-1110 (Fukuda Metal Foil & Powder Co., Ltd.), #FSP (JX Metals Corporation), and #51-R (JX Metals Corporation).
  • the first conductive particles 12 can be manufactured by a known method (for example, the method described in WO 2014/021037).
  • the content of the first conductive particles 12 may be 5 volume % or more, 10 volume % or more, 20 volume % or more, 25 volume % or more, or 30 volume % or more, and may be 60 volume % or less, 50 volume % or less, or 45 volume % or less, based on the total volume of the adhesive film 10.
  • the content of the first conductive particles 12 may be 5 parts by volume or more, 10 parts by volume or more, 20 parts by volume or more, 30 parts by volume or more, 40 parts by volume or more, or 50 parts by volume or more, and may be 90 parts by volume or less, 85 parts by volume or less, 80 parts by volume or less, or 70 parts by volume or less, relative to 100 parts by volume of the adhesive component 11.
  • the second conductive particle 13 has a non-conductive core and a conductive layer provided on the core.
  • the core is made of a non-conductive material such as glass, ceramic, or resin, and is preferably made of resin.
  • resins include acrylic resin, styrene resin, silicone resin, polybutadiene resin, and copolymers of monomers that make up these resins.
  • the average particle size of the core may be, for example, 2 ⁇ m or more and 30 ⁇ m or less.
  • the conductive layer is formed, for example, of gold, silver, copper, nickel, palladium, or an alloy thereof. From the viewpoint of excellent conductivity, the conductive layer preferably contains at least one selected from gold, nickel, and palladium, more preferably contains gold or palladium, and even more preferably contains gold.
  • the conductive layer is formed, for example, by plating the core with the above metal.
  • the thickness of the conductive layer may be, for example, 10 nm or more and 400 nm or less.
  • the second conductive particles may be, for example, approximately spherical. From the viewpoint of being able to suitably thin the adhesive film, the average particle size of the second conductive particles is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, and even more preferably 22 ⁇ m or less. The average particle size of the second conductive particles may be, for example, 1 ⁇ m or more. The average particle size of the second conductive particles is measured by a particle size distribution measuring device (Microtrac (product name, Nikkiso Co., Ltd.)) using a laser diffraction/scattering method.
  • Microtrac product name, Nikkiso Co., Ltd.
  • the content of the second conductive particles 13 may be 1 volume % or more, 2 volume % or more, 3 volume % or more, 4 volume % or more, or 5 volume % or more based on the total volume of the adhesive film 10, and may be 30 volume % or less, 20 volume % or less, 15 volume % or less, or 10 volume % or less.
  • the content of the second conductive particles 13 may be 1 part by volume or more, 2 parts by volume or more, 5 parts by volume or more, 7 parts by volume or more, or 10 parts by volume or more, and may be 20 parts by volume or less, 17 parts by volume or less, or 15 parts by volume or less, relative to 100 parts by volume of the adhesive component 11.
  • the volume ratio of the first conductive particles 12 to the second conductive particles 13 in the adhesive film may be 0.5/1 or more, 1/1 or more, 3/1 or more, 5/1 or more, 6.1/1 or more, or 6.5/1 or more, and may be 40/1 or less, 30/1 or less, 25/1 or less, 20/1 or less, or 15/1 or less.
  • the total content of the first conductive particles 12 and the second conductive particles 13 may be 10 parts by volume or more, 20 parts by volume or more, 30 parts by volume or more, 35 parts by volume or more, 40 parts by volume or more, or 45 parts by volume or more, relative to 100 parts by volume of the adhesive component 11, and may be 100 parts by volume or less, 90 parts by volume or less, 80 parts by volume or less, 70 parts by volume or less, 60 parts by volume or less, 57 parts by volume or less, or 55 parts by volume or less.
  • the total content of the first conductive particles 12 and the second conductive particles 13 may be 10 parts by volume or more, 20 parts by volume or more, 30 parts by volume or more, 35 parts by volume or more, 40 parts by volume or more, or 45 parts by volume or more, relative to 100 parts by volume of the total of the components other than the filler contained in the adhesive component 11, and may be 110 parts by volume or less, 100 parts by volume or less, 90 parts by volume or less, 80 parts by volume or less, 70 parts by volume or less, 60 parts by volume or less, 57 parts by volume or less, or 55 parts by volume or less.
  • the flow rate of the adhesive film 10 is 10% to 50%.
  • the flow rate may be 12% or more, or 20% or more, and may be 45% or less, or 40% or less.
  • the flow rate of the adhesive film 10 is equal to or greater than the lower limit, the reliability is superior.
  • the flow rate is 50% or less, the adhesive film tends to have excellent shape stability.
  • the flow rate of the adhesive film 10 is an index showing the fluidity of the adhesive film 10, and means the rate of change in area when the adhesive film 10 is heated and pressurized. Specifically, the flow rate is calculated by the following method. First, a disk-shaped adhesive film with a diameter of 1.0 mm is prepared, with a fluororesin film (thickness: 80 ⁇ m) attached to one side.
  • the adhesive film with the fluororesin film is placed on a first cover glass (thickness: 0.15 mm) so that the adhesive film side is in contact with the first cover glass to prepare a first laminate (first cover glass / adhesive film / fluororesin film), and the first laminate is heat-pressed from the fluororesin film side under conditions of a pressure-pressing temperature of 60 ° C., a pressure-pressing pressure of 1 MPa, and a pressure-pressing time of 0.1 seconds.
  • the pressure-pressing temperature is the maximum temperature reached when pressure-pressed for 1 second
  • the pressure-pressing pressure is the area-converted pressure of the adhesive film for evaluation.
  • the maximum temperature is adjusted by separately preparing the same first laminate as above, performing heat-pressing bonding with a thin temperature sensor sandwiched between the adhesive film of the laminate and the first cover glass, and measuring the maximum temperature reached by the adhesive film in advance.
  • the fluororesin film is peeled off, and a second cover glass (thickness: 0.15 mm) is placed on the exposed adhesive film to produce a second laminate (first cover glass/adhesive film/second cover glass), which is then thermocompressed from the second cover glass side under conditions of a bonding temperature of 170°C, a bonding pressure of 80 MPa, and a bonding time of 5 seconds to obtain a bonded body.
  • the bonding temperature is the maximum temperature reached by the adhesive film
  • the bonding pressure is the area-converted pressure of the adhesive film for evaluation.
  • the maximum temperature is adjusted by separately preparing the same second laminate as above, performing thermocompression bonding with a thin temperature sensor sandwiched between the adhesive film of the second laminate and the first cover glass, and measuring the maximum temperature reached by the adhesive film in advance.
  • the obtained bonded body is observed under an optical microscope, and the area of the bonded portion between the adhesive film and the first cover glass in the bonded body (bonding area) S1 (unit: mm2 ) is determined.
  • the flow rate is calculated by the following formula using the bonding area S1 and the area of the adhesive film before thermocompression bonding (0.25 ⁇ [ mm2 ]).
  • Flow rate [%] ⁇ (adhesion area S1 - 0.25 ⁇ ) / (0.25 ⁇ ) ⁇ ⁇ 100
  • the thickness of the adhesive film 10 may be, for example, 50 ⁇ m or less, 45 ⁇ m or less, or 40 ⁇ m or less, and may be 5 ⁇ m or more, 10 ⁇ m or more, 15 ⁇ m or more, or 20 ⁇ m or more.
  • the adhesive film 10 is obtained, for example, by applying a paste-like adhesive composition onto a resin film such as a PET (polyethylene terephthalate) film or a fluororesin film, and then drying it.
  • the paste-like adhesive composition is obtained, for example, by heating or dissolving in a solvent a mixture containing the adhesive component 11, the first conductive particles 12, and the second conductive particles 13.
  • a solvent having a boiling point of 50°C or more and 150°C or less under atmospheric pressure for example, toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate, etc.
  • toluene for example, toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate, etc.
  • the adhesive film 10 may be made up of multiple adhesive layers.
  • the first conductive particles 12 and the second conductive particles 13 only need to be contained in at least one of the multiple adhesive layers, and may be contained in the same adhesive layer or different adhesive layers.
  • the adhesive film 10 can be cured, for example, by performing a heat treatment.
  • the heating temperature may be, for example, 40°C or higher and 250°C or lower.
  • the heating time may be, for example, 0.1 seconds or longer and 10 hours or shorter.
  • the adhesive film 10 can be adhered to the adherend by a combination of heating and pressure.
  • the heating temperature may be, for example, 50°C or higher and 190°C or lower.
  • the pressure may be, for example, 0.1 MPa or higher and 30 MPa or lower, 10 MPa or lower, 1 MPa or lower, or 0.8 MPa or lower.
  • the heating and pressure may be applied for, for example, 0.5 seconds or more and 120 seconds or less.
  • the adhesive film 10 according to this embodiment can be used as an adhesive for bonding adherends of the same type together, and can also be used as an adhesive for bonding adherends of different types (e.g., adherends with different thermal expansion coefficients).
  • the adhesive film 10 is suitable for connecting electronic components together. By connecting electronic components together using the adhesive film 10, a connection structure can be manufactured.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of a connection structure.
  • the connection structure 20 includes a first substrate 21, a first electronic component 23 having a first electrode 22 formed on the main surface of the first substrate 21, a second substrate 24, a second electronic component 26 having a second electrode 25 formed on the main surface of the second substrate 24, and a connection component 27 that electrically connects the first electrode 22 and the second electrode 25 to each other.
  • the first substrate 21 and the second substrate 24 may each be a substrate made of glass, ceramic, polyimide, polycarbonate, polyester, polyethersulfone, or the like.
  • the first electrode 22 and the second electrode 25 may each be an electrode made of gold, silver, copper, tin, aluminum, ruthenium, rhodium, palladium, osmium, iridium, platinum, indium tin oxide (ITO), or the like.
  • connection member 27 includes a cured product 28 of the adhesive component, and first conductive particles 12 and second conductive particles 13 dispersed in the cured product 28.
  • the connection member 27 can be said to be a cured product of the adhesive film described above.
  • the first conductive particles 12 and the second conductive particles 13 are used in combination, so that the electronic components 23, 26 can be suitably connected to each other.
  • the second conductive particles 13 form the main conductive path that connects the first electrode 22 and the second electrode 25 to each other, while the first conductive particles 12 assist in the electrical connection between the second conductive particles 13 and each electrode 22, 25, thereby achieving a suitable connection.
  • the polyurethane acrylate (UA1) had a weight average molecular weight of 15,000.
  • the weight average molecular weight was measured by gel permeation chromatography (GPC) using a calibration curve based on standard polystyrene under the following conditions.
  • GPC gel permeation chromatography
  • polyester polyol was dissolved in MEK (methyl ethyl ketone) and put into a four-neck flask equipped with a stirrer, a dropping funnel, a reflux condenser and a nitrogen gas inlet tube.
  • MEK methyl ethyl ketone
  • dibutyltin dilaurate was put in as a catalyst in an amount of 0.05 parts by mass relative to 100 parts by mass of polyester polyol.
  • 4,4'-diphenylmethane diisocyanate in an amount of 50 parts by mass per 100 parts by mass of polyester polyol was dissolved in MEK and added using a dropping funnel, and stirred at 80°C for 4 hours to obtain a polyester urethane resin.
  • first conductive particles As the first conductive particles (B1), dendritic silver-coated copper particles (manufactured by Mitsui Mining & Smelting Co., Ltd., product name: ACBY-2) were used.
  • a gold-containing conductive layer (thickness: 20 nm) was formed on the surface of the polystyrene core particles. The resulting particles were used as second conductive particles (B2) (average particle size: 20 ⁇ m, specific gravity: 1.65).
  • Example 1 Conductive particles B1 and B2 were dispersed in solution A1 so that the ratio of adhesive component a1:conductive particles B1:conductive particles B2 (volume parts) was 170:92.0:3.9 to obtain a mixed solution.
  • the obtained mixed solution was applied onto a fluororesin film having a thickness of 80 ⁇ m, and the solvent was removed by hot air drying at 70° C. for 10 minutes to obtain an adhesive film (adhesive film with fluororesin film) having a thickness of 25 ⁇ m formed on the fluororesin film.
  • Example 2 to 17 and Comparative Examples 1 and 2 The adhesive films according to Comparative Examples 1 and 2 and Examples 2 to 17 were obtained in the same manner as in Example 1, except that the amount (parts by volume) of conductive particles B1 and conductive particles B2 relative to adhesive component a1 (170 parts by volume) was changed as shown in Table 1.
  • the adhesive film with fluororesin film according to each of the examples and comparative examples prepared as described above was punched out in the thickness direction using a biopsy trepan BP-10F 1.0 mm (Kai Industries Co., Ltd.), to obtain a disk-shaped adhesive film with fluororesin film having a diameter of 1 mm.
  • the adhesive film with fluororesin film was placed on a first cover glass (Matsunami Glass Industry Co., Ltd., thickness 0.15 mm, length 18 mm, width 18 mm) so that the adhesive film side was in contact with the first cover glass, to obtain a first laminate (first cover glass/adhesive film/fluororesin film).
  • the first laminate was thermocompressed from the fluororesin film side using a thermocompression device (Ohashi Manufacturing Co., Ltd., LD-06) under conditions of a compression temperature of 60°C, a compression pressure of 1 MPa, and a compression time of 0.1 seconds.
  • the compression temperature is the maximum temperature reached when the film is compressed for 1 second
  • the compression pressure is the area-converted pressure of the adhesive film for evaluation.
  • the maximum temperature was adjusted by separately preparing the same first laminate as above, sandwiching a thin temperature sensor (ST-50, manufactured by Rika Kogyo Co., Ltd.) between the adhesive film of the laminate and the first cover glass, performing heat compression bonding, and measuring the maximum temperature of the adhesive film in advance.
  • thermocompression bonding was peeled off from the first laminate after thermocompression bonding, and a second cover glass (manufactured by Matsunami Glass Industry, thickness 0.15 mm, length 18 mm, width 18 mm) was placed on the exposed adhesive film to obtain a second laminate (first cover glass/adhesive film/second cover glass).
  • thermocompression device manufactured by Ohashi Manufacturing, BD-06
  • thermocompression was performed from the second cover glass side under conditions of a bonding temperature of 170°C, a bonding pressure of 80 MPa, and a bonding time of 5 seconds to obtain a bonded body.
  • the bonding temperature is the maximum temperature reached by the adhesive film
  • the bonding pressure is the pressure converted into the area of the adhesive film.
  • the maximum temperature was adjusted by separately preparing the same second laminate as above, performing thermocompression bonding with a thin temperature sensor (manufactured by Rika Kogyo Co., Ltd., ST-50) sandwiched between the adhesive film of the second laminate and the first cover glass, and measuring the maximum temperature reached by the adhesive film in advance.
  • the bonded body was observed with an optical microscope (Nikon Corporation, L300ND), and the area (bonding area) S1 (unit: mm2 ) of the bonded portion between the adhesive film and the first cover glass in the bonded body was measured using a length measuring tool.
  • thermocompression bonding device manufactured by Ohashi Seisakusho Co., Ltd., BD-07
  • thermocompression bonding was performed from the fluororesin film side under conditions of a compression temperature of 50°C, a compression pressure of 0.5 MPa, and a compression time of 2 seconds.
  • the fluororesin film on the adhesive film 31 was peeled off, and as shown in Figures 3 (c) and (d), a 50 mm x 6 mm aluminum foil 33 was prepared and placed on the laminate of the copper foil 32 and the adhesive film 31 so as to cover the adhesive film 31.
  • a thermocompression bonding device manufactured by Ohashi Manufacturing Co., Ltd., BD-07
  • the aluminum foil 33 side was thermocompression bonded under conditions of a bonding temperature of 150°C, a bonding pressure of 0.5 MPa, and a bonding time of 10 seconds, to obtain a mounting body for evaluation.
  • connection resistance initial connection resistance
  • a heat cycle test was performed on the assembly using a TSA-43EL made by Espec Corporation, in which the assembly was held at -40°C for 30 minutes, heated to 100°C over 10 minutes, held at 100°C for 30 minutes, and cooled to -40°C over 10 minutes, and this cycle was repeated 20 times.
  • the connection resistance (post-test connection resistance) was then measured in the same manner as above.
  • the resistance increase rate was calculated using the following formula. The results are shown in Table 1.
  • Reliability (resistance increase rate) [%] ⁇ (post-test connection resistance-initial connection resistance)/initial connection resistance ⁇ x 100
  • a glass substrate having an ITO wiring (size of glass substrate: 2.5 mm x 28 mm, thickness of glass substrate: 300 ⁇ m, size of ITO wiring: 2500 ⁇ m (2.5 mm) x 300 ⁇ m, thickness of ITO wiring: 0.2 ⁇ m, number of ITO wiring: 28, space between ITO wiring: 300 ⁇ m) was prepared.
  • the adhesive film with fluororesin film of each of the examples and comparative examples prepared as described above was cut into 2 mm x 23 mm, and the cut adhesive film was placed on the glass substrate with the adhesive film side facing down. At this time, the long side of the adhesive film was placed perpendicular to the ITO wiring.
  • FIG. 5 is a schematic top view showing a laminate in the peel strength measurement of the examples.
  • the laminate 40 shown in FIG. 5 includes a glass substrate 43 having an ITO wiring (a substrate including a glass substrate 41 and an ITO wiring 42 provided on the glass substrate 41) and an adhesive film 10A arranged on the glass substrate 43 having an ITO wiring.
  • the fluororesin film was peeled off from the adhesive film, and a polyimide tape cut to 1.8 mm x 35 mm was attached to the adhesive film to obtain a measurement sample.
  • the glass substrate side of the measurement sample was placed on a hot plate set at 40° C., and the tip of the polyimide tape was set in a tensile strength measuring device (Tensilon).
  • the glass substrate was fixed horizontally, and the polyimide tape was pulled in the vertical direction at a peeling speed of 50 mm/min to measure the peel strength.
  • the results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

An adhesive film comprising an adhesive component, first conductive particles each in a dendrite form, and second conductive particles that are other than the first conductive particles and each of which includes a non-conductive core body and a conductive layer provided on the core body and the flow rate of the adhesive film is 10% to 50%.

Description

接着剤フィルム及び接続構造体Adhesive film and connection structure

 本発明は、接着剤フィルム及び接続構造体に関する。 The present invention relates to an adhesive film and a connection structure.

 近年、半導体、液晶ディスプレイ等の分野において、電子部品の固定、回路の接続等のために各種接着剤が使用されている。これらの用途では、電子部品、回路等の高密度化及び高精細化が進み、接着剤にもより高い水準の性能が求められている。 In recent years, various adhesives have been used in fields such as semiconductors and liquid crystal displays to fasten electronic components and connect circuits. In these applications, electronic components and circuits are becoming increasingly dense and precise, and adhesives are being required to provide higher levels of performance.

 例えば、液晶ディスプレイとTCP(Tape Carrier Package)との接続、FPC(Flexible Printed Circuit)とTCPとの接続、又は、FPCとプリント配線板との接続には、接着剤中に導電粒子を分散させた接着剤(導電性接着剤)が使用されている。導電性接着剤には、電子部材同士を低圧(例えば0.1~0.5MPa)で接続したときの接続信頼性に優れることが要求される場合がある。 For example, adhesives with conductive particles dispersed in them (conductive adhesives) are used to connect liquid crystal displays and TCPs (Tape Carrier Packages), FPCs (Flexible Printed Circuits) and TCPs, or FPCs and printed wiring boards. Conductive adhesives may be required to have excellent connection reliability when connecting electronic components together at low pressure (e.g., 0.1 to 0.5 MPa).

 例えば、特許文献1には、特定のアクリル系樹脂、特定量のイソシアネート系硬化剤、及び特定量の樹枝状導電性粒子を含有する粘着剤から形成され、粘着シート厚さと樹枝状導電性粒子のメディアン径D50の比が特定の範囲内である等方導電性粘着シートは、簡易に高い密着力で被着体に接着可能であり、且つ電気的接続安定性に優れ、ヒートサイクル試験後の抵抗値変化が小さいことを見出したと記載されている。 For example, Patent Document 1 describes that an isotropic conductive adhesive sheet formed from an adhesive containing a specific acrylic resin, a specific amount of an isocyanate-based curing agent, and a specific amount of dendritic conductive particles, in which the ratio of the adhesive sheet thickness to the median diameter D50 of the dendritic conductive particles is within a specific range, can be easily adhered to an adherend with high adhesion, has excellent electrical connection stability, and shows little change in resistance value after a heat cycle test.

国際公開第2020/241818号International Publication No. 2020/241818

 本発明の一側面では、ヒートサイクル試験前後での抵抗上昇率を低く抑えられる接着剤フィルムを提供することを目的とする。 One aspect of the present invention aims to provide an adhesive film that can keep the rate of resistance increase before and after a heat cycle test low.

 本発明の一側面は、接着剤成分と、デンドライト状の導電粒子である第1の導電粒子と、第1の導電粒子以外の導電粒子であって、非導電性の核体及び該核体上に設けられた導電層を有する導電粒子である第2の導電粒子と、を含有する接着剤フィルムであって、接着剤フィルムのフロー率が10%~50%である、接着剤フィルムに関する。 One aspect of the present invention relates to an adhesive film that contains an adhesive component, first conductive particles that are dendritic conductive particles, and second conductive particles that are conductive particles other than the first conductive particles and have a non-conductive core and a conductive layer provided on the core, and the flow rate of the adhesive film is 10% to 50%.

 本発明の一側面において、第2の導電粒子の含有量に対する第1の導電粒子の含有量の体積比が、5/1以上であってよい。 In one aspect of the present invention, the volume ratio of the content of the first conductive particles to the content of the second conductive particles may be 5/1 or more.

 本発明の一側面において、第1の導電粒子及び第2の導電粒子の合計含有量が、接着剤成分の含有量100体積部に対して20体積部以上であってよい。 In one aspect of the present invention, the total content of the first conductive particles and the second conductive particles may be 20 parts by volume or more per 100 parts by volume of the adhesive component content.

 本発明の一側面において、第1の導電粒子及び第2の導電粒子の合計含有量が、接着剤成分の含有量100体積部に対して55体積部以下であってよい。 In one aspect of the present invention, the total content of the first conductive particles and the second conductive particles may be 55 parts by volume or less per 100 parts by volume of the adhesive component content.

 本発明の他の一側面は、第1の基板、及び第1の基板上に形成された第1の電極を有する第1の電子部材と、第2の基板、及び第2の基板上に形成された第2の電極を有する第2の電子部材と、第1の電極と第2の電極とを互いに電気的に接続する接続部材と、を備え、接続部材は、上記の接着剤フィルムの硬化物を含む、接続構造体に関する。 Another aspect of the present invention relates to a connection structure comprising a first electronic component having a first substrate and a first electrode formed on the first substrate, a second electronic component having a second substrate and a second electrode formed on the second substrate, and a connection member that electrically connects the first electrode and the second electrode to each other, the connection member including a cured product of the above-mentioned adhesive film.

 本発明の一側面によれば、ヒートサイクル試験前後での抵抗上昇率を低く抑えられる接着剤フィルムを提供することができる。 According to one aspect of the present invention, it is possible to provide an adhesive film that can suppress the rate of increase in resistance before and after a heat cycle test.

接着剤フィルムの一実施形態を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing one embodiment of an adhesive film. 接続構造体の一実施形態を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of a connection structure. 信頼性試験用の実装体の作製方法を示す模式図である。1A to 1C are schematic diagrams showing a method for producing a mounting body for a reliability test. 信頼性試験における接続抵抗の測定方法を示す模式図である。FIG. 2 is a schematic diagram showing a method for measuring a connection resistance in a reliability test. ピール強度測定における積層体を示す模式上面図である。FIG. 2 is a schematic top view showing a laminate in peel strength measurement.

 以下、図面を適宜参照しながら、本発明の実施形態について詳細に説明する。 The following describes in detail an embodiment of the present invention, with appropriate reference to the drawings.

 図1は、接着剤フィルムの一実施形態を示す模式断面図である。図1に示すように、接着剤フィルム10は、接着剤成分11と、デンドライト状の導電粒子である第1の導電粒子12と、非導電性の核体及び該核体上に設けられた導電層を有する導電粒子である第2の導電粒子13と、を含有する。ただし、第2の導電粒子13は、第1の導電粒子12以外の導電粒子である。第1の導電粒子12及び第2の導電粒子13は、接着剤成分11中に分散されている。 FIG. 1 is a schematic cross-sectional view showing one embodiment of an adhesive film. As shown in FIG. 1, the adhesive film 10 contains an adhesive component 11, first conductive particles 12 which are dendritic conductive particles, and second conductive particles 13 which are conductive particles having a non-conductive core and a conductive layer provided on the core. However, the second conductive particles 13 are conductive particles other than the first conductive particles 12. The first conductive particles 12 and the second conductive particles 13 are dispersed in the adhesive component 11.

 接着剤成分11は、例えば熱又は光により硬化性を示す材料で構成されており、ラジカル硬化型の接着剤、エポキシ系接着剤、ポリウレタン、ポリビニルエステル等の熱可塑性接着剤などであってよい。これらの中でも、ラジカル硬化型の接着剤は、低温短時間での硬化性に優れている等の特徴を有するため好ましく用いられる。また、エポキシ系接着剤は、短時間硬化が可能で接続作業性が良く、接着性に優れている等の点で好ましく用いられる。 The adhesive component 11 is composed of a material that is curable by, for example, heat or light, and may be a radical-curing adhesive, an epoxy-based adhesive, or a thermoplastic adhesive such as polyurethane or polyvinyl ester. Of these, radical-curing adhesives are preferably used because they have characteristics such as excellent curing properties at low temperatures and in a short time. Epoxy-based adhesives are also preferably used because they can be cured in a short time, have good connection workability, and have excellent adhesion.

 ラジカル硬化型の接着剤は、例えば、ラジカル重合性物質及びラジカル重合開始剤を含有し、必要に応じて、熱可塑性樹脂、充填材、その他の添加剤等を更に含有していてよい。 Radically curable adhesives contain, for example, a radically polymerizable substance and a radical polymerization initiator, and may further contain thermoplastic resins, fillers, other additives, etc., as necessary.

 ラジカル重合性物質としては、例えば、ラジカルにより重合する官能基を有する物質であれば特に制限なく使用することができる。具体的には、例えば、(メタ)アクリレート化合物、マレイミド化合物、シトラコンイミド樹脂、ナジイミド樹脂等のラジカル重合性物質が挙げられる。これらラジカル重合性物質は、モノマー又はオリゴマーの状態であってよく、モノマーとオリゴマーとの混合物の状態であってもよい。 The radical polymerizable substance can be any substance having a functional group that polymerizes by radicals, without any particular limitations. Specific examples of radical polymerizable substances include (meth)acrylate compounds, maleimide compounds, citraconic imide resins, and nadimide resins. These radical polymerizable substances may be in the form of a monomer or oligomer, or may be in the form of a mixture of a monomer and an oligomer.

 (メタ)アクリレート化合物としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン、2,2-ビス[4-((メタ)アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-((メタ)アクリロキシポリエトキシ)フェニル]プロパン、ジシクロペンテニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、イソシアヌル酸エチレンオキサイド(EO)変性ジ(メタ)アクリレート、イソシアヌル酸EO変性トリ(メタ)アクリレート、ウレタン(メタ)アクリレート、EO変性リン酸ジ(メタ)アクリレート等が挙げられる。 Examples of (meth)acrylate compounds include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, isobutyl (meth)acrylate, ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylolmethane tetra(meth)acrylate, 2-hydroxy-1,3-di(meth)acryloxypropane, 2,2-bis[4-((meth)acryloxy)propane, Examples of such acrylates include 2,2-bis[4-((meth)acryloxymethoxy)phenyl]propane, 2,2-bis[4-((meth)acryloxypolyethoxy)phenyl]propane, dicyclopentenyl (meth)acrylate, tricyclodecanyl (meth)acrylate, dimethyloltricyclodecane di(meth)acrylate, ethylene oxide (EO)-modified isocyanuric acid di(meth)acrylate, EO-modified isocyanuric acid tri(meth)acrylate, urethane (meth)acrylate, and EO-modified phosphate di(meth)acrylate.

 (メタ)アクリレート化合物以外のラジカル重合性物質としては、例えば、国際公開第2009/063827号に記載の化合物を好適に使用することが可能である。ラジカル重合性物質は、1種を単独で又は2種以上を組み合わせて使用される。 As radical polymerizable substances other than (meth)acrylate compounds, for example, compounds described in International Publication No. 2009/063827 can be suitably used. The radical polymerizable substances may be used alone or in combination of two or more.

 ラジカル重合性物質の含有量は、接着剤成分11の全量100体積部に対して、10体積部以上、20体積部以上、30体積部以上、又は40体積部以上であってよく、80体積部以下、70体積部以下、又は60体積部以下であってよい。 The content of the radical polymerizable substance may be 10 parts by volume or more, 20 parts by volume or more, 30 parts by volume or more, or 40 parts by volume or more, and may be 80 parts by volume or less, 70 parts by volume or less, or 60 parts by volume or less, relative to a total amount of 100 parts by volume of the adhesive component 11.

 ラジカル重合性物質の含有量は、ラジカル重合性物質と必要により配合される熱可塑性樹脂との合計100体積部に対して、30体積部以上、40体積部以上、又は50体積部以上であってよく、90体積部以下、80体積部以下、又は70体積部以下であってよい。 The content of the radical polymerizable substance may be 30 parts by volume or more, 40 parts by volume or more, or 50 parts by volume or more, and may be 90 parts by volume or less, 80 parts by volume or less, or 70 parts by volume or less, per 100 parts by volume of the total of the radical polymerizable substance and the thermoplastic resin that is blended as necessary.

 ラジカル重合開始剤としては、例えば、加熱又は光の照射により分解して遊離ラジカルを発生する化合物であれば特に制限なく使用することができる。具体的には、例えば、過酸化化合物、アゾ系化合物等が挙げられる。これらの化合物は、目的とする接続温度、接続時間、ポットライフ等により適宜選定される。 The radical polymerization initiator can be any compound that decomposes when heated or irradiated with light to generate free radicals. Specific examples include peroxide compounds and azo compounds. These compounds are appropriately selected depending on the intended connection temperature, connection time, pot life, etc.

 ラジカル重合開始剤として、より具体的には、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル(例えば、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン)、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイド等が挙げられる。これらの中でも、パーオキシエステル、ジアルキルパーオキサイド、ハイドロパーオキサイド、シリルパーオキサイド等が好ましく、高反応性が得られるパーオキシエステルがより好ましい。これらのラジカル重合開始剤としては、例えば、国際公開第2009/063827号に記載の化合物を好適に使用することが可能である。ラジカル重合開始剤は、1種を単独で又は2種以上を組み合わせて使用される。 Specific examples of radical polymerization initiators include diacyl peroxides, peroxydicarbonates, peroxy esters (e.g., 2,5-dimethyl-2,5-di(2-ethylhexanoylperoxy)hexane), peroxy ketals, dialkyl peroxides, hydroperoxides, and silyl peroxides. Among these, peroxy esters, dialkyl peroxides, hydroperoxides, and silyl peroxides are preferred, and peroxy esters that provide high reactivity are more preferred. As these radical polymerization initiators, for example, the compounds described in International Publication No. 2009/063827 can be suitably used. The radical polymerization initiators may be used alone or in combination of two or more.

 ラジカル重合開始剤の含有量は、ラジカル重合性物質と必要により配合される熱可塑性樹脂との合計100体積部に対して、1体積部以上であってよく、10体積部以下であってよい。 The content of the radical polymerization initiator may be 1 part by volume or more and 10 parts by volume or less per 100 parts by volume of the total of the radical polymerizable substance and the thermoplastic resin that is blended as necessary.

 エポキシ系接着剤は、例えば、エポキシ樹脂及び硬化剤を含有し、必要に応じて、熱可塑性樹脂、充填材、その他の添加剤等を更に含有していてよい。 Epoxy adhesives contain, for example, epoxy resins and curing agents, and may further contain thermoplastic resins, fillers, other additives, etc., as necessary.

 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂肪族鎖状エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、ハロゲン化されていてもよく、水素添加されていてもよく、アクリロイル基又はメタクリロイル基が側鎖に付加された構造を有していてもよい。これらのエポキシ樹脂は、1種を単独で又は2種以上を組み合わせて使用される。 Examples of epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol A novolac type epoxy resins, bisphenol F novolac type epoxy resins, alicyclic epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, hydantoin type epoxy resins, isocyanurate type epoxy resins, aliphatic chain epoxy resins, etc. These epoxy resins may be halogenated or hydrogenated, and may have a structure in which an acryloyl group or a methacryloyl group is added to the side chain. These epoxy resins may be used alone or in combination of two or more.

 エポキシ樹脂の含有量は、接着剤成分11の全量100体積部に対して、10体積部以上、20体積部以上、又は30体積部以上であってよく、70体積部以下、60体積部以下、又は50体積部以下であってよい。 The epoxy resin content may be 10 parts by volume or more, 20 parts by volume or more, or 30 parts by volume or more, and may be 70 parts by volume or less, 60 parts by volume or less, or 50 parts by volume or less, relative to a total amount of 100 parts by volume of the adhesive component 11.

 エポキシ樹脂の含有量は、エポキシ樹脂と必要により配合される熱可塑性樹脂との合計100体積部に対して、20体積部以上、30体積部以上、又は40体積部以上であってよく、80体積部以下、70体積部以下、又は60体積部以下であってよい。 The epoxy resin content may be 20 parts by volume or more, 30 parts by volume or more, or 40 parts by volume or more, and 80 parts by volume or less, 70 parts by volume or less, or 60 parts by volume or less, per 100 parts by volume of the total of the epoxy resin and the thermoplastic resin blended as necessary.

 硬化剤としては、エポキシ樹脂を硬化させることができるものであれば特に制限はなく、例えば、アニオン重合性の触媒型硬化剤、カチオン重合性の触媒型硬化剤、重付加型の硬化剤等が挙げられる。これらのうち、速硬化性において優れ、化学当量的な考慮が不要である点から、アニオン又はカチオン重合性の触媒型硬化剤が好ましい。 The curing agent is not particularly limited as long as it can cure the epoxy resin, and examples include anionic polymerization catalyst-type curing agents, cationic polymerization catalyst-type curing agents, polyaddition-type curing agents, etc. Among these, anionic or cationic polymerization catalyst-type curing agents are preferred because they have excellent fast curing properties and do not require consideration of chemical equivalents.

 アニオン又はカチオン重合性の触媒型硬化剤としては、例えば、イミダゾール系、ヒドラジド系、三フッ化ホウ素-アミン錯体、オニウム塩(芳香族スルホニウム塩、芳香族ジアゾニウム塩、脂肪族スルホニウム塩等)、アミンイミド、ジアミノマレオニトリル、メラミン及びその誘導体、ポリアミンの塩、ジシアンジアミド等が挙げられ、これらの変性物なども使用することができる。重付加型の硬化剤としては、例えば、ポリアミン、ポリメルカプタン、ポリフェノール、酸無水物等が挙げられる。 Examples of anionic or cationic polymerizable catalyst-type curing agents include imidazoles, hydrazides, boron trifluoride-amine complexes, onium salts (aromatic sulfonium salts, aromatic diazonium salts, aliphatic sulfonium salts, etc.), aminimides, diaminomaleonitrile, melamine and its derivatives, polyamine salts, dicyandiamide, etc., and modified versions of these can also be used. Examples of polyaddition-type curing agents include polyamines, polymercaptans, polyphenols, acid anhydrides, etc.

 これらの硬化剤を、ポリウレタン系、ポリエステル系等の高分子物質、ニッケル、銅等の金属薄膜、ケイ酸カルシウム等の無機物などで被覆してマイクロカプセル化した潜在性硬化剤は、可使時間が延長できるため好ましい。硬化剤は、1種を単独で又は2種以上を組み合わせて使用される。 Latent hardeners that are microencapsulated by coating these hardeners with polymeric substances such as polyurethanes and polyesters, thin metal films such as nickel and copper, and inorganic substances such as calcium silicate are preferred because they can extend the usable time. Hardeners can be used alone or in combination of two or more types.

 硬化剤の含有量は、エポキシ樹脂と必要により配合される熱可塑性樹脂との合計100体積部に対して、0.05体積部以上であってよく、20体積部以下であってよい。 The amount of the curing agent may be 0.05 parts by volume or more and 20 parts by volume or less per 100 parts by volume of the total of the epoxy resin and the thermoplastic resin that is mixed as necessary.

 接着剤成分11は、熱可塑性樹脂を含んでいてもよい。ラジカル硬化型の接着剤又はエポキシ系接着剤が熱可塑性樹脂を含む場合、接着剤にフィルム性を付与しやすくすることができる。熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリビニルホルマール樹脂、ポリスチレン樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、ポリアミド樹脂、キシレン樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、フェノール樹脂、テルペンフェノール樹脂等が挙げられる。熱可塑性樹脂としては、例えば、国際公開第2009/063827号に記載の化合物を好適に使用することが可能である。熱可塑性樹脂は、1種を単独で又は2種以上を組み合わせて使用される。 The adhesive component 11 may contain a thermoplastic resin. When the radical curing adhesive or epoxy adhesive contains a thermoplastic resin, it is possible to easily impart film properties to the adhesive. Examples of the thermoplastic resin include phenoxy resin, polyvinyl formal resin, polystyrene resin, polyvinyl butyral resin, polyester resin, polyamide resin, xylene resin, polyurethane resin, polyester urethane resin, phenol resin, and terpene phenol resin. For example, the compounds described in International Publication No. 2009/063827 can be suitably used as the thermoplastic resin. The thermoplastic resin may be used alone or in combination of two or more types.

 熱可塑性樹脂の含有量は、接着剤成分11の全量100体積部に対して、10体積部以上、15体積部以上、又は20体積部以上であってよく、50体積部以下、40体積部以下、又は30体積質量部以下であってよい。 The amount of the thermoplastic resin may be 10 parts by volume or more, 15 parts by volume or more, or 20 parts by volume or more, and may be 50 parts by volume or less, 40 parts by volume or less, or 30 parts by volume or less, relative to a total amount of 100 parts by volume of the adhesive component 11.

 ラジカル硬化型の接着剤の一例として、30℃にて液状のラジカル重合性物質を含むラジカル重合性材料と、ラジカル重合開始剤と、熱可塑性樹脂とを含有する熱ラジカル硬化型接着剤が挙げられる。熱ラジカル硬化型接着剤は、粘度が低くなる傾向がある。また、エポキシ系接着剤の一例として、30℃にて液状のエポキシ樹脂を含む熱硬化性材料と、硬化剤と、熱可塑性樹脂とを含有するエポキシ系接着剤が挙げられる。 An example of a radical curing adhesive is a thermal radical curing adhesive that contains a radical polymerizing material that contains a radical polymerizing substance that is liquid at 30°C, a radical polymerization initiator, and a thermoplastic resin. Thermal radical curing adhesives tend to have low viscosity. An example of an epoxy-based adhesive is an epoxy-based adhesive that contains a thermosetting material that contains an epoxy resin that is liquid at 30°C, a curing agent, and a thermoplastic resin.

 接着剤成分11には、充填材が配合されてもよい。充填材の例としては、非導電粒子が挙げられる。非導電粒子は、無機非導電粒子であってよく、有機非導電粒子であってよい。無機非導電粒子の例としては、シリカ粒子が挙げられる。 The adhesive component 11 may contain a filler. An example of the filler is non-conductive particles. The non-conductive particles may be inorganic non-conductive particles or organic non-conductive particles. An example of the inorganic non-conductive particles is silica particles.

 充填材の含有量は、接着剤フィルム10の全体積を基準として、1体積%以上、又は3体積%以上であってよく、25体積%以下、又は20体積%以下であってよい。 The filler content may be 1 volume % or more, or 3 volume % or more, and may be 25 volume % or less, or 20 volume % or less, based on the total volume of the adhesive film 10.

 接着剤成分11は、必要に応じて、その他の添加剤を含んでいてもよい。その他の添加剤の例としては、カップリング剤、内部応力の緩和作用を発揮する成分等が挙げられる。接着剤成分11が、内部応力の緩和作用を発揮する成分を更に含有すると、ICチップと、ガラス基板、フレキシブルプリント基板(FPC)等との接続に用いられる場合、ICチップと基板との線膨張係数の差に起因する基板の反りを抑制することができる。内部応力の緩和作用を発揮する成分としては、具体的には、アクリルゴム、エラストマ成分等が挙げられる。 Adhesive component 11 may contain other additives as necessary. Examples of other additives include coupling agents and components that relieve internal stress. If adhesive component 11 further contains a component that relieves internal stress, when it is used to connect an IC chip to a glass substrate, a flexible printed circuit board (FPC), or the like, it can suppress warping of the substrate caused by the difference in linear expansion coefficient between the IC chip and the substrate. Specific examples of components that relieve internal stress include acrylic rubber and elastomer components.

 第1の導電粒子12は、デンドライト状であり、一本の主軸と、該主軸から二次元的又は三次元的に分岐する複数の枝とを備えている。第1の導電粒子12は、銅、銀等の金属で形成されていてよく、例えば銅粒子が銀で被覆されてなる銀被覆銅粒子であってよい。 The first conductive particles 12 are dendritic and have one main axis and multiple branches branching out two-dimensionally or three-dimensionally from the main axis. The first conductive particles 12 may be made of a metal such as copper or silver, and may be, for example, silver-coated copper particles in which copper particles are coated with silver.

 第1の導電粒子12は、公知のものであってよく、具体的には、例えばACBY-2(三井金属鉱業株式会社)、CE-1110(福田金属箔粉工業株式会社)、#FSP(JX金属株式会社)、#51-R(JX金属株式会社)として入手可能である。あるいは、第1の導電粒子12は、公知の方法(例えば、国際公開第2014/021037号に記載の方法)により製造することも可能である。 The first conductive particles 12 may be known, and specifically, for example, are available as ACBY-2 (Mitsui Mining & Smelting Co., Ltd.), CE-1110 (Fukuda Metal Foil & Powder Co., Ltd.), #FSP (JX Metals Corporation), and #51-R (JX Metals Corporation). Alternatively, the first conductive particles 12 can be manufactured by a known method (for example, the method described in WO 2014/021037).

 第1の導電粒子12の含有量は、接着剤フィルム10の全体積を基準として、5体積%以上、10体積%以上、20体積%以上、25体積%以上、又は30体積%以上であってよく、60体積%以下、50体積%以下、又は45体積%以下であってよい。 The content of the first conductive particles 12 may be 5 volume % or more, 10 volume % or more, 20 volume % or more, 25 volume % or more, or 30 volume % or more, and may be 60 volume % or less, 50 volume % or less, or 45 volume % or less, based on the total volume of the adhesive film 10.

 第1の導電粒子12の含有量は、接着剤成分11の含有量100体積部に対して、5体積部以上、10体積部以上、20体積部以上、30体積部以上、40体積部以上、又は50体積部以上であってよく、90体積部以下、85体積部以下、80体積部以下、又は70体積部以下であってよい。 The content of the first conductive particles 12 may be 5 parts by volume or more, 10 parts by volume or more, 20 parts by volume or more, 30 parts by volume or more, 40 parts by volume or more, or 50 parts by volume or more, and may be 90 parts by volume or less, 85 parts by volume or less, 80 parts by volume or less, or 70 parts by volume or less, relative to 100 parts by volume of the adhesive component 11.

 第2の導電粒子13は、非導電性の核体と、該核体上に設けられた導電層とを有している。核体は、ガラス、セラミック、樹脂等の非導電性材料で形成されており、好ましくは樹脂で形成されている。樹脂としては、例えば、アクリル樹脂、スチレン樹脂、シリコーン樹脂、ポリブタジエン樹脂又はこれらの樹脂を構成するモノマーの共重合体が挙げられる。核体の平均粒径は、例えば、2μm以上であってよく、30μm以下であってよい。 The second conductive particle 13 has a non-conductive core and a conductive layer provided on the core. The core is made of a non-conductive material such as glass, ceramic, or resin, and is preferably made of resin. Examples of resins include acrylic resin, styrene resin, silicone resin, polybutadiene resin, and copolymers of monomers that make up these resins. The average particle size of the core may be, for example, 2 μm or more and 30 μm or less.

 導電層は、例えば、金、銀、銅、ニッケル、パラジウム又はこれらの合金で形成されている。導電層は、導電性に優れる観点から、好ましくは、金、ニッケル及びパラジウムから選ばれる少なくとも1種を含有し、より好ましくは金又はパラジウムを含有し、更に好ましくは金を含有する。導電層は、例えば核体に上記の金属をめっきすることにより形成される。導電層の厚さは、例えば、10nm以上であってよく、400nm以下であってよい。 The conductive layer is formed, for example, of gold, silver, copper, nickel, palladium, or an alloy thereof. From the viewpoint of excellent conductivity, the conductive layer preferably contains at least one selected from gold, nickel, and palladium, more preferably contains gold or palladium, and even more preferably contains gold. The conductive layer is formed, for example, by plating the core with the above metal. The thickness of the conductive layer may be, for example, 10 nm or more and 400 nm or less.

 第2の導電粒子は、例えば略球状であってよい。第2の導電粒子の平均粒径は、接着剤フィルムを好適に薄膜化できる観点から、好ましくは30μm以下、より好ましくは25μm以下、更に好ましくは22μm以下である。第2の導電粒子の平均粒径は、例えば1μm以上であってよい。第2の導電粒子の平均粒径は、レーザー回折・散乱法を用いた粒度分布測定装置(マイクロトラック(製品名、日機装株式会社))により測定される。 The second conductive particles may be, for example, approximately spherical. From the viewpoint of being able to suitably thin the adhesive film, the average particle size of the second conductive particles is preferably 30 μm or less, more preferably 25 μm or less, and even more preferably 22 μm or less. The average particle size of the second conductive particles may be, for example, 1 μm or more. The average particle size of the second conductive particles is measured by a particle size distribution measuring device (Microtrac (product name, Nikkiso Co., Ltd.)) using a laser diffraction/scattering method.

 第2の導電粒子13の含有量は、接着剤フィルム10の全体積を基準として、1体積%以上、2体積%以上、3体積%以上、4体積%以上、又は5体積%以上であってよく、30体積%以下、20体積%以下、15体積%以下、又は10体積%以下であってよい。 The content of the second conductive particles 13 may be 1 volume % or more, 2 volume % or more, 3 volume % or more, 4 volume % or more, or 5 volume % or more based on the total volume of the adhesive film 10, and may be 30 volume % or less, 20 volume % or less, 15 volume % or less, or 10 volume % or less.

 第2の導電粒子13の含有量は、接着剤成分11の含有量100体積部に対して、1体積部以上、2体積部以上、5体積部以上、7体積部以上、又は10体積部以上であってよく、20体積部以下、17体積部以下、又は15体積部以下であってよい。 The content of the second conductive particles 13 may be 1 part by volume or more, 2 parts by volume or more, 5 parts by volume or more, 7 parts by volume or more, or 10 parts by volume or more, and may be 20 parts by volume or less, 17 parts by volume or less, or 15 parts by volume or less, relative to 100 parts by volume of the adhesive component 11.

 接着剤フィルム中の第2の導電粒子13に対する第1の導電粒子12の体積比(第1の導電粒子12/第2の導電粒子13)は、0.5/1以上、1/1以上、3/1以上、5/1以上、6.1/1以上、又は6.5/1以上であってよく、40/1以下、30/1以下、25/1以下、20/1以下、又は15/1以下であってよい。 The volume ratio of the first conductive particles 12 to the second conductive particles 13 in the adhesive film (first conductive particles 12/second conductive particles 13) may be 0.5/1 or more, 1/1 or more, 3/1 or more, 5/1 or more, 6.1/1 or more, or 6.5/1 or more, and may be 40/1 or less, 30/1 or less, 25/1 or less, 20/1 or less, or 15/1 or less.

 第1の導電粒子12及び第2の導電粒子13の合計含有量は、接着剤成分11の含有量100体積部に対して、10体積部以上、20体積部以上、30体積部以上、35体積部以上、40体積部以上、又は45体積部以上であってよく、100体積部以下、90体積部以下、80体積部以下、70体積部以下、60体積部以下、57体積部以下、又は55体積部以下であってよい。 The total content of the first conductive particles 12 and the second conductive particles 13 may be 10 parts by volume or more, 20 parts by volume or more, 30 parts by volume or more, 35 parts by volume or more, 40 parts by volume or more, or 45 parts by volume or more, relative to 100 parts by volume of the adhesive component 11, and may be 100 parts by volume or less, 90 parts by volume or less, 80 parts by volume or less, 70 parts by volume or less, 60 parts by volume or less, 57 parts by volume or less, or 55 parts by volume or less.

 接着剤成分11が、充填材を含む場合、第1の導電粒子12及び第2の導電粒子13の合計含有量は、接着剤成分11に含まれる成分のうち、充填材以外の成分の合計100体積部に対して、10体積部以上、20体積部以上、30体積部以上、35体積部以上、40体積部以上、又は45体積部以上であってよく、110体積部以下、100体積部以下、90体積部以下、80体積部以下、70体積部以下、60体積部以下、57体積部以下、又は55体積部以下であってよい。 When the adhesive component 11 includes a filler, the total content of the first conductive particles 12 and the second conductive particles 13 may be 10 parts by volume or more, 20 parts by volume or more, 30 parts by volume or more, 35 parts by volume or more, 40 parts by volume or more, or 45 parts by volume or more, relative to 100 parts by volume of the total of the components other than the filler contained in the adhesive component 11, and may be 110 parts by volume or less, 100 parts by volume or less, 90 parts by volume or less, 80 parts by volume or less, 70 parts by volume or less, 60 parts by volume or less, 57 parts by volume or less, or 55 parts by volume or less.

 接着剤フィルム10のフロー率は、10%~50%である。当該フロー率は、12%以上、又は20%以上であってよく、45%以下、又は40%以下であってよい。接着剤フィルム10のフロー率が上記下限値以上であると、信頼性により優れる。また、当該フロー率が50%以下であると、接着剤フィルムの形状安定性が優れたものとなりやすい。 The flow rate of the adhesive film 10 is 10% to 50%. The flow rate may be 12% or more, or 20% or more, and may be 45% or less, or 40% or less. When the flow rate of the adhesive film 10 is equal to or greater than the lower limit, the reliability is superior. Furthermore, when the flow rate is 50% or less, the adhesive film tends to have excellent shape stability.

 接着剤フィルム10のフロー率は、接着剤フィルム10の流動性を示す指標であり、接着剤フィルム10を加熱及び加圧した際の、面積の変化の割合を意味する。フロー率は、具体的には以下の方法で算出される。
 まず、直径1.0mmの円盤状であって、片面にフッ素樹脂フィルム(厚さ:80μm)が貼り付けられた接着剤フィルムを用意する。接着剤フィルム側が第1のカバーガラスに接するように、当該フッ素樹脂フィルム付き接着剤フィルムを第1のカバーガラス(厚さ:0.15mm)上に載せて第1の積層体(第1のカバーガラス/接着剤フィルム/フッ素樹脂フィルム)を作製し、フッ素樹脂フィルム側から、当該第1の積層体を圧着温度60℃、圧着圧力1MPa、圧着時間0.1秒間の条件で熱圧着する。圧着温度は、1秒間圧着した際の最高到達温度であり、圧着圧力は、評価用接着剤フィルムの面積換算圧力である。最高到達温度は、上記と同一の第1の積層体を別途用意し、当該積層体の接着剤フィルムと第1のカバーガラスとの間に薄型温度センサを挟んだ状態で熱圧着を行い、接着剤フィルムの最高到達温度を予め測定することにより調整する。
The flow rate of the adhesive film 10 is an index showing the fluidity of the adhesive film 10, and means the rate of change in area when the adhesive film 10 is heated and pressurized. Specifically, the flow rate is calculated by the following method.
First, a disk-shaped adhesive film with a diameter of 1.0 mm is prepared, with a fluororesin film (thickness: 80 μm) attached to one side. The adhesive film with the fluororesin film is placed on a first cover glass (thickness: 0.15 mm) so that the adhesive film side is in contact with the first cover glass to prepare a first laminate (first cover glass / adhesive film / fluororesin film), and the first laminate is heat-pressed from the fluororesin film side under conditions of a pressure-pressing temperature of 60 ° C., a pressure-pressing pressure of 1 MPa, and a pressure-pressing time of 0.1 seconds. The pressure-pressing temperature is the maximum temperature reached when pressure-pressed for 1 second, and the pressure-pressing pressure is the area-converted pressure of the adhesive film for evaluation. The maximum temperature is adjusted by separately preparing the same first laminate as above, performing heat-pressing bonding with a thin temperature sensor sandwiched between the adhesive film of the laminate and the first cover glass, and measuring the maximum temperature reached by the adhesive film in advance.

 次に、フッ素樹脂フィルムを剥離し、露出した接着剤フィルム上に第2のカバーガラス(厚さ:0.15mm)を載せて第2の積層体(第1のカバーガラス/接着剤フィルム/第2のカバーガラス)を作製し、第2のカバーガラス側から、圧着温度170℃、圧着圧力80MPa、圧着時間5秒間の条件で熱圧着することにより、圧着体を得る。なお、圧着温度は、接着剤フィルムの最高到達温度であり、圧着圧力は、評価用接着剤フィルムの面積換算圧力である。最高到達温度は、上記と同一の第2の積層体を別途用意し、第2の積層体の接着剤フィルムと第1のカバーガラスとの間に薄型温度センサを挟んだ状態で熱圧着を行い、接着剤フィルムの最高到達温度を予め測定することにより調整する。 Then, the fluororesin film is peeled off, and a second cover glass (thickness: 0.15 mm) is placed on the exposed adhesive film to produce a second laminate (first cover glass/adhesive film/second cover glass), which is then thermocompressed from the second cover glass side under conditions of a bonding temperature of 170°C, a bonding pressure of 80 MPa, and a bonding time of 5 seconds to obtain a bonded body. Note that the bonding temperature is the maximum temperature reached by the adhesive film, and the bonding pressure is the area-converted pressure of the adhesive film for evaluation. The maximum temperature is adjusted by separately preparing the same second laminate as above, performing thermocompression bonding with a thin temperature sensor sandwiched between the adhesive film of the second laminate and the first cover glass, and measuring the maximum temperature reached by the adhesive film in advance.

 得られた圧着体を光学顕微鏡により観察し、圧着体における接着剤フィルムと第1のカバーガラスとの接着部分の面積(接着面積)S1(単位:mm)を求める。接着面積S1と、熱圧着前の接着剤フィルムの面積(0.25π[mm])とを用いて、下記式により、フロー率を算出する。
 フロー率[%]={(接着面積S1-0.25π)/(0.25π)}×100
The obtained bonded body is observed under an optical microscope, and the area of the bonded portion between the adhesive film and the first cover glass in the bonded body (bonding area) S1 (unit: mm2 ) is determined. The flow rate is calculated by the following formula using the bonding area S1 and the area of the adhesive film before thermocompression bonding (0.25π [ mm2 ]).
Flow rate [%] = {(adhesion area S1 - 0.25π) / (0.25π)} × 100

 接着剤フィルム10の厚さは、例えば、50μm以下、45μm以下、又は40μm以下であってよく、5μm以上、10μm以上、15μm以上、又は20μm以上であってよい。 The thickness of the adhesive film 10 may be, for example, 50 μm or less, 45 μm or less, or 40 μm or less, and may be 5 μm or more, 10 μm or more, 15 μm or more, or 20 μm or more.

 接着剤フィルム10は、例えば、ペースト状の接着剤組成物をPET(ポリエチレンテレフタレート)フィルム、フッ素樹脂フィルム等の樹脂フィルム上に塗布し、乾燥することによって得られる。ペースト状の接着剤組成物は、例えば、接着剤成分11、第1の導電粒子12及び第2の導電粒子13を含む混合物を、加熱する又は溶剤に溶解させることにより得られる。溶剤としては、例えば大気圧下での沸点が50℃以上150℃以下である溶剤(例えば、トルエン、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸プロピル、酢酸ブチル等)が用いられる。 The adhesive film 10 is obtained, for example, by applying a paste-like adhesive composition onto a resin film such as a PET (polyethylene terephthalate) film or a fluororesin film, and then drying it. The paste-like adhesive composition is obtained, for example, by heating or dissolving in a solvent a mixture containing the adhesive component 11, the first conductive particles 12, and the second conductive particles 13. As the solvent, for example, a solvent having a boiling point of 50°C or more and 150°C or less under atmospheric pressure (for example, toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate, etc.) is used.

 接着剤フィルム10は、複数の接着剤層からなっていてもよい。この場合、第1の導電粒子12及び第2の導電粒子13は、それぞれ複数の接着剤層の少なくとも一層に含まれていればよく、互いに同一の接着剤層に含まれていても異なる接着剤層に含まれていてもよい。 The adhesive film 10 may be made up of multiple adhesive layers. In this case, the first conductive particles 12 and the second conductive particles 13 only need to be contained in at least one of the multiple adhesive layers, and may be contained in the same adhesive layer or different adhesive layers.

 接着剤フィルム10は、例えば、加熱処理を行うことにより硬化可能である。加熱温度は、例えば、40℃以上であってよく、250℃以下であってよい。加熱時間は、例えば、0.1秒間以上であってよく、10時間以下であってよい。 The adhesive film 10 can be cured, for example, by performing a heat treatment. The heating temperature may be, for example, 40°C or higher and 250°C or lower. The heating time may be, for example, 0.1 seconds or longer and 10 hours or shorter.

 接着剤フィルム10は、加熱及び加圧を併用して被着体に接着させることができる。加熱温度は、例えば、50℃以上であってよく、190℃以下であってよい。圧力は、例えば、0.1MPa以上であってよく、30MPa以下、10MPa以下、1MPa以下、又は0.8MPa以下であってよい。これらの加熱及び加圧は、例えば、0.5秒間以上行われてよく、120秒間以下行われてよい。 The adhesive film 10 can be adhered to the adherend by a combination of heating and pressure. The heating temperature may be, for example, 50°C or higher and 190°C or lower. The pressure may be, for example, 0.1 MPa or higher and 30 MPa or lower, 10 MPa or lower, 1 MPa or lower, or 0.8 MPa or lower. The heating and pressure may be applied for, for example, 0.5 seconds or more and 120 seconds or less.

 本実施形態に係る接着剤フィルム10は、同種の被着体同士を接着させる接着剤として使用することが可能であり、また、異種の被着体(例えば、熱膨張係数の異なる被着体)同士を接着させる接着剤として使用することもできる。接着剤フィルム10は、電子部材同士の接続に好適である。接着剤フィルム10を用いて電子部材同士を接続することにより、接続構造体を製造することができる。 The adhesive film 10 according to this embodiment can be used as an adhesive for bonding adherends of the same type together, and can also be used as an adhesive for bonding adherends of different types (e.g., adherends with different thermal expansion coefficients). The adhesive film 10 is suitable for connecting electronic components together. By connecting electronic components together using the adhesive film 10, a connection structure can be manufactured.

 図2は、接続構造体の一実施形態を示す模式断面図である。図2に示すように、接続構造体20は、第1の基板21、及び第1の基板21の主面上に形成された第1の電極22を有する第1の電子部材23と、第2の基板24、及び第2の基板24の主面上に形成された第2の電極25を有する第2の電子部材26と、第1の電極22と第2の電極25とを互いに電気的に接続する接続部材27とを備えている。 FIG. 2 is a schematic cross-sectional view showing one embodiment of a connection structure. As shown in FIG. 2, the connection structure 20 includes a first substrate 21, a first electronic component 23 having a first electrode 22 formed on the main surface of the first substrate 21, a second substrate 24, a second electronic component 26 having a second electrode 25 formed on the main surface of the second substrate 24, and a connection component 27 that electrically connects the first electrode 22 and the second electrode 25 to each other.

 第1の基板21及び第2の基板24は、それぞれ、ガラス、セラミック、ポリイミド、ポリカーボネート、ポリエステル、ポリエーテルスルホン等で形成された基板であってよい。第1の電極22及び第2の電極25は、それぞれ、金、銀、銅、錫、アルミニウム、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、インジウム錫酸化物(ITO)等で形成された電極であってよい。 The first substrate 21 and the second substrate 24 may each be a substrate made of glass, ceramic, polyimide, polycarbonate, polyester, polyethersulfone, or the like. The first electrode 22 and the second electrode 25 may each be an electrode made of gold, silver, copper, tin, aluminum, ruthenium, rhodium, palladium, osmium, iridium, platinum, indium tin oxide (ITO), or the like.

 接続部材27は、接着剤成分の硬化物28と、該硬化物28中に分散された第1の導電粒子12及び第2の導電粒子13とを含んでいる。すなわち、接続部材27は、上述の接着剤フィルムの硬化物ともいえる。 The connection member 27 includes a cured product 28 of the adhesive component, and first conductive particles 12 and second conductive particles 13 dispersed in the cured product 28. In other words, the connection member 27 can be said to be a cured product of the adhesive film described above.

 本実施形態に係る接続構造体では、第1の導電粒子12と第2の導電粒子13とが併用されているため、電子部材23,26同士を好適に接続することが可能である。図2に示すように、第2の導電粒子13が第1の電極22と第2の電極25とを互いに導通させる主たる導通経路を形成する一方で、第1の導電粒子12が第2の導電粒子13と各電極22,25との間の電気的な接続を補助することにより、好適な接続が実現されていると考えられる。 In the connection structure according to this embodiment, the first conductive particles 12 and the second conductive particles 13 are used in combination, so that the electronic components 23, 26 can be suitably connected to each other. As shown in FIG. 2, the second conductive particles 13 form the main conductive path that connects the first electrode 22 and the second electrode 25 to each other, while the first conductive particles 12 assist in the electrical connection between the second conductive particles 13 and each electrode 22, 25, thereby achieving a suitable connection.

 以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 The present invention will be specifically explained below based on examples, but the present invention is not limited to these examples.

<ポリウレタンアクリレート(UA1)の合成>
 攪拌機、温度計、塩化カルシウム乾燥管を有する還流冷却管、及び、窒素ガス導入管を備えた反応容器に、ポリ(1,6-ヘキサンジオールカーボネート)(商品名:デュラノール T5652、旭化成ケミカルズ株式会社製、数平均分子量1000)2500質量部(2.50mol)と、イソホロンジイソシアネート(シグマアルドリッチ社製)666質量部(3.00mol)とを3時間かけて均一に滴下した。次いで、反応容器に充分に窒素ガスを導入した後、反応容器内を70~75℃に加熱して反応させた。次に、反応容器に、ハイドロキノンモノメチルエーテル(シグマアルドリッチ社製)0.53質量部(4.3mmol)と、ジブチル錫ジラウレート(シグマアルドリッチ社製)5.53質量部(8.8mmol)とを添加した後、2-ヒドロキシエチルアクリレート(シグマアルドリッチ社製)238質量部(2.05mol)を加え、空気雰囲気下70℃で6時間反応させた。これにより、ポリウレタンアクリレート(UA1)を得た。ポリウレタンアクリレート(UA1)の重量平均分子量は15000であった。なお、重量平均分子量は、下記の条件に従って、ゲル浸透クロマトグラフ(GPC)より標準ポリスチレンによる検量線を用いて測定した。
(測定条件)
 装置:東ソー株式会社製 GPC-8020
 検出器:東ソー株式会社製 RI-8020
 カラム:株式会社レゾナック・テクノサービス製 Gelpack GLA160S+GLA150S
 試料濃度:120mg/3mL
 溶媒:テトラヒドロフラン
 注入量:60μL
 圧力:2.94×106Pa(30kgf/cm2)
 流量:1.00mL/min
<Synthesis of polyurethane acrylate (UA1)>
Into a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser having a calcium chloride drying tube, and a nitrogen gas inlet tube, 2500 parts by mass (2.50 mol) of poly(1,6-hexanediol carbonate) (product name: Duranol T5652, manufactured by Asahi Kasei Chemicals Corporation, number average molecular weight 1000) and 666 parts by mass (3.00 mol) of isophorone diisocyanate (manufactured by Sigma-Aldrich Co.) were uniformly dropped over 3 hours. Next, after sufficient nitrogen gas was introduced into the reaction vessel, the inside of the reaction vessel was heated to 70 to 75° C. to cause a reaction. Next, 0.53 parts by mass (4.3 mmol) of hydroquinone monomethyl ether (Sigma-Aldrich) and 5.53 parts by mass (8.8 mmol) of dibutyltin dilaurate (Sigma-Aldrich) were added to the reaction vessel, and then 238 parts by mass (2.05 mol) of 2-hydroxyethyl acrylate (Sigma-Aldrich) was added and reacted at 70°C for 6 hours in an air atmosphere. This resulted in polyurethane acrylate (UA1). The polyurethane acrylate (UA1) had a weight average molecular weight of 15,000. The weight average molecular weight was measured by gel permeation chromatography (GPC) using a calibration curve based on standard polystyrene under the following conditions.
(Measurement conditions)
Apparatus: Tosoh Corporation GPC-8020
Detector: Tosoh Corporation RI-8020
Column: Gelpack GLA160S + GLA150S manufactured by Resonac Techno Service Co., Ltd.
Sample concentration: 120mg/3mL
Solvent: Tetrahydrofuran Injection volume: 60 μL
Pressure: 2.94 x 106 Pa (30 kgf/cm2)
Flow rate: 1.00mL/min

<ポリエステルウレタン樹脂の調製方法>
 攪拌機、温度計、コンデンサー、真空発生装置及び窒素ガス導入管が備え付けられたヒーター付きステンレス製オートクレーブに、イソフタル酸48質量部及びネオペンチルグリコール37質量部を投入し、更に、触媒としてのテトラブトキシチタネート0.02質量部を投入した。次いで、窒素気流下220℃まで昇温し、そのまま8時間攪拌した。その後、大気圧(760mmHg)まで減圧し、室温まで冷却した。これにより、白色の沈殿物を析出させた。次いで、白色の沈殿物を取り出し、水洗した後、真空乾燥することでポリエステルポリオールを得た。得られたポリエステルポリオールを充分に乾燥した後、MEK(メチルエチルケトン)に溶解し、攪拌機、滴下漏斗、還流冷却機及び窒素ガス導入管を取り付けた四つ口フラスコに投入した。また、触媒としてジブチル錫ジラウレートをポリエステルポリオール100質量部に対して0.05質量部となる量投入した。さらに、ポリエステルポリオール100質量部に対して50質量部となる量の4,4’-ジフェニルメタンジイソシアネートをMEKに溶解して滴下漏斗で投入し、80℃で4時間攪拌することでポリエステルウレタン樹脂を得た。
<Method for preparing polyester urethane resin>
In a stainless steel autoclave equipped with a heater equipped with a stirrer, a thermometer, a condenser, a vacuum generator and a nitrogen gas inlet tube, 48 parts by mass of isophthalic acid and 37 parts by mass of neopentyl glycol were put in, and 0.02 parts by mass of tetrabutoxy titanate as a catalyst was further put in. Then, the temperature was raised to 220°C under a nitrogen gas flow, and the mixture was stirred for 8 hours. Then, the pressure was reduced to atmospheric pressure (760 mmHg) and cooled to room temperature. This caused a white precipitate to precipitate. Next, the white precipitate was taken out, washed with water, and then vacuum dried to obtain a polyester polyol. After the obtained polyester polyol was thoroughly dried, it was dissolved in MEK (methyl ethyl ketone) and put into a four-neck flask equipped with a stirrer, a dropping funnel, a reflux condenser and a nitrogen gas inlet tube. In addition, dibutyltin dilaurate was put in as a catalyst in an amount of 0.05 parts by mass relative to 100 parts by mass of polyester polyol. Further, 4,4'-diphenylmethane diisocyanate in an amount of 50 parts by mass per 100 parts by mass of polyester polyol was dissolved in MEK and added using a dropping funnel, and stirred at 80°C for 4 hours to obtain a polyester urethane resin.

(溶液A1の調製)
 上述のとおり合成したポリエステルウレタン樹脂のメチルエチルケトン溶液(ポリエステルウレタン樹脂の含有量:47.2体積部)に、ラジカル重合性物質として、上述のとおり合成したポリウレタンアクリレート(UA1)53.3体積部、ジメチロールトリシクロデカンジアクリレート(共栄社化学(株)製、製品名:DCP-A)13.5体積部、イソシアヌル酸EO変性ジ及びトリアクリレート(東亜合成株式会社製、製品名:M-315)6.0体積部、及びEO変性リン酸ジメタクリレート(日本化薬株式会社製、製品名:PM-21)6.0体積部と、ラジカル重合開始剤として、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン(日油株式会社製、製品名:パーヘキサ(登録商標)25O)9.0体積部と、充填材として、2種のシリカ粒子(Evonik Industries AG製、製品名:「R202」20.0体積部及びEvonik Industries AG製、製品名:「R805」15.0体積部)とを、混合して、溶液A1を得た。溶液A1に含まれる接着剤成分(以下、「接着剤成分a1」ともいう)の合計含有量は170体積部であった。
(Preparation of Solution A1)
To a methyl ethyl ketone solution of the polyester urethane resin synthesized as described above (polyester urethane resin content: 47.2 parts by volume), 53.3 parts by volume of the polyurethane acrylate (UA1) synthesized as described above, 13.5 parts by volume of dimethylol tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., product name: DCP-A), 6.0 parts by volume of isocyanuric acid EO-modified di- and triacrylate (manufactured by Toa Gosei Co., Ltd., product name: M-315), and 6.0 parts by volume of EO-modified phosphoric acid dimethacrylate (manufactured by Nippon Kayaku Co., Ltd., product name: PM-21) were added as radical polymerizable substances, 9.0 parts by volume of 2,5-dimethyl-2,5-di(2-ethylhexanoylperoxy)hexane (manufactured by NOF Corporation, product name: Perhexa (registered trademark) 25O) as a radical polymerization initiator, and two types of silica particles (Evonik Industries 20.0 parts by volume of "R202" manufactured by Evonik Industries AG and 15.0 parts by volume of "R805" manufactured by Evonik Industries AG) were mixed together to obtain solution A1. The total content of adhesive components (hereinafter also referred to as "adhesive components a1") contained in solution A1 was 170 parts by volume.

(第1の導電粒子)
 第1の導電粒子(B1)として、デンドライト状の銀被覆銅粒子(三井金属鉱業株式会社製、製品名:ACBY-2)を用いた。
(First conductive particles)
As the first conductive particles (B1), dendritic silver-coated copper particles (manufactured by Mitsui Mining & Smelting Co., Ltd., product name: ACBY-2) were used.

(第2の導電粒子)
 核体であるポリスチレン粒子の表面に、金を含有する導電層(層の厚さ:20nm)を形成した。得られた粒子を第2の導電粒子(B2)(平均粒径:20μm、比重:1.65)として用いた。
(Second Conductive Particles)
A gold-containing conductive layer (thickness: 20 nm) was formed on the surface of the polystyrene core particles. The resulting particles were used as second conductive particles (B2) (average particle size: 20 μm, specific gravity: 1.65).

<接着剤フィルムの作製>
[実施例1]
 接着剤成分a1:導電粒子B1:導電粒子B2(体積部)が170:92.0:3.9となるように、溶液A1に対して、導電粒子B1及び導電粒子B2を分散させて、混合溶液を得た。得られた混合溶液を、厚み80μmのフッ素樹脂フィルム上に塗布し、70℃で10分間熱風乾燥することにより溶剤を除去して、フッ素樹脂フィルム上に形成された厚み25μmの接着剤フィルム(フッ素樹脂フィルム付き接着剤フィルム)を得た。
<Preparation of Adhesive Film>
[Example 1]
Conductive particles B1 and B2 were dispersed in solution A1 so that the ratio of adhesive component a1:conductive particles B1:conductive particles B2 (volume parts) was 170:92.0:3.9 to obtain a mixed solution. The obtained mixed solution was applied onto a fluororesin film having a thickness of 80 μm, and the solvent was removed by hot air drying at 70° C. for 10 minutes to obtain an adhesive film (adhesive film with fluororesin film) having a thickness of 25 μm formed on the fluororesin film.

[実施例2~17及び比較例1、2]
 接着剤成分a1(170体積部)に対する導電粒子B1及び導電粒子B2の量(体積部)を表1に記載のとおりに変更した以外は実施例1と同様にして、比較例1、2及び実施例2~17に係る接着剤フィルムを得た。
[Examples 2 to 17 and Comparative Examples 1 and 2]
The adhesive films according to Comparative Examples 1 and 2 and Examples 2 to 17 were obtained in the same manner as in Example 1, except that the amount (parts by volume) of conductive particles B1 and conductive particles B2 relative to adhesive component a1 (170 parts by volume) was changed as shown in Table 1.

<フロー率の評価>
 実施例1~17及び比較例1、2に係る接着剤フィルムのフロー率を、以下の方法で測定した。
<Evaluation of flow rate>
The flow rate of the adhesive films according to Examples 1 to 17 and Comparative Examples 1 and 2 was measured by the following method.

 まず、生検トレパンBP-10F 1.0mm(カイ インダストリーズ株式会社製)を用いて、上記のとおり作製した各実施例及び比較例に係るフッ素樹脂フィルム付き接着剤フィルムをそれぞれ厚さ方向に打ち抜き、直径1mmの円板状のフッ素樹脂フィルム付き接着剤フィルムを得た。接着剤フィルム側が第1のカバーガラスに接するように、当該フッ素樹脂フィルム付き接着剤フィルムを第1のカバーガラス(松波硝子工業製、厚さ0.15mm、縦18mm、横18mm)上に載せて、第1の積層体(第1のカバーガラス/接着剤フィルム/フッ素樹脂フィルム)を得た。当該第1の積層体を、熱圧着装置(大橋製作所製、LD-06)を用いて、圧着温度60℃、圧着圧力1MPa、圧着時間0.1秒間の条件でフッ素樹脂フィルム側から熱圧着した。なお、圧着温度は、1秒間圧着した際の最高到達温度であり、圧着圧力は、評価用接着剤フィルムの面積換算圧力である。最高到達温度は、上記と同一の第1の積層体を別途用意し、当該積層体の接着剤フィルムと第1のカバーガラスとの間に薄型温度センサ(理化工業株式会社製、ST-50)を挟んだ状態で熱圧着を行い、接着剤フィルムの最高到達温度を予め測定することにより調整した。 First, the adhesive film with fluororesin film according to each of the examples and comparative examples prepared as described above was punched out in the thickness direction using a biopsy trepan BP-10F 1.0 mm (Kai Industries Co., Ltd.), to obtain a disk-shaped adhesive film with fluororesin film having a diameter of 1 mm. The adhesive film with fluororesin film was placed on a first cover glass (Matsunami Glass Industry Co., Ltd., thickness 0.15 mm, length 18 mm, width 18 mm) so that the adhesive film side was in contact with the first cover glass, to obtain a first laminate (first cover glass/adhesive film/fluororesin film). The first laminate was thermocompressed from the fluororesin film side using a thermocompression device (Ohashi Manufacturing Co., Ltd., LD-06) under conditions of a compression temperature of 60°C, a compression pressure of 1 MPa, and a compression time of 0.1 seconds. The compression temperature is the maximum temperature reached when the film is compressed for 1 second, and the compression pressure is the area-converted pressure of the adhesive film for evaluation. The maximum temperature was adjusted by separately preparing the same first laminate as above, sandwiching a thin temperature sensor (ST-50, manufactured by Rika Kogyo Co., Ltd.) between the adhesive film of the laminate and the first cover glass, performing heat compression bonding, and measuring the maximum temperature of the adhesive film in advance.

 次に、熱圧着後の第1の積層体からフッ素樹脂フィルムを剥離し、露出した接着剤フィルム上に第2のカバーガラス(松波硝子工業製、厚さ0.15mm、縦18mm、横18mm)を載せ、第2の積層体(第1のカバーガラス/接着剤フィルム/第2のカバーガラス)を得た。次いで、熱圧着装置(大橋製作所製、BD-06)を用いて、圧着温度170℃、圧着圧力80MPa、圧着時間5秒間の条件で、第2のカバーガラス側から熱圧着し、圧着体を得た。なお、圧着温度は、接着剤フィルムの最高到達温度であり、圧着圧力は、接着剤フィルムの面積換算圧力である。最高到達温度は、上記と同一の第2の積層体を別途用意し、第2の積層体の接着剤フィルムと第1のカバーガラスとの間に薄型温度センサ(理化工業株式会社製、ST-50)を挟んだ状態で熱圧着を行い、接着剤フィルムの最高到達温度を予め測定することにより調整した。 Next, the fluororesin film was peeled off from the first laminate after thermocompression bonding, and a second cover glass (manufactured by Matsunami Glass Industry, thickness 0.15 mm, length 18 mm, width 18 mm) was placed on the exposed adhesive film to obtain a second laminate (first cover glass/adhesive film/second cover glass). Next, using a thermocompression device (manufactured by Ohashi Manufacturing, BD-06), thermocompression was performed from the second cover glass side under conditions of a bonding temperature of 170°C, a bonding pressure of 80 MPa, and a bonding time of 5 seconds to obtain a bonded body. The bonding temperature is the maximum temperature reached by the adhesive film, and the bonding pressure is the pressure converted into the area of the adhesive film. The maximum temperature was adjusted by separately preparing the same second laminate as above, performing thermocompression bonding with a thin temperature sensor (manufactured by Rika Kogyo Co., Ltd., ST-50) sandwiched between the adhesive film of the second laminate and the first cover glass, and measuring the maximum temperature reached by the adhesive film in advance.

 圧着体を光学顕微鏡(株式会社ニコン製、L300ND)で観察し、測長ツールを用いて、圧着体における接着剤フィルムと第1のカバーガラスとの接着部分の面積(接着面積)S1(単位:mm)を求めた。この接着面積S1を用いて、下記式に基づき、フロー率を算出した。結果を表1に示す。
 フロー率[%]={(接着面積S1-0.25π)/(0.25π)}×100
The bonded body was observed with an optical microscope (Nikon Corporation, L300ND), and the area (bonding area) S1 (unit: mm2 ) of the bonded portion between the adhesive film and the first cover glass in the bonded body was measured using a length measuring tool. The flow rate was calculated using this bonding area S1 based on the following formula. The results are shown in Table 1.
Flow rate [%] = {(adhesion area S1 - 0.25π) / (0.25π)} × 100

<信頼性(抵抗上昇率)の評価>
 図3(a),(b)に示すように、実施例1~17及び比較例1、2のフッ素樹脂フィルム付き接着剤フィルムを6mm×6mmに切り出し、切り出した接着剤フィルム31を、6mm×50mmの銅箔32の略中央に接着剤フィルム31が銅箔32に接するように配置し、熱圧着装置(株式会社大橋製作所製、BD-07)を用いて、圧着温度50℃、圧着圧力0.5MPa、圧着時間2秒間の条件でフッ素樹脂フィルムの側から熱圧着した。続いて、接着剤フィルム31上のフッ素樹脂フィルムを剥がし、図3(c),(d)に示すように、50mm×6mmのアルミ箔33を用意し、銅箔32と接着剤フィルム31との積層体に対して接着剤フィルム31を覆うように重ねて、熱圧着装置(株式会社大橋製作所製、BD-07)を用いて、圧着温度150℃、圧着圧力0.5MPa、圧着時間10秒間の条件でアルミ箔33の側から熱圧着し、評価用の実装体を得た。
<Evaluation of reliability (resistance increase rate)>
As shown in Figures 3(a) and (b), the adhesive films with fluororesin film of Examples 1 to 17 and Comparative Examples 1 and 2 were cut to 6 mm x 6 mm, and the cut-out adhesive film 31 was placed approximately in the center of a 6 mm x 50 mm copper foil 32 so that the adhesive film 31 was in contact with the copper foil 32. Using a thermocompression bonding device (manufactured by Ohashi Seisakusho Co., Ltd., BD-07), thermocompression bonding was performed from the fluororesin film side under conditions of a compression temperature of 50°C, a compression pressure of 0.5 MPa, and a compression time of 2 seconds. Next, the fluororesin film on the adhesive film 31 was peeled off, and as shown in Figures 3 (c) and (d), a 50 mm x 6 mm aluminum foil 33 was prepared and placed on the laminate of the copper foil 32 and the adhesive film 31 so as to cover the adhesive film 31. Using a thermocompression bonding device (manufactured by Ohashi Manufacturing Co., Ltd., BD-07), the aluminum foil 33 side was thermocompression bonded under conditions of a bonding temperature of 150°C, a bonding pressure of 0.5 MPa, and a bonding time of 10 seconds, to obtain a mounting body for evaluation.

 得られた実装体に対して、図4に示すように電流計、電圧計を接続し、4端子法で接続抵抗(初期接続抵抗)を測定した。また、エスペック株式会社製TSA-43ELを使用して、-40℃で30分間保持、10分間かけて100℃まで昇温、100℃で30分間保持、10分間かけて-40℃まで降温、というヒートサイクルを20回繰り返すヒートサイクル試験を実装体に対して行った後に、上記と同様にして接続抵抗(試験後接続抵抗)を測定した。下記式により、抵抗上昇率を算出した。結果を表1に示す。
  信頼性(抵抗上昇率)[%]
    ={(試験後接続抵抗-初期接続抵抗)/初期接続抵抗}×100
The resulting assembly was connected to an ammeter and a voltmeter as shown in Fig. 4, and the connection resistance (initial connection resistance) was measured by the four-terminal method. In addition, a heat cycle test was performed on the assembly using a TSA-43EL made by Espec Corporation, in which the assembly was held at -40°C for 30 minutes, heated to 100°C over 10 minutes, held at 100°C for 30 minutes, and cooled to -40°C over 10 minutes, and this cycle was repeated 20 times. The connection resistance (post-test connection resistance) was then measured in the same manner as above. The resistance increase rate was calculated using the following formula. The results are shown in Table 1.
Reliability (resistance increase rate) [%]
= {(post-test connection resistance-initial connection resistance)/initial connection resistance} x 100

<ピール強度の評価>
 まず、ITO配線を有するガラス基板(ガラス基板の大きさ:2.5mm×28mm、ガラス基板の厚さ:300μm、ITO配線の大きさ:2500μm(2.5mm)×300μm、ITO配線の厚さ:0.2μm、ITO配線の本数:28本、ITO配線間のスペース:300μm)を用意した。上記のとおり作製した各実施例及び比較例のフッ素樹脂フィルム付き接着剤フィルムをそれぞれ2mm×23mmに切り出し、切り出した接着剤フィルムを、接着剤フィルム側を下にしてガラス基板上に配置した。このとき、接着剤フィルムの長辺が、ITO配線に対して垂直になるように配置した。その後、熱圧着装置(加熱方式:コンスタントヒート型、株式会社太陽機械製作所製)を用いて、圧着温度60℃、圧着圧力1MPa、圧着時間1秒間の条件で熱圧着し、積層体を得た。図5は、実施例の剥離強度測定における積層体を示す模式上面図である。図5に示される積層体40は、ITO配線を有するガラス基板43(ガラス基板41及びガラス基板41上に設けられたITO配線42を含む基板)と、ITO配線を有するガラス基板43上に配置された接着剤フィルム10Aとを備えている。次いで、接着剤フィルムからフッ素樹脂フィルムを剥がし、接着剤フィルム上に、1.8mm×35mmに切り出したポリイミドテープを貼り付けて、測定用サンプルを得た。測定用サンプルのガラス基板側を40℃に設定したホットプレート上に配置し、ポリイミドテープの先端を引張強度測定装置(テンシロン)にセットした。ガラス基板を水平に固定し、ポリイミドテープを垂直方向に剥離速度50mm/分で引っ張ることにより、ピール強度を測定した。結果を表1に示す。
<Evaluation of Peel Strength>
First, a glass substrate having an ITO wiring (size of glass substrate: 2.5 mm x 28 mm, thickness of glass substrate: 300 μm, size of ITO wiring: 2500 μm (2.5 mm) x 300 μm, thickness of ITO wiring: 0.2 μm, number of ITO wiring: 28, space between ITO wiring: 300 μm) was prepared. The adhesive film with fluororesin film of each of the examples and comparative examples prepared as described above was cut into 2 mm x 23 mm, and the cut adhesive film was placed on the glass substrate with the adhesive film side facing down. At this time, the long side of the adhesive film was placed perpendicular to the ITO wiring. Thereafter, a thermocompression bonding device (heating method: constant heat type, manufactured by Taiyo Kikai Seisakusho Co., Ltd.) was used to perform thermocompression bonding under conditions of a bonding temperature of 60 ° C., a bonding pressure of 1 MPa, and a bonding time of 1 second, to obtain a laminate. FIG. 5 is a schematic top view showing a laminate in the peel strength measurement of the examples. The laminate 40 shown in FIG. 5 includes a glass substrate 43 having an ITO wiring (a substrate including a glass substrate 41 and an ITO wiring 42 provided on the glass substrate 41) and an adhesive film 10A arranged on the glass substrate 43 having an ITO wiring. Next, the fluororesin film was peeled off from the adhesive film, and a polyimide tape cut to 1.8 mm x 35 mm was attached to the adhesive film to obtain a measurement sample. The glass substrate side of the measurement sample was placed on a hot plate set at 40° C., and the tip of the polyimide tape was set in a tensile strength measuring device (Tensilon). The glass substrate was fixed horizontally, and the polyimide tape was pulled in the vertical direction at a peeling speed of 50 mm/min to measure the peel strength. The results are shown in Table 1.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 10、10A…接着剤フィルム、11…接着剤成分、12…第1の導電粒子、13…第2の導電粒子、20…接続構造体、21…第1の基板、22…第1の電極、23…第1の電子部材、24…第2の基板、25…第2の電極、26…第2の電子部材、27…接続部材、28…接着剤成分の硬化物、31…接着剤フィルム、32…銅箔、33…アルミ箔、40…積層体、41…ガラス基板、42…ITO配線、43…ITO配線を有するガラス基板。 10, 10A...adhesive film, 11...adhesive component, 12...first conductive particles, 13...second conductive particles, 20...connection structure, 21...first substrate, 22...first electrode, 23...first electronic component, 24...second substrate, 25...second electrode, 26...second electronic component, 27...connection component, 28...cured adhesive component, 31...adhesive film, 32...copper foil, 33...aluminum foil, 40...laminate, 41...glass substrate, 42...ITO wiring, 43...glass substrate with ITO wiring.

Claims (5)

 接着剤成分と、
 デンドライト状の導電粒子である第1の導電粒子と、
 前記第1の導電粒子以外の導電粒子であって、非導電性の核体及び該核体上に設けられた導電層を有する導電粒子である第2の導電粒子と、を含有する接着剤フィルムであって、
 前記接着剤フィルムのフロー率が10%~50%である、接着剤フィルム。
An adhesive component;
First conductive particles which are dendritic conductive particles;
and second conductive particles, which are conductive particles other than the first conductive particles and have a non-conductive core and a conductive layer provided on the core,
The flow rate of the adhesive film is 10% to 50%.
 前記第2の導電粒子の含有量に対する前記第1の導電粒子の含有量の体積比が、5/1以上である、請求項1に記載の接着剤フィルム。 The adhesive film according to claim 1, wherein the volume ratio of the content of the first conductive particles to the content of the second conductive particles is 5/1 or more.  前記第1の導電粒子及び前記第2の導電粒子の合計含有量が、前記接着剤成分の含有量100体積部に対して20体積部以上である、請求項1又は2に記載の接着剤フィルム。 The adhesive film according to claim 1 or 2, wherein the total content of the first conductive particles and the second conductive particles is 20 parts by volume or more per 100 parts by volume of the adhesive component.  前記第1の導電粒子及び前記第2の導電粒子の合計含有量が、前記接着剤成分の含有量100体積部に対して55体積部以下である、請求項1又は2に記載の接着剤フィルム。 The adhesive film according to claim 1 or 2, wherein the total content of the first conductive particles and the second conductive particles is 55 parts by volume or less per 100 parts by volume of the adhesive component.  第1の基板、及び前記第1の基板上に形成された第1の電極を有する第1の電子部材と、
 第2の基板、及び前記第2の基板上に形成された第2の電極を有する第2の電子部材と、
 前記第1の電極と前記第2の電極とを互いに電気的に接続する接続部材と、を備え、
 前記接続部材は、請求項1又は2に記載の接着剤フィルムの硬化物を含む、接続構造体。
a first electronic component having a first substrate and a first electrode formed on the first substrate;
a second electronic component having a second substrate and a second electrode formed on the second substrate;
a connection member that electrically connects the first electrode and the second electrode to each other,
A connection structure, wherein the connection member comprises a cured product of the adhesive film according to claim 1 or 2.
PCT/JP2023/010692 2023-03-17 2023-03-17 Adhesive film and connection structure WO2024194950A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2023/010692 WO2024194950A1 (en) 2023-03-17 2023-03-17 Adhesive film and connection structure
TW113108798A TW202440863A (en) 2023-03-17 2024-03-11 Adhesive film and connecting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/010692 WO2024194950A1 (en) 2023-03-17 2023-03-17 Adhesive film and connection structure

Publications (1)

Publication Number Publication Date
WO2024194950A1 true WO2024194950A1 (en) 2024-09-26

Family

ID=92841062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010692 WO2024194950A1 (en) 2023-03-17 2023-03-17 Adhesive film and connection structure

Country Status (2)

Country Link
TW (1) TW202440863A (en)
WO (1) WO2024194950A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130113119A1 (en) * 2011-11-04 2013-05-09 Hyun Hee Namkung Semiconductor device using composition for anisotropic conductive adhesive film or anisotropic conductive adhesive film
CN107118706A (en) * 2016-02-25 2017-09-01 三星Sdi株式会社 Anisotropic conductive film and the display device by its connection
WO2018043505A1 (en) * 2016-08-30 2018-03-08 日立化成株式会社 Adhesive composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130113119A1 (en) * 2011-11-04 2013-05-09 Hyun Hee Namkung Semiconductor device using composition for anisotropic conductive adhesive film or anisotropic conductive adhesive film
CN107118706A (en) * 2016-02-25 2017-09-01 三星Sdi株式会社 Anisotropic conductive film and the display device by its connection
WO2018043505A1 (en) * 2016-08-30 2018-03-08 日立化成株式会社 Adhesive composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIRAKAWA, TETSUYUKI: "Isotropic Conductive Film IC-01A for Low Temperature Connection and High Dimensional Stability", HITACHI KASEI TECHNICAL REPORT, HITACHI, JP, no. 62, 1 December 2019 (2019-12-01), JP , pages 19 - 20, XP009558816, ISSN: 0288-8793 *

Also Published As

Publication number Publication date
TW202440863A (en) 2024-10-16

Similar Documents

Publication Publication Date Title
JP4421161B2 (en) Wiring connecting material and wiring board manufacturing method using the same
CN102598419B (en) Circuit connecting material and connection structure for circuit member using same
JP7347576B2 (en) adhesive film
KR101243554B1 (en) Adhesive composition, adhesive for circuit connection, connected structure, and semiconductor device
US11355469B2 (en) Connection structure and method for producing same
JP4605184B2 (en) Wiring connecting material and wiring board manufacturing method using the same
CN118291047A (en) Adhesive composition and structure for circuit connection
KR101139073B1 (en) Circuit connecting adhesive film, connecting structure and method for manufacturing the connecting structure
JP2024152781A (en) Conductive adhesive, method for producing circuit connection structure, and circuit connection structure
US11242472B2 (en) Adhesive film
JP4916677B2 (en) Wiring connecting material and wiring board manufacturing method using the same
WO2024194950A1 (en) Adhesive film and connection structure
TWI814761B (en) adhesive film
JP2022051002A (en) Adhesive composition for circuit connection, circuit connection structure and method for manufacturing the same
WO2025134747A1 (en) Adhesive agent film for circuit connection, method for manufacturing connection structure, conductive material, and connection structure
WO2024190620A1 (en) Adhesive agent composition and connection structure
JP2025029739A (en) Adhesive composition, adhesive film for circuit connection, circuit connection structure and method for producing same
JP2024085094A (en) Adhesive composition, structure and method for producing same
WO2024147200A1 (en) Adhesive film and method for producing connection structure
JP2011168786A (en) Adhesive composition, adhesive composition for circuit connection and circuit connection structure and semiconductor device using the composition
JP2006012804A (en) Adhesive, connecting method of wiring terminal, and wiring structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23928534

Country of ref document: EP

Kind code of ref document: A1