WO2024193364A1 - 光信号处理设备和光纤通信系统 - Google Patents
光信号处理设备和光纤通信系统 Download PDFInfo
- Publication number
- WO2024193364A1 WO2024193364A1 PCT/CN2024/080645 CN2024080645W WO2024193364A1 WO 2024193364 A1 WO2024193364 A1 WO 2024193364A1 CN 2024080645 W CN2024080645 W CN 2024080645W WO 2024193364 A1 WO2024193364 A1 WO 2024193364A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical signal
- optical
- wavelength
- processing device
- output
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0011—Construction using wavelength conversion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0016—Construction using wavelength multiplexing or demultiplexing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0079—Operation or maintenance aspects
Definitions
- the present application relates to the field of optical fiber communication technology, and in particular to an optical signal processing device and an optical fiber communication system.
- Wavelength blocking also known as wavelength conflict
- ROADM reconfigurable optical add/drop multiplexers
- OXC optical cross-connect
- all-optical wavelength conversion is used to eliminate or reduce wavelength blocking in optical fiber communication systems.
- the wavelength conversion function of the node devices in the optical fiber communication system is mainly implemented by the wavelength converter integrated in the node devices. Since wavelength blocking is closely related to the topological structure and wavelength configuration of the optical fiber communication system, it is expected that each node device in the optical fiber communication system, especially optical signal processing equipment such as OXC, uses as few wavelength converters as possible to minimize wavelength blocking in the optical fiber communication system, thereby improving the transmission capacity of the optical fiber communication system with fewer hardware resources.
- a wavelength converter is integrated on the "client side" of the optical signal processing device so that the optical signal processing device has a wavelength conversion function.
- the ability of the wavelength converter to simultaneously convert the wavelengths of multiple optical signals of different wavelengths is wasted, which means that a large number of wavelength converters need to be integrated to meet the wavelength conversion requirements.
- the embodiment of the present application provides an optical signal processing device and an optical fiber communication system including the optical signal processing device.
- the optical signal processing device can greatly meet the wavelength conversion requirements by integrating fewer wavelength converters therein, such as completing the wavelength conversion of optical signals in more dimensions/directions.
- the optical signal processing device can be applied to nodes in an optical fiber communication system that require wavelength conversion to improve the transmission capacity of the optical fiber communication system, and has many advantages such as saving hardware resources and reducing communication costs.
- an optical signal processing device comprising at least one optical signal processor and at least one wavelength converter.
- the optical signal processor is connected to the wavelength converter.
- Multiple first optical signals are received by the at least one optical signal processor, a second optical signal is obtained based on the multiple first optical signals, and the second optical signal is output to any one or more wavelength converters.
- Each of the multiple first optical signals comes from a different optical fiber.
- the second optical signal is received by the wavelength converter, a third optical signal is generated based on the second optical signal, and the third optical signal is output, wherein the frequency range corresponding to the third optical signal does not completely overlap with the frequency range corresponding to the second optical signal.
- the second optical signals obtained based on the multiple first optical signals are also optical signals of different dimensions/directions.
- the optical signal processor is connected to the wavelength converter, and through the at least one optical signal processor, the second optical signal that needs to be wavelength converted can be sent to any one or more wavelength converters.
- multiple second optical signals can be sent to the same wavelength converter as needed to complete the wavelength conversion in the same wavelength converter at the same time, thereby making full use of the multi-wavelength conversion capability of the wavelength converter.
- any second optical signal can be received for any wavelength converter. This means that any multiple optical signals of different dimensions/directions can be output to any wavelength converter to complete the wavelength conversion in the wavelength converter at the same time, thereby making full use of the multi-wavelength conversion capability of the wavelength converter.
- the number of the optical signal processor is 1, that is, the optical signal processor
- the device includes an optical signal processor. Multiple first optical signals can be received through the optical signal processor, and second optical signals can be obtained based on the multiple first optical signals.
- the optical signal processor has multiple input ports, which are respectively used to connect to different optical fibers, so that the multiple first optical signals can be received.
- only one optical signal processor needs to be integrated in the optical signal processing device, which is easy to implement.
- the number of the above-mentioned optical signal processors is multiple, that is, the optical signal processing device includes multiple optical signal processors.
- Each optical signal processor is used to receive at least one of the above-mentioned multiple first optical signals.
- the above-mentioned second optical signal includes an optical signal obtained by each optical signal processor based on the at least one first optical signal received.
- each of the multiple optical signal processors has at least one input port for connecting to at least one optical fiber, so that at least one first optical signal can be received.
- multiple first optical signals are received by multiple optical signal processors, and the flexibility of configuring the optical signal processing device is higher.
- the optical signal processing device also includes a first optical combiner; multiple optical signal processors are connected to the same wavelength converter through a first optical combiner.
- the first optical combiner is used to receive a second optical signal from the optical signal processor, combine the received second optical signals into one, and output it to the connected wavelength converter.
- Multiple optical signal processors are connected to the same wavelength converter through an optical combiner, so that any optical signal processor is connected to any one or more wavelength converters. In this way, for a wavelength converter, even if the number of its input ports is insufficient, it can be connected to multiple optical signal processors through the first optical combiner, and then can receive the second optical signal from any optical signal processor in the multiple optical signal processors.
- any two links connecting the optical signal processor and the first optical combiner are independent of each other. Since any two links connecting the optical signal processor and the first optical combiner are independent of each other, the second optical signals in each direction/dimension can be output to the first optical combiner by independent links, and then reach the corresponding wavelength converter, and even if some second optical signals have the same wavelength, signal conflicts will not be generated in the links due to overlapping parts of the links.
- the optical signal processor may have multiple output ports, and the first optical combiner may have multiple input ports. Different output ports on the optical signal processor are connected to an input port on each first optical combiner through independent optical fibers, and an input port on the first optical combiner is only connected to one optical signal processor. In this way, any two links connecting the optical signal processor and the first optical combiner are independent of each other.
- the optical signal processing device further includes a first wavelength selector.
- Multiple optical signal processors are connected to the same wavelength converter via a first wavelength selector.
- the first wavelength selector is used to receive a second optical signal from the optical signal processor, and based on the wavelength of the received second optical signal, select at least one received second optical signal, and output it to the connected wavelength converter.
- Multiple optical signal processors are connected to the same wavelength converter via a first wavelength selector, thereby realizing the connection between any optical signal processor and any one or more wavelength converters.
- the wavelength selection function of the first wavelength selector can be used to select a second optical signal that needs to be wavelength converted from second optical signals in multiple dimensions/directions, and output it to the wavelength converter to complete the wavelength conversion.
- any two links connecting the optical signal processor and the first wavelength selector are independent of each other. Since any two links connecting the optical signal processor and the first wavelength selector are independent of each other, the second optical signal in each direction/dimension can be output to the first wavelength converter by an independent link, and then the first wavelength selector outputs the second optical signal that needs to be wavelength converted to the wavelength converter, even if the optical signals in different directions/dimensions have the same wavelength, there will be no signal conflict in the link due to the overlapping parts of the link.
- the optical signal processor may have multiple output ports, and the first wavelength selector may have multiple input ports. Different output ports on the optical signal processor are respectively connected to an input port on each first wavelength selector through independent optical fibers, and one input port on the first wavelength selector is only connected to one optical signal processor, thereby ensuring that any two links connecting the optical signal processor and the first wavelength selector are independent of each other.
- the optical signal processing device further includes a second wavelength selector.
- Each of the plurality of optical signal processors is connected to each wavelength converter via the second wavelength selector.
- the second wavelength selector is used to receive a second optical signal from each optical signal processor, and output the received one or more second optical signals to any wavelength converter based on the wavelength of the received second optical signal.
- the optical signal processor may have at least one output port
- the second wavelength selector may have multiple input ports and multiple output ports. Different input ports on the second wavelength selector are connected, and one input port on the second wavelength selector is connected to only one optical signal processor; one output port on the second wavelength selector is connected to one wavelength converter.
- the second wavelength selector can receive the second optical signal from each optical signal processor, and output the received one or more second optical signals to any wavelength converter based on the wavelength of the received second optical signal.
- the optical signal processing device also includes one or more multiplexers.
- Each wavelength converter is connected to at least one multiplexer to output the third optical signal to the connected multiplexer.
- the multiplexer is used to receive the third optical signal, obtain the fourth optical signal based on the received third optical signal, and output the fourth optical signal.
- the obtained third optical signal can be output through one or more multiplexers, such as selectively outputting the third optical signal to the optical fiber through a specific multiplexer, or selectively output by the multiple multiplexers. It can be seen that the optical signal processing device can output the third optical signal obtained by a wavelength converter to the optical fiber through one or more multiplexers, thereby meeting the accessibility of the third optical signal.
- the number of multiplexers is multiple, that is, the optical signal processing device includes multiple multiplexers. Any of the wavelength converters is connected to each multiplexer. In this way, the optical signal processing device can output the third optical signal obtained by any wavelength converter to the optical fiber through any multiplexer, thereby meeting the accessibility of the third optical signal.
- the optical signal processing device also includes a first optical splitter.
- a wavelength converter is connected to each multiplexer through a first optical splitter.
- the first optical splitter is used to receive a third optical signal, split the third optical signal, and output each split third optical signal to at least one multiplexer respectively.
- a wavelength converter and multiple multiplexers are connected through an optical splitter, so that each wavelength converter is connected to multiple multiplexers. In this way, even if the wavelength selector has only one output port, the third optical signal obtained can be output to any one or more multiplexers at the same time through the first optical splitter.
- the optical signal processing device can output the third optical signal obtained by any wavelength converter to any optical fiber through any multiplexer.
- the first optical splitter has multiple output ports, and the multiplexer has multiple input ports. Different output ports on the first optical splitter are connected to an input port on different multiplexers, and an input port on the multiplexer is connected to a first optical splitter.
- the optical signal processing device also includes a third wavelength selector. All wavelength converters are connected to each multiplexer through the third wavelength selector; the third wavelength selector is used to receive the third optical signal from the wavelength converter, and send the received at least one third optical signal to any one or more multiplexers.
- the third wavelength selector has multiple input ports and multiple output ports. Each wavelength converter is respectively connected to a different input port on the third wavelength selector, and one input port on the third wavelength selector is only connected to one wavelength converter.
- the third wavelength selector is then connected to different multiplexers through different output ports. In this way, the third wavelength selector can receive the third optical signal from each wavelength converter, and select one from them and send it to any multiplexer.
- the optical signal processor includes an optical splitter, and the optical splitter is used to split the first optical signal, and the second optical signal is a signal obtained by splitting the first optical signal.
- the optical signal processor includes a wavelength selector, and the wavelength selector is used to select the second optical signal from the first optical signal according to the wavelength of the first optical signal.
- the optical signal processor since the optical signal processor has a wavelength selection function, and an output port on the optical signal processor is only connected to one wavelength converter, the optical signal processor can flexibly select which wavelength optical signal is output from which output port, thereby preventing multiple optical signal processors from outputting second optical signals of the same wavelength to the same wavelength converter, and avoiding wavelength conflicts between second optical signals of the same wavelength in the wavelength converter.
- the multiplexer includes a wavelength selector, and the wavelength selector is used to select the fourth optical signal from the third optical signal according to the wavelength of the third optical signal.
- the optical signal processing device further includes a first connector.
- the optical signal processor is also connected to the first connector, and the first connector is connected to at least one signal receiving end.
- the optical signal processor is also used to output a second optical signal to the first connector.
- the first connector is used to output the second optical signal from the optical signal processor to the signal receiving end.
- a portion of the output ports on the optical signal processor are used to output the second optical signal that needs to be wavelength converted to the wavelength converter, and a portion of the output ports are used to output the second optical signal that needs to be transmitted to the next node to the multiplexer.
- the optical signal processor has a wavelength converter and a multiplexer, and also has an output port for outputting a second optical signal to the first connector, so as to be output to the corresponding signal receiving end through the first connector.
- the optical signal processor has a sufficient number of output ports, some of its output ports are connected to the wavelength converter, some of its output ports are connected to the multiplexer, and another of its output ports is connected to the first connector. In this way, not only the connection between any optical signal processor and each wavelength converter is realized, but also the link loss between the optical signal processor and the multiplexer and the first connector is not increased, thereby ensuring good signal quality.
- the optical signal processing device when multiple optical signal processors are connected to each wavelength converter through a first optical combiner, the optical signal processing device may also include a second optical splitter.
- An optical signal processor is connected to a first optical combiner and a first connector through a second optical splitter.
- the second optical splitter is used to receive a second optical signal, split the second optical signal into two paths, output one of the split second optical signals to the connected first optical combiner, and output the other split second optical signal to the first connector.
- the optical signal processing device when multiple optical signal processors are connected to each wavelength converter through a wavelength selector, the optical signal processing device may further include a second optical splitter.
- An optical signal processor is connected to a wavelength selector and a first connector through a second optical splitter.
- the second optical splitter is used to receive a second optical signal, split the second optical signal into two paths, output one of the split second optical signals to the connected wavelength selector, and output the other split second optical signal to the first connector.
- the second wavelength selector is connected to at least one signal receiving end, and the second wavelength selector is further used to output the received at least one second optical signal to the signal receiving end.
- the optical signal processing device further includes a second connector.
- the second connector is connected to the multiplexer.
- the second connector is used to receive the fifth optical signal input by the signal transmitting end, and output the fifth optical signal to any one or more multiplexers.
- the second connector has multiple input ports and multiple output ports, which are connected to different signal sending ends through different input ports, and are connected to each multiplexer through different output ports.
- a part of the input ports on the multiplexer are used to receive the third optical signal that has completed the wavelength conversion
- a part of the input ports are used to receive the second optical signal that needs to be transmitted to the next node
- another input port is used to receive the fifth optical signal originated from the signal receiving end.
- the multiplexer has a sufficient number of input ports
- a part of its input ports are used to connect to the wavelength converter
- another part of its input ports are used to connect to the optical signal processor
- another input port is used to connect to the second connector, which not only realizes the connection between any wavelength converter and each multiplexer, and the connection between any multiplexer and each optical signal processor, but also does not increase the link loss between the optical signal processor and the multiplexer and between the optical signal processor and the second connector, thereby ensuring good signal quality.
- the optical signal processing device further includes a second optical combiner, and each of the first optical splitter and the second connector is connected to a multiplexer via a second optical combiner.
- the second optical combiner is used to receive the third optical signal and the fifth optical signal, combine the third optical signal and the fifth optical signal into one path, and then output it to the connected multiplexer.
- the third optical signal and the fifth optical signal to be sent to a multiplexer are combined into one path, and then output to the multiplexer. In this way, only one input port on the multiplexer needs to be occupied to enable it to receive the fifth optical signal and all the third optical signals.
- the second optical combiner has multiple input ports. Different output ports on the first optical splitter are connected to an input port on different second optical combiners, and an input port on the second optical combiner is connected to a first optical splitter or a second connector.
- the third wavelength selector is further used to receive a fifth optical signal input by the signal transmitting end, and output the fifth optical signal to any one or more multiplexers.
- each optical signal processor is connected to each wavelength converter.
- any wavelength converter can receive any second optical signal. This means that any multiple optical signals of different dimensions/directions can be output to any wavelength converter to simultaneously complete wavelength conversion in the wavelength converter, thereby fully utilizing the multi-wavelength conversion capability of the wavelength converter.
- At least one optical signal processor and at least one wavelength converter are One-to-one connection.
- multiple optical signal processors are connected to multiple wavelength converters in a one-to-one correspondence, it is possible to ensure that the second optical signal of any wavelength is output to the corresponding wavelength converter, thereby avoiding wavelength conflicts when the second optical signals output by different optical signal processors have the same wavelength.
- the link loss between the optical signal processor and the wavelength converter is lower.
- an embodiment of the present application provides an optical fiber communication system, comprising any one or more of the optical signal processing devices described above.
- the optical signal processing device described above can maximize the communication transmission capacity of the optical fiber communication system through a minimum of wavelength converters, save hardware resources, and have a low communication cost.
- FIG1 is a schematic diagram of wavelength blocking phenomenon in an optical fiber communication system
- FIG2 is a schematic diagram of the structure of an optical signal processing device
- FIG3 is a schematic structural diagram of the case where the first connector in FIG2 is MCS (J ⁇ K);
- FIG4 is a schematic diagram of the structure when the first connector in FIG2 is composed of WSS (J ⁇ 1) and WSS (1 ⁇ K);
- FIG5 is a first structural diagram of an optical signal processing device provided in an embodiment of the present application.
- FIG6 is a second structural diagram of an optical signal processing device provided in an embodiment of the present application.
- FIG7 is a third structural diagram of an optical signal processing device provided in an embodiment of the present application.
- FIG8 is a fourth structural diagram of an optical signal processing device provided in an embodiment of the present application.
- FIG9 is a fifth structural diagram of an optical signal processing device provided in an embodiment of the present application.
- FIG10 is a sixth structural diagram of an optical signal processing device provided in an embodiment of the present application.
- FIG11 is a seventh structural diagram of an optical signal processing device provided in an embodiment of the present application.
- FIG12 is a schematic diagram of the structure of an optical signal processing device according to an embodiment of the present application.
- FIG13 is a ninth structural diagram of an optical signal processing device provided in an embodiment of the present application.
- FIG14 is a schematic diagram of a partial structure of an optical signal processing device provided in an embodiment of the present application.
- FIG15 is a schematic diagram of the structure of an optical signal processing device provided in an embodiment of the present application.
- FIG16 is a second schematic diagram of a partial structure of an optical signal processing device provided in an embodiment of the present application.
- FIG17 is a first structural diagram of a second connector in an optical signal processing device provided in an embodiment of the present application.
- FIG18 is a second structural schematic diagram of a second connector in an optical signal processing device provided in an embodiment of the present application.
- FIG. 19 is a schematic diagram eleven of the structure of the optical signal processing device provided in an embodiment of the present application.
- words such as “exemplary” or “for example” are used to indicate examples, illustrations or descriptions. Any embodiment or design described as “exemplary” or “for example” in the embodiments of the present application should not be interpreted as being more preferred or more advantageous than other embodiments or designs. Specifically, the use of words such as “exemplary” or “for example” is intended to present related concepts in a concrete manner for ease of understanding.
- the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application. Ordinary technicians in this field can know that with the evolution of network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
- the nominal central wavelength refers to the central wavelength corresponding to each channel in a fiber-optic communication system based on optical wavelength division multiplexing technology. It reflects the channel spacing, spectrum position, etc. of the optical signal (optical carrier) in the fiber-optic communication system.
- the wavelength of the optical signal mentioned below refers to the nominal central wavelength of the optical signal.
- a multi-wavelength optical signal refers to an optical signal formed by merging multiple optical signals with different nominal central wavelengths. Its spectrum contains multiple spectrum fragments. Generally, each spectrum fragment corresponds to an optical signal with a nominal central wavelength.
- Single-wavelength optical signal an optical signal with a certain nominal central wavelength.
- Wavelength selective switching can also be called a wavelength selector.
- WSS (A ⁇ B) means that the WSS has A input ports and B output ports.
- WSS (1 ⁇ N) means that the WSS has 1 input port and N output ports;
- WSS (N ⁇ 1) means that the WSS has N input ports and 1 output port.
- An optical combiner is an optical device used to combine multiple optical signals into one. During the combining process, the optical combiner does not change the wavelength of each optical signal and the information it carries.
- An optical splitter is an optical device used to split one optical signal into multiple optical signals. During the splitting process, the optical splitter does not change the wavelength of each optical signal and the information it carries.
- An optical switch has two or more optical ports and can selectively transmit, redirect or block optical signals in an optical transmission link.
- a wavelength converter (WC) is used to convert the wavelength of an input optical signal and output it. The wavelength converter does not change the information carried by the optical signal during the wavelength conversion process.
- Directionless means that each signal receiving end can receive optical signals in any direction/dimension in the optical fiber communication system, and each signal sending end can send optical signals to optical fibers in any direction/dimension in the optical fiber communication system.
- Contentionless means that any n directions/dimensions (2 ⁇ n ⁇ J, and n is not greater than the number of signal receiving ends) in the optical fiber communication system can send optical signals of the same wavelength to n signal receiving ends (each signal receiving end only receives one optical signal); any n signal sending ends (2 ⁇ n ⁇ J, and n is not greater than the number of signal sending ends) can send optical signals of the same wavelength to any n directions/dimensions of the optical fiber in the optical fiber communication system.
- Wavelength blocking also known as wavelength conflict
- optical fiber communication systems especially in optical fiber communication systems that use ROADM or OXC devices as node devices, whose topology is more complex and the probability of wavelength blocking is higher.
- FIG1 is a schematic diagram of wavelength blocking in an optical fiber communication system.
- the optical fiber communication system includes nodes A, B, C, D, and E connected in sequence.
- Each node can be used as a "relay node” to transmit the optical signal from the previous node to the next node.
- it can also be used as a "signal originating node” to transmit the optical signal input from the signal transmitting end of the node to the next node.
- it can also be used as a "signal terminating node” to transfer the optical signal from the previous node to the signal receiving end at the node.
- the nominal center wavelength of the optical signal is located in a specific band, and the wavelength range of the band is ⁇ 1 ⁇ n.
- the optical signal S1 (which may be a multi-channel optical signal) originating from node B and terminating at node C adopts a nominal center wavelength range of ⁇ 1 ⁇ x, where ⁇ x is less than ⁇ n.
- the optical signal S2 (which may be a multi-channel optical signal) originating from node D and terminating at node E adopts a nominal center wavelength range of ⁇ x+1 ⁇ n, where ⁇ x+1 is greater than ⁇ x, and the union of ⁇ 1 ⁇ x and ⁇ x+1 ⁇ n is ⁇ 1 ⁇ n.
- the optical signal S3 originating from node A and needing to pass through nodes B, C, D, and E to reach node F will have no nominal center wavelength available. Specifically, if the optical signal S3 uses a nominal central wavelength in the range of ⁇ 1 to ⁇ x, the optical signal S3 will be wavelength-blocked with the optical signal S1 when passing through nodes B and C. If the optical signal S3 uses a nominal central wavelength in the range of ⁇ x+1 to ⁇ n, the optical signal S3 will be wavelength-blocked with the optical signal S2 when passing through nodes D and E. This is the wavelength blocking phenomenon in the optical fiber communication system. This wavelength blocking phenomenon causes the inability to transmit data between nodes A and F because there is no optical signal with a suitable nominal central wavelength to be transmitted, thereby reducing the transmission capacity of the optical fiber communication system.
- wavelength conversion is used to eliminate or reduce wavelength blocking in optical fiber communication systems.
- node A can select a wavelength in the range of ⁇ x+1 ⁇ n as the nominal center wavelength of optical signal S3.
- node D converts the nominal center wavelength of the optical signal S3 to the range of ⁇ 1 ⁇ x. Due to the wavelength conversion, when the optical signal S3 passes through nodes D and E, there will be no wavelength blocking with optical signal S2, and finally reaches node F.
- the wavelength conversion function of node D is used to eliminate the wavelength blocking originally existing in the optical fiber communication system, so that data can also be transmitted between nodes A and F, thereby improving the transmission capacity of the optical fiber communication system.
- the wavelength conversion function of nodes in the optical fiber communication system is mainly realized by the wavelength converter integrated in the node device. Since wavelength blocking is closely related to the topological structure and wavelength configuration of the optical fiber communication system, it is expected that each node device in the optical fiber communication system, especially the optical signal processing device, will use as few wavelength converters as possible to minimize the wavelength blocking in the optical fiber communication system, thereby improving the transmission capacity of the optical fiber communication system with less hardware resources.
- the optical signal processing device by integrating a wavelength converter on the "client side" of an optical signal processing device, the optical signal processing device has a wavelength conversion function, so that it can be used as a node device in an optical fiber communication system to realize the cross-connection function and wavelength conversion function of optical signals.
- Such an optical signal processing device usually includes multiple demultiplexers, multiple multiplexers, a first connector, multiple wavelength converters and a second connector.
- the optical signal processing device in the related art is introduced below by taking the optical signal processing device shown in Figure 2 as an example.
- the optical signal processing device includes two demultiplexers, two multiplexers, a first connector, two wavelength converters and a second connector.
- each demultiplexer has one end coupled with the optical fiber to receive the optical signal input by the optical fiber, and the other end is connected to an input port on the first connector through an output port to send the optical signal input by the optical fiber to the first connector.
- Different demultiplexers are coupled with different optical fibers, that is, the optical signals received by each demultiplexer come from different optical fibers and have different dimensions/directions.
- the first connector has one end connected to each demultiplexer through different input ports, and the other end connected to different signal receiving ends through different output ports, so as to output the optical signal from the demultiplexer to the corresponding signal receiving end.
- the first connector is also connected to each wavelength converter through different output ports, so that the optical signal output by any demultiplexer can be output to a connected wavelength converter.
- the plurality of wavelength converters are respectively connected to different input ports on the second connector.
- any wavelength converter it can receive an optical signal of a certain dimension/direction through the first connector, perform wavelength conversion on the optical signal, and output the wavelength-converted optical signal to the second connector.
- the second connector has one end connected to different signal transmitting ends through different input ports to receive the optical signal input by the signal transmitting end and output it to the corresponding multiplexer to output the optical signal to the optical fiber through the multiplexer.
- it is also connected to each wavelength converter through different input ports to receive the optical signal from the wavelength converter, output the optical signal input by each wavelength converter to the corresponding multiplexer, output the wavelength-converted optical signal to the optical fiber through the multiplexer, and then transmit it to the next node through the optical signal.
- client side is a concept opposite to the "line side".
- one side of the output port of the first connector and one side of the input port of the second connector are the “client side”.
- One side of the input port of the first connector and one side of the output port of the second connector are the “line side”.
- the signal receiving end, the signal transmitting end and the wavelength converter are all located on the “client side", while the demultiplexer and the multiplexer are located on the "line side”.
- the first connector shown in FIG. 2 is generally a multi-channel broadcast function optical switch (multi-cast switch, MCS) having multiple input ports and multiple output ports, such as the MCS (J ⁇ K) shown in FIG. 3, wherein J and K are both positive integers, J represents the number of input ports of the MCS, and K represents the number of output ports of the MCS.
- MCS multi-channel broadcast function optical switch
- MCS includes J optical splitters (1 ⁇ K) and K optical switches (J ⁇ 1).
- the optical splitter (1 ⁇ K) has 1 input port and K output ports
- the optical switch (J ⁇ 1) has J input ports and 1 output port.
- a plurality of demultiplexers are respectively connected to the input ports of the J splitters (1 ⁇ K)
- the K output ports of each optical splitter (1 ⁇ K) are respectively connected to an input port on a different optical switch (J ⁇ 1)
- the K output ports of the K optical switches (J ⁇ 1) are respectively connected to different wavelength converters and signal receiving ends.
- any optical splitter (1 ⁇ K) is connected to After receiving the optical signal from the demultiplexer, the optical signal is divided into K paths and output to K optical switches (J ⁇ 1) respectively. After receiving the optical signal from each optical splitter (1 ⁇ K), any optical switch (J ⁇ 1) selects one of them and outputs it to the connected wavelength converter or signal receiving end.
- a wavelength converter can only receive an optical signal from a demultiplexer, that is, a wavelength converter can only perform wavelength conversion on an optical signal of one dimension/direction.
- ⁇ x an optical signal with a nominal central wavelength of ⁇ x
- ⁇ y another demultiplexer inputs an optical signal with a nominal central wavelength of ⁇ y (hereinafter referred to as ⁇ y) to the first connector
- ⁇ y a nominal central wavelength of ⁇ y
- the ability of the wavelength converter to simultaneously convert the wavelengths of multiple optical signals of different wavelengths (hereinafter referred to as multi-wavelength conversion capability) is wasted, or a large number of wavelength converters need to be integrated in the optical signal processing device to meet the wavelength conversion requirements.
- adWSS add/drop wavelength selective switching
- MCS wavelength selective switching
- the first connector shown in FIG2 may also be composed of two WSSs, generally one WSS (J ⁇ 1) and one WSS (1 ⁇ K) as shown in FIG4.
- a plurality of demultiplexers are respectively connected to different input ports on the WSS (J ⁇ 1)
- the output port of the WSS (J ⁇ 1) is connected to the input port of the WSS (1 ⁇ K)
- different output ports on the WSS (1 ⁇ K) are respectively connected to different wavelength converters or signal receiving ends.
- the WSS (J ⁇ 1) selects one from the received optical signals according to the wavelength and outputs it to the WSS (1 ⁇ K).
- the WSS (1 ⁇ K) After receiving the optical signal from the WSS (J ⁇ 1), the WSS (1 ⁇ K) outputs it to the corresponding wavelength conversion module for wavelength conversion; or after receiving the optical signal from the WSS (J ⁇ 1), it outputs it to the corresponding signal receiving end.
- a demultiplexer inputs an optical signal with a nominal central wavelength of ⁇ x to WSS (J ⁇ 1)
- another demultiplexer also inputs an optical signal with a nominal central wavelength of ⁇ x to WSS (J ⁇ 1)
- WSS (J ⁇ 1) and WSS (1 ⁇ K) are connected by a link
- one of the two ⁇ x paths cannot be input to WSS (1 ⁇ K) through WSS (J ⁇ 1), resulting in the path ⁇ x being unable to reach the corresponding wavelength converter.
- the fact that optical signals in some dimensions/directions cannot reach the corresponding wavelength converter through the first connector means that the wavelength conversion function of the optical signal processing device is limited, and the function of the wavelength converter integrated therein is not utilized.
- an embodiment of the present application provides an optical signal processing device, which can greatly meet the wavelength conversion requirements by integrating fewer wavelength converters therein, such as completing the wavelength conversion of optical signals in more dimensions/directions.
- the optical signal processing device can be applied to nodes in an optical fiber communication system that require wavelength conversion, such as node D shown in FIG1, to improve the transmission capacity of the optical fiber communication system, save hardware resources, and reduce communication costs.
- the optical signal processing device may include at least one optical signal processor and at least one wavelength converter.
- the at least one optical signal processor is coupled with multiple optical fibers to receive multiple optical signals belonging to different dimensions/directions from the multiple optical fibers.
- the optical signal processor is connected to the wavelength converter, and the at least one optical signal processor can output an optical signal to any one or more wavelength converters.
- the present application refers to the optical signal input from the optical fiber to the optical signal processor as the first optical signal, and the optical signal output by the optical signal processor as the second optical signal.
- Multiple first optical signals are received by at least one optical signal processor, a second optical signal is obtained based on the multiple first optical signals, and the second optical signal is output to any one or more wavelength converters.
- Each wavelength converter is used to receive the second optical signal, generate a third optical signal based on the received second optical signal, and output the third optical signal, and the frequency range corresponding to the third optical signal and the second optical signal does not completely overlap.
- the frequency ranges corresponding to the third optical signal and the second optical signal do not completely overlap includes the case where the frequency ranges corresponding to the third optical signal and the second optical signal partially overlap, for example, the frequency range corresponding to the second optical signal is 4.0GHz-5.0GHz, and the frequency range corresponding to the third optical signal is 4.5GHz-5.0GHz. There is no overlap, for example, the frequency range corresponding to the second optical signal is 4.0GHz-5.0GHz, and the frequency range corresponding to the third optical signal is 6.0GHz-7.0GHz.
- the frequency range corresponding to the third optical signal and the second optical signal does not completely overlap can be understood as that the wavelength (nominal center wavelength) of the third optical signal is different from that of the second optical signal, that is, the third optical signal is the optical signal obtained after the wavelength converter completes the wavelength conversion of the second optical signal.
- the optical signal processing device includes a plurality of optical signal processors, each of which is used to receive at least one first optical signal from at least one optical fiber.
- the second optical signal obtained and output by at least one optical signal processor includes an optical signal obtained by each optical signal processor based on the first optical signal received.
- a wavelength converter in an optical signal processing device, can be connected to multiple optical signal processors, so that multiple second optical signals can be output to the same wavelength converter.
- an optical signal processor can be connected to one or more wavelength converters.
- each wavelength converter can be connected to each optical signal processor, and specific reference can be made to the embodiments shown in Figures 5 to 18 below.
- any second optical signal can be received for any wavelength converter. This means that any multiple optical signals of different dimensions/directions can be output to any wavelength converter to simultaneously complete wavelength conversion in the wavelength converter, thereby making full use of the multi-wavelength conversion capability of the wavelength converter.
- At least one optical signal processor is connected to at least one wavelength converter in a one-to-one correspondence. That is, one optical signal processor is connected to one wavelength converter, and one wavelength converter is connected to one optical signal processor.
- one optical signal processor is connected to one wavelength converter
- one wavelength converter is connected to one optical signal processor.
- FIG5 is a schematic diagram of an optical signal processing device provided in an embodiment of the present application.
- the optical signal processing device includes two optical signal processors and two wavelength converters.
- Each optical signal processor is coupled to an optical fiber at one end and connected to each wavelength converter at the other end.
- the two optical signal processors are coupled to different optical fibers, and thus the dimensions/directions of the optical signals received from the optical fibers are different.
- each optical signal processor After each optical signal processor receives the first optical signal, it obtains a second optical signal based on the first optical signal, and outputs the second optical signal to any one or more wavelength converters.
- the second optical signals obtained by each optical signal processor based on the first optical signal are also optical signals of different dimensions/directions.
- any optical signal processor can send the second optical signal that needs to be wavelength converted to any one or more wavelength converters.
- the second optical signal of any optical signal processor can be received. This means that any number of optical signals of different dimensions/directions can be output to any wavelength converter to complete wavelength conversion in one wavelength converter at the same time, thereby making full use of the multi-wavelength conversion capability of the wavelength converter. In this way, in the face of certain wavelength conversion requirements, the number of wavelength converters that need to be integrated in the optical signal processing device can be greatly reduced, saving hardware resources while also improving the communication transmission capacity of the optical fiber communication system where the optical signal processing device is located.
- any optical signal processor is connected to each wavelength converter, thereby ensuring that any multiple optical signals of different dimensions/directions can be output to any wavelength converter, so that multiple wavelength optical signals can be simultaneously converted by one wavelength converter, thereby making full use of its multi-wavelength conversion capability.
- the optical signal processor is not connected to the wavelength converter through the first connector in FIG. 4 , and therefore is not limited by the function and structure of the first connector in FIG. 4 .
- the number of optical signal processors and wavelength converters in the optical signal processing device of the embodiment of the present application is not limited to the number shown in FIG5.
- the optical signal processing device may integrate J optical signal processors, where J is a positive integer greater than 1, indicating the number of dimensions/directions of the optical signal in the optical fiber communication system, or indicating the number of adjacent nodes in the optical fiber communication system.
- i wavelength converters may be integrated in the optical signal processing device, where i is a positive integer (i.e., there may be only one wavelength converter shown in FIG. 5 ). Since the optical signal processing device provided by the embodiment of the present application can give full play to the multi-wavelength conversion capability of each wavelength converter, the number i of wavelength converters integrated in the optical signal processing device may be much smaller than the number of optical signals that need to be converted.
- each optical signal processor may have one input port and couple one optical fiber to receive one first optical signal.
- each optical signal processor may have multiple input ports and couple multiple optical fibers through different input ports to receive multiple first optical signals.
- the optical signal processor may specifically be an optical signal processor having multiple input ports, so that it can also be coupled with multiple optical fibers through different input ports to further receive multiple first optical signals.
- multiple optical signal processors are connected to the same wavelength converter through an optical combiner.
- the “multiple optical signal processors” here may include all the optical signal processors in the optical signal processing device, or may only include some of the optical signal processors in the optical signal processing device.
- Multiple optical signal processors are connected to the same wavelength converter through an optical combiner, so that any optical signal processor is connected to any one or more wavelength converters. In this way, for a wavelength converter, even if the number of its input ports is insufficient, it can be connected to multiple optical signal processors through the first optical combiner, and then it can receive the second optical signal from any optical signal processor in the multiple optical signal processors.
- the optical combiner used to connect the optical signal processor and the wavelength converter in the embodiment of the present application is referred to as the first optical combiner.
- the two optical signal processors are connected to the same wavelength converter through a first optical combiner.
- the first optical combiner can receive a second optical signal from any optical signal processor, combine the received second optical signals into one, and then output it to the connected wavelength converter.
- Multiple optical signal processors are connected to the same wavelength converter through an optical combiner, so that any optical signal processor is connected to each wavelength converter. In this way, for a wavelength converter, even if the number of its input ports is insufficient, it can be connected to each optical signal processor through the first optical combiner, and then the second optical signal from any optical signal processor can be received.
- the number of first optical combiners is the same as the number of wavelength converters, that is, each wavelength converter is connected to each optical signal processor through a first optical combiner. In other implementations, the number of first optical combiners may be less than the number of wavelength converters, so that a part of the wavelength converters are connected to each optical signal processor through the first optical combiner, and the other part of the wavelength converters are connected to each optical signal processor through other methods.
- any two links connecting the optical signal processor and the first optical combiner are independent of each other. Since any two links connecting the optical signal processor and the first optical combiner are independent of each other, the second optical signals in each direction/dimension can be output to the first optical combiner by independent links, and then reach the corresponding wavelength converter. Even if some second optical signals have the same wavelength, there will be no signal conflict in the link due to overlapping parts of the link.
- the optical signal processor can have multiple output ports
- the first optical combiner has multiple input ports. Different output ports on the optical signal processor are respectively connected to an input port on each first optical combiner through independent optical fibers, and one input port on the first optical combiner is only connected to one optical signal processor.
- multiple optical signal processors are connected to the same wavelength converter through a wavelength selector.
- the “multiple optical signal processors” here may include all optical signal processors in the optical signal processing device, or may only include some optical signal processors in the optical signal processing device.
- Multiple optical signal processors are connected to the same wavelength converter through a wavelength selector, so that any optical signal processor is connected to any one or more wavelength converters.
- the wavelength selection function of the wavelength selector can be used to select the second optical signal that needs to be wavelength converted from the second optical signals in multiple dimensions/directions, and output it to the wavelength converter to complete the wavelength conversion.
- the wavelength selector used to connect multiple optical signal processors to the same wavelength converter is referred to as a first wavelength selector.
- the two optical signal processors are connected to the same wavelength converter via a first wavelength selector.
- the first wavelength selector can receive a second optical signal from any optical signal processor, and based on the wavelength of the received second optical signal, select one from the received second optical signals and output it to the connected wavelength converter.
- Multiple optical signal processors are connected to the same wavelength converter via a wavelength selector, so that any optical signal processor is connected to each wavelength converter. In this way, the wavelength selector can be used to connect multiple optical signal processors to the same wavelength converter.
- the wavelength selection function selects the second optical signal that needs to be wavelength converted from the second optical signals in multiple dimensions/directions, and outputs it to the wavelength converter to complete the wavelength conversion.
- any two links connecting the optical signal processor and the first wavelength selector are independent of each other. Since any two links connecting the optical signal processor and the first wavelength selector are independent of each other, the second optical signals in each direction/dimension can be output to the first wavelength selector by independent links, and then the first wavelength selector outputs the second optical signal that needs to be wavelength converted to the wavelength converter. In this way, even if the optical signals in different directions/dimensions have the same wavelength, there will be no signal conflict in the link due to overlapping parts of the link.
- the optical signal processor may have multiple output ports
- the first wavelength selector may have multiple input ports.
- Different output ports on the optical signal processor are respectively connected to an input port on each first wavelength selector through independent optical fibers, and one input port on the first wavelength selector is only connected to one optical signal processor, thereby ensuring that any two links connecting the optical signal processor and the first wavelength selector are independent of each other.
- the optical signal processor may be a wavelength selector, such as WSS (1 ⁇ N), where 1 represents the number of input ports of the WSS, N represents the number of output ports of the WSS, and N is a positive integer. Then, when the first optical signal input to the optical signal processor is a multi-wavelength optical signal, the optical signal processor (i.e., the wavelength selector) may select one or more second optical signals from the first optical signal, and each second optical signal may be a multi-wavelength optical signal or a single-wavelength optical signal.
- WSS (1 ⁇ N) the wavelength selector
- the optical signal processor since the optical signal processor has a wavelength selection function, and an output port on the optical signal processor is only connected to one wavelength converter, the optical signal processor may flexibly select which wavelength of the optical signal is to be outputted from which output port thereof, thereby preventing multiple optical signal processors from outputting second optical signals of the same wavelength to the same wavelength converter, and preventing second optical signals of the same wavelength from having wavelength conflicts in the wavelength converter.
- the optical signal processor may also be an optical splitter.
- a second optical signal is a signal obtained by the optical signal processor (i.e., the optical splitter) splitting the input first optical signal. It should be understood that, in this implementation, each second optical signal obtained by the optical signal processor based on the first optical signal carries the same information as the first optical signal.
- the optical signal processor when multiple optical signal processors are connected to the same wavelength converter through a first wavelength selector, the optical signal processor can use an optical splitter.
- the first optical signal input to the optical signal processor is a multi-wavelength optical signal
- the optical signal processor does not have a wavelength selection function
- the second optical signal output by it is still a multi-wavelength optical signal.
- the first wavelength selector can select the optical signal (multi-wavelength or single wavelength) that needs to be wavelength converted from the multi-wavelength second optical signal, and output it to the connected wavelength converter to achieve wavelength conversion.
- any first wavelength selector Since different input ports of any first wavelength selector are connected to different optical signal processors, and one input port of the first wavelength selector is only connected to one optical signal processor, even if the second optical signals output by multiple optical signal processors to the same first wavelength selector have the same wavelength, since the corresponding input ports are different, multiple second optical signals with the same wavelength will not have wavelength conflicts in the first wavelength selector.
- each of the multiple optical signal processors is connected to each wavelength converter via the same wavelength selector.
- the “multiple optical signal processors” here may include all optical signal processors in the optical signal processing device, or may include only some of the optical signal processors in the optical signal processing device.
- the wavelength selector used to connect each optical signal processor and each wavelength converter is referred to as a second wavelength selector.
- the optical signal processing device includes a plurality of optical signal processors, each of which is connected to each wavelength converter via a second wavelength selector.
- the second wavelength selector is used to receive a second optical signal from each optical signal processor, and output the received one or more second optical signals to any wavelength converter based on the wavelength of the received second optical signal.
- the second wavelength selector has multiple input ports and multiple output ports, such as WSS (M ⁇ N), and its multiple input ports are connected to different optical signal processors through independent optical fibers, and one input port is only connected to one optical signal processor, thereby ensuring that the link between each optical signal processor and the second wavelength selector is independent.
- the multiple output ports of the second wavelength selector are connected to different wavelength converters through independent optical fibers, and one output port is only connected to one wavelength converter, thereby ensuring that the link between the second wavelength selector and each wavelength converter is independent.
- the second wavelength selector can also be connected to different signal receiving ends through different output ports to output the optical signal from the optical signal processor to the corresponding signal receiving end through a specific output port.
- the output port side of the second wavelength selector since the output port side of the second wavelength selector is connected to the signal receiving end, its main purpose is to transfer the optical signal of the "line side" to the signal receiving end. The receiving end, therefore, the output port side of the second wavelength selector is also the "client side" mentioned above.
- the wavelength converter is integrated on the "client side” rather than the "line side", and a second wavelength selector having multiple input ports and multiple output ports is used to achieve connection with any optical signal processor.
- this implementation method is equivalent to performing a virtual reception and transmission process on the second optical signal that needs to be wavelength converted.
- the second optical signal sent from any one or more optical signal processors can be received to achieve wavelength conversion.
- this type of optical signal processing device has the same advantages as the optical signal processing device shown above, which will not be repeated here.
- the optical signal processing device may further include at least one multiplexer.
- Each wavelength converter is connected to at least one multiplexer to output the third signal to the connected multiplexer.
- the multiplexer is used to receive the third optical signal from the wavelength converter, obtain the fourth optical signal based on the received third optical signal, and output the fourth optical signal.
- the optical signal processing device includes a plurality of multiplexers.
- FIG. 9 shows two multiplexers, and each wavelength converter is connected to each multiplexer to output the third optical signal to any one or more multiplexers.
- the fourth optical signal output by the multiplexer includes an optical signal obtained by each multiplexer based on the received third optical signal.
- each multiplexer has at least one output port to couple at least one optical fiber. After receiving the third optical signal, each multiplexer obtains a fourth optical signal based on the received third optical signal and outputs the fourth optical signal to the connected optical fiber.
- the obtained third optical signal can be output through one or more multiplexers, such as selectively outputting the third optical signal to the optical fiber through a specific multiplexer, or selectively outputting it by the multiple multiplexers.
- the so-called selectively outputting the third optical signal to the optical fiber through a specific multiplexer can be understood as that the wavelength selector can choose to output the third optical signal to any one of the multiple multiplexers.
- the so-called selective output of multiple multiplexers can be understood as that when a multiplexer receives the third optical signal from multiple wavelength converters, the multiplexer can select one of them to output to the optical fiber. It can be seen that the optical signal processing device can output the third optical signal obtained by any wavelength converter to any optical fiber through any multiplexer, thereby satisfying the accessibility of the third optical signal.
- the number of multiplexers in the optical signal processing device of the embodiment of the present application is not limited to the number shown in FIG9.
- J multiplexers may be integrated in the optical signal processing device, where J is a positive integer (i.e., there may be only one or more multiplexers shown in FIG9).
- J when J is a positive integer greater than 1, it may represent the number of dimensions/directions of an optical signal in an optical fiber communication system, or the number of optical fibers between two adjacent node devices in an optical fiber communication system.
- a wavelength converter is connected to each multiplexer through an optical splitter.
- the optical splitter used to connect the wavelength converter and the multiplexer is referred to as the first optical splitter.
- the first optical splitter can receive the third optical signal from the wavelength converter, split the third optical signal, and output the split third optical signals to different multiplexers respectively.
- a wavelength converter and multiple multiplexers are connected through an optical splitter, so that each wavelength converter is connected to multiple multiplexers.
- the third optical signal obtained can be output to any one or more multiplexers at the same time through the first optical splitter.
- the third optical signal sent by any one or more wavelength converters can be received, and then, the optical signal processing device can output the third optical signal obtained by any wavelength converter to any optical fiber through any multiplexer.
- the first optical splitter has multiple output ports, and the multiplexer has multiple input ports. Different output ports on the first optical splitter are connected to an input port on each multiplexer through independent optical fibers, and one input port on the multiplexer is connected to only one first optical splitter.
- the number of first optical splitters is the same as the number of wavelength converters, that is, each wavelength converter is connected to each multiplexer via a first optical splitter. In other implementations, the number of first optical splitters is equal to the number of wavelength converters.
- the number of wavelength converters may also be less than the number of wavelength converters, so that a part of the wavelength converters are connected to each multiplexer through the first optical splitter, and another part of the wavelength converters are connected to each multiplexer through other means.
- each wavelength converter in the optical signal processing device is connected to each multiplexer through a third wavelength selector.
- the third wavelength selector is used to receive a third optical signal from any wavelength converter and send at least one received third optical signal to any one or more multiplexers.
- the third wavelength selector has multiple input ports and multiple output ports, such as WSS (N ⁇ M).
- WSS N ⁇ M
- Each wavelength converter is connected to a different input port on the third wavelength selector, and the third wavelength selector is connected to each optical fiber through different output ports.
- the third wavelength selector can also be connected to different signal transmitting ends through different input ports, so as to receive the optical signal input by the signal transmitting end and input the optical signal into the corresponding optical fiber.
- the input port side of the third wavelength selector is connected to the signal transmitting end, and its main purpose is to input a new optical signal to the "line side" for transmission to the next node, so the input port side of the third wavelength selector is also the "client side” mentioned above.
- the third wavelength selector used in Figure 11 can be replaced by an MCS or adWSS having multiple input ports and multiple output ports, thereby obtaining other optical signal processing devices having a structural composition different from that of Figure 11 but having the same advantages as the device shown in Figure 11.
- any optical signal processor can also be connected to each multiplexer.
- the optical signal processor can also send the second optical signal it obtains to any multiplexer, and the multiplexer can select one or more of the received second optical signal and the third optical signal as the fourth optical signal and output it to the connected optical fiber.
- the cross-connection of optical signals is achieved.
- an optical signal processor is connected to an input port on each multiplexer through different output ports, and different optical signal processors are connected to different input ports on the same multiplexer.
- the optical signal processor can output the second optical signal to the multiplexer connected to the output port through the corresponding output port.
- the multiplexer may be a wavelength selector, such as WSS (N ⁇ 1).
- WSS wavelength selector
- the multiplexer has a wavelength selection function, that is, it can select an optical signal of a specific wavelength from the received optical signal as the fourth optical signal for output.
- an input port on a multiplexer is only connected to one wavelength converter or one demultiplexer, even if the multiple optical signals received by the multiplexer have the same wavelength, since the corresponding input ports are different, multiple optical signals with the same wavelength will not be input into the same optical fiber.
- the multiplexer may be a wavelength selector with multiple input ports and multiple output ports, such as WSS (N ⁇ M).
- WSS (N ⁇ M) can achieve a technical effect similar to that of M WSS (N ⁇ 1), which will not be described in detail here.
- FIG13 is another optical signal processing device provided in an embodiment of the present application.
- the optical signal processing device further includes a first connector, each optical signal processor is further connected to the first connector, and the first connector is connected to at least one signal receiving end.
- Each optical signal processor is also used to output a second optical signal to the first connector.
- the first connector can output the second optical signal from the optical signal processor to the connected signal receiving end.
- a part of the output ports on the optical signal processor are used to output the second optical signal that needs to be wavelength converted to the wavelength converter, a part of the output ports are used to output the second optical signal that needs to be transmitted to the next node to the multiplexer, and another output port is used to output the second optical signal to the first connector, so as to be output to the signal receiving end through the first connector.
- the optical signal processor has a sufficient number of output ports, a part of its output ports are connected to the wavelength converter, a part of its output ports are connected to the multiplexer, and another of its output ports is connected to the first connector. In this way, not only is the connection between any optical signal processor and each wavelength converter realized, but the link loss between the optical signal processor and the multiplexer and the first connector is not increased, thereby ensuring good signal quality.
- an optical signal processor is connected to a first optical combiner and a first connector via an optical splitter.
- the optical splitter used to connect the optical signal processor to a first optical combiner and a first connector is referred to as a second optical splitter.
- the second optical splitter is used to receive a second optical signal, split the second optical signal into two paths, and then output the split second optical signal to the connected first optical combiner and the first connector.
- the second optical splitter receives the second optical signal from the optical signal processor, it can divide the second optical signal into two paths as needed, and then output one path to the connected wavelength converter, and then output the other path to the first connector. In this way, there is no need to occupy an additional output port on the optical signal processor to output the second optical signal to the first connector.
- the second optical signal can selectively output any wavelength of the second optical signal to the first connector by configuring each second optical splitter.
- an optical signal processor can be connected to a wavelength selector and the first connector via an optical splitter (i.e., the second optical splitter). In this way, the purpose of saving output ports on the demultiplexer can also be achieved.
- the specific structure of the first connector may be the MCS shown in FIG. 3 , or may be composed of WSS (J ⁇ 1) and WSS (1 ⁇ J) as shown in FIG. 4 , which will not be described in detail here.
- FIG15 is another optical signal processing device provided in an embodiment of the present application.
- the optical signal processing device further includes a second connector.
- One end of the second connector can be connected to one or more signal transmitting ends, and the other end is connected to each multiplexer.
- the second connector can receive a fifth optical signal input by the signal transmitting end, and output the fifth optical signal to any one or more multiplexers, so as to output the fifth optical signal to the optical fiber through the multiplexer.
- the following introduces the specific connection method between the second connector and each multiplexer in the optical signal processing device provided in the embodiment of the present application, as well as the connection relationship between the wavelength converter and each multiplexer when the second connector exists.
- the second connector has multiple input ports and multiple output ports, which are connected to different signal sending ends through different input ports, and are connected to each multiplexer through different output ports.
- a part of the input ports on the multiplexer are used to receive the third optical signal that has completed the wavelength conversion
- a part of the input ports are used to receive the second optical signal that needs to be transmitted to the next node
- another input port is used to receive the fifth optical signal originated from the signal receiving end.
- the multiplexer has a sufficient number of input ports
- a part of its input ports are used to connect to the wavelength converter
- another part of its input ports are used to connect to the optical signal processor
- another input port is used to connect to the second connector, which not only realizes the connection between any wavelength converter and each multiplexer, and the connection between any multiplexer and each optical signal processor, but also does not increase the link loss between the optical signal processor and the multiplexer and between the optical signal processor and the second connector, thereby ensuring good signal quality.
- each first optical splitter and the second connector are connected to a multiplexer via an optical combiner.
- the optical combiner used to connect the first optical splitter (and the second connector) to the multiplexer is referred to as a second optical combiner.
- the second optical combiner can receive the third optical signal sent from each first optical splitter and the fifth optical signal sent from the second connector, and after combining the third optical signal and the fifth optical signal into one path, output it to the connected multiplexer.
- the optical signal processing device shown in FIG16 that, through a second optical combiner, the third optical signal and the fifth optical signal to be sent to a multiplexer are combined into one path and then output to the multiplexer. In this way, only one input port on the multiplexer needs to be occupied to enable it to receive the fifth optical signal and all the third optical signals.
- the second optical combiner has multiple input ports; different output ports on the first optical splitter are connected to an input port on different second optical combiners, and an input port on the second optical combiner is only connected to one first optical splitter or a second connector.
- the second connector may be an MCS or adWSS having multiple input ports and multiple output ports.
- the MCS (K ⁇ J) shown in FIG17 as an example, as shown in FIG17, the MCS (K ⁇ J) includes K optical splitters (1 ⁇ J) and J optical switches (K ⁇ 1), the optical splitter (1 ⁇ J) having 1 input port and J output ports, and the optical switch (K ⁇ 1) having K input ports and 1 output port.
- any optical splitter (1 ⁇ J) receives the fifth optical signal from the signal sending end, it divides the fifth optical signal into J paths and outputs them to the J optical switches (K ⁇ 1) respectively.
- any optical switch (K ⁇ 1) selects one of the fifth optical signals and outputs it to the connected multiplexer.
- the WSS (K ⁇ 1) After the WSS (K ⁇ 1) receives the fifth optical signal input from each signal receiving end, it selects one from the received fifth optical signal according to the wavelength and outputs it to the WSS (1 ⁇ J).
- the WSS (1 ⁇ J) receives After receiving the fifth optical signal from WSS (K ⁇ 1), it is output to the corresponding wavelength conversion module through the corresponding output port for wavelength conversion.
- the second connector can also be composed of an optical combiner and an optical splitter, for example, the WSS (K ⁇ 1) shown in Figure 18 is replaced by an optical combiner having K input ports and 1 output port, and the WSS (1 ⁇ J) shown in Figure 18 is replaced by an optical splitter having 1 input port and J output ports.
- FIG19 is a schematic diagram of the optical signal processing device, as shown in FIG19, the optical signal processing device includes multiple optical signal processors and multiple wavelength converters; multiple optical signal processors are connected to multiple wavelength converters one by one, and the links used to connect the optical signal processors and the wavelength converters are independent of each other; the optical signal processor is used to receive a first optical signal, obtain a second optical signal based on the first optical signal, and output the second optical signal to the connected wavelength converter; the wavelength converter is used to receive a second optical signal, generate a third optical signal based on the second optical signal, and output the third optical signal, and the wavelength of the third optical signal is different from that of the second optical signal.
- the optical signal processor is directly connected to a wavelength converter through an output port thereon.
- optical signal processing device shown in Figure 19 since multiple optical signal processors are connected to multiple wavelength converters in a one-to-one correspondence, and the links used to connect the optical signal processors and the wavelength converters are independent of each other, it can be ensured that the second optical signal of any wavelength is output to the corresponding wavelength converter, avoiding wavelength conflicts when the wavelengths of second optical signals output by different optical signal processors are the same.
- the number of optical signal processors and wavelength converters is not limited to the two shown in Figure 19.
- the number of optical signal processors and wavelength converters can be the same or different.
- the optical signal processing device may include J optical signal processors and i wavelength converters, where J and i are both positive integers and J is greater than or equal to i.
- i of the J optical signal processors are connected in a one-to-one correspondence with i wavelength converters.
- the specific implementation of the optical signal processor can refer to the embodiment before FIG19 .
- the optical signal processor can have an input port to couple with an optical fiber to receive a first optical signal.
- the optical signal processor can also have multiple input ports to couple with multiple optical fibers to receive multiple first optical signals.
- the optical signal processor can be an optical splitter or a wavelength selector. It will not be described in detail here.
- At least one multiplexer may be further included.
- the connection mode between the multiplexer and the wavelength converter, the connection mode with the optical signal processor, and the function and role of the multiplexer may refer to the embodiment before FIG. 19.
- each wavelength converter is connected to at least one multiplexer to output the third optical signal to the connected multiplexer.
- Each multiplexer is used to receive the third optical signal from the wavelength converter, obtain the fourth optical signal based on the received third optical signal, and output the fourth optical signal.
- any wavelength converter is connected to each multiplexer.
- a wavelength converter is connected to each multiplexer through a first optical splitter; the first optical splitter is used to receive the third optical signal, split the third optical signal, and output the split third optical signals to each multiplexer respectively.
- all wavelength converters are connected to each multiplexer through a third wavelength selector; the third wavelength selector is used to receive the third optical signal from the wavelength converter and send the received at least one third optical signal to any one or more multiplexers.
- the multiplexer may specifically be a wavelength selector, and the fourth optical signal is a signal selected from the third optical signal by the multiplexer according to the wavelength of the third optical signal.
- a first connector may also be included, wherein the connection method between the optical signal processor and the first connector and the function and role of the first connector may refer to the embodiments before FIG. 19.
- each optical signal processor is also connected to the first connector; the optical signal processor is also used to output the second optical signal to the first connector; the first connector is used to output the second optical signal from the optical signal processor to the corresponding signal receiving end.
- an optical signal processor is connected to a wavelength converter and a first connector through a second optical splitter; the second optical splitter is used to receive the second optical signal, and after dividing the second optical signal into two paths, one of the divided second optical signals is output to the connected wavelength converter, and the other divided second optical signal is output to the first connector. It will not be repeated here.
- a second connector may also be included.
- the connection method between the second connector and the multiplexer, the connection method between the second connector and the wavelength converter, and the functions and effects of the second connector can all be referred to the embodiments shown above.
- the second connector is connected to each multiplexer, and the second connector is used to receive the fifth optical signal input from the signal transmitting end, and output the fifth optical signal to any one or more multiplexers.
- a wavelength converter and a second connector are connected to a multiplexer through a second optical combiner; the second optical combiner is used to receive the third optical signal from the wavelength converter and the fifth optical signal from the signal input end, and after combining the third optical signal and the fifth optical signal into one, output it to the connected multiplexer. No further description will be given here.
- the signal receiving end mentioned in the embodiment of the present application may be a receiving optical sub-assembly (ROSA), and the signal transmitting end may be a transmitting optical sub-assembly (TOSA).
- ROSA receiving optical sub-assembly
- TOSA transmitting optical sub-assembly
- the optical signal processing device provided in the embodiment of the present application may be a CD-OXC device, that is, an OXC device with "wavelength-independent” and "direction-independent” characteristics.
- a CD-OXC device is formed.
- the optical signal processing device provided in the embodiment of the present application may be a CDC-OXC device, that is, an OXC device having the characteristics of "wavelength independence", "direction independence” and “competition independence”.
- a CDC-OXC device that is, an OXC device having the characteristics of "wavelength independence", "direction independence” and "competition independence”.
- the embodiment of the present application also provides an optical fiber communication system, which includes any one or more of the above optical signal processing devices.
- the above optical signal processing device can maximize the communication transmission capacity of the optical fiber communication system through the minimum wavelength converter, save hardware resources, and have a low communication cost.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
本申请实施例提供一种光信号处理设备和光纤通信系统,涉及光纤通信技术领域,可以应用于光纤通信系统中需要进行波长转换的节点处,包括至少一个光信号处理器和至少一个波长转换器。光信号处理器连接至波长转换器,通过至少一个光信号处理器接收多路第一光信号,基于多路第一光信号获得第二光信号,并将第二光信号输出至任意一个或者多个波长转换器。波长转换器用于接收第二光信号,基于第二光信号生成第三光信号,并输出第三光信号,第三光信号与第二光信号对应的频率范围不完全重叠。该光信号处理设备通过其中集成的较少的波长转换器,即可极大地满足波长转换需求,以提升光纤通信系统的传输容量,具有节约硬件资源,降低通信成本等优点。
Description
本申请要求于2023年03月17日提交国家知识产权局、申请号为202310275619.2、申请名称为“光信号处理设备和光纤通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及光纤通信技术领域,尤其涉及一种光信号处理设备和光纤通信系统。
在光纤通信系统中通常存在着波长阻塞(亦称为波长冲突),尤其是采用可重构光分插复用器(Reconfigurable Optical Add/Drop Multiplexer,ROADM)或光交叉连接(Optical Cross-Connect,OXC)模块等光信号处理设备作为节点设备的光纤通信系统,其拓扑结构更复杂,波长阻塞的概率更高。
通常,采用全光的波长转换的方式来消除或减少光纤通信系统中的波长阻塞。利用光纤通信系统中节点设备的波长转换功能,消除该光纤通信系统中原本存在的波长阻塞,可以提升光纤通信系统的传输容量。光纤通信系统中节点设备的波长转换功能主要由节点设备中集成的波长转换器实现。由于波长阻塞与光纤通信系统的拓扑结构及波长配置密切相关,因此对于光纤通信系统中各个节点设备而言,尤其是OXC等光信号处理设备,期望采用尽可能少的波长转换器,最大程度的降低光纤通信系统中的波长阻塞,从而通过较少的硬件资源,来提升光纤通信系统的传输容量。
相关技术中,通过在光信号处理设备的“客户端侧”集成波长转换器,使得光信号处理设备具有波长转换功能。但,由于光信号处理设备的结构限制,浪费了波长转换器对多路不同波长的光信号同时进行波长转换的能力,这意味着需要集成较多数量的波长转换器,才能满足波长转换需求。
发明内容
本申请实施例提供一种光信号处理设备和包含该光信号处理设备的光纤通信系统,该光信号处理设备通过其中集成的较少的波长转换器,即可极大地满足波长转换需求,比如完成对更多维度/方向的光信号的波长转换。该光信号处理设备可以应用于光纤通信系统中需要进行波长转换的节点处,以提升光纤通信系统的传输容量,具有节约硬件资源,降低通信成本等诸多优点。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种光信号处理设备,包括至少一个光信号处理器和至少一个波长转换器。光信号处理器连接至波长转换器。通过该至少一个光信号处理器接收多路第一光信号,基于多路第一光信号获得第二光信号,并将第二光信号输出至任意一个或者多个波长转换器。该多路第一光信号中的每一路分别来自不同的光纤。通过波长转换器接收第二光信号,基于第二光信号生成第三光信号,并输出第三光信号,第三光信号与第二光信号对应的频率范围不完全重叠。
由于通过该至少一个光信号处理器接收到多路第一光信号中的每一路分别来自不同的光纤,即多路第一光信号具有不同维度/方向,因此基于多路第一光信号获得的第二光信号也为不同维度/方向的光信号。在此基础上,由于光信号处理器连接至波长转换器,并且通过该至少一个光信号处理器,能够将需要进行波长转换的第二光信号发送给任一个或者多个波长转换器。也即是说,可以根据需要,将多个第二光信号发送至同一个波长转换器,以在同一个波长转换器中同时完成波长转换,从而充分利用波长转换器的多波长转换能力。这样,面对一定的波长转换需求,可以大大降低光信号处理设备中需要集成的波长转换器的数量,节约硬件资源的同时,还能提高光信号处理设备所在的光纤通信系统的通信传输容量。尤其,在每个光信号处理器连接至每个波长转换器的情况下,对于任意一个波长转换器而言,都可以接收到任意的第二光信号。这意味着,任意多个不同维度/方向的光信号,都可以被输出至任意一个波长转换器,以在该波长转换器中同时完成波长转换,从而充分利用波长转换器的多波长转换能力。
结合第一方面,在一种可能的实现方式中,上述光信号处理器的数量为1个,即光信号处理
设备包括1个光信号处理器。通过该1个光信号处理器即可接收到多路第一光信号,并且基于该多路第一光信号获得第二光信号。示例的,该1个光信号处理器具有多个输入端口,分别用于与不同的光纤相连,这样,即可接收到所述的多路第一光信号。在这种实现方式中,光信号处理设备中只需要集成1个光信号处理器,易于实现。
结合第一方面,在一种可能的实现方式中,上述光信号处理器的数量为多个,即光信号处理设备包括多个光信号处理器。每个光信号处理器用于接收上述多路第一光信号中的至少一路。上述第二光信号包括每个光信号处理器基于接收到的至少一路第一光信号,获得的光信号。示例的,该多个光信号处理器中的每一个,都具有至少一个输入端口,以用于连接至少一根光纤,这样,即可接收到至少一路第一光信号。在这种实现方式中,通过多个光信号处理器接收多路第一光信号,对光信号处理设备进行配置的灵活性更高。
结合第一方面,在一种可能的实现方式中,该光信号处理设备还包括第一光合路器;多个光信号处理器通过一个第一光合路器连接至同一个波长转换器。第一光合路器用于接收来自光信号处理器的第二光信号,将接收到的第二光信号合为一路后,输出至相连的波长转换器。通过一个光合路器将多个光信号处理器连接到同一个波长转换器,如此实现任一光信号处理器与任一个或者多个波长转换器的连接。这样,对于一个波长转换器而言,即使其输入端口数量不足,也能通过第一光合路器与多个光信号处理器相连,进而可以接收到来自多个光信号处理器中任意光信号处理的第二光信号。
结合第一方面,在一种可能的实现方式中,任意两条连接光信号处理器和第一光合路器的链路相互独立。由于任意两条连接光信号处理器和第一光合路器的链路相互独立,因此各个方向/维度的第二光信号,都可以由独立的链路输出至第一光合路器,进而到达相应的波长转换器,即使一些第二光信号具有相同的波长,也不会因为链路有重叠部分而在链路中产生信号冲突。
结合第一方面,在一种可能的实现方式中,光信号处理器可以具有多个输出端口,第一光合路器具有多个输入端口。光信号处理器上不同的输出端口通过独立的光纤分别与各个第一光合路器上的一个输入端口相连,且第一光合路器上的一个输入端口仅连接一个光信号处理器。这样,任意两条连接光信号处理器和第一光合路器的链路相互独立。
结合第一方面,在一种可能的实现方式中,该光信号处理设备还包括第一波长选择器。多个光信号处理器通过一个第一波长选择器连接至同一个波长转换器。该第一波长选择器用于接收来自光信号处理器的第二光信号,基于接收到的第二光信号的波长,选择出至少一个接收到的第二光信号,输出至相连的波长转换器。通过一个第一波长选择器将多个光信号处理器连接到同一个波长转换器,如此实现任一光信号处理器与任一个或者多个波长转换器的连接。这样,可以利用第一波长选择器的波长选择功能,从多个维度/方向的第二光信号中选择出需要进行波长转换的第二光信号,输出至波长转换器,以完成波长转换。
结合第一方面,在一种可能的实现方式中,任意两条连接光信号处理器和第一波长选择器的链路相互独立。由于任意两条连接光信号处理器和第一波长选择器的链路相互独立,因此各个方向/维度的第二光信号,都可以由独立的链路输出至第一波长转换器,再由第一波长选择器将需要进行波长转换的第二光信号输出至波长转换器,即使不同方向/维度的光信号具有相同的波长,也不会因为链路有重叠部分而在链路中产生信号冲突。
结合第一方面,在一种可能的实现方式中,光信号处理器可以具有多个输出端口,第一波长选择器具有多个输入端口。光信号处理器上不同的输出端口通过独立的光纤分别与各个第一波长选择器上的一个输入端口相连,且第一波长选择器上的一个输入端口仅连接一个光信号处理器,从而保证任意两条连接光信号处理器和第一波长选择器的链路是相互独立的。
结合第一方面,在一种可能的实现方式中,该光信号处理设备还包括第二波长选择器。多个光信号处理器中的各个光信号处理器,均通过第二波长选择器连接至每个波长转换器。第二波长选择器用于接收来自各个光信号处理器的第二光信号,基于接收到的第二光信号的波长,将接收到的一个或者多个第二光信号输出至任一个波长转换器。
结合第一方面,在一种可能的实现方式中,光信号处理器可以具有至少一个输出端口,上述第二波长选择器具有多个输入端口和多个输出端口。各个光信号处理器上的一个输出端口分别与
第二波长选择器上不同的输入端口相连,第二波长选择器上的一个输入端口仅连接一个光信号处理器;第二波长选择器上的一个输出端口连接一个波长转换器。这样,第二波长选择器可以接收到来自各个光信号处理器的第二光信号,并基于接收到的第二光信号的波长,将接收到的一个或者多个第二光信号输出至任一个波长转换器。
结合第一方面,在一种可能的实现方式中,该光信号处理设备还包括一个或者多个复用器。各个波长转换器,连接至至少一个复用器,以将第三光信号输出至相连的复用器。复用器用于接收第三光信号,基于接收到的第三光信号获得第四光信号,并输出第四光信号。在这种实现方式中,每个波长选择器完成波长转换后,得到的第三光信号可以通过一个或者多个复用器进行输出,比如有选择地通过某一个特定的复用器输出第三光信号至光纤,或者由该多个复用器有选择地的输出。可见,该光信号处理设备,可以将一个波长转换器得到的第三光信号,通过一个或者多个复用器输出至光纤,从而满足第三光信号的通达性。
结合第一方面,在一种可能的实现方式中,复用器的数量为多个,即该光信号处理设备包括多个复用器。任一所述波长转换器,连接至每个复用器。这样,该光信号处理设备,可以将任一个波长转换器得到的第三光信号,通过任一个复用器输出至光纤,从而满足第三光信号的通达性。
结合第一方面,在一种可能的实现方式中,该光信号处理设备还包括第一光分路器。一个波长转换器通过一个第一光分路器连接至每个复用器。第一光分路器用于接收第三光信号,对第三光信号进行分路,将分出的各路第三光信号分别输出至至少一个复用器。通过一个光分路器将一个波长转换器和多个复用器连接起来,如此实现每个波长转换器与多个复用器的连接。这样,即使波长选择器只有一个输出端口,也能通过第一光分路器将其得到的第三光信号同时输出至任意一个或者多个复用器。对于任一个复用器而言,便可以接收到任意一个或者多个波长转换器发送的第三光信号,进而,该光信号处理设备可以将任一波长转换器得到的第三光信号,通过任一个复用器输出至任一根光纤。
结合第一方面,在一种可能的实现方式中,第一光分路器具有多个输出端口,复用器具有多个输入端口。第一光分路器上不同的输出端口与不同的复用器上的一个输入端口相连,复用器上的一个输入端口连接一个第一光分路器。
结合第一方面,在一种可能的实现方式中,该光信号处理设备还包括第三波长选择器。所有的波长转换器均通过第三波长选择器连接至每个复用器;第三波长选择器用于接收来自波长转换器的第三光信号,将接收到的至少一个第三光信号发送给任意一个或者多个复用器。示例的,第三波长选择器具有多个输入端口和多个输出端口。各个波长转换器分别连接至第三波长选择器上不同的输入端口,且第三波长选择器上的一个输入端口仅连接一个波长转换器。第三波长选择器再通过不同的输出端口连接到不同的复用器。这样,第三波长选择器可以接收到来自各个波长转换器的第三光信号,并从中选择出一个,发送至任一个复用器。
结合第一方面,在一种可能的实现方式中,光信号处理器包括光分路器,光分路器用于对所述第一光信号进行分路,第二光信号对第一光信号进行分路得到的一路信号。
结合第一方面,在一种可能的实现方式中,光信号处理器包括波长选择器,该波长选择器用于根据第一光信号的波长,从第一光信号中选择出第二光信号。在这些实现方式中,由于光信号处理器具有波长选择功能,而且光信号处理器上一个输出端口只连接一个波长转换器,所以光信号处理器可以灵活地选择将哪个波长的光信号由其哪个输出端口输出,进而,可以避免多个光信号处理器将相同波长的第二光信号输出至同一个波长转换器,避免相同波长的第二光信号在波长转换器内发生波长冲突。
结合第一方面,在一种可能的实现方式中,复用器包括波长选择器,该波长选择器用于根据第三光信号的波长,从第三光信号中选择出第四光信号。
结合第一方面,在一种可能的实现方式中,该光信号处理设备还包括第一连接器。所述光信号处理器还连接至所述第一连接器,第一连接器连接至至少一个信号接收端。光信号处理器还用于将第二光信号输出至第一连接器。第一连接器用于将来自光信号处理器的第二光信号输出至信号接收端。在这些实现方式中,光信号处理器上的一部分输出端口用于将需要进行波长转换的第二光信号输出至波长转换器,一部分输出端口用于将需要向下一节点传输的第二光信号输出至复
用器,还有一个输出端口用于输出第二光信号至第一连接器,以通过第一连接器输出至相应的信号接收端。在光信号处理器具有足够数量的输出端口的情况下,将它的一部分输出端口与波长转换器连接,将它的一部分输出端口与复用器连接,再将它的另一个输出端口与第一连接器连接。这样,不仅实现了任一光信号处理器与每个波长转换器之间的连接,也未增加光信号处理器与复用器之间以及与第一连接器之间的链路损耗,保证较好的信号质量。
结合第一方面,在一种可能的实现方式中,在光信号处理设备中,多个光信号处理器通过一个第一光合路器连接至各个波长转换器的情况下,该光信号处理设备还可以包括第二光分路器。一个光信号处理器通过一个第二光分路器连接至一个第一光合路器和第一连接器。第二光分路器用于接收第二光信号,将第二光信号分成两路后,将分出的一路第二光信号输出至相连的第一光合路器,将分出的另一路第二光信号输出至第一连接器。这样,无需占用光信号处理器上额外的输出端口向第一连接器输出第二光信号,同时还能通过对各个第二光分路器的配置,有选择地将特定波长的第二光信号输出至第一连接器。
结合第一方面,在一种可能的实现方式中,在光信号处理设备中,多个光信号处理器通过一个波长选择器连接至各个波长转换器的情况下,该光信号处理设备还可以包括第二光分路器。一个光信号处理器通过一个第二光分路器连接至一个波长选择器和第一连接器。第二光分路器用于接收第二光信号,将第二光信号分成两路后,将分出的一路第二光信号输出至相连的波长选择器,将分出的另一路第二光信号输出至第一连接器。
结合第一方面,在一种可能的实现方式中,上述第二波长选择器连接至至少一个信号接收端,上述第二波长选择器还用于将接收到的至少一个第二光信号输出至信号接收端。
结合第一方面,在一种可能的实现方式中,该光信号处理设备还包括第二连接器。第二连接器连接至复用器。第二连接器用于接收信号发送端输入的第五光信号,将第五光信号分别输出至任意一个或者多个复用器。
结合第一方面,在一种可能的实现方式中,第二连接器具有多个输入端口和多个输出端口,其通过不同的输入端口连接不同的信号发送端,并通过不同的输出端口连接至各个复用器。在这些实现方式中,复用器上的一部分输入端口用于接收完成波长转换的第三光信号,一部分输入端口用于接收需要继续向下一节点传输的第二光信号,还有一个输入端口用于接收来自由信号接收端始发的第五光信号。在复用器具有足够数量的输入端口的情况下,将它的一部分输入端口用于与波长转换器连接,将它的另一部分输入端口用于与光信号处理器连接,再将它的另一个输入端口用于与第二连接器连接,不仅实现了任一波长转换器与每个复用器的连接,任一复用器与每个光信号处理器的连接,也未增加光信号处理器与复用器之间及与第二连接器之间的链路损耗,保证较好的信号质量。
结合第一方面,在一种可能的实现方式中,该光信号处理设备还包括第二光合路器,各个第一光分路器和第二连接器通过一个第二光合路器连接至一个复用器。第二光合路器用于接收第三光信号和第五光信号,将第三光信号和第五光信号合为一路后,输出至相连的复用器。通过一个第二光合路器,将需要发送给一个复用器的第三光信号和第五光信号合为一路后,再输出至该复用器。这样,只需要占用复用器上的一个输入端口,即可使其接收到第五光信号和所有的第三光信号。
结合第一方面,在一种可能的实现方式中,第二光合路器具有多个输入端口。第一光分路器上不同的输出端口与不同的第二光合路器上的一个输入端口相连,第二光合路器上的一个输入端口连接一个第一光分路器或者第二连接器。
结合第一方面,在一种可能的实现方式中,上述第三波长选择器还用于接收信号发送端输入的第五光信号,将第五光信号分别输出至任意一个或者多个复用器。
结合第一方面,在一种可能的实现方式中,每个光信号处理器连接至每个波长转换器。这样,对于任意一个波长转换器而言,都可以接收到任意的第二光信号。这意味着,任意多个不同维度/方向的光信号,都可以被输出至任意一个波长转换器,以在该波长转换器中同时完成波长转换,从而充分利用波长转换器的多波长转换能力。
结合第一方面,在一种可能的实现方式中,至少一个光信号处理器与至少一个波长转换器一
一对应连接。这样,由于多个光信号处理器与多个波长转换器一一对应连接,因此可以保证将任意波长的第二光信号输出至相应的波长转换器,避免不同的光信号处理器输出的第二光信号波长相同时,发生波长冲突。此外,相比于通过光合路器或者波长选择器将光信号处理器与波长转换器连接起来的方式,由于光信号处理器直接与一个波长转换器相连,因此光信号处理器与波长转换器之间的链路损耗更低。
第二方面,本申请实施例提供一种光纤通信系统,包括上述任意一项或者多项中的光信号处理设备。上述光信号处理设备可以通过最少的波长转换器,最大程度的提高该光纤通信系统的通信传输容量,并节约硬件资源,通信成本较低。
图1为光纤通信系统中波长阻塞现象的示意图;
图2为一种光信号处理设备的结构示意图;
图3为图2中第一连接器为MCS(J×K)时的结构示意图;
图4为图2中第一连接器由WSS(J×1)和WSS(1×K)构成时的结构示意图;
图5为本申请实施例提供的光信号处理设备的结构示意图一;
图6为本申请实施例提供的光信号处理设备的结构示意图二;
图7为本申请实施例提供的光信号处理设备的结构示意图三;
图8为本申请实施例提供的光信号处理设备的结构示意图四;
图9为本申请实施例提供的光信号处理设备的结构示意图五;
图10为本申请实施例提供的光信号处理设备的结构示意图六;
图11为本申请实施例提供的光信号处理设备的结构示意图七;
图12为本申请实施例提供的光信号处理设备的结构示意图八;
图13为本申请实施例提供的光信号处理设备的结构示意图九;
图14为本申请实施例提供的光信号处理设备的局部结构示意图一;
图15为本申请实施例提供的光信号处理设备的结构示意图十;
图16为本申请实施例提供的光信号处理设备的局部结构示意图二;
图17为本申请实施例提供的光信号处理设备中第二连接器的结构示意图一;
图18为本申请实施例提供的光信号处理设备中第二连接器的结构示意图二;
图19为本申请实施例提供的光信号处理设备的结构示意图十一。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
其中,在本申请实施例的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A、B可以是单数或者复数。
并且,在本申请实施例的描述中,除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在介绍本申请实施例的技术方案之前,先对本申请实施例中涉及的术语进行解释。
标称中心波长(nominal central wavelength),是指基于光波分复用技术的光纤通信系统中,每个通道对应的中心波长,它反映光纤通信系统中光信号(光载波)的通道间隔、频谱位置等。频率和波长可通过光速的公式计算,具体为c/n=λf,其中c表示光速,n表示光纤的纤芯折射率,λ就是光信号的波长,f表示光信号的频率。因此,一个标称中心波长根据上式计算出来的频率也称为标称中心频率。本申请实施例中,除非另有说明,下文中提及的光信号的波长,均指代该光信号的标称中心波长。
多波长光信号,指由多路具有不同标称中心波长的光信号合并而成的光信号,其频谱中包含多个频谱片段,一般情况下,每个频谱片段对应一种标称中心波长的光信号。
单波长光信号,一路具有一定的标称中心波长的光信号。
波长选择开关(wavelength selective switching,WSS),还可以被称为波长选择器。本申请是实施例中,除非另有说明,WSS(A×B)表示该WSS具有A个输入端口、B个输出端口。示例的,WSS(1×N)表示WSS具有1个输入端口,具有N个输出端口;WSS(N×1)表示WSS具有N个输入端口,具有1个输出端口。
光合路器(coupler),用于将多路光信号合为一路的光器件,光合路器在合路过程中,不改变各路光信号的波长和所携带的信息。
光分路器(splitter),用于将一路光信号分为多路的光器件,光分路器在分路过程中,不改变各路光信号的波长和所携带的信息。
光开关(switch),具有两个或多个光口,能够选择性地在光传输链路中传送、重定向或阻断光信号的功能。波长转换器(wavelength convertor,WC),用于对输入的光信号进行波长转换,并输出。波长转换器转换波长的过程中,不改变光信号所携带的信息。
波长无关(colorless),指每个信号接收端都可以接收光纤通信系统使用的通信波段中的任何一个波长的光信号,每个信号发送端都可以发送该通信波段中的任何一个波长的光信号至光纤。
方向无关(directionless),指每个信号接收端都可以接收光纤通信系统中任何一个方向/维度的光信号,每个信号发送端都可以将光信号发送到光纤通信系统中的任何一个方向/维度的光纤中。
竞争无关(contentionless),指光纤通信系统中任何n个方向/维度(2≤n≤J,且n不大于信号接收端的数量)都可以将相同波长的光信号送到n个信号接收端中(每个信号接收端只接收一路光信号);任何n个信号发送端(2≤n≤J,且n不大于信号发送端的数量)都可以将相同波长的光信号送到光纤通信系统中任何n个方向/维度的光纤中。
在光纤通信系统中通常存在着波长阻塞(亦称为波长冲突),尤其是采用ROADM或OXC设备作为节点设备的光纤通信系统,其拓扑结构更复杂,波长阻塞的概率更高。
图1为光纤通信系统中波长阻塞现象的示意图,如图1所示,该光纤通信系统包括顺次连接的节点A、节点B、节点C、节点D和节点E。每个节点都可以作为“中继节点”,用于将上一节点传来的光信号继续向下一节点传输,同时,还可以作为“信号始发节点”,用于将该节点侧的信号发送端输入的光信号传输至下一节点,此外,还可以作为“信号终止节点”,用于将上一节点传来的光信号转接至该节点处的信号接收端。
假设,该光纤通信系统中,光信号的标称中心波长位于特定的波段,该波段的波长范围为λ1~λn。并且,由节点B始发,到达节点C终止的光信号S1(可能是多路光信号),采用的标称中心波长范围为λ1~λx,λx小于λn,由节点D始发,到达节点E终止的光信号S2(可能是多路光信号),采用的标称中心波长范围为λx+1~λn,λx+1大于λx,λ1~λx与λx+1~λn的并集为λ1~λn。那么,就会导致由节点A始发,需要经由节点B、节点C、节点D、节点E,到达节点F的光信号S3,无标称中心波长可用。具体来说,如果光信号S3采用λ1~λx范围内的标称中心波长,则光信号S3在经过节点B和节点C时,会与光信号S1发生波长阻塞,如果光信号S3采用λx+1~λn范围内的标称中心波长,则光信号S3在经过节点D和节点E时,会与光信号S2发生波长阻塞,这就是光纤通信系统中的波长阻塞现象。该波长阻塞现象导致节点A与节点F之间因无合适的标称中心波长的光信号可传输,而无法传输数据,降低了光纤通信系统的传输容量。
通常,采用波长转换的方式来消除或减少光纤通信系统中的波长阻塞。继续参阅图1,节点A可以在λx+1~λn范围内选择一个波长,以此作为光信号S3的标称中心波长,这样,该光信号S3在经过节点B和节点C时,可以保证不会与光信号S2发生波长阻塞。接着,该光信号S3达到节点D后,由节点D将该光信号S3的标称中心波长转换到λ1~λx范围内,由于进行了波长转换,因此该光信号S3经过节点D和节点E时,便不会与光信号S2发生波长阻塞,最终到达节点F。该示例中,利用节点D的波长转换功能,消除了该光纤通信系统中原本存在的波长阻塞,使得节点A与节点F之间也可以传输数据,提升了该光纤通信系统的传输容量。
光纤通信系统中节点的波长转换功能主要由节点设备中集成的波长转换器实现。由于波长阻塞与光纤通信系统的拓扑结构及波长配置密切相关,因此对于光纤通信系统中各个节点设备而言,尤其是光信号处理设备,期望采用尽可能少的波长转换器,最大程度的降低光纤通信系统中的波长阻塞,从而通过较少的硬件资源,来提升光纤通信系统的传输容量。
相关技术中,通过在光信号处理设备的“客户端侧”集成波长转换器,使得光信号处理设备具有波长转换功能,从而可以作为光纤通信系统中的节点设备,实现光信号的交叉连接功能以及波长转换功能。这样的光信号处理设备通常包括多个解复用器、多个复用器、一个第一连接器、多个波长转换器和一个第二连接器。
下面以图2示出的光信号处理设备为例,对相关技术中光信号处理设备进行介绍。如图2所示,该光信号处理设备包括两个解复用器、两个复用器、一个第一连接器、两个波长转换器和一个第二连接器。
其中,每个解复用器,其一端与光纤耦合,以接收由光纤输入的光信号,另一端通过一个输出端口与第一连接器上的一个输入端口连接,以将由光纤输入的光信号发送给第一连接器。不同的解复用器与不同的光纤耦合,也就是说,各个解复用器接收到的光信号分别来自不同光纤,具有不同的维度/方向。
第一连接器,其一端通过不同的输入端口与各个解复用器相连,另一端通过不同的输出端口与不同的信号接收端连接,以将来自解复用器的光信号输出至相应的信号接收端。此外,还通过不同的输出端口与各个波长转换器相连,从而可以将任一个解复用器输出的光信号输出至相连的一个波长转换器。
多个波长转换器分别连接至第二连接器上不同的输入端口。对于任一个波长转换器,其可以通过第一连接器接收到某个维度/方向的光信号,将对该光信号进行波长转换,并将波长转换后的光信号输出至第二连接器。
第二连接器,其一端通过不同的输入端口与不同的信号发送端相连,以将接收信号发送端输入的光信号,并将其输出至相应的复用器,以通过复用器将该光信号输出至光纤。此外,还通过不同的输入端口与各个波长转换器相连,以接收来自波长转换器的光信号,将各个波长转换器输入的光信号输出至相应的复用器,以通过复用器将波长转换后的光信号输出至光纤,进而通过光信传输至下一节点。
需要说明的是,上述“客户端侧”是与“线路侧”相对的概念。结合图2,第一连接器的输出端口的一侧,以及第二连接器的输入端口的一侧,即为“客户端侧”。第一连接器的输入端口的一侧,以及第二连接器的输出端口的一侧,即为“线路侧”。根据“客户端侧”和“线路侧”的该定义可知,信号接收端、信号发送端以及波长转换器都位于“客户端侧”,而解复用器和复用器则位于“线路侧”。
相关技术中,图2中示出的第一连接器一般为具有多个输入端口和多个输出端口的多通道广播功能光开关(multi-cast switch,MCS),比如图3中示出的MCS(J×K),其中J和K均为正整数,J表示该MCS的输入端口数量,K表示MCS的输出端口数量。
如图3所示,MCS(J×K)包括J个光分路器(1×K)和K个光开关(J×1),光分路器(1×K)具有1个输入端口和K个输出端口,光开关(J×1)具有J个输入端口和1个输出端口。结合图2和图3,多个解复用器分别连接到该J个分路器(1×K)的输入端口,每个光分路器(1×K)的K个输出端口分别连接到不同光开关(J×1)上的一个输入端口,K个光开关(J×1)的K个输出端口则分别连接到不同的波长转换器和信号接收端。其中,任一光分路器(1×K)接
收到来自解复用器的光信号后,将该光信号分成K路后,分别输出至K个光开关(J×1)。任一光开关(J×1),接收到来自各个光分路器(1×K)的光信号后,从中选择出一个,输出至相连的波长转换器或者信号接收端。
由图3示出的光信号处理设备可以看出,一个波长转换器只能接收到来自一个解复用器的光信号,即一个波长转换器只能对一个维度/方向的光信号进行波长转换。假设,从某个解复用器将标称中心波长为λx的光信号(以下简称λx)输入至第一连接器,同时另一个解复用器将标称中心波长为λy的光信号(以下简称λy)输入至第一连接器,并且某个波长转换器支持对λx和λy同时进行波长转换,那么,由于第一连接器上用于输出λx的输出端口和用于输出λy的输出端口无法都连接到该波长转换器,该波长转换器将无法既接收到λx,又接收到λy,进而无法对λx和λy同时进行波长转换。这样的话,浪费了波长转换器对多路不同波长的光信号同时进行波长转换的能力(以下简称为多波长转换能力),或者说需要在光信号处理设备中集成较多数量的波长转换器,才能满足波长转换需求。
相关技术中的另一些光信号处理设备中,采用具有多个输入端口和多个输出端口的分/插光波长选择开关(add/drop wavelength selective switching,adWSS)作为第一连接器。但,由于adWSS具有与MCS相同的缺陷,因此这些光信号处理设备也浪费了波长转换器的多波长转换能力,也需要集成较多数量的波长转换器,才能满足波长转换需求。
图2中示出的第一连接器还可以由两个WSS构成,一般如图4中示出的一个WSS(J×1)和一个WSS(1×K)。其中,多个解复用器分别连接至WSS(J×1)上不同的输入端口,WSS(J×1)的输出端口与WSS(1×K)的输入端口相连,WSS(1×K)上不同的输出端口分别连接到不同的波长转换器或者信号接收端。WSS(J×1)接收到来自各个解复用器的光信号后,根据波长从接收到的光信号中选择出一个,输出至WSS(1×K)。WSS(1×K)接收到来自WSS(J×1)的光信号后,输出至相应的波长转换模块,以进行波长转换;或者接收到来自WSS(J×1)的光信号后,输出至相应的信号接收端。
由图4示出的光信号处理设备可以看出,由于WSS(J×1)和WSS(1×K)之间通过一条链路连接,因此当多个维度/方向的光信号的波长相同时,这些光信号会在该链路中发生波长冲突,这就导致第一连接器无法将这些光信号输送到相应的波长转换器。具体来说,假设,某个解复用器将标称中心波长为λx的光信号输入至WSS(J×1),同时另一个解复用器也将标称中心波长为λx的光信号输入至WSS(J×1),由于WSS(J×1)和WSS(1×K)之间通过一条链路连接,因此这两路λx中的一路,是无法通过WSS(J×1)输入至WSS(1×K)的,导致该路λx无法到达相应的波长转换器中。而,一些维度/方向的光信号无法通过第一连接器到达相应的波长转换器,意味着该光信号处理设备的波长转换功能有限,其内集成的波长转换器的功能未得到利用。
有鉴于此,本申请实施例提供一种光信号处理设备,该光信号处理设备通过其中集成的较少的波长转换器,即可极大地满足波长转换需求,比如完成对更多维度/方向的光信号的波长转换。该光信号处理设备可以应用于光纤通信系统中需要进行波长转换的节点处,比如图1中示出的节点D,以提升光纤通信系统的传输容量,并节约硬件资源,降低通信成本。
本申请实施例提供的光信号处理设备可以包括至少一个光信号处理器和至少一个波长转换器。一方面,通过该至少一个光信号处理器与多根光纤耦合,进而接收到来自多根光纤的、分别属于不同维度/方向的多个光信号,另一方面,光信号处理器连接至波长转换器,通过该至少一个光信号处理器,可以向任一个或多个波长转换器输出光信号。为便于说明,本申请将由光纤输入至光信号处理器的光信号称为第一光信号,将由光信号处理器输出的光信号称为第二光信号。通过至少一个光信号处理器接收多路第一光信号,基于多路第一光信号获得第二光信号,并将第二光信号输出至任意一个或者多个波长转换器。每个波长转换器,则用于接收第二光信号,基于接收到的第二光信号生成第三光信号,并输出该第三光信号,第三光信号与第二光信号对应的频率范围不完全重叠。
上述“第三光信号与第二光信号对应的频率范围不完全重叠”,包括第三光信号与第二光信号对应的频率范围部分重叠的情况,例如,第二光信号对应的频率范围为4.0GHz-5.0GHz,第三光信号对应的频率范围为4.5GHz-5.0GHz。还包括第三光信号与第二光信号对应的频率范围
不具有重叠部分的情况,例如第二光信号对应的频率范围为4.0GHz-5.0GHz,第三光信号对应的频率范围为6.0GHz–7.0GHz。上述“第三光信号与第二光信号对应的频率范围不完全重叠”,可以理解为,第三光信号与第二光信号的波长(标称中心波长)不同,即第三光信号为第二光信号经过波长转换器完成波长转换后得到的光信号。
在一些实施例中,上述光信号处理设备包括多个光信号处理器,每个光信号处理器用于从至少一根光纤中接收至少一路第一光信号。上述通过至少一个光信号处理器获得及输出的第二光信号,包括每个光信号处理器基于其接收到的第一光信号获得的光信号。
在一些实施例中,光信号处理设备中,一个波长转换器可以连接多个光信号处理器,这样,可以将多个第二光信号输出至同一个波长转换器中。其中,一个光信号处理器可以连接一个或者多个波长转换器。示例的,每个波长转换器可以与每个光信号处理器连接,具体可参见下述图5至图18所示实施例。这样,对于任意一个波长转换器而言,都可以接收到任意的第二光信号。这意味着,任意多个不同维度/方向的光信号,都可以被输出至任意一个波长转换器,以在该波长转换器中同时完成波长转换,从而充分利用波长转换器的多波长转换能力。
在另一些实施例中,光信号处理设备中,至少一个光信号处理器与至少一个波长转换器一一对应连接。即,一个光信号处理器连接一个波长转换器,一个波长转换器连接一个光信号处理器,具体可以参见下述图19所示实施例。这样,可以保证将不同维度/方向的第二光信号分别输出至不同的波长转换器中。
图5为本申请实施例提供的一种光信号处理设备的示意图,在该示例中,该光信号处理设备包括两个光信号处理器和两个波长转换器。其中,每个光信号处理器,其一端与光纤耦合,另一端连接至每个波长转换器。该两个光信号处理器所耦合的光纤不同,进而接收到的来自光纤的光信号维度/方向不同。每个光信号处理器接收到第一光信号后,基于第一光信号获得第二光信号,并将第二光信号输出至任意一个或者多个波长转换器。
在图5所示的光信号处理设备中,由于不同的光信号处理器接收到的第一光信号来自不同的光纤,即具有不同维度/方向,各个光信号处理器基于第一光信号获得的第二光信号也为不同维度/方向的光信号。在此基础上,由于每个光信号处理器连接至每个波长转换器,因此任一个光信号处理器都能够将需要进行波长转换的第二光信号发送给任一个或者多个波长转换器。对于任意一个波长转换器而言,都可以接收到任意的光信号处理器的第二光信号。这意味着,任意多个不同维度/方向的光信号,都可以被输出至任意一个波长转换器,以在一个波长转换器中同时完成波长转换,从而充分利用波长转换器的多波长转换能力。这样,面对一定的波长转换需求,可以大大降低光信号处理设备中需要集成的波长转换器的数量,节约硬件资源的同时,还能提高光信号处理设备所在的光纤通信系统的通信传输容量。
结合图5和图3,在图3示出的光信号处理设备中,受限于第一连接器的功能和结构,多个解复用器只能通过第一连接器分别连接至不同的波长转换器,而无法连接到同一个波长转换器,导致一个波长转换器只能接收到一路光信号。而与图3示出的光信号处理设备显著不同的是,本申请实施例提供的光信号处理设备中,任意一个光信号处理器均被连接至每个波长转换器,从而可以保证任意多个不同维度/方向的光信号,都可以被输出至任意一个波长转换器,以通过一个波长转换器对多个波长的光信号同时进行波长转换,从而充分利用其多波长转换能力。
结合图5和图4,在图4示出的光信号处理设备中,受限于第一连接器的功能和结构,当来自不同的解复用器的第二光信号具有相同的波长时,这些第二光信号会由于在第一连接器内部产生波长冲突而导致无法被传输至相应的波长转换器中。而与图4示出的光信号处理设备显著不同的是,本申请实施例提供的光信号处理设备中,光信号处理器并非通过图4中的第一连接器连接至波长转换器,因此不会受到图4中的第一连接器的功能和结构的限制。通过将任一光信号处理器连接至每个波长转换器,可以保证将任意波长、任意方向/维度的第二光信号发送至任意的波长转换器,具有高度的方向/维度的调度灵活性。
应理解的是,本申请实施例光信号处理设备中光信号处理器和波长转换器的数量不限于图5中示出的数量。比如,在另一些示例中,光信号处理设备中可以集成J个光信号处理器,J为大于1的正整数,表示光纤通信系统中光信号的维度数/方向数,或者表示光纤通信系统中相邻两个节
点设备之间的光纤数量。再如,在又一些示例中,光信号处理设备中可以集成i个波长转换器,i为正整数(即图5中所示的波长转换器的可以只有一个)。由于采用本申请实施例提供的光信号处理设备,可以充分发挥每个波长转换器的多波长转换能力,所以光信号处理设备中集成的波长转换器的数量i可以远小于需要进行转换的光信号数量。
上述示例中,每个光信号处理器可以具有一个输入端口,并耦合一根光纤,进而接收一路第一光信号。在本申请的其他实施例中,每个光信号处理器可以具有多个输入端口,并通过不同的输入端口耦合多根光纤,进而接收多路第一光信号。
在另一些实施例中,光信号处理器具体可以为一个具有多个输入端口的光信号处理器,这样,也能通过不同的输入端口与多根光纤耦合,进而接收到多路第一光信号。
下面对本申请实施例提供的光信号处理设备中,各个光信号处理器与波长转换器的具体连接方式,以及光信号处理器的具体实现方式予以介绍。
在一些实施例中,光信号处理设备中,多个光信号处理器通过一个光合路器连接至同一个波长转换器。这里的“多个光信号处理器”可以包括光信号处理设备中所有的光信号处理器,可以仅包括光信号处理设备中的部分光信号处理器。通过一个光合路器将多个光信号处理器连接到同一个波长转换器,如此实现任一光信号处理器与任一个或者多个波长转换器的连接。这样,对于一个波长转换器而言,即使其输入端口数量不足,也能通过第一光合路器与多个光信号处理器相连,进而可以接收到来自多个光信号处理器中任意光信号处理的第二光信号。为便于说明,本申请实施例中将用于连接光信号处理器和波长转换器的光合路器称为第一光合路器。
继续以光信号处理设备集成两个光信号处理器和两个波长转换器为例,请参阅图6,该两个光信号处理器通过一个第一光合路器连接至同一个波长转换器。第一光合路器可以接收来自任意光信号处理器的第二光信号,将接收到的第二光信号合为一路后,输出至相连的波长转换器。通过一个光合路器将多个光信号处理器连接到同一个波长转换器,如此实现任一光信号处理器与每个波长转换器的连接。这样,对于一个波长转换器而言,即使其输入端口数量不足,也能通过第一光合路器与每个光信号处理器相连,进而可以接收到来自任意光信号处理器的第二光信号。
在图6示出的实现方式中,第一光合路器的数量与波长转换器的数量相同,即每个波长转换器都是通过一个第一光合路器与各个光信号处理器相连的。而在另一些实现方式中,第一光合路器的数量也可以少于波长转换器的数量,这样,一部分波长转换器通过第一光合路器与各个光信号处理器相连,另一部分波长转换器则通过其他方式与各个光信号处理器相连。
进一步的,在图6所示实现方式中,任意两条连接光信号处理器和第一光合路器的链路相互独立。由于任意两条连接光信号处理器和第一光合路器的链路相互独立,因此各个方向/维度的第二光信号,都可以由独立的链路输出至第一光合路器,进而到达相应的波长转换器,即使一些第二光信号具有相同的波长,也不会因为链路有重叠部分而在链路中产生信号冲突。具体实现时,光信号处理器可以具有多个输出端口,第一光合路器具有多个输入端口。光信号处理器上不同的输出端口通过独立的光纤分别与各个第一光合路器上的一个输入端口相连,且第一光合路器上的一个输入端口仅连接一个光信号处理器。
在一些实施例中,光信号处理设备中,多个光信号处理器通过一个波长选择器连接至同一个波长转换器。这里的“多个光信号处理器”可以包括光信号处理设备中所有的光信号处理器,可以仅包括光信号处理设备中的部分光信号处理器。通过一个波长选择器将多个光信号处理器连接到同一个波长转换器,如此实现任一光信号处理器与任一个或者多个波长转换器的连接。这样,可以利用波长选择器的波长选择功能,从多个维度/方向的第二光信号中选择出需要进行波长转换的第二光信号,输出至波长转换器,以完成波长转换。为便于说明,本申请实施例中,用于将多个光信号处理器连接至同一个波长转换器的波长选择器称为第一波长选择器。
继续以光信号处理设备集成两个光信号处理器和两个波长转换器为例,请参阅图7,该两个光信号处理器通过一个第一波长选择器连接至同一个波长转换器。该第一波长选择器可以接收来自任意光信号处理器的第二光信号,基于接收到的第二光信号的波长,从接收到的第二光信号中选择出一个,输出至相连的波长转换器。通过一个波长选择器将多个光信号处理器连接到同一个波长转换器,如此实现任一光信号处理器与每个波长转换器的连接。这样,可以利用波长选择器
的波长选择功能,从多个维度/方向的第二光信号中选择出需要进行波长转换的第二光信号,输出至波长转换器,以完成波长转换。
进一步的,在图7所示实现方式中,任意两条连接光信号处理器和第一波长选择器的链路相互独立。由于任意两条连接光信号处理器和第一波长选择器的链路相互独立,因此各个方向/维度的第二光信号,都可以由独立的链路输出至第一波长选择器,再由第一波长选择器将需要进行波长转换的第二光信号输出至波长转换器。这样,即使不同方向/维度的光信号具有相同的波长,也不会因为链路有重叠部分而在链路中产生信号冲突。具体实现时,光信号处理器可以具有多个输出端口,第一波长选择器具有多个输入端口。光信号处理器上不同的输出端口通过独立的光纤分别与各个第一波长选择器上的一个输入端口相连,且第一波长选择器上的一个输入端口仅连接一个光信号处理器,从而保证任意两条连接光信号处理器和第一波长选择器的链路是相互独立的。
在图6或者图7示出的实现方式中,光信号处理器可以为波长选择器,比如WSS(1×N),1表示WSS的输入端口数量,N表示WSS的输出端口数量,N为正整数。那么,当输入到光信号处理器的第一光信号为多波长光信号时,光信号处理器(即波长选择器)可以从第一光信号中选择出一个或者多个第二光信号,每个第二光信号可以是多波长光信号,也可以是单波长光信号。在这些实现方式中,由于光信号处理器具有波长选择功能,而且光信号处理器上一个输出端口只连接一个波长转换器,所以光信号处理器可以灵活地选择将哪个波长的光信号由其哪个输出端口输出,进而,可以避免多个光信号处理器将相同波长的第二光信号输出至同一个波长转换器,避免相同波长的第二光信号在波长转换器内发生波长冲突。
在图6或者图7示出的实现方式中,光信号处理器还可以为光分路器。那么,一个第二光信号则为光信号处理器(即光分路器)对输入的第一光信号进行分路得到的一路信号。应理解的是,在这种实现方式中,光信号处理器从基于第一光信号获得的各个第二光信号与第一光信号携带的信息相同。
结合图7,在多个光信号处理器通过一个第一波长选择器连接至同一个波长转换器的情况下,光信号处理器可以采用光分路器。这样,当输入到光信号处理器的第一光信号为多波长光信号时,虽然光信号处理器不具有波长选择功能,其输出的第二光信号仍为多波长光信号,但,该多波长的第二光信号到达某个第一波长选择器后,可以由该第一波长选择器从多波长的第二光信号中选择出需要进行波长转换的光信号(多波长或者单波长),输出至相连的波长转换器,实现波长转换。由于任一第一波长选择器不同的输入端口与不同的光信号处理器连接,且第一波长选择器的一个输入端口只连接一个光信号处理器,即使多个光信号处理器输出至同一第一波长选择器的第二光信号波长相同,但由于对应的输入端口不同,因此波长相同的多个第二光信号不会在第一波长选择器中发生波长冲突。
在一些实施例中,光信号处理设备中,多个光信号处理器中的各个光信号处理器,均通过同一个波长选择器连接至每个波长转换器。这里的“多个光信号处理器”可以包括光信号处理设备中所有的光信号处理器,可以仅包括光信号处理设备中的部分光信号处理器。为便于说明,本申请实施例中,将用于连接各个光信号处理器和每个波长转换器的波长选择器称为第二波长选择器。
请参阅图8,光信号处理设备包括多个光信号处理器,多个光信号处理器中的各个光信号处理器,通过一个第二波长选择器连接至每个波长转换器。该第二波长选择器用于接收来自各个光信号处理器的第二光信号,基于接收到的第二光信号的波长,将接收到的一个或者多个第二光信号输出至任一个波长转换器。
在图8示出的实施例中,第二波长选择器具有多个输入端口和多个输出端口,如WSS(M×N),其多个输入端口分别通过独立的光纤与不同的光信号处理器相连,且其一个输入端口仅连接一个光信号处理器,从而保证每个光信号处理器与第二波长选择器之间的链路是独立的。第二波长选择器的多个输出端口则分别通过独立的光纤与不同的波长转换器相连,且一个输出端口仅连接一个波长转换器,从而保证第二波长选择器与每个波长转换器之间的链路是独立的。
除此之外,第二波长选择器还可以通过不同的输出端口连接到不同的信号接收端,以将来自光信号处理器的光信号通过特定的输出端口输出至相应的信号接收端。在这些实施例中,由于第二波长选择器的输出端口侧连接有信号接收端,其主要目的是将“线路侧”的光信号转接至信号
接收端,因此第二波长选择器的输出端口侧同样为上述提及的“客户端侧”。由图8示出的光信号处理设备可以看出,与上述所示实施例显著不同的是,在图8示出的光信号处理设备中,波长转换器集成在“客户端侧”,而非“线路侧”,并通过具有多个输入端口和多个输出端口的第二波长选择器,实现了与任意光信号处理器的连接。或者可以这样理解,这种实现方式,相当于对需要进行波长转换的第二光信号执行一次虚拟接收和发送的过程。对于任一波长转换器而言,都可以接收到来自任意一个或者多个光信号处理器发来的第二光信号,进而实现波长转换。虽然波长转换器集成在“客户端侧”,但此类光信号处理设备具有与上述示出的光信号处理设备相同的优点,此处不予赘述。
本申请实施例中,光信号处理设备还可以包括至少一个复用器。各个波长转换器,连接至至少一个复用器,以将第三信号输出至相连的复用器。该复用器,用于接收来自波长转换器的第三光信号,基于接收到的第三光信号获得第四光信号,并输出第四光信号。
在一些实施例中,光信号处理设备包括多个复用器,以图9示出的包含两个复用器为例,每个波长转换器连至每个复用器,以将第三光信号输出至任意一个或者多个的复用器。上述通过复用器输出的第四光信号,包括每个复用器基于接收到的第三光信号获得的光信号。具体来说,每个复用器的具有至少一个输出端口,以耦合至少一根光纤。每个复用器在接收到第三光信号后,基于接收的第三光信号获得第四光信号,并输出该第四光信号至相连的光纤。
由图9示出的光信号处理设备可知,每个波长选择器完成波长转换后,得到的第三光信号可以通过一个或者多个复用器进行输出,比如有选择地通过某一个特定的复用器输出第三光信号至光纤,或者由该多个复用器有选择地输出。所谓有选择地通过某一个特定的复用器输出第三光信号至光纤,可以理解为,该波长选择器可以选择向该多个复用器中的任意一个,输出第三光信号。所谓多个复用器有选择地输出,可以理解为,在一个复用器接收到来自多个波长转换器的第三光信号的情况下,该复用器可以选择出其中的一个进行输出至光纤。可见,该光信号处理设备,可以将任一波长转换器得到的第三光信号,通过任一个复用器输出至任一根光纤,从而满足第三光信号的通达性。
应理解的是,本申请实施例光信号处理设备中复用器的数量不限于图9中示出的数量。比如,在另一些示例中,光信号处理设备中可以集成J个复用器,J为正整数(即图9中所示的复用器可以只有一个,也可以是多个)。另外,J为大于1的正整数时,可以表示光纤通信系统中光信号的维度数/方向数,或者表示光纤通信系统中相邻两个节点设备之间的光纤数量。
下面对本申请实施例提供的光信号处理设备中,针对各个波长转换器与各个复用器的具体连接方式,以及复用器的具体实现方式予以介绍。
继续以光信号处理设备集成两个解复用器、两个波长转换器和两个复用器为例,请参阅图10,在一些可能的实现方式中,一个波长转换器通过一个光分路器连接至每个复用器。为便于说明,本申请实施例中,将用于连接波长转换器和复用器的光分路器称为第一光分路器。第一光分路器可以接收来自波长转换器的第三光信号,对第三光信号进行分路,将分出的各路第三光信号分别输出至不同的复用器。通过一个光分路器将一个波长转换器和多个复用器连接起来,如此实现每个波长转换器与多个复用器的连接。这样,即使波长选择器只有一个输出端口,也能通过第一光分路器将其得到的第三光信号同时输出至任意一个或者多个复用器。对于任一个复用器而言,便可以接收到任意一个或者多个波长转换器发送的第三光信号,进而,该光信号处理设备可以将任一波长转换器得到的第三光信号,通过任一个复用器输出至任一根光纤。
具体实现时,第一光分路器具有多个输出端口,复用器具有多个输入端口。第一光分路器上不同的输出端口通过独立的光纤分别与各个复用器上的一个输入端口相连,复用器上的一个输入端口仅连接一个第一光分路器。
采用图10示出的实现方式,由于一个波长转换器通过合路器连接所有的光信号处理器,通过分路器连接所有的复用器,因此充分保证了需要进行波长转换的光信号能够通过波长转换器实现波长转换,充分发挥波长转换器的作用,面对一定的波长转换需求,所需的波长转换器数量最少。
在图10示出的实现方式中,第一光分路器的数量与波长转换器的数量相同,即每个波长转换器都是通过一个第一光分路器与各个复用器相连的。而在另一些实现方式中,第一光分路器的数
量也可以少于波长转换器的数量,这样,一部分波长转换器通过第一光分路器与各个复用器相连,另一部分波长转换器则通过其他方式与各个复用器相连。
请参阅图11,在图8基础上,在另一种可能的实现方式中,光信号处理设备中的各个波长转换器均通过一个第三波长选择器连接至每个复用器。该第三波长选择器用于接收来自任何波长转换器的第三光信号,将接收到的至少一个第三光信号发送给任意一个或者多个复用器。该第三波长选择器均具有多个输入端口和多个输出端口,如WSS(N×M),各个波长转换器分别连接到第三波长选择器上不同的输入端口上,第三波长选择器再通过不同的输出端口连接到各个光纤。
除此之外,第三波长选择器还可以通过不同的输入端口接入不同的信号发送端,从而可以接收信号发送端输入的光信号,并将该光信号输入至相应的光纤中。在这些实施例中,第三波长选择器的输入端口侧连接有信号发送端,其主要目的是向“线路侧”输入新的光信号,以向下一节点传输,因此第三波长选择器的输入端口侧同样为上述提及的“客户端侧”。
在另一些实施例中,还可以将图11中采用的第三波长选择器替换成具有多个输入端口和多个输出端口的MCS或者adWSS,从而得到结构组成不同于图11,但与图11所示设备具有相同优点的另一些光信号处理设备。
如图12所示,在另一些可能的实现方式中,任一光信号处理器还可以被连接至每个复用器。这样,光信号处理器还可以将其获得的第二光信号发送给任一复用器,复用器则可以从接收到的第二光信号和第三光信号中选择出一个或者多个,作为第四光信号,输出至相连的光纤。如此,实现光信号的交叉连接。示例的,一个光信号处理器通过不同的输出端口连接至每个复用器上的一个输入端口,不同的光信号处理器与同一复用器上不同的输入端口相连。光信号处理器可以通过相应的输出端口,将第二光信号输出至该输出端口所连接的复用器。
在一些可能的实现方式中,复用器可以为波长选择器,如WSS(N×1)。这样,复用器即具有波长选择功能,即它可以从接收到的光信号中选择出一个特定波长的光信号,作为第四光信号,进行输出。且,由于一个复用器上的一个输入端口只连接一个波长转换器或者一个解复用器,因此即使复用器接收到的多个光信号波长相同,但由于对应的输入端口不同,因此不会将多个波长相同的光信号输入到同一根光纤中。
在另一些实施例中,复用器具体可以为一个具有多个输入端口和多个输出端口的波长选择器,如WSS(N×M)。WSS(N×M)可以实现与M个WSS(N×1)相近的技术效果,此处不予赘述。
图13为本申请实施例提供的另一种光信号处理设备,如图13所示,在图9(或者图10)基础上,该光信号处理设备还包括第一连接器,每个光信号处理器还被连接至该第一连接器,该第一连接器连接至至少一个信号接收端。每个光信号处理器还用于将一个第二光信号输出至第一连接器。第一连接器则可以将来自光信号处理器的第二光信号输出至相连的信号接收端。
由图13示出的光信号处理设备可以看出,光信号处理器上的一部分输出端口用于将需要进行波长转换的第二光信号输出至波长转换器,一部分输出端口用于将需要向下一节点传输的第二光信号输出至复用器,还有一个输出端口用于输出第二光信号至第一连接器,以通过第一连接器输出至信号接收端。在光信号处理器具有足够数量的输出端口的情况下,将它的一部分输出端口与波长转换器连接,将它的一部分输出端口与复用器连接,再将它的另一个输出端口与第一连接器连接。这样,不仅实现了任一光信号处理器与每个波长转换器之间的连接,也未增加光信号处理器与复用器之间以及与第一连接器之间的链路损耗,保证较好的信号质量。
继续以光信号处理设备集成两个光信号处理器、两个波长转换器、两个复用器和第一连接器为例,在另一些实施例中,如图14所示,一个光信号处理器通过一个光分路器连接至一个第一光合路器和第一连接器。为便于说明,本申请实施例中,用于将光信号处理器连接到一个第一光合路器和第一连接器的光分路器,称为第二光分路器。第二光分路器用于接收第二光信号,将第二光信号分成两路后,将分出的一路第二光信号输出至相连的第一光合路器和第一连接器。
由图14示出的光信号处理设备可以看出,第二光分路器接收到来自光信号处理器的第二光信号后,可以根据需要,将该第二光信号分成两路,再将其中一路输出至相连的波长转换器,再将另一路输出至第一连接器。这样,无需占用光信号处理器上额外的输出端口向第一连接器输出第
二光信号,同时还能通过对各个第二光分路器的配置,有选择地将任一种波长的第二光信号输出至第一连接器。
当然,如果光信号处理设备中多个光信号处理器通过一个波长选择器连接至一个波长转换器,那么一个光信号处理器则可以通过一个光分路器(也即第二光分路器)连接至一个波长选择器和第一连接器。这样,同样能够达到节约解复用器上输出端口等目的。
在一些可能的方式中,第一连接器的具体结构可以如图3中示出的MCS,也可以如图4示出的那样,由WSS(J×1)和WSS(1×J)构成,此处不予赘述。
图15为本申请实施例提供的又一种光信号处理设备,如图15所示,在图9(或者图10,或者图12)基础上,该光信号处理设备还包括第二连接器。该第二连接器的一端可以连接一个或者多个信号发送端,另一端则连接至每个复用器。该第二连接器可以接收由信号发送端输入的第五光信号,将第五光信号输出至任意一个或者多个复用器,以通过复用器将第五光信号输出至光纤。
下面对本申请实施例提供的光信号处理设备中,第二连接器与各个复用器的具体连接方式,以及存在第二连接器的情况下,波长转换器与各个复用器的连接关系予以介绍。
在一些可能的实现方式中,第二连接器具有多个输入端口和多个输出端口,其通过不同的输入端口连接不同的信号发送端,并通过不同的输出端口连接至各个复用器。在这些实现方式中,复用器上的一部分输入端口用于接收完成波长转换的第三光信号,一部分输入端口用于接收需要继续向下一节点传输的第二光信号,还有一个输入端口用于接收来自由信号接收端始发的第五光信号。在复用器具有足够数量的输入端口的情况下,将它的一部分输入端口用于与波长转换器连接,将它的另一部分输入端口用于与光信号处理器连接,再将它的另一个输入端口用于与第二连接器连接,不仅实现了任一波长转换器与每个复用器的连接,任一复用器与每个光信号处理器的连接,也未增加光信号处理器与复用器之间及与第二连接器之间的链路损耗,保证较好的信号质量。
在另一些可能的实现方式中,如图16所示,各个第一光分路器和第二连接器通过一个光合路器连接至一个复用器。为便于说明,本申请实施例中,将用于连接第一光分路器(和第二连接器)与复用器的光合路器称为第二光合路器。第二光合路器可以接收每个第一光分路器发来的第三光信号和第二连接器发来的第五光信号,将第三光信号和第五光信号合为一路后,输出至相连的复用器。由图16示出的光信号处理设备可以看出,通过一个第二光合路器,将需要发送给一个复用器的第三光信号和第五光信号合为一路后,再输出至该复用器。这样,只需要占用复用器上的一个输入端口,即可使其接收到第五光信号和所有的第三光信号。
在图16所示实现方式中,第二光合路器具有多个输入端口;第一光分路器上不同的输出端口与不同的第二光合路器上的一个输入端口相连,第二光合路器上的一个输入端口仅连接一个第一光分路器或者第二连接器。
在一些可能的实现方式中,第二连接器可以为具有多个输入端口和多个输出端口的MCS或者adWSS。以图17中示出的MCS(K×J)为例,如图17所示,MCS(K×J)包括K个光分路器(1×J)和J个光开关(K×1),光分路器(1×J)具有1个输入端口和J个输出端口,光开关(K×1)具有K个输入端口和1个输出端口。多个信号发送端分别连接到该K个光分路器(1×J)的输入端口,每个光分路器(1×J)的J个输出端口分别连接到不同光开关(K×1)上的一个输入端口,J个光开关(K×1)的输出端口则分别连接到不同的复用器上的一个输入端口。其中,任一光分路器(1×J)接收到来自信号发送端的第五光信号后,将该第五光信号分成J路后,分别输出至J个光开关(K×1)。任一光开关(K×1),接收到来自各个光分路器(1×J)的第五光信号后,从中选择出一个,输出至相连的复用器。
在另一些可能的实现方式中,第二连接器还可以两个WSS构成,一般如图18中示出的一个WSS(K×1)和一个WSS(1×J),WSS(K×1)具有K个输入端口和1个输出端口,WSS(1×J)具有1个输入端口和J个输出端口。其中,多个信号发送端分别连接至WSS(K×1)上不同的输入端口,WSS(K×1)的输出端口与WSS(1×J)的输入端口相连,WSS(1×J)上不同的输出端口分别连接到不同的复用器。WSS(K×1)接收到来自各个信号接收端输入的第五光信号后,根据波长从接收到的第五光信号中选择出一个,输出至WSS(1×J)。WSS(1×J)接收
到来自WSS(K×1)的第五光信号后,通过相应的输出端口输出至相应的波长转换模块,以进行波长转换。
在另一些可能的实现方式中,第二连接器还可以由一个光合路器和一个光分路器构成,比如将图18中示出的WSS(K×1)替换成具有K个输入端口和1个输出端口的光合路器,将图18中示出的WSS(1×J)替换成具有1个输入端口和J个输出端口的光分路器。
本申请实施例还提供一种光信号处理设备,图19为该光信号处理设备的示意图,如图19所示,该光信号处理设备包括多个光信号处理器和多个波长转换器;多个光信号处理器与多个波长转换器一一对应连接,且用于连接光信号处理器和波长转换器的链路之间相互独立;光信号处理器用于接收第一光信号,基于第一光信号获得第二光信号,并将第二光信号输出至相连的波长转换器;波长转换器用于接收第二光信号,基于第二光信号生成第三光信号,并输出第三光信号,第三光信号与第二光信号的波长不同。具体实现时,光信号处理器通过其上的一个输出端口直接连接到一个波长转换器。
由图19所示的光信号处理设备可以看出,由于多个光信号处理器与多个波长转换器一一对应连接,且用于连接光信号处理器和波长转换器的链路之间相互独立,因此可以保证将任意波长的第二光信号输出至相应的波长转换器,避免不同的光信号处理器输出的第二光信号波长相同时,发生波长冲突。
此外,相比于图6中通过第一光合路器将光信号处理器与波长转换器连接起来的方式,在图19所示实施例中,由于光信号处理器直接与一个波长转换器相连,因此光信号处理器与波长转换器之间的链路损耗更低。
其中,上述多个光信号处理器和多个波长转换器一一对应连接的光信号处理设备中,光信号处理器与波长转换器的数量不限于图19中示出的两个。同时,光信号处理器和波长转换器的数量可以相同,也可以不同。比如,在另一些示例中,光信号处理设备可以包括J个光信号处理器和i个波长转换器,J和i均为正整数且J大于等于i。在这些示例中,J个光信号处理器中的i个,与i个波长转换器一一对应连接。
需要说明的是,图19所示实施例中,光信号处理器的具体实现方式可以参见图19之前的实施例。例如,光信号处理器可以具有一个输入端口,以与一根光纤耦合,接收一路第一光信号。光信号处理器也可以具有多个输入端口,以与多根光纤耦合,接收多路第一光信号。又如,光信号处理器可以是光分路器,也可以是波长选择器。此处不予赘述。
在一些实施例中,在图19示出的光信号处理设备基础上,还可以包括至少一个复用器。其中,复用器与波长转换器的连接方式、与光信号处理器的连接方式,以及复用器的功能和作用,可以参见图19之前的实施例。例如,各个波长转换器,连接至至少一个复用器,以将第三光信号输出至相连的复用器。每个复用器,用于接收来自波长转换器的第三光信号,基于接收到的第三光信号获得第四光信号,并输出第四光信号。又如,任一波长转换器,连接至每个复用器。具体的,一个波长转换器通过一个第一光分路器连接至每个复用器;第一光分路器用于接收第三光信号,对第三光信号进行分路,将分出的各路第三光信号分别输出至各个复用器。或者,所有的波长转换器均通过第三波长选择器连接至每个复用器;第三波长选择器用于接收来自波长转换器的第三光信号,将接收到的至少一个第三光信号发送给任意一个或者多个复用器。
示例的,上述复用器具体可以为波长选择器,那么第四光信号为复用器根据第三光信号的波长,从第三光信号中选择出的信号。
在一些实施例中,在图19示出的光信号处理设备基础上,还可以包括第一连接器,其中,光信号处理器与第一连接器的连接方式以及第一连接器的功能和作用,可以参见图19之前的实施例。比如,每个光信号处理器还连接至第一连接器;光信号处理器还用于将第二光信号输出至第一连接器;第一连接器用于将来自光信号处理器的第二光信号输出至相应的信号接收端。具体的,一个光信号处理器通过一个第二光分路器连接至一个波长转换器和第一连接器;第二光分路器用于接收第二光信号,将第二光信号分成两路后,将分出的一路第二光信号输出至相连的波长转换器,将分出的另一路第二光信号输出至第一连接器。此处不予赘述。
在一些实施例中,在图19示出的光信号处理设备基础上,还可以包括第二连接器。其中,第
二连接器与复用器的连接方式,第二连接器与波长转换器的连接方式,以及第二连接器的功能和作用,均可以参见上述所示实施例。比如,第二连接器连接至每个复用器,第二连接器用于接收信号发送端输入的第五光信号,将第五光信号分别输出至任意一个或者多个复用器。又如,一个波长转换器和第二连接器通过一个第二光合路器连接至一个复用器;第二光合路器用于接收来自波长转换器的第三光信号和来自信号输入端的第五光信号,将第三光信号和第五光信号合为一路后,输出至相连的复用器。此处,均不予赘述。
本申请实施例提及的信号接收端可以为光接收组件(receiving optical sub-assembly,ROSA),信号发送端可以为光发送组件(transmitting optical sub-assembly,TOSA)。
本申请实施例提供的光信号处理设备可以为CD-OXC设备,即具有“波长无关”和“方向无关”特性的OXC设备。比如,如图11所示和图13所示,当光信号处理设备中同时集成了第一连接器和第二连接器,且,解复用器采用WSS(1×N),复用器采用WSS(N×1),第一连接器采用如图4所示结构,第二连接器采用图18所示结构时,即构成CD-OXC设备。
本申请实施例提供的光信号处理设备可以为CDC-OXC设备,即具有“波长无关”、“方向无关”以及“竞争无关”特性的OXC设备。比如,如图11所示和图13所示,当光信号处理设备中同时集成了第一连接器和第二连接器,且,解复用器采用WSS(1×N),复用器采用WSS(N×1),第一连接器采用如3所示结构,第二连接器采用如图17所示结构时,即构成CDC-OXC设备。
本申请实施例还提供一种光纤通信系统,该光纤通信系统包括上述任一种或者多种光信号处理设备。上述光信号处理设备可以通过最少的波长转换器,最大程度的提高该光纤通信系统的通信传输容量,并节约硬件资源,通信成本较低。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
Claims (23)
- 一种光信号处理设备,其特征在于,包括至少一个光信号处理器和至少一个波长转换器;所述光信号处理器,连接至所述波长转换器;通过所述至少一个光信号处理器接收多路第一光信号,基于所述多路第一光信号获得第二光信号,并将所述第二光信号输出至任意一个或者多个所述波长转换器;所述多路第一光信号中的每一路分别来自不同的光纤;所述波长转换器,用于接收所述第二光信号,基于所述第二光信号生成第三光信号,并输出所述第三光信号,所述第三光信号与所述第二光信号对应的频率范围不完全重叠。
- 根据权利要求1所述的光信号处理设备,其特征在于,在所述光信号处理设备包括多个所述光信号处理器的情况下,每个所述光信号处理器用于接收所述多路第一光信号中的至少一路,所述第二光信号包括,每个所述光信号处理器基于接收到的至少一路所述第一光信号获得的光信号。
- 根据权利要求2所述的光信号处理设备,其特征在于,还包括第一光合路器;多个所述光信号处理器通过一个所述第一光合路器连接至同一个所述波长转换器;所述第一光合路器用于接收来自所述光信号处理器的第二光信号,将接收到的所述第二光信号合为一路后,输出至相连的所述波长转换器。
- 根据权利要求2所述的光信号处理设备,其特征在于,还包括第一波长选择器;多个所述光信号处理器通过一个所述第一波长选择器连接至同一个所述波长转换器;所述第一波长选择器用于接收来自所述光信号处理器的第二光信号,基于接收到的所述第二光信号的波长,选择出至少一个接收到的所述第二光信号,输出至相连的所述波长转换器。
- 根据权利要求2所述的光信号处理设备,其特征在于,还包括第二波长选择器;多个所述光信号处理器中的各个所述光信号处理器,均通过所述第二波长选择器连接至每个所述波长转换器;所述第二波长选择器用于接收来自所述光信号处理器的所述第二光信号,基于接收到的所述第二光信号的波长,将接收到的一个或者多个所述第二光信号输出至任一个波长转换器。
- 根据权利要求1-5任一项所述的光信号处理设备,其特征在于,还包括至少一个复用器;各个所述波长转换器,连接至至少一个所述复用器,以将所述第三光信号输出至相连的所述复用器;所述复用器,用于接收来自所述波长转换器的所述第三光信号,基于接收到的所述第三光信号获得第四光信号,并输出所述第四光信号。
- 根据权利要求6所述的光信号处理设备,其特征在于,在所述光信号处理设备包括多个所述复用器的情况下,任一所述波长转换器,连接至每个所述复用器。
- 根据权利要求7所述的光信号处理设备,其特征在于,还包括第一光分路器;一个所述波长转换器通过一个所述第一光分路器连接至每个所述复用器;所述第一光分路器用于接收所述第三光信号,对所述第三光信号进行分路,将分出的各路所述第三光信号分别输出至至少一个所述复用器。
- 根据权利要求8所述的光信号处理设备,其特征在于,所述第一光分路器具有多个输出端口,所述复用器具有多个输入端口;第一光分路器上不同的输出端口与不同的复用器上的一个输入端口相连,复用器上的一个输入端口连接一个第一光分路器。
- 根据权利要求7所述的光信号处理设备,其特征在于,还包括第三波长选择器;所述至少一个波长转换器均通过所述第三波长选择器连接至每个所述复用器;所述第三波长选择器用于接收来自所述波长转换器的第三光信号,将接收到的至少一个所述第三光信号发送给任意一个或者多个所述复用器。
- 根据权利要求2-5任一项所述的光信号处理设备,其特征在于,所述光信号处理器包括光分路器,所述光分路器用于对所述第一光信号进行分路,所述第二光信号包括对所述第一光信号进行分路得到的一路信号。
- 根据权利要求2-5任一项所述的光信号处理设备,其特征在于,所述光信号处理器包括波长选择器;所述波长选择器用于根据所述第一光信号的波长,从所述第一光信号中选择出所述第二光信号。
- 根据权利要求7-10任一项所述的光信号处理设备,其特征在于,所述复用器包括波长选择器,所述波长选择器用于根据所述第三光信号的波长,从所述第三光信号中选择出所述第四光信号。
- 根据权利要求3所述的光信号处理设备,其特征在于,还包括第一连接器;每个所述光信号处理器还连接至所述第一连接器,所述第一连接器连接至至少一个信号接收端;所述光信号处理器还用于将所述第二光信号输出至所述第一连接器;所述第一连接器用于将来自所述光信号处理器的所述第二光信号输出至至少一个所述信号接收端。
- 根据权利要求14所述的光信号处理设备,其特征在于,还包括第二光分路器;一个所述光信号处理器通过一个所述第二光分路器连接至一个所述第一光合路器和所述第一连接器;所述第二光分路器用于接收所述第二光信号,将所述第二光信号分成两路后,将分出的一路所述第二光信号输出至相连的所述第一光合路器,将分出的另一路所述第二光信号输出至所述第一连接器。
- 根据权利要求4所述的光信号处理设备,其特征在于,还包括第一连接器;所述光信号处理器还连接至所述第一连接器,所述第一连接器连接至至少一个信号接收端;所述光信号处理器还用于将所述第二光信号输出至所述第一连接器;所述第一连接器用于将来自所述光信号处理器的所述第二光信号输出至至少一个所述信号接收端。
- 根据权利要求16所述的光信号处理设备,其特征在于,还包括第二光分路器;一个所述光信号处理器通过一个所述第二光分路器连接至一个所述第一波长选择器和所述第一连接器;所述第二光分路器用于接收所述第二光信号,将所述第二光信号分成两路后,将分出的一路所述第二光信号输出至相连的所述第一波长选择器,将分出的另一路所述第二光信号输出至所述第一连接器。
- 根据权利要求5所述的光信号处理设备,其特征在于,所述第二波长选择器连接至至少一个信号接收端,所述第二波长选择器还用于将接收的至少一个所述第二光信号输出至至少一个所述信号接收端。
- 根据权利要求8所述的光信号处理设备,其特征在于,还包括第二连接器;所述第二连接器连接至所述复用器;所述第二连接器用于接收信号发送端输入的第五光信号,将所述第五光信号分别输出至任意一个或者多个所述复用器。
- 根据权利要求19所述的光信号处理设备,其特征在于,还包括第二光合路器;各个所述第一光分路器和所述第二连接器通过一个所述第二光合路器连接至一个所述复用器;所述第二光合路器用于接收所述第三光信号和所述第五光信号,将所述第三光信号和所述第五光信号合为一路后,输出至相连的所述复用器。
- 根据权利要求10所述的光信号处理设备,其特征在于,所述第三波长选择器,还用于接收信号发送端输入的第五光信号,将所述第五光信号分别输出至任意一个或者多个所述复用器。
- 根据权利要求1-21中任一项所述的光信号处理设备,其特征在于,每个所述光信号处理器连接至每个所述波长转换器;或者,所述至少一个光信号处理器与所述至少一个波长转换器一一对应连接。
- 一种光纤通信系统,其特征在于,包括权利要求1-22中任意一项或者多项中的光信号处理设备。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310275619.2A CN118678252A (zh) | 2023-03-17 | 2023-03-17 | 光信号处理设备和光纤通信系统 |
CN202310275619.2 | 2023-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024193364A1 true WO2024193364A1 (zh) | 2024-09-26 |
Family
ID=92723495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/080645 WO2024193364A1 (zh) | 2023-03-17 | 2024-03-07 | 光信号处理设备和光纤通信系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118678252A (zh) |
WO (1) | WO2024193364A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6137608A (en) * | 1998-01-30 | 2000-10-24 | Lucent Technologies Inc. | Optical network switching system |
US20040165816A1 (en) * | 2003-02-26 | 2004-08-26 | Fujitsu Limited | Optical cross-connect apparatus |
CN111917507A (zh) * | 2020-08-10 | 2020-11-10 | 上海欣诺通信技术股份有限公司 | 集成化波分系统和设备 |
CN115001655A (zh) * | 2022-06-10 | 2022-09-02 | 南京信息工程大学 | 一种通过混沌加密方式实现光波长相位加密方法及系统 |
-
2023
- 2023-03-17 CN CN202310275619.2A patent/CN118678252A/zh active Pending
-
2024
- 2024-03-07 WO PCT/CN2024/080645 patent/WO2024193364A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6137608A (en) * | 1998-01-30 | 2000-10-24 | Lucent Technologies Inc. | Optical network switching system |
US20040165816A1 (en) * | 2003-02-26 | 2004-08-26 | Fujitsu Limited | Optical cross-connect apparatus |
CN111917507A (zh) * | 2020-08-10 | 2020-11-10 | 上海欣诺通信技术股份有限公司 | 集成化波分系统和设备 |
CN115001655A (zh) * | 2022-06-10 | 2022-09-02 | 南京信息工程大学 | 一种通过混沌加密方式实现光波长相位加密方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN118678252A (zh) | 2024-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5712932A (en) | Dynamically reconfigurable WDM optical communication systems with optical routing systems | |
EP1128585A2 (en) | Node apparatus and optical wavelength division multiplexing network, and system switching method | |
JPH025663A (ja) | 光パケット交換装置 | |
JPH03219793A (ja) | 波長分割光交換機 | |
JPH10164021A (ja) | 波長多重通信用光回路及びこれを含む光伝送通信システム | |
CN110248263B (zh) | 实现任意onu间直接通信和保护的三维无源光接入网系统 | |
KR100520637B1 (ko) | 파장분할다중방식 자기치유 양방향 환형 광통신망 | |
US8406625B2 (en) | Apparatus and method for cross-connecting optical path in wavelength division multiplexing system | |
US11870552B2 (en) | Apparatus and method for coherent optical multiplexing 1+1 protection | |
US20030206743A1 (en) | Cross connecting device and optical communication system | |
US6859576B2 (en) | Optical cross-connect system | |
JP4852491B2 (ja) | 光クロスコネクトスイッチ機能部及び光クロスコネクト装置 | |
CN100495098C (zh) | 可重新配置的光交换系统 | |
WO2024193364A1 (zh) | 光信号处理设备和光纤通信系统 | |
US20040208540A1 (en) | Node and wavelength division multiplexing ring network | |
JP2006279680A (ja) | 光伝送システム及び光伝送方法 | |
JP3703018B2 (ja) | スター型光ネットワーク | |
JPH1051382A (ja) | 光クロス・コネクト装置及びアド/ドロップ装置 | |
JPH11163793A (ja) | 光受信器、光スイッチ、及び光信号処理装置 | |
JPS58161489A (ja) | 光交換回路網 | |
JP3567117B2 (ja) | 光ネットワークシステム | |
JPS58161487A (ja) | 光交換回路網 | |
JP2005534208A (ja) | 光通信ネットワークで光データを切り換えるためのシステム及び方法 | |
JP2024126813A (ja) | 波長変換装置、光伝送装置及び波長変換方法 | |
JPH0946364A (ja) | ネットワーク、ネットワーク接続装置及びネットワーク接続方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24773931 Country of ref document: EP Kind code of ref document: A1 |