WO2024190921A1 - Steel material - Google Patents
Steel material Download PDFInfo
- Publication number
- WO2024190921A1 WO2024190921A1 PCT/JP2024/010387 JP2024010387W WO2024190921A1 WO 2024190921 A1 WO2024190921 A1 WO 2024190921A1 JP 2024010387 W JP2024010387 W JP 2024010387W WO 2024190921 A1 WO2024190921 A1 WO 2024190921A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel material
- steel
- content
- toughness
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 236
- 239000010959 steel Substances 0.000 title claims abstract description 236
- 239000000463 material Substances 0.000 title claims abstract description 171
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 77
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 44
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 239000000126 substance Substances 0.000 claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims description 39
- 238000001816 cooling Methods 0.000 claims description 35
- 229910001566 austenite Inorganic materials 0.000 claims description 30
- 238000010521 absorption reaction Methods 0.000 claims description 27
- 239000012535 impurity Substances 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 description 28
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 26
- 238000005096 rolling process Methods 0.000 description 20
- 238000005098 hot rolling Methods 0.000 description 19
- 238000010791 quenching Methods 0.000 description 18
- 230000000171 quenching effect Effects 0.000 description 18
- 238000005496 tempering Methods 0.000 description 17
- 229910052761 rare earth metal Inorganic materials 0.000 description 14
- 150000002910 rare earth metals Chemical class 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 238000001953 recrystallisation Methods 0.000 description 12
- 230000009467 reduction Effects 0.000 description 12
- 150000001247 metal acetylides Chemical class 0.000 description 11
- 238000005259 measurement Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 238000001887 electron backscatter diffraction Methods 0.000 description 8
- 238000003303 reheating Methods 0.000 description 8
- 229910000859 α-Fe Inorganic materials 0.000 description 8
- 230000001186 cumulative effect Effects 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 150000004767 nitrides Chemical class 0.000 description 6
- 238000007670 refining Methods 0.000 description 5
- 238000012935 Averaging Methods 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 239000002335 surface treatment layer Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910000655 Killed steel Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910001295 No alloy Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/50—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- This disclosure relates to steel materials.
- Steel can be used for welded structures such as buildings, bridges, ships, line pipes, marine structures, pressure vessels, and tanks. Steel has excellent strength and low-temperature toughness, making it effective for low-temperature applications.
- Low-temperature steels are used for low-temperature pressure vessels such as storage tanks for liquefied gas.
- Low-temperature steels include Al-killed steel, nickel steel, high Mn steel, and austenitic stainless steel, depending on the operating temperature.
- nickel steels such as 3.5% Ni steel are used as materials for tanks that carry liquefied ethane and liquefied ethylene, which have operating temperatures of around -100°C.
- Ni is often included in steel materials that require low-temperature toughness, such as this 3.5% Ni steel, such as low-temperature pressure vessels.
- Patent Document 1 proposes a nickel-containing steel material for low temperature use having excellent toughness, which has a specific chemical composition containing 2.7% or more and 5.0% or less of Ni, a prior austenite grain size during quenching heating of 20 ⁇ m or less, an effective crystal grain size after heat treatment of 12 ⁇ m or less, and a tensile strength of 450 MPa or more and 690 MPa or less. Furthermore, various steel materials with defined chemical compositions and microstructures (metal structures) have been proposed with the aim of achieving low-temperature toughness and high strength (see, for example, Patent Documents 2 to 9).
- Patent Document 1 JP 2019-81930 A Patent Document 2: International Publication No. 2014/103629 Patent Document 3: JP 52-156121 A Patent Document 4: JP 55-104427 A Patent Document 5: JP 58-73717 A Patent Document 6: JP 7-331328 A Patent Document 7: JP 2001-123222 A Patent Document 8: JP 2001-123245 A Patent Document 9: JP 2007-46096 A
- Cryogenic steels used in cryogenic pressure vessels are expected to achieve both high strength and low-temperature toughness.
- Cryogenic pressure vessels are also manufactured by welding steel materials, and may be subjected to post-weld heat treatment (sometimes called PWHT) to remove residual stresses caused by welding.
- PWHT post-weld heat treatment
- the objective of this disclosure is to provide a steel material that is suitable for low-temperature applications, having high tensile strength and good low-temperature toughness regardless of whether it is before or after post-weld heat treatment.
- the gist of the present disclosure is as follows. ⁇ 1> In mass%, C: 0.03% or more, 0.20% or less, Si: 0.01% or more, 0.50% or less, Mn: 0.10% or more, 1.65% or less, P: 0.025% or less, S: 0.0250% or less, Ni: 2.65% or more, 4.45% or less, Al: 0.001% or more, 0.100% or less, O: 0.0100% or less, N: 0.0100% or less, Cu: 0 to 1.50%, Cr: 0-3.00%, Mo: 0-2.00%, B: 0 to 0.0050%, Nb: 0 to 0.050%, Ti: 0 to 0.050%, V: 0 to 0.10%, Mg: 0 to 0.0200%, Ca: 0-0.0200%, REM: 0-0.0200%,
- the balance is Fe and impurities, and has a chemical composition in which ⁇ represented by the following formula (1) is 4.0 or more and 16.0 or less, The tens
- the [element symbol] represents the content (mass%) of the corresponding element contained in the steel material. When the corresponding element is not contained, zero is substituted.
- ⁇ 3> The steel material according to ⁇ 1> or ⁇ 2>, having a Charpy impact absorption energy of 150 J or more at ⁇ 100° C.
- ⁇ 4> The steel material according to any one of ⁇ 1> to ⁇ 3>, wherein when the steel material is subjected to a heat treatment in which the heating rate and the cooling rate are 55°C/h in a temperature range of 425°C or more and the steel material is held at 600°C for 2 hours, the Charpy impact absorption energy at -100°C in the place where the heat treatment was performed is 150J or more.
- ⁇ 5> The steel material according to any one of ⁇ 1> to ⁇ 4>, wherein the aspect ratio of prior austenite grains at a portion of 1/4 of the thickness from the surface of the steel material in the thickness direction is 1.5 or more.
- ⁇ 6> The steel material according to any one of ⁇ 1> to ⁇ 4>, wherein the aspect ratio of prior austenite grains at a portion from the surface of the steel material to 1/4 of the thickness in the thickness direction is less than 1.5.
- This disclosure makes it possible to provide a steel material that is suitable for low-temperature applications, having high tensile strength and good low-temperature toughness regardless of whether it is before or after post-weld heat treatment.
- FIG. 13 is a diagram showing an example of a discrimination result of a microstructure.
- post-weld heat treatment refers to a post-weld heat treatment conforming to the contents specified in JIS Z 3700:2009 "Post-weld heat treatment method".
- steel material or “base material” refers to a steel material portion that does not include a surface treatment layer such as a plating layer or a coating film. However, a surface treatment layer such as a plating layer or a coating film may be formed on the surface of the steel material according to the present disclosure.
- base material in a welded joint refers to a steel material portion that is not affected by welding, in contrast to the welded portion (welded joint and welded heat-affected zone).
- a numerical range expressed using “to” means a range that includes the numerical values before and after “to” as the lower and upper limits. However, when the numerical values before and after “to” are followed by “more than” or “less than,” the numerical range does not include these numerical values as the lower or upper limit. With regard to the contents of elements in chemical compositions, “%” means “mass %”.
- process includes not only an independent process but also a process that cannot be clearly distinguished from other processes as long as the intended purpose of the process is achieved.
- the inventors of the present disclosure have conducted research to improve the strength of steel.
- the tensile strength of steel is ensured by the composition of the microstructure.
- the inventors of the present disclosure collected samples from the 1/4t portion (t: thickness of steel), which is a portion of 1/4 of the thickness from the surface of the steel after hot rolling and accelerated cooling in the thickness direction, performed tensile tests, and observed the microstructure.
- t thickness of steel
- the microstructure of the 1/4t portion of steel with a tensile strength of 590 MPa or more and 930 MPa or less has an area ratio of ferrite of less than 10.0%, and the total area ratio of upper bainite, lower bainite, and martensite of 90.0% or more.
- the total area ratio of upper bainite, lower bainite, and martensite was measured using electron backscatter diffraction (hereinafter referred to as "EBSD").
- the inventors of the present disclosure have conducted research to improve the toughness of steel materials.
- the toughness of steel materials is ensured by the composition of the microstructure.
- the inventors of the present disclosure have taken samples from the 1/4t section of steel materials after hot rolling and accelerated cooling, performed Charpy impact tests, and observed the microstructure. As a result, it was found that steel materials with a Charpy impact absorption energy of 150 J or more at -100°C have a total area ratio of lower bainite and martensite of 15.0% or more. The total area ratio of lower bainite and martensite was measured using EBSD.
- the inventors of the present disclosure have conducted studies to ensure the toughness of the steel material.
- the toughness of the steel material is ensured by reducing the area surrounded by the high-angle grain boundaries where the difference in crystal orientation is 15° or more.
- the inventors of the present disclosure collected samples from the 1/4t part of the steel material manufactured by controlling the cooling rate and cooling stop temperature after hot rolling, and measured the circle equivalent diameter of the area surrounded by the high-angle grain boundaries by EBSD.
- the circle equivalent diameter of the area surrounded by the high-angle grain boundaries is referred to as the grain size.
- the samples were mechanically polished and electrolytically polished, and an analysis was performed by an EBSD device attached to an FE-SEM (field emission scanning electron microscope) in an area of 4 mm 2.
- the average grain size (sometimes referred to as the "effective grain size") was calculated by the area-weighted average of the grain sizes measured in the area of 4 mm 2, weighted by the area of each grain. It has been found that if the average crystal grain size of the 1 ⁇ 4t portion of the steel material is 20.0 ⁇ m or less, the toughness of the steel material tends to be further improved regardless of whether it is before or after post-weld heat treatment.
- C is an element that increases the strength of steel materials. From the viewpoint of ensuring the strength of steel materials used in structures, the C content is 0.03% or more in the present disclosure.
- the C content is preferably
- C is an element that reduces the toughness of the weld heat affected zone (hereinafter sometimes referred to as "HAZ"). From the viewpoint of ensuring toughness, the C content is 0.20% or less in the present disclosure.
- the C content is preferably 0.16% or less, 0.14% or less, or 0.12% or less. be.
- Silicon is used as a deoxidizer and is an element that dissolves in steel to increase strength. From the viewpoint of controlling the O concentration in the molten steel, the present disclosure specifies a silicon content of 0.01 % or more.
- the Si content is preferably 0.03% or more, 0.05% or more, or 0.10% or more.
- the Si content is 0.50% or less in the present disclosure.
- the Si content is preferably 0.30% or less, Or, it is 0.20% or less.
- Mn 0.10% or more, 1.65% or less
- Mn is used as a deoxidizer and is an element that enhances the hardenability of steel and contributes to high strength.
- the Mn content is 0. . 10% or more.
- 0.10% or more of Mn forms MnS, reducing the amount of dissolved S and preventing hot cracking.
- the Mn content is preferably 0.30% or more, or 0.50% or more.
- the toughness of the steel material may decrease. Therefore, from the viewpoint of ensuring the toughness of the steel material after the PWHT, the Mn content is 1.65% or less in the present disclosure.
- the Mn content is preferably 1.50% or less. , 1.25% or less, or 1.10% or less.
- P 0.025% or less
- the P content may be 0.001% or more.
- the P content is 0.025% or less. Preferably, it is 0.016% or less, 0.012% or less, or 0.008% or less.
- S is an impurity element.
- the S content may be 0.0001% or more.
- the S content is preferably 0.0100% or less, or 0.0050% or less.
- Ni 2.65% or more, 4.45% or less
- the Ni content is 2.65% or more.
- the Ni content is preferably 3.00% or more.
- the Ni content is 3.20% or more.
- the Ni content is 4.45% or less.
- the Ni content is preferably 4.10% or less, or 3.80% or less.
- Al 0.001% or more, 0.100% or less
- Al is an element useful for deoxidization and also forms nitrides to refine the grain size during quenching. Therefore, in this disclosure, the Al content is set to 0.001%. However, if Al is contained in excess, Al may form coarse nitrides, which may reduce the toughness of the steel material and the HAZ. Therefore, the Al content is 0.100% or less.
- the Al content is preferably 0.080% or less, or 0.050% or less.
- O is an impurity element.
- the O content may be 0.0001% or more.
- the O content is excessive, If the O content is too high, coarse oxides are generated, and the toughness and ductility of the steel material and the HAZ may deteriorate. From the viewpoint of ensuring the toughness and ductility of the steel material and the HAZ, the O content is 0.0100% or less.
- the O content is preferably 0.0060% or less, or 0.0040% or less.
- N is an impurity element. Although there is no lower limit for the N content, in terms of manufacturing costs, in the present disclosure, the N content may be 0.0001% or more. Steel properties and toughness of HAZ From the viewpoint of ensuring this, in the present disclosure, the N content is 0.0100% or less. The N content is preferably 0.0050% or less, or 0.0040% or less.
- the steel material according to the present disclosure may contain other elements (selected elements) in place of a portion of the Fe.
- selected elements may be included, but the content of these elements may be 0%.
- the steel material disclosed herein may contain one or more of the following optional elements, Cu, Cr, Mo, and B, which have the effect of improving hardenability, as necessary to improve strength and toughness.
- Cu is an element that may be mixed into steel materials during the manufacturing process.
- the lower limit of the Cu content is not limited and may be 0%.
- Cu also has an adverse effect on weldability and HAZ toughness. Since Cu has little adverse effect and has the effect of increasing the hardenability of steel, it is also an element that improves the strength of the steel material. Therefore, in the present disclosure, the Cu content may be 0.01% or more.
- the Cu content is The Cu content is preferably 0.10% or more. However, from the viewpoint of suppressing the occurrence of Cu cracks during hot rolling of the steel material, the Cu content is 1.50% or less in the present disclosure. It is preferably 1.00% or less, 0.80% or less, 0.60% or less, or 0.50% or less.
- Cr 3.00% or less
- Cr is an element that may be mixed into steel during the manufacturing process.
- the lower limit of the Cr content is not limited and may be 0%. Cr also has the effect of improving the hardenability of steel. Therefore, in the present disclosure, the Cr content may be 0.01% or more.
- the Cr content is preferably 0.10% or more.
- the Cr content is 3.00% or less in the present disclosure.
- the Cr content is preferably 2.20% or less, 1.40% or less, Or, it is 0.80% or less.
- Mo is an element that may be mixed into steel during the manufacturing process.
- the lower limit of the Mo content is not limited and may be 0%. Mo also has the effect of improving the hardenability of steel. Therefore, in the present disclosure, the Mo content may be 0.01% or more.
- the Mo content is preferably 0.05% or more, and more preferably 0.10% or more. % or more, 0.20% or more, or 0.30% or more.
- the Mo content is 2.
- the Mo content is preferably 1.20% or less, or 0.80% or less.
- B is an element that may be mixed into steel during the manufacturing process.
- the lower limit of the B content is not limited and may be 0%.
- B also has a significant effect of improving the hardenability of steel. Therefore, in the present disclosure, the B content may be 0.0003% or more.
- the B content is 0.0050% or less.
- the B content is preferably 0.0030% or less, or 0.0020% or less.
- one or more of the optional elements Nb, Ti, and V shown below may be contained as necessary, which have the effect of increasing the strength of the steel material by forming precipitates such as carbides and nitrides.
- Nb is an element that may be mixed into steel during the manufacturing process.
- the lower limit of the Nb content is not limited and may be 0%.
- Nb also forms carbides and nitrides.
- Nb has the effect of refining the metal structure and is also an element that improves the strength of the steel material. Therefore, in the present disclosure, the Nb content may be 0.001% or more.
- the toughness and From the viewpoint of suppressing deterioration of weldability the Nb content is 0.050% or less.
- the Nb content is preferably 0.040% or less, or 0.030% or less.
- the Nb content of the steel material after PWHT is 0.050% or less. From the viewpoint of ensuring toughness, the Nb content may be 0.004% or less.
- Ti 0.050% or less
- Ti is an element that may be mixed into steel during the manufacturing process.
- the lower limit of the Ti content is not limited and may be 0%.
- Ti also forms carbides and nitrides.
- Ti has the effect of refining the metal structure and is also an element that improves the strength of the steel material. Therefore, in the present disclosure, the Ti content may be 0.001% or more.
- the toughness of the HAZ and the weldability may be affected. From the viewpoint of suppressing deterioration of the mechanical properties, the Ti content is 0.050% or less.
- the Ti content is preferably 0.040% or less, or 0.030% or less. From the viewpoint of ensuring toughness, the Ti content may be 0.004% or less, or 0.002% or less.
- V is an element that may be mixed into steel during the manufacturing process.
- the lower limit of the V content is not limited and may be 0%.
- V also forms carbides and nitrides.
- V is also an element that improves the strength of steel materials. Therefore, in the present disclosure, the V content may be 0.01% or more.
- the V content is 0.10% or less, preferably 0.08% or less, or 0.05% or less.
- the steel material disclosed herein may contain one or more of the optional elements Mg, Ca, and REM shown below as necessary to improve the toughness of the HAZ.
- Mg is an element that may be mixed into steel materials during the manufacturing process.
- the lower limit of the Mg content is not limited and may be 0%.
- Mg forms an oxide, It is also an element that improves the toughness of the weld heat affected zone. Therefore, in the present disclosure, the Mg content may be 0.0003% or more, 0.0006% or more, or 0.0010% or more. If the content is excessive, coarse oxides are formed, which may reduce the toughness of the steel. Therefore, from the viewpoint of ensuring toughness, the Mg content is set to 0.0200% or less in the present disclosure.
- the Mg content is preferably 0.0100% or less, 0.0060% or less, or 0.0040% or less.
- Ca is an element that may be mixed into steel during the manufacturing process.
- the lower limit of the Ca content is not limited and may be 0%.
- Ca also dissolves sulfides in the steel into spherical particles. It is also an element that reduces the effect of MnS, which reduces the toughness of steel and weld heat affected zone, by increasing the Ca content. Therefore, in the present disclosure, the Ca content is set to 0.0003% or more, 0.0006% or more, or 0.
- the Ca content is 0.0200% or less.
- the Ca content is preferably 0.0100% or less, 0.0060% or less, or 0.0040% or less.
- Rare earth metals are a collective term for 17 elements, including two elements, Sc and Y, and 15 lanthanoid elements, such as La, Ce, and Nd.
- the REM content is the total content of the 17 elements.
- REM is an element that may be mixed into steel during the manufacturing process.
- the lower limit of the REM content is not limited and may be 0%.
- REM also forms oxides.
- REM is also an element that improves the toughness of the weld heat affected zone. Therefore, in the present disclosure, the REM content may be 0.0003% or more, 0.0006% or more, or 0.0010% or more.
- the REM content in the present disclosure is set to 0.0200%.
- the REM content is preferably 0.0100% or less, 0.0060% or less, or 0.0040% or less.
- the balance of the chemical composition of the steel material according to the present disclosure is iron (Fe) and impurities.
- the impurities refer to components that are mixed in due to raw materials such as ores and scraps or other factors during industrial production of the steel material.
- ⁇ value ( ⁇ value: 4.0 or more and 16.0 or less)
- [C], [Si], [Mn], [Cu], [Ni], [Cr] and [Mo] are the contents (mass%) of C, Si, Mn, Cu, Ni, Cr and Mo in the steel. If the corresponding element is not contained, substitute zero. Note that ⁇ [C] is synonymous with [C] 1/2 .
- the range of the ⁇ value is set to 4.0 to 16.0. This is an index showing the hardenability of the steel material, and the higher the ⁇ value, the more the lower bainite and martensite structures with a favorable balance of strength and toughness can be formed.
- ⁇ is in the appropriate range, the ratio of the lower bainite and martensite structures with a favorable balance of strength and toughness in the HAZ structure is high, and HAZ toughness can be ensured.
- ⁇ is 4.0 or more, the hardenability of the base material is ensured, the ratio of the lower bainite and martensite structures with a favorable balance of strength and toughness increases, and toughness deterioration is suppressed.
- the ratio of the lower bainite and martensite in the structure of the HAZ portion is likely to increase, and the HAZ toughness is also improved.
- the ⁇ value is 16.0 or less, the strength of the steel material does not become too high, and toughness can be ensured.
- the ⁇ value is 16.0 or less, toughness after PWHT can be ensured.
- the HAZ does not become too hard, and HAZ toughness can be ensured.
- the ⁇ value is preferably 4.5 or more, or 5.0 or more.
- the ⁇ value is preferably 15.5 or less, or 15.0 or less.
- the microstructure at a portion of the steel material according to the present disclosure that is 1 ⁇ 4 of the thickness from the surface in the thickness direction contains lower bainite and martensite.
- the bainite may contain upper bainite in addition to lower bainite.
- Boinite is a structure containing bainitic ferrite ( ⁇ °B) with a substructure within the grains, and is a general term for upper bainite and lower bainite.
- Upper bainite is either or both of upper bainite containing retained austenite or MA phase (mixed martensite-austenite phase) between the laths, and upper bainite containing carbides between the laths.
- Lower bainite is lath-shaped lower bainite containing carbides within the laths.
- Lath martensite exists in four forms: lath, butterfly, lens, and thin plate, but the components disclosed in this disclosure mainly form lath martensite.
- Lath martensite is composed of packets and blocks consisting of groups of laths in a specific arrangement, and is a structure in which one austenite grain is divided into several packets.
- the lower bainite and martensite are hard phases and increase the toughness of the steel material. From the viewpoint of ensuring the toughness of the steel material, the area ratio of the lower bainite and martensite in the 1/4t portion is 15.0% or more.
- the area ratio of the lower bainite and martensite in the 1/4t portion is preferably 20.0% or more, or 30.0% or more.
- the sum of the area ratio of the lower bainite and the area ratio of the martensite in the 1/4t portion may be 100%.
- Total area ratio of upper bainite, lower bainite and martensite 90.0% or more
- the total area ratio of the upper bainite, lower bainite and martensite in the 1/4t portion is 90.0% or more.
- the total area ratio of the upper bainite, lower bainite and martensite in the 1/4t portion may be 100%.
- the upper bainite in the 1/4t portion may be 1.0% or more.
- Observation of the microstructure of steel is carried out using a sample with the 1/4t part of the steel as the observation surface.
- Two types of samples are prepared: (a) electrolytic polishing, and (b) nital etching. Measurements are taken at three locations for each of samples (a) and (b) using the method described below, and the average of the three locations is taken as the area ratio of the microstructure of the steel. Three samples each of (a) and (b) may be prepared and the average taken for each sample, or measurements may be taken at three locations within each sample and the average taken.
- the total area ratio of upper bainite, lower bainite and martensite is measured by EBSD using electrolytically polished samples that have been mechanically polished to a mirror finish and then electrolytically polished to remove the distorted layer caused by mechanical polishing.
- the measurement magnification is 200 times, and measurements are made over an area of 400 ⁇ m x 400 ⁇ m at a pitch of 0.4 ⁇ m.
- the measurement is performed with an electron beam diameter of 0.4 ⁇ m or less.
- the confidence index (hereinafter referred to as the "CI value”) is set to 0.1 or more.
- the judgment between ferrite and upper bainite, lower bainite and martensite is performed by setting the threshold value of Grain Average Misorientation (hereinafter referred to as the "GAM”) to 0.5.
- GBM Grain Average Misorientation
- the GAM value is an index defined in OIM-Analysis (EBSD crystal orientation analysis software manufactured by TSL, USA).
- the region where GAM is 0.5 or less is ferrite, and the region where GAM is more than 0.5 is upper bainite, lower bainite, or martensite.
- upper bainite, lower bainite, and martensite are determined using the EBSD GAM as a threshold value, and therefore include not only upper bainite, lower bainite, and martensite, but also tempered upper bainite, tempered lower bainite, and tempered martensite. Comparing the structure of direct quenching (DQ) and that followed by tempering (DQT), after tempering, decomposition of MA and coarsening of carbides occur, but the appearance of the structure does not change significantly.
- DQ direct quenching
- DQT tempering
- the region surrounded by a white line is upper bainite (Bu), and the other regions are lower bainite + martensite (BL + M).
- the part determined to be upper bainite (Bu) has sparse carbides that look white and coarse and dense regions are mixed.
- carbides are densely and uniformly present.
- the total area fraction of lower bainite and martensite is obtained by subtracting the area fraction of upper bainite from the total area fraction of upper bainite, lower bainite, and martensite measured above. Note that the microstructure in this case may contain retained austenite depending on the manufacturing conditions, but since the amount is extremely small, it is not included in the area ratio.
- the average grain size (effective grain size) of the 1/4t part of the steel material is preferably 20.0 ⁇ m or less. This is because it has been found that if the average grain size of the 1/4t part of the steel material is 20.0 ⁇ m or less, the toughness of the steel material tends to be further improved regardless of whether it is before or after PWHT.
- the average grain size of the 1/4t part of the steel material may be more than 20.0 ⁇ m. The smaller the average grain size of the steel material, the more preferable it is, so the lower limit is not limited. Usually, the average grain size is 10 ⁇ m or more.
- the effective grain size is calculated by weighted averaging.
- the effective grain size D area calculated by weighted averaging is calculated by the following formula using the area S i and grain size d i of the i-th grain detected during measurement among the grain sizes measured in a 4 mm 2 area.
- D area ⁇ Si ⁇ d i / ⁇ S i
- the prior austenite grains may be referred to as prior austenite grains or prior ⁇ grains
- the prior austenite grains of the steel material of the present disclosure may have a shape flattened in the rolling direction. If the prior austenite grains at a position 1/4 of the thickness from the surface of the steel material in the thickness direction are flat grains with an aspect ratio of 1.5 or more, the toughness of the steel material can be further improved. This is because flattening the prior austenite grains increases the grain boundary area, which substantially refines the austenite grains and is effective in refining the average crystal grain size.
- the aspect ratio of the prior austenite grains is usually 4.0 or less, and may be 3.5 or less.
- the aspect ratio of the prior austenite grains in the 1/4t portion may be less than 1.5.
- the aspect ratio of the prior austenite grains in the 1/4t portion may be 1.4 or less, or 1.3 or less.
- the aspect ratio of prior austenite crystal grains (sometimes referred to as prior austenite grains) of a steel material is determined as follows: First, an L-section (a section parallel to the rolling direction and thickness direction of the steel material) at a location 1/4 of the thickness from the surface of the steel material in the thickness direction is mirror-polished, and then etched with an etchant based on a saturated aqueous solution of 2 to 4% picric acid to reveal prior austenite grain boundaries in an arbitrary region of 1.0 mm in the rolling direction ⁇ 0.5 mm in the thickness direction. Next, the long and short diameters of each prior austenite grain are measured, and the aspect ratio of each prior austenite grain is calculated by dividing the long diameter by the short diameter.
- the arithmetic average of all the aspect ratios of the prior austenite grains thus calculated is determined as the "aspect ratio of the prior austenite grains.”
- the long diameter is the maximum length of the prior austenite grain, and the short diameter is the maximum distance between two lines parallel to the long diameter direction that contact the grain.
- the steel material according to the present disclosure has mechanical properties that balance strength and low-temperature toughness, and is particularly excellent in toughness at -100°C, and can also exhibit excellent low-temperature toughness even after PWHT.
- the tensile strength of the steel material is set to 590 to 930 MPa.
- the steel material selected for such applications is a steel material having the above-mentioned tensile strength, so the steel material according to the present disclosure is also manufactured to have the above-mentioned tensile strength.
- the steel material of the present disclosure preferably has a Charpy impact absorption energy of 150 J or more at -100°C. Since the steel material of the present disclosure has low-temperature toughness with a Charpy impact absorption energy of 150 J or more at -100°C, a transport tank made of the steel material of the present disclosure can be suitably used for transporting liquid carbon dioxide, for example.
- the Charpy impact absorption energy at -100°C is a value measured using a sample taken from a 1/4 position of the thickness.
- PWHT Charpy impact absorption energy at -100°C after PWHT
- PWHT may be performed on the welded parts after assembly into a transport tank. At this time, not only the welded parts but also the base material part of the steel material that is not affected by welding (also simply referred to as the base material) are heated. If the time for which the base material is heated to a temperature range of 425°C or more is long, the toughness of the base material tends to decrease.
- the toughness of the part where the PWHT was performed is preferably 150J or more in Charpy impact absorption energy at -100°C.
- the Charpy impact absorption energy at -100°C after PWHT may be 100J or more.
- the Charpy impact absorption energy at -100°C after PWHT is also a value measured using a sample taken from the 1/4 position of the thickness.
- the steel material of the present disclosure preferably has a Charpy impact absorption energy of 50 J or more at -100 ° C after the thermal cycle. Since the steel material of the present disclosure has a low-temperature toughness of 50 J or more at -100 ° C after the thermal cycle, a transport tank made of the steel material of the present disclosure can be suitably used, for example, for transporting liquid carbon dioxide.
- the Charpy impact absorption energy at -100 ° C after the thermal cycle may be 40 J or more.
- the Charpy impact absorption energy at -100 ° C after the thermal cycle is a value measured by using a sample taken from a 1/4 position of the thickness of the steel material as a thermal cycle test piece, heating it to 1350 ° C at 60 ° C / s, holding it at 1350 ° C for 1 s, and then cooling it to room temperature at 20 ° C / s, and then taking a Charpy test piece from there.
- PWHT Charge absorbed energy at -100°C after thermal cycle
- the steel material of the present disclosure is subjected to PWHT in which the heating rate and cooling rate are 55°C/h in a temperature range of 425°C or higher and the steel is held at 600°C for 2 hours, and then Charpy test pieces are taken and measured.
- the toughness of the portion where the PWHT was performed is preferably such that the Charpy impact absorption energy at -100°C is 50 J or more.
- the Charpy impact absorption energy at -100°C of the portion where the PWHT was performed after the thermal cycle test may be 40 J or more.
- PWHT can sometimes reduce the toughness of steel. The reason for this is not clear, but it is presumed that the diffusion of P (phosphorus) and Mn to grain boundaries and the growth or aggregation of inclusions in the structure reduce brittleness and therefore toughness. The reduction in toughness due to PWHT can be suppressed by limiting the P and Mn content and reducing the average crystal grain size of the steel.
- the tensile strength (TS) and the yield strength (YS) in the examples are measured by a tensile test in accordance with JIS Z2241:2011.
- a JIS 14A test piece is used, which is taken from the 1/4 thickness position and has a longitudinal direction parallel to the width direction of the steel material (C direction).
- TS and YS are measured using three test pieces and calculated by averaging them. Based on the average values of TS and YS, the yield ratio YR (%) is calculated by (YS/TS) x 100.
- the Charpy impact absorption energy is measured by a Charpy impact test at -100°C using an impact blade with a radius of 2 mm in accordance with the provisions of JIS Z2242:2018.
- the Charpy impact absorption energy is measured using three test pieces and calculated by averaging them.
- a V-notch test piece is used, which is taken from the 1/4 thickness position of the steel material and has a longitudinal direction parallel to the width direction of the steel material (C direction).
- the shape of the steel material according to the present disclosure is not particularly limited, and may be a steel plate, a steel strip, a steel section, a steel pipe, etc.
- steel pipes and steel sections include steel materials formed by joining steel plates, such as welded steel pipes and welded steel sections, as well as steel sections joined with rivets.
- the thickness of steel materials such as steel plates, steel strips, steel sections, and steel pipes (the thickness of the flange for steel sections) is not particularly limited, and is usually 3 mm or more and 150 mm or less.
- the thickness of the steel material may be 6 mm or more, 10 mm or more, 15 mm or more, or 30 mm or more.
- the thickness of the steel material may also be 100 mm or less, 80 mm or less, or 60 mm or less.
- the uses of the steel material disclosed herein are not particularly limited, but since it has mechanical properties that combine strength and low-temperature toughness, and can exhibit excellent low-temperature toughness even after PWHT, it can be suitably used as a tank for storing and transporting liquefied gas, especially liquid carbon dioxide.
- the method for producing the steel material according to the present disclosure is not particularly limited, but the steel material according to the present disclosure is, for example, produced by melting steel satisfying the above-mentioned chemical composition and then continuously casting a steel slab.
- the steel slab is heated, hot-rolled, and then directly water-cooled (direct quenching (DQ)), or hot-rolled, cooled, reheated, and water-cooled (reheat quenching (RQ)), to produce a steel material.
- DQ direct quenching
- RQ reheat quenching
- RQ it is not necessarily required to cool naturally before reheating, and water cooling may be used.
- intermediate heat treatment (L) and tempering (T) may be performed.
- the production process after hot rolling is selected from the above combinations of DQ, RQ, L, and T, and is, for example, DQT, RQT, DQLT, and RQLT.
- DQT Direct Quenching (DQ), Tempering (T)
- RQT Natural cooling or water cooling, reheat quenching (RQ), tempering (T)
- DQLT Direct quenching (DQ), intermediate heat treatment (L), tempering (T)
- RQLT Natural cooling or water cooling, reheat quenching (RQ), intermediate heat treatment (L), tempering (T)
- DQT is preferred for manufacturing the steel material according to the present disclosure, and an example of a preferred manufacturing process is shown below.
- the heating temperature of the steel slab to be hot rolled is Ac 3 or more from the viewpoint of performing hot rolling in a temperature range where the metal structure of the rolled material is austenite.
- the heating temperature of the steel slab is preferably 1000°C or more from the viewpoint of reducing the deformation resistance.
- the heating temperature of the hot rolling is 1250°C or less from the viewpoint of suppressing the coarsening of heated ⁇ grains.
- the heating temperature of the hot rolling is preferably 1200°C or less.
- Ac 3 is a value calculated by the following formula.
- Hot rolling may be composed of rolling in a temperature range where recrystallization occurs (recrystallization temperature range rolling) and rolling in a temperature range where recrystallization is suppressed (non-recrystallization temperature range rolling).
- Recrystallization temperature region rolling is hot rolling performed at a temperature of 900°C or higher during rolling.
- the cumulative reduction in recrystallization temperature region rolling is preferably 20% or more, and more preferably 30% or more, from the viewpoint of refining the austenite grain size of the steel material.
- Non-recrystallization temperature region rolling is hot rolling performed at a temperature of the rolled material during rolling of less than 900° C.
- the cumulative reduction in non-recrystallization temperature region rolling is preferably 20% or more, more preferably 30% or more, from the viewpoint of refining the average crystal grain size of the steel material.
- the cumulative reduction in non-recrystallization temperature region rolling is determined from the difference between the thickness of the rolled material at 900° C. and the thickness of the steel material after rolling is completed.
- Cumulative reduction rate (%) of non-recrystallization temperature region rolling 100 x ([thickness of rolled material at 900 ° C.] - [thickness of steel material after rolling]) / [thickness of rolled material at 900 ° C.]
- the end temperature of the hot rolling is Ar 3 or more from the viewpoint of suppressing the formation of ferrite that reduces strength.
- the steel material is subjected to accelerated cooling such as water cooling.
- the start temperature of the accelerated cooling is Ar 3 or more from the viewpoint of suppressing the formation of ferrite that reduces strength.
- Ar 3 is a value calculated by the following formula.
- Ar 3 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo+0.35(t-8)
- the element symbols in the formula represent the content (mass%) of each element contained in the steel material, and t represents the thickness (mm) of the steel material.
- the cooling rate is 1.0°C/s or more.
- the cooling rate of the accelerated cooling is preferably 5.0°C/s or more, or 10.0°C/s or more.
- the cooling rate is a value calculated by simulating the cooling rate at a 1/4 position of the thickness using heat transfer calculation.
- the accelerated cooling stop temperature is 400°C or lower from the viewpoint of improving the strength of the steel by ensuring upper bainite, lower bainite, and martensite.
- the accelerated cooling stop temperature is preferably 350°C or lower. Accelerated cooling may be performed down to room temperature.
- the accelerated cooling stop temperature is preferably 100°C or higher from the viewpoint of dehydrogenating the steel.
- the steel After accelerated cooling, the steel may be subjected to a tempering treatment.
- the heating temperature of the tempering treatment is preferably 650°C or less, 620°C or less, or 590°C or less.
- the heating temperature of the tempering treatment is preferably 350°C or more, or 400°C or more.
- the heating temperature and reduction of the material to be rolled during hot rolling have little effect on the mechanical properties of the steel material.
- the heating temperature of the material to be rolled is preferably 1000°C or higher.
- the reduction is insufficient, initial defects at the time of manufacturing the steel billet may remain in the thickness center, and the quality of the steel material may deteriorate, so the total reduction of the hot rolling (also called the cumulative reduction) is preferably 35% or higher.
- the steel may be water-cooled or air-cooled as it is.
- the steel material is reheated and quenched after hot rolling.
- the reheating temperature of the steel material is Ac 3 or more because quenching is performed from an austenite single phase structure. From the viewpoint of ensuring homogeneity of the microstructure, the reheating temperature of the steel material is preferably 750°C or more, 850°C or more, 880°C or more, or 900°C or more.
- the upper limit of the reheating temperature is not particularly specified, but since heating to an excessively high temperature may cause austenite grains to coarsen and lead to a decrease in toughness, the upper limit is preferably 1000°C or less, 950°C or less, or 930°C or less.
- the steel After reheating and quenching, the steel may be subjected to a tempering treatment.
- the heating temperature in the tempering treatment is preferably 660°C or less, or 640°C or less, from the viewpoint of suppressing a decrease in strength.
- the heating temperature in the tempering treatment is preferably 400°C or more, 450°C or more, or 500°C or more.
- Nos. 1A to 22A and 101A to 109A are examples of the present invention, and Nos. 23A, 26A, and 110A to 114A are comparative examples.
- the rolling end temperature was low and the direct quenching start temperature was lower than that of Ar 3 , so sufficient strength was not obtained.
- No. 26A had too much Mn content and therefore could not obtain sufficient low-temperature toughness after PWHT.
- Nos. 110A and 111A had an ⁇ value less than the lower limit of the present disclosure, and thus had insufficient hardenability and strength. Sufficient low-temperature toughness was also not obtained. In Nos.
- the ⁇ value exceeded the upper limit of the present disclosure, the hardenability was too high, and the strength was excessively high.
- No. 114A the cooling rate of the direct quenching was low, so the total area ratio of lower bainite and martensite was insufficient, and sufficient low-temperature toughness was not obtained.
- the chemical composition and microstructure of the steel are appropriately controlled, and the tensile strength is within an appropriate range of 590 MPa or more and 930 MPa or less.
- the Charpy impact absorption energy at -100°C is high regardless of before or after PWHT, and those with particularly good properties have a low-temperature toughness of 150 J or more.
- Nos. 1B to 21B and 101B to 109B are examples of the present invention, and Nos. 22B to 25B and 110B to 113B are comparative examples.
- No. 22B since ⁇ was too small, sufficient hardenability, strength, and low-temperature toughness were not obtained.
- the reheating temperature was low, lower than that of Ac 3 , so sufficient strength and low-temperature toughness were not obtained.
- No. 24B had too little Ni, and therefore could not obtain sufficient low-temperature toughness.
- No. 25B had too much Mn content and therefore could not obtain sufficient low-temperature toughness after PWHT. Nos.
- 110B and 111B had an ⁇ value less than the lower limit of the present disclosure, and thus had insufficient hardenability and strength. Sufficient low-temperature toughness was also not obtained. In Nos. 112B and 113B, the ⁇ value exceeded the upper limit of the present disclosure, the hardenability was too high, and the strength was excessively high.
- the chemical composition and microstructure of the steel are appropriately controlled, and the tensile strength is within an appropriate range of 590 MPa or more and 930 MPa or less.
- the Charpy impact absorption energy at -100°C is high at 125 J or more, and those with particularly good properties have a low-temperature toughness of 150 J or more.
- the steel material according to the present disclosure can be mainly used for transport tanks for liquefied carbon dioxide.
- the steel material according to the present disclosure can also be used for other welded structures such as buildings, bridges, ships, line pipes, marine structures, pressure vessels and tanks.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
本開示は、鋼材に関する。 This disclosure relates to steel materials.
鋼材は、建築、橋梁、船舶、ラインパイプ、海洋構造物、圧力容器、タンクなどの溶接構造物に用いることができる。強度と低温靭性への対応力に優れる鋼材は、低温での用途に有効である。 Steel can be used for welded structures such as buildings, bridges, ships, line pipes, marine structures, pressure vessels, and tanks. Steel has excellent strength and low-temperature toughness, making it effective for low-temperature applications.
液化ガスの貯蔵タンクなどの低温用圧力容器には、低温用鋼が使用される。低温用鋼には、使用温度に応じて、Alキルド鋼、ニッケル鋼、高Mn鋼及びオーステナイト系ステンレス鋼などが存在する。例えば、使用温度が-100℃前後の液化エタン、液化エチレンを積載するタンクの材料として、3.5%Ni鋼などのニッケル鋼が使用されている。 Low-temperature steels are used for low-temperature pressure vessels such as storage tanks for liquefied gas. Low-temperature steels include Al-killed steel, nickel steel, high Mn steel, and austenitic stainless steel, depending on the operating temperature. For example, nickel steels such as 3.5% Ni steel are used as materials for tanks that carry liquefied ethane and liquefied ethylene, which have operating temperatures of around -100°C.
この3.5%Ni鋼のように、低温用圧力容器に代表される低温靭性の確保が必要とされる鋼材にはNiを含有させることが多い。 Ni is often included in steel materials that require low-temperature toughness, such as this 3.5% Ni steel, such as low-temperature pressure vessels.
例えば特許文献1では、Niを2.7%以上5.0%以下含む特定の化学組成を有し、焼入れ加熱時の旧オーステナイト粒径が20μm以下であり、熱処理後の有効結晶粒径が12μm以下であり、引張強さが450MPa以上690MPa以下である、靭性に優れた低温用ニッケル含有鋼材が提案されている。
また、低温靭性と高強度を目的として、化学組成及びミクロ組織(金属組織)を規定した様々な鋼材が提案されている(例えば、特許文献2~9参照。)。
For example, Patent Document 1 proposes a nickel-containing steel material for low temperature use having excellent toughness, which has a specific chemical composition containing 2.7% or more and 5.0% or less of Ni, a prior austenite grain size during quenching heating of 20 μm or less, an effective crystal grain size after heat treatment of 12 μm or less, and a tensile strength of 450 MPa or more and 690 MPa or less.
Furthermore, various steel materials with defined chemical compositions and microstructures (metal structures) have been proposed with the aim of achieving low-temperature toughness and high strength (see, for example, Patent Documents 2 to 9).
特許文献1:特開2019-81930号公報
特許文献2:国際公開第2014/103629号
特許文献3:特開昭52-156121号公報
特許文献4:特開昭55-104427号公報
特許文献5:特開昭58-73717号公報
特許文献6:特開平7-331328号公報
特許文献7:特開2001-123222号公報
特許文献8:特開2001-123245号公報
特許文献9:特開2007-46096号公報
Patent Document 1: JP 2019-81930 A Patent Document 2: International Publication No. 2014/103629 Patent Document 3: JP 52-156121 A Patent Document 4: JP 55-104427 A Patent Document 5: JP 58-73717 A Patent Document 6: JP 7-331328 A Patent Document 7: JP 2001-123222 A Patent Document 8: JP 2001-123245 A Patent Document 9: JP 2007-46096 A
低温用圧力容器に使用される低温用鋼には、高強度化と低温靭性の確保との両立が望まれている。また、低温用圧力容器は、鋼材を溶接して製造され、溶接によって生じた残留応力を除去するために、溶接後熱処理(Post Weld Heat Treatment、PWHTということがある)が施される場合がある。最近では、鋼材のPWHT後の低温靭性に対する要求が一層高まっている。 Cryogenic steels used in cryogenic pressure vessels are expected to achieve both high strength and low-temperature toughness. Cryogenic pressure vessels are also manufactured by welding steel materials, and may be subjected to post-weld heat treatment (sometimes called PWHT) to remove residual stresses caused by welding. Recently, there has been an increased demand for low-temperature toughness of steel materials after PWHT.
本開示は、引張強さが高く、溶接後熱処理の前後に関わらず、良好な低温靭性が得られる、低温用途に好適な鋼材の提供を課題とするものである。 The objective of this disclosure is to provide a steel material that is suitable for low-temperature applications, having high tensile strength and good low-temperature toughness regardless of whether it is before or after post-weld heat treatment.
本開示の要旨は以下のとおりである。
<1> 質量%で、
C:0.03%以上、0.20%以下、
Si:0.01%以上、0.50%以下、
Mn:0.10%以上、1.65%以下、
P:0.025%以下、
S:0.0250%以下、
Ni:2.65%以上、4.45%以下、
Al:0.001%以上、0.100%以下、
O:0.0100%以下、
N:0.0100%以下、
Cu:0~1.50%、
Cr:0~3.00%、
Mo:0~2.00%、
B:0~0.0050%、
Nb:0~0.050%、
Ti:0~0.050%、
V:0~0.10%、
Mg:0~0.0200%、
Ca:0~0.0200%、
REM:0~0.0200%、
残部:Fe及び不純物
であり、かつ、下記(1)式で表されるαが、4.0以上、16.0以下である化学組成を有し、
引張強さが590MPa以上、930MPa以下であり、
鋼材の表面から厚さ方向に厚さの1/4の部位のミクロ組織が、下部ベイナイト及びマルテンサイトを含み、前記下部ベイナイトと前記マルテンサイトの面積率の合計が15.0%以上であり、かつ、上部ベイナイトと前記下部ベイナイトと前記マルテンサイトの面積率の合計が90.0%以上である、
鋼材。
α=0.50×√[C]×(1+0.64[Si])×(1+4.10[Mn])×(1+0.27[Cu])×(1+0.52[Ni])×(1+2.33[Cr])×(1+3.14[Mo]) ・・・(1)
ただし、式(1)中の[元素記号]は、前記鋼材に含まれるそれぞれ対応する元素の含有量(質量%)を表す。該当する元素を含まない場合は、ゼロを代入する。
<2> 前記鋼材の表面から厚さ方向に厚さの1/4の部位のミクロ組織は、平均結晶粒径が20.0μm以下である、<1>に記載の鋼材。
<3> -100℃でのシャルピー衝撃吸収エネルギーが150J以上である、<1>又は<2>に記載の鋼材。
<4> 425℃以上の温度域において昇温速度及び降温速度が55℃/hであり、かつ、600℃で2時間保持する熱処理を前記鋼材に対して行った場合、前記熱処理が行われた箇所における-100℃でのシャルピー衝撃吸収エネルギーが150J以上である、<1>~<3>のいずれか1つに記載の鋼材。
<5> 前記鋼材の表面から厚さ方向に厚さの1/4の部位の旧オーステナイト結晶粒のアスペクト比が1.5以上である、<1>~<4>のいずれか1つに記載の鋼材。
<6> 前記鋼材の表面から厚さ方向に厚さの1/4の部位の旧オーステナイト結晶粒のアスペクト比が1.5未満である、<1>~<4>のいずれか1つに記載の鋼材。
The gist of the present disclosure is as follows.
<1> In mass%,
C: 0.03% or more, 0.20% or less,
Si: 0.01% or more, 0.50% or less,
Mn: 0.10% or more, 1.65% or less,
P: 0.025% or less,
S: 0.0250% or less,
Ni: 2.65% or more, 4.45% or less,
Al: 0.001% or more, 0.100% or less,
O: 0.0100% or less,
N: 0.0100% or less,
Cu: 0 to 1.50%,
Cr: 0-3.00%,
Mo: 0-2.00%,
B: 0 to 0.0050%,
Nb: 0 to 0.050%,
Ti: 0 to 0.050%,
V: 0 to 0.10%,
Mg: 0 to 0.0200%,
Ca: 0-0.0200%,
REM: 0-0.0200%,
The balance is Fe and impurities, and has a chemical composition in which α represented by the following formula (1) is 4.0 or more and 16.0 or less,
The tensile strength is 590 MPa or more and 930 MPa or less,
a microstructure at a portion of a steel material that is 1/4 of the thickness from the surface in the thickness direction includes lower bainite and martensite, a sum of area ratios of the lower bainite and the martensite is 15.0% or more, and a sum of area ratios of the upper bainite, the lower bainite, and the martensite is 90.0% or more;
Steel.
α=0.50×√[C]×(1+0.64[Si])×(1+4.10[Mn])×(1+0.27[Cu])×(1+0.52[Ni])×(1+2.33[Cr])×(1+3.14[Mo]) ...(1)
In the formula (1), the [element symbol] represents the content (mass%) of the corresponding element contained in the steel material. When the corresponding element is not contained, zero is substituted.
<2> The steel material according to <1>, wherein the microstructure at a portion of the steel material that is ¼ of the thickness from the surface in the thickness direction has an average crystal grain size of 20.0 μm or less.
<3> The steel material according to <1> or <2>, having a Charpy impact absorption energy of 150 J or more at −100° C.
<4> The steel material according to any one of <1> to <3>, wherein when the steel material is subjected to a heat treatment in which the heating rate and the cooling rate are 55°C/h in a temperature range of 425°C or more and the steel material is held at 600°C for 2 hours, the Charpy impact absorption energy at -100°C in the place where the heat treatment was performed is 150J or more.
<5> The steel material according to any one of <1> to <4>, wherein the aspect ratio of prior austenite grains at a portion of 1/4 of the thickness from the surface of the steel material in the thickness direction is 1.5 or more.
<6> The steel material according to any one of <1> to <4>, wherein the aspect ratio of prior austenite grains at a portion from the surface of the steel material to 1/4 of the thickness in the thickness direction is less than 1.5.
本開示によれば、引張強さが高く、溶接後熱処理の前後に関わらず、良好な低温靭性が得られる、低温用途に好適な鋼材を提供することができる。 This disclosure makes it possible to provide a steel material that is suitable for low-temperature applications, having high tensile strength and good low-temperature toughness regardless of whether it is before or after post-weld heat treatment.
以下、本開示について詳細に説明する。
本開示における「溶接後熱処理」とは、特に断りが無い限り、JIS Z 3700:2009「溶接後熱処理方法」に規定された内容に準拠する溶接後熱処理を意味する。
本開示における「鋼材」又は「母材」とは、めっき層、塗膜などの表面処理層を含まない鋼材部分を意味する。ただし、本開示に係る鋼材の表面には、めっき層、塗膜などの表面処理層が形成されていてもよい。また、溶接継手における「母材」とは、溶接部(溶接継手及び溶接熱影響部)との対比で、溶接の影響を受けていない鋼材部分を意味する。
The present disclosure will be described in detail below.
In this disclosure, unless otherwise specified, the term "post-weld heat treatment" refers to a post-weld heat treatment conforming to the contents specified in JIS Z 3700:2009 "Post-weld heat treatment method".
In the present disclosure, the term "steel material" or "base material" refers to a steel material portion that does not include a surface treatment layer such as a plating layer or a coating film. However, a surface treatment layer such as a plating layer or a coating film may be formed on the surface of the steel material according to the present disclosure. In addition, the term "base material" in a welded joint refers to a steel material portion that is not affected by welding, in contrast to the welded portion (welded joint and welded heat-affected zone).
本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。ただし、「~」の前後に記載される数値に「超」又は「未満」が付されている場合の数値範囲は、これら数値を下限値又は上限値として含まない範囲を意味する。
化学組成の元素の含有量について、「%」は「質量%」を意味する。
「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
In this disclosure, a numerical range expressed using "to" means a range that includes the numerical values before and after "to" as the lower and upper limits. However, when the numerical values before and after "to" are followed by "more than" or "less than," the numerical range does not include these numerical values as the lower or upper limit.
With regard to the contents of elements in chemical compositions, "%" means "mass %".
The term "process" includes not only an independent process but also a process that cannot be clearly distinguished from other processes as long as the intended purpose of the process is achieved.
以下、本開示の一実施形態に係る鋼材について説明する。まず、本開示に係る鋼材を完成するに至った本開示の発明者らの検討結果、得られた新たな知見について詳述する。 Below, we will explain the steel material according to one embodiment of the present disclosure. First, we will provide a detailed description of the results of the research conducted by the inventors of the present disclosure that led them to complete the steel material according to the present disclosure, and the new findings they gained.
本開示の発明者らは、鋼材の強度を向上させるために検討を行った。鋼材の引張強度は、ミクロ組織の構成によって確保される。本開示の発明者らは、熱間圧延及び加速冷却後の鋼材の表面から厚さ方向に、厚さの1/4の部位である1/4t部(t:鋼材の厚さ)から試料を採取し、引張試験を行い、ミクロ組織の観察を行った。その結果、引張強さが590MPa以上、930MPa以下である鋼材の1/4t部のミクロ組織は、フェライトの面積率が10.0%未満であり、上部ベイナイト、下部ベイナイト及びマルテンサイトの面積率の合計が90.0%以上であることがわかった。なお、上部ベイナイト、下部ベイナイト及びマルテンサイトの面積率の合計は、電子線後方散乱回折法(Electron Back Scatter Diffraction、以下「EBSD」という。)を用いて測定された。 The inventors of the present disclosure have conducted research to improve the strength of steel. The tensile strength of steel is ensured by the composition of the microstructure. The inventors of the present disclosure collected samples from the 1/4t portion (t: thickness of steel), which is a portion of 1/4 of the thickness from the surface of the steel after hot rolling and accelerated cooling in the thickness direction, performed tensile tests, and observed the microstructure. As a result, it was found that the microstructure of the 1/4t portion of steel with a tensile strength of 590 MPa or more and 930 MPa or less has an area ratio of ferrite of less than 10.0%, and the total area ratio of upper bainite, lower bainite, and martensite of 90.0% or more. The total area ratio of upper bainite, lower bainite, and martensite was measured using electron backscatter diffraction (hereinafter referred to as "EBSD").
更に、本開示の発明者らは、鋼材の靭性を向上させるために検討を行った。鋼材の靭性は、ミクロ組織の構成によって確保される。本開示の発明者らは、熱間圧延および加速冷却後の鋼材の1/4t部から試料を採取し、シャルピー衝撃試験を行い、ミクロ組織の観察を行った。その結果、-100℃でのシャルピー衝撃吸収エネルギーが150J以上である鋼材は、下部ベイナイト及びマルテンサイトの面積率の合計が15.0%以上であることがわかった。下部ベイナイト及びマルテンサイトの面積率の合計は、EBSDを用いて測定された。 Furthermore, the inventors of the present disclosure have conducted research to improve the toughness of steel materials. The toughness of steel materials is ensured by the composition of the microstructure. The inventors of the present disclosure have taken samples from the 1/4t section of steel materials after hot rolling and accelerated cooling, performed Charpy impact tests, and observed the microstructure. As a result, it was found that steel materials with a Charpy impact absorption energy of 150 J or more at -100°C have a total area ratio of lower bainite and martensite of 15.0% or more. The total area ratio of lower bainite and martensite was measured using EBSD.
更に、本開示の発明者らは、鋼材の靭性を確保するために検討を行った。鋼材の靭性は、結晶方位の差が15°以上である大傾角粒界によって囲まれる領域を小さくすることにより、確保される。本開示の発明者らは、熱間圧延後の冷却速度及び冷却停止温度を制御して製造された鋼材の1/4t部から試料を採取し、EBSDにより、大傾角粒界で囲われた領域の円相当直径の測定を行った。以下では、大傾角粒界で囲われた領域の円相当直径を結晶粒径という。試料には機械研磨及び電解研磨が施され、4mm2の領域で、FE-SEM(電界放射型走査型電子顕微鏡)に付属するEBSD装置による解析が行われた。4mm2の領域で測定された結晶粒径のうち、結晶粒毎の面積で重みづけをした面積加重平均で算出した値を、平均結晶粒径(「有効結晶粒径」と記す場合がある。)とした。鋼材の1/4t部の平均結晶粒径が20.0μm以下であれば、溶接後熱処理の前後に関わらず鋼材の靭性がさらに向上する傾向にあるという知見が得られた。 Furthermore, the inventors of the present disclosure have conducted studies to ensure the toughness of the steel material. The toughness of the steel material is ensured by reducing the area surrounded by the high-angle grain boundaries where the difference in crystal orientation is 15° or more. The inventors of the present disclosure collected samples from the 1/4t part of the steel material manufactured by controlling the cooling rate and cooling stop temperature after hot rolling, and measured the circle equivalent diameter of the area surrounded by the high-angle grain boundaries by EBSD. Hereinafter, the circle equivalent diameter of the area surrounded by the high-angle grain boundaries is referred to as the grain size. The samples were mechanically polished and electrolytically polished, and an analysis was performed by an EBSD device attached to an FE-SEM (field emission scanning electron microscope) in an area of 4 mm 2. The average grain size (sometimes referred to as the "effective grain size") was calculated by the area-weighted average of the grain sizes measured in the area of 4 mm 2, weighted by the area of each grain. It has been found that if the average crystal grain size of the ¼t portion of the steel material is 20.0 μm or less, the toughness of the steel material tends to be further improved regardless of whether it is before or after post-weld heat treatment.
更に、本開示の発明者らは、熱間圧延及び加速冷却後の鋼材に限らず、再加熱焼入れ後の鋼材についても同様の結果が得られることを見出した。 Furthermore, the inventors of this disclosure have discovered that similar results can be obtained not only with steel material after hot rolling and accelerated cooling, but also with steel material after reheating and quenching.
<化学組成>
次に、本開示に係る鋼材の化学組成を構成する合金元素について説明する。なお、以下の合金元素の説明において、含有量の「%」は、「質量%」を意味する。
<Chemical composition>
Next, the alloying elements constituting the chemical composition of the steel material according to the present disclosure will be described. In the following description of the alloying elements, "%" for the content means "mass %".
(C:0.03%以上、0.20%以下)
Cは、鋼材の強度を高める元素である。構造物に使用される鋼材の強度の確保という観点から、本開示では、C含有量は0.03%以上である。C含有量は、好ましくは0.05%以上、又は、0.07%以上である。一方、Cは、靱性を低下させる元素であり、溶接熱影響部(Heat Affected Zone:以下、「HAZ」という場合がある。)の靭性の確保という観点から、本開示では、C含有量は0.20%以下である。C含有量は、好ましくは0.16%以下、0.14%以下、又は、0.12%以下である。
(C: 0.03% or more, 0.20% or less)
C is an element that increases the strength of steel materials. From the viewpoint of ensuring the strength of steel materials used in structures, the C content is 0.03% or more in the present disclosure. The C content is preferably On the other hand, C is an element that reduces the toughness of the weld heat affected zone (hereinafter sometimes referred to as "HAZ"). From the viewpoint of ensuring toughness, the C content is 0.20% or less in the present disclosure. The C content is preferably 0.16% or less, 0.14% or less, or 0.12% or less. be.
(Si:0.01%以上、0.50%以下)
Siは、脱酸剤として使用され、また、鋼中に固溶して強度を増加させる元素である。溶鋼に含まれるO濃度の制御という観点から、本開示では、Si含有量は0.01%以上である。Si含有量は、好ましくは0.03%以上、0.05%以上、又は0.10%以上である。一方、Si含有量が過剰であると、HAZに硬質相が形成され、靱性が低下す
る場合がある。したがって、HAZの靭性の確保という観点から、本開示では、Si含有量は0.50%以下である。Si含有量は、好ましくは0.30%以下、又は、0.20%以下である。
(Si: 0.01% or more, 0.50% or less)
Silicon is used as a deoxidizer and is an element that dissolves in steel to increase strength. From the viewpoint of controlling the O concentration in the molten steel, the present disclosure specifies a silicon content of 0.01 % or more. The Si content is preferably 0.03% or more, 0.05% or more, or 0.10% or more. On the other hand, if the Si content is excessive, a hard phase is formed in the HAZ. Therefore, from the viewpoint of ensuring the toughness of the HAZ, the Si content is 0.50% or less in the present disclosure. The Si content is preferably 0.30% or less, Or, it is 0.20% or less.
(Mn:0.10%以上、1.65%以下)
Mnは、脱酸剤として使用され、また、鋼の焼入れ性を高めて高強度化に寄与する元素である。溶鋼に含まれるO濃度の制御という観点から、本開示では、Mn含有量は0.10%以上である。更に、0.10%以上のMnにより、MnSを形成することで固溶Sを低減し、熱間割れを防止する。鋼材の強度やHAZの靭性の確保という観点から、Mn含有量は、好ましくは0.30%以上、又は、0.50%以上である。一方、Mn含有量が過剰であると、PWHT時にMnが粒界に偏析することで、PWHT後の靭性が低下する場合がある。したがって、PWHT後の鋼材の靭性の確保という観点から、本開示では、Mn含有量は1.65%以下である。Mn含有量は、好ましくは1.50%以下、1.25%以下、又は、1.10%以下である。
(Mn: 0.10% or more, 1.65% or less)
Mn is used as a deoxidizer and is an element that enhances the hardenability of steel and contributes to high strength. From the viewpoint of controlling the O concentration contained in the molten steel, in the present disclosure, the Mn content is 0. . 10% or more. Furthermore, 0.10% or more of Mn forms MnS, reducing the amount of dissolved S and preventing hot cracking. From the viewpoint of ensuring the strength of the steel material and the toughness of the HAZ, The Mn content is preferably 0.30% or more, or 0.50% or more. On the other hand, if the Mn content is excessive, Mn will segregate at grain boundaries during PWHT, resulting in poor mechanical properties after PWHT. In some cases, the toughness of the steel material may decrease. Therefore, from the viewpoint of ensuring the toughness of the steel material after the PWHT, the Mn content is 1.65% or less in the present disclosure. The Mn content is preferably 1.50% or less. , 1.25% or less, or 1.10% or less.
(P:0.025%以下)
Pは、不純物元素である。P含有量の下限は限定されないが、製造コストの観点から、本開示では、P含有量は0.001%以上であってもよい。一方、P含有量が過剰であると、PWHT時にPが粒界に偏析することで、PWHT後の靭性が低下する場合がある。したがって、本開示では、P含有量は0.025%以下である。P含有量は、好ましくは0.016%以下、0.012%以下、又は、0.008%以下である。
(P: 0.025% or less)
P is an impurity element. Although there is no lower limit for the P content, from the viewpoint of production costs, in the present disclosure, the P content may be 0.001% or more. On the other hand, if the P content is excessive, If the P content is less than 0.025%, P may segregate at grain boundaries during PWHT, which may reduce the toughness after PWHT. Therefore, in the present disclosure, the P content is 0.025% or less. Preferably, it is 0.016% or less, 0.012% or less, or 0.008% or less.
(S:0.0250%以下)
Sは、不純物元素である。S含有量の下限は限定されないが、製造コストの観点から、本開示では、S含有量は0.0001%以上であってもよい。一方、S含有量が過剰であると、中心偏析部において延伸したMnSが生成し、鋼材及びHAZの靱性や延性が劣化する場合がある。S含有量は、鋼材及びHAZの靱性及び延性の確保という観点から、0.0250%以下である。S含有量は、好ましくは0.0100%以下、又は、0.0050%以下である。
(S: 0.0250% or less)
S is an impurity element. Although there is no lower limit for the S content, from the viewpoint of production costs, in the present disclosure, the S content may be 0.0001% or more. On the other hand, if the S content is excessive, If the S content is less than 0.0250, elongated MnS is generated in the central segregation portion, and the toughness and ductility of the steel material and the HAZ may deteriorate. The S content is preferably 0.0100% or less, or 0.0050% or less.
(Ni:2.65%以上、4.45%以下)
Niは、鋼の焼入れ性および靭性の改善のために有効な元素であるので、本開示では、Ni含有量は2.65%以上である。Ni含有量は、好ましくは3.00%以上、又は、3.20%以上とする。ただし、Niは高価な元素であり、コスト削減の観点から、本開示では、Ni含有量は、4.45%以下である。Ni含有量は、好ましくは4.10%以下、又は、3.80%以下である。
(Ni: 2.65% or more, 4.45% or less)
Since Ni is an element effective for improving the hardenability and toughness of steel, in the present disclosure, the Ni content is 2.65% or more. The Ni content is preferably 3.00% or more. Alternatively, the Ni content is 3.20% or more. However, since Ni is an expensive element, from the viewpoint of cost reduction, in the present disclosure, the Ni content is 4.45% or less. The Ni content is preferably 4.10% or less, or 3.80% or less.
(Al:0.001%以上、0.100%以下)
Alは、脱酸に有用な元素であり、かつ、窒化物を形成することにより焼入れの際に結晶粒径を細粒化させる元素であるので、本開示では、Al含有量は0.001%以上である。しかしながら、Alを過剰に含有させると、Alが粗大な窒化物を形成し、鋼材及びHAZの靭性を低下させる恐れがある。従って、Al含有量は、0.100%以下である。Al含有量は、好ましくは0.080%、又は、0.050%以下である。
(Al: 0.001% or more, 0.100% or less)
Al is an element useful for deoxidization and also forms nitrides to refine the grain size during quenching. Therefore, in this disclosure, the Al content is set to 0.001%. However, if Al is contained in excess, Al may form coarse nitrides, which may reduce the toughness of the steel material and the HAZ. Therefore, the Al content is 0.100% or less. The Al content is preferably 0.080% or less, or 0.050% or less.
(O:0.0100%以下)
Oは、不純物元素である。O含有量の下限は限定されないが、製造コストの観点から、本開示では、O含有量は0.0001%以上であってもよい。一方、O含有量が過剰であると、粗大酸化物が生成し、鋼材及びHAZの靱性や延性が劣化する場合がある。O含有量は、鋼材及びHAZの靱性及び延性の確保という観点から、0.0100%以下である。O含有量は、好ましくは0.0060%以下、又は、0.0040%以下である。
(O: 0.0100% or less)
O is an impurity element. Although there is no lower limit for the O content, from the viewpoint of production costs, in the present disclosure, the O content may be 0.0001% or more. On the other hand, if the O content is excessive, If the O content is too high, coarse oxides are generated, and the toughness and ductility of the steel material and the HAZ may deteriorate. From the viewpoint of ensuring the toughness and ductility of the steel material and the HAZ, the O content is 0.0100% or less. The O content is preferably 0.0060% or less, or 0.0040% or less.
(N:0.0100%以下)
Nは、不純物元素である。N含有量の下限は限定されないが、製造コストの観点から、本開示では、N含有量は0.0001%以上であってもよい。鋼材の特性及びHAZの靭性の確保という観点から、本開示では、N含有量は0.0100%以下である。N含有量は、好ましくは0.0050%以下、又は、0.0040%以下である。
(N: 0.0100% or less)
N is an impurity element. Although there is no lower limit for the N content, in terms of manufacturing costs, in the present disclosure, the N content may be 0.0001% or more. Steel properties and toughness of HAZ From the viewpoint of ensuring this, in the present disclosure, the N content is 0.0100% or less. The N content is preferably 0.0050% or less, or 0.0040% or less.
本開示に係る鋼材は、Feの一部に代えて他の元素(選択元素)を含んでもよい。例えば、下記の選択元素が挙げられるが、これらの元素の含有量は0%でもよい。 The steel material according to the present disclosure may contain other elements (selected elements) in place of a portion of the Fe. For example, the following selected elements may be included, but the content of these elements may be 0%.
本開示に係る鋼材には、強度や靭性を向上させるため、必要に応じて、焼入れ性を向上する効果のある、下記に示す選択元素Cu、Cr、Mo、Bの1種又は2種以上を含有させてもよい。 The steel material disclosed herein may contain one or more of the following optional elements, Cu, Cr, Mo, and B, which have the effect of improving hardenability, as necessary to improve strength and toughness.
(Cu:1.50%以下)
Cuは、製造過程で鋼材に混入する場合がある元素である。しかし、Cu含有量の下限値は限定されず、0%であってもよい。また、Cuは、溶接性やHAZの靱性に対する悪影響が小さく、鋼の焼入れ性を高める効果があるため鋼材の強度を向上させる元素でもある。そのため、本開示では、Cu含有量は0.01%以上であってもよい。Cu含有量は、好ましくは0.10%以上である。ただし、鋼材の熱間圧延時おけるCuクラックの発生抑制の観点から、本開示では、Cu含有量は、1.50%以下である。Cu含有量は、好ましくは1.00%以下、0.80%以下、0.60%以下、又は、0.50%以下である。
(Cu: 1.50% or less)
Cu is an element that may be mixed into steel materials during the manufacturing process. However, the lower limit of the Cu content is not limited and may be 0%. Cu also has an adverse effect on weldability and HAZ toughness. Since Cu has little adverse effect and has the effect of increasing the hardenability of steel, it is also an element that improves the strength of the steel material. Therefore, in the present disclosure, the Cu content may be 0.01% or more. The Cu content is The Cu content is preferably 0.10% or more. However, from the viewpoint of suppressing the occurrence of Cu cracks during hot rolling of the steel material, the Cu content is 1.50% or less in the present disclosure. It is preferably 1.00% or less, 0.80% or less, 0.60% or less, or 0.50% or less.
(Cr:3.00%以下)
Crは、製造過程で鋼材に混入する場合がある元素である。しかし、Cr含有量の下限値は限定されず、0%であってもよい。また、Crは、鋼の焼入れ性を高める効果があるため鋼材の強度を向上させる元素でもある。そのため、本開示では、Cr含有量は0.01%以上であってもよい。Cr含有量は、好ましくは0.10%以上である。ただし、HAZの靱性や溶接性の劣化抑制の観点から、本開示では、Cr含有量は、3.00%以下である。Cr含有量は、好ましくは2.20%以下、1.40%以下、又は、0.80%以下である。
(Cr: 3.00% or less)
Cr is an element that may be mixed into steel during the manufacturing process. However, the lower limit of the Cr content is not limited and may be 0%. Cr also has the effect of improving the hardenability of steel. Therefore, in the present disclosure, the Cr content may be 0.01% or more. The Cr content is preferably 0.10% or more. However, From the viewpoint of suppressing deterioration of the toughness and weldability of the HAZ, the Cr content is 3.00% or less in the present disclosure. The Cr content is preferably 2.20% or less, 1.40% or less, Or, it is 0.80% or less.
(Mo:2.00%以下)
Moは、製造過程で鋼材に混入する場合がある元素である。しかし、Mo含有量の下限値は限定されず、0%であってもよい。また、Moは、鋼の焼入れ性を高める効果があるため鋼材の強度を向上させる元素でもある。そのため、本開示では、Mo含有量は0.01%以上であってもよい。Mo含有量は、好ましくは0.05%以上、0.10%以上、0.20%以上、又は、0.30%以上である。ただし、HAZの靱性や溶接性の劣化抑制、合金コストの上昇抑制の観点から、本開示では、Mo含有量は2.00%以下である。Mo含有量は、好ましくは1.20%以下、又は、0.80%以下である。
(Mo: 2.00% or less)
Mo is an element that may be mixed into steel during the manufacturing process. However, the lower limit of the Mo content is not limited and may be 0%. Mo also has the effect of improving the hardenability of steel. Therefore, in the present disclosure, the Mo content may be 0.01% or more. The Mo content is preferably 0.05% or more, and more preferably 0.10% or more. % or more, 0.20% or more, or 0.30% or more. However, from the viewpoint of suppressing deterioration of the toughness and weldability of the HAZ and suppressing an increase in the alloy cost, in the present disclosure, the Mo content is 2. The Mo content is preferably 1.20% or less, or 0.80% or less.
(B:0.0050%以下)
Bは、製造過程で鋼材に混入する場合がある元素である。しかし、B含有量の下限値は限定されず、0%であってもよい。また、Bは、鋼の焼入れ性を高める顕著な効果を発現し、鋼材の強度を向上させる元素でもある。そのため、本開示では、B含有量は0.0003%以上であってもよい。ただし、連続鋳造によって製造される鋼片の表面品質の劣化抑制の観点から、本開示では、B含有量は0.0050%以下である。B含有量は、好ましくは0.0030%以下、又は、0.0020%以下である。
(B: 0.0050% or less)
B is an element that may be mixed into steel during the manufacturing process. However, the lower limit of the B content is not limited and may be 0%. B also has a significant effect of improving the hardenability of steel. Therefore, in the present disclosure, the B content may be 0.0003% or more. However, in order to improve the surface quality of the steel slab produced by continuous casting, From the viewpoint of suppressing the deterioration of, in the present disclosure, the B content is 0.0050% or less. The B content is preferably 0.0030% or less, or 0.0020% or less.
本開示に係る鋼材には、強度を向上させるため、必要に応じて、炭化物や窒化物などの析出物により鋼材の強度を高める効果のある、下記に示す選択元素Nb、Ti、Vの1種又は2種以上を含有させてもよい。 In order to improve the strength of the steel material according to the present disclosure, one or more of the optional elements Nb, Ti, and V shown below may be contained as necessary, which have the effect of increasing the strength of the steel material by forming precipitates such as carbides and nitrides.
(Nb:0.050%以下)
Nbは、製造過程で鋼材に混入する場合がある元素である。しかし、Nb含有量の下限値は限定されず、0%であってもよい。また、Nbは、炭化物、窒化物を形成して、金属組織を微細化する効果を有し、鋼材の強度を向上させる元素でもある。そのため、本開示では、Nb含有量は0.001%以上であってもよい。ただし、HAZの靱性や溶接性の劣化抑制の観点から、Nb含有量は0.050%以下である。Nbの含有量は、好ましくは0.040%以下、又は、0.030%以下である。特にPWHT後の鋼材の靭性の確保という観点から、Nbの含有量は、0.004%以下であってもよい。
(Nb: 0.050% or less)
Nb is an element that may be mixed into steel during the manufacturing process. However, the lower limit of the Nb content is not limited and may be 0%. Nb also forms carbides and nitrides. Nb has the effect of refining the metal structure and is also an element that improves the strength of the steel material. Therefore, in the present disclosure, the Nb content may be 0.001% or more. However, the toughness and From the viewpoint of suppressing deterioration of weldability, the Nb content is 0.050% or less. The Nb content is preferably 0.040% or less, or 0.030% or less. In particular, the Nb content of the steel material after PWHT is 0.050% or less. From the viewpoint of ensuring toughness, the Nb content may be 0.004% or less.
(Ti:0.050%以下)
Tiは、製造過程で鋼材に混入する場合がある元素である。しかし、Ti含有量の下限値は限定されず、0%であってもよい。また、Tiは、炭化物、窒化物を形成し、金属組織を微細化する効果を有し、鋼材の強度を向上させる元素でもある。そのため、本開示では、Ti含有量は0.001%以上であってもよい。ただし、HAZの靱性や溶接性の劣化抑制の観点から、Ti含有量は0.050%以下である。Tiの含有量は、好ましくは0.040%以下、又は、0.030%以下である。特にPWHT後の鋼材の靭性の確保という観点から、Tiの含有量は、0.004%以下、又は、0.002%以下であってもよい。
(Ti: 0.050% or less)
Ti is an element that may be mixed into steel during the manufacturing process. However, the lower limit of the Ti content is not limited and may be 0%. Ti also forms carbides and nitrides. Ti has the effect of refining the metal structure and is also an element that improves the strength of the steel material. Therefore, in the present disclosure, the Ti content may be 0.001% or more. However, the toughness of the HAZ and the weldability may be affected. From the viewpoint of suppressing deterioration of the mechanical properties, the Ti content is 0.050% or less. The Ti content is preferably 0.040% or less, or 0.030% or less. From the viewpoint of ensuring toughness, the Ti content may be 0.004% or less, or 0.002% or less.
(V:0.10%以下)
Vは、製造過程で鋼材に混入する場合がある元素である。しかし、V含有量の下限値は限定されず、0%であってもよい。また、Vは、炭化物、窒化物を形成し、鋼材の強度を向上させる元素でもある。そのため、本開示では、V含有量は0.01%以上であってもよい。ただし、HAZの靱性や溶接性の劣化抑制、合金コストの上昇抑制の観点から、V含有量は、0.10%以下である。V含有量は、好ましくは0.08%以下、又は、0.05%以下である。
(V: 0.10% or less)
V is an element that may be mixed into steel during the manufacturing process. However, the lower limit of the V content is not limited and may be 0%. V also forms carbides and nitrides. V is also an element that improves the strength of steel materials. Therefore, in the present disclosure, the V content may be 0.01% or more. However, in order to suppress the deterioration of the toughness and weldability of the HAZ and to suppress the increase in alloy costs, From a viewpoint, the V content is 0.10% or less, preferably 0.08% or less, or 0.05% or less.
本開示に係る鋼材には、HAZの靭性を向上させるため、必要に応じて、下記に示す選択元素Mg、Ca、REMの1種又は2種以上を含有させてもよい。 The steel material disclosed herein may contain one or more of the optional elements Mg, Ca, and REM shown below as necessary to improve the toughness of the HAZ.
(Mg:0.0200%以下)
Mgは、製造過程で鋼材に混入する場合がある元素である。しかし、Mg含有量の下限値は限定されず、0%であってもよい。また、Mgは、酸化物を形成して、溶接熱影響部の靭性を向上させる元素でもある。そのため、本開示では、Mg含有量は0.0003%以上、0.0006%以上、又は0.0010%以上であってもよい。一方、Mg含有量が過剰であると、粗大な酸化物を形成し、鋼の靭性を低下させる場合がある。したがって、靭性の確保という観点から、本開示では、Mg含有量は0.0200%以下である。Mg含有量は、好ましくは0.0100%以下、0.0060%以下、又は、0.0040%以下である。
(Mg: 0.0200% or less)
Mg is an element that may be mixed into steel materials during the manufacturing process. However, the lower limit of the Mg content is not limited and may be 0%. In addition, Mg forms an oxide, It is also an element that improves the toughness of the weld heat affected zone. Therefore, in the present disclosure, the Mg content may be 0.0003% or more, 0.0006% or more, or 0.0010% or more. If the content is excessive, coarse oxides are formed, which may reduce the toughness of the steel. Therefore, from the viewpoint of ensuring toughness, the Mg content is set to 0.0200% or less in the present disclosure. The Mg content is preferably 0.0100% or less, 0.0060% or less, or 0.0040% or less.
(Ca:0.0200%以下)
Caは、製造過程で鋼材に混入する場合がある元素である。しかし、Ca含有量の下限値は限定されず、0%であってもよい。また、Caは、鋼材中の硫化物を球状化することにより、鋼材及び溶接熱影響部の靭性を低下させるMnSの影響を軽減する元素でもある。そのため、本開示では、Ca含有量は0.0003%以上、0.0006%以上、又は0.0010%以上であってもよい。一方、Ca含有量が過剰であると、粗大な酸化物を形成し、鋼の靭性を低下させる場合がある。したがって、靭性の確保という観点から、本開示では、Ca含有量は0.0200%以下である。Ca含有量は、好ましくは0.0100%以下、0.0060%以下、又は、0.0040%以下である。
(Ca: 0.0200% or less)
Ca is an element that may be mixed into steel during the manufacturing process. However, the lower limit of the Ca content is not limited and may be 0%. Ca also dissolves sulfides in the steel into spherical particles. It is also an element that reduces the effect of MnS, which reduces the toughness of steel and weld heat affected zone, by increasing the Ca content. Therefore, in the present disclosure, the Ca content is set to 0.0003% or more, 0.0006% or more, or 0. On the other hand, if the Ca content is excessive, coarse oxides are formed, which may reduce the toughness of the steel. Therefore, from the viewpoint of ensuring toughness, In the above, the Ca content is 0.0200% or less. The Ca content is preferably 0.0100% or less, 0.0060% or less, or 0.0040% or less.
(REM:0.0200%以下)
希土類金属(REM)は、Sc、Yの2元素と、La、Ce、Ndなどのランタノイド15元素との合計17元素の総称を意味する。REM含有量とは、前記17元素の合計含有量を意味する。REMは、製造過程で鋼材に混入する場合がある元素である。しかし、REM含有量の下限値は限定されず、0%であってもよい。また、REMは、酸化物を形成して、溶接熱影響部の靭性を向上させる元素でもある。そのため、本開示では、REM含有量は0.0003%以上、0.0006%以上、又は0.0010%以上であってもよい。一方、REM含有量が過剰であると、粗大な酸化物を形成し、鋼の靭性を低下させる場合がある。したがって、靭性の確保という観点から、本開示では、REM含有量は0.0200%以下である。REM含有量は、好ましくは0.0100%以下、0.0060%以下又は、0.0040%以下である。
(REM: 0.0200% or less)
Rare earth metals (REM) are a collective term for 17 elements, including two elements, Sc and Y, and 15 lanthanoid elements, such as La, Ce, and Nd. The REM content is the total content of the 17 elements. REM is an element that may be mixed into steel during the manufacturing process. However, the lower limit of the REM content is not limited and may be 0%. REM also forms oxides. As a result, REM is also an element that improves the toughness of the weld heat affected zone. Therefore, in the present disclosure, the REM content may be 0.0003% or more, 0.0006% or more, or 0.0010% or more. On the other hand, if the REM content is excessive, coarse oxides are formed, which may reduce the toughness of the steel. Therefore, from the viewpoint of ensuring toughness, the REM content in the present disclosure is set to 0.0200%. The REM content is preferably 0.0100% or less, 0.0060% or less, or 0.0040% or less.
(残部:Fe及び不純物)
本開示に係る鋼材の化学組成の残部は、鉄(Fe)及び不純物である。不純物とは、鋼材を工業的に製造する際に、鉱石、スクラップ等の原料やその他の要因により混入する成分を意味する。
(balance: Fe and impurities)
The balance of the chemical composition of the steel material according to the present disclosure is iron (Fe) and impurities. The impurities refer to components that are mixed in due to raw materials such as ores and scraps or other factors during industrial production of the steel material.
個々の元素の含有量の限定に加えて、本開示においては、α値の範囲を次のように限定する。 In addition to limiting the content of each individual element, this disclosure limits the range of the α value as follows:
(α値:4.0以上16.0以下)
α値は、以下の(1)式によって算出される。
α=0.50×√[C]×(1+0.64[Si])×(1+4.10[Mn])×(1+0.27[Cu])×(1+0.52[Ni])×(1+2.33[Cr])×(1+3.14[Mo])・・・(1)
ただし、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]及び[Mo]は、鋼中のC、Si、Mn、Cu、Ni、Cr及びMoの含有量(質量%)である。該当する元素を含まない場合は、ゼロを代入する。なお、√[C]は、[C]1/2と同義である。
(α value: 4.0 or more and 16.0 or less)
The α value is calculated by the following formula (1).
α=0.50×√[C]×(1+0.64[Si])×(1+4.10[Mn])×(1+0.27[Cu])×(1+0.52[Ni])×(1+2.33[Cr])×(1+3.14[Mo])...(1)
Here, [C], [Si], [Mn], [Cu], [Ni], [Cr] and [Mo] are the contents (mass%) of C, Si, Mn, Cu, Ni, Cr and Mo in the steel. If the corresponding element is not contained, substitute zero. Note that √[C] is synonymous with [C] 1/2 .
本開示では、α値の範囲を4.0~16.0とする。これは、鋼材の焼入れ性を示す指標であり、α値が高くなるほど、強度及び靭性のバランスが優位な下部ベイナイト及びマルテンサイト組織を形成することができる。αが適切な範囲の場合、HAZの組織も強度及び靭性のバランスが優位な下部ベイナイト及びマルテンサイト組織の比率が高くなり、HAZ靭性も確保できる。αが4.0以上の場合、母材の焼き入れ性を確保し、強度及び靭性のバランスが有利な下部ベイナイト及びマルテンサイトの比率が増え、靭性劣化が抑制される。また、HAZ部の組織も下部ベイナイト、マルテンサイトの比率が増えやすく、HAZ靭性も向上する。一方、α値を16.0以下とすると鋼材強度が高くなりすぎず、靭性を確保できる。また、α値を16.0以下とすると、PWHT後の靭性も確保することができる。また、HAZが硬くなりすぎず、HAZ靭性も確保することができる。 In this disclosure, the range of the α value is set to 4.0 to 16.0. This is an index showing the hardenability of the steel material, and the higher the α value, the more the lower bainite and martensite structures with a favorable balance of strength and toughness can be formed. When α is in the appropriate range, the ratio of the lower bainite and martensite structures with a favorable balance of strength and toughness in the HAZ structure is high, and HAZ toughness can be ensured. When α is 4.0 or more, the hardenability of the base material is ensured, the ratio of the lower bainite and martensite structures with a favorable balance of strength and toughness increases, and toughness deterioration is suppressed. In addition, the ratio of the lower bainite and martensite in the structure of the HAZ portion is likely to increase, and the HAZ toughness is also improved. On the other hand, if the α value is 16.0 or less, the strength of the steel material does not become too high, and toughness can be ensured. In addition, if the α value is 16.0 or less, toughness after PWHT can be ensured. In addition, the HAZ does not become too hard, and HAZ toughness can be ensured.
α値に関する上記の数値範囲を満足することで、強度及び靭性に優れた低温用ニッケル含有鋼材を提供することができる。α値は、好ましくは、4.5以上、又は、5.0以上である。また、α値は、好ましくは、15.5以下、又は、15.0以下である。 By satisfying the above numerical range for the α value, it is possible to provide a nickel-containing steel material for low temperature use that has excellent strength and toughness. The α value is preferably 4.5 or more, or 5.0 or more. In addition, the α value is preferably 15.5 or less, or 15.0 or less.
<ミクロ組織>
次に、本開示に係る鋼材のミクロ組織について説明する。本開示に係る鋼材の表面から厚さ方向に厚さの1/4の部位のミクロ組織は、下部ベイナイト及びマルテンサイトを含む。また、ベイナイトとして、下部ベイナイトのほかに上部ベイナイトも含まれてもよい。
<Microstructure>
Next, the microstructure of the steel material according to the present disclosure will be described. The microstructure at a portion of the steel material according to the present disclosure that is ¼ of the thickness from the surface in the thickness direction contains lower bainite and martensite. In addition, the bainite may contain upper bainite in addition to lower bainite.
「ベイナイト」は、粒内に下部組織を有するベイニティックフェライト(α゜B)を含む組織であり、上部ベイナイト及び下部ベイナイトの総称である。「上部ベイナイト」は、ラス間に残留オーステナイト又はMA相(マルテンサイト・オーステナイト混合相)を含む上部ベイナイト、ラス間に炭化物を含む上部ベイナイトの一方又は両方である。「下部ベイナイト」は、ラス内に炭化物を含むラス状下部ベイナイトである。 "Bainite" is a structure containing bainitic ferrite (α°B) with a substructure within the grains, and is a general term for upper bainite and lower bainite. "Upper bainite" is either or both of upper bainite containing retained austenite or MA phase (mixed martensite-austenite phase) between the laths, and upper bainite containing carbides between the laths. "Lower bainite" is lath-shaped lower bainite containing carbides within the laths.
「マルテンサイト」は、ラス、バタフライ、レンズ、薄板状の4つの形態が存在するが、本開示における成分では主にラスマルテンサイトが生成する。ラスマルテンサイトは特定の配列をしたラスの集団から成るパケット及びブロックから構成され、1つのオーステナイト粒が数個のパケットに分割された組織である。 "Martensite" exists in four forms: lath, butterfly, lens, and thin plate, but the components disclosed in this disclosure mainly form lath martensite. Lath martensite is composed of packets and blocks consisting of groups of laths in a specific arrangement, and is a structure in which one austenite grain is divided into several packets.
(下部ベイナイトとマルテンサイトの面積率の合計:15.0%以上)
下部ベイナイト及びマルテンサイトは硬質相であり、かつ、鋼材の靭性を高める。鋼材の靭性確保という観点から、1/4t部の下部ベイナイト及びマルテンサイトの面積率は15.0%以上である。1/4t部の下部ベイナイト及びマルテンサイトの面積率は、好ましくは20.0%以上、又は、30.0%以上である。1/4t部の下部ベイナイトの面積率とマルテンサイトの面積率の合計は100%であってもよい。
(Total area ratio of lower bainite and martensite: 15.0% or more)
The lower bainite and martensite are hard phases and increase the toughness of the steel material. From the viewpoint of ensuring the toughness of the steel material, the area ratio of the lower bainite and martensite in the 1/4t portion is 15.0% or more. The area ratio of the lower bainite and martensite in the 1/4t portion is preferably 20.0% or more, or 30.0% or more. The sum of the area ratio of the lower bainite and the area ratio of the martensite in the 1/4t portion may be 100%.
(上部ベイナイトと下部ベイナイトとマルテンサイトの面積率の合計:90.0%以上)
鋼材強度の確保という観点から、1/4t部の上部ベイナイトと下部ベイナイトとマルテンサイトの面積率の合計は90.0%以上である。1/4t部の上部ベイナイト、下部ベイナイト及びマルテンサイトの面積率の合計は100%であってもよい。また、1/4t部の上部ベイナイトは1.0%以上であってもよい。
(Total area ratio of upper bainite, lower bainite and martensite: 90.0% or more)
From the viewpoint of ensuring the strength of the steel material, the total area ratio of the upper bainite, lower bainite and martensite in the 1/4t portion is 90.0% or more. The total area ratio of the upper bainite, lower bainite and martensite in the 1/4t portion may be 100%. Furthermore, the upper bainite in the 1/4t portion may be 1.0% or more.
鋼材のミクロ組織の観察は、鋼材の1/4t部を観察面とする試料を用いて行われる。(a)電解研磨、(b)ナイタールエッチングを施した2種の試料を準備する。(a)、(b)の各試料についてそれぞれ下記の方法により3箇所測定し、3箇所の平均値をその鋼材のミクロ組織の面積率とする。なお、(a)、(b)の各試料はそれぞれ3個準備して各試料の平均を取っても良いし、それぞれ1つの試料の中で3箇所の視野で測定して平均を取っても良い。 Observation of the microstructure of steel is carried out using a sample with the 1/4t part of the steel as the observation surface. Two types of samples are prepared: (a) electrolytic polishing, and (b) nital etching. Measurements are taken at three locations for each of samples (a) and (b) using the method described below, and the average of the three locations is taken as the area ratio of the microstructure of the steel. Three samples each of (a) and (b) may be prepared and the average taken for each sample, or measurements may be taken at three locations within each sample and the average taken.
機械研磨で鏡面仕上げ後、械研研磨によって生じた歪層を除去する電解研磨を行った電解研磨試料を用いて、EBSDによる上部ベイナイト、下部ベイナイト及びマルテンサイトの合計の面積率の測定が行われる。測定倍率は200倍であり、400μm×400μmの範囲の測定が0.4μmのピッチで行われる。測定は、電子線のビーム径が0.4μm以下の状態で行われる。信頼性指数(Confidence Index、以下、「CI値」という。)は0.1以上に設定される。フェライトと、上部ベイナイト、下部ベイナイト及びマルテンサイトとの判定は、Grain Average Misorientation(以下、「GAM」という。)の閾値を0.5に設定して行われる。なお、GAM値は、OIM-Analysis(米国TSL社製EBSD結晶方位解析ソフトウエア)中で定義される指標である。GAMが0.5以下の領域はフェライトであり、GAMが0.5超の領域は、上部ベイナイト、下部ベイナイト又はマルテンサイトである。本開示における上部ベイナイト、下部ベイナイト及びマルテンサイトは、EBSDのGAMを閾値として判定されることから、上部ベイナイト、下部ベイナイト及びマルテンサイトだけでなく、焼戻し上部ベイナイト、焼戻し下部ベイナイト及び焼戻しマルテンサイトが含まれる。直接焼入れ(DQ)とその後焼戻し(T)まで行う(DQT)の組織を比べると、焼き戻し後、MAの分解や炭化物の粗大化が起こるが、組織の見え方は大きくは変わらない。 The total area ratio of upper bainite, lower bainite and martensite is measured by EBSD using electrolytically polished samples that have been mechanically polished to a mirror finish and then electrolytically polished to remove the distorted layer caused by mechanical polishing. The measurement magnification is 200 times, and measurements are made over an area of 400 μm x 400 μm at a pitch of 0.4 μm. The measurement is performed with an electron beam diameter of 0.4 μm or less. The confidence index (hereinafter referred to as the "CI value") is set to 0.1 or more. The judgment between ferrite and upper bainite, lower bainite and martensite is performed by setting the threshold value of Grain Average Misorientation (hereinafter referred to as the "GAM") to 0.5. The GAM value is an index defined in OIM-Analysis (EBSD crystal orientation analysis software manufactured by TSL, USA). The region where GAM is 0.5 or less is ferrite, and the region where GAM is more than 0.5 is upper bainite, lower bainite, or martensite. In this disclosure, upper bainite, lower bainite, and martensite are determined using the EBSD GAM as a threshold value, and therefore include not only upper bainite, lower bainite, and martensite, but also tempered upper bainite, tempered lower bainite, and tempered martensite. Comparing the structure of direct quenching (DQ) and that followed by tempering (DQT), after tempering, decomposition of MA and coarsening of carbides occur, but the appearance of the structure does not change significantly.
ナイタールエッチング試料を用いて、SEM観察による上部ベイナイトの面積率の測定が行われる。測定倍率は500倍であり、360μm×480μmの範囲の測定で行われる。明瞭なラス構造を有し、かつ、ラス境界に沿って、炭化物やMAが生成している部分が、上部ベイナイトである。組織の内部構造が比較的粗く、炭化物の密集度も疎でかつ粗密が入り混じっている領域の組織を上部ベイナイトとした。図1に組織判別結果の例を示す。(A)及び(B)は、DQTにより製造し、α値が9.9の鋼材の同じ領域のSEM画像である。(B)において白線で囲まれた領域が上部ベイナイト(Bu)であり、他の領域は下部ベイナイト+マルテンサイト(BL+M)である。上部ベイナイト(Bu)と判断した部分は、白く見える炭化物が疎でかつ粗密の領域が混在している。一方、下部ベイナイト+マルテンサイト(BL+M)と判別した部分は、炭化物が密で均一に存在している。上記で測定した、上部ベイナイト、下部ベイナイト及びマルテンサイトの合計の面積率から、上部ベイナイトの面積率を引くことにより、下部ベイナイトとマルテンサイトの面積率の合計が求められる。
なお、本件のミクロ組織には、製造条件によっては残留オーステナイトが含まれる場合もあるが、極微量のため、面積率には算入しない。
Using a nital etched sample, the area ratio of upper bainite is measured by SEM observation. The measurement magnification is 500 times, and the measurement is performed in a range of 360 μm × 480 μm. The part that has a clear lath structure and where carbides and MA are generated along the lath boundaries is upper bainite. The structure of the region where the internal structure of the structure is relatively coarse, the density of carbides is sparse, and coarse and dense are mixed is upper bainite. Figure 1 shows an example of the structure discrimination result. (A) and (B) are SEM images of the same region of a steel material manufactured by DQT and has an α value of 9.9. In (B), the region surrounded by a white line is upper bainite (Bu), and the other regions are lower bainite + martensite (BL + M). The part determined to be upper bainite (Bu) has sparse carbides that look white and coarse and dense regions are mixed. On the other hand, in the portion determined as lower bainite + martensite (BL+M), carbides are densely and uniformly present. The total area fraction of lower bainite and martensite is obtained by subtracting the area fraction of upper bainite from the total area fraction of upper bainite, lower bainite, and martensite measured above.
Note that the microstructure in this case may contain retained austenite depending on the manufacturing conditions, but since the amount is extremely small, it is not included in the area ratio.
(鋼材の1/4t部の平均結晶粒径)
本開示では、鋼材の1/4t部の平均結晶粒径(有効結晶粒径)は、20.0μm以下であることが好ましい。鋼材の1/4t部の平均結晶粒径が20.0μm以下であれば、PWHTの前後に関わらず鋼材の靭性がさらに向上する傾向があるという知見が得られたからである。ただし、鋼材の1/4t部の平均結晶粒径は、20.0μm超であってもよい。鋼材の平均結晶粒径は、小さいほど好ましいので、その下限値は限定されない。通常、平均結晶粒径は、10μm以上である。有効結晶粒径は加重平均により求められる。加重平均により求められる有効結晶粒径Dareaは、4mm2の領域で測定された結晶粒径のうち、測定時の検出したi番目の結晶粒の面積Si、粒径diを用いて、下記式により算出される。
Darea=ΣSi・di/ΣSi
(Average grain size of 1/4t part of steel material)
In the present disclosure, the average grain size (effective grain size) of the 1/4t part of the steel material is preferably 20.0 μm or less. This is because it has been found that if the average grain size of the 1/4t part of the steel material is 20.0 μm or less, the toughness of the steel material tends to be further improved regardless of whether it is before or after PWHT. However, the average grain size of the 1/4t part of the steel material may be more than 20.0 μm. The smaller the average grain size of the steel material, the more preferable it is, so the lower limit is not limited. Usually, the average grain size is 10 μm or more. The effective grain size is calculated by weighted averaging. The effective grain size D area calculated by weighted averaging is calculated by the following formula using the area S i and grain size d i of the i-th grain detected during measurement among the grain sizes measured in a 4 mm 2 area.
D area =ΣSi・d i /ΣS i
(鋼材の1/4t部の旧オーステナイト結晶粒のアスペクト比)
本開示の鋼材の旧オーステナイト結晶粒(旧オーステナイト粒、または、旧γ粒ということがある)の形態は、圧延方向に扁平した形状であってよい。鋼材の表面から厚さ方向に厚さの1/4の部位の旧オーステナイト粒が、アスペクト比1.5以上の扁平粒であるようにすれば、鋼材の靭性のより一層の向上が可能となる。これは、旧オーステナイト粒を扁平化することにより粒界面積を増やすことで、実質的なオーステナイト粒の微細化になり、平均結晶粒径の微細化に有効となるためである。旧オーステナイト粒のアスペクト比は、通常、4.0以下であり、3.5以下であってよい。
(Aspect ratio of prior austenite grains at 1/4t part of steel material)
The prior austenite grains (may be referred to as prior austenite grains or prior γ grains) of the steel material of the present disclosure may have a shape flattened in the rolling direction. If the prior austenite grains at a position 1/4 of the thickness from the surface of the steel material in the thickness direction are flat grains with an aspect ratio of 1.5 or more, the toughness of the steel material can be further improved. This is because flattening the prior austenite grains increases the grain boundary area, which substantially refines the austenite grains and is effective in refining the average crystal grain size. The aspect ratio of the prior austenite grains is usually 4.0 or less, and may be 3.5 or less.
一方、ミクロ組織の均質性の確保という観点から、1/4t部の旧オーステナイト結晶粒のアスペクト比は1.5未満であってもよい。1/4t部の旧オーステナイト結晶粒のアスペクト比は、1.4以下、又は、1.3以下であってもよい。 On the other hand, from the viewpoint of ensuring homogeneity of the microstructure, the aspect ratio of the prior austenite grains in the 1/4t portion may be less than 1.5. The aspect ratio of the prior austenite grains in the 1/4t portion may be 1.4 or less, or 1.3 or less.
鋼材の旧オーステナイト結晶粒(旧オーステナイト粒ということがある)のアスペクト比は以下のように決定される。まず、鋼材の表面から厚さ方向に厚さの1/4の部位のL断面(鋼材の圧延方向及び厚さ方向に平行な断面)を鏡面研磨し、2~4%ピクリン酸の飽和水溶液ベースの腐食液で腐食を行い、任意の圧延方向1.0mm×厚さ方向0.5mmの領域の旧オーステナイト粒界を現出させる。
次に、個々の旧オーステナイト粒の長径及び短径を測定し、各旧オーステナイト粒のアスペクト比を長径÷短径で算出する。算出された全ての旧オーステナイト粒のアスペクト比の算術平均を「旧オーステナイト粒のアスペクト比」として決定する。なお、旧オーステナイト粒の最大長を長径とし、粒に接触する長径方向に平行な2本の線の最大間隔を短径とする。
The aspect ratio of prior austenite crystal grains (sometimes referred to as prior austenite grains) of a steel material is determined as follows: First, an L-section (a section parallel to the rolling direction and thickness direction of the steel material) at a location 1/4 of the thickness from the surface of the steel material in the thickness direction is mirror-polished, and then etched with an etchant based on a saturated aqueous solution of 2 to 4% picric acid to reveal prior austenite grain boundaries in an arbitrary region of 1.0 mm in the rolling direction × 0.5 mm in the thickness direction.
Next, the long and short diameters of each prior austenite grain are measured, and the aspect ratio of each prior austenite grain is calculated by dividing the long diameter by the short diameter. The arithmetic average of all the aspect ratios of the prior austenite grains thus calculated is determined as the "aspect ratio of the prior austenite grains." The long diameter is the maximum length of the prior austenite grain, and the short diameter is the maximum distance between two lines parallel to the long diameter direction that contact the grain.
<機械特性>
本開示に係る鋼材は、強度及び低温靭性を両立した機械特性を有する。特に-100℃における靭性に優れるほか、PWHT後においても優れた低温靭性を発揮することができる。
<Mechanical properties>
The steel material according to the present disclosure has mechanical properties that balance strength and low-temperature toughness, and is particularly excellent in toughness at -100°C, and can also exhibit excellent low-temperature toughness even after PWHT.
(引張強さ:590MPa以上930MPa以下)
本開示では、鋼材の引張強さを590~930MPaとする。輸送タンクのような大型溶接構造物の重量を軽減するためには、厚さが薄くても構造物の強度が確保できる鋼材が必要とされる。通常、このような用途で用いられる鋼材として選択されるものは、上述した引張強さを有する鋼材であるので、本開示に係る鋼材も上述した引張強さを有するように製造される。
(Tensile strength: 590 MPa or more and 930 MPa or less)
In the present disclosure, the tensile strength of the steel material is set to 590 to 930 MPa. In order to reduce the weight of a large welded structure such as a transportation tank, a steel material that can ensure the strength of the structure even if it is thin is required. Usually, the steel material selected for such applications is a steel material having the above-mentioned tensile strength, so the steel material according to the present disclosure is also manufactured to have the above-mentioned tensile strength.
(降伏比)
本開示に係る鋼材の降伏比(YR=降伏強さ/引張強さ×100)は特に限定されないが、90%以下であることが好ましい。降伏点がない場合は0.2%耐力を用いて降伏強さを求める。
(Yield ratio)
The yield ratio (YR = yield strength/tensile strength x 100) of the steel material according to the present disclosure is not particularly limited, but is preferably 90% or less. When there is no yield point, the yield strength is determined using the 0.2% proof stress.
(-100℃におけるシャルピー衝撃吸収エネルギー)
本開示の鋼材は、低温で高い靭性を確保するために、-100℃におけるシャルピー衝撃吸収エネルギーが150J以上であることが好ましい。本開示の鋼材は、-100℃におけるシャルピー衝撃吸収エネルギーが150J以上の低温靭性を有することにより、本開示の鋼材よりなる輸送用タンクを、例えば、液体二酸化炭素の輸送用として好適に用いることができる。なお、-100℃におけるシャルピー衝撃吸収エネルギーは、厚さの1/4位置から採取した試料を用いて測定した数値とする。
(Charpy impact absorption energy at -100°C)
In order to ensure high toughness at low temperatures, the steel material of the present disclosure preferably has a Charpy impact absorption energy of 150 J or more at -100°C. Since the steel material of the present disclosure has low-temperature toughness with a Charpy impact absorption energy of 150 J or more at -100°C, a transport tank made of the steel material of the present disclosure can be suitably used for transporting liquid carbon dioxide, for example. The Charpy impact absorption energy at -100°C is a value measured using a sample taken from a 1/4 position of the thickness.
(PWHT後の-100℃におけるシャルピー衝撃吸収エネルギー)
低温タンクでは、破壊を未然に防止することを目的として、輸送用タンクに組み立てられた後に溶接部に対してPWHTを行う場合がある。この際に、溶接部のみならず溶接の影響のない鋼材の母材部分(単に母材とも表す)も加熱される。母材が425℃以上の温
度域に加熱される時間が長くなると、母材の靭性が低下する傾向になる。本開示の鋼材は、保持温度が600℃であり、保持時間が2時間であり、かつ、昇温速度および降温速度が、425℃以上の温度域において55℃/hであるPWHTを前記鋼材に対し行った場合、前記PWHTが行われた箇所の靭性は、-100℃におけるシャルピー衝撃吸収エネルギーが150J以上であることが好ましい。PWHT後の-100℃におけるシャルピー衝撃吸収エネルギーは100J以上であってもよい。PWHT後の-100℃におけるシャルピー衝撃吸収エネルギーも、厚さの1/4位置から採取した試料を用いて測定した数値とする。
(Charpy impact absorption energy at -100°C after PWHT)
In low-temperature tanks, in order to prevent destruction, PWHT may be performed on the welded parts after assembly into a transport tank. At this time, not only the welded parts but also the base material part of the steel material that is not affected by welding (also simply referred to as the base material) are heated. If the time for which the base material is heated to a temperature range of 425°C or more is long, the toughness of the base material tends to decrease. In the steel material of the present disclosure, when PWHT is performed on the steel material with a holding temperature of 600°C, a holding time of 2 hours, and a heating rate and a cooling rate of 55°C/h in a temperature range of 425°C or more, the toughness of the part where the PWHT was performed is preferably 150J or more in Charpy impact absorption energy at -100°C. The Charpy impact absorption energy at -100°C after PWHT may be 100J or more. The Charpy impact absorption energy at -100°C after PWHT is also a value measured using a sample taken from the 1/4 position of the thickness.
(熱サイクル後の-100℃におけるシャルピー衝撃吸収エネルギー)
本開示の鋼材は、低温で溶接部を模擬した熱サイクル試験後に高い靭性を確保するために、熱サイクル後の-100℃におけるシャルピー衝撃吸収エネルギーが50J以上であることが好ましい。本開示の鋼材は、熱サイクル後に-100℃におけるシャルピー衝撃吸収エネルギーが50J以上の低温靭性を有することにより、本開示の鋼材よりなる輸送用タンクを、例えば、液体二酸化炭素の輸送用として好適に用いることができる。熱サイクル後の-100℃におけるシャルピー衝撃吸収エネルギーは、40J以上であっても良い。なお、熱サイクル後の-100℃におけるシャルピー衝撃吸収エネルギーは、熱サイクル試験片として鋼材の厚さの1/4位置から採取した試料を用いて、1350℃まで60℃/sで昇温し、1350℃で1s保持後、室温まで20℃/sで冷却する熱履歴を付与した後、そこからシャルピー試験片を採取し、測定した数値とする。
(Charpy impact absorption energy at -100°C after thermal cycling)
In order to ensure high toughness after a thermal cycle test simulating a welded portion at low temperature, the steel material of the present disclosure preferably has a Charpy impact absorption energy of 50 J or more at -100 ° C after the thermal cycle. Since the steel material of the present disclosure has a low-temperature toughness of 50 J or more at -100 ° C after the thermal cycle, a transport tank made of the steel material of the present disclosure can be suitably used, for example, for transporting liquid carbon dioxide. The Charpy impact absorption energy at -100 ° C after the thermal cycle may be 40 J or more. The Charpy impact absorption energy at -100 ° C after the thermal cycle is a value measured by using a sample taken from a 1/4 position of the thickness of the steel material as a thermal cycle test piece, heating it to 1350 ° C at 60 ° C / s, holding it at 1350 ° C for 1 s, and then cooling it to room temperature at 20 ° C / s, and then taking a Charpy test piece from there.
(熱サイクル、PWHT後の-100℃におけるシャルピー吸収エネルギー)
低温タンクでは、破壊を未然に防止することを目的として、輸送用タンクに組み立てられた後に溶接部に対してPWHTを行う場合がある。本開示の鋼材は、上記熱サイクル試験後に、425℃以上の温度域において昇温速度及び降温速度が55℃/hであり、かつ、600℃で2時間保持するPWHTを行い、その後シャルピー試験片を採取し測定を行う。その場合、前記PWHTが行われた箇所の靭性は、-100℃におけるシャルピー衝撃吸収エネルギーが50J以上であることが好ましい。前記熱サイクル試験後にPWHTが行われた箇所の-100℃におけるシャルピー衝撃吸収エネルギーは、40J以上であっても良い。
(Charpy absorbed energy at -100°C after thermal cycle, PWHT)
In low-temperature tanks, in order to prevent destruction, PWHT may be performed on the welded portion after assembly into a transport tank. After the above-mentioned thermal cycle test, the steel material of the present disclosure is subjected to PWHT in which the heating rate and cooling rate are 55°C/h in a temperature range of 425°C or higher and the steel is held at 600°C for 2 hours, and then Charpy test pieces are taken and measured. In this case, the toughness of the portion where the PWHT was performed is preferably such that the Charpy impact absorption energy at -100°C is 50 J or more. The Charpy impact absorption energy at -100°C of the portion where the PWHT was performed after the thermal cycle test may be 40 J or more.
なお、PWHTによって鋼材の靭性が低下する場合がある。その原因は明確ではないが、P(リン)やMnが粒界に拡散し、また、組織中に介在物の成長または凝集が起きることによって、脆性が低下して靭性が低下するものと推測される。PWHTによる靭性の低下は、P及びMnの含有量を制限し、鋼材の平均結晶粒径を小さくすることによって抑制される。 In addition, PWHT can sometimes reduce the toughness of steel. The reason for this is not clear, but it is presumed that the diffusion of P (phosphorus) and Mn to grain boundaries and the growth or aggregation of inclusions in the structure reduce brittleness and therefore toughness. The reduction in toughness due to PWHT can be suppressed by limiting the P and Mn content and reducing the average crystal grain size of the steel.
引張強さ(TS)及び実施例における降伏強さ(YS)は、JIS Z2241:2011に準拠した引張試験によって測定される。引張試験には、1/4厚さ位置から採取された、鋼材の幅方向に平行な方向(C方向)を長手方向とするJIS14A号試験片が使用される。TS及びYSは、3本の試験片を用いて測定され、それらを平均することにより算出される。TS、YSの各平均値に基づき、降伏比YR(%)は、(YS/TS)×100により算出される。
シャルピー衝撃吸収エネルギーは、JIS Z2242:2018の規定に準拠し、半径2mmの衝撃刃を用いて-100℃でシャルピー衝撃試験によって測定される。シャルピー衝撃吸収エネルギーは、3本の試験片を用いて測定され、それらを平均することにより算出される。シャルピー衝撃試験には、鋼材の1/4厚さ位置から採取された、鋼材の幅方向に平行な方向(C方向)を長手方向とするVノッチ試験片が使用される。
The tensile strength (TS) and the yield strength (YS) in the examples are measured by a tensile test in accordance with JIS Z2241:2011. For the tensile test, a JIS 14A test piece is used, which is taken from the 1/4 thickness position and has a longitudinal direction parallel to the width direction of the steel material (C direction). TS and YS are measured using three test pieces and calculated by averaging them. Based on the average values of TS and YS, the yield ratio YR (%) is calculated by (YS/TS) x 100.
The Charpy impact absorption energy is measured by a Charpy impact test at -100°C using an impact blade with a radius of 2 mm in accordance with the provisions of JIS Z2242:2018. The Charpy impact absorption energy is measured using three test pieces and calculated by averaging them. For the Charpy impact test, a V-notch test piece is used, which is taken from the 1/4 thickness position of the steel material and has a longitudinal direction parallel to the width direction of the steel material (C direction).
本開示に係る鋼材の形状は、特に限定されず、鋼板、鋼帯、形鋼、鋼管等である。ただし、鋼管や形鋼は、鋼板を接合した鋼材、例えば、溶接鋼管や溶接形鋼の他にリベットで接合した形鋼などを含む。鋼板、鋼帯、形鋼、鋼管等の鋼材の厚さ(形鋼はフランジの厚さ)は、特に限定されず、通常、3mm以上、150mm以下である。鋼材の厚さは、6mm以上、10mm以上、15mm以上、又は、30mm以上であってよい。また、鋼材の厚さは、100mm以下、80mm以下または60mm以下であってよい。 The shape of the steel material according to the present disclosure is not particularly limited, and may be a steel plate, a steel strip, a steel section, a steel pipe, etc. However, steel pipes and steel sections include steel materials formed by joining steel plates, such as welded steel pipes and welded steel sections, as well as steel sections joined with rivets. The thickness of steel materials such as steel plates, steel strips, steel sections, and steel pipes (the thickness of the flange for steel sections) is not particularly limited, and is usually 3 mm or more and 150 mm or less. The thickness of the steel material may be 6 mm or more, 10 mm or more, 15 mm or more, or 30 mm or more. The thickness of the steel material may also be 100 mm or less, 80 mm or less, or 60 mm or less.
また、本開示に係る鋼材の用途も特に限定されないが、強度及び低温靭性を両立した機械特性を有し、特にPWHT後においても優れた低温靭性を発揮することができるため、液化ガス、特に液体二酸化炭素を貯留、輸送するタンクとして好適に用いることができる。 Furthermore, the uses of the steel material disclosed herein are not particularly limited, but since it has mechanical properties that combine strength and low-temperature toughness, and can exhibit excellent low-temperature toughness even after PWHT, it can be suitably used as a tank for storing and transporting liquefied gas, especially liquid carbon dioxide.
(鋼材の製造方法)
本開示に係る鋼材の製造方法は特に限定されないが、本開示に係る鋼材は、例えば、前述した化学組成を満たす鋼の溶製後、連続鋳造によって鋼片が製造される。鋼片は、加熱され、熱間圧延の後、そのまま水冷される直接焼入れ(DQ)、又は、熱間圧延後、放冷された後、再加熱され、水冷される再加熱焼入れ(RQ)が行われ、鋼材とされる。なお、RQの場合、再加熱前は必ずしも放冷でなくてもよく、水冷しても構わない。更に、中間熱処理(L)、焼戻し(T)が施されてもよい。熱間圧延後の製造工程は、上記のDQ、RQ、L、Tの組合せから選択され、例えば、DQT、RQT、DQLT、RQLTである。
(Method of manufacturing steel products)
The method for producing the steel material according to the present disclosure is not particularly limited, but the steel material according to the present disclosure is, for example, produced by melting steel satisfying the above-mentioned chemical composition and then continuously casting a steel slab. The steel slab is heated, hot-rolled, and then directly water-cooled (direct quenching (DQ)), or hot-rolled, cooled, reheated, and water-cooled (reheat quenching (RQ)), to produce a steel material. In the case of RQ, it is not necessarily required to cool naturally before reheating, and water cooling may be used. Furthermore, intermediate heat treatment (L) and tempering (T) may be performed. The production process after hot rolling is selected from the above combinations of DQ, RQ, L, and T, and is, for example, DQT, RQT, DQLT, and RQLT.
(1)DQT:直接焼入れ(DQ)、焼戻し(T)
(2)RQT:放冷又は水冷、再加熱焼入れ(RQ)、焼戻し(T)
(3)DQLT:直接焼入れ(DQ)、中間熱処理(L)、焼戻し(T)
(4)RQLT:放冷又は水冷、再加熱焼入れ(RQ)、中間熱処理(L)、焼戻し(T)
(1) DQT: Direct Quenching (DQ), Tempering (T)
(2) RQT: Natural cooling or water cooling, reheat quenching (RQ), tempering (T)
(3) DQLT: Direct quenching (DQ), intermediate heat treatment (L), tempering (T)
(4) RQLT: Natural cooling or water cooling, reheat quenching (RQ), intermediate heat treatment (L), tempering (T)
(1)DQT
製造コストの観点から、本開示に係る鋼材の製造ではDQTが好ましく、以下に、好ましい製造工程の例が示される。
(1) DQT
From the viewpoint of manufacturing costs, DQT is preferred for manufacturing the steel material according to the present disclosure, and an example of a preferred manufacturing process is shown below.
本開示に係る鋼材をDQにより製造する場合、熱間圧延が施される鋼片の加熱温度は、被圧延材の金属組織がオーステナイトである温度域で熱間圧延を行うという観点から、Ac3以上である。鋼片の加熱温度は、変形抵抗の低下という観点から、好ましくは1000℃以上である。一方、熱間圧延の加熱温度は、加熱γ粒の粗大化の抑制という観点から、1250℃以下である。熱間圧延の加熱温度は、好ましく1200℃以下である。なお、Ac3は下記式により算出される値とする。
Ac3=937.2-436.5C+56Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr+38.1Mo+124.8V+136.3Ti-19.1Nb+198.4Al+3315B
式中の元素記号は、鋼片に含まれる各元素の含有量(質量%)を意味する。
When the steel material according to the present disclosure is manufactured by DQ, the heating temperature of the steel slab to be hot rolled is Ac 3 or more from the viewpoint of performing hot rolling in a temperature range where the metal structure of the rolled material is austenite. The heating temperature of the steel slab is preferably 1000°C or more from the viewpoint of reducing the deformation resistance. On the other hand, the heating temperature of the hot rolling is 1250°C or less from the viewpoint of suppressing the coarsening of heated γ grains. The heating temperature of the hot rolling is preferably 1200°C or less. Incidentally, Ac 3 is a value calculated by the following formula.
Ac 3 =937.2-436.5C+56Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr+38.1Mo+124.8V+136.3Ti-19.1Nb+198.4Al+3315B
The element symbols in the formula indicate the content (mass %) of each element contained in the steel slab.
熱間圧延は、再結晶が生じる温度域での圧延(再結晶温度域圧延)と、再結晶が抑制される温度域での圧延(未再結晶温度域圧延)とで構成される場合がある。
再結晶温度域圧延は、圧延中の被圧延材の温度が900℃以上で行われる熱間圧延である。再結晶温度域圧延の累積圧下率は、鋼材のオーステナイト粒径の微細化という観点から、好ましくは20%以上であり、より好ましくは30%以上である。再結晶温度域圧延の累積圧下率は、熱間圧延前の鋼片の厚さと900℃における被圧延材の厚さとの差から求められる。
再結晶温度域圧延の累積圧下率(%)=100×([鋼片の厚さ]-[900℃における被圧延材の厚さ])/[鋼片の厚さ]
Hot rolling may be composed of rolling in a temperature range where recrystallization occurs (recrystallization temperature range rolling) and rolling in a temperature range where recrystallization is suppressed (non-recrystallization temperature range rolling).
Recrystallization temperature region rolling is hot rolling performed at a temperature of 900°C or higher during rolling. The cumulative reduction in recrystallization temperature region rolling is preferably 20% or more, and more preferably 30% or more, from the viewpoint of refining the austenite grain size of the steel material. The cumulative reduction in recrystallization temperature region rolling is determined from the difference between the thickness of the steel slab before hot rolling and the thickness of the rolled material at 900°C.
Cumulative reduction rate of recrystallization temperature region rolling (%) = 100 x ([thickness of steel billet] - [thickness of material being rolled at 900 ° C]) / [thickness of steel billet]
未再結晶温度域圧延は、圧延中の被圧延材の温度が900℃未満で行われる熱間圧延である。未再結晶温度域圧延の累積圧下率は、鋼材の平均結晶粒径の微細化という観点から、好ましくは20%以上であり、より好ましくは30%以上である。未再結晶温度域圧延の累積圧下率は、900℃における被圧延材の厚さと圧延終了後の鋼材の厚さとの差から求められる。
未再結晶温度域圧延の累積圧下率(%)=100×([900℃における被圧延材の厚さ]-[圧延終了後の鋼材の厚さ])/[900℃における被圧延材の厚さ]
Non-recrystallization temperature region rolling is hot rolling performed at a temperature of the rolled material during rolling of less than 900° C. The cumulative reduction in non-recrystallization temperature region rolling is preferably 20% or more, more preferably 30% or more, from the viewpoint of refining the average crystal grain size of the steel material. The cumulative reduction in non-recrystallization temperature region rolling is determined from the difference between the thickness of the rolled material at 900° C. and the thickness of the steel material after rolling is completed.
Cumulative reduction rate (%) of non-recrystallization temperature region rolling = 100 x ([thickness of rolled material at 900 ° C.] - [thickness of steel material after rolling]) / [thickness of rolled material at 900 ° C.]
熱間圧延の終了温度は、強度を低下させるフェライトの生成の抑制という観点から、Ar3以上である。熱間圧延の終了後、鋼材には水冷などの加速冷却が施される。加速冷却の開始温度は、強度を低下させるフェライトの生成の抑制という観点から、Ar3以上である。なお、Ar3は下記式によって算出される値とする。
Ar3=910-310C-80Mn-20Cu-15Cr-55Ni-80Mo+0.35(t-8)
式中の元素記号は、鋼材に含まれる各元素の含有量(質量%)を意味し、tは鋼材の厚さ(mm)を意味する。
ベイナイト変態及びマルテンサイト変態の促進という観点から、冷却速度は1.0℃/s以上である。加速冷却の冷却速度は、好ましくは5.0℃/s以上、又は10.0℃/s以上である。加速冷却の冷却速度は、速いほど好ましいが、冷却速度の均質化、コストなどの観点から、好ましくは50.0℃/s以下、又は30.0℃/s以下である。冷却速度は、厚さの1/4位置での冷却速度を伝熱計算によるシミュレーションにより算出した値である。
The end temperature of the hot rolling is Ar 3 or more from the viewpoint of suppressing the formation of ferrite that reduces strength. After the end of the hot rolling, the steel material is subjected to accelerated cooling such as water cooling. The start temperature of the accelerated cooling is Ar 3 or more from the viewpoint of suppressing the formation of ferrite that reduces strength. Here, Ar 3 is a value calculated by the following formula.
Ar 3 =910-310C-80Mn-20Cu-15Cr-55Ni-80Mo+0.35(t-8)
The element symbols in the formula represent the content (mass%) of each element contained in the steel material, and t represents the thickness (mm) of the steel material.
From the viewpoint of promoting bainite transformation and martensitic transformation, the cooling rate is 1.0°C/s or more. The cooling rate of the accelerated cooling is preferably 5.0°C/s or more, or 10.0°C/s or more. The faster the cooling rate of the accelerated cooling, the more preferable it is, but from the viewpoint of homogenizing the cooling rate, cost, etc., the cooling rate is preferably 50.0°C/s or less, or 30.0°C/s or less. The cooling rate is a value calculated by simulating the cooling rate at a 1/4 position of the thickness using heat transfer calculation.
加速冷却の停止温度は、上部ベイナイト、下部ベイナイト及びマルテンサイトの確保による鋼材の強度の向上という観点から、400℃以下である。加速冷却の停止温度は、好ましくは350℃以下である。室温まで加速冷却が行われてもよい。加速冷却の停止温度は、鋼材の脱水素の観点から、好ましくは100℃以上である。 The accelerated cooling stop temperature is 400°C or lower from the viewpoint of improving the strength of the steel by ensuring upper bainite, lower bainite, and martensite. The accelerated cooling stop temperature is preferably 350°C or lower. Accelerated cooling may be performed down to room temperature. The accelerated cooling stop temperature is preferably 100°C or higher from the viewpoint of dehydrogenating the steel.
加速冷却後、鋼材には焼戻し処理が施されてもよい。焼戻し処理の加熱温度は、強度の低下の抑制という観点から、好ましくは650℃以下、620℃以下、又は、590℃以下である。一方、靭性の改善という観点から、焼戻し処理の加熱温度は、好ましくは350℃以上、又は、400℃以上である。 After accelerated cooling, the steel may be subjected to a tempering treatment. From the viewpoint of preventing a decrease in strength, the heating temperature of the tempering treatment is preferably 650°C or less, 620°C or less, or 590°C or less. On the other hand, from the viewpoint of improving toughness, the heating temperature of the tempering treatment is preferably 350°C or more, or 400°C or more.
(2)RQT
本開示に係る鋼材をRQにより製造する場合、熱間圧延時の被圧延材の加熱温度および圧下率が鋼材の機械的特性に及ぼす影響は小さい。しかしながら、被圧延材の加熱温度が低すぎる場合、変形抵抗が増加するため、被圧延材の加熱温度は、好ましくは、1000℃以上である。また、圧下率が不十分な場合、厚さ中心部に鋼片製造時の初期欠陥が残存し、鋼材の材質が低下する場合があるため、熱間圧延の圧下率の合計(累積圧下率ともいう)は、好ましくは、35%以上である。熱間圧延後、そのまま水冷しても、空冷してもよい。
(2) RQT
When the steel material according to the present disclosure is manufactured by RQ, the heating temperature and reduction of the material to be rolled during hot rolling have little effect on the mechanical properties of the steel material. However, if the heating temperature of the material to be rolled is too low, the deformation resistance increases, so the heating temperature of the material to be rolled is preferably 1000°C or higher. In addition, if the reduction is insufficient, initial defects at the time of manufacturing the steel billet may remain in the thickness center, and the quality of the steel material may deteriorate, so the total reduction of the hot rolling (also called the cumulative reduction) is preferably 35% or higher. After hot rolling, the steel may be water-cooled or air-cooled as it is.
鋼材は、熱間圧延の後、再加熱焼入れが行われる。鋼材の再加熱温度は、オーステナイト単相の組織から焼入れを行うため、Ac3以上である。鋼材の再加熱温度は、ミクロ組織の均質性の確保という観点から、好ましくは、750℃以上、850℃以上、880℃以上、又は、900℃以上である。一方、再加熱温度の上限温度は特に規定しないが、過度に高温まで加熱することはオーステナイト粒が粗大化して靭性の低下を招く場合があるため、好ましくは1000℃以下、950℃以下、又は、930℃以下である。 The steel material is reheated and quenched after hot rolling. The reheating temperature of the steel material is Ac 3 or more because quenching is performed from an austenite single phase structure. From the viewpoint of ensuring homogeneity of the microstructure, the reheating temperature of the steel material is preferably 750°C or more, 850°C or more, 880°C or more, or 900°C or more. On the other hand, the upper limit of the reheating temperature is not particularly specified, but since heating to an excessively high temperature may cause austenite grains to coarsen and lead to a decrease in toughness, the upper limit is preferably 1000°C or less, 950°C or less, or 930°C or less.
再加熱焼入れ後、鋼材には焼戻し処理が施されてもよい。焼戻し処理の加熱温度は、強度の低下の抑制という観点から、好ましくは660℃以下、又は、640℃以下である。一方、靭性の改善という観点から、焼戻し処理の加熱温度は、好ましくは400℃以上、450℃以上、又は、500℃以上である。 After reheating and quenching, the steel may be subjected to a tempering treatment. The heating temperature in the tempering treatment is preferably 660°C or less, or 640°C or less, from the viewpoint of suppressing a decrease in strength. On the other hand, from the viewpoint of improving toughness, the heating temperature in the tempering treatment is preferably 400°C or more, 450°C or more, or 500°C or more.
以下では、実施例を挙げて、本開示に係る鋼材が具体的に説明される。ただし、下記実施例における条件は、本開示の実施可能性及び効果を確認するために採用した一条件例であり、本開示に係る鋼材は、下記実施例に限定されるものではない。 Below, the steel material according to the present disclosure will be specifically explained using examples. However, the conditions in the following examples are merely examples of conditions adopted to confirm the feasibility and effects of the present disclosure, and the steel material according to the present disclosure is not limited to the following examples.
<直接焼入れ、焼戻しによる製造>
[鋼材の製造]
まず、連続鋳造法により表1に示す化学組成を有するスラブを鋳造した。表1に示す成分以外の残部はFe及び不純物である。また、空欄は製鋼工程において合金元素を意図的に添加していないことを示す。
下線は、本開示の範囲外であることを意味する。
<Manufacturing by direct quenching and tempering>
[Steel manufacturing]
First, a slab having the chemical composition shown in Table 1 was cast by a continuous casting method. The balance other than the components shown in Table 1 is Fe and impurities. Also, blanks indicate that no alloying elements were intentionally added in the steelmaking process.
The underlines mean that they are outside the scope of this disclosure.
次いで、これらのスラブから表2に示す製造条件により鋼材を製造した。「Temper熱処理」は、焼入れ後の焼戻し処理における加熱温度である。 Then, steel materials were manufactured from these slabs under the manufacturing conditions shown in Table 2. "Temper heat treatment" is the heating temperature in the tempering process after quenching.
[測定及び評価]
得られた鋼材におけるミクロ組織及び機械特性を前述した方法により測定した。表3に結果を示す。ミクロ組織の記号の意味は以下のとおりである。なお、ミクロ組織の残部はパーライト、MA相、フェライトである。
Bu:上部ベイナイト
BL:下部ベイナイト
M:マルテンサイト
靭性は、-100℃でのシャルピー衝撃吸収エネルギーの平均値(KV2)、保持温度:600℃、保持時間:2時間、425℃以上の温度域での昇温速度及び降温速度:55℃/hとしたPWHT後の-100℃でのシャルピー衝撃吸収エネルギーの平均値をそれぞれ測定した。
[Measurement and Evaluation]
The microstructure and mechanical properties of the obtained steel material were measured by the above-mentioned methods. The results are shown in Table 3. The meanings of the symbols of the microstructure are as follows. The remainder of the microstructure is pearlite, MA phase, and ferrite.
Bu: upper bainite BL: lower bainite M: martensite Toughness was measured by measuring the average value of the Charpy impact absorption energy at -100°C (KV2) and the average value of the Charpy impact absorption energy at -100°C after PWHT with a holding temperature of 600°C, a holding time of 2 hours, and a heating rate and a cooling rate of 55°C/h in a temperature range of 425°C or higher.
No.1A~22A、101A~109Aは本発明例であり、No.23A、26A、110A~114Aは比較例である。
No.23Aは、圧延終了温度が低く、直接焼入れ開始温度がAr3より低かったため、十分な強度が得られなかった。
No.26Aは、Mn含有量が多過ぎたために、PWHT後に十分な低温靭性が得られなかった。
No.110A、111Aは、α値が本開示の下限値未満であり、焼入れ性が不足し、強度が不足した。十分な低温靭性も得られなかった。
No.112A、113Aは、α値が本開示の上限値を超え、焼入れ性が高過ぎて、強度が過大であった。
No.114Aは、直接焼入れの冷却速度が低かったために、下部ベイナイトとマルテンサイトの合計面積率が不足し、十分な低温靭性が得られなかった。
Nos. 1A to 22A and 101A to 109A are examples of the present invention, and Nos. 23A, 26A, and 110A to 114A are comparative examples.
In No. 23A, the rolling end temperature was low and the direct quenching start temperature was lower than that of Ar 3 , so sufficient strength was not obtained.
No. 26A had too much Mn content and therefore could not obtain sufficient low-temperature toughness after PWHT.
Nos. 110A and 111A had an α value less than the lower limit of the present disclosure, and thus had insufficient hardenability and strength. Sufficient low-temperature toughness was also not obtained.
In Nos. 112A and 113A, the α value exceeded the upper limit of the present disclosure, the hardenability was too high, and the strength was excessively high.
In No. 114A, the cooling rate of the direct quenching was low, so the total area ratio of lower bainite and martensite was insufficient, and sufficient low-temperature toughness was not obtained.
比較例とは対照的に、全ての本発明例(No.1A~22A、101A~109A)では、鋼材の化学組成及びミクロ組織が適切に制御されており、引張強さが590MPa以上、930MPa以下、と適切な範囲にあるほか、PWHTの前後に関わらず、-100℃でのシャルピー衝撃吸収エネルギーが高く、特に特性の良いものは150J以上の低温靭性が得られている。 In contrast to the comparative examples, in all of the inventive examples (Nos. 1A-22A, 101A-109A), the chemical composition and microstructure of the steel are appropriately controlled, and the tensile strength is within an appropriate range of 590 MPa or more and 930 MPa or less. In addition, the Charpy impact absorption energy at -100°C is high regardless of before or after PWHT, and those with particularly good properties have a low-temperature toughness of 150 J or more.
<再加熱焼入れ、焼き戻しによる製造>
[鋼材の製造]
まず、連続鋳造法により表4に示す化学組成を有するスラブを鋳造した。表4に示す成分以外の残部はFe及び不純物である。また、空欄は製鋼工程において合金元素を意図的に添加していないことを示す。下線は、本開示の範囲外であることを意味する。
<Manufacturing by reheating, quenching and tempering>
[Steel manufacturing]
First, a slab having the chemical composition shown in Table 4 was cast by a continuous casting method. The balance other than the components shown in Table 4 is Fe and impurities. Also, blanks indicate that no alloy elements were intentionally added in the steelmaking process. Underlines indicate that the contents are outside the scope of the present disclosure.
次いで、これらのスラブから表5に示す製造条件により鋼材を製造した。「Temper熱処理」は、焼入れ後の焼戻し処理における加熱温度である。 Then, steel materials were manufactured from these slabs under the manufacturing conditions shown in Table 5. "Temper heat treatment" is the heating temperature in the tempering process after quenching.
[測定及び評価]
得られた鋼材におけるミクロ組織及び機械特性を前述した方法により測定した。表6に結果を示す。ミクロ組織の記号の意味は以下のとおりである。なお、ミクロ組織の残部はパーライト、MA相、フェライトである。
Bu:上部ベイナイト
BL:下部ベイナイト
M:マルテンサイト
靭性は、-100℃でのシャルピー衝撃吸収エネルギーの平均値(KV2)、保持温度:600℃、保持時間:2時間、425℃以上の温度域での昇温速度及び降温速度:55
℃/hとしたPWHT後の-100℃でのシャルピー衝撃吸収エネルギーの平均値をそれぞれ測定した。
[Measurement and Evaluation]
The microstructure and mechanical properties of the obtained steel material were measured by the above-mentioned methods. The results are shown in Table 6. The meanings of the symbols of the microstructure are as follows. The remainder of the microstructure is pearlite, MA phase, and ferrite.
Bu: upper bainite BL: lower bainite M: martensite Toughness is the average value of Charpy impact absorption energy at -100°C (KV2), holding temperature: 600°C, holding time: 2 hours, heating rate and cooling rate in the temperature range of 425°C or higher: 55
The average Charpy impact absorption energy at -100°C after PWHT at 100°C/h was measured.
No.1B~21B、101B~109Bは本発明例であり、No.22B~25B、110B~113Bは比較例である。
No.22Bは、αが小さ過ぎたため、十分な焼き入れ性が得られず、十分な強度が得られず、十分な低温靭性も得られなかった。
No.23Bは、再加熱温度が低く、Ac3より低かったため、十分な強度が得られず、十分な低温靭性も得られなかった。
No.24Bは、Niが少なすぎたため、十分な低温靭性が得られなかった。
No.25Bは、Mn含有量が多過ぎたために、PWHT後に十分な低温靭性が得られなかった。
No.110B、111Bは、α値が本開示の下限値未満であり、焼入れ性が不足し、強度が不足した。十分な低温靭性も得られなかった。
No.112B、113Bは、α値が本開示の上限値を超え、焼入れ性が高過ぎて、強度が過大であった。
Nos. 1B to 21B and 101B to 109B are examples of the present invention, and Nos. 22B to 25B and 110B to 113B are comparative examples.
In No. 22B, since α was too small, sufficient hardenability, strength, and low-temperature toughness were not obtained.
In No. 23B, the reheating temperature was low, lower than that of Ac 3 , so sufficient strength and low-temperature toughness were not obtained.
No. 24B had too little Ni, and therefore could not obtain sufficient low-temperature toughness.
No. 25B had too much Mn content and therefore could not obtain sufficient low-temperature toughness after PWHT.
Nos. 110B and 111B had an α value less than the lower limit of the present disclosure, and thus had insufficient hardenability and strength. Sufficient low-temperature toughness was also not obtained.
In Nos. 112B and 113B, the α value exceeded the upper limit of the present disclosure, the hardenability was too high, and the strength was excessively high.
比較例とは対照的に、全ての本発明例(No.1B~21B、101B~109B)では、鋼材の化学組成及びミクロ組織が適切に制御されており、引張強さが590MPa以上、930MPa以下、と適切な範囲にあるほか、PWHTの前後に関わらず、-100℃でのシャルピー衝撃吸収エネルギーが125J以上と高く、特に特性の良いものは150J以上の低温靭性が得られている。 In contrast to the comparative examples, in all of the inventive examples (Nos. 1B to 21B, 101B to 109B), the chemical composition and microstructure of the steel are appropriately controlled, and the tensile strength is within an appropriate range of 590 MPa or more and 930 MPa or less. In addition, regardless of before or after PWHT, the Charpy impact absorption energy at -100°C is high at 125 J or more, and those with particularly good properties have a low-temperature toughness of 150 J or more.
本開示に係る鋼材は、液化二酸化炭素の輸送タンク向けとして主に使用することができ
る。また、本開示に係る鋼材は、建築、橋梁、船舶、ラインパイプ、海洋構造物、圧力容器及びタンク等、その他の溶接構造物に使用することも可能である。
The steel material according to the present disclosure can be mainly used for transport tanks for liquefied carbon dioxide. The steel material according to the present disclosure can also be used for other welded structures such as buildings, bridges, ships, line pipes, marine structures, pressure vessels and tanks.
2023年3月16日に出願された日本特許出願2023-042400及び日本特許出願2023-042401の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosures of Japanese Patent Application No. 2023-042400 and Japanese Patent Application No. 2023-042401, filed on March 16, 2023, are incorporated herein by reference in their entirety. All documents, patent applications, and technical standards described herein are incorporated herein by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated.
Claims (6)
C:0.03%以上、0.20%以下、
Si:0.01%以上、0.50%以下、
Mn:0.10%以上、1.65%以下、
P:0.025%以下、
S:0.0250%以下、
Ni:2.65%以上、4.45%以下、
Al:0.001%以上、0.100%以下、
O:0.0100%以下、
N:0.0100%以下、
Cu:0~1.50%、
Cr:0~3.00%、
Mo:0~2.00%、
B:0~0.0050%、
Nb:0~0.050%、
Ti:0~0.050%、
V:0~0.10%、
Mg:0~0.0200%、
Ca:0~0.0200%、
REM:0~0.0200%、
残部:Fe及び不純物
であり、かつ、下記(1)式で表されるαが、4.0以上、16.0以下である化学組成を有し、
引張強さが590MPa以上、930MPa以下であり、
鋼材の表面から厚さ方向に厚さの1/4の部位のミクロ組織が、下部ベイナイト及びマルテンサイトを含み、前記下部ベイナイトと前記マルテンサイトの面積率の合計が15.0%以上であり、かつ、上部ベイナイトと前記下部ベイナイトと前記マルテンサイトの面積率の合計が90.0%以上である、
鋼材。
α=0.50×√[C]×(1+0.64[Si])×(1+4.10[Mn])×(1+0.27[Cu])×(1+0.52[Ni])×(1+2.33[Cr])×(1+3.14[Mo]) ・・・(1)
ただし、式(1)中の[元素記号]は、前記鋼材に含まれるそれぞれ対応する元素の含有量(質量%)を表す。該当する元素を含まない場合は、ゼロを代入する。 In mass percent,
C: 0.03% or more, 0.20% or less,
Si: 0.01% or more, 0.50% or less,
Mn: 0.10% or more, 1.65% or less,
P: 0.025% or less,
S: 0.0250% or less,
Ni: 2.65% or more, 4.45% or less,
Al: 0.001% or more, 0.100% or less,
O: 0.0100% or less,
N: 0.0100% or less,
Cu: 0 to 1.50%,
Cr: 0-3.00%,
Mo: 0-2.00%,
B: 0 to 0.0050%,
Nb: 0 to 0.050%,
Ti: 0 to 0.050%,
V: 0 to 0.10%,
Mg: 0 to 0.0200%,
Ca: 0-0.0200%,
REM: 0-0.0200%,
The balance is Fe and impurities, and has a chemical composition in which α represented by the following formula (1) is 4.0 or more and 16.0 or less,
The tensile strength is 590 MPa or more and 930 MPa or less,
a microstructure at a portion of a steel material that is 1/4 of the thickness from the surface in the thickness direction includes lower bainite and martensite, a sum of area ratios of the lower bainite and the martensite is 15.0% or more, and a sum of area ratios of the upper bainite, the lower bainite, and the martensite is 90.0% or more;
Steel.
α=0.50×√[C]×(1+0.64[Si])×(1+4.10[Mn])×(1+0.27[Cu])×(1+0.52[Ni])×(1+2.33[Cr])×(1+3.14[Mo]) ...(1)
In the formula (1), the [element symbol] represents the content (mass%) of the corresponding element contained in the steel material. When the corresponding element is not contained, zero is substituted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024562933A JPWO2024190921A1 (en) | 2023-03-16 | 2024-03-15 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023042401 | 2023-03-16 | ||
JP2023-042401 | 2023-03-16 | ||
JP2023-042400 | 2023-03-16 | ||
JP2023042400 | 2023-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024190921A1 true WO2024190921A1 (en) | 2024-09-19 |
Family
ID=92755922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/010387 WO2024190921A1 (en) | 2023-03-16 | 2024-03-15 | Steel material |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2024190921A1 (en) |
WO (1) | WO2024190921A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025023221A1 (en) * | 2023-07-21 | 2025-01-30 | 日本製鉄株式会社 | Welded joint |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5873717A (en) * | 1981-10-28 | 1983-05-04 | Kawasaki Steel Corp | Production of low temperature steel |
JPH01219121A (en) * | 1988-02-26 | 1989-09-01 | Nippon Steel Corp | Manufacturing method of extra-thick tempered high-strength steel plate with excellent low-temperature toughness |
JPH07331328A (en) * | 1994-06-03 | 1995-12-19 | Kawasaki Steel Corp | Production of high tensile strength steel excellent in toughness at low temperature |
JP2001123245A (en) * | 1999-10-21 | 2001-05-08 | Nippon Steel Corp | High toughness and high tensile strength steel with excellent weld toughness and method of manufacturing the same |
JP2001527155A (en) * | 1997-12-19 | 2001-12-25 | エクソンモービル アップストリーム リサーチ カンパニー | Super strong steel with excellent cryogenic toughness |
JP2005139517A (en) * | 2003-11-07 | 2005-06-02 | Jfe Steel Kk | Method for producing high strength and high toughness thick steel plate |
CN102851611A (en) * | 2011-06-29 | 2013-01-02 | 宝山钢铁股份有限公司 | Ultrahigh toughness steel plate for deep-water pressure resistant shell and manufacture method thereof |
WO2014103629A1 (en) * | 2012-12-28 | 2014-07-03 | 新日鐵住金株式会社 | STEEL SHEET HAVING YIELD STRENGTH OF 670-870 N/mm2 AND TENSILE STRENGTH OF 780-940 N/mm2 |
WO2017208329A1 (en) * | 2016-05-31 | 2017-12-07 | 新日鐵住金株式会社 | High-tensile steel plate having excellent low-temperature toughness |
-
2024
- 2024-03-15 WO PCT/JP2024/010387 patent/WO2024190921A1/en active Application Filing
- 2024-03-15 JP JP2024562933A patent/JPWO2024190921A1/ja active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5873717A (en) * | 1981-10-28 | 1983-05-04 | Kawasaki Steel Corp | Production of low temperature steel |
JPH01219121A (en) * | 1988-02-26 | 1989-09-01 | Nippon Steel Corp | Manufacturing method of extra-thick tempered high-strength steel plate with excellent low-temperature toughness |
JPH07331328A (en) * | 1994-06-03 | 1995-12-19 | Kawasaki Steel Corp | Production of high tensile strength steel excellent in toughness at low temperature |
JP2001527155A (en) * | 1997-12-19 | 2001-12-25 | エクソンモービル アップストリーム リサーチ カンパニー | Super strong steel with excellent cryogenic toughness |
JP2001123245A (en) * | 1999-10-21 | 2001-05-08 | Nippon Steel Corp | High toughness and high tensile strength steel with excellent weld toughness and method of manufacturing the same |
JP2005139517A (en) * | 2003-11-07 | 2005-06-02 | Jfe Steel Kk | Method for producing high strength and high toughness thick steel plate |
CN102851611A (en) * | 2011-06-29 | 2013-01-02 | 宝山钢铁股份有限公司 | Ultrahigh toughness steel plate for deep-water pressure resistant shell and manufacture method thereof |
WO2014103629A1 (en) * | 2012-12-28 | 2014-07-03 | 新日鐵住金株式会社 | STEEL SHEET HAVING YIELD STRENGTH OF 670-870 N/mm2 AND TENSILE STRENGTH OF 780-940 N/mm2 |
WO2017208329A1 (en) * | 2016-05-31 | 2017-12-07 | 新日鐵住金株式会社 | High-tensile steel plate having excellent low-temperature toughness |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025023221A1 (en) * | 2023-07-21 | 2025-01-30 | 日本製鉄株式会社 | Welded joint |
Also Published As
Publication number | Publication date |
---|---|
JPWO2024190921A1 (en) | 2024-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6344538B1 (en) | Steel pipe and steel plate | |
JP5162382B2 (en) | Low yield ratio high toughness steel plate | |
JP5574059B2 (en) | High-strength H-section steel with excellent low-temperature toughness and method for producing the same | |
JP5733425B2 (en) | High-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP7147960B2 (en) | Steel plate and its manufacturing method | |
JP2013091845A (en) | High-tensile steel plate giving welding heat-affected zone with excellent low-temperature toughness, and method for producing the same | |
WO2014175122A1 (en) | H-shaped steel and method for producing same | |
JP2015183279A (en) | Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same | |
CN113166903B (en) | Steel material having excellent hydrogen-induced cracking resistance and method for producing same | |
JP5812193B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
WO2024190921A1 (en) | Steel material | |
WO2015075771A1 (en) | Steel sheet | |
KR20180116176A (en) | Thick steel plate | |
CN113227425B (en) | High-strength structural steel having excellent cold-formability and manufacturing method thereof | |
WO2024190920A1 (en) | Steel | |
WO2025013926A1 (en) | Steel and liquid carbon dioxide transport tank | |
WO2025079721A1 (en) | Steel material and pressure vessel | |
CN109219670B (en) | High-strength thick steel plate and method for producing same | |
WO2025079722A1 (en) | Steel material and pressure vessel | |
WO2025079723A1 (en) | Steel material and pressure vessel | |
WO2025079725A1 (en) | Steel material and pressure container | |
WO2025079724A1 (en) | Steel material and pressure vessel | |
WO2025023221A1 (en) | Welded joint | |
JP7468800B2 (en) | Steel plate and its manufacturing method | |
JP7367896B1 (en) | Steel plate and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2024562933 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24771023 Country of ref document: EP Kind code of ref document: A1 |