WO2024190045A1 - Power generation turbine - Google Patents
Power generation turbine Download PDFInfo
- Publication number
- WO2024190045A1 WO2024190045A1 PCT/JP2023/046864 JP2023046864W WO2024190045A1 WO 2024190045 A1 WO2024190045 A1 WO 2024190045A1 JP 2023046864 W JP2023046864 W JP 2023046864W WO 2024190045 A1 WO2024190045 A1 WO 2024190045A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- working fluid
- turbine
- gap
- rotor blade
- axial direction
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 87
- 239000012530 fluid Substances 0.000 claims abstract description 204
- 230000002093 peripheral effect Effects 0.000 claims description 36
- 238000010438 heat treatment Methods 0.000 claims description 26
- 238000000605 extraction Methods 0.000 claims description 23
- 230000000149 penetrating effect Effects 0.000 claims description 7
- 239000007789 gas Substances 0.000 description 33
- 230000004308 accommodation Effects 0.000 description 13
- 238000001816 cooling Methods 0.000 description 11
- 238000011144 upstream manufacturing Methods 0.000 description 10
- 239000003949 liquefied natural gas Substances 0.000 description 6
- 230000014509 gene expression Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 239000013535 sea water Substances 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- -1 R1234yf or R1234ze Chemical compound 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/16—Arrangement of bearings; Supporting or mounting bearings in casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/24—Casings; Casing parts, e.g. diaphragms, casing fastenings
- F01D25/26—Double casings; Measures against temperature strain in casings
Definitions
- the present disclosure relates to turbines for power generation.
- This application claims priority based on Japanese Patent Application No. 2023-040211, filed with the Japan Patent Office on March 15, 2023, the contents of which are incorporated herein by reference.
- Liquefied gas for example, liquefied natural gas
- liquefied natural gas is liquefied for the purpose of transportation and storage, and when it is supplied to destinations such as city gas and thermal power plants, it is heated and vaporized using a heat medium such as seawater.
- a heat medium such as seawater.
- the ORC Organic Rankine Cycle
- the ORC is known as a cold energy power generation cycle that uses liquefied natural gas.
- a low-temperature working fluid with a boiling point lower than that of water circulating in a closed loop is cooled and condensed with liquefied natural gas in a condenser, then pressurized by a pump, heated and evaporated in an evaporator using seawater or other heat sources, and this steam is introduced into a cold energy power generation turbine to generate power.
- Patent Document 1 discloses a cold energy power generation turbine in which two radial turbines and a generator are arranged coaxially within the same casing in order to reduce the size of the cold energy power generation device.
- the generator is located in the center of the shaft, and radial turbines are located at both ends of the shaft.
- At least one embodiment of the present disclosure aims to provide a power generation turbine that can cool a generator while minimizing the complexity and size of the structure.
- a power generating turbine includes: A rotating shaft; a generator including a rotor provided on one side of the rotating shaft in an axial direction and a stator disposed on an inner peripheral side of the rotor; at least one turbine blade provided on the other side of the rotating shaft in the axial direction relative to the generator; an inner casing configured to rotatably accommodate the rotating shaft, the inner casing having an opposing surface that faces a disk portion of the at least one turbine blade with a first gap therebetween, the inner casing forming a generator accommodating space that communicates with the first gap and accommodates the generator; an outer casing disposed on an outer circumferential side of the inner casing, communicating with the first gap between the outer casing and the inner casing to form a working fluid flow passage through which a working fluid of the turbine rotor blade flows;
- the inner casing is formed with at least one through hole having an outer opening formed on an outer surface that defines the working fluid flow path and an inner opening formed on an inner surface that defines the
- At least one embodiment of the present disclosure provides a power generation turbine that can cool a generator while minimizing the complexity and size of the structure.
- FIG. 1 is a schematic cross-sectional axial view of a power generating turbine according to an embodiment of the present disclosure
- FIG. 1 is a schematic cross-sectional axial view of a power generating turbine according to an embodiment of the present disclosure
- FIG. 1 is a schematic cross-sectional view, perpendicular to the axial direction, of a power generating turbine according to an embodiment of the present disclosure
- FIG. 1 is a schematic cross-sectional view along an axial direction near a turbine rotor blade of a power generating turbine according to an embodiment of the present disclosure
- FIG. 1 is a schematic cross-sectional view along an axial direction near a turbine rotor blade of a power generating turbine according to an embodiment of the present disclosure
- FIG. 1 is a schematic cross-sectional view along an axial direction near a turbine rotor blade of a power generating turbine according to an embodiment of the present disclosure
- FIG. 1 is a schematic cross-sectional axial view of a power generating turbine according to an embodiment of the present disclosure
- FIG. 1 is a schematic cross-sectional axial view of a power generating turbine according to an embodiment of the present disclosure
- FIG. 1 is a schematic cross-sectional view along the axial direction of a generator housing space and a bearing housing space of a power generating turbine according to an embodiment of the present disclosure.
- FIG. FIG. 1 is a schematic diagram of a power generation system including a power generating turbine according to an embodiment of the present disclosure.
- FIGS. 1 and 2 are schematic cross-sectional views along the axial direction of a power generation turbine 1 according to an embodiment of the present disclosure.
- the direction in which the central axis CA of a rotating shaft 2 of the power generation turbine 1 extends is defined as the axial direction of the rotating shaft 2
- the direction perpendicular to the central axis CA is defined as the radial direction of the rotating shaft 2
- the circumferential direction around the central axis CA is defined as the circumferential direction of the rotating shaft 2.
- the axial direction, radial direction, and circumferential direction of the rotating shaft 2 may be simply referred to as the axial direction, radial direction, and circumferential direction, respectively.
- “along a certain direction” in this disclosure includes not only a certain direction, but also a direction inclined within a range of ⁇ 15° relative to a certain direction.
- the power generation turbine 1 comprises the rotating shaft 2, a generator 3 including a rotor 31 provided on one axial side (left side in the figure) of the rotating shaft 2 and a stator 32 provided on the inner circumferential side (radially inward) of the rotor 31, and at least one turbine blade 4 provided on the other axial side (right side in the figure) of the rotating shaft 2 relative to the generator 3.
- the one axial side and the other axial side of the rotating shaft 2 may be simply referred to as the one side and the other side, respectively.
- the rotor 31 includes a magnet support portion 311 that is cantilevered on the one end portion 21 of the rotating shaft 2, and a permanent magnet 312 that is supported from the outer periphery (radially outward) by the magnet support portion 311.
- the stator 32 has a stationary coil portion 321 that is disposed on the inner periphery side of the permanent magnet 312 so as to face the inner periphery side of the permanent magnet 312 with an inner periphery side gap S21 therebetween.
- the magnet support portion 311 includes a disk-shaped radial extension portion 313 whose inner end is mechanically connected to the end portion 21 on the one side of the rotating shaft 2 by fitting or the like and extends along the radial direction, and a cylindrical axial extension portion 314 that extends from the outer end of the radial extension portion 313 along the axial direction toward the one side in the axial direction.
- the radial extension portion 313 may include at least a portion of an inclined portion 315 that is inclined so as to shift toward the one side in the axial direction as it moves radially outward.
- the permanent magnet 312 is supported on the inner circumferential side of the axially extending portion 314.
- the stator 32 is disposed on the one side in the axial direction of the one end 21 of the rotating shaft 2, and is fixed relative to the rotation of the rotating shaft 2.
- the inner casing 5 includes a stator support portion 51 that supports the stator 32 from the inner circumferential side.
- the at least one turbine rotor blade 4 includes a first rotor blade 41 and a second rotor blade 42 provided on the other axial side of the rotating shaft 2 relative to the first rotor blade 41.
- the first rotor blade 41 and the second rotor blade 42 which are supported on the other side of the rotating shaft 2, have a short inter-blade distance, so that the pressure loss occurring between the rotor blades can be made small, thereby improving the performance of the power generation turbine 1.
- Each of the one-side rotor blade 41 and the other-side rotor blade 42 includes a disk portion 43, 45 whose inner circumferential end is attached to the other end of the rotating shaft 2 in the axial direction, protruding radially outward in a disk shape, and a blade portion 44, 46 provided on the outer periphery of the disk portion 43, 45.
- the power-generating turbine 1 further includes an inner casing 5 configured to rotatably house the rotating shaft 2, and an outer casing 6 arranged on the outer periphery (radially outward) of the inner casing 5.
- the inner casing 5 has an opposing surface 52 that faces the disk portion 43 of the one rotor blade 41 with a first gap S1 therebetween.
- the inner casing 5 forms therein a generator housing space S2 that houses the generator 3.
- the inner casing 5 is provided on one side of the rotating shaft 2 in the axial direction relative to the one-side rotor blade 41, and the opposing surface 52 is the end face of the inner casing 5 on the other side in the axial direction.
- the power-generating turbine 1 further includes at least one bearing 7 (in the illustrated example, a plurality of bearings) that are disposed between the generator 3 and the one rotor blade 41 in the axial direction of the rotating shaft 2 and rotatably support the rotating shaft 2.
- Each of the plurality of bearings 7 is made of a magnetic bearing that does not require lubricating oil, and is supported by the inner casing 5.
- the inner casing 5 defines therein a bearing accommodating space S3 that accommodates the rotating shaft 2 and the plurality of bearings 7, between the generator 3 and the one rotor blade 41 in the axial direction of the rotating shaft 2.
- the bearing accommodating space S3 is connected to the first gap S1 and the generator accommodating space S2, and communicates with the first gap S1 and the generator accommodating space S2.
- the rotating shaft 2 has a thrust disk portion 22 that protrudes radially outward from the rotating shaft 2 in the bearing accommodation space S3.
- the multiple bearings 7 include a one-side thrust bearing 71 that is arranged on one side of the rotating shaft 2 in the axial direction relative to the thrust disk portion 22 and faces the thrust disk portion 22 with a gap therebetween, and a other-side thrust bearing 72 that is arranged on the other side of the rotating shaft 2 in the axial direction relative to the thrust disk portion 22 and faces the thrust disk portion 22 with a gap therebetween.
- the multiple bearings 7 further include a one-side journal bearing 73 arranged between the generator 3 and the one-side thrust bearing 71 in the axial direction of the rotating shaft 2, and a second-side journal bearing 74 arranged between the other-side thrust bearing 72 and the one-side rotor blade 41 in the axial direction of the rotating shaft 2.
- the outer casing 6 is disposed on the outer periphery (radially outer side) of the inner casing 5, and forms a working fluid flow path S4 between the outer casing 6 and the inner casing 5, through which the working fluid of the turbine rotor blades 4 flows.
- the working fluid flow path S4 is formed by an inner circumferential surface 61 of the outer casing 6 and an outer circumferential surface 53 of the inner casing 5. The working fluid flowing through the working fluid flow path S4 is in a gaseous state.
- the working fluid flow path S4 includes an annular annular flow path S41 that surrounds the outer periphery of the generator accommodation space S2 and the bearing accommodation space S3, a columnar one-side columnar flow path S42 that is formed on the one side of the annular flow path S41 in the axial direction and extends along the axial direction, and a columnar other-side columnar flow path S43 that is formed on the other side of the annular flow path S41 in the axial direction and extends along the axial direction.
- Each of the one-side columnar flow path S42 and the other-side columnar flow path S43 is connected to the annular flow path S41 and communicates with the annular flow path S41.
- FIG. 3 is a schematic cross-sectional view perpendicular to the axial direction of the power generation turbine 1 according to an embodiment of the present disclosure.
- the inside of the generator accommodation space S2 is omitted.
- the power generation turbine 1 includes at least one casing support 11 that extends an annular flow path S41 along the radial direction of the rotating shaft 2.
- One end of the casing support 11 is connected to an inner circumferential surface 61 of the outer casing 6, and the other end is connected to an outer circumferential surface 53 of the inner casing 5.
- the inner casing 5 is supported by the outer casing 6 by the casing support 11.
- the first gap S1 is connected to a working fluid flow path S4 between one end of the one rotor blade 41 and the other end of the casing support 11, and communicates with the working fluid flow path S4.
- the casing support part 11 is arranged so that at least a portion of it overlaps with the generator storage space S2 in the axial direction, and is connected to the outer peripheral surface 53 of the inner casing 5, so that it also functions as a cooling fin to promote cooling of the generator 3. It is sufficient that at least one casing support part 11 is arranged along the axial direction, and it is sufficient that at least one is also arranged in the circumferential direction.
- the generator 3 provided on the other side of the rotating shaft 2 an outer rotor type
- a higher output density can be achieved and the radial size of the generator 3 and the generator housing space S2 can be reduced compared to when it is an inner rotor type.
- the working fluid flow path S4 formed on the outer periphery of the generator housing space S2 can be positioned relatively radially inward, preventing the power generation turbine 1 from becoming too large.
- the above-mentioned inner casing 5 is formed with at least one (in the illustrated example, multiple) through hole 54 having an outer opening 541 formed in an outer surface 55 that forms the working fluid flow path S4 and an inner opening 542 formed in an inner surface 56 that forms the generator accommodating space S2.
- the multiple through holes 54 are arranged at intervals from one another in the circumferential direction of the rotating shaft 2.
- each of the multiple through holes 54 is not limited to the illustrated embodiment, as long as the working fluid can flow between the generator storage space S2 and the outside of the inner casing 5.
- each of the multiple through holes 54 is formed in a straight line from the outer opening 541 to the inner opening 542, but is not limited to this shape.
- the outer opening 541 is formed on the end face on one side of the axial direction of the inner casing 5, but in other embodiments, it may be formed on the outer peripheral surface 53.
- the inner opening 542 is formed on the end face on the other side of the axial direction of the stator support part 51 extending along the axial direction, but it may be formed on a surface forming the generator storage space S2 other than the end face.
- the power generating turbine 1 includes at least one magnetic bearing 7 arranged between the generator 3 and one rotor blade 41 in the axial direction and configured to rotatably support the rotating shaft 2.
- the inner casing 5 described above has the above-mentioned bearing housing space S3 formed between the generator housing space S2 in the axial direction and the first gap S1, and connected to the generator housing space S2 and the first gap S1 to house the rotating shaft 2 and the magnetic bearing 7.
- the generator housing space S2 and the first gap S1 can allow the working fluid (bleed air) to flow through the bearing housing space S3, which houses the magnetic bearing 7 that does not require lubricating oil.
- the working fluid bleed air
- the bearing housing space S3 which houses the magnetic bearing 7 that does not require lubricating oil.
- the power generation turbine 1 is configured so that the working fluid flows through the working fluid flow path S4 from the other side to the one side in the axial direction.
- the blade portions 44, 46 of the one-side rotor blade 41 and the other-side rotor blade 42 are arranged in the working fluid flow path S4.
- the other-side rotor blade 42 is the first stage rotor blade
- the one-side rotor blade 41 is the second stage rotor blade.
- the power generation turbine 1 includes a first-side stator vane (second stage stator vane) 81 provided between the first-side rotor blade 41 and the second-side rotor blade 42, and a second-side stator vane (first stage stator vane) 82 provided on the other side in the axial direction of the second-side rotor blade 42.
- Each of the first-side stator vane 81 and the second-side stator vane 82 includes blade portions 83, 85 supported from the radially outer side by the inner circumferential surface 61 of the outer casing 6, and annular inner stator vane support portions 84, 86 that support the blade portions 83, 85 from the radially inner side.
- the main flow of the working fluid flowing through the working fluid flow passage S4 flows in the order of the other-side columnar flow passage S43, the annular flow passage S41, and the one-side columnar flow passage S42.
- the bleed air which is part of the working fluid flowing through the working fluid flow passage S4, flows in the order of the first gap S1, the bearing housing space S3, the generator housing space S2, the through hole 54, and the one-side columnar flow passage S42.
- the bleed air which is part of the working fluid that has passed through the turbine rotor blades 4, can flow into the generator housing space S2 through the first gap S1.
- the working fluid that flows into the generator housing space S2 expands and drops in temperature as it passes through the turbine rotor blades 4, so the generator 3 can be effectively cooled by the working fluid.
- the power generation turbine 1 described above further includes a resistor 12 that generates a pressure loss and is provided on the one axial side of the one rotor blade 41 in the working fluid flow path S4, as shown in FIG. 1.
- the resistor 12 generates a pressure loss in the working fluid flow path S4, thereby making the pressure in the working fluid flow path S4 between the resistor 12 and the one rotor blade 41 greater than the pressure in the bearing housing space S3.
- the casing support 11 also functions as a resistor 12. Measures for increasing the pressure loss in the working fluid flow path S4 using the casing support 11 include, for example, increasing the number or thickness of the casing support 11, or shifting one end of the casing support 11 in the axial direction in the circumferential direction relative to the other end.
- the resistor 12 may be a throttle section or the like that is provided in the working fluid flow path S4 and reduces the opening area of the working fluid flow path S4.
- the working fluid can be guided to the generator housing space S2 through the first gap S1 due to the pressure difference, and the working fluid can be discharged from the generator housing space S2 through the through hole 54.
- the working fluid since there is no need to separately provide a fan or the like for circulating the working fluid in the generator housing space S2, an increase in the number of pieces of equipment in the power generation turbine 1 can be suppressed, and an increase in the power consumption of the power generation turbine 1 can also be suppressed.
- the power generation turbine 1 is configured so that the working fluid flows through the working fluid flow path S4 from the one side to the other side in the axial direction.
- the blade portions 44, 46 of the one-side rotor blade 41 and the other-side rotor blade 42 are arranged in the working fluid flow path S4.
- the one-side rotor blade 41 is the first stage rotor blade
- the other-side rotor blade 42 is the second stage rotor blade.
- the power generation turbine 1 includes a first-side stator vane (first stage stator vane) 81A provided on the one side of the first-side rotor blade 41 in the axial direction, and a second-side stator vane (second stage stator vane) 82A provided between the first-side rotor blade 41 and the second-side rotor blade 42.
- the first-side stator vane 81A includes a blade portion 83A supported from the radial outside by the inner circumferential surface 61 of the outer casing 6 and supported from the radial inside by the outer circumferential surface 53 of the inner casing 5.
- the second-side stator vane 82A includes a blade portion 84A supported from the radial outside by the inner circumferential surface 61 of the outer casing 6, and an annular inner stator vane support portion 85A that supports the blade portion 84A from the radial inside.
- the main stream of the working fluid flowing through the working fluid flow path S4 flows in the order of the one-side columnar flow path S42, the annular flow path S41, and the other-side columnar flow path S43.
- the bleed air which is part of the working fluid flowing through the working fluid flow path S4, flows in the order of the through hole 54, the generator housing space S2, the bearing housing space S3, the first gap S1, and the other-side columnar flow path S43.
- the generator 3 can be cooled by allowing a portion of the working fluid before being introduced into the turbine rotor blades 4 to flow into the generator housing space S2 through the through holes 54. Then, by mixing the working fluid (bleed air) that has recovered thermal energy from the generator 3 and has increased enthalpy with the working fluid (main flow) introduced into the turbine rotor blades 4 through the first gap S1, the recovered power in the turbine rotor blades 4 can be increased, and the output of the power-generating turbine 1 can be increased.
- FIG. 4 and Fig. 5 are schematic cross-sectional views along the axial direction near the turbine rotor blade 4 of the power generation turbine 1 according to one embodiment of the present disclosure.
- the power generation turbine 1 according to some embodiments includes the above-mentioned rotating shaft 2, the generator 3, the turbine rotor blade 4, the inner casing 5, and the outer casing 6, and the working fluid of the power generation turbine 1 is configured to flow through the working fluid flow path S4 from the one side to the other side in the axial direction.
- the disk portion 43 of the one-side rotor blade 41 described above has a first balance hole 48 penetrating in the axial direction.
- the first balance hole 48 is configured so that the working fluid (bleed air) guided from the bearing accommodation space S3 to the first gap S1 flows in.
- the working fluid (bleed air) guided from the bearing housing space S3 to the first gap S1 passes through the first balance hole 48 and then mixes with the working fluid (main flow) that has passed through the one-side rotor blade 41 between the one-side rotor blade 41 and the other-side rotor blade 42.
- the working fluid (bleed air) guided from the bearing accommodating space S3 to the first gap S1 passes through the first balance hole 48, and is mixed with the working fluid (main flow) that has passed through the one-side rotor blade 41 downstream in the flow direction of the working fluid from the one-side rotor blade 41 in which the first balance hole 48 is formed.
- the pressure loss when the bleed air and the main flow are mixed can be reduced compared to when the working fluid (bleed air) guided from the bearing accommodating space S3 to the first gap S1 is mixed with the working fluid introduced into the one-side rotor blade 41 through the first gap S1.
- the disk portion 43 of the one-side rotor blade 41 has a first balance hole 48 penetrating in the axial direction
- the disk portion 45 of the other-side rotor blade 42 has a second balance hole 49 penetrating in the axial direction.
- the first balance hole 48 is configured to receive the working fluid (bleed air) guided from the bearing accommodating space S3 to the first gap S1.
- the second balance hole 49 is formed radially outward of the rotating shaft 2 from the first balance hole 48, and is configured to receive the working fluid that has passed through the first balance hole 48.
- the working fluid (bleed air) guided from the bearing housing space S3 to the first gap S1 passes through the first balance hole 48 and the second balance hole 49, and then mixes with the working fluid (main flow) that has passed through the other rotor blade 42 in the other columnar flow passage S43.
- the turbine rotor blade 4 further includes a connecting portion 47 having one end connected to the disk portion 43 of the one rotor blade 41 and the other end connected to the disk portion 45 of the other rotor blade 42.
- the outer peripheral surface 471 of the connecting portion 47 faces the inner peripheral surface 851A of the inner stator vane support portion 85A described above with a gap therebetween.
- a seal structure 13 for sealing the gap between the outer peripheral surface 471 and the inner peripheral surface 851A is provided between the outer peripheral surface 471 of the connecting portion 47 and the inner peripheral surface 851A of the inner stator vane support portion 85A.
- the seal structure 13 is a labyrinth seal formed on the inner peripheral surface 851A.
- the gap between the outer peripheral surface 471 and the inner peripheral surface 851A is formed radially outward of the rotating shaft 2 from the first balance hole 48 and is formed radially inward of the rotating shaft 2 from the second balance hole 49.
- the first balance hole 48 described above passes through the gap between the outer peripheral surface 471 and the inner peripheral surface 851A, and then passes through the second balance hole 49.
- the working fluid (bleed air) that passes through the first balance hole 48 is pushed outward in the radial direction of the rotating shaft 2 due to the rotation of the rotating shaft 2.
- the working fluid (bleed air) that passes through the first balance hole 48 is more likely to flow into the second balance hole 49.
- FIGS. 6 and 7 are schematic cross-sectional views along the axial direction of a power generation turbine 1 according to one embodiment of the present disclosure.
- the power generation turbine 1 described above includes the rotating shaft 2, generator 3, turbine rotor blades 4, inner casing 5, and outer casing 6 described above, and the working fluid of the power generation turbine 1 is configured to flow through the working fluid flow path S4 from the one side to the other side in the axial direction.
- the power generation turbine 1 described above further includes an extraction line 9 having one end 91 connected to the outer opening 541 of at least one through hole 54 described above.
- the bleed line 9 has an internal flow passage 90 therein through which the working fluid flows.
- the outer openings 541 of each of the multiple through holes 54 are connected together to one end 91 arranged in the one-side columnar flow passage S42 and communicate with the internal flow passage 90.
- the working fluid (bleed air) introduced into the generator accommodating space S2 flows from the generator accommodating space S2 through the through holes 54 and into the bleed line 9.
- the working fluid (bleed air) flowing through the through holes 54 and the bleed line 9 is not mixed with the working fluid (main flow) flowing through the one-side columnar flow passage S42.
- the working fluid (extracted air) with increased enthalpy as a result of recovering thermal energy from the generator 3 can be recovered by the extraction line 9, and the enthalpy of the recovered working fluid (extracted air) can be used for a variety of purposes.
- the power generation turbine 1 may include a flow control valve 93 that is provided in the extraction line 9 and is configured to be able to adjust the flow rate of the working fluid flowing through the extraction line 9.
- the flow control valve 93 may be an on-off valve that can be adjusted to a fully closed or fully open position, or an opening control valve that can be adjusted to a fully closed or fully open position and at least one intermediate opening position therebetween.
- the power generation turbine 1 may include a heat exchanger 94 provided in the extraction line 9 and configured to recover thermal energy to the working fluid flowing through the extraction line 9.
- the object to be cooled is cooled by recovering thermal energy to the working fluid in the heat exchanger 94.
- the object to be cooled by the heat exchanger 94 may be, for example, a power electronics component 95 of the generator 3.
- the heat exchanger 94 and the power electronics component 95 are housed in an internal space 960 of a casing 96, and thermal energy generated by the power electronics component 95 is recovered to the working fluid in the heat exchanger 94.
- the rotating shaft 2 has the thrust disk portion 22.
- the magnetic bearing 7 includes the other-side thrust bearing 72.
- the inner casing 5 has at least one bleed hole 10.
- the bleed hole 10 has an outer opening 10A formed in the outer circumferential surface 53 that forms the annular flow path S41 (working fluid flow path S4) on the outer circumferential side of the bearing accommodating space S3, and an inner opening 10B formed in the inner surface 57 that forms the bearing accommodating space S3 on the other side in the axial direction than the other-side thrust bearing 72.
- the bleed hole 10 is not limited to the embodiment shown in the figure, as long as the working fluid can flow between the annular flow passage S41 and the bearing housing space S3.
- the bleed hole 10 is formed in a straight line along the radial direction from the outer opening 10A to the inner opening 10B, but is not limited to this shape.
- a portion of the working fluid (main flow) introduced into the turbine rotor blade 4 can be made to flow into the bearing housing space S3 through the bleed hole 10.
- the working fluid (bleed air) that flows into the bearing housing space S3 is divided into one-side bleed air that flows through the bearing housing space S3 toward the one side in the axial direction, and the other-side bleed air that flows through the bearing housing space S3 toward the other side in the axial direction.
- the one-side bleed air flows in the following order: the one side in the axial direction from the bleed hole 10 of the bearing accommodation space S3, the generator accommodation space S2, the through hole 54, and the bleed line 9.
- the other-side bleed air flows in the following order: the other side in the axial direction from the bleed hole 10 of the bearing accommodation space S3, the first gap S1, and the first space S44 between the one-side stator vane 81A and the one-side rotor blade 41 in the working fluid flow path S4.
- the above configuration allows a portion of the working fluid (main flow) introduced into the turbine rotor blades 4 to flow into the generator housing space S2 through the bleed hole 10 located upstream of the first gap S1 in the flow direction of the working fluid flow passage S4.
- the thrust disk portion 22 is pushed from the other side to the one side by the working fluid (one-side bleed) flowing through the generator housing space S2 from the other side to the one side in the axial direction, thereby reducing the thrust force on the rotating shaft 2.
- the at least one turbine rotor blade 4 includes the one-side rotor blade 41 and the other-side rotor blade 42.
- the power generation turbine 1 further includes a one-side stator blade 81A arranged on the one side in the axial direction from the one-side rotor blade 41 and the first gap S1, and the other end 92 (92A, 92B) of the above-mentioned extraction line 9 is connected to either the first space S44 between the one-side stator blade 81A and the one-side rotor blade 41 in the working fluid flow path S4, or the second space S45 on the other side from the other-side rotor blade 42 in the working fluid flow path S4.
- the other end 92 (92A, 92B) of the extraction line 9 is connected to the first space S44 or the second space S45 from the outside in the radial direction.
- the working fluid (bleed air) introduced into the extraction line 9 is led to the first space S44 or the second space S45.
- the working fluid (bleed air) that has cooled the generator 3 is mixed with the working fluid (main flow) that has passed through the other rotor blade 42 in the second space S45.
- the pressure loss when the bleed air and the main flow are mixed can be reduced compared to when the bleed air is mixed with the main flow introduced into the turbine rotor blade 4.
- the at least one turbine rotor blade 4 described above includes the one-side rotor blade 41 described above and the other-side rotor blade 42 described above.
- the power generation turbine 1 further includes a one-side stator vane 81A arranged on the one side in the axial direction relative to the one-side rotor blade 41 and the first gap S1, and the other end 92 (92A) of the above-mentioned extraction line 9 is connected to the second space S45 on the other side of the other-side rotor blade 42 in the working fluid flow path S4.
- the other end 92 (92A) of the extraction line 9 is connected to the second space S45 from the outside in the radial direction.
- the working fluid (bleed air) introduced into the extraction line 9 is led to the second space S45.
- the working fluid (bleed air) that has cooled the generator 3 is mixed with the working fluid (main flow) that has passed through the other rotor blade 42 in the second space S45.
- the pressure loss when the bleed air and the main flow are mixed can be reduced compared to when the bleed air is mixed with the main flow introduced into the turbine rotor blade 4.
- FIG. 8 is a schematic cross-sectional view along the axial direction near the generator housing space S2 and the bearing housing space S3 of the power generation turbine 1 according to one embodiment of the present disclosure. Although the first throttling portion A1 and the second throttling portion A2 are depicted in Fig. 8, it is sufficient if either the first throttling portion A1 or the second throttling portion A2 is present. In the power generation turbine 1 according to some embodiments, as shown in Fig.
- the rotating shaft 2 has the thrust disk portion 22, and the first throttling portion A1 that narrows the flow path of the working fluid is provided between the outer circumferential surface 221 of the thrust disk portion 22 and the inner surface 58 of the inner casing 5 that faces the outer circumferential surface 221 with a gap therebetween.
- the thrust disk portion 22 is pushed from the other side to the one side by the pressure difference generated between the one side and the other side in the axial direction of the first throttling portion A1 of the bearing housing space S3, thereby reducing the thrust force on the rotating shaft 2.
- the first throttling portion A1 upstream of the generator housing space S2 in the flow direction of the bleed air the rotor 31 of the generator 3 rotates in a relatively low pressure field, thereby reducing windage loss of the rotor 31.
- a second throttling section A2 that narrows the flow path of the working fluid is provided between the outer peripheral surface 33 of the rotor 31 and the inner surface (inner peripheral surface) 56A of the inner casing 5 that faces the outer peripheral surface 33 with a gap therebetween.
- the second throttling portion A2 is provided on the other side in the axial direction.
- the second throttling portion A2 is provided on the other side in the axial direction relative to the permanent magnet 312.
- the thrust bearing can be made smaller than when the first throttling portion A1 is provided, thereby preventing the power generation turbine 1 from becoming larger.
- the inner casing 5 of the power generation turbine 1 includes the stator support portion 51 that supports the stator 32 from the inner circumferential side.
- the generator accommodating space S2 includes an outer circumferential gap S22, an inner circumferential gap S21, a one-side space S23, and an other-side space S24.
- the outer circumferential gap S22 is formed between the outer circumferential surface 33 of the rotor 31 and the inner surface 56A of the inner casing 5 that faces the outer circumferential surface 33 with a gap on the outer circumferential side.
- the inner circumferential gap S21 is formed between the rotor 31 and the stator 32.
- the one-side space S23 is connected to the outer circumferential gap S22 and the inner circumferential gap S21 on the one side in the axial direction, further than the inner circumferential gap S21.
- the one-side space S23 is formed by the inner surface on the one side that forms the generator accommodating space S2 of the inner casing 5.
- the other side space S24 is connected to the inner circumferential gap S21 on the other side in the axial direction of the inner circumferential gap S21.
- the other side space S24 is formed by the rotor 31 and the stator support part 51.
- the inner opening 542 of each of the plurality of through holes 54 described above is connected to the other side space S24.
- the working fluid (bleed air) introduced into the generator housing space S2 passes through the outer peripheral gap S22, the one-side space S23, the inner peripheral gap S21, and the other-side space S24 in that order or in reverse order, so that the rotor 31 and the stator 32 can be effectively cooled as they pass through the generator housing space S2.
- Power generation system 9 is a schematic diagram of a power generation system 100 including a power generation turbine 1 according to an embodiment of the present disclosure.
- the power generation system 100 is for recovering cold energy contained in the liquefied gas as electric power via a heat medium for heating the liquefied gas.
- the liquefied gas is vaporized, the cold energy is recovered as electric power by the power generation turbine 1 mounted on the power generation system 100.
- the power generation system 100 includes a power generation turbine 1, a heat medium circulation line 101, a liquefied gas supply line 102, a condenser 103, a heating fluid supply line 104, a cold heat pump 105, and an evaporator 106.
- the power generation turbine 1, the condenser 103, the cold heat pump 105, and the evaporator 106 are each connected to the heat medium circulation line 101.
- the liquefied gas supply line 102 is connected to the condenser 103.
- the heating fluid supply line 104 is connected to the evaporator 106.
- Each of the heat medium circulation line 101, the liquefied gas supply line 102, and the heating fluid supply line 104 includes a flow path, such as a pipe, through which a fluid flows.
- the power generation system 100 is configured to be driven by the heat medium circulating in the heat medium circulation line 101 while changing its state to liquid or gas.
- the heat medium circulation line 101 is configured to circulate a heat medium having a lower freezing point than water.
- liquefied natural gas LNG
- propane will be used as a specific example of a heat medium flowing through the heat medium circulation line 101.
- the present disclosure is also applicable to liquefied gases other than liquefied natural gas (such as liquefied hydrogen), and is also applicable to cases where a heat medium other than propane, such as R1234yf or R1234ze, is used as a heat medium flowing through the heat medium circulation line 101.
- the condenser 103 is configured to condense the working fluid by heat exchange between the heat medium and the liquefied gas. Inside the condenser 103, there are provided a heating side pipe 103A connected to the heat medium circulation line 101 and into which the heat medium circulating through the heat medium circulation line 101 flows, and a heated side pipe 103B connected to the liquefied gas supply line 102 and into which the liquefied gas flowing through the liquefied gas supply line 102 flows.
- the heat medium flowing through the heating side pipe 103A and the liquefied gas flowing through the heated side pipe 103B are configured to exchange heat.
- the heat medium is cooled and condensed by the heat exchange, and the liquefied gas is heated.
- the liquefied gas supply line 102 upstream of the condenser 103 is connected to a liquefied gas pump 102A, and the further upstream side of the liquefied gas pump 102A is connected to a liquefied gas storage device 102B.
- the liquid liquefied gas stored in the liquefied gas storage device 102B is sent to the liquefied gas supply line 102, flows through the liquefied gas supply line 102 from the upstream side to the downstream side, and is supplied to the condenser 103.
- the liquefied gas vaporized by heat exchange inside the condenser 103 flows through the heated side pipe 103B, and then flows again through the liquefied gas supply line 102, and is supplied as fuel to an engine (not shown) installed downstream of the condenser 103.
- the cold heat pump 105 is configured to boost the pressure of the heat medium supplied from the condenser 103.
- the heat medium circulates through the heat medium circulation line 101.
- the heat medium flows from the condenser 103 to the cold heat pump 105, from the cold heat pump 105 to the evaporator 106, from the evaporator 106 to the power generation turbine 1, and from the power generation turbine 1 to the condenser 103.
- the cold/heat pump 105 may be of any type as long as it can boost the pressure of the heat medium.
- a turbo pump centrifugal pump, mixed flow pump, axial flow pump, etc.
- a positive displacement pump reciprocating pump, rotary pump
- a special pump submersible motor pump
- the evaporator 106 is configured to evaporate the heat medium by heat exchange between the heat medium pressurized by the cold heat pump 105 and the heating fluid introduced from outside the power generation system 100.
- Inside the evaporator 106 there are a heat medium heated side pipe 106A into which the heat medium pressurized by the cold heat pump 105 flows and which is connected to the heat medium circulation line 101, and a heat medium heating side pipe 106B into which the heating fluid introduced from outside the power generation system 100 flows, which is connected to the heating fluid supply line 104.
- the heat medium flowing through the heat medium heated side pipe 106A and the heating fluid flowing through the heat medium heating side pipe 106B are configured to exchange heat.
- the heat medium is heated and evaporated by the heat exchange, and the heating fluid is cooled.
- the heated fluid supply line 104 upstream of the evaporator 106 is connected to a heated fluid pump 104A.
- the heated fluid supply line 104 further upstream of the heated fluid pump 104A is connected to a heating fluid supply source so that heated fluid can be introduced from outside the power generation system 100.
- the heating fluid is sent from the heating fluid supply source to the heating fluid supply line 104, flows through the heating fluid supply line 104 from the upstream side to the downstream side, and is supplied to the evaporator 106.
- the heating fluid is cooled by heat exchange inside the evaporator 106, flows through the heat medium heating side pipe 106B, and then flows again through the heating fluid supply line 104, and is discharged outside the power generation system 100.
- heating fluid may be any fluid that heats the heat medium circulating in the heat medium circulation line 101 as a heat medium in the evaporator 106, and may be steam, hot water, seawater, engine cooling water, or water at room temperature.
- the power generation turbine 1 is configured to be driven by the gaseous heat medium generated in the evaporator 106.
- the power generation turbine 1 has the generator 3 described above.
- the power generation turbine 1 is configured to drive the generator 3 by rotating the rotating shaft 2 of the power generation turbine 1 with the gaseous heat medium generated in the evaporator 106.
- the gaseous heat medium that drives the power generation turbine 1 flows through the heat medium circulation line 101 toward the condenser 103 described above, which is installed downstream of the power generation turbine 1.
- the power generation turbine 1 is provided in a heat medium circulation line 101 configured to circulate a heat medium for heating the liquefied gas.
- the heat medium circulating through the heat medium circulation line 101 and introduced into the power generation turbine 1 is at a relatively low temperature due to the recovery of the cold energy of the liquefied gas.
- a relatively low-temperature working fluid is introduced into the generator housing space S2, so that the generator 3 is effectively cooled.
- expressions expressing relative or absolute configuration do not only strictly represent such a configuration, but also represent a state in which there is a relative displacement with a tolerance or an angle or distance to the extent that the same function is obtained.
- expressions indicating that things are in an equal state such as “identical,””equal,” and “homogeneous,” not only indicate a state of strict equality, but also indicate a state in which there is a tolerance or a difference to the extent that the same function is obtained.
- expressions describing shapes such as a rectangular shape or a cylindrical shape do not only refer to shapes such as a rectangular shape or a cylindrical shape in the strict geometric sense, but also refer to shapes that include uneven portions, chamfered portions, etc., to the extent that the same effect can be obtained.
- the expressions "comprise,””include,” or “have” a certain element are not exclusive expressions that exclude the presence of other elements.
- a power generating turbine (1) comprises: A rotating shaft (2); a generator (3) including a rotor (31) provided on one side of the rotating shaft (2) in the axial direction and a stator (32) arranged on an inner peripheral side of the rotor (31); At least one turbine blade (4) provided on the other side of the rotating shaft (2) in the axial direction relative to the generator (3); an inner casing (5) configured to rotatably accommodate the rotating shaft (2), the inner casing (5) having an opposing surface (52) opposing a disk portion (43) of the at least one turbine rotor blade (4) with a first gap (S1) therebetween, the inner casing (5) forming a generator accommodating space (S2) communicating with the first gap (S1) and accommodating the generator (3); an outer casing (6) disposed on an outer circumferential side of the inner casing (5) and communicating with the first gap (S1) between the outer casing (6) and the inner casing (5) to form a working fluid flow path (S4) through which a working fluid of
- the generator (3) provided on the other side of the rotating shaft (2) an outer rotor type
- a higher power density can be achieved and the radial size of the generator (3) and the generator housing space (S2) can be reduced compared to when it is an inner rotor type.
- This allows the working fluid flow path (S4) formed on the outer periphery of the generator housing space (S2) to be positioned relatively radially inward, thereby preventing the power generation turbine (1) from becoming too large.
- a portion of the working fluid flowing through the working fluid passage (S4) can be bled into the generator housing space (S2) via the first gap (S1) and the through hole (54), and can be discharged from the generator housing space (S2) after cooling the generator (3). Since the generator (3) can be cooled by such a simple structure, the complexity of the power generation turbine (1) can be suppressed.
- the power generating turbine (1) according to 1) above, at least one magnetic bearing (7) arranged between the generator (3) and the at least one turbine blade (4) in the axial direction and configured to rotatably support the rotating shaft (2);
- the inner casing (5) is formed between the generator accommodating space (S2) and the first gap (S1) in the axial direction, and a bearing accommodating space (S3) is formed which is connected to the generator accommodating space (S2) and the first gap (S1) and accommodates the rotating shaft (2) and the at least one magnetic bearing (7).
- the generator housing space (S2) and the first gap (S1) can allow the working fluid (bleed air) to flow through the bearing housing space (S3), which houses the magnetic bearing (7) that does not require lubrication.
- the bearing housing space (S3) which houses the magnetic bearing (7) that does not require lubrication.
- the power generating turbine (1) according to 2) above The working fluid is configured to flow through the working fluid flow path (S4) from the other side to the one side in the axial direction.
- a portion of the working fluid that has passed through the turbine rotor blades (4) can be made to flow into the generator housing space (S2) through the first gap (S1).
- the working fluid that flows into the generator housing space (S2) expands and has a lowered temperature as it passes through the turbine rotor blades (4), so the generator (3) can be effectively cooled by the working fluid.
- the power generating turbine (1) according to 2) above The working fluid is configured to flow through the working fluid flow path (S4) from the one side to the other side in the axial direction.
- the generator (3) can be cooled by allowing a portion of the working fluid before being introduced into the turbine rotor blades (4) to flow into the generator housing space (S2) through the through hole (54). Then, by mixing the working fluid with increased enthalpy as a result of recovering thermal energy from the generator (3) with the working fluid introduced into the turbine rotor blades (4) through the first gap (S1), the recovered power in the turbine rotor blades (4) can be increased, and the output of the power-generating turbine (1) can be increased.
- the rotor blade (4) is provided with a resistor (12) for generating a pressure loss, the resistor (12) being provided on one side of the at least one turbine blade (4) in the axial direction in the working fluid flow path (S4), and for making the pressure in the working fluid flow path between the resistor (12) and the at least one turbine blade (4) greater than the pressure in the bearing accommodating space (S3).
- a resistor (12) is provided in the working fluid flow path (S4) and the pressure of the working fluid flow path between the resistor (12) and the turbine rotor blades (4) is made higher than the pressure in the bearing housing space (S3), so that the working fluid can be guided to the generator housing space (S2) through the first gap (S1) by the pressure difference, and the working fluid can be discharged from the generator housing space (S2) through the through hole (54).
- the working fluid since there is no need to separately provide a fan or the like for circulating the working fluid in the generator housing space (S2), it is possible to suppress an increase in the number of pieces of equipment in the power generation turbine (1) and also suppress an increase in the power consumption of the power generation turbine (1).
- the first balance hole (48) is configured so that the working fluid introduced from the bearing accommodating space (S3) to the first gap (S1) flows into it.
- the working fluid (bleed air) guided from the bearing housing space (S3) to the first gap (S1) passes through the first balance hole (48) and is mixed with the working fluid (main flow) that has passed through the turbine rotor blade (4) in which the first balance hole (48) is formed, downstream of the turbine rotor blade (4) in which the first balance hole (48) is formed in the flow direction of the working fluid.
- the pressure loss when the bleed air and the main flow are mixed can be reduced compared to the case where the working fluid (bleed air) guided from the bearing housing space (S3) to the first gap (S1) is mixed with the working fluid introduced into the turbine rotor blade (4) through the first gap (S1).
- the at least one turbine blade (4) comprises: A blade (41) on one side having the first balance hole (48); a second rotor blade (42) provided on the second side in the axial direction relative to the first rotor blade (41), The disk portion (45) of the other rotor blade (42) has a second balance hole (49) penetrating therethrough in the axial direction,
- the second balance hole (49) is formed radially outward of the rotating shaft (2) relative to the first balance hole (48) and is configured so that the working fluid that has passed through the first balance hole (48) flows into the second balance hole (49).
- the working fluid (bleed air) that has passed through the first balance hole (48) is pushed outward in the radial direction of the rotating shaft (2) by the rotation of the rotating shaft (2).
- the working fluid (bleed air) that has passed through the first balance hole (48) is more likely to flow into the second balance hole (49).
- the at least one through hole (54) further includes a bleed line (9) having one end (91) connected to the outer opening (541) of the at least one through hole (54).
- the working fluid (bleed air) with increased enthalpy as a result of recovering thermal energy from the generator (3) can be recovered by the bleed line (9), and the enthalpy of the recovered working fluid (bleed air) can be used for a variety of purposes.
- the power generating turbine (1) according to 8) above, And,
- the rotating shaft (2) has a thrust disk portion (22) protruding radially outward of the rotating shaft (2) in the bearing accommodating space (S3),
- the at least one magnetic bearing (7) includes a second-side thrust bearing (72) that is disposed on the second side in the axial direction of the rotating shaft (2) relative to the thrust disk portion (22) and faces the thrust disk portion (22) with a gap therebetween;
- the inner casing (5) is formed with at least one bleed hole (10) having an outer opening (10A) formed in an outer peripheral surface (53) which forms the working fluid flow path (S4) on the outer peripheral side of the bearing accommodating space (S3), and an inner opening (10B) formed in an inner surface (57) which forms the bearing accommodating space (S3) on the other side in the axial direction relative to the other-side thrust bearing (72).
- a portion of the working fluid introduced into the turbine rotor blades (4) can be made to flow into the generator housing space (S2) through the bleed hole (10) located upstream of the first gap (S1) in the flow direction of the working flow passage.
- the thrust disk portion (22) is pushed from the other side to the one side by the working fluid (bleed air) flowing through the generator housing space (S2) from the other side to the one side in the axial direction, thereby reducing the thrust force applied to the rotating shaft (2).
- the at least one turbine blade (4) comprises: One rotor blade (41), a second rotor blade (42) provided on the second side in the axial direction relative to the first rotor blade (41),
- the power generating turbine (1) comprises: a one-side stator vane (81A) arranged on the one side in the axial direction relative to the one-side rotor blade (41) and the first gap (S1),
- the other end (92) of the extraction line (9) is connected to either a first space (S44) between the one-side stator vane (81A) and the one-side rotor blade (41) in the working fluid flow path (S4), or a second space (S45) on the other side of the other-side rotor blade (42).
- the at least one turbine blade (4) comprises: One rotor blade (41), a second rotor blade (42) provided on the second side in the axial direction relative to the first rotor blade (41),
- the power generating turbine (1) comprises: a one-side stator vane (81A) arranged on the one side in the axial direction relative to the one-side rotor blade (41) and the first gap (S1),
- the other end (92) of the extraction line (9) is connected to a second space (S45) on the other side of the other rotor blade (42) in the working fluid flow path (S4).
- the working fluid (bleed air) that has cooled the generator (3) is mixed with the working fluid (main flow) that has passed through the other rotor blade (42) in the second space (S45).
- the pressure loss when the bleed air and the main flow are mixed can be reduced compared to when the bleed air is mixed with the main flow introduced into the turbine rotor blade (4).
- the power generation turbine (1) according to any one of 8) to 11) above,
- the rotating shaft (2) has a thrust disk portion (22) protruding radially outward of the rotating shaft (2) in the bearing accommodating space (S3),
- a first throttling section (A1) that narrows the flow path of the working fluid is provided between an outer peripheral surface (221) of the thrust disk section (22) and an inner surface (58) of the inner casing (5) that faces the outer peripheral surface (221) of the thrust disk section (22) with a gap therebetween.
- the thrust disk portion (22) is pushed from the other side to the one side by the pressure difference generated between the one side and the other side in the axial direction of the first throttling portion (A1) of the bearing accommodation space (S3), thereby reducing the thrust force on the rotating shaft (2).
- the first throttling portion (A1) upstream of the generator accommodation space (S2) in the flow direction of the bleed air the rotor (31) of the generator (3) rotates in a relatively low pressure field, thereby reducing windage loss of the rotor (31).
- a second throttling section (A2) that narrows the flow path of the working fluid is provided between the outer peripheral surface (33) of the rotor (31) and the inner surface (56A) of the inner casing (5) that faces the outer peripheral surface (33) of the rotor (31) with a gap therebetween.
- the thrust bearing can be made smaller than when the first throttling portion (A1) is provided, thereby preventing the power generation turbine (1) from becoming larger.
- the inner casing (5) includes a stator support portion (51) that supports the stator from an inner peripheral side
- the generator accommodation space (S2) is an outer circumferential gap (S22) formed between an outer circumferential surface of the rotor (31) and an inner surface of the inner casing (5) facing the outer circumferential surface of the rotor (31) with a gap on the outer circumferential side; an inner peripheral gap (S21) formed between the rotor (31) and the stator (32); a one-side space (S23) connected to the outer circumferential side gap (S22) and the inner circumferential side gap (S21) on the one side in the axial direction relative to the inner circumferential side gap (S21); a second-side space (S24) connected to the inner-periphery-side gap (S21) on the other side in the axial direction relative to the inner-periphery-side gap (S21), the second-side
- the working fluid (bleed air) introduced into the generator housing space (S2) passes through the outer circumferential gap (S22), the one-side space (S23), the inner circumferential gap (S21), and the other-side space (S24) in that order or in reverse order, so that the rotor (31) and the stator (32) can be effectively cooled as they pass through the generator housing space (S2).
- the power generating turbine (1) according to any one of 1) to 14) above, The power generation turbine (1) was provided in a heat medium circulation line (101) configured to circulate a heat medium for heating liquefied gas.
- the heat medium circulating through the heat medium circulation line (101) and introduced into the power generation turbine (1) is at a relatively low temperature by recovering the cold energy of the liquefied gas.
- a relatively low-temperature working fluid is introduced into the generator housing space (S2), so that the generator (3) is effectively cooled.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
This power generation turbine includes: a rotary shaft; a generator including a rotor provided on one side of the rotary shaft and a stator disposed on an inner circumferential side of the rotor; a turbine rotor blade provided more to the other side of the rotary shaft than the generator; an inner casing that has an opposing surface opposing a disk portion of the turbine rotor blade with a gap therebetween, and that forms a generator housing space which communicates with the gap and houses the generator; and an outer casing that is disposed on an outer circumferential side of the inner casing and that forms, in a space between the outer casing and the inner casing, a working fluid flow path which communicates with the gap and through which working fluid of the turbine rotor blade flows. The inner casing includes a through-hole having an outer opening formed on an outer surface forming the working fluid flow path and an inner opening formed on an inner surface forming the generator housing space.
Description
本開示は、発電用タービンに関する。
本願は、2023年3月15日に日本国特許庁に出願された特願2023-040211号に基づき優先権を主張し、その内容をここに援用する。 The present disclosure relates to turbines for power generation.
This application claims priority based on Japanese Patent Application No. 2023-040211, filed with the Japan Patent Office on March 15, 2023, the contents of which are incorporated herein by reference.
本願は、2023年3月15日に日本国特許庁に出願された特願2023-040211号に基づき優先権を主張し、その内容をここに援用する。 The present disclosure relates to turbines for power generation.
This application claims priority based on Japanese Patent Application No. 2023-040211, filed with the Japan Patent Office on March 15, 2023, the contents of which are incorporated herein by reference.
液化ガス(例えば、液化天然ガス)は、輸送や貯蔵を目的として液化され、都市ガスや火力発電などの供給先に供給するに際して、海水などの熱媒体で昇温して気化させることが行われる。液化ガスを気化させる際に、冷熱エネルギーを海水に捨てるのではなく電力として回収する冷熱発電がある。
Liquefied gas (for example, liquefied natural gas) is liquefied for the purpose of transportation and storage, and when it is supplied to destinations such as city gas and thermal power plants, it is heated and vaporized using a heat medium such as seawater. When vaporizing liquefied gas, there is a type of cold energy generation in which the cold energy is recovered as electricity rather than being dumped into seawater.
液化天然ガスを用いた冷熱発電サイクルとしては、ORC(Organic Rankine Cycle)が知られている。ORCは、クローズドループ内を循環する、水よりも沸点の低い低温の作動流体を、凝縮器(復水器)にて液化天然ガスで冷却、凝縮させた後に、ポンプにより昇圧し、蒸発器にて海水などを熱源として加熱して蒸発させ、この蒸気を冷熱発電用タービンに導入して動力を得るサイクルプロセスである。
The ORC (Organic Rankine Cycle) is known as a cold energy power generation cycle that uses liquefied natural gas. In the ORC, a low-temperature working fluid with a boiling point lower than that of water circulating in a closed loop is cooled and condensed with liquefied natural gas in a condenser, then pressurized by a pump, heated and evaporated in an evaporator using seawater or other heat sources, and this steam is introduced into a cold energy power generation turbine to generate power.
特許文献1では、冷熱発電装置の小型化のために、同一ケーシング内に2つのラジアルタービンと発電機を同軸上に配置した冷熱発電用タービンが開示されている。この冷熱発電用タービンでは、軸の中央部に発電機が配置され、軸の両端にラジアルタービンが配置されている。
Patent Document 1 discloses a cold energy power generation turbine in which two radial turbines and a generator are arranged coaxially within the same casing in order to reduce the size of the cold energy power generation device. In this cold energy power generation turbine, the generator is located in the center of the shaft, and radial turbines are located at both ends of the shaft.
発電機は高速で回転するため冷却を必要とするが、その冷却方式としては水冷方式が一般的である。特許文献1に開示されている技術では、発電機の冷却のために、冷却源(冷却水)の確保が必要であり、冷却に必要な機器や冷却流路などの冷却機構を設ける必要がある。このため、冷熱発電装置が複雑化、大型化してしまう懸念がある。
Generators require cooling because they rotate at high speeds, and water cooling is the most common cooling method. With the technology disclosed in Patent Document 1, it is necessary to secure a cooling source (cooling water) to cool the generator, and it is necessary to provide a cooling mechanism, such as the equipment required for cooling and cooling channels. For this reason, there is a concern that the cold energy power generation device will become complicated and large.
上述の事情に鑑みて、本開示の少なくとも一実施形態は、構造の複雑化や大型化を抑制しつつ、発電機を冷却可能な発電用タービンを提供することを目的とする。
In view of the above, at least one embodiment of the present disclosure aims to provide a power generation turbine that can cool a generator while minimizing the complexity and size of the structure.
本開示の少なくとも一実施形態に係る発電用タービンは、
回転シャフトと、
前記回転シャフトの軸方向の一方側に設けられるロータ及び前記ロータの内周側に配置されるステータを含む発電機と、
前記発電機よりも前記回転シャフトの前記軸方向の他方側に設けられる少なくとも1つのタービン動翼と、
前記回転シャフトを回転可能に収容するように構成された内側ケーシングであって、前記少なくとも1つのタービン動翼のディスク部に第1隙間を有して対向する対向面を有し、前記第1隙間に連通して前記発電機を収容する発電機収容空間を形成する内側ケーシングと、
前記内側ケーシングの外周側に配置され、前記内側ケーシングとの間に前記第1隙間に連通して前記タービン動翼の作動流体が流れる作動流体流路を形成する外側ケーシングと、を備え、
前記内側ケーシングは、前記作動流体流路を形成する外面に形成された外側開口及び前記発電機収容空間を形成する内面に形成された内側開口を有する少なくとも1つの貫通孔が形成された。 In accordance with at least one embodiment of the present disclosure, a power generating turbine includes:
A rotating shaft;
a generator including a rotor provided on one side of the rotating shaft in an axial direction and a stator disposed on an inner peripheral side of the rotor;
at least one turbine blade provided on the other side of the rotating shaft in the axial direction relative to the generator;
an inner casing configured to rotatably accommodate the rotating shaft, the inner casing having an opposing surface that faces a disk portion of the at least one turbine blade with a first gap therebetween, the inner casing forming a generator accommodating space that communicates with the first gap and accommodates the generator;
an outer casing disposed on an outer circumferential side of the inner casing, communicating with the first gap between the outer casing and the inner casing to form a working fluid flow passage through which a working fluid of the turbine rotor blade flows;
The inner casing is formed with at least one through hole having an outer opening formed on an outer surface that defines the working fluid flow path and an inner opening formed on an inner surface that defines the generator accommodating space.
回転シャフトと、
前記回転シャフトの軸方向の一方側に設けられるロータ及び前記ロータの内周側に配置されるステータを含む発電機と、
前記発電機よりも前記回転シャフトの前記軸方向の他方側に設けられる少なくとも1つのタービン動翼と、
前記回転シャフトを回転可能に収容するように構成された内側ケーシングであって、前記少なくとも1つのタービン動翼のディスク部に第1隙間を有して対向する対向面を有し、前記第1隙間に連通して前記発電機を収容する発電機収容空間を形成する内側ケーシングと、
前記内側ケーシングの外周側に配置され、前記内側ケーシングとの間に前記第1隙間に連通して前記タービン動翼の作動流体が流れる作動流体流路を形成する外側ケーシングと、を備え、
前記内側ケーシングは、前記作動流体流路を形成する外面に形成された外側開口及び前記発電機収容空間を形成する内面に形成された内側開口を有する少なくとも1つの貫通孔が形成された。 In accordance with at least one embodiment of the present disclosure, a power generating turbine includes:
A rotating shaft;
a generator including a rotor provided on one side of the rotating shaft in an axial direction and a stator disposed on an inner peripheral side of the rotor;
at least one turbine blade provided on the other side of the rotating shaft in the axial direction relative to the generator;
an inner casing configured to rotatably accommodate the rotating shaft, the inner casing having an opposing surface that faces a disk portion of the at least one turbine blade with a first gap therebetween, the inner casing forming a generator accommodating space that communicates with the first gap and accommodates the generator;
an outer casing disposed on an outer circumferential side of the inner casing, communicating with the first gap between the outer casing and the inner casing to form a working fluid flow passage through which a working fluid of the turbine rotor blade flows;
The inner casing is formed with at least one through hole having an outer opening formed on an outer surface that defines the working fluid flow path and an inner opening formed on an inner surface that defines the generator accommodating space.
本開示の少なくとも一実施形態によれば、構造の複雑化や大型化を抑制しつつ、発電機を冷却可能な発電用タービンが提供される。
At least one embodiment of the present disclosure provides a power generation turbine that can cool a generator while minimizing the complexity and size of the structure.
以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
Below, several embodiments of the present disclosure will be described with reference to the attached drawings. However, the dimensions, materials, shapes, relative positions, etc. of the components described as the embodiments or shown in the drawings are not intended to limit the scope of the present disclosure and are merely illustrative examples.
(発電用タービン)
図1及び図2の各々は、本開示の一実施形態に係る発電用タービン1の軸方向に沿った概略断面図である。以下、発電用タービン1の回転シャフト2の中心軸線CAが延在する方向を回転シャフト2の軸方向と定義し、中心軸線CAに直交する方向を回転シャフト2の径方向と定義し、中心軸線CA回りの周方向を回転シャフト2の周方向と定義する。本開示において、回転シャフト2の軸方向、径方向、周方向の各々を単に軸方向、径方向、周方向と云うことがある。なお、本開示における「或る方向に沿って」とは、或る方向だけでなく、或る方向に対して±15°以内の範囲において傾斜する方向をも含むものである。 (Power generation turbines)
1 and 2 are schematic cross-sectional views along the axial direction of apower generation turbine 1 according to an embodiment of the present disclosure. Hereinafter, the direction in which the central axis CA of a rotating shaft 2 of the power generation turbine 1 extends is defined as the axial direction of the rotating shaft 2, the direction perpendicular to the central axis CA is defined as the radial direction of the rotating shaft 2, and the circumferential direction around the central axis CA is defined as the circumferential direction of the rotating shaft 2. In this disclosure, the axial direction, radial direction, and circumferential direction of the rotating shaft 2 may be simply referred to as the axial direction, radial direction, and circumferential direction, respectively. Note that "along a certain direction" in this disclosure includes not only a certain direction, but also a direction inclined within a range of ±15° relative to a certain direction.
図1及び図2の各々は、本開示の一実施形態に係る発電用タービン1の軸方向に沿った概略断面図である。以下、発電用タービン1の回転シャフト2の中心軸線CAが延在する方向を回転シャフト2の軸方向と定義し、中心軸線CAに直交する方向を回転シャフト2の径方向と定義し、中心軸線CA回りの周方向を回転シャフト2の周方向と定義する。本開示において、回転シャフト2の軸方向、径方向、周方向の各々を単に軸方向、径方向、周方向と云うことがある。なお、本開示における「或る方向に沿って」とは、或る方向だけでなく、或る方向に対して±15°以内の範囲において傾斜する方向をも含むものである。 (Power generation turbines)
1 and 2 are schematic cross-sectional views along the axial direction of a
幾つかの実施形態に係る発電用タービン1は、図1及び図2に示されるように、上記回転シャフト2と、回転シャフト2の軸方向の一方側(図中左側)に設けられるロータ31、及びロータ31の内周側(径方向内側)に設けられるステータ32、を含む発電機3と、発電機3よりも回転シャフト2の軸方向の他方側(図中右側)に設けられる少なくとも1つのタービン動翼4と、を備える。本開示において、回転シャフト2の軸方向の一方側、他方側の各々を単に一方側、他方側と云うことがある。
As shown in Figures 1 and 2, the power generation turbine 1 according to some embodiments comprises the rotating shaft 2, a generator 3 including a rotor 31 provided on one axial side (left side in the figure) of the rotating shaft 2 and a stator 32 provided on the inner circumferential side (radially inward) of the rotor 31, and at least one turbine blade 4 provided on the other axial side (right side in the figure) of the rotating shaft 2 relative to the generator 3. In this disclosure, the one axial side and the other axial side of the rotating shaft 2 may be simply referred to as the one side and the other side, respectively.
(発電機)
ロータ31は、回転シャフト2の上記一方側の端部21に片持ち支持される磁石支持部311と、磁石支持部311に外周側(径方向外側)から支持される永久磁石312と、を含む。ステータ32は、永久磁石312の内周側に内周側隙間S21を有して対向するように配置された静止コイル部321を有する。 (Generator)
Therotor 31 includes a magnet support portion 311 that is cantilevered on the one end portion 21 of the rotating shaft 2, and a permanent magnet 312 that is supported from the outer periphery (radially outward) by the magnet support portion 311. The stator 32 has a stationary coil portion 321 that is disposed on the inner periphery side of the permanent magnet 312 so as to face the inner periphery side of the permanent magnet 312 with an inner periphery side gap S21 therebetween.
ロータ31は、回転シャフト2の上記一方側の端部21に片持ち支持される磁石支持部311と、磁石支持部311に外周側(径方向外側)から支持される永久磁石312と、を含む。ステータ32は、永久磁石312の内周側に内周側隙間S21を有して対向するように配置された静止コイル部321を有する。 (Generator)
The
図示される実施形態では、磁石支持部311は、回転シャフト2の上記一方側の端部21に内側端部が嵌合などにより機械的に接続されるとともに径方向に沿って延在する円板状の径方向延在部313と、径方向延在部313の外側端部から上記軸方向に沿って上記軸方向の上記一方側に向かって延在する筒状の軸方向延在部314と、を含む。径方向延在部313は、径方向外側に向かうにつれて上記軸方向の上記一方側にずれるように傾斜する傾斜部315を少なくとも一部に含んでいてもよい。
In the illustrated embodiment, the magnet support portion 311 includes a disk-shaped radial extension portion 313 whose inner end is mechanically connected to the end portion 21 on the one side of the rotating shaft 2 by fitting or the like and extends along the radial direction, and a cylindrical axial extension portion 314 that extends from the outer end of the radial extension portion 313 along the axial direction toward the one side in the axial direction. The radial extension portion 313 may include at least a portion of an inclined portion 315 that is inclined so as to shift toward the one side in the axial direction as it moves radially outward.
永久磁石312は、軸方向延在部314の内周側に支持されている。ステータ32は、回転シャフト2の上記一方側の端部21よりも上記軸方向の上記一方側に配置され、回転シャフト2の回転に対して不動に設けられている。内側ケーシング5は、ステータ32を内周側から支持するステータ支持部51を含む。
The permanent magnet 312 is supported on the inner circumferential side of the axially extending portion 314. The stator 32 is disposed on the one side in the axial direction of the one end 21 of the rotating shaft 2, and is fixed relative to the rotation of the rotating shaft 2. The inner casing 5 includes a stator support portion 51 that supports the stator 32 from the inner circumferential side.
(タービン動翼)
図示される実施形態では、上述した少なくとも1つのタービン動翼4は、一方側動翼41と、一方側動翼41よりも回転シャフト2の軸方向の他方側に設けられる他方側動翼42と、を含む。回転シャフト2の上記他方側にそれぞれ支持される一方側動翼41及び他方側動翼42は、動翼間距離が短いため、動翼間に生じる圧力損失を小さなものとすることができ、ひいては発電用タービン1の性能向上が図れる。 (Turbine blades)
In the illustrated embodiment, the at least oneturbine rotor blade 4 includes a first rotor blade 41 and a second rotor blade 42 provided on the other axial side of the rotating shaft 2 relative to the first rotor blade 41. The first rotor blade 41 and the second rotor blade 42, which are supported on the other side of the rotating shaft 2, have a short inter-blade distance, so that the pressure loss occurring between the rotor blades can be made small, thereby improving the performance of the power generation turbine 1.
図示される実施形態では、上述した少なくとも1つのタービン動翼4は、一方側動翼41と、一方側動翼41よりも回転シャフト2の軸方向の他方側に設けられる他方側動翼42と、を含む。回転シャフト2の上記他方側にそれぞれ支持される一方側動翼41及び他方側動翼42は、動翼間距離が短いため、動翼間に生じる圧力損失を小さなものとすることができ、ひいては発電用タービン1の性能向上が図れる。 (Turbine blades)
In the illustrated embodiment, the at least one
一方側動翼41及び他方側動翼42の各々は、回転シャフト2の上記軸方向の他方側の端部に内周端部が取り付けられ、径方向外側に円板状に突出するディスク部43、45と、ディスク部43、45の外周に設けられた翼部44、46と、を含む。
Each of the one-side rotor blade 41 and the other-side rotor blade 42 includes a disk portion 43, 45 whose inner circumferential end is attached to the other end of the rotating shaft 2 in the axial direction, protruding radially outward in a disk shape, and a blade portion 44, 46 provided on the outer periphery of the disk portion 43, 45.
(内側ケーシング)
発電用タービン1は、図1~図3に示されるように、回転シャフト2を回転可能に収容するように構成された内側ケーシング5と、内側ケーシング5の外周側(径方向外側)に配置される外側ケーシング6と、をさらに備える。内側ケーシング5は、一方側動翼41のディスク部43に第1隙間S1を有して対向する対向面52を有する。内側ケーシング5は、発電機3を収容する発電機収容空間S2を内部に形成する。 (Inner casing)
1 to 3, the power-generatingturbine 1 further includes an inner casing 5 configured to rotatably house the rotating shaft 2, and an outer casing 6 arranged on the outer periphery (radially outward) of the inner casing 5. The inner casing 5 has an opposing surface 52 that faces the disk portion 43 of the one rotor blade 41 with a first gap S1 therebetween. The inner casing 5 forms therein a generator housing space S2 that houses the generator 3.
発電用タービン1は、図1~図3に示されるように、回転シャフト2を回転可能に収容するように構成された内側ケーシング5と、内側ケーシング5の外周側(径方向外側)に配置される外側ケーシング6と、をさらに備える。内側ケーシング5は、一方側動翼41のディスク部43に第1隙間S1を有して対向する対向面52を有する。内側ケーシング5は、発電機3を収容する発電機収容空間S2を内部に形成する。 (Inner casing)
1 to 3, the power-generating
図示される実施形態では、内側ケーシング5は、一方側動翼41よりも回転シャフト2の軸方向の一方側に設けられており、上記対向面52は、内側ケーシング5の上記軸方向の他方側の端面である。
In the illustrated embodiment, the inner casing 5 is provided on one side of the rotating shaft 2 in the axial direction relative to the one-side rotor blade 41, and the opposing surface 52 is the end face of the inner casing 5 on the other side in the axial direction.
(軸受)
発電用タービン1は、図1~図3に示されるように、回転シャフト2の軸方向における発電機3と一方側動翼41の間に配置され、回転シャフト2を回転可能に支持する少なくとも1つ(図示例では、複数)の軸受7をさらに備える。複数の軸受7の各々は、潤滑油が不要な磁気軸受からなり、内側ケーシング5に支持されている。内側ケーシング5は、回転シャフト2の軸方向における発電機3と一方側動翼41の間に、回転シャフト2及び複数の軸受7を収容する軸受収容空間S3を内部に形成する。軸受収容空間S3は、第1隙間S1及び発電機収容空間S2に接続され、第1隙間S1及び発電機収容空間S2に連通している。 (Bearings)
1 to 3, the power-generatingturbine 1 further includes at least one bearing 7 (in the illustrated example, a plurality of bearings) that are disposed between the generator 3 and the one rotor blade 41 in the axial direction of the rotating shaft 2 and rotatably support the rotating shaft 2. Each of the plurality of bearings 7 is made of a magnetic bearing that does not require lubricating oil, and is supported by the inner casing 5. The inner casing 5 defines therein a bearing accommodating space S3 that accommodates the rotating shaft 2 and the plurality of bearings 7, between the generator 3 and the one rotor blade 41 in the axial direction of the rotating shaft 2. The bearing accommodating space S3 is connected to the first gap S1 and the generator accommodating space S2, and communicates with the first gap S1 and the generator accommodating space S2.
発電用タービン1は、図1~図3に示されるように、回転シャフト2の軸方向における発電機3と一方側動翼41の間に配置され、回転シャフト2を回転可能に支持する少なくとも1つ(図示例では、複数)の軸受7をさらに備える。複数の軸受7の各々は、潤滑油が不要な磁気軸受からなり、内側ケーシング5に支持されている。内側ケーシング5は、回転シャフト2の軸方向における発電機3と一方側動翼41の間に、回転シャフト2及び複数の軸受7を収容する軸受収容空間S3を内部に形成する。軸受収容空間S3は、第1隙間S1及び発電機収容空間S2に接続され、第1隙間S1及び発電機収容空間S2に連通している。 (Bearings)
1 to 3, the power-generating
図示される実施形態では、回転シャフト2は、軸受収容空間S3において回転シャフト2の径方向外側に突出するスラストディスク部22を有する。複数の軸受7は、スラストディスク部22よりも回転シャフト2の軸方向の一方側に配置され、スラストディスク部22との間に隙間を有して対向する一方側スラスト軸受71と、スラストディスク部22よりも回転シャフト2の軸方向の他方側に配置され、スラストディスク部22との間に隙間を有して対向する他方側スラスト軸受72と、を含む。
In the illustrated embodiment, the rotating shaft 2 has a thrust disk portion 22 that protrudes radially outward from the rotating shaft 2 in the bearing accommodation space S3. The multiple bearings 7 include a one-side thrust bearing 71 that is arranged on one side of the rotating shaft 2 in the axial direction relative to the thrust disk portion 22 and faces the thrust disk portion 22 with a gap therebetween, and a other-side thrust bearing 72 that is arranged on the other side of the rotating shaft 2 in the axial direction relative to the thrust disk portion 22 and faces the thrust disk portion 22 with a gap therebetween.
図示される実施形態では、複数の軸受7は、回転シャフト2の軸方向において発電機3と一方側スラスト軸受71との間に配置される一方側ジャーナル軸受73と、回転シャフト2の軸方向において他方側スラスト軸受72と一方側動翼41との間に配置される他方側ジャーナル軸受74と、をさらに含む。
In the illustrated embodiment, the multiple bearings 7 further include a one-side journal bearing 73 arranged between the generator 3 and the one-side thrust bearing 71 in the axial direction of the rotating shaft 2, and a second-side journal bearing 74 arranged between the other-side thrust bearing 72 and the one-side rotor blade 41 in the axial direction of the rotating shaft 2.
(外側ケーシング)
外側ケーシング6は、図1~図3に示されるように、内側ケーシング5の外周側(径方向外側)に配置され、内側ケーシング5との間にタービン動翼4の作動流体が流れる作動流体流路S4を形成する。作動流体流路S4は、外側ケーシング6の内周面61及び内側ケーシング5の外周面53により形成される。作動流体流路S4を流れる作動流体は、ガス状になっている。 (Outer casing)
1 to 3, theouter casing 6 is disposed on the outer periphery (radially outer side) of the inner casing 5, and forms a working fluid flow path S4 between the outer casing 6 and the inner casing 5, through which the working fluid of the turbine rotor blades 4 flows. The working fluid flow path S4 is formed by an inner circumferential surface 61 of the outer casing 6 and an outer circumferential surface 53 of the inner casing 5. The working fluid flowing through the working fluid flow path S4 is in a gaseous state.
外側ケーシング6は、図1~図3に示されるように、内側ケーシング5の外周側(径方向外側)に配置され、内側ケーシング5との間にタービン動翼4の作動流体が流れる作動流体流路S4を形成する。作動流体流路S4は、外側ケーシング6の内周面61及び内側ケーシング5の外周面53により形成される。作動流体流路S4を流れる作動流体は、ガス状になっている。 (Outer casing)
1 to 3, the
図示される実施形態では、作動流体流路S4は、発電機収容空間S2及び軸受収容空間S3の外周側を囲む環状の環状流路S41と、環状流路S41よりも上記軸方向の上記一方側に形成され、上記軸方向に沿って延在する柱状の一方側柱状流路S42と、環状流路S41よりも上記軸方向の上記他方側に形成され、上記軸方向に沿って延在する柱状の他方側柱状流路S43と、を含む。一方側柱状流路S42及び他方側柱状流路S43の各々は、環状流路S41に接続され、環状流路S41に連通している。
In the illustrated embodiment, the working fluid flow path S4 includes an annular annular flow path S41 that surrounds the outer periphery of the generator accommodation space S2 and the bearing accommodation space S3, a columnar one-side columnar flow path S42 that is formed on the one side of the annular flow path S41 in the axial direction and extends along the axial direction, and a columnar other-side columnar flow path S43 that is formed on the other side of the annular flow path S41 in the axial direction and extends along the axial direction. Each of the one-side columnar flow path S42 and the other-side columnar flow path S43 is connected to the annular flow path S41 and communicates with the annular flow path S41.
(ケーシング支持部)
図3は、本開示の一実施形態に係る発電用タービン1の軸方向に直交する概略断面図である。図3では、発電機収容空間S2の内部を省略して示している。図1~図3に示される実施形態では、発電用タービン1は、環状流路S41を回転シャフト2の径方向に沿って延在する少なくとも1つのケーシング支持部11を備える。ケーシング支持部11は、一端が外側ケーシング6の内周面61に接続され、他端が内側ケーシング5の外周面53に接続される。ケーシング支持部11により、内側ケーシング5は、外側ケーシング6に支持されている。第1隙間S1は、一方側動翼41の一方端とケーシング支持部11の他方端の間の作動流体流路S4に接続され、作動流体流路S4に連通している。 (Casing support part)
FIG. 3 is a schematic cross-sectional view perpendicular to the axial direction of thepower generation turbine 1 according to an embodiment of the present disclosure. In FIG. 3, the inside of the generator accommodation space S2 is omitted. In the embodiment shown in FIGS. 1 to 3, the power generation turbine 1 includes at least one casing support 11 that extends an annular flow path S41 along the radial direction of the rotating shaft 2. One end of the casing support 11 is connected to an inner circumferential surface 61 of the outer casing 6, and the other end is connected to an outer circumferential surface 53 of the inner casing 5. The inner casing 5 is supported by the outer casing 6 by the casing support 11. The first gap S1 is connected to a working fluid flow path S4 between one end of the one rotor blade 41 and the other end of the casing support 11, and communicates with the working fluid flow path S4.
図3は、本開示の一実施形態に係る発電用タービン1の軸方向に直交する概略断面図である。図3では、発電機収容空間S2の内部を省略して示している。図1~図3に示される実施形態では、発電用タービン1は、環状流路S41を回転シャフト2の径方向に沿って延在する少なくとも1つのケーシング支持部11を備える。ケーシング支持部11は、一端が外側ケーシング6の内周面61に接続され、他端が内側ケーシング5の外周面53に接続される。ケーシング支持部11により、内側ケーシング5は、外側ケーシング6に支持されている。第1隙間S1は、一方側動翼41の一方端とケーシング支持部11の他方端の間の作動流体流路S4に接続され、作動流体流路S4に連通している。 (Casing support part)
FIG. 3 is a schematic cross-sectional view perpendicular to the axial direction of the
ケーシング支持部11は、上記軸方向において発電機収容空間S2に少なくとも一部が重なり合うように配置され、内側ケーシング5の外周面53に接続されることで、発電機3の冷却を促進するための冷却用のフィンとしても機能も有している。ケーシング支持部11は、上記軸方向に沿って少なくとも1つ配置されていればよく、上記周方向においても少なくとも1つ配置されていればよい。
The casing support part 11 is arranged so that at least a portion of it overlaps with the generator storage space S2 in the axial direction, and is connected to the outer peripheral surface 53 of the inner casing 5, so that it also functions as a cooling fin to promote cooling of the generator 3. It is sufficient that at least one casing support part 11 is arranged along the axial direction, and it is sufficient that at least one is also arranged in the circumferential direction.
上記の構成によれば、回転シャフト2の他方側に設けられる発電機3をアウターロータ型にすることで、インナーロータ型にした場合に比べて、高出力密度化が図れ、発電機3及び発電機収容空間S2の径方向における大きさを小さくできる。これにより、発電機収容空間S2の外周側に形成される作動流体流路S4が径方向の比較的内側に配置できるため、発電用タービン1の大型化を抑制できる。
With the above configuration, by making the generator 3 provided on the other side of the rotating shaft 2 an outer rotor type, a higher output density can be achieved and the radial size of the generator 3 and the generator housing space S2 can be reduced compared to when it is an inner rotor type. As a result, the working fluid flow path S4 formed on the outer periphery of the generator housing space S2 can be positioned relatively radially inward, preventing the power generation turbine 1 from becoming too large.
(貫通孔)
上述した内側ケーシング5は、図1及び図2に示されるように、作動流体流路S4を形成する外面55に形成された外側開口541及び発電機収容空間S2を形成する内面56に形成された内側開口542を有する少なくとも1つ(図示例では、複数)の貫通孔54が形成されている。複数の貫通孔54は、回転シャフト2の周方向において互いに間隔をあけて配置されている。 (Through hole)
1 and 2, the above-mentionedinner casing 5 is formed with at least one (in the illustrated example, multiple) through hole 54 having an outer opening 541 formed in an outer surface 55 that forms the working fluid flow path S4 and an inner opening 542 formed in an inner surface 56 that forms the generator accommodating space S2. The multiple through holes 54 are arranged at intervals from one another in the circumferential direction of the rotating shaft 2.
上述した内側ケーシング5は、図1及び図2に示されるように、作動流体流路S4を形成する外面55に形成された外側開口541及び発電機収容空間S2を形成する内面56に形成された内側開口542を有する少なくとも1つ(図示例では、複数)の貫通孔54が形成されている。複数の貫通孔54は、回転シャフト2の周方向において互いに間隔をあけて配置されている。 (Through hole)
1 and 2, the above-mentioned
複数の貫通孔54の各々の形状は、図示される実施形態に限定されず、発電機収容空間S2と内側ケーシング5の外部とで作動流体の流通が可能になっていればよい。図示される実施形態では、複数の貫通孔54の各々は、外側開口541から内側開口542までに亘り直線状に形成されているが、この形状に限定されない。図示される実施形態では、外側開口541は、内側ケーシング5の上記軸方向の上記一方側の端面に形成されているが、他の実施形態では、外周面53に形成されていてもよい。また、図示される実施形態では、内側開口542は、上記軸方向に沿って延在するステータ支持部51の上記軸方向の上記他方側の端面に形成されているが、上記端面以外の発電機収容空間S2を形成する面に形成されていてもよい。
The shape of each of the multiple through holes 54 is not limited to the illustrated embodiment, as long as the working fluid can flow between the generator storage space S2 and the outside of the inner casing 5. In the illustrated embodiment, each of the multiple through holes 54 is formed in a straight line from the outer opening 541 to the inner opening 542, but is not limited to this shape. In the illustrated embodiment, the outer opening 541 is formed on the end face on one side of the axial direction of the inner casing 5, but in other embodiments, it may be formed on the outer peripheral surface 53. Also, in the illustrated embodiment, the inner opening 542 is formed on the end face on the other side of the axial direction of the stator support part 51 extending along the axial direction, but it may be formed on a surface forming the generator storage space S2 other than the end face.
上記の構成によれば、第1隙間S1及び貫通孔54を介して作動流体流路S4を流れる作動流体の一部を発電機収容空間S2に抽気し、発電機3を冷却させた後に発電機収容空間S2から排出できる。このような簡単な構造によって、発電機3を冷却できるため、発電用タービン1の複雑化を抑制できる。
With the above configuration, a portion of the working fluid flowing through the working fluid passage S4 via the first gap S1 and the through hole 54 can be extracted into the generator housing space S2, and after cooling the generator 3, it can be discharged from the generator housing space S2. Because the generator 3 can be cooled with such a simple structure, the complexity of the power generation turbine 1 can be suppressed.
幾つかの実施形態に係る発電用タービン1は、図1及び図2に示されるように、上記軸方向の上記発電機3と一方側動翼41との間に配置され、回転シャフト2を回転可能に支持するように構成された少なくとも1つの磁気軸受7を備える。上述した内側ケーシング5は、上記軸方向の発電機収容空間S2と第1隙間S1との間に、発電機収容空間S2及び第1隙間S1に接続されて回転シャフト2及び磁気軸受7を収容する上述した軸受収容空間S3が形成されている。
As shown in Figs. 1 and 2, the power generating turbine 1 according to some embodiments includes at least one magnetic bearing 7 arranged between the generator 3 and one rotor blade 41 in the axial direction and configured to rotatably support the rotating shaft 2. The inner casing 5 described above has the above-mentioned bearing housing space S3 formed between the generator housing space S2 in the axial direction and the first gap S1, and connected to the generator housing space S2 and the first gap S1 to house the rotating shaft 2 and the magnetic bearing 7.
上記の構成によれば、発電機収容空間S2と第1隙間S1は、潤滑油が不要な磁気軸受7を収容する軸受収容空間S3を通じて、作動流体(抽気)の流通が可能である。この場合には、発電機収容空間S2と第1隙間S1との間で作動流体の流通させるための流路を別途設ける必要がないため、発電用タービン1の大型化、複雑化を抑制できる。
With the above configuration, the generator housing space S2 and the first gap S1 can allow the working fluid (bleed air) to flow through the bearing housing space S3, which houses the magnetic bearing 7 that does not require lubricating oil. In this case, there is no need to provide a separate flow path for the working fluid to flow between the generator housing space S2 and the first gap S1, which prevents the power generation turbine 1 from becoming larger and more complicated.
幾つかの実施形態に係る発電用タービン1は、図1に示されるように、作動流体が作動流体流路S4を上記軸方向の上記他方側から上記一方側に向かって流れるように構成されている。一方側動翼41及び他方側動翼42の各々の翼部44、46が作動流体流路S4に配置されている。他方側動翼42が初段動翼となり、一方側動翼41が二段目動翼となる。
As shown in FIG. 1, the power generation turbine 1 according to some embodiments is configured so that the working fluid flows through the working fluid flow path S4 from the other side to the one side in the axial direction. The blade portions 44, 46 of the one-side rotor blade 41 and the other-side rotor blade 42 are arranged in the working fluid flow path S4. The other-side rotor blade 42 is the first stage rotor blade, and the one-side rotor blade 41 is the second stage rotor blade.
図示される実施形態では、上述した発電用タービン1は、一方側動翼41と他方側動翼42との間に設けられる一方側静翼(二段目静翼)81と、他方側動翼42よりも上記軸方向の上記他方側に設けられる他方側静翼(初段静翼)82と、を含む。一方側静翼81及び他方側静翼82の各々は、外側ケーシング6の内周面61に径方向外側から支持される翼部83、85と、翼部83、85を径方向内側から支持する環状の内側静翼支持部84、86と、を含む。
In the illustrated embodiment, the power generation turbine 1 includes a first-side stator vane (second stage stator vane) 81 provided between the first-side rotor blade 41 and the second-side rotor blade 42, and a second-side stator vane (first stage stator vane) 82 provided on the other side in the axial direction of the second-side rotor blade 42. Each of the first-side stator vane 81 and the second-side stator vane 82 includes blade portions 83, 85 supported from the radially outer side by the inner circumferential surface 61 of the outer casing 6, and annular inner stator vane support portions 84, 86 that support the blade portions 83, 85 from the radially inner side.
図1に示される実施形態では、作動流体流路S4を流れる作動流体の主流は、他方側柱状流路S43、環状流路S41、一方側柱状流路S42の順で流れる。作動流体流路S4を流れる作動流体の一部である抽気は、第1隙間S1、軸受収容空間S3、発電機収容空間S2、貫通孔54、一方側柱状流路S42の順で流れる。
In the embodiment shown in FIG. 1, the main flow of the working fluid flowing through the working fluid flow passage S4 flows in the order of the other-side columnar flow passage S43, the annular flow passage S41, and the one-side columnar flow passage S42. The bleed air, which is part of the working fluid flowing through the working fluid flow passage S4, flows in the order of the first gap S1, the bearing housing space S3, the generator housing space S2, the through hole 54, and the one-side columnar flow passage S42.
上記の構成によれば、タービン動翼4を通過した作動流体の一部である抽気を、第1隙間S1を通じて発電機収容空間S2に流入させることができる。発電機収容空間S2に流入する作動流体は、タービン動翼4を通過する際に膨張して温度低下しているため、該作動流体により発電機3を効果的に冷却できる。
With the above configuration, the bleed air, which is part of the working fluid that has passed through the turbine rotor blades 4, can flow into the generator housing space S2 through the first gap S1. The working fluid that flows into the generator housing space S2 expands and drops in temperature as it passes through the turbine rotor blades 4, so the generator 3 can be effectively cooled by the working fluid.
幾つかの実施形態では、上述した発電用タービン1は、図1に示されるように、作動流体流路S4における一方側動翼41よりも上記軸方向の上記一方側に設けられる圧力損失を生じさせる抵抗体12をさらに備える。抵抗体12は、作動流体流路S4に圧力損失を生じさせることで、抵抗体12と一方側動翼41との間における作動流体流路S4の圧力を、軸受収容空間S3の圧力よりも大きくするためのものである。
In some embodiments, the power generation turbine 1 described above further includes a resistor 12 that generates a pressure loss and is provided on the one axial side of the one rotor blade 41 in the working fluid flow path S4, as shown in FIG. 1. The resistor 12 generates a pressure loss in the working fluid flow path S4, thereby making the pressure in the working fluid flow path S4 between the resistor 12 and the one rotor blade 41 greater than the pressure in the bearing housing space S3.
図示される実施形態では、上述したケーシング支持部11が抵抗体12としても機能を発揮するようになっている。ケーシング支持部11により作動流体流路S4における圧力損失を増大させる方策としては、例えば、ケーシング支持部11の数や厚さを増やしたり、ケーシング支持部11の上記軸方向における一方端を他方端に対して上記周方向にずらしたりすることが挙げられる。なお、抵抗体12は、作動流体流路S4に設けられ、作動流体流路S4の開口面積を小さくする絞り部等であってもよい。
In the illustrated embodiment, the casing support 11 also functions as a resistor 12. Measures for increasing the pressure loss in the working fluid flow path S4 using the casing support 11 include, for example, increasing the number or thickness of the casing support 11, or shifting one end of the casing support 11 in the axial direction in the circumferential direction relative to the other end. The resistor 12 may be a throttle section or the like that is provided in the working fluid flow path S4 and reduces the opening area of the working fluid flow path S4.
上記の構成によれば、作動流体流路S4に抵抗体12を設け、抵抗体12と一方側動翼41との間における作動流体流路S4の圧力を、軸受収容空間S3の圧力よりも大きくすることで、圧力差により第1隙間S1を通じて発電機収容空間S2に作動流体を導くことや、貫通孔54を通じて発電機収容空間S2から作動流体を排出することができる。この場合には、発電機収容空間S2に作動流体を流通させるためのファン等を別途設ける必要がないため、発電用タービン1の機器点数の増加を抑制できるとともに、発電用タービン1の消費電力の増加も抑制できる。
According to the above configuration, by providing a resistor 12 in the working fluid flow path S4 and making the pressure in the working fluid flow path S4 between the resistor 12 and the one rotor blade 41 greater than the pressure in the bearing housing space S3, the working fluid can be guided to the generator housing space S2 through the first gap S1 due to the pressure difference, and the working fluid can be discharged from the generator housing space S2 through the through hole 54. In this case, since there is no need to separately provide a fan or the like for circulating the working fluid in the generator housing space S2, an increase in the number of pieces of equipment in the power generation turbine 1 can be suppressed, and an increase in the power consumption of the power generation turbine 1 can also be suppressed.
幾つかの実施形態に係る発電用タービン1は、図2に示されるように、作動流体が作動流体流路S4を上記軸方向の上記一方側から上記他方側に向かって流れるように構成されている。一方側動翼41及び他方側動翼42の各々の翼部44、46が作動流体流路S4に配置されている。一方側動翼41が初段動翼となり、他方側動翼42が二段目動翼となる。
As shown in FIG. 2, the power generation turbine 1 according to some embodiments is configured so that the working fluid flows through the working fluid flow path S4 from the one side to the other side in the axial direction. The blade portions 44, 46 of the one-side rotor blade 41 and the other-side rotor blade 42 are arranged in the working fluid flow path S4. The one-side rotor blade 41 is the first stage rotor blade, and the other-side rotor blade 42 is the second stage rotor blade.
図示される実施形態では、上述した発電用タービン1は、一方側動翼41よりも上記軸方向の上記一方側に設けられる一方側静翼(初段静翼)81Aと、一方側動翼41と他方側動翼42との間に設けられる他方側静翼(二段目静翼)82Aと、を含む。一方側静翼81Aは、外側ケーシング6の内周面61に径方向外側から支持され、且つ内側ケーシング5の外周面53に径方向内側から支持される翼部83Aを含む。他方側静翼82Aは、外側ケーシング6の内周面61に径方向外側から支持される翼部84Aと、翼部84Aを径方向内側から支持する環状の内側静翼支持部85Aと、を含む。
In the illustrated embodiment, the power generation turbine 1 includes a first-side stator vane (first stage stator vane) 81A provided on the one side of the first-side rotor blade 41 in the axial direction, and a second-side stator vane (second stage stator vane) 82A provided between the first-side rotor blade 41 and the second-side rotor blade 42. The first-side stator vane 81A includes a blade portion 83A supported from the radial outside by the inner circumferential surface 61 of the outer casing 6 and supported from the radial inside by the outer circumferential surface 53 of the inner casing 5. The second-side stator vane 82A includes a blade portion 84A supported from the radial outside by the inner circumferential surface 61 of the outer casing 6, and an annular inner stator vane support portion 85A that supports the blade portion 84A from the radial inside.
図2に示される実施形態では、作動流体流路S4を流れる作動流体の主流は、一方側柱状流路S42、環状流路S41、他方側柱状流路S43の順で流れる。作動流体流路S4を流れる作動流体の一部である抽気は、貫通孔54、発電機収容空間S2、軸受収容空間S3、第1隙間S1、他方側柱状流路S43の順で流れる。
In the embodiment shown in FIG. 2, the main stream of the working fluid flowing through the working fluid flow path S4 flows in the order of the one-side columnar flow path S42, the annular flow path S41, and the other-side columnar flow path S43. The bleed air, which is part of the working fluid flowing through the working fluid flow path S4, flows in the order of the through hole 54, the generator housing space S2, the bearing housing space S3, the first gap S1, and the other-side columnar flow path S43.
上記の構成によれば、タービン動翼4に導入前の作動流体の一部を、貫通孔54を通じて発電機収容空間S2に流入させることで、発電機3を冷却できる。そして、発電機3から熱エネルギーを回収してエンタルピーが増大した作動流体(抽気)を、第1隙間S1を通じてタービン動翼4に導入される作動流体(主流)に混合させることで、タービン動翼4における回収動力を増大でき、発電用タービン1の出力を増加させることができる。
With the above configuration, the generator 3 can be cooled by allowing a portion of the working fluid before being introduced into the turbine rotor blades 4 to flow into the generator housing space S2 through the through holes 54. Then, by mixing the working fluid (bleed air) that has recovered thermal energy from the generator 3 and has increased enthalpy with the working fluid (main flow) introduced into the turbine rotor blades 4 through the first gap S1, the recovered power in the turbine rotor blades 4 can be increased, and the output of the power-generating turbine 1 can be increased.
(バランスホール)
図4及び図5の各々は、本開示の一実施形態に係る発電用タービン1のタービン動翼4近傍の軸方向に沿った概略断面図である。幾つかの実施形態に係る発電用タービン1は、図2に示されるように、上述した回転シャフト2、発電機3、タービン動翼4、内側ケーシング5及び外側ケーシング6を備え、発電用タービン1の作動流体は、作動流体流路S4を上記軸方向の上記一方側から上記他方側に向かって流れるように構成されている。上述した一方側動翼41のディスク部43は、図4に示されるように、上記軸方向に貫通する第1バランスホール48を有する。第1バランスホール48は、軸受収容空間S3から第1隙間S1に導かれた作動流体(抽気)が流入するように構成されている。 (Balance Hall)
Each of Fig. 4 and Fig. 5 is a schematic cross-sectional view along the axial direction near theturbine rotor blade 4 of the power generation turbine 1 according to one embodiment of the present disclosure. As shown in Fig. 2, the power generation turbine 1 according to some embodiments includes the above-mentioned rotating shaft 2, the generator 3, the turbine rotor blade 4, the inner casing 5, and the outer casing 6, and the working fluid of the power generation turbine 1 is configured to flow through the working fluid flow path S4 from the one side to the other side in the axial direction. As shown in Fig. 4, the disk portion 43 of the one-side rotor blade 41 described above has a first balance hole 48 penetrating in the axial direction. The first balance hole 48 is configured so that the working fluid (bleed air) guided from the bearing accommodation space S3 to the first gap S1 flows in.
図4及び図5の各々は、本開示の一実施形態に係る発電用タービン1のタービン動翼4近傍の軸方向に沿った概略断面図である。幾つかの実施形態に係る発電用タービン1は、図2に示されるように、上述した回転シャフト2、発電機3、タービン動翼4、内側ケーシング5及び外側ケーシング6を備え、発電用タービン1の作動流体は、作動流体流路S4を上記軸方向の上記一方側から上記他方側に向かって流れるように構成されている。上述した一方側動翼41のディスク部43は、図4に示されるように、上記軸方向に貫通する第1バランスホール48を有する。第1バランスホール48は、軸受収容空間S3から第1隙間S1に導かれた作動流体(抽気)が流入するように構成されている。 (Balance Hall)
Each of Fig. 4 and Fig. 5 is a schematic cross-sectional view along the axial direction near the
図4に示される実施形態では、軸受収容空間S3から第1隙間S1に導かれた作動流体(抽気)は、第1バランスホール48を通過後に、一方側動翼41と他方側動翼42の間において一方側動翼41を通過した作動流体(主流)に混合する。
In the embodiment shown in FIG. 4, the working fluid (bleed air) guided from the bearing housing space S3 to the first gap S1 passes through the first balance hole 48 and then mixes with the working fluid (main flow) that has passed through the one-side rotor blade 41 between the one-side rotor blade 41 and the other-side rotor blade 42.
上記の構成によれば、軸受収容空間S3から第1隙間S1に導かれた作動流体(抽気)は、第1バランスホール48を通過することで、第1バランスホール48が形成された一方側動翼41よりも作動流体の流れ方向の下流側において、一方側動翼41を通過した作動流体(主流)に混合される。この場合には、軸受収容空間S3から第1隙間S1に導かれた作動流体(抽気)を、第1隙間S1を通じて一方側動翼41に導入される作動流体に混合させる場合に比べて、抽気と主流の混合時における圧力損失を低減できる。
According to the above configuration, the working fluid (bleed air) guided from the bearing accommodating space S3 to the first gap S1 passes through the first balance hole 48, and is mixed with the working fluid (main flow) that has passed through the one-side rotor blade 41 downstream in the flow direction of the working fluid from the one-side rotor blade 41 in which the first balance hole 48 is formed. In this case, the pressure loss when the bleed air and the main flow are mixed can be reduced compared to when the working fluid (bleed air) guided from the bearing accommodating space S3 to the first gap S1 is mixed with the working fluid introduced into the one-side rotor blade 41 through the first gap S1.
幾つかの実施形態では、図5に示されるように、上述した一方側動翼41のディスク部43は、上記軸方向に貫通する第1バランスホール48を有し、上述した他方側動翼42のディスク部45は、上記軸方向に貫通する第2バランスホール49を有する。第1バランスホール48は、軸受収容空間S3から第1隙間S1に導かれた作動流体(抽気)が流入するように構成されている。第2バランスホール49は、第1バランスホール48よりも回転シャフト2の径方向における外側に形成され、第1バランスホール48を通過した作動流体が流入するように構成されている。
In some embodiments, as shown in FIG. 5, the disk portion 43 of the one-side rotor blade 41 has a first balance hole 48 penetrating in the axial direction, and the disk portion 45 of the other-side rotor blade 42 has a second balance hole 49 penetrating in the axial direction. The first balance hole 48 is configured to receive the working fluid (bleed air) guided from the bearing accommodating space S3 to the first gap S1. The second balance hole 49 is formed radially outward of the rotating shaft 2 from the first balance hole 48, and is configured to receive the working fluid that has passed through the first balance hole 48.
図5に示される実施形態では、軸受収容空間S3から第1隙間S1に導かれた作動流体(抽気)は、第1バランスホール48及び第2バランスホール49を通過後に、他方側柱状流路S43において他方側動翼42を通過した作動流体(主流)に混合する。
In the embodiment shown in FIG. 5, the working fluid (bleed air) guided from the bearing housing space S3 to the first gap S1 passes through the first balance hole 48 and the second balance hole 49, and then mixes with the working fluid (main flow) that has passed through the other rotor blade 42 in the other columnar flow passage S43.
図5に示される実施形態では、タービン動翼4は、一方側動翼41のディスク部43に一端が接続され、他方側動翼42のディスク部45に他端が接続された連結部47をさらに含む。連結部47の外周面471は、上述した内側静翼支持部85Aの内周面851Aに隙間を有して対向している。連結部47の外周面471と内側静翼支持部85Aの内周面851Aの間には、外周面471と内周面851Aの隙間をシールするためのシール構造13が設けられる。図示される実施形態では、シール構造13は、内周面851Aに形成されるラビリンスシールからなる。外周面471と内周面851Aの隙間は、第1バランスホール48よりも回転シャフト2の径方向における外側に形成され、第2バランスホール49よりも回転シャフト2の径方向における内側に形成される。上述した第1バランスホール48は、外周面471と内周面851Aの隙間を通過後に第2バランスホール49を通過するようになっている。
In the embodiment shown in FIG. 5, the turbine rotor blade 4 further includes a connecting portion 47 having one end connected to the disk portion 43 of the one rotor blade 41 and the other end connected to the disk portion 45 of the other rotor blade 42. The outer peripheral surface 471 of the connecting portion 47 faces the inner peripheral surface 851A of the inner stator vane support portion 85A described above with a gap therebetween. A seal structure 13 for sealing the gap between the outer peripheral surface 471 and the inner peripheral surface 851A is provided between the outer peripheral surface 471 of the connecting portion 47 and the inner peripheral surface 851A of the inner stator vane support portion 85A. In the illustrated embodiment, the seal structure 13 is a labyrinth seal formed on the inner peripheral surface 851A. The gap between the outer peripheral surface 471 and the inner peripheral surface 851A is formed radially outward of the rotating shaft 2 from the first balance hole 48 and is formed radially inward of the rotating shaft 2 from the second balance hole 49. The first balance hole 48 described above passes through the gap between the outer peripheral surface 471 and the inner peripheral surface 851A, and then passes through the second balance hole 49.
上記の構成によれば、第1バランスホール48を通過した作動流体(抽気)は、回転シャフト2の回転により回転シャフト2の径方向における外側に向かって押し出される。第2バランスホール49を、第1バランスホール48よりも回転シャフト2の径方向における外側に形成することで、第1バランスホール48を通過した作動流体(抽気)が第2バランスホール49に流入し易くなっている。軸受収容空間S3から第1隙間S1に導かれた作動流体(抽気)を、第1バランスホール48だけでなく第2バランスホール49も通過させることで、抽気と主流の混合時における圧力損失のさらなる低減が図れる。
With the above configuration, the working fluid (bleed air) that passes through the first balance hole 48 is pushed outward in the radial direction of the rotating shaft 2 due to the rotation of the rotating shaft 2. By forming the second balance hole 49 further outward in the radial direction of the rotating shaft 2 than the first balance hole 48, the working fluid (bleed air) that passes through the first balance hole 48 is more likely to flow into the second balance hole 49. By passing the working fluid (bleed air) guided from the bearing accommodation space S3 to the first gap S1 through not only the first balance hole 48 but also the second balance hole 49, the pressure loss when the bleed air and the main flow are mixed can be further reduced.
図6及び図7の各々は、本開示の一実施形態に係る発電用タービン1の軸方向に沿った概略断面図である。幾つかの実施形態では、図6及び図7に示されるように、上述した発電用タービン1は、図6及び図7に示されるように、上述した回転シャフト2、発電機3、タービン動翼4、内側ケーシング5及び外側ケーシング6を備え、発電用タービン1の作動流体は、作動流体流路S4を上記軸方向の上記一方側から上記他方側に向かって流れるように構成されている。上述した発電用タービン1は、上述した少なくとも1つの貫通孔54の外側開口541に一端91が接続された抽気ライン9をさらに備える。
6 and 7 are schematic cross-sectional views along the axial direction of a power generation turbine 1 according to one embodiment of the present disclosure. In some embodiments, as shown in FIGS. 6 and 7, the power generation turbine 1 described above includes the rotating shaft 2, generator 3, turbine rotor blades 4, inner casing 5, and outer casing 6 described above, and the working fluid of the power generation turbine 1 is configured to flow through the working fluid flow path S4 from the one side to the other side in the axial direction. The power generation turbine 1 described above further includes an extraction line 9 having one end 91 connected to the outer opening 541 of at least one through hole 54 described above.
図6及び図7に示される実施形態では、抽気ライン9は、作動流体が流れる内部流路90を内部に有する。複数の貫通孔54の各々の外側開口541は、一方側柱状流路S42に配置された一端91にまとめて接続され、内部流路90に連通している。発電機収容空間S2に導入された作動流体(抽気)は、発電機収容空間S2から貫通孔54を通り抽気ライン9に流入するようになっている。貫通孔54や抽気ライン9を流れる作動流体(抽気)は、一方側柱状流路S42を流れる作動流体(主流)に混合しないようになっている。
In the embodiment shown in Figures 6 and 7, the bleed line 9 has an internal flow passage 90 therein through which the working fluid flows. The outer openings 541 of each of the multiple through holes 54 are connected together to one end 91 arranged in the one-side columnar flow passage S42 and communicate with the internal flow passage 90. The working fluid (bleed air) introduced into the generator accommodating space S2 flows from the generator accommodating space S2 through the through holes 54 and into the bleed line 9. The working fluid (bleed air) flowing through the through holes 54 and the bleed line 9 is not mixed with the working fluid (main flow) flowing through the one-side columnar flow passage S42.
上記の構成によれば、抽気ライン9の一端91を少なくとも1つの貫通孔54の外側開口541に接続することで、発電機3から熱エネルギーを回収してエンタルピーが増大した作動流体(抽気)を、抽気ライン9により回収でき、回収した作動流体(抽気)のエンタルピーを多様な用途に利用できる。
With the above configuration, by connecting one end 91 of the extraction line 9 to the outer opening 541 of at least one through hole 54, the working fluid (extracted air) with increased enthalpy as a result of recovering thermal energy from the generator 3 can be recovered by the extraction line 9, and the enthalpy of the recovered working fluid (extracted air) can be used for a variety of purposes.
図6及び図7に示されるように、発電用タービン1は、抽気ライン9に設けられ、抽気ライン9を流れる作動流体の流量を調整可能に構成された流量調整弁93を備えていてもよい。流量調整弁93は、全閉と全開に開度調整可能な開閉弁でもよいし、全閉と全開とこれらの間の少なくとも1つの中間開度に開度調整可能な開度調整弁でもよい。
As shown in Figs. 6 and 7, the power generation turbine 1 may include a flow control valve 93 that is provided in the extraction line 9 and is configured to be able to adjust the flow rate of the working fluid flowing through the extraction line 9. The flow control valve 93 may be an on-off valve that can be adjusted to a fully closed or fully open position, or an opening control valve that can be adjusted to a fully closed or fully open position and at least one intermediate opening position therebetween.
図6及び図7に示されるように、発電用タービン1は、抽気ライン9に設けられ、抽気ライン9を流れる作動流体に熱エネルギーを回収させるように構成された熱交換器94を備えていてもよい。熱交換器94において作動流体に熱エネルギーを回収させることで、冷却対象が冷却される。熱交換器94の冷却対象は、例えば、発電機3のパワーエレクトロニクス部品95であってもよい。図示される実施形態では、熱交換器94及びパワーエレクトロニクス部品95がケーシング96の内部空間960に収容されており、パワーエレクトロニクス部品95が発生させる熱エネルギーが熱交換器94において作動流体に回収されるようになっている。
6 and 7, the power generation turbine 1 may include a heat exchanger 94 provided in the extraction line 9 and configured to recover thermal energy to the working fluid flowing through the extraction line 9. The object to be cooled is cooled by recovering thermal energy to the working fluid in the heat exchanger 94. The object to be cooled by the heat exchanger 94 may be, for example, a power electronics component 95 of the generator 3. In the illustrated embodiment, the heat exchanger 94 and the power electronics component 95 are housed in an internal space 960 of a casing 96, and thermal energy generated by the power electronics component 95 is recovered to the working fluid in the heat exchanger 94.
(抽気孔)
幾つかの実施形態に係る発電用タービン1では、図6に示されるように、上述した回転シャフト2は、上述したスラストディスク部22を有する。上述した磁気軸受7は、上述した他方側スラスト軸受72を含む。上述した内側ケーシング5は、少なくとも1つの抽気孔10が形成されている。抽気孔10は、軸受収容空間S3の外周側に環状流路S41(作動流体流路S4)を形成する外周面53に形成された外側開口10A、及び他方側スラスト軸受72よりも上記軸方向の上記他方側において軸受収容空間S3を形成する内面57に形成された内側開口10B、を有する。 (Bleed hole)
In the power-generatingturbine 1 according to some embodiments, as shown in Fig. 6, the rotating shaft 2 has the thrust disk portion 22. The magnetic bearing 7 includes the other-side thrust bearing 72. The inner casing 5 has at least one bleed hole 10. The bleed hole 10 has an outer opening 10A formed in the outer circumferential surface 53 that forms the annular flow path S41 (working fluid flow path S4) on the outer circumferential side of the bearing accommodating space S3, and an inner opening 10B formed in the inner surface 57 that forms the bearing accommodating space S3 on the other side in the axial direction than the other-side thrust bearing 72.
幾つかの実施形態に係る発電用タービン1では、図6に示されるように、上述した回転シャフト2は、上述したスラストディスク部22を有する。上述した磁気軸受7は、上述した他方側スラスト軸受72を含む。上述した内側ケーシング5は、少なくとも1つの抽気孔10が形成されている。抽気孔10は、軸受収容空間S3の外周側に環状流路S41(作動流体流路S4)を形成する外周面53に形成された外側開口10A、及び他方側スラスト軸受72よりも上記軸方向の上記他方側において軸受収容空間S3を形成する内面57に形成された内側開口10B、を有する。 (Bleed hole)
In the power-generating
抽気孔10は、図示される実施形態に限定されず、環状流路S41と軸受収容空間S3とで作動流体の流通が可能になっていればよい。図示される実施形態では、抽気孔10は、外側開口10Aから内側開口10Bまでに亘り上記径方向に沿って直線状に形成されているが、この形状に限定されない。
The bleed hole 10 is not limited to the embodiment shown in the figure, as long as the working fluid can flow between the annular flow passage S41 and the bearing housing space S3. In the embodiment shown in the figure, the bleed hole 10 is formed in a straight line along the radial direction from the outer opening 10A to the inner opening 10B, but is not limited to this shape.
タービン動翼4に導入される作動流体(主流)の一部を、抽気孔10を通じて軸受収容空間S3に流入させることができる。軸受収容空間S3に流入した作動流体(抽気)は、軸受収容空間S3を上記軸方向の上記一方側に向かって流れる一方側抽気と、軸受収容空間S3を上記軸方向の上記他方側に向かって流れる他方側抽気と、に分流する。
A portion of the working fluid (main flow) introduced into the turbine rotor blade 4 can be made to flow into the bearing housing space S3 through the bleed hole 10. The working fluid (bleed air) that flows into the bearing housing space S3 is divided into one-side bleed air that flows through the bearing housing space S3 toward the one side in the axial direction, and the other-side bleed air that flows through the bearing housing space S3 toward the other side in the axial direction.
図示される実施形態では、一方側抽気は、軸受収容空間S3の抽気孔10よりも上記軸方向の上記一方側、発電機収容空間S2、貫通孔54、抽気ライン9の順で流れる。図示される実施形態では、他方側抽気は、軸受収容空間S3の抽気孔10よりも上記軸方向の上記他方側、第1隙間S1、作動流体流路S4における一方側静翼81Aと一方側動翼41との間の第1空間S44の順で流れる。
In the illustrated embodiment, the one-side bleed air flows in the following order: the one side in the axial direction from the bleed hole 10 of the bearing accommodation space S3, the generator accommodation space S2, the through hole 54, and the bleed line 9. In the illustrated embodiment, the other-side bleed air flows in the following order: the other side in the axial direction from the bleed hole 10 of the bearing accommodation space S3, the first gap S1, and the first space S44 between the one-side stator vane 81A and the one-side rotor blade 41 in the working fluid flow path S4.
発電用タービン1のタービン動翼4を駆動させることで、タービン動翼4を支持する回転シャフト2には、上記軸方向の上記一方側から上記他方側に向かうスラスト力が作用する。
By driving the turbine blades 4 of the power generation turbine 1, a thrust force acts on the rotating shaft 2 that supports the turbine blades 4 from one side toward the other side in the axial direction.
上記の構成によれば、タービン動翼4に導入される作動流体(主流)の一部を、第1隙間S1よりも作動流体流路S4の流れ方向における上流側に位置する抽気孔10を通じて発電機収容空間S2に流入させることができる。この場合には、発電機収容空間S2を上記軸方向の上記他方側から上記一方側に流れる作動流体(一方側抽気)により、スラストディスク部22が上記他方側から上記一方側に押されるため、回転シャフト2に係るスラスト力を低減できる。
The above configuration allows a portion of the working fluid (main flow) introduced into the turbine rotor blades 4 to flow into the generator housing space S2 through the bleed hole 10 located upstream of the first gap S1 in the flow direction of the working fluid flow passage S4. In this case, the thrust disk portion 22 is pushed from the other side to the one side by the working fluid (one-side bleed) flowing through the generator housing space S2 from the other side to the one side in the axial direction, thereby reducing the thrust force on the rotating shaft 2.
幾つかの実施形態に係る発電用タービン1では、図6に示されるように、上述した少なくとも1つのタービン動翼4は、上述した一方側動翼41と、上述した他方側動翼42と、を含む。発電用タービン1は、一方側動翼41及び第1隙間S1よりも上記軸方向の上記一方側に配置される一方側静翼81Aをさらに備え、上述した抽気ライン9の他端92(92A、92B)は、作動流体流路S4における一方側静翼81Aと一方側動翼41との間の上述した第1空間S44、又は、作動流体流路S4における他方側動翼42よりも上記他方側の第2空間S45、の何れかに接続されている。抽気ライン9の他端92(92A、92B)は、第1空間S44又は第2空間S45に上記径方向の外側から接続されている。抽気ライン9に導入された作動流体(抽気)は、第1空間S44又は第2空間S45に導かれる。
In the power generation turbine 1 according to some embodiments, as shown in FIG. 6, the at least one turbine rotor blade 4 includes the one-side rotor blade 41 and the other-side rotor blade 42. The power generation turbine 1 further includes a one-side stator blade 81A arranged on the one side in the axial direction from the one-side rotor blade 41 and the first gap S1, and the other end 92 (92A, 92B) of the above-mentioned extraction line 9 is connected to either the first space S44 between the one-side stator blade 81A and the one-side rotor blade 41 in the working fluid flow path S4, or the second space S45 on the other side from the other-side rotor blade 42 in the working fluid flow path S4. The other end 92 (92A, 92B) of the extraction line 9 is connected to the first space S44 or the second space S45 from the outside in the radial direction. The working fluid (bleed air) introduced into the extraction line 9 is led to the first space S44 or the second space S45.
抽気ライン9の他端92(92B)が第1空間S44に接続された場合には、発電機3や熱交換器94から熱エネルギーを回収してエンタルピーが増大した作動流体(抽気)を、抽気ライン9を通じて第1空間S44においてタービン動翼4に導入される作動流体(主流)に混合させることで、タービン動翼4における回収動力を増大でき、発電用タービン1の出力を増加させることができる。
When the other end 92 (92B) of the extraction line 9 is connected to the first space S44, the working fluid (extracted air) with increased enthalpy due to thermal energy recovery from the generator 3 and heat exchanger 94 is mixed with the working fluid (main flow) introduced to the turbine rotor blades 4 in the first space S44 through the extraction line 9, thereby increasing the power recovery in the turbine rotor blades 4 and increasing the output of the power generating turbine 1.
また、抽気ライン9の他端92(92A)が第2空間S45に接続された場合には、発電機3を冷却した作動流体(抽気)は、第2空間S45において他方側動翼42を通過した作動流体(主流)に混合される。この場合には、抽気をタービン動翼4に導入される主流に混合させる場合に比べて、抽気と主流の混合時における圧力損失を低減できる。
In addition, when the other end 92 (92A) of the bleed line 9 is connected to the second space S45, the working fluid (bleed air) that has cooled the generator 3 is mixed with the working fluid (main flow) that has passed through the other rotor blade 42 in the second space S45. In this case, the pressure loss when the bleed air and the main flow are mixed can be reduced compared to when the bleed air is mixed with the main flow introduced into the turbine rotor blade 4.
幾つかの実施形態に係る発電用タービン1では、図7に示されるように、上述した少なくとも1つのタービン動翼4は、上述した一方側動翼41と、上述した他方側動翼42と、を含む。発電用タービン1は、一方側動翼41及び第1隙間S1よりも上記軸方向の上記一方側に配置される一方側静翼81Aをさらに備え、上述した抽気ライン9の他端92(92A)は、作動流体流路S4における他方側動翼42よりも上記他方側の第2空間S45に接続されている。抽気ライン9の他端92(92A)は、第2空間S45に上記径方向の外側から接続されている。抽気ライン9に導入された作動流体(抽気)は、第2空間S45に導かれる。
In the power generation turbine 1 according to some embodiments, as shown in FIG. 7, the at least one turbine rotor blade 4 described above includes the one-side rotor blade 41 described above and the other-side rotor blade 42 described above. The power generation turbine 1 further includes a one-side stator vane 81A arranged on the one side in the axial direction relative to the one-side rotor blade 41 and the first gap S1, and the other end 92 (92A) of the above-mentioned extraction line 9 is connected to the second space S45 on the other side of the other-side rotor blade 42 in the working fluid flow path S4. The other end 92 (92A) of the extraction line 9 is connected to the second space S45 from the outside in the radial direction. The working fluid (bleed air) introduced into the extraction line 9 is led to the second space S45.
図7に示される実施形態では、内側ケーシング5に抽気孔10が形成されていないため、作動流体流路S4を流れる作動流体の一部(抽気)は、第1隙間S1、軸受収容空間S3、発電機収容空間S2、抽気ライン9の順に流れる。抽気ライン9に導入された作動流体(抽気)は、第2空間S45に導かれる。
In the embodiment shown in FIG. 7, since the inner casing 5 does not have an air bleed hole 10, a portion of the working fluid (bleed air) flowing through the working fluid flow passage S4 flows in the order of the first gap S1, the bearing housing space S3, the generator housing space S2, and the bleed air line 9. The working fluid (bleed air) introduced into the bleed air line 9 is led to the second space S45.
上記の構成によれば、抽気ライン9の他端92が第2空間S45に接続された場合には、発電機3を冷却した作動流体(抽気)は、第2空間S45において他方側動翼42を通過した作動流体(主流)に混合される。この場合には、抽気をタービン動翼4に導入される主流に混合させる場合に比べて、抽気と主流の混合時における圧力損失を低減できる。
With the above configuration, when the other end 92 of the bleed line 9 is connected to the second space S45, the working fluid (bleed air) that has cooled the generator 3 is mixed with the working fluid (main flow) that has passed through the other rotor blade 42 in the second space S45. In this case, the pressure loss when the bleed air and the main flow are mixed can be reduced compared to when the bleed air is mixed with the main flow introduced into the turbine rotor blade 4.
(第1絞り部)
図8は、本開示の一実施形態に係る発電用タービン1の発電機収容空間S2及び軸受収容空間S3近傍の軸方向に沿った概略断面図である。図8では、第1絞り部A1と第2絞り部A2が描かれているが、第1絞り部A1と第2絞り部A2は、何れか一方があればよい。幾つかの実施形態に係る発電用タービン1では、図8に示されるように、上述した回転シャフト2は、上述したスラストディスク部22を有し、上述したスラストディスク部22の外周面221と、外周面221の外周側に隙間を有して対向する内側ケーシング5の内面58との間に、作動流体の流路を狭める第1絞り部A1が設けられている。 (First throttle section)
Fig. 8 is a schematic cross-sectional view along the axial direction near the generator housing space S2 and the bearing housing space S3 of thepower generation turbine 1 according to one embodiment of the present disclosure. Although the first throttling portion A1 and the second throttling portion A2 are depicted in Fig. 8, it is sufficient if either the first throttling portion A1 or the second throttling portion A2 is present. In the power generation turbine 1 according to some embodiments, as shown in Fig. 8, the rotating shaft 2 has the thrust disk portion 22, and the first throttling portion A1 that narrows the flow path of the working fluid is provided between the outer circumferential surface 221 of the thrust disk portion 22 and the inner surface 58 of the inner casing 5 that faces the outer circumferential surface 221 with a gap therebetween.
図8は、本開示の一実施形態に係る発電用タービン1の発電機収容空間S2及び軸受収容空間S3近傍の軸方向に沿った概略断面図である。図8では、第1絞り部A1と第2絞り部A2が描かれているが、第1絞り部A1と第2絞り部A2は、何れか一方があればよい。幾つかの実施形態に係る発電用タービン1では、図8に示されるように、上述した回転シャフト2は、上述したスラストディスク部22を有し、上述したスラストディスク部22の外周面221と、外周面221の外周側に隙間を有して対向する内側ケーシング5の内面58との間に、作動流体の流路を狭める第1絞り部A1が設けられている。 (First throttle section)
Fig. 8 is a schematic cross-sectional view along the axial direction near the generator housing space S2 and the bearing housing space S3 of the
上記の構成によれば、第1絞り部A1を設けることで、軸受収容空間S3の第1絞り部A1よりも上記軸方向の上記一方側と上記他方側との間に生じる差圧により、スラストディスク部22が上記他方側から上記一方側に押されるため、回転シャフト2に係るスラスト力を低減できる。発電機収容空間S2よりも抽気の流れ方向の上流側に第1絞り部A1を設けることで、発電機3のロータ31が比較的低圧場において回転するためロータ31の風損低減が図れる。
According to the above configuration, by providing the first throttling portion A1, the thrust disk portion 22 is pushed from the other side to the one side by the pressure difference generated between the one side and the other side in the axial direction of the first throttling portion A1 of the bearing housing space S3, thereby reducing the thrust force on the rotating shaft 2. By providing the first throttling portion A1 upstream of the generator housing space S2 in the flow direction of the bleed air, the rotor 31 of the generator 3 rotates in a relatively low pressure field, thereby reducing windage loss of the rotor 31.
幾つかの実施形態に係る発電用タービン1では、図8に示されるように、上述したロータ31の外周面33と、外周面33の外周側に隙間を有して対向する内側ケーシング5の内面(内周面)56Aとの間に、作動流体の流路を狭める第2絞り部A2が設けられている。
In some embodiments of the power generation turbine 1, as shown in FIG. 8, a second throttling section A2 that narrows the flow path of the working fluid is provided between the outer peripheral surface 33 of the rotor 31 and the inner surface (inner peripheral surface) 56A of the inner casing 5 that faces the outer peripheral surface 33 with a gap therebetween.
発電機3のロータ31が比較的低圧場において回転させるためには、第2絞り部A2は、上記軸方向の上記他方側に設けられることが好ましい。図示される実施形態では、第2絞り部A2は、永久磁石312よりも上記軸方向の上記他方側に設けられている。
In order for the rotor 31 of the generator 3 to rotate in a relatively low pressure field, it is preferable that the second throttling portion A2 is provided on the other side in the axial direction. In the illustrated embodiment, the second throttling portion A2 is provided on the other side in the axial direction relative to the permanent magnet 312.
上記の構成によれば、第2絞り部A2を設けることで、隙間(外周側隙間S22)の第2絞り部A2よりも上記軸方向の上記一方側と上記他方側との間に生じる差圧により、ロータ31が上記他方側から上記一方側に押されるため、回転シャフト2に係るスラスト力を低減できる。また、上記の構成によれば、第1絞り部A1を設ける場合に比べて、スラスト軸受を小さなものとすることができるため、発電用タービン1の大型化を抑制できる。
According to the above configuration, by providing the second throttling portion A2, the rotor 31 is pushed from the other side to the one side by the pressure difference generated between the one side and the other side in the axial direction through the second throttling portion A2 of the gap (outer peripheral gap S22), thereby reducing the thrust force on the rotating shaft 2. Furthermore, according to the above configuration, the thrust bearing can be made smaller than when the first throttling portion A1 is provided, thereby preventing the power generation turbine 1 from becoming larger.
幾つかの実施形態では、図1、2、6及び7に示されるように、上述した発電用タービン1の内側ケーシング5は、上述したステータ32を内周側から支持する上述したステータ支持部51を含む。上述した発電機収容空間S2は、外周側隙間S22と、内周側隙間S21と、一方側空間S23と、他方側空間S24と、を含む。外周側隙間S22は、ロータ31の外周面33と、外周面33の外周側に隙間を有して対向する内側ケーシング5の内面56Aとの間に形成される。内周側隙間S21は、ロータ31とステータ32との間に形成される。一方側空間S23は、内周側隙間S21よりも上記軸方向の上記一方側において外周側隙間S22及び内周側隙間S21に接続されている。一方側空間S23は、内側ケーシング5の発電機収容空間S2を形成する上記一方側の内面により形成されている。他方側空間S24は、内周側隙間S21よりも上記軸方向の上記他方側において内周側隙間S21に接続されている。他方側空間S24は、ロータ31とステータ支持部51により形成されている。上述した複数の貫通孔54の各々の内側開口542は、他方側空間S24に接続されている。
In some embodiments, as shown in Figures 1, 2, 6 and 7, the inner casing 5 of the power generation turbine 1 includes the stator support portion 51 that supports the stator 32 from the inner circumferential side. The generator accommodating space S2 includes an outer circumferential gap S22, an inner circumferential gap S21, a one-side space S23, and an other-side space S24. The outer circumferential gap S22 is formed between the outer circumferential surface 33 of the rotor 31 and the inner surface 56A of the inner casing 5 that faces the outer circumferential surface 33 with a gap on the outer circumferential side. The inner circumferential gap S21 is formed between the rotor 31 and the stator 32. The one-side space S23 is connected to the outer circumferential gap S22 and the inner circumferential gap S21 on the one side in the axial direction, further than the inner circumferential gap S21. The one-side space S23 is formed by the inner surface on the one side that forms the generator accommodating space S2 of the inner casing 5. The other side space S24 is connected to the inner circumferential gap S21 on the other side in the axial direction of the inner circumferential gap S21. The other side space S24 is formed by the rotor 31 and the stator support part 51. The inner opening 542 of each of the plurality of through holes 54 described above is connected to the other side space S24.
上記の構成によれば、発電機収容空間S2に導かれた作動流体(抽気)は、外周側隙間S22、一方側空間S23、内周側隙間S21、他方側空間S24の順又は逆順で通過するため、発電機収容空間S2を通過する際にロータ31及びステータ32を効果的に冷却できる。
With the above configuration, the working fluid (bleed air) introduced into the generator housing space S2 passes through the outer peripheral gap S22, the one-side space S23, the inner peripheral gap S21, and the other-side space S24 in that order or in reverse order, so that the rotor 31 and the stator 32 can be effectively cooled as they pass through the generator housing space S2.
(発電システム)
図9は、本開示の一実施形態に係る発電用タービン1を備える発電システム100の模式図である。発電システム100は、液化ガスを加熱するための熱媒体を介して、液化ガスが有する冷熱エネルギーを電力として回収するためのものである。液化ガスを気化させる際に、発電システム100に搭載される発電用タービン1により冷熱エネルギーを電力として回収する。 (Power generation system)
9 is a schematic diagram of apower generation system 100 including a power generation turbine 1 according to an embodiment of the present disclosure. The power generation system 100 is for recovering cold energy contained in the liquefied gas as electric power via a heat medium for heating the liquefied gas. When the liquefied gas is vaporized, the cold energy is recovered as electric power by the power generation turbine 1 mounted on the power generation system 100.
図9は、本開示の一実施形態に係る発電用タービン1を備える発電システム100の模式図である。発電システム100は、液化ガスを加熱するための熱媒体を介して、液化ガスが有する冷熱エネルギーを電力として回収するためのものである。液化ガスを気化させる際に、発電システム100に搭載される発電用タービン1により冷熱エネルギーを電力として回収する。 (Power generation system)
9 is a schematic diagram of a
発電システム100は、発電用タービン1と、熱媒体循環ライン101と、液化ガス供給ライン102と、凝縮器103と、加熱流体供給ライン104と、冷熱用ポンプ105と、蒸発器106と、を備える。発電用タービン1、凝縮器103、冷熱用ポンプ105、及び蒸発器106は、熱媒体循環ライン101に夫々接続されている。また、液化ガス供給ライン102は、凝縮器103に接続されている。加熱流体供給ライン104は、蒸発器106に接続されている。熱媒体循環ライン101、液化ガス供給ライン102及び加熱流体供給ライン104の夫々は、例えば管路など流体が流通する流路を含むものである。そして、熱媒体が液体や気体に状態変化をしながら熱媒体循環ライン101内を循環することで、発電システム100が駆動されるように構成されている。
The power generation system 100 includes a power generation turbine 1, a heat medium circulation line 101, a liquefied gas supply line 102, a condenser 103, a heating fluid supply line 104, a cold heat pump 105, and an evaporator 106. The power generation turbine 1, the condenser 103, the cold heat pump 105, and the evaporator 106 are each connected to the heat medium circulation line 101. The liquefied gas supply line 102 is connected to the condenser 103. The heating fluid supply line 104 is connected to the evaporator 106. Each of the heat medium circulation line 101, the liquefied gas supply line 102, and the heating fluid supply line 104 includes a flow path, such as a pipe, through which a fluid flows. The power generation system 100 is configured to be driven by the heat medium circulating in the heat medium circulation line 101 while changing its state to liquid or gas.
(熱媒体循環ライン)
熱媒体循環ライン101は、水よりも凝固点の低い熱媒体を循環させるように構成されている。以下、液化ガスの具体例として液化天然ガス(LNG)を、熱媒体循環ライン101を流れる熱媒体の具体例としてプロパンを例に挙げて説明するが、本開示は、液化天然ガス以外の液化ガス(液化水素など)も適用可能であり、また、プロパン以外の熱媒体、例えばR1234yfやR1234zeなどを熱媒体循環ライン101に流れる熱媒体とした場合にも適用可能である。 (Heat medium circulation line)
The heatmedium circulation line 101 is configured to circulate a heat medium having a lower freezing point than water. Hereinafter, liquefied natural gas (LNG) will be used as a specific example of a liquefied gas, and propane will be used as a specific example of a heat medium flowing through the heat medium circulation line 101. However, the present disclosure is also applicable to liquefied gases other than liquefied natural gas (such as liquefied hydrogen), and is also applicable to cases where a heat medium other than propane, such as R1234yf or R1234ze, is used as a heat medium flowing through the heat medium circulation line 101.
熱媒体循環ライン101は、水よりも凝固点の低い熱媒体を循環させるように構成されている。以下、液化ガスの具体例として液化天然ガス(LNG)を、熱媒体循環ライン101を流れる熱媒体の具体例としてプロパンを例に挙げて説明するが、本開示は、液化天然ガス以外の液化ガス(液化水素など)も適用可能であり、また、プロパン以外の熱媒体、例えばR1234yfやR1234zeなどを熱媒体循環ライン101に流れる熱媒体とした場合にも適用可能である。 (Heat medium circulation line)
The heat
(凝縮器)
凝縮器103は、熱媒体と液化ガスとが熱交換することで作動流体を凝縮させるように構成されている。凝縮器103の内部には、熱媒体循環ライン101に接続され熱媒体循環ライン101を循環する熱媒体が流入する加熱側管路103Aと、液化ガス供給ライン102に接続され液化ガス供給ライン102を流れる液化ガスが流入する被加熱側管路103Bが設けられている。そして、加熱側管路103Aを流れる熱媒体と被加熱側管路103Bを流れる液化ガスとが熱交換するように構成されている。凝縮器103において、熱交換により熱媒体は冷却され凝縮し、液化ガスは加熱される。 (Condenser)
Thecondenser 103 is configured to condense the working fluid by heat exchange between the heat medium and the liquefied gas. Inside the condenser 103, there are provided a heating side pipe 103A connected to the heat medium circulation line 101 and into which the heat medium circulating through the heat medium circulation line 101 flows, and a heated side pipe 103B connected to the liquefied gas supply line 102 and into which the liquefied gas flowing through the liquefied gas supply line 102 flows. The heat medium flowing through the heating side pipe 103A and the liquefied gas flowing through the heated side pipe 103B are configured to exchange heat. In the condenser 103, the heat medium is cooled and condensed by the heat exchange, and the liquefied gas is heated.
凝縮器103は、熱媒体と液化ガスとが熱交換することで作動流体を凝縮させるように構成されている。凝縮器103の内部には、熱媒体循環ライン101に接続され熱媒体循環ライン101を循環する熱媒体が流入する加熱側管路103Aと、液化ガス供給ライン102に接続され液化ガス供給ライン102を流れる液化ガスが流入する被加熱側管路103Bが設けられている。そして、加熱側管路103Aを流れる熱媒体と被加熱側管路103Bを流れる液化ガスとが熱交換するように構成されている。凝縮器103において、熱交換により熱媒体は冷却され凝縮し、液化ガスは加熱される。 (Condenser)
The
凝縮器103よりも上流側の液化ガス供給ライン102は、液化ガス用ポンプ102Aに接続され、液化ガス用ポンプ102Aのさらに上流側は液化ガス貯留装置102Bに接続されている。液化ガス用ポンプ102Aの駆動により、液化ガス貯留装置102Bに貯留されている液体状の液化ガスは、液化ガス供給ライン102に送られ、液化ガス供給ライン102を上流側から下流側に向かって流れ、凝縮器103へと供給される。
The liquefied gas supply line 102 upstream of the condenser 103 is connected to a liquefied gas pump 102A, and the further upstream side of the liquefied gas pump 102A is connected to a liquefied gas storage device 102B. When the liquefied gas pump 102A is driven, the liquid liquefied gas stored in the liquefied gas storage device 102B is sent to the liquefied gas supply line 102, flows through the liquefied gas supply line 102 from the upstream side to the downstream side, and is supplied to the condenser 103.
そして、凝縮器103の内部における熱交換により気化された液化ガスは、被加熱側管路103Bを流れた後、再び液化ガス供給ライン102を流れ、凝縮器103の下流側に設置されるエンジン(不図示)へ燃料として供給される。
Then, the liquefied gas vaporized by heat exchange inside the condenser 103 flows through the heated side pipe 103B, and then flows again through the liquefied gas supply line 102, and is supplied as fuel to an engine (not shown) installed downstream of the condenser 103.
(冷熱用ポンプ)
冷熱用ポンプ105は、凝縮器103から供給された熱媒体を昇圧するように構成されている。熱媒体循環ライン101に接続される冷熱用ポンプ105が駆動することにより、熱媒体循環ライン101を熱媒体が循環する。熱媒体は、凝縮器103から冷熱用ポンプ105へ、冷熱用ポンプ105から蒸発器106へ、蒸発器106から発電用タービン1へ、発電用タービン1から凝縮器103へと流れる。 (Heat and cold pump)
Thecold heat pump 105 is configured to boost the pressure of the heat medium supplied from the condenser 103. When the cold heat pump 105 connected to the heat medium circulation line 101 is driven, the heat medium circulates through the heat medium circulation line 101. The heat medium flows from the condenser 103 to the cold heat pump 105, from the cold heat pump 105 to the evaporator 106, from the evaporator 106 to the power generation turbine 1, and from the power generation turbine 1 to the condenser 103.
冷熱用ポンプ105は、凝縮器103から供給された熱媒体を昇圧するように構成されている。熱媒体循環ライン101に接続される冷熱用ポンプ105が駆動することにより、熱媒体循環ライン101を熱媒体が循環する。熱媒体は、凝縮器103から冷熱用ポンプ105へ、冷熱用ポンプ105から蒸発器106へ、蒸発器106から発電用タービン1へ、発電用タービン1から凝縮器103へと流れる。 (Heat and cold pump)
The
冷熱用ポンプ105は、熱媒体を昇圧できればよく、その形式は特に限定されない。例えば、ターボ形ポンプ(遠心ポンプ、斜流ポンプ、軸流ポンプなど)や容積形ポンプ(往復形ポンプ、回転形ポンプ)、特殊形ポンプ(水中モータポンプ)など、実施形態に合わせて形式を適宜選択できる。
The cold/heat pump 105 may be of any type as long as it can boost the pressure of the heat medium. For example, a turbo pump (centrifugal pump, mixed flow pump, axial flow pump, etc.), a positive displacement pump (reciprocating pump, rotary pump), a special pump (submersible motor pump), or other type may be appropriately selected according to the embodiment.
(蒸発器)
蒸発器106は、冷熱用ポンプ105により昇圧された熱媒体と、発電システム100の外部から導入された加熱流体とが熱交換することで熱媒体を蒸発させるように構成されている。蒸発器106の内部には、冷熱用ポンプ105により昇圧された熱媒体が流入し、熱媒体循環ライン101に接続される熱媒体被加熱側管路106Aと、加熱流体供給ライン104に接続され、発電システム100の外部から導入される加熱流体が流入する熱媒体加熱側管路106Bが設けられている。そして、熱媒体被加熱側管路106Aを流れる熱媒体と熱媒体加熱側管路106Bを流れる加熱流体とが熱交換するように構成されている。蒸発器106において、熱交換により熱媒体は加熱され蒸発し、加熱流体は冷却される。 (Evaporator)
Theevaporator 106 is configured to evaporate the heat medium by heat exchange between the heat medium pressurized by the cold heat pump 105 and the heating fluid introduced from outside the power generation system 100. Inside the evaporator 106, there are a heat medium heated side pipe 106A into which the heat medium pressurized by the cold heat pump 105 flows and which is connected to the heat medium circulation line 101, and a heat medium heating side pipe 106B into which the heating fluid introduced from outside the power generation system 100 flows, which is connected to the heating fluid supply line 104. The heat medium flowing through the heat medium heated side pipe 106A and the heating fluid flowing through the heat medium heating side pipe 106B are configured to exchange heat. In the evaporator 106, the heat medium is heated and evaporated by the heat exchange, and the heating fluid is cooled.
蒸発器106は、冷熱用ポンプ105により昇圧された熱媒体と、発電システム100の外部から導入された加熱流体とが熱交換することで熱媒体を蒸発させるように構成されている。蒸発器106の内部には、冷熱用ポンプ105により昇圧された熱媒体が流入し、熱媒体循環ライン101に接続される熱媒体被加熱側管路106Aと、加熱流体供給ライン104に接続され、発電システム100の外部から導入される加熱流体が流入する熱媒体加熱側管路106Bが設けられている。そして、熱媒体被加熱側管路106Aを流れる熱媒体と熱媒体加熱側管路106Bを流れる加熱流体とが熱交換するように構成されている。蒸発器106において、熱交換により熱媒体は加熱され蒸発し、加熱流体は冷却される。 (Evaporator)
The
蒸発器106よりも上流側の加熱流体供給ライン104は、加熱流体用ポンプ104Aに接続されている。加熱流体供給ライン104における加熱流体用ポンプ104Aのさらに上流側は、発電システム100の外部から加熱流体が導入されるように、加熱流体の供給源と接続されている。
The heated fluid supply line 104 upstream of the evaporator 106 is connected to a heated fluid pump 104A. The heated fluid supply line 104 further upstream of the heated fluid pump 104A is connected to a heating fluid supply source so that heated fluid can be introduced from outside the power generation system 100.
加熱流体用ポンプ104Aの駆動により、加熱流体の供給源から加熱流体が加熱流体供給ライン104に送られ、加熱流体供給ライン104を上流側から下流側に向かって流れ、蒸発器106へと供給される。そして、蒸発器106の内部における熱交換により冷却された加熱流体は、熱媒体加熱側管路106Bを流れた後、再び加熱流体供給ライン104を流れ、発電システム100の外部へ排出される。
By driving the heating fluid pump 104A, the heating fluid is sent from the heating fluid supply source to the heating fluid supply line 104, flows through the heating fluid supply line 104 from the upstream side to the downstream side, and is supplied to the evaporator 106. The heating fluid is cooled by heat exchange inside the evaporator 106, flows through the heat medium heating side pipe 106B, and then flows again through the heating fluid supply line 104, and is discharged outside the power generation system 100.
上述した「加熱流体」は、蒸発器106において熱媒として熱媒体循環ライン101を循環する熱媒体を加熱させる流体であればよく、蒸気や温水、海水や、エンジン冷却水、常温の水であってもよい。
The above-mentioned "heating fluid" may be any fluid that heats the heat medium circulating in the heat medium circulation line 101 as a heat medium in the evaporator 106, and may be steam, hot water, seawater, engine cooling water, or water at room temperature.
発電用タービン1は、蒸発器106で生成された気体状の熱媒体によって駆動されるように構成されている。発電用タービン1は上述した発電機3を有している。そして、蒸発器106で生成された気体状の熱媒体によって発電用タービン1の回転シャフト2が回転することで、発電機3を駆動するように構成されている。発電用タービン1を駆動した気体状の熱媒体は、発電用タービン1の下流側に設置される上述した凝縮器103に向かって熱媒体循環ライン101を流れる。
The power generation turbine 1 is configured to be driven by the gaseous heat medium generated in the evaporator 106. The power generation turbine 1 has the generator 3 described above. The power generation turbine 1 is configured to drive the generator 3 by rotating the rotating shaft 2 of the power generation turbine 1 with the gaseous heat medium generated in the evaporator 106. The gaseous heat medium that drives the power generation turbine 1 flows through the heat medium circulation line 101 toward the condenser 103 described above, which is installed downstream of the power generation turbine 1.
発電用タービン1は、液化ガスを加熱するための熱媒体を循環させるように構成された熱媒体循環ライン101に設けられている。この場合には、熱媒体循環ライン101を循環して発電用タービン1に導入される熱媒体は、液化ガスの冷熱エネルギーを回収することで比較的低温になっている。上記熱媒体を発電用タービン1の作動流体とすることで、発電機収容空間S2に比較的低温の作動流体が導かれるため、発電機3の冷却が効果的に行われる。
The power generation turbine 1 is provided in a heat medium circulation line 101 configured to circulate a heat medium for heating the liquefied gas. In this case, the heat medium circulating through the heat medium circulation line 101 and introduced into the power generation turbine 1 is at a relatively low temperature due to the recovery of the cold energy of the liquefied gas. By using the heat medium as the working fluid of the power generation turbine 1, a relatively low-temperature working fluid is introduced into the generator housing space S2, so that the generator 3 is effectively cooled.
本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。 In this specification, expressions expressing relative or absolute configuration, such as "in a certain direction,""along a certain direction,""parallel,""orthogonal,""center,""concentric," or "coaxial," do not only strictly represent such a configuration, but also represent a state in which there is a relative displacement with a tolerance or an angle or distance to the extent that the same function is obtained.
For example, expressions indicating that things are in an equal state, such as "identical,""equal," and "homogeneous," not only indicate a state of strict equality, but also indicate a state in which there is a tolerance or a difference to the extent that the same function is obtained.
Furthermore, in this specification, expressions describing shapes such as a rectangular shape or a cylindrical shape do not only refer to shapes such as a rectangular shape or a cylindrical shape in the strict geometric sense, but also refer to shapes that include uneven portions, chamfered portions, etc., to the extent that the same effect can be obtained.
In addition, in this specification, the expressions "comprise,""include," or "have" a certain element are not exclusive expressions that exclude the presence of other elements.
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。 In this specification, expressions expressing relative or absolute configuration, such as "in a certain direction,""along a certain direction,""parallel,""orthogonal,""center,""concentric," or "coaxial," do not only strictly represent such a configuration, but also represent a state in which there is a relative displacement with a tolerance or an angle or distance to the extent that the same function is obtained.
For example, expressions indicating that things are in an equal state, such as "identical,""equal," and "homogeneous," not only indicate a state of strict equality, but also indicate a state in which there is a tolerance or a difference to the extent that the same function is obtained.
Furthermore, in this specification, expressions describing shapes such as a rectangular shape or a cylindrical shape do not only refer to shapes such as a rectangular shape or a cylindrical shape in the strict geometric sense, but also refer to shapes that include uneven portions, chamfered portions, etc., to the extent that the same effect can be obtained.
In addition, in this specification, the expressions "comprise,""include," or "have" a certain element are not exclusive expressions that exclude the presence of other elements.
本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
This disclosure is not limited to the above-described embodiments, but also includes modifications to the above-described embodiments and appropriate combinations of these embodiments.
上述した幾つかの実施形態に記載の内容は、例えば以下のように把握されるものである。
The contents described in the above-mentioned embodiments can be understood, for example, as follows:
1)本開示の少なくとも一実施形態に係る発電用タービン(1)は、
回転シャフト(2)と、
前記回転シャフト(2)の軸方向の一方側に設けられるロータ(31)及び前記ロータ(31)の内周側に配置されるステータ(32)を含む発電機(3)と、
前記発電機(3)よりも前記回転シャフト(2)の前記軸方向の他方側に設けられる少なくとも1つのタービン動翼(4)と、
前記回転シャフト(2)を回転可能に収容するように構成された内側ケーシング(5)であって、前記少なくとも1つのタービン動翼(4)のディスク部(43)に第1隙間(S1)を有して対向する対向面(52)を有し、前記第1隙間(S1)に連通して前記発電機(3)を収容する発電機収容空間(S2)を形成する内側ケーシング(5)と、
前記内側ケーシング(5)の外周側に配置され、前記内側ケーシング(5)との間に前記第1隙間(S1)に連通して前記タービン動翼(4)の作動流体が流れる作動流体流路(S4)を形成する外側ケーシング(6)と、を備え、
前記内側ケーシング(5)は、前記作動流体流路(S4)を形成する外面(55)に形成された外側開口(541)及び前記発電機収容空間(S2)を形成する内面(56)に形成された内側開口(542)を有する少なくとも1つの貫通孔(54)が形成された。 1) A power generating turbine (1) according to at least one embodiment of the present disclosure comprises:
A rotating shaft (2);
a generator (3) including a rotor (31) provided on one side of the rotating shaft (2) in the axial direction and a stator (32) arranged on an inner peripheral side of the rotor (31);
At least one turbine blade (4) provided on the other side of the rotating shaft (2) in the axial direction relative to the generator (3);
an inner casing (5) configured to rotatably accommodate the rotating shaft (2), the inner casing (5) having an opposing surface (52) opposing a disk portion (43) of the at least one turbine rotor blade (4) with a first gap (S1) therebetween, the inner casing (5) forming a generator accommodating space (S2) communicating with the first gap (S1) and accommodating the generator (3);
an outer casing (6) disposed on an outer circumferential side of the inner casing (5) and communicating with the first gap (S1) between the outer casing (6) and the inner casing (5) to form a working fluid flow path (S4) through which a working fluid of the turbine rotor blades (4) flows,
The inner casing (5) is formed with at least one through hole (54) having an outer opening (541) formed in an outer surface (55) forming the working fluid flow path (S4) and an inner opening (542) formed in an inner surface (56) forming the generator accommodating space (S2).
回転シャフト(2)と、
前記回転シャフト(2)の軸方向の一方側に設けられるロータ(31)及び前記ロータ(31)の内周側に配置されるステータ(32)を含む発電機(3)と、
前記発電機(3)よりも前記回転シャフト(2)の前記軸方向の他方側に設けられる少なくとも1つのタービン動翼(4)と、
前記回転シャフト(2)を回転可能に収容するように構成された内側ケーシング(5)であって、前記少なくとも1つのタービン動翼(4)のディスク部(43)に第1隙間(S1)を有して対向する対向面(52)を有し、前記第1隙間(S1)に連通して前記発電機(3)を収容する発電機収容空間(S2)を形成する内側ケーシング(5)と、
前記内側ケーシング(5)の外周側に配置され、前記内側ケーシング(5)との間に前記第1隙間(S1)に連通して前記タービン動翼(4)の作動流体が流れる作動流体流路(S4)を形成する外側ケーシング(6)と、を備え、
前記内側ケーシング(5)は、前記作動流体流路(S4)を形成する外面(55)に形成された外側開口(541)及び前記発電機収容空間(S2)を形成する内面(56)に形成された内側開口(542)を有する少なくとも1つの貫通孔(54)が形成された。 1) A power generating turbine (1) according to at least one embodiment of the present disclosure comprises:
A rotating shaft (2);
a generator (3) including a rotor (31) provided on one side of the rotating shaft (2) in the axial direction and a stator (32) arranged on an inner peripheral side of the rotor (31);
At least one turbine blade (4) provided on the other side of the rotating shaft (2) in the axial direction relative to the generator (3);
an inner casing (5) configured to rotatably accommodate the rotating shaft (2), the inner casing (5) having an opposing surface (52) opposing a disk portion (43) of the at least one turbine rotor blade (4) with a first gap (S1) therebetween, the inner casing (5) forming a generator accommodating space (S2) communicating with the first gap (S1) and accommodating the generator (3);
an outer casing (6) disposed on an outer circumferential side of the inner casing (5) and communicating with the first gap (S1) between the outer casing (6) and the inner casing (5) to form a working fluid flow path (S4) through which a working fluid of the turbine rotor blades (4) flows,
The inner casing (5) is formed with at least one through hole (54) having an outer opening (541) formed in an outer surface (55) forming the working fluid flow path (S4) and an inner opening (542) formed in an inner surface (56) forming the generator accommodating space (S2).
上記1)の構成によれば、回転シャフト(2)の他方側に設けられる発電機(3)をアウターロータ型にすることで、インナーロータ型にした場合に比べて、高出力密度化が図れ、発電機(3)及び発電機収容空間(S2)の径方向における大きさを小さくできる。これにより、発電機収容空間(S2)の外周側に形成される作動流体流路(S4)が径方向の比較的内側に配置できるため、発電用タービン(1)の大型化を抑制できる。
According to the configuration of 1) above, by making the generator (3) provided on the other side of the rotating shaft (2) an outer rotor type, a higher power density can be achieved and the radial size of the generator (3) and the generator housing space (S2) can be reduced compared to when it is an inner rotor type. This allows the working fluid flow path (S4) formed on the outer periphery of the generator housing space (S2) to be positioned relatively radially inward, thereby preventing the power generation turbine (1) from becoming too large.
また、上記1)の構成によれば、第1隙間(S1)及び貫通孔(54)を介して作動流体流路(S4)を流れる作動流体の一部を発電機収容空間(S2)に抽気し、発電機(3)を冷却させた後に発電機収容空間(S2)から排出できる。このような簡単な構造によって、発電機(3)を冷却できるため、発電用タービン(1)の複雑化を抑制できる。
Furthermore, according to the configuration of 1) above, a portion of the working fluid flowing through the working fluid passage (S4) can be bled into the generator housing space (S2) via the first gap (S1) and the through hole (54), and can be discharged from the generator housing space (S2) after cooling the generator (3). Since the generator (3) can be cooled by such a simple structure, the complexity of the power generation turbine (1) can be suppressed.
2)幾つかの実施形態では、上記1)に記載の発電用タービン(1)であって、
前記軸方向の前記発電機(3)と前記少なくとも1つのタービン動翼(4)との間に配置され、前記回転シャフト(2)を回転可能に支持するように構成された少なくとも1つの磁気軸受(7)をさらに含み、
前記内側ケーシング(5)は、前記軸方向の前記発電機収容空間(S2)と前記第1隙間(S1)との間に、前記発電機収容空間(S2)及び前記第1隙間(S1)に接続されて前記回転シャフト(2)及び前記少なくとも1つの磁気軸受(7)を収容する軸受収容空間(S3)が形成された。 2) In some embodiments, the power generating turbine (1) according to 1) above,
at least one magnetic bearing (7) arranged between the generator (3) and the at least one turbine blade (4) in the axial direction and configured to rotatably support the rotating shaft (2);
The inner casing (5) is formed between the generator accommodating space (S2) and the first gap (S1) in the axial direction, and a bearing accommodating space (S3) is formed which is connected to the generator accommodating space (S2) and the first gap (S1) and accommodates the rotating shaft (2) and the at least one magnetic bearing (7).
前記軸方向の前記発電機(3)と前記少なくとも1つのタービン動翼(4)との間に配置され、前記回転シャフト(2)を回転可能に支持するように構成された少なくとも1つの磁気軸受(7)をさらに含み、
前記内側ケーシング(5)は、前記軸方向の前記発電機収容空間(S2)と前記第1隙間(S1)との間に、前記発電機収容空間(S2)及び前記第1隙間(S1)に接続されて前記回転シャフト(2)及び前記少なくとも1つの磁気軸受(7)を収容する軸受収容空間(S3)が形成された。 2) In some embodiments, the power generating turbine (1) according to 1) above,
at least one magnetic bearing (7) arranged between the generator (3) and the at least one turbine blade (4) in the axial direction and configured to rotatably support the rotating shaft (2);
The inner casing (5) is formed between the generator accommodating space (S2) and the first gap (S1) in the axial direction, and a bearing accommodating space (S3) is formed which is connected to the generator accommodating space (S2) and the first gap (S1) and accommodates the rotating shaft (2) and the at least one magnetic bearing (7).
上記2)の構成によれば、発電機収容空間(S2)と第1隙間(S1)は、潤滑油が不要な磁気軸受(7)を収容する軸受収容空間(S3)を通じて、作動流体(抽気)の流通が可能である。この場合には、発電機収容空間(S2)と第1隙間(S1)との間で作動流体の流通させるための流路を別途設ける必要がないため、発電用タービン(1)の大型化、複雑化を抑制できる。
According to the configuration of 2) above, the generator housing space (S2) and the first gap (S1) can allow the working fluid (bleed air) to flow through the bearing housing space (S3), which houses the magnetic bearing (7) that does not require lubrication. In this case, there is no need to provide a separate flow path for the working fluid to flow between the generator housing space (S2) and the first gap (S1), which prevents the power generation turbine (1) from becoming larger and more complicated.
3)幾つかの実施形態では、上記2)に記載の発電用タービン(1)であって、
前記作動流体は、前記作動流体流路(S4)を前記軸方向の前記他方側から前記一方側に向かって流れるように構成された。 3) In some embodiments, the power generating turbine (1) according to 2) above,
The working fluid is configured to flow through the working fluid flow path (S4) from the other side to the one side in the axial direction.
前記作動流体は、前記作動流体流路(S4)を前記軸方向の前記他方側から前記一方側に向かって流れるように構成された。 3) In some embodiments, the power generating turbine (1) according to 2) above,
The working fluid is configured to flow through the working fluid flow path (S4) from the other side to the one side in the axial direction.
上記3)の構成によれば、タービン動翼(4)を通過した作動流体の一部を、第1隙間(S1)を通じて発電機収容空間(S2)に流入させることができる。発電機収容空間(S2)に流入する作動流体は、タービン動翼(4)を通過する際に膨張して温度低下しているため、該作動流体により発電機(3)を効果的に冷却できる。
According to the configuration of 3) above, a portion of the working fluid that has passed through the turbine rotor blades (4) can be made to flow into the generator housing space (S2) through the first gap (S1). The working fluid that flows into the generator housing space (S2) expands and has a lowered temperature as it passes through the turbine rotor blades (4), so the generator (3) can be effectively cooled by the working fluid.
4)幾つかの実施形態では、上記2)に記載の発電用タービン(1)であって、
前記作動流体は、前記作動流体流路(S4)を前記軸方向の前記一方側から前記他方側に向かって流れるように構成された。 4) In some embodiments, the power generating turbine (1) according to 2) above,
The working fluid is configured to flow through the working fluid flow path (S4) from the one side to the other side in the axial direction.
前記作動流体は、前記作動流体流路(S4)を前記軸方向の前記一方側から前記他方側に向かって流れるように構成された。 4) In some embodiments, the power generating turbine (1) according to 2) above,
The working fluid is configured to flow through the working fluid flow path (S4) from the one side to the other side in the axial direction.
上記4)の構成によれば、タービン動翼(4)に導入前の作動流体の一部を、貫通孔(54)を通じて発電機収容空間(S2)に流入させることで、発電機(3)を冷却できる。そして、発電機(3)から熱エネルギーを回収してエンタルピーが増大した作動流体を、第1隙間(S1)を通じてタービン動翼(4)に導入される作動流体に混合させることで、タービン動翼(4)における回収動力を増大でき、発電用タービン(1)の出力を増加させることができる。
According to the configuration of 4) above, the generator (3) can be cooled by allowing a portion of the working fluid before being introduced into the turbine rotor blades (4) to flow into the generator housing space (S2) through the through hole (54). Then, by mixing the working fluid with increased enthalpy as a result of recovering thermal energy from the generator (3) with the working fluid introduced into the turbine rotor blades (4) through the first gap (S1), the recovered power in the turbine rotor blades (4) can be increased, and the output of the power-generating turbine (1) can be increased.
5)幾つかの実施形態では、上記3)に記載の発電用タービン(1)であって、
前記作動流体流路(S4)における前記少なくとも1つのタービン動翼(4)よりも前記軸方向の前記一方側に設けられる圧力損失を生じさせる抵抗体(12)であって、前記抵抗体(12)と前記少なくとも1つのタービン動翼(4)との間における前記作動流体流路の圧力を、前記軸受収容空間(S3)の圧力よりも大きくするための抵抗体(12)をさらに備える。 5) In some embodiments, the power generating turbine (1) according to 3) above,
The rotor blade (4) is provided with a resistor (12) for generating a pressure loss, the resistor (12) being provided on one side of the at least one turbine blade (4) in the axial direction in the working fluid flow path (S4), and for making the pressure in the working fluid flow path between the resistor (12) and the at least one turbine blade (4) greater than the pressure in the bearing accommodating space (S3).
前記作動流体流路(S4)における前記少なくとも1つのタービン動翼(4)よりも前記軸方向の前記一方側に設けられる圧力損失を生じさせる抵抗体(12)であって、前記抵抗体(12)と前記少なくとも1つのタービン動翼(4)との間における前記作動流体流路の圧力を、前記軸受収容空間(S3)の圧力よりも大きくするための抵抗体(12)をさらに備える。 5) In some embodiments, the power generating turbine (1) according to 3) above,
The rotor blade (4) is provided with a resistor (12) for generating a pressure loss, the resistor (12) being provided on one side of the at least one turbine blade (4) in the axial direction in the working fluid flow path (S4), and for making the pressure in the working fluid flow path between the resistor (12) and the at least one turbine blade (4) greater than the pressure in the bearing accommodating space (S3).
上記5)の構成によれば、作動流体流路(S4)に抵抗体(12)を設け、抵抗体(12)とタービン動翼(4)との間における作動流体流路の圧力を、軸受収容空間(S3)の圧力よりも大きくすることで、圧力差により第1隙間(S1)を通じて発電機収容空間(S2)に作動流体を導くことや、貫通孔(54)を通じて発電機収容空間(S2)から作動流体を排出することができる。この場合には、発電機収容空間(S2)に作動流体を流通させるためのファン等を別途設ける必要がないため、発電用タービン(1)の機器点数の増加を抑制できるとともに、発電用タービン(1)の消費電力の増加も抑制できる。
According to the configuration of 5) above, a resistor (12) is provided in the working fluid flow path (S4) and the pressure of the working fluid flow path between the resistor (12) and the turbine rotor blades (4) is made higher than the pressure in the bearing housing space (S3), so that the working fluid can be guided to the generator housing space (S2) through the first gap (S1) by the pressure difference, and the working fluid can be discharged from the generator housing space (S2) through the through hole (54). In this case, since there is no need to separately provide a fan or the like for circulating the working fluid in the generator housing space (S2), it is possible to suppress an increase in the number of pieces of equipment in the power generation turbine (1) and also suppress an increase in the power consumption of the power generation turbine (1).
6)幾つかの実施形態では、上記4)に記載の発電用タービン(1)であって、
前記内側ケーシング(5)の前記対向面(52)に対して前記第1隙間(S1)を介して対向する前記少なくとも1つのタービン動翼(4)の前記ディスク部(43)は、前記軸方向に貫通する第1バランスホール(48)を有し、
前記第1バランスホール(48)は、前記軸受収容空間(S3)から前記第1隙間(S1)に導かれた前記作動流体が流入するように構成された。 6) In some embodiments, the power generating turbine (1) according to 4) above,
the disk portion (43) of the at least one turbine rotor blade (4) facing the opposing surface (52) of the inner casing (5) across the first gap (S1) has a first balance hole (48) penetrating therethrough in the axial direction,
The first balance hole (48) is configured so that the working fluid introduced from the bearing accommodating space (S3) to the first gap (S1) flows into it.
前記内側ケーシング(5)の前記対向面(52)に対して前記第1隙間(S1)を介して対向する前記少なくとも1つのタービン動翼(4)の前記ディスク部(43)は、前記軸方向に貫通する第1バランスホール(48)を有し、
前記第1バランスホール(48)は、前記軸受収容空間(S3)から前記第1隙間(S1)に導かれた前記作動流体が流入するように構成された。 6) In some embodiments, the power generating turbine (1) according to 4) above,
the disk portion (43) of the at least one turbine rotor blade (4) facing the opposing surface (52) of the inner casing (5) across the first gap (S1) has a first balance hole (48) penetrating therethrough in the axial direction,
The first balance hole (48) is configured so that the working fluid introduced from the bearing accommodating space (S3) to the first gap (S1) flows into it.
上記6)の構成によれば、軸受収容空間(S3)から第1隙間(S1)に導かれた作動流体(抽気)は、第1バランスホール(48)を通過することで、第1バランスホール(48)が形成されたタービン動翼(4)よりも作動流体の流れ方向の下流側において、第1バランスホール(48)が形成されたタービン動翼(4)を通過した作動流体(主流)に混合される。この場合には、軸受収容空間(S3)から第1隙間(S1)に導かれた作動流体(抽気)を、第1隙間(S1)を通じてタービン動翼(4)に導入される作動流体に混合させる場合に比べて、抽気と主流の混合時における圧力損失を低減できる。
According to the configuration of 6) above, the working fluid (bleed air) guided from the bearing housing space (S3) to the first gap (S1) passes through the first balance hole (48) and is mixed with the working fluid (main flow) that has passed through the turbine rotor blade (4) in which the first balance hole (48) is formed, downstream of the turbine rotor blade (4) in which the first balance hole (48) is formed in the flow direction of the working fluid. In this case, the pressure loss when the bleed air and the main flow are mixed can be reduced compared to the case where the working fluid (bleed air) guided from the bearing housing space (S3) to the first gap (S1) is mixed with the working fluid introduced into the turbine rotor blade (4) through the first gap (S1).
7)幾つかの実施形態では、上記6)に記載の発電用タービン(1)であって、
前記少なくとも1つのタービン動翼(4)は、
前記第1バランスホール(48)を有する一方側動翼(41)と、
前記一方側動翼(41)よりも前記軸方向の前記他方側に設けられる他方側動翼(42)と、を含み、
前記他方側動翼(42)のディスク部(45)は、前記軸方向に貫通する第2バランスホール(49)を有し、
前記第2バランスホール(49)は、前記第1バランスホール(48)よりも前記回転シャフト(2)の径方向における外側に形成され、前記第1バランスホール(48)を通過した前記作動流体が流入するように構成された。 7) In some embodiments, the power generating turbine (1) according to 6) above,
The at least one turbine blade (4) comprises:
A blade (41) on one side having the first balance hole (48);
a second rotor blade (42) provided on the second side in the axial direction relative to the first rotor blade (41),
The disk portion (45) of the other rotor blade (42) has a second balance hole (49) penetrating therethrough in the axial direction,
The second balance hole (49) is formed radially outward of the rotating shaft (2) relative to the first balance hole (48) and is configured so that the working fluid that has passed through the first balance hole (48) flows into the second balance hole (49).
前記少なくとも1つのタービン動翼(4)は、
前記第1バランスホール(48)を有する一方側動翼(41)と、
前記一方側動翼(41)よりも前記軸方向の前記他方側に設けられる他方側動翼(42)と、を含み、
前記他方側動翼(42)のディスク部(45)は、前記軸方向に貫通する第2バランスホール(49)を有し、
前記第2バランスホール(49)は、前記第1バランスホール(48)よりも前記回転シャフト(2)の径方向における外側に形成され、前記第1バランスホール(48)を通過した前記作動流体が流入するように構成された。 7) In some embodiments, the power generating turbine (1) according to 6) above,
The at least one turbine blade (4) comprises:
A blade (41) on one side having the first balance hole (48);
a second rotor blade (42) provided on the second side in the axial direction relative to the first rotor blade (41),
The disk portion (45) of the other rotor blade (42) has a second balance hole (49) penetrating therethrough in the axial direction,
The second balance hole (49) is formed radially outward of the rotating shaft (2) relative to the first balance hole (48) and is configured so that the working fluid that has passed through the first balance hole (48) flows into the second balance hole (49).
上記7)の構成によれば、第1バランスホール(48)を通過した作動流体(抽気)は、回転シャフト(2)の回転により回転シャフト(2)の径方向における外側に向かって押し出される。第2バランスホール(49)を、第1バランスホール(48)よりも回転シャフト(2)の径方向における外側に形成することで、第1バランスホール(48)を通過した作動流体(抽気)が第2バランスホール(49)に流入し易くなっている。軸受収容空間(S3)から第1隙間(S1)に導かれた作動流体(抽気)を、第1バランスホール(48)だけでなく第2バランスホール(49)も通過させることで、抽気と主流の混合時における圧力損失のさらなる低減が図れる。
According to the configuration of 7) above, the working fluid (bleed air) that has passed through the first balance hole (48) is pushed outward in the radial direction of the rotating shaft (2) by the rotation of the rotating shaft (2). By forming the second balance hole (49) further outward in the radial direction of the rotating shaft (2) than the first balance hole (48), the working fluid (bleed air) that has passed through the first balance hole (48) is more likely to flow into the second balance hole (49). By passing the working fluid (bleed air) guided from the bearing accommodation space (S3) to the first gap (S1) through not only the first balance hole (48) but also the second balance hole (49), the pressure loss when the bleed air and the main flow are mixed can be further reduced.
8)幾つかの実施形態では、上記4)に記載の発電用タービン(1)であって、
前記少なくとも1つの貫通孔(54)の前記外側開口(541)に一端(91)が接続された抽気ライン(9)をさらに備える。 8) In some embodiments, the power generating turbine (1) according to 4) above,
The at least one through hole (54) further includes a bleed line (9) having one end (91) connected to the outer opening (541) of the at least one through hole (54).
前記少なくとも1つの貫通孔(54)の前記外側開口(541)に一端(91)が接続された抽気ライン(9)をさらに備える。 8) In some embodiments, the power generating turbine (1) according to 4) above,
The at least one through hole (54) further includes a bleed line (9) having one end (91) connected to the outer opening (541) of the at least one through hole (54).
上記8)の構成によれば、抽気ライン(9)の一端(91)を少なくとも1つの貫通孔(54)の外側開口(541)に接続することで、発電機(3)から熱エネルギーを回収してエンタルピーが増大した作動流体(抽気)を、抽気ライン(9)により回収でき、回収した作動流体(抽気)のエンタルピーを多様な用途に利用できる。
According to the configuration of 8) above, by connecting one end (91) of the bleed line (9) to the outer opening (541) of at least one through hole (54), the working fluid (bleed air) with increased enthalpy as a result of recovering thermal energy from the generator (3) can be recovered by the bleed line (9), and the enthalpy of the recovered working fluid (bleed air) can be used for a variety of purposes.
9)幾つかの実施形態では、上記8)に記載の発電用タービン(1)であって、
であって、
前記回転シャフト(2)は、前記軸受収容空間(S3)において前記回転シャフト(2)の径方向外側に突出するスラストディスク部(22)を有し、
前記少なくとも1つの磁気軸受(7)は、前記スラストディスク部(22)よりも前記回転シャフト(2)の前記軸方向の前記他方側に配置され、前記スラストディスク部(22)との間に隙間を有して対向する他方側スラスト軸受(72)を含み、
前記内側ケーシング(5)は、前記軸受収容空間(S3)の外周側に前記作動流体流路(S4)を形成する外周面(53)に形成された外側開口(10A)、及び前記他方側スラスト軸受(72)よりも前記軸方向の前記他方側において前記軸受収容空間(S3)を形成する内面(57)に形成された内側開口(10B)、を有する少なくとも1つの抽気孔(10)が形成された。 9) In some embodiments, the power generating turbine (1) according to 8) above,
And,
The rotating shaft (2) has a thrust disk portion (22) protruding radially outward of the rotating shaft (2) in the bearing accommodating space (S3),
the at least one magnetic bearing (7) includes a second-side thrust bearing (72) that is disposed on the second side in the axial direction of the rotating shaft (2) relative to the thrust disk portion (22) and faces the thrust disk portion (22) with a gap therebetween;
The inner casing (5) is formed with at least one bleed hole (10) having an outer opening (10A) formed in an outer peripheral surface (53) which forms the working fluid flow path (S4) on the outer peripheral side of the bearing accommodating space (S3), and an inner opening (10B) formed in an inner surface (57) which forms the bearing accommodating space (S3) on the other side in the axial direction relative to the other-side thrust bearing (72).
であって、
前記回転シャフト(2)は、前記軸受収容空間(S3)において前記回転シャフト(2)の径方向外側に突出するスラストディスク部(22)を有し、
前記少なくとも1つの磁気軸受(7)は、前記スラストディスク部(22)よりも前記回転シャフト(2)の前記軸方向の前記他方側に配置され、前記スラストディスク部(22)との間に隙間を有して対向する他方側スラスト軸受(72)を含み、
前記内側ケーシング(5)は、前記軸受収容空間(S3)の外周側に前記作動流体流路(S4)を形成する外周面(53)に形成された外側開口(10A)、及び前記他方側スラスト軸受(72)よりも前記軸方向の前記他方側において前記軸受収容空間(S3)を形成する内面(57)に形成された内側開口(10B)、を有する少なくとも1つの抽気孔(10)が形成された。 9) In some embodiments, the power generating turbine (1) according to 8) above,
And,
The rotating shaft (2) has a thrust disk portion (22) protruding radially outward of the rotating shaft (2) in the bearing accommodating space (S3),
the at least one magnetic bearing (7) includes a second-side thrust bearing (72) that is disposed on the second side in the axial direction of the rotating shaft (2) relative to the thrust disk portion (22) and faces the thrust disk portion (22) with a gap therebetween;
The inner casing (5) is formed with at least one bleed hole (10) having an outer opening (10A) formed in an outer peripheral surface (53) which forms the working fluid flow path (S4) on the outer peripheral side of the bearing accommodating space (S3), and an inner opening (10B) formed in an inner surface (57) which forms the bearing accommodating space (S3) on the other side in the axial direction relative to the other-side thrust bearing (72).
上記9)の構成によれば、タービン動翼(4)に導入される作動流体の一部を、第1隙間(S1)よりも作動流路の流れ方向における上流側に位置する抽気孔(10)を通じて発電機収容空間(S2)に流入させることができる。この場合には、発電機収容空間(S2)を上記軸方向の上記他方側から上記一方側に流れる作動流体(抽気)により、スラストディスク部(22)が上記他方側から上記一方側に押されるため、回転シャフト(2)に係るスラスト力を低減できる。
According to the configuration of 9) above, a portion of the working fluid introduced into the turbine rotor blades (4) can be made to flow into the generator housing space (S2) through the bleed hole (10) located upstream of the first gap (S1) in the flow direction of the working flow passage. In this case, the thrust disk portion (22) is pushed from the other side to the one side by the working fluid (bleed air) flowing through the generator housing space (S2) from the other side to the one side in the axial direction, thereby reducing the thrust force applied to the rotating shaft (2).
10)幾つかの実施形態では、上記9)に記載の発電用タービン(1)であって、
前記少なくとも1つのタービン動翼(4)は、
一方側動翼(41)と、
前記一方側動翼(41)よりも前記軸方向の前記他方側に設けられる他方側動翼(42)と、を含み、
前記発電用タービン(1)は、
前記一方側動翼(41)及び前記第1隙間(S1)よりも前記軸方向の前記一方側に配置される一方側静翼(81A)をさらに備え、
前記抽気ライン(9)の他端(92)は、前記作動流体流路(S4)における、前記一方側静翼(81A)と前記一方側動翼(41)との間の第1空間(S44)、又は、前記他方側動翼(42)よりも前記他方側の第2空間(S45)、の何れかに接続された。 10) In some embodiments, the power generating turbine (1) according to 9) above,
The at least one turbine blade (4) comprises:
One rotor blade (41),
a second rotor blade (42) provided on the second side in the axial direction relative to the first rotor blade (41),
The power generating turbine (1) comprises:
a one-side stator vane (81A) arranged on the one side in the axial direction relative to the one-side rotor blade (41) and the first gap (S1),
The other end (92) of the extraction line (9) is connected to either a first space (S44) between the one-side stator vane (81A) and the one-side rotor blade (41) in the working fluid flow path (S4), or a second space (S45) on the other side of the other-side rotor blade (42).
前記少なくとも1つのタービン動翼(4)は、
一方側動翼(41)と、
前記一方側動翼(41)よりも前記軸方向の前記他方側に設けられる他方側動翼(42)と、を含み、
前記発電用タービン(1)は、
前記一方側動翼(41)及び前記第1隙間(S1)よりも前記軸方向の前記一方側に配置される一方側静翼(81A)をさらに備え、
前記抽気ライン(9)の他端(92)は、前記作動流体流路(S4)における、前記一方側静翼(81A)と前記一方側動翼(41)との間の第1空間(S44)、又は、前記他方側動翼(42)よりも前記他方側の第2空間(S45)、の何れかに接続された。 10) In some embodiments, the power generating turbine (1) according to 9) above,
The at least one turbine blade (4) comprises:
One rotor blade (41),
a second rotor blade (42) provided on the second side in the axial direction relative to the first rotor blade (41),
The power generating turbine (1) comprises:
a one-side stator vane (81A) arranged on the one side in the axial direction relative to the one-side rotor blade (41) and the first gap (S1),
The other end (92) of the extraction line (9) is connected to either a first space (S44) between the one-side stator vane (81A) and the one-side rotor blade (41) in the working fluid flow path (S4), or a second space (S45) on the other side of the other-side rotor blade (42).
上記10)の構成によれば、抽気ライン(9)の他端(92)が第1空間(S44)に接続された場合には、発電機(3)から熱エネルギーを回収してエンタルピーが増大した作動流体(抽気)を、抽気ライン(9)を通じて第1空間(S44)においてタービン動翼(4)に導入される作動流体(主流)に混合させることで、タービン動翼(4)における回収動力を増大でき、発電用タービン(1)の出力を増加させることができる。
According to the configuration of 10) above, when the other end (92) of the extraction line (9) is connected to the first space (S44), the working fluid (extracted air) with increased enthalpy as a result of recovering thermal energy from the generator (3) is mixed with the working fluid (main flow) introduced into the turbine rotor blades (4) in the first space (S44) through the extraction line (9), thereby increasing the power recovery in the turbine rotor blades (4) and increasing the output of the power generating turbine (1).
また、上記10)の構成によれば、抽気ライン(9)の他端(92)が第2空間(S45)に接続された場合には、発電機(3)を冷却した作動流体(抽気)は、第2空間(S45)において他方側動翼(42)を通過した作動流体(主流)に混合される。この場合には、抽気をタービン動翼(4)に導入される主流に混合させる場合に比べて、抽気と主流の混合時における圧力損失を低減できる。
Furthermore, according to the configuration of 10) above, when the other end (92) of the bleed line (9) is connected to the second space (S45), the working fluid (bleed air) that has cooled the generator (3) is mixed with the working fluid (main flow) that has passed through the other rotor blade (42) in the second space (S45). In this case, the pressure loss when the bleed air and the main flow are mixed can be reduced compared to when the bleed air is mixed with the main flow introduced into the turbine rotor blade (4).
11)幾つかの実施形態では、上記8)に記載の発電用タービン(1)であって、
前記少なくとも1つのタービン動翼(4)は、
一方側動翼(41)と、
前記一方側動翼(41)よりも前記軸方向の前記他方側に設けられる他方側動翼(42)と、を含み、
前記発電用タービン(1)は、
前記一方側動翼(41)及び前記第1隙間(S1)よりも前記軸方向の前記一方側に配置される一方側静翼(81A)をさらに備え、
前記抽気ライン(9)の他端(92)は、前記作動流体流路(S4)における、前記他方側動翼(42)よりも前記他方側の第2空間(S45)に接続された。 11) In some embodiments, the power generating turbine (1) according to 8) above,
The at least one turbine blade (4) comprises:
One rotor blade (41),
a second rotor blade (42) provided on the second side in the axial direction relative to the first rotor blade (41),
The power generating turbine (1) comprises:
a one-side stator vane (81A) arranged on the one side in the axial direction relative to the one-side rotor blade (41) and the first gap (S1),
The other end (92) of the extraction line (9) is connected to a second space (S45) on the other side of the other rotor blade (42) in the working fluid flow path (S4).
前記少なくとも1つのタービン動翼(4)は、
一方側動翼(41)と、
前記一方側動翼(41)よりも前記軸方向の前記他方側に設けられる他方側動翼(42)と、を含み、
前記発電用タービン(1)は、
前記一方側動翼(41)及び前記第1隙間(S1)よりも前記軸方向の前記一方側に配置される一方側静翼(81A)をさらに備え、
前記抽気ライン(9)の他端(92)は、前記作動流体流路(S4)における、前記他方側動翼(42)よりも前記他方側の第2空間(S45)に接続された。 11) In some embodiments, the power generating turbine (1) according to 8) above,
The at least one turbine blade (4) comprises:
One rotor blade (41),
a second rotor blade (42) provided on the second side in the axial direction relative to the first rotor blade (41),
The power generating turbine (1) comprises:
a one-side stator vane (81A) arranged on the one side in the axial direction relative to the one-side rotor blade (41) and the first gap (S1),
The other end (92) of the extraction line (9) is connected to a second space (S45) on the other side of the other rotor blade (42) in the working fluid flow path (S4).
上記11)の構成によれば、抽気ライン(9)の他端(92)が第2空間(S45)に接続された場合には、発電機(3)を冷却した作動流体(抽気)は、第2空間(S45)において他方側動翼(42)を通過した作動流体(主流)に混合される。この場合には、抽気をタービン動翼(4)に導入される主流に混合させる場合に比べて、抽気と主流の混合時における圧力損失を低減できる。
According to the configuration of 11) above, when the other end (92) of the bleed line (9) is connected to the second space (S45), the working fluid (bleed air) that has cooled the generator (3) is mixed with the working fluid (main flow) that has passed through the other rotor blade (42) in the second space (S45). In this case, the pressure loss when the bleed air and the main flow are mixed can be reduced compared to when the bleed air is mixed with the main flow introduced into the turbine rotor blade (4).
12)幾つかの実施形態では、上記8)から11)までの何れかに記載の発電用タービン(1)であって、
前記回転シャフト(2)は、前記軸受収容空間(S3)において前記回転シャフト(2)の径方向外側に突出するスラストディスク部(22)を有し、
前記スラストディスク部(22)の外周面(221)と、前記スラストディスク部(22)の前記外周面(221)の外周側に隙間を有して対向する前記内側ケーシング(5)の内面(58)との間に、前記作動流体の流路を狭める第1絞り部(A1)が設けられた。 12) In some embodiments, the power generation turbine (1) according to any one of 8) to 11) above,
The rotating shaft (2) has a thrust disk portion (22) protruding radially outward of the rotating shaft (2) in the bearing accommodating space (S3),
A first throttling section (A1) that narrows the flow path of the working fluid is provided between an outer peripheral surface (221) of the thrust disk section (22) and an inner surface (58) of the inner casing (5) that faces the outer peripheral surface (221) of the thrust disk section (22) with a gap therebetween.
前記回転シャフト(2)は、前記軸受収容空間(S3)において前記回転シャフト(2)の径方向外側に突出するスラストディスク部(22)を有し、
前記スラストディスク部(22)の外周面(221)と、前記スラストディスク部(22)の前記外周面(221)の外周側に隙間を有して対向する前記内側ケーシング(5)の内面(58)との間に、前記作動流体の流路を狭める第1絞り部(A1)が設けられた。 12) In some embodiments, the power generation turbine (1) according to any one of 8) to 11) above,
The rotating shaft (2) has a thrust disk portion (22) protruding radially outward of the rotating shaft (2) in the bearing accommodating space (S3),
A first throttling section (A1) that narrows the flow path of the working fluid is provided between an outer peripheral surface (221) of the thrust disk section (22) and an inner surface (58) of the inner casing (5) that faces the outer peripheral surface (221) of the thrust disk section (22) with a gap therebetween.
上記12)の構成によれば、第1絞り部(A1)を設けることで、軸受収容空間(S3)の第1絞り部(A1)よりも上記軸方向の上記一方側と上記他方側との間に生じる差圧により、スラストディスク部(22)が上記他方側から上記一方側に押されるため、回転シャフト(2)に係るスラスト力を低減できる。発電機収容空間(S2)よりも抽気の流れ方向の上流側に第1絞り部(A1)を設けることで、発電機(3)のロータ(31)が比較的低圧場において回転するためロータ(31)の風損低減が図れる。
According to the configuration of 12) above, by providing the first throttling portion (A1), the thrust disk portion (22) is pushed from the other side to the one side by the pressure difference generated between the one side and the other side in the axial direction of the first throttling portion (A1) of the bearing accommodation space (S3), thereby reducing the thrust force on the rotating shaft (2). By providing the first throttling portion (A1) upstream of the generator accommodation space (S2) in the flow direction of the bleed air, the rotor (31) of the generator (3) rotates in a relatively low pressure field, thereby reducing windage loss of the rotor (31).
13)幾つかの実施形態では、上記8)から11)までの何れかに記載の発電用タービン(1)であって、
前記ロータ(31)の外周面(33)と、前記ロータ(31)の前記外周面(33)の外周側に隙間を有して対向する前記内側ケーシング(5)の内面(56A)との間に、前記作動流体の流路を狭める第2絞り部(A2)が設けられた。 13) In some embodiments, the power generation turbine (1) according to any one of 8) to 11) above,
A second throttling section (A2) that narrows the flow path of the working fluid is provided between the outer peripheral surface (33) of the rotor (31) and the inner surface (56A) of the inner casing (5) that faces the outer peripheral surface (33) of the rotor (31) with a gap therebetween.
前記ロータ(31)の外周面(33)と、前記ロータ(31)の前記外周面(33)の外周側に隙間を有して対向する前記内側ケーシング(5)の内面(56A)との間に、前記作動流体の流路を狭める第2絞り部(A2)が設けられた。 13) In some embodiments, the power generation turbine (1) according to any one of 8) to 11) above,
A second throttling section (A2) that narrows the flow path of the working fluid is provided between the outer peripheral surface (33) of the rotor (31) and the inner surface (56A) of the inner casing (5) that faces the outer peripheral surface (33) of the rotor (31) with a gap therebetween.
上記13)の構成によれば、第2絞り部(A2)を設けることで、隙間(外周側隙間S22)の第2絞り部(A2)よりも上記軸方向の上記一方側と上記他方側との間に生じる差圧により、ロータ(31)が上記他方側から上記一方側に押されるため、回転シャフト(2)に係るスラスト力を低減できる。また、上記13)の構成によれば、第1絞り部(A1)を設ける場合に比べて、スラスト軸受を小さなものとすることができるため、発電用タービン(1)の大型化を抑制できる。
According to the configuration of 13) above, by providing the second throttling portion (A2), the rotor (31) is pushed from the other side to the one side by the pressure difference generated between the one side and the other side in the axial direction through the second throttling portion (A2) of the gap (outer peripheral gap S22), thereby reducing the thrust force applied to the rotating shaft (2). Furthermore, according to the configuration of 13) above, the thrust bearing can be made smaller than when the first throttling portion (A1) is provided, thereby preventing the power generation turbine (1) from becoming larger.
14)幾つかの実施形態では、上記1)から13)の何れかに記載の発電用タービン(1)であって、
前記内側ケーシング(5)は、前記ステータを内周側から支持するステータ支持部(51)を含み、
前記発電機収容空間(S2)は、
前記ロータ(31)の外周面と、前記ロータ(31)の前記外周面の外周側に隙間を有して対向する前記内側ケーシング(5)の内面との間に形成される外周側隙間(S22)と、
前記ロータ(31)と前記ステータ(32)との間に形成される内周側隙間(S21)と、
前記内周側隙間(S21)よりも前記軸方向の前記一方側において前記外周側隙間(S22)及び前記内周側隙間(S21)に接続される一方側空間(S23)と、
前記内周側隙間(S21)よりも前記軸方向の前記他方側において前記内周側隙間(S21)に接続される他方側空間(S24)であって、前記ロータ(31)と前記ステータ支持部(51)により形成される他方側空間(S24)と、を含み、
前記少なくとも1つの貫通孔(54)の前記内側開口(542)は、前記他方側空間(S24)に接続された。 14) In some embodiments, the power generating turbine (1) according to any one of 1) to 13) above,
The inner casing (5) includes a stator support portion (51) that supports the stator from an inner peripheral side,
The generator accommodation space (S2) is
an outer circumferential gap (S22) formed between an outer circumferential surface of the rotor (31) and an inner surface of the inner casing (5) facing the outer circumferential surface of the rotor (31) with a gap on the outer circumferential side;
an inner peripheral gap (S21) formed between the rotor (31) and the stator (32);
a one-side space (S23) connected to the outer circumferential side gap (S22) and the inner circumferential side gap (S21) on the one side in the axial direction relative to the inner circumferential side gap (S21);
a second-side space (S24) connected to the inner-periphery-side gap (S21) on the other side in the axial direction relative to the inner-periphery-side gap (S21), the second-side space (S24) being formed by the rotor (31) and the stator support portion (51),
The inner opening (542) of the at least one through hole (54) is connected to the other-side space (S24).
前記内側ケーシング(5)は、前記ステータを内周側から支持するステータ支持部(51)を含み、
前記発電機収容空間(S2)は、
前記ロータ(31)の外周面と、前記ロータ(31)の前記外周面の外周側に隙間を有して対向する前記内側ケーシング(5)の内面との間に形成される外周側隙間(S22)と、
前記ロータ(31)と前記ステータ(32)との間に形成される内周側隙間(S21)と、
前記内周側隙間(S21)よりも前記軸方向の前記一方側において前記外周側隙間(S22)及び前記内周側隙間(S21)に接続される一方側空間(S23)と、
前記内周側隙間(S21)よりも前記軸方向の前記他方側において前記内周側隙間(S21)に接続される他方側空間(S24)であって、前記ロータ(31)と前記ステータ支持部(51)により形成される他方側空間(S24)と、を含み、
前記少なくとも1つの貫通孔(54)の前記内側開口(542)は、前記他方側空間(S24)に接続された。 14) In some embodiments, the power generating turbine (1) according to any one of 1) to 13) above,
The inner casing (5) includes a stator support portion (51) that supports the stator from an inner peripheral side,
The generator accommodation space (S2) is
an outer circumferential gap (S22) formed between an outer circumferential surface of the rotor (31) and an inner surface of the inner casing (5) facing the outer circumferential surface of the rotor (31) with a gap on the outer circumferential side;
an inner peripheral gap (S21) formed between the rotor (31) and the stator (32);
a one-side space (S23) connected to the outer circumferential side gap (S22) and the inner circumferential side gap (S21) on the one side in the axial direction relative to the inner circumferential side gap (S21);
a second-side space (S24) connected to the inner-periphery-side gap (S21) on the other side in the axial direction relative to the inner-periphery-side gap (S21), the second-side space (S24) being formed by the rotor (31) and the stator support portion (51),
The inner opening (542) of the at least one through hole (54) is connected to the other-side space (S24).
上記14)の構成によれば、発電機収容空間(S2)に導かれた作動流体(抽気)は、外周側隙間(S22)、一方側空間(S23)、内周側隙間(S21)、他方側空間(S24)の順又は逆順で通過するため、発電機収容空間(S2)を通過する際にロータ(31)及びステータ(32)を効果的に冷却できる。
According to the configuration of 14) above, the working fluid (bleed air) introduced into the generator housing space (S2) passes through the outer circumferential gap (S22), the one-side space (S23), the inner circumferential gap (S21), and the other-side space (S24) in that order or in reverse order, so that the rotor (31) and the stator (32) can be effectively cooled as they pass through the generator housing space (S2).
15)幾つかの実施形態では、上記1)から14)の何れかに記載の発電用タービン(1)であって、
前記発電用タービン(1)は、液化ガスを加熱するための熱媒体を循環させるように構成された熱媒体循環ライン(101)に設けられた。 15) In some embodiments, the power generating turbine (1) according to any one of 1) to 14) above,
The power generation turbine (1) was provided in a heat medium circulation line (101) configured to circulate a heat medium for heating liquefied gas.
前記発電用タービン(1)は、液化ガスを加熱するための熱媒体を循環させるように構成された熱媒体循環ライン(101)に設けられた。 15) In some embodiments, the power generating turbine (1) according to any one of 1) to 14) above,
The power generation turbine (1) was provided in a heat medium circulation line (101) configured to circulate a heat medium for heating liquefied gas.
上記15)の構成によれば、熱媒体循環ライン(101)を循環して発電用タービン(1)に導入される熱媒体は、液化ガスの冷熱エネルギーを回収することで比較的低温になっている。上記熱媒体を発電用タービン(1)の作動流体とすることで、発電機収容空間(S2)に比較的低温の作動流体が導かれるため、発電機(3)の冷却が効果的に行われる。
According to the configuration of 15) above, the heat medium circulating through the heat medium circulation line (101) and introduced into the power generation turbine (1) is at a relatively low temperature by recovering the cold energy of the liquefied gas. By using the heat medium as the working fluid of the power generation turbine (1), a relatively low-temperature working fluid is introduced into the generator housing space (S2), so that the generator (3) is effectively cooled.
1 発電用タービン
2 回転シャフト
3 発電機
4 タービン動翼
5 内側ケーシング
6 外側ケーシング
7 軸受
9 抽気ライン
10 抽気孔
11 ケーシング支持部
21 一方側の端部
22 スラストディスク部
31 ロータ
32 ステータ
41 一方側動翼
42 他方側動翼
43,45 ディスク部
44,46 翼部
51 ステータ支持部
52 対向面
53 外周面
54 貫通孔
55 外面
56 内面
61 内周面
71,72 スラスト軸受
73,74 ジャーナル軸受
81,81A 一方側静翼
82,82A 他方側静翼
83,83A,84A 翼部
84,85A 内側静翼支持部
311 磁石支持部
312 永久磁石
313 径方向延在部
314 軸方向延在部
315 傾斜部
321 静止コイル部
541 外側開口
542 内側開口
CA 中心軸線
S1 第1隙間
S2 発電機収容空間
S3 軸受収容空間
S4 作動流体流路
S21 内周側隙間
S22 外周側隙間
S23 一方側空間
S24 他方側空間
S41 環状流路
S42 一方側柱状流路
S43 他方側柱状流路Reference Signs List 1 Power generation turbine 2 Rotating shaft 3 Generator 4 Turbine rotor blade 5 Inner casing 6 Outer casing 7 Bearing 9 Extraction line 10 Extraction hole 11 Casing support portion 21 One side end portion 22 Thrust disk portion 31 Rotor 32 Stator 41 One side rotor blade 42 Other side rotor blade 43, 45 Disk portion 44, 46 Blade portion 51 Stator support portion 52 Opposing surface 53 Outer peripheral surface 54 Through hole 55 Outer surface 56 Inner surface 61 Inner peripheral surface 71, 72 Thrust bearing 73, 74 Journal bearing 81, 81A One side stator blade 82, 82A Other side stator blade 83, 83A, 84A Blade portion 84, 85A Inner stator blade support portion 311 Magnet support portion 312 Permanent magnet 313 Radial extension portion 314 Axial extension portion 315 Inclined portion 321 Stationary coil portion 541 Outer opening 542 Inner opening CA Central axis S1 First gap S2 Generator housing space S3 Bearing housing space S4 Working fluid flow path S21 Inner circumference side gap S22 Outer circumference side gap S23 One side space S24 Other side space S41 Annular flow path S42 One side columnar flow path S43 Other side columnar flow path
2 回転シャフト
3 発電機
4 タービン動翼
5 内側ケーシング
6 外側ケーシング
7 軸受
9 抽気ライン
10 抽気孔
11 ケーシング支持部
21 一方側の端部
22 スラストディスク部
31 ロータ
32 ステータ
41 一方側動翼
42 他方側動翼
43,45 ディスク部
44,46 翼部
51 ステータ支持部
52 対向面
53 外周面
54 貫通孔
55 外面
56 内面
61 内周面
71,72 スラスト軸受
73,74 ジャーナル軸受
81,81A 一方側静翼
82,82A 他方側静翼
83,83A,84A 翼部
84,85A 内側静翼支持部
311 磁石支持部
312 永久磁石
313 径方向延在部
314 軸方向延在部
315 傾斜部
321 静止コイル部
541 外側開口
542 内側開口
CA 中心軸線
S1 第1隙間
S2 発電機収容空間
S3 軸受収容空間
S4 作動流体流路
S21 内周側隙間
S22 外周側隙間
S23 一方側空間
S24 他方側空間
S41 環状流路
S42 一方側柱状流路
S43 他方側柱状流路
Claims (15)
- 回転シャフトと、
前記回転シャフトの軸方向の一方側に設けられるロータ及び前記ロータの内周側に配置されるステータを含む発電機と、
前記発電機よりも前記回転シャフトの前記軸方向の他方側に設けられる少なくとも1つのタービン動翼と、
前記回転シャフトを回転可能に収容するように構成された内側ケーシングであって、前記少なくとも1つのタービン動翼のディスク部に第1隙間を有して対向する対向面を有し、前記第1隙間に連通して前記発電機を収容する発電機収容空間を形成する内側ケーシングと、
前記内側ケーシングの外周側に配置され、前記内側ケーシングとの間に前記第1隙間に連通して前記タービン動翼の作動流体が流れる作動流体流路を形成する外側ケーシングと、を備え、
前記内側ケーシングは、前記作動流体流路を形成する外面に形成された外側開口及び前記発電機収容空間を形成する内面に形成された内側開口を有する少なくとも1つの貫通孔が形成された、
発電用タービン。 A rotating shaft;
a generator including a rotor provided on one side of the rotating shaft in an axial direction and a stator disposed on an inner peripheral side of the rotor;
at least one turbine blade provided on the other side of the rotating shaft in the axial direction relative to the generator;
an inner casing configured to rotatably accommodate the rotating shaft, the inner casing having an opposing surface that faces a disk portion of the at least one turbine blade with a first gap therebetween, the inner casing forming a generator accommodating space that communicates with the first gap and accommodates the generator;
an outer casing disposed on an outer circumferential side of the inner casing, communicating with the first gap between the outer casing and the inner casing to form a working fluid flow passage through which a working fluid of the turbine rotor blade flows;
the inner casing is provided with at least one through hole having an outer opening formed on an outer surface that forms the working fluid flow path and an inner opening formed on an inner surface that forms the generator accommodating space;
Power generating turbine. - 前記軸方向の前記発電機と前記少なくとも1つのタービン動翼との間に配置され、前記回転シャフトを回転可能に支持するように構成された少なくとも1つの磁気軸受をさらに備え、
前記内側ケーシングは、前記軸方向の前記発電機収容空間と前記第1隙間との間に、前記発電機収容空間及び前記第1隙間に接続されて前記回転シャフト及び前記少なくとも1つの磁気軸受を収容する軸受収容空間が形成された、
請求項1に記載の発電用タービン。 and at least one magnetic bearing disposed axially between the generator and the at least one turbine blade and configured to rotatably support the rotating shaft;
The inner casing has a bearing accommodating space between the generator accommodating space and the first gap in the axial direction, the bearing accommodating space being connected to the generator accommodating space and the first gap and accommodating the rotating shaft and the at least one magnetic bearing.
2. The power generating turbine of claim 1. - 前記作動流体は、前記作動流体流路を前記軸方向の前記他方側から前記一方側に向かって流れるように構成された、
請求項2に記載の発電用タービン。 The working fluid is configured to flow through the working fluid flow path from the other side to the one side in the axial direction.
3. The power generating turbine of claim 2. - 前記作動流体は、前記作動流体流路を前記軸方向の前記一方側から前記他方側に向かって流れるように構成された、
請求項2に記載の発電用タービン。 The working fluid is configured to flow through the working fluid flow path from the one side to the other side in the axial direction.
3. The power generating turbine of claim 2. - 前記作動流体流路における前記少なくとも1つのタービン動翼よりも前記軸方向の前記一方側に設けられる圧力損失を生じさせる抵抗体であって、前記抵抗体と前記少なくとも1つのタービン動翼との間における前記作動流体流路の圧力を、前記軸受収容空間の圧力よりも大きくするための抵抗体をさらに備える、
請求項3に記載の発電用タービン。 the turbine rotor blade further includes a resistor for generating a pressure loss, the resistor being provided in the working fluid flow path on the one side in the axial direction of the at least one turbine rotor blade, the resistor making a pressure in the working fluid flow path between the resistor and the at least one turbine rotor blade greater than a pressure in the bearing accommodating space,
4. The power generating turbine of claim 3. - 前記内側ケーシングの前記対向面に対して前記第1隙間を介して対向する前記少なくとも1つのタービン動翼の前記ディスク部は、前記軸方向に貫通する第1バランスホールを有し、
前記第1バランスホールは、前記軸受収容空間から前記第1隙間に導かれた前記作動流体が流入するように構成された、
請求項4に記載の発電用タービン。 the disk portion of the at least one turbine blade facing the opposing surface of the inner casing across the first gap has a first balance hole penetrating therethrough in the axial direction,
The first balance hole is configured so that the working fluid guided from the bearing accommodating space to the first gap flows into the first balance hole.
5. The power generating turbine of claim 4. - 前記少なくとも1つのタービン動翼は、
前記第1バランスホールを有する一方側動翼と、
前記一方側動翼よりも前記軸方向の前記他方側に設けられる他方側動翼と、を含み、
前記他方側動翼のディスク部は、前記軸方向に貫通する第2バランスホールを有し、
前記第2バランスホールは、前記第1バランスホールよりも前記回転シャフトの径方向における外側に形成され、前記第1バランスホールを通過した前記作動流体が流入するように構成された、
請求項6に記載の発電用タービン。 The at least one turbine blade comprises:
one rotor blade having the first balance hole;
a second rotor blade provided on the second side in the axial direction relative to the first rotor blade,
the disk portion of the other rotor blade has a second balance hole penetrating therethrough in the axial direction,
The second balance hole is formed on the outer side of the first balance hole in the radial direction of the rotating shaft, and is configured so that the working fluid that has passed through the first balance hole flows into the second balance hole.
7. The power generating turbine of claim 6. - 前記少なくとも1つの貫通孔の前記外側開口に一端が接続された抽気ラインをさらに備える、
請求項4に記載の発電用タービン。 a bleed line having one end connected to the outer opening of the at least one through hole;
5. The power generating turbine of claim 4. - 前記回転シャフトは、前記軸受収容空間において前記回転シャフトの径方向外側に突出するスラストディスク部を有し、
前記少なくとも1つの磁気軸受は、前記スラストディスク部よりも前記回転シャフトの前記軸方向の前記他方側に配置され、前記スラストディスク部との間に隙間を有して対向する他方側スラスト軸受を含み、
前記内側ケーシングは、前記軸受収容空間の外周側に前記作動流体流路を形成する外周面に形成された外側開口、及び前記他方側スラスト軸受よりも前記軸方向の前記他方側において前記軸受収容空間を形成する内面に形成された内側開口、を有する少なくとも1つの抽気孔が形成された、
請求項8に記載の発電用タービン。 the rotating shaft has a thrust disk portion protruding radially outward of the rotating shaft in the bearing accommodating space,
the at least one magnetic bearing includes a second-side thrust bearing that is disposed on the second side of the thrust disk portion in the axial direction of the rotating shaft and faces the thrust disk portion with a gap therebetween;
the inner casing is provided with at least one bleed hole having an outer opening formed in an outer peripheral surface that forms the working fluid flow path on the outer peripheral side of the bearing accommodating space, and an inner opening formed in an inner surface that forms the bearing accommodating space on the other side in the axial direction relative to the other-side thrust bearing,
9. The power generating turbine of claim 8. - 前記少なくとも1つのタービン動翼は、
一方側動翼と、
前記一方側動翼よりも前記軸方向の前記他方側に設けられる他方側動翼と、を含み、
前記発電用タービンは、
前記一方側動翼及び前記第1隙間よりも前記軸方向の前記一方側に配置される一方側静翼をさらに備え、
前記抽気ラインの他端は、前記作動流体流路における、前記一方側静翼と前記一方側動翼との間の第1空間、又は、前記他方側動翼よりも前記他方側の第2空間、の何れかに接続された、
請求項9に記載の発電用タービン。 The at least one turbine blade comprises:
One rotor blade;
a second rotor blade provided on the second side in the axial direction relative to the first rotor blade,
The power generating turbine comprises:
a one-side stator vane arranged on the one side in the axial direction relative to the one-side rotor blade and the first gap,
the other end of the extraction line is connected to either a first space between the one-side stator vane and the one-side rotor blade in the working fluid flow path, or a second space on the other side of the other-side rotor blade.
10. The power generating turbine of claim 9. - 前記少なくとも1つのタービン動翼は、
一方側動翼と、
前記一方側動翼よりも前記軸方向の前記他方側に設けられる他方側動翼と、を含み、
前記発電用タービンは、
前記一方側動翼及び前記第1隙間よりも前記軸方向の前記一方側に配置される一方側静翼をさらに備え、
前記抽気ラインの他端は、前記作動流体流路における、前記他方側動翼よりも前記他方側の第2空間に接続された、
請求項8に記載の発電用タービン。 The at least one turbine blade comprises:
One rotor blade;
a second rotor blade provided on the second side in the axial direction relative to the first rotor blade,
The power generating turbine comprises:
a one-side stator vane arranged on the one side in the axial direction relative to the one-side rotor blade and the first gap,
The other end of the extraction line is connected to a second space on the other side of the other rotor blade in the working fluid flow path.
9. The power generating turbine of claim 8. - 前記回転シャフトは、前記軸受収容空間において前記回転シャフトの径方向外側に突出するスラストディスク部を有し、
前記スラストディスク部の外周面と、前記スラストディスク部の前記外周面の外周側に隙間を有して対向する前記内側ケーシングの内面との間に、前記作動流体の流路を狭める第1絞り部が設けられた、
請求項8乃至11の何れか1項に記載の発電用タービン。 the rotating shaft has a thrust disk portion protruding radially outward of the rotating shaft in the bearing accommodating space,
a first throttle portion for narrowing a flow path of the working fluid is provided between an outer circumferential surface of the thrust disk portion and an inner surface of the inner casing facing the outer circumferential surface of the thrust disk portion with a gap therebetween;
12. A power generating turbine as claimed in any one of claims 8 to 11. - 前記ロータの外周面と、前記ロータの前記外周面の外周側に隙間を有して対向する前記内側ケーシングの内面との間に、前記作動流体の流路を狭める第2絞り部が設けられた、
請求項8乃至11の何れか1項に記載の発電用タービン。 a second throttle portion for narrowing a flow path of the working fluid is provided between an outer circumferential surface of the rotor and an inner surface of the inner casing that faces the outer circumferential surface of the rotor with a gap therebetween;
12. A power generating turbine as claimed in any one of claims 8 to 11. - 前記内側ケーシングは、前記ステータを内周側から支持するステータ支持部を含み、
前記発電機収容空間は、
前記ロータの外周面と、前記ロータの前記外周面の外周側に隙間を有して対向する前記内側ケーシングの内面との間に形成される外周側隙間と、
前記ロータと前記ステータとの間に形成される内周側隙間と、
前記内周側隙間よりも前記軸方向の前記一方側において前記外周側隙間及び前記内周側隙間に接続される一方側空間と、
前記内周側隙間よりも前記軸方向の前記他方側において前記内周側隙間に接続される他方側空間であって、前記ロータと前記ステータ支持部により形成される他方側空間と、を含み、
前記少なくとも1つの貫通孔の前記内側開口は、前記他方側空間に接続された、
請求項1乃至11の何れか1項に記載の発電用タービン。 the inner casing includes a stator support portion that supports the stator from an inner circumferential side,
The generator accommodating space is
an outer circumferential gap formed between an outer circumferential surface of the rotor and an inner surface of the inner casing that faces the outer circumferential surface of the rotor with a gap on the outer circumferential side;
an inner peripheral gap formed between the rotor and the stator;
a one-side space connected to the outer circumferential side gap and the inner circumferential side gap on the one side in the axial direction relative to the inner circumferential side gap;
a second-side space connected to the inner-periphery-side gap at a position on the other side in the axial direction relative to the inner-periphery-side gap and formed by the rotor and the stator support portion,
The inner opening of the at least one through hole is connected to the other side space.
12. A power generating turbine as claimed in any preceding claim. - 前記発電用タービンは、液化ガスを加熱するための熱媒体を循環させるように構成された熱媒体循環ラインに設けられた
請求項1乃至11の何れか1項に記載の発電用タービン。 The power generation turbine according to claim 1 , wherein the power generation turbine is provided in a heat medium circulation line configured to circulate a heat medium for heating a liquefied gas.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-040211 | 2023-03-15 | ||
JP2023040211A JP2024130465A (en) | 2023-03-15 | 2023-03-15 | Power generation turbines |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024190045A1 true WO2024190045A1 (en) | 2024-09-19 |
Family
ID=92754762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/046864 WO2024190045A1 (en) | 2023-03-15 | 2023-12-27 | Power generation turbine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024130465A (en) |
WO (1) | WO2024190045A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5479038U (en) * | 1977-11-16 | 1979-06-05 | ||
JPS63277801A (en) * | 1987-05-07 | 1988-11-15 | Fuji Electric Co Ltd | Electric generator installed in piping |
JPH0942122A (en) * | 1995-05-19 | 1997-02-10 | Toyota Motor Corp | Starting device and starting method of prime mover |
JP2006230145A (en) * | 2005-02-18 | 2006-08-31 | Ebara Corp | Submerged turbine generator |
US20100237619A1 (en) * | 2006-09-12 | 2010-09-23 | Josef Pozivil | Power recovery machine |
US20120013125A1 (en) * | 2010-07-19 | 2012-01-19 | Calnetix, Inc. | Generating energy from fluid expansion |
-
2023
- 2023-03-15 JP JP2023040211A patent/JP2024130465A/en active Pending
- 2023-12-27 WO PCT/JP2023/046864 patent/WO2024190045A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5479038U (en) * | 1977-11-16 | 1979-06-05 | ||
JPS63277801A (en) * | 1987-05-07 | 1988-11-15 | Fuji Electric Co Ltd | Electric generator installed in piping |
JPH0942122A (en) * | 1995-05-19 | 1997-02-10 | Toyota Motor Corp | Starting device and starting method of prime mover |
JP2006230145A (en) * | 2005-02-18 | 2006-08-31 | Ebara Corp | Submerged turbine generator |
US20100237619A1 (en) * | 2006-09-12 | 2010-09-23 | Josef Pozivil | Power recovery machine |
US20120013125A1 (en) * | 2010-07-19 | 2012-01-19 | Calnetix, Inc. | Generating energy from fluid expansion |
Also Published As
Publication number | Publication date |
---|---|
JP2024130465A (en) | 2024-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9476428B2 (en) | Ultra high pressure turbomachine for waste heat recovery | |
US7948105B2 (en) | Turboalternator with hydrodynamic bearings | |
US8739538B2 (en) | Generating energy from fluid expansion | |
US7281379B2 (en) | Dual-use radial turbomachine | |
US9416727B2 (en) | Engine assembly and waste heat recovery system | |
JP2013151931A (en) | Waste heat recovery systems | |
WO2012132514A1 (en) | Exhaust-heat recovery power generation device | |
US11611263B1 (en) | Electrical power generation | |
US20200412206A1 (en) | Dual-flux electric machine | |
WO2024190045A1 (en) | Power generation turbine | |
FI125613B (en) | Electric turbo machine and energy converter | |
Clementoni et al. | Off-nominal component performance in a supercritical carbon dioxide Brayton cycle | |
FI125189B (en) | Heat exchanger and energy converter | |
FI125429B (en) | energy converter | |
WO2023084619A1 (en) | Cryogenic power generation turbine and cryogenic power generation system comprising cryogenic power generation turbine | |
KR20150062027A (en) | Hybrid turbine generation system | |
WO2024080158A1 (en) | Cryogenic power generation apparatus and cryogenic power generation system | |
JP2022146033A (en) | trilateral cycle system | |
JP2025043958A (en) | Cold orc power generator and operating method for the same | |
JP7513142B1 (en) | Waste heat recovery assembly and waste heat recovery system | |
JP7615441B2 (en) | Binary Power Generation System | |
JP7382907B2 (en) | Turbine for cold power generation | |
TWI781860B (en) | Turbo device and circulatory system | |
JP2025043957A (en) | Cold orc power generator and operation method of the same | |
JP2023178158A (en) | binary power generation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23927647 Country of ref document: EP Kind code of ref document: A1 |