WO2024188967A1 - Process for temper-passing a steel strip coated with a zm coating - Google Patents
Process for temper-passing a steel strip coated with a zm coating Download PDFInfo
- Publication number
- WO2024188967A1 WO2024188967A1 PCT/EP2024/056425 EP2024056425W WO2024188967A1 WO 2024188967 A1 WO2024188967 A1 WO 2024188967A1 EP 2024056425 W EP2024056425 W EP 2024056425W WO 2024188967 A1 WO2024188967 A1 WO 2024188967A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel strip
- coating
- hot
- dip coated
- strip
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 77
- 239000010959 steel Substances 0.000 title claims abstract description 77
- 238000000576 coating method Methods 0.000 title claims abstract description 41
- 239000011248 coating agent Substances 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000008569 process Effects 0.000 title claims abstract description 9
- 239000011701 zinc Substances 0.000 claims description 16
- 239000000243 solution Substances 0.000 claims description 13
- 239000007864 aqueous solution Substances 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 12
- 238000003618 dip coating Methods 0.000 claims description 9
- 150000007522 mineralic acids Chemical class 0.000 claims description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 238000004140 cleaning Methods 0.000 claims description 8
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 239000011777 magnesium Substances 0.000 claims description 8
- 239000000155 melt Substances 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 230000001143 conditioned effect Effects 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 230000003213 activating effect Effects 0.000 claims 1
- 230000001070 adhesive effect Effects 0.000 description 18
- 239000000853 adhesive Substances 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 239000011651 chromium Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000009736 wetting Methods 0.000 description 8
- 230000004913 activation Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 7
- 239000011572 manganese Substances 0.000 description 7
- 239000011135 tin Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 239000011575 calcium Substances 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910000742 Microalloyed steel Inorganic materials 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000011133 lead Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- QDZRBIRIPNZRSG-UHFFFAOYSA-N titanium nitrate Chemical compound [O-][N+](=O)O[Ti](O[N+]([O-])=O)(O[N+]([O-])=O)O[N+]([O-])=O QDZRBIRIPNZRSG-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- KYNKUCOQLYEJPH-UHFFFAOYSA-N [K][Ti] Chemical compound [K][Ti] KYNKUCOQLYEJPH-UHFFFAOYSA-N 0.000 description 1
- IKWTVSLWAPBBKU-UHFFFAOYSA-N a1010_sial Chemical compound O=[As]O[As]=O IKWTVSLWAPBBKU-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 229910000413 arsenic oxide Inorganic materials 0.000 description 1
- 229960002594 arsenic trioxide Drugs 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- GIPIUENNGCQCIT-UHFFFAOYSA-K cobalt(3+) phosphate Chemical compound [Co+3].[O-]P([O-])([O-])=O GIPIUENNGCQCIT-UHFFFAOYSA-K 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229940116318 copper carbonate Drugs 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- RXCBCUJUGULOGC-UHFFFAOYSA-H dipotassium;tetrafluorotitanium;difluoride Chemical compound [F-].[F-].[F-].[F-].[F-].[F-].[K+].[K+].[Ti+4] RXCBCUJUGULOGC-UHFFFAOYSA-H 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- CPSYWNLKRDURMG-UHFFFAOYSA-L hydron;manganese(2+);phosphate Chemical compound [Mn+2].OP([O-])([O-])=O CPSYWNLKRDURMG-UHFFFAOYSA-L 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 229940046892 lead acetate Drugs 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910000159 nickel phosphate Inorganic materials 0.000 description 1
- JOCJYBPHESYFOK-UHFFFAOYSA-K nickel(3+);phosphate Chemical compound [Ni+3].[O-]P([O-])([O-])=O JOCJYBPHESYFOK-UHFFFAOYSA-K 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- SQTLECAKIMBJGK-UHFFFAOYSA-I potassium;titanium(4+);pentafluoride Chemical compound [F-].[F-].[F-].[F-].[F-].[K+].[Ti+4] SQTLECAKIMBJGK-UHFFFAOYSA-I 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229910000349 titanium oxysulfate Inorganic materials 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- XROWMBWRMNHXMF-UHFFFAOYSA-J titanium tetrafluoride Chemical compound [F-].[F-].[F-].[F-].[Ti+4] XROWMBWRMNHXMF-UHFFFAOYSA-J 0.000 description 1
- XOUPWBJVJFQSLK-UHFFFAOYSA-J titanium(4+);tetranitrite Chemical compound [Ti+4].[O-]N=O.[O-]N=O.[O-]N=O.[O-]N=O XOUPWBJVJFQSLK-UHFFFAOYSA-J 0.000 description 1
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- -1 zinc-magnesium-aluminium Chemical compound 0.000 description 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 1
- ZXAUZSQITFJWPS-UHFFFAOYSA-J zirconium(4+);disulfate Chemical compound [Zr+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZXAUZSQITFJWPS-UHFFFAOYSA-J 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0242—Flattening; Dressing; Flexing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/227—Surface roughening or texturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2261/00—Product parameters
- B21B2261/14—Roughness
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
Definitions
- the invention relates to a method for skin passing a steel strip coated with a ZM coating, the method comprising the following steps:
- steel substratesZ strips are traditionally provided with a Zn-based hot-dip coating.
- This offers active corrosion protection, i.e. the comparatively base Zn coating is sacrificed for the more noble steel substrate.
- zinc-magnesium-aluminium hot-dip coatings known as "ZM” for short, are playing an increasingly important role.
- the focus is in particular on providing better adhesive properties for ZM coatings.
- the aim of the present invention is also to ensure problem-free processing of ZM surfaces.
- the other essential aim of the invention is therefore to ensure further processing in a resource-saving and safe manner.
- Safety here refers to human health and environmental compatibility. Therefore, no additional hazardous substances should be used compared to the state of the art, not only in the product or the intermediate products, but also during the individual process steps. For resource-saving production and In further processing, no additional process steps should be introduced compared to the state of the art.
- EP 3 416 760 Bl discloses that typical specific rolling forces during skin passing are in the range of 1.9 kN/mm.
- the inventors have surprisingly found that an improved adhesive suitability of ZM coatings is achieved when the cooling of the ZM coating applied in the melt bath is carried out up to a temperature of 340 °C with an average cooling rate between 5 and 40 K/s and the following conditions are met during skin passing:
- the coated steel strip is cooled in particular to a temperature below 100 °C, preferably to room temperature.
- the phase formation in the coating essentially takes place during hot-dip coating and cooling, at temperatures of the melt bath of around 460 °C +/- 15 °C until cooling to approx. 340 °C.
- the diffusion essentially stops due to the solidification of the coating. It is advantageous to stop the diffusion processes as quickly as possible after hot-dip coating by setting an average cooling rate up to 340 °C of at least 3 K/s, in particular at least 5 K/s, preferably at least 10 K/s, preferably at least 15 K/s.
- cooling begins when the coating is stripped off, and thus the coating begins to solidify.
- a temperature of approx. 340 °C it is assumed that the end of the coating's solidification should have been reached.
- the average cooling rate is preferably a maximum of 40 K/s, in particular a maximum of 35 K/s.
- the temperature corresponds essentially to a temperature measured on the surface of the coating, for example using a pyrometer. The method of measuring the temperature on surfaces is familiar in specialist circles.
- a surface structure is embossed into the hot-dip coated steel sheet, which can be, for example, a deterministic surface structure.
- Deterministic surface structure refers in particular to regularly recurring surface structures that have a defined shape and/or design or dimension. In particular, this also includes surface structures with a (quasi-)stochastic appearance, which are composed of stochastic form elements with a recurring structure. Alternatively and preferably, the introduction of a stochastic surface structure is also conceivable.
- the skin-passing of the ZM coating is accompanied by a specific skin-passing force, called sW for short, which corresponds to the skin-passing force in kN per width of the steel strip to be skin-passed in mm.
- the optimal specific skin-passing force is not chosen to be too high in order to avoid unnecessary technical wear on the skin-passing rollers and the resulting increased energy consumption to generate a high skin-passing force that is not technically necessary.
- a major challenge in calibrating an optimal specific skin-passing force is that ZM coatings are used on different steel strips.
- the steel strip can be a hot-rolled strip (hot-rolled steel strip) or a cold-rolled strip (cold-rolled steel strip) or can be made from a hot-rolled strip or a cold-rolled strip.
- Cold rolled strips according to DIN EN 10346 are preferred, such as multiphase, IF, BH or micro-alloyed steel.
- a multiphase steel is used in the automotive sector in the bodywork. Examples of steels of this type are available under the standard designation HCT490X, HCT590X or HCT780X.
- An IF steel has no interstitially embedded alloying elements, i.e. no iron atoms are blocked by carbon or nitrogen atoms in the metal lattice. This creates a very soft steel with very good forming properties. It is used primarily for complicated deep-drawn parts in automobile construction. Steels of this type are available under the standard designations DX52D, DX53D, DX54D, DX55D, DX56D, DX57D HX160YD, HX180YD, HX220YD and HX260YD.
- a BH steel is characterized by a significant increase in yield strength during paint baking (typically at 170 °C for 20 minutes) in combination with very good formability. Furthermore, these steels have very good dent resistance, which is why they are preferred for outer skin applications. Steels of this type are available under the standard designation HX180BD, HX220BD, HX260BD and HX300BD.
- a micro-alloyed steel is processed into body components in the automotive sector.
- a micro-alloyed steel has a fine-grained microstructure and gives it high fatigue strength and a high yield strength. It is used primarily for complicated deep-drawn parts in automotive construction. Examples of steels of this type are available under the standard designation HC260LA, HC300LA, HC340LA, HC380LA, HC420LA, HC460LA, HC500LA and HC550LA.
- hot-rolled strips according to DIN EN 10149-2 or DIN EN 10025-2 may also be considered.
- Iron that is lightly alloyed or not alloyed usually has a pronounced yield strength ReH. With a pronounced yield strength, the so-called yield point effect occurs after a certain stress is exceeded. The material continues to expand without an increase in stress. This leads to a drop in stress, at which point plastic deformation begins. This yield point effect is based on the Cottrell effects. Due to the drop in stress during the yield point effect, an upper and a lower yield point can be determined. Steel, characterized as an iron alloy with chromium, manganese, etc. admixture, shows finer crystal structures than low-alloy or non-alloyed iron. Therefore, the yield strength cannot be clearly measured in a tensile test.
- yield strength Re there is a continuous transition between the elastic and plastic range of the steel and the steel does not show a pronounced yield strength ReH.
- the limit is therefore not clearly identifiable and the yield strengths must be assumed.
- An example of an assumed limit is the yield strength of 0.2%.
- the yield strength Rp0.2% is usually and also in the sense of the invention determined as a replacement for the existing yield strength ReH.
- the 0.2% yield strength can always be clearly determined from the stress-strain diagram. In the present invention, this yield strength of 0.2% is referred to and used as the yield strength Re.
- the thickness of the steel strip is, for example, 0.3 to 6.0 mm, in particular 0.5 to 5.0 mm, preferably 0.7 to 4.0 mm.
- the ZM coating applied in the hot-dip coating process, comprises a zinc alloy with, in addition to zinc (remainder) and unavoidable impurities, additional elements such as aluminum with a content of between 0.1 and 8.0 wt.% and magnesium with a content of between 0.1 and 8.0 wt.%.
- additional elements such as aluminum with a content of between 0.1 and 8.0 wt.% and magnesium with a content of between 0.1 and 8.0 wt.%.
- Elements from the group Si, Sb, Bi, Zr, Ni, Cr, Pb, Ti, Ca, Mn, Sn, La, Ce, Fe and Cr can be present as impurities in the melt bath in individual or cumulative amounts of up to 0.5 wt.%, in particular up to 0.4 wt.%, preferably up to 0.3 wt.%.
- Elements from the group Si, Sb, Bi, Zr, Ni, Cr, Pb, Ti, Ca, Mn, Sn, La, Ce, Fe and Cr may be present as impurities in the coating in individual or cumulative amounts of up to 0.5 wt.%, in particular up to 0.4 wt.%, preferably up to 0.3 wt.%.
- the concentration of Fe can be higher, for example up to 3% by weight, particularly due to the formation of the Fe 2 Al 6 boundary layer.
- the remainder is zinc.
- Steel sheets separated from steel strips or steel sheet components made from them with a zinc-based anti-corrosive coating have very good cathodic corrosion protection and have been used in automobile construction for years.
- the coating has a magnesium content of at least 0.8% by weight, in particular at least 1.0% by weight, preferably at least 1.1% by weight, and aluminum content of at least 0.8% by weight, in particular at least 1.0% by weight.
- the coating has magnesium with a content of maximum 8.0 wt.%, preferably maximum 7 wt.%, particularly preferably 5.0 wt.%, in particular maximum 4.0 wt.% and aluminum with a content of maximum 8.0 wt.%, preferably maximum 7 wt.%, particularly preferably 5.0 wt.%, in particular maximum 4.0 wt.%.
- the melt applied to the steel strip while it is still in the liquid state is stripped off by passing the steel strip coated with liquid melt through a stripping device after leaving the melt bath, which has means, for example nozzles, in particular slot nozzles, which act on both sides of the steel strip with a gaseous stripping medium to strip off the liquid melt.
- the thickness of the ZM coating can be set in particular between at least 4 pm, preferably at least 5 pm and a maximum of 58 pm, preferably a maximum of 55 pm.
- the thickness of the ZM coating is at least 1.0 pm, in particular at least 2 pm, preferably at least 3 pm, preferably at least 5 pm and a maximum of 25 pm, in particular a maximum of 20 pm and preferably a maximum of 15 pm, preferably a maximum of 10 pm.
- the minimum limits sufficient cathodic corrosion protection cannot be guaranteed and above the maximum limit, joining problems can occur when connecting a steel sheet cut from the steel strip produced according to the invention or a component made from it to another component.
- the specified maximum limit of the ZM coating thickness is exceeded, a stable process cannot be ensured during thermal joining or welding.
- the hot-dip coated steel strip which has been skin-finished under the aforementioned conditions, can be wetted with an aqueous cleaning solution.
- An acidic or alkaline solution can be used as the aqueous cleaning solution.
- the surface The hot-dip coated steel strip can be wetted with an aqueous cleaning solution for a time of 1 to 60 s, in particular between 2 and 50 s, preferably between 3 and 40 s, preferably between 3 and 30 s, and at a temperature of 15 to 80 °C, in particular from 20 to 80 °C, preferably from 30 to 80 °C, preferably from 40 to 80 °C.
- the wetting can be terminated with an aqueous cleaning solution by rinsing with water and/or an aqueous solution.
- the hot-dip coated steel strip which has been skin-rolled under the conditions specified above and optionally cleaned, can be conditioned with an aqueous solution of an inorganic acid.
- the aqueous solution of an inorganic acid has a pH of less than 7, in particular less than 6, preferably less than 5, preferably less than 4.
- the pH can be at least 0.5, in particular at least 1.0, preferably at least 1.5.
- An inorganic acid is selected from the group containing or consisting of: H 2 SO 4 , HCl, HNO 3 , H 3 PO 4 , H 2 SO 3 , HNO 2 , HF, or a mixture of 2 or more of these acids is used as an aqueous solution.
- the determination of the pH is known.
- the surface of the hot-dip coated material can be wetted with the aqueous solution of an inorganic acid for a time of 0.1 to 5 s and at a temperature of 10 °C to 90 °C.
- the coating is wetted with an aqueous solution of an inorganic acid for a time of at least 0.1 s, in particular at least 0.2 s, preferably at least 0.3 s, 0.4 s, preferably at least 0.5 s, and a maximum of 5 s, in particular a maximum of 4 s, preferably a maximum of 3 s, 2 s, 1.8 s, preferably a maximum of 1.5 s, 1.2 s, 1.0 s.
- the wetting of the coating with an aqueous solution of an inorganic acid takes place at a temperature of 10 °C to 90 °C, in particular 20 °C to 70 °C, preferably 20 °C to 50 °C, more preferably 20 °C to 40 °C, particularly preferably 20 °C to 30 °C.
- the wetting can be terminated by rinsing with water and/or an aqueous solution.
- the wetting with an aqueous solution of an inorganic acid is interrupted by rinsing with water and/or an alcohol, for example selected from the group containing or consisting of methanol, ethanol, propanol, isopropanol, ethanol, in particular isopropanol or an aqueous solution.
- the rinsing takes place in 2 sub-steps, in a first sub-step with water; in a second sub-step with an alcohol or an aqueous solution of an alcohol as stated above.
- the rinsing with water and an alcohol takes place in one step, preferably as Mixture of water with one of the alcohols specified above.
- Rinsing is preferably carried out continuously, whereby in particular a method selected from the group or consisting of spraying, atomizing, dipping and application (coil coating method) can be used.
- spraying atomizing
- dipping and application coil coating method
- drying is carried out, whereby the "rinsed" coating is preferably dried by increasing the temperature (up to a maximum of 100 °C) or by a blower.
- the “rinsed” coating is air-dried, for example without any additional aids.
- the hot-dip coated steel strip which has been tempered under the conditions specified above and optionally cleaned and/or conditioned, can be wetted with an aqueous activation solution.
- the aqueous activation solution can contain or consist of: 0.8 to 1.5 g/l of a titanium salt, which is selected in particular from the group titanium dioxide, potassium titanium fluoride, dipotassium hexafluorotitanate, titanyl sulfate, titanium tetrachloride, titanium tetrafluoride, titanium trichloride, titanium hydroxide, titanium nitrite, titanium nitrate, potassium titanium oxidoxalate, titanium carbide, the remainder being water and unavoidable impurities.
- a titanium salt which is selected in particular from the group titanium dioxide, potassium titanium fluoride, dipotassium hexafluorotitanate, titanyl sulfate, titanium tetrachloride, titanium tetrafluoride, titanium trichloride, titanium hydro
- an aqueous activation solution can contain or consist of: at least one compound from the group oxalic acid, nickel phosphate, manganese phosphate, calcium phosphate, iron phosphate, aluminum phosphate, cobalt (III) phosphate, copper, copper sulfate, copper nitrate, copper chloride, copper carbonate, copper oxide, silver, cobalt, nickel, Jernstedt salt, lead acetate, tin (tetra)chloride, arsenic oxide, zirconium chloride, zirconium sulfate, zirconium, iron, lithium, Zn 3 (PO 4 ) 2, Zn 2 Fe(PO 4 ) 2 , Zn 2 Ni(PO 4 ) 2, Zn 2 Mn(PO 4 ) 2 , Zn 2 Ca(PO 4 ) 2 .
- the surface of the hot-dip coated steel strip can be wetted with an aqueous activation solution for a time of 1 to 60 s, in particular between 2 and 50 s, preferably between 3 and 40 s, preferably between 3 and 30 s, and at a temperature of 15 to 80 °C, in particular from 20 to 80 °C, preferably from 30 to 80 °C, preferably from 40 to 80 °C.
- the surface of the hot-dip coated steel strip is not wetted with an aqueous activation solution.
- the hot-dip coated steel strip which has been skin-rolled under the conditions specified above, is oiled. The oil is preferably applied to ensure temporary corrosion protection.
- a service can take place after each of the above-mentioned steps: after wetting with the aqueous cleaning solution and, if necessary, rinsing, after conditioning with an inorganic acid and termination of the conditioning by rinsing and, if necessary, drying, and/or activation.
- Samples I consisted of a steel material with the composition in wt.%:
- Samples II consisted of a steel material with the composition in wt.%:
- Samples III consisted of a steel material with the composition in wt.%:
- Samples IV consisted of a steel material with the composition in wt.%:
- the adhesive bond should fail in the area of the adhesive itself and not at the interface between the surface of the respective component and the adhesive.
- the results of the tests of the adhesive behavior and the specific dressing forces with which the individual sections from which the samples were separated were dressed are summarized in Table 1.
- the value 0 indicates the results that were determined for samples in the initial state.
- the other results that were determined for samples that underwent a climate change test in 40, 60 and 90 cycles according to DIN EN ISO 11997-B are marked with 40, 60 and 90.
- the determined fracture fractions adhesive, cohesive and cohesive near the interface are given in %, which does not have to reach 100% in total, since possible further fracture fractions can occur, for example in small proportions.
- the aim is to improve the fracture pattern so that cohesive failure increases so that adhesive suitability can then be ensured.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Coating With Molten Metal (AREA)
Abstract
The invention relates to a process for temper-passing a steel strip according to claim 1 which has been coated with a ZM coating.
Description
Verfahren zum Dressieren eines mit einem ZM-Überzug beschichteten Stahlbands Process for skin passing a steel strip coated with a ZM coating
Die Erfindung betrifft ein Verfahren zum Dressieren eines mit einem ZM-Überzug beschichteten Stahlbands, wobei das Verfahren folgende Schritte umfasst: The invention relates to a method for skin passing a steel strip coated with a ZM coating, the method comprising the following steps:
- Bereitstellen eines Stahlbands; - Providing a steel band;
- Schmelztauchbeschichten des Stahlbands mit einem zinkbasierten Überzug zur Erzeugung eines schmelztauchbeschichteten Stahlbands, wobei das Stahlband ein Schmelzbad durchläuft, welches Aluminium zwischen 0,5 und 8,0 Gew.-% und Magnesium zwischen 0,5 und 8,0 Gew.-%, Rest Zink und unvermeidbare Verunreinigungen umfasst;- hot-dip coating the steel strip with a zinc-based coating to produce a hot-dip coated steel strip, wherein the steel strip passes through a molten bath comprising aluminium between 0.5 and 8.0 wt.% and magnesium between 0.5 and 8.0 wt.%, the remainder being zinc and unavoidable impurities;
- Kühlen des schmelztauchbeschichteten Stahlbands zur Erstarrung des Überzugs auf dem Stahlsubstrat nach Austritt aus dem Schmelzbad; - Cooling the hot-dip coated steel strip to solidify the coating on the steel substrate after it leaves the molten bath;
- Dressieren des schmelztauchbeschichteten Stahlbands mit einer spezifischen Dressierkraft sW, wobei das Stahlband eine Streckgrenze Re und eine Zugfestigkeit Rm aufweist. - Skin passing of the hot-dip coated steel strip with a specific skin passing force sW, whereby the steel strip has a yield strength R e and a tensile strength R m .
Um einen effektiven Korrosionsschutz bei Kaltumformstählen im Automobilbereich zu gewährleisten, werden StahlsubstrateZ-bänder klassisch mit einem Zn-basierten Schmelztauchüberzug versehen. Dieser bietet einen aktiven Korrosionsschutz, das heißt, dass sich der vergleichsweise unedle Zn-Überzug für das edlere Stahlsubstrat opfert. Neben einer klassischen Feuerverzinkung „Z“ spielen dabei Zink-Magnesium-Aluminium-Schmelztauchüberzüge, kurz „ZM“ genannt, eine immer größere Rolle. Diese bieten gegenüber klassischem Feuerzink Vorteile bezüglich des Korrosionsverhaltens und der Kaltumformbarkeit. Allerdings kann eine ZM-Oberflä- che nach einer Lagerung und anschließenden Phosphatierung unter ungünstigen Gegebenheiten zu Problemen bei der Weiterverarbeitung führen. In order to ensure effective corrosion protection for cold-forming steels in the automotive sector, steel substratesZ strips are traditionally provided with a Zn-based hot-dip coating. This offers active corrosion protection, i.e. the comparatively base Zn coating is sacrificed for the more noble steel substrate. In addition to classic hot-dip galvanizing "Z", zinc-magnesium-aluminium hot-dip coatings, known as "ZM" for short, are playing an increasingly important role. These offer advantages over classic hot-dip zinc in terms of corrosion behavior and cold formability. However, a ZM surface can lead to problems during further processing under unfavorable conditions after storage and subsequent phosphating.
Im Fokus liegt insbesondere eine bessere Klebeignung von ZM-Überzügen bereitzustellen. Die Aufgabe der vorliegenden Erfindung besteht ferner darin, eine problemfreie Prozessierung von ZM-Oberflächen sicherzustellen. Gleichzeitig wird in einer Welt mit begrenzten Ressourcen eine effiziente Nutzung von Energie und Material immer wichtiger. Die weitere wesentliche Aufgabe der Erfindung besteht somit darin, eine Weiterverarbeitung auch ressourcenschonend und sicher zu gewährleisten. Die Sicherheit bezieht sich hier auf Gesundheit der Menschen und Umweltverträglichkeit. Es sollen mithin nicht nur bei dem Produkt oder den Zwischenprodukten, sondern auch während der einzelnen Prozessschritte keine, gegenüber dem Stand der Technik zusätzliche Gefahrstoffe eingesetzt werden. Zur ressourcenschonenden Herstellung und
Weiterverarbeitung sollen keine, gegenüber dem Stand der Technik zusätzliche Prozessschritte eingeführt werden. The focus is in particular on providing better adhesive properties for ZM coatings. The aim of the present invention is also to ensure problem-free processing of ZM surfaces. At the same time, in a world with limited resources, efficient use of energy and material is becoming increasingly important. The other essential aim of the invention is therefore to ensure further processing in a resource-saving and safe manner. Safety here refers to human health and environmental compatibility. Therefore, no additional hazardous substances should be used compared to the state of the art, not only in the product or the intermediate products, but also during the individual process steps. For resource-saving production and In further processing, no additional process steps should be introduced compared to the state of the art.
In der EP 3 416 760 Bl ist offenbart, dass übliche spezifische Walzkräfte beim Dressieren im Bereich von 1,9 kN/mm liegen. EP 3 416 760 Bl discloses that typical specific rolling forces during skin passing are in the range of 1.9 kN/mm.
Die Erfinder haben überraschend festgestellt, dass sich eine verbesserte Klebeignung an ZM- Überzügen einstellt, wenn das Kühlen des im Schmelzbad aufgetragenen ZM-Überzugs bis zu einer Temperatur von 340 °C mit einer mittleren Abkühlrate zwischen 5 und 40 K/s durchgeführt wird und das beim Dressieren folgende Bedingungen erfüllt sind: The inventors have surprisingly found that an improved adhesive suitability of ZM coatings is achieved when the cooling of the ZM coating applied in the melt bath is carried out up to a temperature of 340 °C with an average cooling rate between 5 and 40 K/s and the following conditions are met during skin passing:
0,80 <= sW * Rm 0’3 <= 1,20 [104’2*N°’7*m 0’4] und 0,850 <= sW * Re 0’3 <= 1 ,20 [104’2*N°’7*m- 0,4] 0.80 <= sW * R m 0 ' 3 <= 1.20 [10 4 ' 2 *N°' 7 *m 0 ' 4 ] and 0.850 <= sW * R e 0 ' 3 <= 1 .20 [10 4 ' 2 *N°' 7 *m- 0.4]
Nach dem Schmelztauchbeschichten, welches bevorzugt ein Abstreifen des überschüssigen Schmelzüberzugs und damit Einstellen der Überzugsdicke umfasst, wird das beschichtete Stahlband insbesondere auf eine Temperatur unterhalb von 100 °C, vorzugsweise auf Raumtemperatur abgekühlt. Die Phasenausbildung im Überzug findet im Wesentlichen während des Schmelztauchbeschichtens und Abkühlens statt, bei Temperaturen des Schmelzbades etwa 460 °C +/- 15 °C bis Abkühlen auf ca. 340 °C. Bei 340 °C stoppt die Diffusion im Wesentlichen aufgrund der Verfestigung des Überzuges. Vorteilhaft ist, die Diffusionsvorgänge nach dem Schmelztauchbeschichten möglichst schnell zu stoppen, indem eine mittlere Abkühlrate bis 340 °C mit mindestens 3 K/s, insbesondere mindestens 5 K/s, vorzugsweise mindestens 10 K/s, bevorzugt mindestens 15 K/s festgelegt wird. Abhängig von der Zusammensetzung des Schmelzbades beginnt mit Abstreifen des Überzugs ein Kühlen und somit der Beginn der Verfestigung des Überzugs. Bei Erreichen einer Temperatur von ca. 340 °C wird davon ausgegangen, dass das Ende der Verfestigung des Überzugs erreicht sein sollte. Bevorzugt beträgt die mittlere Abkühlrate maximal 40 K/s, insbesondere maximal 35 K/s. Die Temperatur entspricht einer im Wesentlichen an der Oberfläche des Überzugs, beispielsweise mittels Pyrometer, gemessenen Temperatur. Die Art und Weise zur Erfassung der Temperatur an Oberflächen ist in Fachkreisen geläufig. After hot-dip coating, which preferably includes stripping off the excess hot-dip coating and thus adjusting the coating thickness, the coated steel strip is cooled in particular to a temperature below 100 °C, preferably to room temperature. The phase formation in the coating essentially takes place during hot-dip coating and cooling, at temperatures of the melt bath of around 460 °C +/- 15 °C until cooling to approx. 340 °C. At 340 °C, the diffusion essentially stops due to the solidification of the coating. It is advantageous to stop the diffusion processes as quickly as possible after hot-dip coating by setting an average cooling rate up to 340 °C of at least 3 K/s, in particular at least 5 K/s, preferably at least 10 K/s, preferably at least 15 K/s. Depending on the composition of the melt pool, cooling begins when the coating is stripped off, and thus the coating begins to solidify. When a temperature of approx. 340 °C is reached, it is assumed that the end of the coating's solidification should have been reached. The average cooling rate is preferably a maximum of 40 K/s, in particular a maximum of 35 K/s. The temperature corresponds essentially to a temperature measured on the surface of the coating, for example using a pyrometer. The method of measuring the temperature on surfaces is familiar in specialist circles.
Durch das Dressieren wird in das schmelztauchbeschichtete Stahlblech eine Oberflächenstruktur eingeprägt, welche beispielsweise eine deterministische Oberflächenstruktur sein kann. Unter deterministischer Oberflächenstruktur sind insbesondere
regelmäßig wiederkehrende Oberflächenstrukturen zu verstehen, welche eine definierte Form und/oder Ausgestaltung bzw. Dimensionierung aufweisen. Insbesondere gehören hierzu zudem Oberflächenstrukturen mit einer (quasi-)stochastischen Anmutung, die sich aus stochastischen Formelementen mit einer wiederkehrenden Struktur zusammensetzen. Alternativ und bevorzugt ist auch das Einbringen einer stochastischen Oberflächenstruktur denkbar. By means of the tempering process, a surface structure is embossed into the hot-dip coated steel sheet, which can be, for example, a deterministic surface structure. Deterministic surface structure refers in particular to regularly recurring surface structures that have a defined shape and/or design or dimension. In particular, this also includes surface structures with a (quasi-)stochastic appearance, which are composed of stochastic form elements with a recurring structure. Alternatively and preferably, the introduction of a stochastic surface structure is also conceivable.
Das Dressieren des ZM-Überzugs geht mit einer spezifischen Dressierkraft, kurz sW genannt, einher, welche der Dressierkraft in kN pro Breite des zu dressierenden Stahlbands in mm entspricht. Die optimale spezifische Dressierkraft wird nicht zu hoch gewählt, um einen technischen unnötigen Verschleiß der Dressierwalzen und auch einen dadurch bedingten erhöhten Energieverbrauch zur Erzeugung einer technisch nicht notwendigen hohen Dressierkraft zu vermeiden. Eine wesentliche Herausforderung bei der Kalibrierung einer optimalen spezifischen Dressierkraft ist, dass ZM-Überzüge auf unterschiedlichen Stahlbändern eingesetzt werden. Dabei hängt die mindestens notwendige Dressierkraft, welche eine Oberfläche mit einer verbesserten Klebeignung erzeugen kann, stark von der Festigkeit des Stahlbands ab. So hat sich gezeigt, dass bei Stahlbändern mit besonders hoher Festigkeit bereits bei einer geringeren Dressierkraft eine gute Klebeignung des ZM-Überzugs erzielt werden kann, während für weichere Stahlbänder eine höhere Dressierkraft erforderlich ist. Um diesem Umstand Rechnung zu tragen, müssen mechanische Kennwerte wie die Streckgrenze Re und die Zugfestigkeit Rm des Stahlbands in die Betrachtung mit einbezogen werden. Die genannten mechanischen Kennwerte werden beispielsweise durch einen Zugversuch an Längsproben bei Raumtemperatur nach DIN EN ISO 6892-1, Verfahren B. Streckgrenze und Zugfestigkeit werden in MPa angegeben. Die Streckgrenze wird auch als Dehngrenze bezeichnet. The skin-passing of the ZM coating is accompanied by a specific skin-passing force, called sW for short, which corresponds to the skin-passing force in kN per width of the steel strip to be skin-passed in mm. The optimal specific skin-passing force is not chosen to be too high in order to avoid unnecessary technical wear on the skin-passing rollers and the resulting increased energy consumption to generate a high skin-passing force that is not technically necessary. A major challenge in calibrating an optimal specific skin-passing force is that ZM coatings are used on different steel strips. The minimum necessary skin-passing force, which can produce a surface with improved adhesive properties, depends heavily on the strength of the steel strip. It has been shown that with steel strips with particularly high strength, good adhesive properties of the ZM coating can be achieved even with a lower skin-passing force, while a higher skin-passing force is required for softer steel strips. In order to take this into account, mechanical parameters such as the yield strength R e and the tensile strength R m of the steel strip must be taken into account. The mechanical parameters mentioned are determined, for example, by a tensile test on longitudinal specimens at room temperature in accordance with DIN EN ISO 6892-1, method B. Yield strength and tensile strength are given in MPa. The yield strength is also referred to as the proof strength.
Somit sind die Bedingungen 0,80 <= sW * Rm 03 <= 1,20 und 0,850 <= sW * Re 0 3 <= 1,20 beim Dressieren einzuhalten. Die Maßeinheit des Ausdrucks sW * Rm 03 und sW * Re 03 entspricht jeweils 104’2*N°’7*m-°’4. Thus, the conditions 0.80 <= sW * R m 03 <= 1.20 and 0.850 <= sW * R e 0 3 <= 1.20 must be observed when dressing. The unit of measurement of the expression sW * R m 03 and sW * R e 03 corresponds to 10 4 ' 2 *N°' 7 *m-°' 4 .
Das Stahlband kann ein Warmband (warmgewalztes Stahlband) oder Kaltband (kaltgewalztes Stahlband) sein oder aus einem Warmband oder aus einem Kaltband hergestellt sein. The steel strip can be a hot-rolled strip (hot-rolled steel strip) or a cold-rolled strip (cold-rolled steel strip) or can be made from a hot-rolled strip or a cold-rolled strip.
Bevorzugt kommen Kaltbänder nach DIN EN 10346 in Frage, so zum Beispiel ein Mehrphasen- , IF-, BH- oder mikrolegierter Stahl.
Ein Mehrphasenstahl wird für den Automobilbereich in der Karosserie eingesetzt. Beispielhafte Stähle dieser Gattung sind unter der Norm-Bezeichnung HCT490X, HCT590X oder HCT780X erhältlich. Cold rolled strips according to DIN EN 10346 are preferred, such as multiphase, IF, BH or micro-alloyed steel. A multiphase steel is used in the automotive sector in the bodywork. Examples of steels of this type are available under the standard designation HCT490X, HCT590X or HCT780X.
Ein IF-Stahl weist keine interstitiell eingelagerten Legierungselemente auf, d.h. dass im Metallgitter keine Eisenatome durch Kohlenstoff- oder Stickstoffatome blockiert sind. Dadurch entsteht ein sehr weicher Stahl mit sehr guten Umformeigenschaften. Er wird vor allem für komplizierte Tiefziehteile im Automobilbau eingesetzt. Stähle dieser Gattung sind unter der Norm- Bezeichnung DX52D, DX53D, DX54D, DX55D, DX56D, DX57D HX160YD, HX180YD, HX220YD und HX260YD erhältlich. An IF steel has no interstitially embedded alloying elements, i.e. no iron atoms are blocked by carbon or nitrogen atoms in the metal lattice. This creates a very soft steel with very good forming properties. It is used primarily for complicated deep-drawn parts in automobile construction. Steels of this type are available under the standard designations DX52D, DX53D, DX54D, DX55D, DX56D, DX57D HX160YD, HX180YD, HX220YD and HX260YD.
Ein BH-Stahl zeichnet sich durch einen signifikanten Anstieg der Streckgrenze im Zuge des Lackeinbrennens (typischerweise bei 170 °C für 20 min) in Kombination mit einer sehr guten Umformbarkeit aus. Des Weiteren besitzen diese Stähle eine sehr gute Beulsteifigkeit, weswegen diese Stähle bevorzugt für Außenhautanwendungen verwendet werden. Stähle dieser Gattung sind unter der Norm-Bezeichnung HX180BD, HX220BD, HX260BD und HX300BD erhältlich. A BH steel is characterized by a significant increase in yield strength during paint baking (typically at 170 °C for 20 minutes) in combination with very good formability. Furthermore, these steels have very good dent resistance, which is why they are preferred for outer skin applications. Steels of this type are available under the standard designation HX180BD, HX220BD, HX260BD and HX300BD.
Ein mikrolegierter Stahl wird im Automobilbereich zu Karosseriebauteilen verarbeitet. Ein mikrolegierter Stahl weist eine feinkörnige Mikrostruktur auf und verleiht ihm eine hohe Ermüdungsfestigkeit und hohe Strecklastgrenze. Er wird vor allem für komplizierte Tiefziehteile im Automobilbau eingesetzt. Beispielhafte Stähle dieser Gattung sind unter der Norm-Bezeichnung HC260LA, HC300LA, HC340LA, HC380LA, HC420LA, HC460LA, HC500LA und HC550LA erhältlich. A micro-alloyed steel is processed into body components in the automotive sector. A micro-alloyed steel has a fine-grained microstructure and gives it high fatigue strength and a high yield strength. It is used primarily for complicated deep-drawn parts in automotive construction. Examples of steels of this type are available under the standard designation HC260LA, HC300LA, HC340LA, HC380LA, HC420LA, HC460LA, HC500LA and HC550LA.
Des Weiteren können auch Warmbänder nach DIN EN 10149-2 oder DIN EN 10025-2 in Frage kommen. Furthermore, hot-rolled strips according to DIN EN 10149-2 or DIN EN 10025-2 may also be considered.
Gering bzw. nicht legiertes Eisen weist i. d. R. eine ausgeprägte Streckgrenze ReH auf. Bei einer ausgeprägten Streckgrenze kommt es nach dem Überschreiten einer bestimmten Spannung zum sogenannten Streckgrenzeneffekt. Der Werkstoff dehnt sich dabei ohne eine Erhöhung der Spannung weiter aus. So kommt es zu einem Spannungsabfall, ab dem die plastische Verformung einsetzt. Begründet wird dieser Streckgrenzeneffekt durch die cottrellschen Effekte. Wegen des Spannungsabfalls beim Streckgrenzeneffekts kann eine obere und eine untere Streckgrenze bestimmt werden.
Stahl, charakterisiert als Eisen-Legierung mit Chrom-, Mangan-Beimischung u. a. zeigt feinere Kristallgefüge als gering bzw. nicht legiertes Eisen auf. Deshalb kann in einem Zugversuch die Streckgrenze nicht eindeutig gemessen werden. Es kommt zu einem kontinuierlichen Übergang zwischen elastischem und plastischem Bereich des Stahls und der Stahl zeigt keine ausgeprägte Streckgrenze ReH. Die Grenze ist somit nicht eindeutig identifizierbar und die Dehngrenzen müssen angenommen werden. Ein Beispiel einer angenommenen Grenze ist die Dehngrenze mit 0,2%. Für technische Werkstoffe wie Stahl wird in der Regel und auch im Sinne der Erfindung die Dehngrenze Rp0,2% als Ersatz für nicht die vorhandene Streckgrenze ReH ermittelt. Die 0,2 %-Dehngrenze kann im Gegensatz zur Streckgrenze immer eindeutig aus dem Spannungs-Dehnungs-Diagramm ermittelt werden. In der der vorliegenden Erfindung wird diese Dehngrenze mit 0,2% als Streckgrenze Re bezeichnet und verwendet. Iron that is lightly alloyed or not alloyed usually has a pronounced yield strength ReH. With a pronounced yield strength, the so-called yield point effect occurs after a certain stress is exceeded. The material continues to expand without an increase in stress. This leads to a drop in stress, at which point plastic deformation begins. This yield point effect is based on the Cottrell effects. Due to the drop in stress during the yield point effect, an upper and a lower yield point can be determined. Steel, characterized as an iron alloy with chromium, manganese, etc. admixture, shows finer crystal structures than low-alloy or non-alloyed iron. Therefore, the yield strength cannot be clearly measured in a tensile test. There is a continuous transition between the elastic and plastic range of the steel and the steel does not show a pronounced yield strength ReH. The limit is therefore not clearly identifiable and the yield strengths must be assumed. An example of an assumed limit is the yield strength of 0.2%. For technical materials such as steel, the yield strength Rp0.2% is usually and also in the sense of the invention determined as a replacement for the existing yield strength ReH. In contrast to the yield strength, the 0.2% yield strength can always be clearly determined from the stress-strain diagram. In the present invention, this yield strength of 0.2% is referred to and used as the yield strength Re.
Die Dicke des Stahlbands beträgt beispielsweise 0,3 bis 6,0 mm, insbesondere 0,5 bis 5,0 mm, vorzugsweise 0,7 bis 4,0 mm. The thickness of the steel strip is, for example, 0.3 to 6.0 mm, in particular 0.5 to 5.0 mm, preferably 0.7 to 4.0 mm.
Um nun zusätzlich einen unnötigen Verschleiß sowie den Energieverbrauch senken zu können, ist vorzugsweise das Dressieren derart durchzuführen, dass die folgenden Bedingungen genügen [104’2*N°’7*m 0’4]: insbesondere 0,80 <= sW * Rm 0 3 <= 1, 150 und 0,850 <= sW * Re 0 3 <= 1,150; vorzugsweise 0,80 <= sW * Rm 0 3 <= 1, 10 und 0,850 <= sW * Re 0 3 <= 1, 10; bevorzugt 0,80 <= sW * Rm 03 <= 1,050 und 0,850 <= sW * Re 03 <= 1,050; besonders bevorzugt 0,80 <= sW * Rm 03 <= 1,0 und 0,850 <= sW * Re 0 3 <= 1,0; weiter bevorzugt 0,80 <= sW * Rm 03 <= 0,950 und 0,850 <= sW * Re 0 3 <= 1,0. In order to further reduce unnecessary wear and energy consumption, the dressing should preferably be carried out in such a way that the following conditions are satisfied [10 4 ' 2 *N°' 7 *m 0 ' 4 ]: in particular 0.80 <= sW * R m 0 3 <= 1.150 and 0.850 <= sW * R e 0 3 <= 1.150; preferably 0.80 <= sW * R m 0 3 <= 1.10 and 0.850 <= sW * R e 0 3 <= 1.10; preferably 0.80 <= sW * R m 03 <= 1.050 and 0.850 <= sW * R e 03 <= 1.050; particularly preferably 0.80 <= sW * R m 03 <= 1.0 and 0.850 <= sW * R e 0 3 <= 1.0; further preferably 0.80 <= sW * R m 03 <= 0.950 and 0.850 <= sW * R e 0 3 <= 1.0.
Der ZM-Überzug, aufgebracht im Schmelztauchbeschichtungsprozess, umfasst eine Zinklegierung mit neben Zink (Rest) und unvermeidbaren Verunreinigungen zusätzliche Elemente wie Aluminium mit einem Gehalt zwischen 0,1 und 8,0 Gew.-% und Magnesium mit einem Gehalt zwischen 0, 1 und 8,0 Gew.-%. Als Verunreinigungen im Schmelzbad können Elemente aus der Gruppe Si, Sb, Bi, Zr, Ni, Cr, Pb, Ti, Ca, Mn, Sn, La, Ce, Fe und Cr in Gehalten einzeln oder kumuliert bis zu 0,5 Gew.-%, insbesondere bis zu 0,4 Gew.-%, vorzugsweise bis zu 0,3 Gew.- % vorhanden sein. Als Verunreinigungen im Überzug können Elemente aus der Gruppe Si, Sb, Bi, Zr, Ni, Cr, Pb, Ti, Ca, Mn, Sn, La, Ce, Fe und Cr in Gehalten einzeln oder kumuliert bis zu 0,5 Gew.-%, insbesondere bis zu 0,4 Gew.-%, vorzugsweise bis zu 0,3 Gew.-% vorhanden sein,
wobei in einer Alternative die Konzentration von Fe insbesondere aufgrund der Fe2AI6-Grenz- schichtausbildung höher sein kann, beispielsweise bis zu 3 Gew.-%. Der Rest ist Zink. Stahlbleche, abgetrennt aus Stahlbändern respektive daraus hergestellte Stahlblechbauteile mit einem Korrosionsschutzüberzug auf Zinkbasis weisen einen sehr guten kathodischen Korrosionsschutz auf, welche seit Jahren im Automobilbau eingesetzt werden. Ist ein verbesserter Korrosionsschutz vorgesehen, weist der Überzug Magnesium mit einem Gehalt von mindestens 0,8 Gew.-%, insbesondere von mindestens 1,0 Gew.-%, vorzugsweise von mindestens 1, 1 Gew.- % und Aluminium mit einem Gehalt von mindestens 0,8 Gew.-%, insbesondere von mindestens 1,0 Gew.-% auf. Der Überzug weist Magnesium mit einem Gehalt von maximal 8,0 Gew.-%, bevorzugt maximal 7 Gew.-%, besonders bevorzugt 5,0 Gew.-%, insbesondere von maximal 4,0 Gew.-% und Aluminium mit einem Gehalt von maximal 8,0 Gew.-%, bevorzugt maximal 7 Gew.-%, besonders bevorzugt 5,0 Gew.-%, insbesondere von maximal 4,0 Gew.-% auf. The ZM coating, applied in the hot-dip coating process, comprises a zinc alloy with, in addition to zinc (remainder) and unavoidable impurities, additional elements such as aluminum with a content of between 0.1 and 8.0 wt.% and magnesium with a content of between 0.1 and 8.0 wt.%. Elements from the group Si, Sb, Bi, Zr, Ni, Cr, Pb, Ti, Ca, Mn, Sn, La, Ce, Fe and Cr can be present as impurities in the melt bath in individual or cumulative amounts of up to 0.5 wt.%, in particular up to 0.4 wt.%, preferably up to 0.3 wt.%. Elements from the group Si, Sb, Bi, Zr, Ni, Cr, Pb, Ti, Ca, Mn, Sn, La, Ce, Fe and Cr may be present as impurities in the coating in individual or cumulative amounts of up to 0.5 wt.%, in particular up to 0.4 wt.%, preferably up to 0.3 wt.%. In an alternative, the concentration of Fe can be higher, for example up to 3% by weight, particularly due to the formation of the Fe 2 Al 6 boundary layer. The remainder is zinc. Steel sheets separated from steel strips or steel sheet components made from them with a zinc-based anti-corrosive coating have very good cathodic corrosion protection and have been used in automobile construction for years. If improved corrosion protection is required, the coating has a magnesium content of at least 0.8% by weight, in particular at least 1.0% by weight, preferably at least 1.1% by weight, and aluminum content of at least 0.8% by weight, in particular at least 1.0% by weight. The coating has magnesium with a content of maximum 8.0 wt.%, preferably maximum 7 wt.%, particularly preferably 5.0 wt.%, in particular maximum 4.0 wt.% and aluminum with a content of maximum 8.0 wt.%, preferably maximum 7 wt.%, particularly preferably 5.0 wt.%, in particular maximum 4.0 wt.%.
Insbesondere zur Einstellung einer vorgegebenen Dicke des ZM-Überzugs, welche im festen Zustand zwischen 1 pm und 60 pm pro Seite betragen kann, wird die noch im flüssigen Zustand auf dem Stahlband applizierte Schmelze abgestreift, dadurch, dass nach dem Verlassen des Schmelzbads das mit flüssiger Schmelze beschichtete Stahlband durch eine Abstreifvorrichtung hindurchgeführt wird, welche Mittel aufweist, beispielsweise Düsen, insbesondere Schlitzdüsen, welche beidseitig auf das Stahlband mit einem gasförmigen Abstreifmedium zum Abstreifen der flüssigen Schmelze einwirken. Die Einstellung der Dicke des ZM-Überzugs kann insbesondere zwischen mindestens 4 pm, vorzugsweise mindestens 5 pm und maximal 58 pm, vorzugsweise maximal 55 pm erfolgen. In einer besonderen Ausgestaltung beträgt die Dicke des ZM- Überzugs mindestens 1,0 pm, insbesondere mindestens 2 pm, vorzugsweise mindestens 3 pm, bevorzugt mindestens 5 pm und maximal 25 pm, insbesondere maximal 20 pm und vorzugsweise maximal 15 pm, bevorzugt maximal 10 pm. Unterhalb der Mindestgrenzen kann kein ausreichender kathodischer Korrosionsschutz gewährleistet werden und oberhalb der Höchstgrenze können Fügeprobleme beim Verbinden eines aus dem erfindungsgemäß hergestellten Stahlband abgetrennten Stahlblechs respektive eines daraus gefertigten Bauteils mit einem anderen Bauteil auftreten. Insbesondere kann bei Überschreiten der angegebenen Höchstgrenze der Dicke des ZM-Überzugs kein stabiler Prozess beim thermischen Fügen bzw. Schweißen sichergestellt werden. In particular, to set a predetermined thickness of the ZM coating, which in the solid state can be between 1 pm and 60 pm per side, the melt applied to the steel strip while it is still in the liquid state is stripped off by passing the steel strip coated with liquid melt through a stripping device after leaving the melt bath, which has means, for example nozzles, in particular slot nozzles, which act on both sides of the steel strip with a gaseous stripping medium to strip off the liquid melt. The thickness of the ZM coating can be set in particular between at least 4 pm, preferably at least 5 pm and a maximum of 58 pm, preferably a maximum of 55 pm. In a special embodiment, the thickness of the ZM coating is at least 1.0 pm, in particular at least 2 pm, preferably at least 3 pm, preferably at least 5 pm and a maximum of 25 pm, in particular a maximum of 20 pm and preferably a maximum of 15 pm, preferably a maximum of 10 pm. Below the minimum limits, sufficient cathodic corrosion protection cannot be guaranteed and above the maximum limit, joining problems can occur when connecting a steel sheet cut from the steel strip produced according to the invention or a component made from it to another component. In particular, if the specified maximum limit of the ZM coating thickness is exceeded, a stable process cannot be ensured during thermal joining or welding.
Gemäß einer Ausgestaltung kann das schmelztauchbeschichtete, unter den vorgenannten Bedingungen dressierte Stahlband mit einer wässrigen Reinigerlösung benetzt werden. Als wässrige Reinigerlösung kann eine saure oder alkalische Lösung eingesetzt werden. Die Oberfläche
des schmelztauchbeschichteten Stahlbands kann für eine Zeit von 1 bis 60 s, insbesondere zwischen 2 und 50 s, vorzugsweise zwischen 3 und 40 s, bevorzugt zwischen 3 und 30 s, und bei einer Temperatur von 15 bis 80 °C, insbesondere von 20 bis 80 °C, vorzugsweise von 30 bis 80 °C, bevorzugt von 40 bis 80 °C mit einer wässrigen Reinigerlösung benetzt werden. Die Benetzung kann mit einer wässrigen Reinigerlösung durch Spülen mit Wasser und/oder einer wässrigen Lösung beendet werden. According to one embodiment, the hot-dip coated steel strip, which has been skin-finished under the aforementioned conditions, can be wetted with an aqueous cleaning solution. An acidic or alkaline solution can be used as the aqueous cleaning solution. The surface The hot-dip coated steel strip can be wetted with an aqueous cleaning solution for a time of 1 to 60 s, in particular between 2 and 50 s, preferably between 3 and 40 s, preferably between 3 and 30 s, and at a temperature of 15 to 80 °C, in particular from 20 to 80 °C, preferably from 30 to 80 °C, preferably from 40 to 80 °C. The wetting can be terminated with an aqueous cleaning solution by rinsing with water and/or an aqueous solution.
Gemäß einer Ausgestaltung kann das schmelztauchbeschichtete, unter den oben angegebenen Bedingungen dressierte und gegebenenfalls gereinigte Stahlband mit einer wässrigen Lösung einer anorganischen Säure konditioniert werden. Die wässrige Lösung einer anorganischen Säure weist einen pH-Wert kleiner 7, insbesondere kleiner 6, vorzugsweise kleiner 5, bevorzugt kleiner 4 auf. Der pH-Wert kann mindestens 0,5, insbesondere mindestens 1,0, vorzugsweise mindestens 1,5 aufweisen. Eine anorganische Säure wird ausgewählt aus der Gruppe enthaltend oder bestehend aus: H2SO4, HCl, HNO3, H3PO4, H2SO3, HNO2, HF, oder eine Mischung von 2 oder mehrerer dieser Säuren als wässrige Lösung eingesetzt. Die Ermittlung des pH-Werts ist bekannt. According to one embodiment, the hot-dip coated steel strip, which has been skin-rolled under the conditions specified above and optionally cleaned, can be conditioned with an aqueous solution of an inorganic acid. The aqueous solution of an inorganic acid has a pH of less than 7, in particular less than 6, preferably less than 5, preferably less than 4. The pH can be at least 0.5, in particular at least 1.0, preferably at least 1.5. An inorganic acid is selected from the group containing or consisting of: H 2 SO 4 , HCl, HNO 3 , H 3 PO 4 , H 2 SO 3 , HNO 2 , HF, or a mixture of 2 or more of these acids is used as an aqueous solution. The determination of the pH is known.
Die Oberfläche des schmelztauchbeschichteten kann für eine Zeit von 0, 1 bis 5 s und bei einer Temperatur von 10 °C bis 90 °C mit der wässrigen Lösung einer anorganischen Säure benetzt werden. Der Überzug wird für eine Zeit von mindestens 0, 1 s, insbesondere mindestens 0,2 s, vorzugsweise mindestens 0,3 s, 0,4 s, bevorzugt mindestens 0,5 s, und maximal 5 s, insbesondere maximal 4 s, vorzugsweise maximal 3 s, 2 s, 1,8 s, bevorzugt maximal 1,5 s, 1,2 s, 1,0 s mit einer wässrigen Lösung einer anorganischen Säure benetzt. Das Benetzen des Überzugs mit einer wässrigen Lösung einer anorganischen Säure erfolgt bei einer Temperatur von 10 °C bis 90 °C, insbesondere 20 °C bis 70 °C, vorzugsweise 20 °C bis 50 °C, bevorzugt 20 °C bis 40 °C, besonders bevorzugt 20 °C bis 30 °C. The surface of the hot-dip coated material can be wetted with the aqueous solution of an inorganic acid for a time of 0.1 to 5 s and at a temperature of 10 °C to 90 °C. The coating is wetted with an aqueous solution of an inorganic acid for a time of at least 0.1 s, in particular at least 0.2 s, preferably at least 0.3 s, 0.4 s, preferably at least 0.5 s, and a maximum of 5 s, in particular a maximum of 4 s, preferably a maximum of 3 s, 2 s, 1.8 s, preferably a maximum of 1.5 s, 1.2 s, 1.0 s. The wetting of the coating with an aqueous solution of an inorganic acid takes place at a temperature of 10 °C to 90 °C, in particular 20 °C to 70 °C, preferably 20 °C to 50 °C, more preferably 20 °C to 40 °C, particularly preferably 20 °C to 30 °C.
Die Benetzung kann durch Spülen mit Wasser und/oder einer wässrigen Lösung beendet werden. Hierzu wird das Benetzen mit einer wässrigen Lösung einer anorganischen Säure durch Spülen mit Wasser und/oder einem Alkohol, beispielsweise ausgewählt aus der Gruppe enthaltend oder bestehend aus Methanol, Ethanol, Propanol, Isopropanol, Ethanol, insbesondere Isopropanol oder einer wässrigen Lösung unterbrochen. In einer Alternative erfolgt das Spülen in 2 Teilschritten, in einem ersten Teilschritt mit Wasser; in einem zweiten Teilschritt mit einem Alkohol oder einer wässrigen Lösung eines Alkohols wie oben angegeben. In einer anderen Alternative erfolgt das Spülen mit Wasser und einem Alkohol in einem Schritt, bevorzugt als
Mischung von Wasser mit einem der oben angegebenen Alkohole. Das Spülen erfolgt bevorzugt kontinuierlich, wobei insbesondere ein Verfahren ausgewählt aus der Gruppe oder bestehend aus Spritzen, Sprühen, Tauchen und Aufträgen (Coil-Coating-Verfahren) eingesetzt werden kann. Vorzugsweise wird nach der Benetzung durch Spülen eine Trocknung durchgeführt, wobei bevorzugt der „gespülte“ Überzug durch Temperaturerhöhung (bis maximal 100 °C) oder durch ein Gebläse getrocknet wird. The wetting can be terminated by rinsing with water and/or an aqueous solution. For this purpose, the wetting with an aqueous solution of an inorganic acid is interrupted by rinsing with water and/or an alcohol, for example selected from the group containing or consisting of methanol, ethanol, propanol, isopropanol, ethanol, in particular isopropanol or an aqueous solution. In an alternative, the rinsing takes place in 2 sub-steps, in a first sub-step with water; in a second sub-step with an alcohol or an aqueous solution of an alcohol as stated above. In another alternative, the rinsing with water and an alcohol takes place in one step, preferably as Mixture of water with one of the alcohols specified above. Rinsing is preferably carried out continuously, whereby in particular a method selected from the group or consisting of spraying, atomizing, dipping and application (coil coating method) can be used. Preferably, after wetting by rinsing, drying is carried out, whereby the "rinsed" coating is preferably dried by increasing the temperature (up to a maximum of 100 °C) or by a blower.
In einer Alternative wird der „gespülte“ Überzug luftgetrocknet, beispielsweise ohne weitere Hilfsmittel. In an alternative, the “rinsed” coating is air-dried, for example without any additional aids.
Gemäß einer Ausgestaltung kann das schmelztauchbeschichtete, unter den oben angegebenen Bedingungen dressierte und gegebenenfalls gereinigte und/oder konditionierte Stahlband mit einer wässrigen Aktivierungslösung benetzt werden. Die eine wässrige Aktivierungslösung kann enthalten oder bestehen aus: 0,8 bis 1,5 g/l eines Titansalzes, welches insbesondere aus der Gruppe Titandioxid, Kaliumtitanfluorid, Dikaliumhexafluorotitanat, Titanylsulfat, Titantetrachlorid, Titantetrafluorid, Titantrichlorid, Titanhydroxid, Titannitrit, Titannitrat, Kaliumtitanoxido- xalat, Titancarbid ausgewählt ist, Rest Wasser und unvermeidbare Verunreinigungen. According to one embodiment, the hot-dip coated steel strip, which has been tempered under the conditions specified above and optionally cleaned and/or conditioned, can be wetted with an aqueous activation solution. The aqueous activation solution can contain or consist of: 0.8 to 1.5 g/l of a titanium salt, which is selected in particular from the group titanium dioxide, potassium titanium fluoride, dipotassium hexafluorotitanate, titanyl sulfate, titanium tetrachloride, titanium tetrafluoride, titanium trichloride, titanium hydroxide, titanium nitrite, titanium nitrate, potassium titanium oxidoxalate, titanium carbide, the remainder being water and unavoidable impurities.
Alternativ oder zusätzlich kann eine wässrige Aktivierungslösung enthalten oder bestehen aus: mindestens einer Verbindung aus der Gruppe Oxalsäure, Nickelphosphat, Manganphosphat, Calciumphosphat, Eisenphosphat, Aluminiumphosphat, Cobaltdl ,lll)phosphat, Kupfer, Kupfersulfat, Kupfernitrat, Kupferchlorid, Kupfercarbonat, Kupferoxid, Silber, Cobalt, Nickel, Jernstedtsalz, Bleiacetat, Zinn(tertra)chlorid, Arsenoxid, Zirkonchlorid, Zirkonsulfat, Zirkon, Eisen, Lithium, Zn3(PO4)2, Zn2Fe(PO4)2, Zn2Ni(PO4)2, Zn2Mn(PO4)2, Zn2Ca(PO4)2. Alternatively or additionally, an aqueous activation solution can contain or consist of: at least one compound from the group oxalic acid, nickel phosphate, manganese phosphate, calcium phosphate, iron phosphate, aluminum phosphate, cobalt (III) phosphate, copper, copper sulfate, copper nitrate, copper chloride, copper carbonate, copper oxide, silver, cobalt, nickel, Jernstedt salt, lead acetate, tin (tetra)chloride, arsenic oxide, zirconium chloride, zirconium sulfate, zirconium, iron, lithium, Zn 3 (PO 4 ) 2, Zn 2 Fe(PO 4 ) 2 , Zn 2 Ni(PO 4 ) 2, Zn 2 Mn(PO 4 ) 2 , Zn 2 Ca(PO 4 ) 2 .
Die Oberfläche des schmelztauchbeschichteten Stahlbands kann für eine Zeit von 1 bis 60 s, insbesondere zwischen 2 und 50 s, vorzugsweise zwischen 3 und 40 s, bevorzugt zwischen 3 und 30 s, und bei einer Temperatur von 15 bis 80 °C, insbesondere von 20 bis 80 °C, vorzugsweise von 30 bis 80 °C, bevorzugt von 40 bis 80 °C mit einer wässrigen Aktivierungslösung benetzt werden. The surface of the hot-dip coated steel strip can be wetted with an aqueous activation solution for a time of 1 to 60 s, in particular between 2 and 50 s, preferably between 3 and 40 s, preferably between 3 and 30 s, and at a temperature of 15 to 80 °C, in particular from 20 to 80 °C, preferably from 30 to 80 °C, preferably from 40 to 80 °C.
Alternativ kann auf eine Aktivierung verzichtet werden, wodurch ein Schritt im Gesamtprozess eingespart werden kann und somit gemäß einer bevorzugten Ausgestaltung die Oberfläche des schmelztauchbeschichteten Stahlbands nicht mit einer wässrigen Aktivierungslösung benetzt wird.
Gemäß einer weiteren Ausgestaltung wird das schmelztauchbeschichtete, unter den oben angegebenen Bedingungen dressierte Stahlband beölt. Das Öl wird vorzugsweise aufgetragen, um einen temporären Korrosionsschutz zu gewährleisten. Alternatively, activation can be omitted, which saves a step in the overall process and thus, according to a preferred embodiment, the surface of the hot-dip coated steel strip is not wetted with an aqueous activation solution. According to a further embodiment, the hot-dip coated steel strip, which has been skin-rolled under the conditions specified above, is oiled. The oil is preferably applied to ensure temporary corrosion protection.
In einer weiteren alternativen Ausgestaltung kann ein Bedien im Anschluss an jeden der oben genannten Schritte erfolgen: nach der Benetzung mit der wässrigen Reinigerlösung und gegebenenfalls Spülen, nach der Konditionierung mit einer anorganischen Säure und Beenden der Konditionierung durch Spülen sowie gegebenenfalls Trocknen, und/oder Aktivierung. In a further alternative embodiment, a service can take place after each of the above-mentioned steps: after wetting with the aqueous cleaning solution and, if necessary, rinsing, after conditioning with an inorganic acid and termination of the conditioning by rinsing and, if necessary, drying, and/or activation.
Im Folgenden werden konkrete Ausgestaltungen der Erfindung im Detail näher erläutert. In the following, specific embodiments of the invention are explained in more detail.
Vier unterschiedliche Stahlbänder mit jeweils einer Dicke von 1,0 mm wurden mit einem ZM- Überzug, wobei sie durch eine Schmelze mit 1,6 Gew.-% AI, 1,2 Gew.-% Mg, Rest Zn und unvermeidbare Verunreinigungen geführt wurden. Das Abstreifen erfolgte an Luftatmosphäre und als gasförmiges Abstreifgas kam ein Stickstoff-Luftgemisch mit einem Volumenverhältnis 30:70 zum Abstreifen, wobei bis 340 °C eine mittlere Abkühlrate mit 24 K/s gewählt worden ist. Die Dicke des ZM-Überzugs betrug bei allen beschichteten Stahlbändern 12 pm pro Seite im erstarrten Zustand. Four different steel strips, each with a thickness of 1.0 mm, were coated with a ZM coating by passing them through a melt containing 1.6 wt.% Al, 1.2 wt.% Mg, the remainder Zn and unavoidable impurities. Stripping was carried out in an air atmosphere and a nitrogen-air mixture with a volume ratio of 30:70 was used as the gaseous stripping gas, with an average cooling rate of 24 K/s being selected up to 340 °C. The thickness of the ZM coating on all coated steel strips was 12 pm per side in the solidified state.
Anschließend wurden alle vier Stahlbändern mit sogenannten EDT-Dressierwalzen und einer stochastischen Oberflächentextur dressiert. Die spezifische Dressierkraft sW wurde bei jedem Stahlband während des Dressierens variiert, um den Einfluss der Dressierkraft zu bewerten. Subsequently, all four steel strips were skin-passed using so-called EDT skin-pass rolls and a stochastic surface texture. The specific skin-pass force sW was varied for each steel strip during skin-passing in order to evaluate the influence of the skin-pass force.
Aus den Stahlbändern wurden aus unterschiedlichen Abschnitten jeweils mehrere Proben abgetrennt, in welchen unterschiedliche spezifische Dressierkräfte zur Anwendung kamen. Several samples were cut from different sections of the steel strips, in which different specific tempering forces were applied.
Die Proben I bestanden aus einem Stahlwerkstoff mit der Zusammensetzung in Gew.-%: Samples I consisted of a steel material with the composition in wt.%:
C: 0,0025%; C: 0.0025%;
Si: 0,018%; Si: 0.018%;
Mn: 0,145%; Mn: 0.145%;
P: 0,01%; P: 0.01%;
S: 0,01%; S: 0.01%;
AI: 0,038%;
Cr: 0,037%; AIC: 0.038%; Cr: 0.037%;
Cu: 0,033%; Cu: 0.033%;
Mo: 0,009%; Mo: 0.009%;
N: 0,004%; N: 0.004%;
Ni: 0,01%; Ni: 0.01%;
Nb: 0,0045%; Nb: 0.0045%;
Ti: 0,082%; Ti: 0.082%;
V: 0,004%; V: 0.004%;
Sn: 0,01%; Sn: 0.01%;
Rest Fe und unvermeidbare Verunreinigungen, mit Re= 150 MPa und Rm = 300 MPa. Balance Fe and unavoidable impurities, with R e = 150 MPa and R m = 300 MPa.
Die Proben II bestanden aus einem Stahlwerkstoff mit der Zusammensetzung in Gew.-%: Samples II consisted of a steel material with the composition in wt.%:
C: 0,0022%; C: 0.0022%;
Si: 0,018%; Si: 0.018%;
Mn: 0,23%; Mn: 0.23%;
P: 0,01%; P: 0.01%;
S: 0,01%; S: 0.01%;
AI: 0,05%; A1: 0.05%;
Cr: 0,04%; Cr: 0.04%;
Cu: 0,05%; Cu: 0.05%;
Mo: 0,0087%; Mo: 0.0087%;
N: 0,001%; N: 0.001%;
Ni: 0,02%; Ni: 0.02%;
Nb: 0,0028%; NB: 0.0028%;
Ti: 0,001%; Ti: 0.001%;
V: 0,002%; V: 0.002%;
Sn: 0,0098%; Sn: 0.0098%;
Ca: 0,002%; Ca: 0.002%;
Rest Fe und unvermeidbare Verunreinigungen, mit Re= 210 MPa und Rm = 330 MPa. Balance Fe and unavoidable impurities, with R e = 210 MPa and R m = 330 MPa.
Die Proben III bestanden aus einem Stahlwerkstoff mit der Zusammensetzung in Gew.-%: Samples III consisted of a steel material with the composition in wt.%:
C: 0,062%; C: 0.062%;
Si: 0,21%;
Mn: 0,77%; Si: 0.21%; Mn: 0.77%;
P: 0,01%; P: 0.01%;
S: 0,01%; S: 0.01%;
AI: 0,03%; A1: 0.03%;
Cr: 0,11%; Cr: 0.11%;
Cu: 0,1%; Cu: 0.1%;
Mo: 0,02%; Mo: 0.02%;
N: 0,003%; N: 0.003%;
Ni: 0,12%; Ni: 0.12%;
Nb: 0,021%; NB: 0.021%;
Ti: 0,005%; Ti: 0.005%;
V: 0,005%; V: 0.005%;
B: 0,0006%; B: 0.0006%;
Rest Fe und unvermeidbare Verunreinigungen, mit Re= 380 MPa und Rm = 470 MPa. Balance Fe and unavoidable impurities, with R e = 380 MPa and R m = 470 MPa.
Die Proben IV bestanden aus einem Stahlwerkstoff mit der Zusammensetzung in Gew.-%: Samples IV consisted of a steel material with the composition in wt.%:
C: 0,07%; C: 0.07%;
Si: 0,02%; Si: 0.02%;
Mn: 0,02%; Mn: 0.02%;
P: 0,01%; P: 0.01%;
S: 0,01%; S: 0.01%;
AI: 0,05%; A1: 0.05%;
Cr: 0,01%; Cr: 0.01%;
Cu: 0,01%; Cu: 0.01%;
Mo: 0,01%; Mo: 0.01%;
N: 0,003%; N: 0.003%;
Ni: 0,01%; Ni: 0.01%;
Nb: 0,001%; Nb: 0.001%;
Ti: 0,002%; Ti: 0.002%;
V: 0,002%; V: 0.002%;
Sn: 0,01%; Sn: 0.01%;
Ca: 0,002%; Ca: 0.002%;
Rest Fe und unvermeidbare Verunreinigungen, mit Re= 270 MPa und Rm = 380 MPa.
Vor der Untersuchung wurden Proben I bis IV wie folgt behandelt: Balance Fe and unavoidable impurities, with R e = 270 MPa and R m = 380 MPa. Before testing, samples I to IV were treated as follows:
- Reinigen durch Eintauchen in einer wässrige Reinigerlösung, Ridoline 124 N mit einer Ansatzkonzentration 12 ml/l, Rest Wasser und unvermeidbare Verunreinigungen, pH- Wert = 1; und einer Temperatur von 55 °C, Benetzungsdauer 5 s; - Cleaning by immersion in an aqueous cleaning solution, Ridoline 124 N with a concentration of 12 ml/l, balance water and unavoidable impurities, pH value = 1; and a temperature of 55 °C, wetting time 5 s;
- Spülen mit vollentsalztem Wasser durch Eintauchen und einer Temperatur von 20 °C, Benetzungsdauer 5 s. - Rinse with demineralized water by immersion at a temperature of 20 °C, wetting time 5 s.
An den Proben I bis IV, auf welche unterschiedliche Dressierkräfte eingewirkt haben und welche anschließend gereinigt worden sind, wurden Klebeversuche mit dem Klebstoff Sikapower 492 durchgeführt. Dabei wurde das Bruchverhalten gemäß DIN EN ISO 10365 bewertet. Hierbei wird zwischen drei Brucharten unterschieden: Adhesive tests were carried out on samples I to IV, which were subjected to different skin-pass forces and subsequently cleaned, using the adhesive Sikapower 492. The fracture behaviour was assessed in accordance with DIN EN ISO 10365. A distinction is made between three types of fracture:
- kohäsives Versagen: der Bruch findet im Klebstoff statt; - cohesive failure: the failure occurs in the adhesive;
- adhäsives Versagen: der Bruch findet an der Grenzfläche zwischen Oberfläche/Oxid- schicht und Klebstoff statt; und - adhesive failure: the fracture occurs at the interface between the surface/oxide layer and the adhesive; and
- substratnaher spezieller Kohäsionsbruch: der Bruch findet im Klebstoff in der Nähe der Grenzfläche zwischen Oberf läche/Oxidschicht und Klebstoff statt. - special cohesive fracture close to the substrate: the fracture occurs in the adhesive near the interface between the surface/oxide layer and the adhesive.
Je höher der Anteil des kohäsiven Versagens ist, desto höher ist der Anteil der Klebverbindungen, die der in der Praxis gestellten Forderung gerecht werden. Die Klebverbindung soll nämlich im Bereich des Klebstoffs selbst versagen und nicht an der Grenzschicht zwischen der Oberfläche des jeweiligen Bauteils und dem Klebstoff. The higher the proportion of cohesive failure, the higher the proportion of adhesive bonds that meet the requirements in practice. The adhesive bond should fail in the area of the adhesive itself and not at the interface between the surface of the respective component and the adhesive.
Die Ergebnisse der Untersuchungen des Klebverhaltens und die spezifischen Dressierkräfte, mit welchen die einzelnen Abschnitte, aus welchen die Proben abgetrennt worden sind, dressiert wurden, sind in Tabelle 1 zusammengefasst. Dabei kennzeichnet die Angabe 0, die Ergebnisse, die für Proben im Ausgangszustand ermittelt wurden. Die weiteren Ergebnisse, die für Proben ermittelt wurden, die einen Klimawechseltest in 40, 60 und 90 Zyklen gemäß DIN EN ISO 11997-B durchlaufen haben, sind mit 40, 60 und 90 gekennzeichnet. Des Weiteren sind die ermittelten Bruchanteile adhäsiv, kohäsiv und kohäsiv nahe Grenzfläche (ad/ko/koG) in % angegeben, welche in Summe nicht 100 % erreichen muss, da eventuelle weitere Bruchanteile in beispielsweise geringen Anteilen auftreten können.
The results of the tests of the adhesive behavior and the specific dressing forces with which the individual sections from which the samples were separated were dressed are summarized in Table 1. The value 0 indicates the results that were determined for samples in the initial state. The other results that were determined for samples that underwent a climate change test in 40, 60 and 90 cycles according to DIN EN ISO 11997-B are marked with 40, 60 and 90. Furthermore, the determined fracture fractions adhesive, cohesive and cohesive near the interface (ad/ko/koG) are given in %, which does not have to reach 100% in total, since possible further fracture fractions can occur, for example in small proportions.
Tabelle 1 Table 1
Angestrebt wird, das Bruchbild dahingehend zu verbessern, dass das kohäsive Versagen zunimmt, so dass dann eine Klebeeignung sichergestellt werden kann.
The aim is to improve the fracture pattern so that cohesive failure increases so that adhesive suitability can then be ensured.
Claims
1. Verfahren zum Dressieren eines mit einem ZM-Überzug beschichteten Stahlbands, wobei das Verfahren folgende Schritte umfasst: 1. A method for skin passing a steel strip coated with a ZM coating, the method comprising the following steps:
- Bereitstellen eines Stahlbands; - Providing a steel band;
- Schmelztauchbeschichten des Stahlbands mit einem zinkbasierten Überzug zur Erzeugung eines schmelztauchbeschichteten Stahlbands, wobei das Stahlband ein Schmelzbad durchläuft, welches Aluminium zwischen 0,5 und 8,0 Gew.-% und Magnesium zwischen 0,5 und 8,0 Gew.-%, Rest Zink und unvermeidbare Verunreinigungen umfasst, - hot-dip coating the steel strip with a zinc-based coating to produce a hot-dip coated steel strip, wherein the steel strip passes through a molten bath comprising aluminium between 0.5 and 8.0 wt.% and magnesium between 0.5 and 8.0 wt.%, the remainder being zinc and unavoidable impurities,
- Kühlen des schmelztauchbeschichteten Stahlbands zur Erstarrung des Überzugs auf dem Stahlband nach Austritt aus dem Schmelzbad, - Cooling the hot-dip coated steel strip to solidify the coating on the steel strip after it has left the molten bath,
- Dressieren des schmelztauchbeschichteten Stahlbands mit einer spezifischen Dressierkraft sW [kN/mm], wobei das Stahlbands eine Streckgrenze Re [MPa] und eine Zugfestigkeit Rm [MPa] aufweist, dadurch gekennzeichnet, dass das Kühlen des im Schmelzbad aufgetragenen ZM-Über- zugs bis zu einer Temperatur von 340 °C mit einer Abkühlrate zwischen 3 und 40 K/s durchgeführt wird und das beim Dressieren folgende Bedingungen erfüllt sind: 0,80 <= sW * Rm -0’3 <= 1,20 [104’2*N0’7*m_0’4] und 0,850 <= sW * Re-°’3 <= 1,20 [104’2*N°’7*m- 0,4] - Dressing the hot-dip coated steel strip with a specific dressing force sW [kN/mm], whereby the steel strip has a yield strength R e [MPa] and a tensile strength R m [MPa], characterized in that the cooling of the ZM coating applied in the melt bath is carried out up to a temperature of 340 °C with a cooling rate between 3 and 40 K/s and that the following conditions are met during dressing: 0.80 <= sW * R m -0 ' 3 <= 1.20 [10 4 ' 2 *N 0 ' 7 *m _0 ' 4 ] and 0.850 <= sW * R e -°' 3 <= 1.20 [10 4 ' 2 *N°' 7 *m- 0.4]
2. Verfahren nach Anspruch 1, wobei beim Dressieren folgende Bedingungen erfüllt sind: 0,80 <= sW * Rm -0’3 <= 0,950 [104’2*N°’7*m 0’4] und 0,850 <= sW * Re 0’3 <= 1,0 [104’2*N0’7*m_0’4]. 2. Method according to claim 1, wherein the following conditions are met during the skin passing: 0.80 <= sW * R m -0 ' 3 <= 0.950 [10 4 ' 2 *N°' 7 *m 0 ' 4 ] and 0.850 <= sW * R e 0 ' 3 <= 1.0 [10 4 ' 2 *N 0 ' 7 *m _0 ' 4 ].
3. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Schmelzbad AI und Mg mit jeweils mindestens 0,8 Gew.- % aufweist. 3. Process according to one of the preceding claims, wherein the molten bath comprises Al and Mg each in an amount of at least 0.8% by weight.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Schmelzbad AI und Mg mit jeweils mindestens 1,0 Gew.- % aufweist. 4. Process according to one of the preceding claims, wherein the molten bath comprises Al and Mg each in an amount of at least 1.0% by weight.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei eine vorgegebene Dicke des ZM-Überzugs im festen Zustand zwischen 2 und 60 pm pro Seite eingestellt wird.
5. Method according to one of the preceding claims, wherein a predetermined thickness of the ZM coating in the solid state is set between 2 and 60 pm per side.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei das schmelztauchbeschichtete Stahlband mit einer wässrigen Reinigerlösung benetzt wird. 6. Method according to one of the preceding claims, wherein the hot-dip coated steel strip is wetted with an aqueous cleaning solution.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei das schmelztauchbeschichtete Stahlband mit einer wässrigen Lösung einer anorganischen Säure konditioniert wird. 7. A method according to any one of the preceding claims, wherein the hot-dip coated steel strip is conditioned with an aqueous solution of an inorganic acid.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei das schmelztauchbeschichtete Stahlband mit einer wässrigen Aktivierungslösung benetzt wird. 8. Method according to one of the preceding claims, wherein the hot-dip coated steel strip is wetted with an aqueous activating solution.
9. Verfahren nach einem der vorhergehenden Ansprüche, das Stahlband ein Warmband nach DIN EN 10149-2 oder DIN EN 10025-2 ist. 9. Method according to one of the preceding claims, the steel strip is a hot-rolled strip according to DIN EN 10149-2 or DIN EN 10025-2.
10. Verfahren nach einem der Ansprüche 1 bis 8, wobei das Stahlband ein Kaltband nach DIN EN 10346 ist.
10. Method according to one of claims 1 to 8, wherein the steel strip is a cold strip according to DIN EN 10346.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102023106292.1A DE102023106292A1 (en) | 2023-03-14 | 2023-03-14 | Process for skin passing a steel strip coated with a ZM coating |
DE102023106292.1 | 2023-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024188967A1 true WO2024188967A1 (en) | 2024-09-19 |
Family
ID=90297543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2024/056425 WO2024188967A1 (en) | 2023-03-14 | 2024-03-11 | Process for temper-passing a steel strip coated with a zm coating |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102023106292A1 (en) |
WO (1) | WO2024188967A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3416760B1 (en) | 2016-02-16 | 2020-04-29 | Salzgitter Flachstahl GmbH | Planishing roll, method for planishing a flat product therewith and flat product therefrom |
US10941459B2 (en) * | 2015-08-28 | 2021-03-09 | Baoshan Iron & Steel Co., Ltd. | 600 MPa yield strength-graded, high-stretchability hot-dip aluminum-zinc and color-coated steel plate and manufacturing method therefor |
DE102020200321A1 (en) * | 2020-01-13 | 2021-07-15 | Thyssenkrupp Steel Europe Ag | Process for the production of a surface-refined and surface-conditioned steel sheet |
DE102020208991A1 (en) * | 2020-07-17 | 2022-01-20 | Thyssenkrupp Steel Europe Ag | Process for producing a hot-dip coated steel sheet and hot-dip coated steel sheet |
EP4032627A1 (en) * | 2021-01-21 | 2022-07-27 | SMS Group GmbH | Device and method for cold rolling, in particular finishing racks, of a strip-shaped rolled product |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020212436A1 (en) * | 2020-10-01 | 2022-04-07 | Thyssenkrupp Steel Europe Ag | Process for the production of a tempered cold strip |
DE102021105357A1 (en) * | 2021-03-05 | 2022-09-08 | Thyssenkrupp Steel Europe Ag | Cold-rolled flat steel product and method for its manufacture |
-
2023
- 2023-03-14 DE DE102023106292.1A patent/DE102023106292A1/en active Pending
-
2024
- 2024-03-11 WO PCT/EP2024/056425 patent/WO2024188967A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10941459B2 (en) * | 2015-08-28 | 2021-03-09 | Baoshan Iron & Steel Co., Ltd. | 600 MPa yield strength-graded, high-stretchability hot-dip aluminum-zinc and color-coated steel plate and manufacturing method therefor |
EP3416760B1 (en) | 2016-02-16 | 2020-04-29 | Salzgitter Flachstahl GmbH | Planishing roll, method for planishing a flat product therewith and flat product therefrom |
DE102020200321A1 (en) * | 2020-01-13 | 2021-07-15 | Thyssenkrupp Steel Europe Ag | Process for the production of a surface-refined and surface-conditioned steel sheet |
DE102020208991A1 (en) * | 2020-07-17 | 2022-01-20 | Thyssenkrupp Steel Europe Ag | Process for producing a hot-dip coated steel sheet and hot-dip coated steel sheet |
EP4032627A1 (en) * | 2021-01-21 | 2022-07-27 | SMS Group GmbH | Device and method for cold rolling, in particular finishing racks, of a strip-shaped rolled product |
Also Published As
Publication number | Publication date |
---|---|
DE102023106292A1 (en) | 2024-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2848709B1 (en) | Method for producing a steel component with an anti-corrosive metal coating and steel component | |
EP2683843B1 (en) | Flat steel product and method for producing a flat steel product | |
EP2054536B1 (en) | Process for coating a hot- or cold-rolled steel strip containing 6 - 30% by weight of mn with a metallic protective layer | |
EP1851352B1 (en) | Coated steel plate | |
EP2045360B1 (en) | Method for manufacturing a steel part by hot forming and steel part manufactured by hot forming | |
EP3684959B1 (en) | Hot dip coated steel strip having an improved surface appearance and method for production thereof | |
WO2005021820A1 (en) | Method for producing a hardened profile part | |
EP2055799A1 (en) | Flat steel product with an anti-corrosion metal coating and method for creating an anti-corrosion metal coating on a flat steel product | |
DE102020131993A1 (en) | PRESS-HARDENED HIGH PERFORMANCE STEEL | |
DE102020131989A1 (en) | PRESS-HARDENED HIGH PERFORMANCE STEEL ARRANGEMENT | |
EP2088223A1 (en) | Phosphated sheet metal and method for producing such a sheet metal | |
EP1865086B1 (en) | Use of a steel flat product produced from a manganese boron steel and method of its production | |
EP4107297A1 (en) | Method for producing a surface-finished steel sheet, and surface-finished steel sheet | |
DE102017214527A1 (en) | Process for the coating of hot-flat steel flat products | |
EP3415646B1 (en) | High-strength steel sheet having enhanced formability | |
WO2024188967A1 (en) | Process for temper-passing a steel strip coated with a zm coating | |
EP3872230A1 (en) | Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer | |
EP4093896A1 (en) | Steel component comprising an anti-corrosion layer containing manganese | |
DE10321259B4 (en) | Process for the surface treatment of dynamically loaded metal components and use of the method | |
WO2020007594A1 (en) | Galvanised cold-rolled sheet with homogeneous material properties | |
WO2019243146A1 (en) | Separating layer for hot forming | |
EP3872229A1 (en) | Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer | |
DE102021105210A1 (en) | Surface modification of metallic coating based on zinc in the hot-dip coating process | |
EP3872231A1 (en) | Method for conditioning the surface of a metal strip coated with a zinc alloy corrosion protection layer | |
DE102022106091A1 (en) | Method for modifying a surface of a coated steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24711826 Country of ref document: EP Kind code of ref document: A1 |