[go: up one dir, main page]

WO2024187595A1 - 干燥装置及电池制备系统 - Google Patents

干燥装置及电池制备系统 Download PDF

Info

Publication number
WO2024187595A1
WO2024187595A1 PCT/CN2023/097133 CN2023097133W WO2024187595A1 WO 2024187595 A1 WO2024187595 A1 WO 2024187595A1 CN 2023097133 W CN2023097133 W CN 2023097133W WO 2024187595 A1 WO2024187595 A1 WO 2024187595A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
drying tower
drying
wall
drying device
Prior art date
Application number
PCT/CN2023/097133
Other languages
English (en)
French (fr)
Inventor
陈广胜
闫豪豪
蔡建城
徐甘雨
余昊华
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020237038016A priority Critical patent/KR20240140786A/ko
Priority to EP23792850.2A priority patent/EP4454728A1/en
Priority to US18/492,423 priority patent/US20240310123A1/en
Publication of WO2024187595A1 publication Critical patent/WO2024187595A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • B01D1/18Evaporating by spraying to obtain dry solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof

Definitions

  • the present application relates to the technical field of drying equipment, and in particular to a drying device and a battery preparation system.
  • Spray drying refers to the process of blowing hot air into the drying tower from the tower mouth to contact the atomized material, so that the moisture in the material is quickly dried.
  • the material is easy to adhere to the inner wall of the drying tower, resulting in material hanging on the wall, which affects the material output rate and granulation quality.
  • the present application provides a drying device, comprising: a drying tower; a cooling mechanism, arranged on the drying tower, for cooling the inner wall of the drying tower, wherein the cooling mechanism comprises a reinforcement member and a cooling member arranged on the outer wall of the drying tower, and the reinforcement member is at least partially connected between the cooling member and the outer wall of the drying tower.
  • the above-mentioned drying device is provided with a cooling mechanism on the drying tower, and the cooling mechanism is used to cool the inner wall of the drying tower, so that the temperature of the inner wall of the drying tower is controlled within the required temperature range.
  • a reinforcing member is provided between the cooling member and the drying tower to improve the connection strength between the two, so that the installation structure of the cooling member on the drying tower is more stable, which is convenient for the cooling medium to stably cool down the drying tower in the cooling member; at the same time, it is also beneficial to strengthen the strength of the drying tower.
  • the cooling mechanism includes a power source and a cooling member disposed on the outer wall of the drying tower, wherein the cooling member has a cooling channel, and the power source is used to drive the cooling medium to flow in the cooling channel.
  • the power source is used to drive the cooling medium to flow in the cooling channel, so that heat is exchanged between the cooling medium and the drying tower, thereby achieving the effect of cooling the inner wall of the drying tower and reducing the occurrence of material wall adhesion.
  • the cooling element is disposed around the outer periphery of the drying tower and forms a cooling element between the cooling element and the outer wall of the drying tower. In this way, the cooling element is surrounded outside the drying tower, so that a cooling channel is formed between the cooling element and the drying tower, so that the cooling medium flows directly on the outer wall of the drying tower, which is beneficial to improving the heat exchange effect.
  • the cooling mechanism further includes a flow equalizer arranged around the outer periphery of the drying tower, the inflow end of the cooling channel is connected to the flow equalizer, and the power source is used to drive the cooling medium in the flow equalizer to flow into the cooling channel.
  • the flow equalizer is arranged at the inflow end of the cooling channel, and the flow equalizer is used to evenly disperse the cooling medium into the cooling channel, so that the temperature distribution of the inner wall of the drying tower is more uniform, further reducing the occurrence of the material hanging on the wall; at the same time, it is also conducive to improving the granulation quality of the material.
  • the reinforcement is arranged around the outer periphery of the drying tower, and a flow opening is provided on the portion of the reinforcement located in the cooling channel, and the flow opening is used to allow the cooling medium in the cooling channel to flow. In this way, the flow opening is provided through the reinforcement, so that the cooling medium can flow smoothly in the cooling channel over the reinforcement, thereby improving the cooling effect of the drying tower.
  • the reinforcement member is arranged to pass through the cooling member at one end of the drying tower away from the drying tower in the radial direction. In this way, by passing one end of the reinforcement member through the cooling member, the connection area between the reinforcement member and the cooling member is increased, which is conducive to improving the connection strength; at the same time, the part of the reinforcement member that passes through the cooling member can serve as a supporting base, so that the cooling member can be more stably installed on the drying tower.
  • the drying tower has an air outlet
  • the cooling element extends on the outer wall of the drying tower to a position adjacent to the air outlet. In this way, the cooling element is extended to the air outlet, the cooling at the air outlet is increased, and the air outlet temperature is reduced to meet the process requirements.
  • the drying tower includes a first part and a second part with an air outlet, the cross-sectional area S in the second part gradually decreases from one end of the second part close to the first part to one end of the second part with the air outlet, and the cooling member is provided in the first part and extends to the second part. In this way, extending the cooling member to the second part can increase the cooling of the second part, so that the air outlet temperature of the drying tower is reduced, further meeting the process requirements.
  • the cooling mechanism further comprises a discharge member disposed on the drying tower, and the discharge member has a discharge port connected to the cooling channel.
  • the discharge member is arranged so that the cooling medium flows out from the discharge port, which facilitates the continuous flow of new cooling medium into the cooling channel, thereby improving the cooling effect of the drying tower.
  • the number of the outlets is at least two, and all the outlets are arranged at intervals around the outer circumference of the drying tower. In this way, the outlets are arranged at intervals around the outer circumference of the drying tower, so that the cooling medium in the cooling channel flows out from different outlets, which is conducive to changing the flow path of the cooling medium in the cooling channel, making the cooling medium more evenly distributed and improving the cooling effect.
  • the drying device further includes a heat-insulating layer, which is sleeved outside the cooling element.
  • the heat-insulating layer is arranged outside the cooling element to reduce the heat loss in the cooling channel, so that the cooling medium and the drying tower can fully exchange heat, so that the inner wall of the drying tower can maintain the required temperature for a long time, and the probability of the material sticking to the wall due to the excessively high inner wall temperature is reduced.
  • the drying device further comprises a heat exchanger, which is connected to an end of the cooling element for the cooling medium to flow in.
  • the heat exchanger is used to exchange heat with the cooling medium in advance to change the temperature of the cooling medium so as to better meet the cooling demand of the inner wall of the drying tower.
  • the present application provides a battery preparation system, comprising any of the above drying devices.
  • FIG1 is a schematic structural diagram of a drying device according to one or more embodiments.
  • FIG2 is a schematic diagram of the structure of the reinforcement member in FIG1 ;
  • FIG3 is a partial enlarged schematic diagram of point A in FIG1 ;
  • FIG. 4 is a schematic diagram of the structure of a drying device with a heat exchanger according to one or more embodiments.
  • drying device 10
  • drying tower 11, inner wall; 12, air outlet; 13, first part; 14, second part; 20, cooling mechanism; 21, power source; 22, cooling element; 23, cooling channel; 24, discharge element; 241, discharge port; 25, reinforcement element; 251, flow port; 26, flow equalizer; 30, insulation layer; 40, heat exchanger; X, height direction.
  • the term "and/or" is only a description of the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
  • multiple refers to more than two (including two).
  • multiple groups refers to more than two groups (including two groups), and “multiple pieces” refers to more than two pieces (including two pieces).
  • Spray drying refers to the process of allowing hot air to enter the drying tower from the tower mouth and contact the atomized material so that the moisture in the material is quickly dried. During the drying process, after the hot air continues to enter the drying tower, it will heat the inside of the drying tower, so that the temperature of the inner wall of the drying tower reaches a certain temperature value.
  • temperature-sensitive materials such as but not limited to nano-electric fuel, feather enzymatic protein, Chinese medicine extract or other materials with high sugar content
  • if the material comes into contact with the inner wall of the drying tower it is easy to adhere to the inner wall of the drying tower due to high temperature melting, resulting in material wall hanging phenomenon. With the increase of the wall hanging phenomenon, the amount of material adhering to the inner wall of the drying tower increases, resulting in a decrease in the amount of material output by the drying tower, a waste of materials, and thus a decrease in product output rate.
  • the material adhering to the inner wall of the drying tower will be partially detached under the blowing of hot air. Since the particle size of the detached material changes after melting, it is generally larger than the particle size of the material after normal drying. The material will be mixed into the dried material, affecting the quality of the product particle size.
  • the present application designs a drying device 100, and arranges a cooling mechanism 20 on the drying tower 10, and uses the cooling mechanism 20 to cool the inner wall 11 of the drying tower 10. In this way, when the drying tower 10 performs spray drying operation, after the material contacts the inner wall 11 of the drying tower 10, there will be no melt adhesion phenomenon due to the high temperature of the inner wall 11, which reduces the probability of material wall hanging phenomenon, thereby improving the material generation rate and granulation quality.
  • the cooling mechanism 20 is used to cool the inner wall 11 of the drying tower 10, so that the material is not easy to adhere to the inner wall 11 of the drying tower 10, and the cleaning difficulty of the inner wall 11 of the drying tower 10 is reduced.
  • the cooling mechanism 20 is used to cool the inner wall 11, which can also reduce the probability of material wall adhesion, reduce the degree of reduction of the internal space of the drying tower 10, and improve the granulation effect of the equipment.
  • the drying device 100 provided in the present application can be applicable to the spray drying process of different materials.
  • the drying device 100 can be applied to but not limited to the spray drying process of nano-electric fuel, etc.
  • the present application provides a drying device 100, the drying device 100 comprises: a drying tower 10 and a cooling mechanism 20.
  • the cooling mechanism 20 is arranged on the drying tower 10, and is used to cool down the inner wall 11 of the drying tower 10; wherein the cooling mechanism 20 comprises a reinforcing member 25 and a cooling member 22 arranged on the outer wall of the drying tower 10, and the reinforcing member 25 is at least partially connected between the cooling member 22 and the outer wall of the drying tower 10.
  • the drying tower 10 refers to a device for drying materials, into which hot air can be introduced, and the atomized materials can be dried by the hot air.
  • the hot air can be input into the drying tower 10 from top to bottom, or from bottom to top; it can even be input from the side of the drying tower 10.
  • the shape of the drying tower 10 can be designed in a variety of ways, for example: it can be designed to be, but not limited to, cylindrical, conical, rectangular, and other shapes. When the drying tower 10 is designed as a conical structure, its conical part can play a role in gathering the dried materials, making it convenient for the materials to be uniformly output.
  • the material usually enters the drying tower 10 from the top or side of the drying tower 10.
  • an atomizing nozzle is set at the top of the drying tower 10, and the atomizing nozzle is used to atomize the material and spray it into the drying tower 10 so that the material contacts the hot air.
  • the cooling mechanism 20 refers to a device that can cool the inner wall 11 of the drying tower 10.
  • the inner wall 11 of the drying tower 10 there are many ways to cool the inner wall 11 of the drying tower 10, such as using air cooling or water cooling to cool the drying tower 10; or, semiconductor cooling sheets can be used to cool the drying tower 10.
  • the cooling mechanism 20 there are also many ways to arrange the cooling mechanism 20 on the drying tower 10, such as: the cooling mechanism 20 can be arranged on the outer wall of the drying tower 10; or, the cooling mechanism 20 can be embedded in the tower wall of the drying tower 10, etc.
  • the cooling mechanism 20 can be designed as a plate structure, such as a water-cooled plate structure, or a tubular structure, such as a Such as: cooling water pipe structure, etc.
  • the cooling element 22 refers to a structure that allows the cooling medium to flow so that heat exchange can be performed between the cooling medium and the drying tower 10.
  • the cooling element 22 can be designed as a hollow structure, the interior of which can directly serve as a cooling channel 23; it can also be designed as a plate or sheet structure, in which case the outer surface of the cooling element 22 can have a cooling channel, for example: a gap can be formed between the cooling element 22 and the outer wall of the drying tower 10, and the gap can serve as a cooling channel.
  • the cooling element 22 is designed as a hollow structure, it can be a tubular or hollow plate structure, wherein the tubular cooling element 22 can be wound around the outer wall of the drying tower 10.
  • the reinforcement member 25 refers to a structure connected between the cooling member 22 and the outer wall of the drying tower 10. There are various ways to connect the reinforcement member 25 to the cooling member 22 and the drying tower 10, respectively.
  • the reinforcement member 25 can be connected between the cooling member 22 and the drying tower 10 by bolt connection, welding, clamping, bonding, riveting, pinning or integral molding.
  • the reinforcement member 25 shown in FIG. 1 is not arranged to penetrate the drying tower 10 horizontally, but is surrounded by the outer periphery of the reinforcement member 25 and is an annular structure.
  • the reinforcement member 25 shown in FIG. 1 is only an embodiment and cannot be interpreted as limiting the scope of protection of this scheme.
  • the reinforcement member 25 may be a block structure or an annular structure.
  • the reinforcement member 25 is circumferentially connected between the cooling member 22 and the drying tower 10.
  • the number of reinforcement members 25 may be one or more.
  • the distribution of all reinforcement members 25 between the cooling member 22 and the drying member also has a variety of designs, such as: some reinforcement members 25 are arranged at intervals along the height direction X of the drying tower 10; or, some reinforcement members 25 are arranged at intervals around the circumference of the drying tower 10, etc.
  • the drying tower 10 When the drying tower 10 is spray drying, after the material contacts the inner wall 11 of the drying tower 10, the material will not melt and adhere due to the high temperature of the inner wall 11, which reduces the probability of the material hanging on the wall, thereby improving the material production rate and granulation quality.
  • a reinforcing member 25 is provided between the cooling member 22 and the drying tower 10 to improve the connection strength between the two, so that the installation structure of the cooling member 22 on the drying tower 10 is more stable, which is convenient for the cooling medium to stably cool the drying tower 10 in the cooling member 22; at the same time, it is also beneficial to strengthen the strength of the drying tower 10.
  • the cooling mechanism 20 further includes a power source 21 .
  • the cooling member 22 has a cooling channel 23 , and the power source 21 is used to drive the cooling medium to flow in the cooling channel 23 .
  • the power source 21 refers to a device that can provide power for the flow of the cooling medium, which can be a fan or a power pump.
  • the cooling medium can be air, carbon dioxide, etc.
  • the air can be the air outside the drying tower 10, and the fan is used to blow or suck the air outside the drying tower 10 into the cooling channel 23.
  • the cooling medium can be tap water, glycerin-type coolant, etc.
  • the power of the power source 21 can be set to an adjustable state, that is, the power source 21 is a variable frequency adjustable device.
  • the inflow of the cooling medium can be controlled (for example, the air intake of the cooling channel 23 is adjusted) by changing the power of the power source 21 according to the cooling needs of the inner wall 11 of the drying tower 10.
  • the temperature can be set at a certain distance on the inner wall 11 of the drying tower 10.
  • the monitoring device (such as a temperature sensor, etc.) detects the temperature changes of different areas on the inner wall 11 of the drying tower 10 in real time to adjust the amount of cold air introduced.
  • the frequency of the power source 21 may be changed to reduce the inflow of cooling medium and reduce the probability of condensation on the inner wall 11.
  • the power source 21 is used to drive the cooling medium to flow in the cooling channel 23, so that heat is exchanged between the cooling medium and the drying tower 10, thereby achieving the effect of cooling the inner wall 11 of the drying tower 10 and reducing the occurrence of material wall adhesion.
  • the cooling member 22 is disposed around the outer circumference of the drying tower 10 , and forms a cooling channel 23 with the outer wall of the drying tower 10 .
  • the cooling element 22 is arranged around the outer periphery of the drying tower 10. It can be understood that the cooling element 22 is surrounded by the drying tower 10, and there is a certain gap between the cooling element 22 and the outer wall of the drying tower 10. The gap is directly used as a cooling channel 23, so that the cooling medium is in direct contact with the outer wall of the drying tower 10, thereby achieving a better heat exchange effect.
  • the cooling member 22 is disposed outside the drying tower 10, and there are various ways to fix the cooling member 22, for example, the cooling member 22 is fixed to the outer wall of the drying tower 10 by bolt connection, welding, clamping, riveting, etc.
  • the cooling element 22 is surrounded outside the drying tower 10, so that a cooling channel 23 is formed between the cooling element 22 and the drying tower 10, so that the cooling medium flows directly on the outer wall of the drying tower 10, which is beneficial to improving the heat exchange effect.
  • the cooling mechanism 20 further includes a flow equalizer 26 arranged around the outer periphery of the drying tower 10.
  • the inflow end of the cooling channel 23 is connected to the flow equalizer 26, and the power source 21 is used to drive the cooling medium in the flow equalizer 26 to flow into the cooling channel 23.
  • the flow equalizer 26 refers to a device that can evenly disperse the cooling medium so that the cooling medium flows into the cooling channel 23 more evenly.
  • the cooling medium enters the flow equalizer 26 under the action of the power source 21, since the flow equalizer 26 is a structure arranged around the outer periphery of the drying tower 10, the entering cooling medium flows around the outer periphery of the drying tower 10 in the flow equalizer 26, so that the cooling medium is dispersed before entering the cooling channel 23.
  • the flow equalizer 26 can be designed as a ring-shaped and hollow box structure.
  • the inflow end of the cooling channel 23 refers to the end of the cooling channel 23 where the cooling medium starts to flow in. Since the cooling channel 23 is formed by the cooling member 22 being arranged around the periphery of the drying tower 10, the inflow end of the cooling channel 23 also presents or approximately presents an annular end.
  • the inflow end of the cooling channel 23 is connected with the flow equalizer 26, it is not difficult to understand that the inflow end of the cooling channel 23 should be connected with the flow equalizer 26 in an annular manner, that is, the connecting port between the cooling channel 23 and the flow equalizer 26 is arranged around the periphery of the drying tower 10, so that the cooling medium filled in the flow equalizer 26 can flow into the cooling channel 23 synchronously in different directions, so that the cooling medium is evenly dispersed in the cooling channel 23.
  • the power source 21 When the power source 21 is a blowing device, the power source 21 can be connected to the cooling channel 23 through the flow equalizer 26; when the power source 21 is a suction device, the flow equalizer 26 is connected to the inflow end of the cooling channel 23, and the power source 21 is connected to the cooling channel 23. The outflow end of the cooling channel 23 is connected.
  • a flow equalizer 26 is provided at the inflow end of the cooling channel 23, and the flow equalizer 26 is used to evenly disperse the cooling medium into the cooling channel 23, so that the temperature distribution of the inner wall 11 of the drying tower 10 is more uniform, further reducing the occurrence of material wall hanging phenomenon; at the same time, it is also beneficial to improve the granulation quality of the material.
  • the cooling mechanism 20 further includes a reinforcing member 25 , and the reinforcing member 25 is at least partially connected between the cooling member 22 and the outer wall of the drying tower 10 .
  • the reinforcement 25 is arranged around the outer periphery of the drying tower 10 , and a flow opening 251 is provided on the portion of the reinforcement 25 located in the cooling channel 23 , and the flow opening 251 is used for the cooling medium of the cooling channel 23 to flow.
  • the reinforcement 25 extends around the outer circumference of the drying tower 10 to form an annular structure. Since the reinforcement 25 is located between the cooling element 22 and the drying tower 10, the annular reinforcement 25 will cause some obstruction to the flow of the cooling medium. In order to allow the cooling medium to flow smoothly, a flow opening 251 is provided through the reinforcement 25, and the flow opening 251 allows the cooling medium to flow through the reinforcement 25 in the cooling channel 23.
  • the number of the flow openings 251 on the same reinforcement member 25 can be one or more. When the number of the flow openings 251 is more than one, all the flow openings 251 are arranged at intervals around the outer circumference of the drying tower 10 on the reinforcement member 25 .
  • a flow opening 251 is formed through the reinforcement 25 , so that the cooling medium can flow smoothly through the reinforcement 25 in the cooling channel 23 , thereby improving the cooling effect of the drying tower 10 .
  • the reinforcing member 25 is disposed at one end of the drying tower 10 away from the drying tower 10 in the radial direction and passing through the cooling member 22 .
  • One end of the reinforcement 25 passes through the cooling member 22, which should be understood as one end of the reinforcement 25 being embedded in the cooling member 22 and extending from the cooling member 22.
  • the portion of the reinforcement 25 that passes through the cooling member 22 needs to be sealed, such as welding, applying sealant, etc. between the cooling member 22 and the reinforcement 25.
  • the end of the reinforcement 25 away from the drying tower 10 can also pass through the heat preservation structure while passing through the cooling member 22.
  • the reinforcement 25 is designed as an annular structure
  • the end of the reinforcement 25 away from the drying tower 10 can also be understood as the outer end of the annular structure.
  • Passing one end of the reinforcement 25 through the cooling member 22 increases the connection area between the reinforcement 25 and the cooling member 22, which is beneficial to improving the connection strength; at the same time, the part of the reinforcement 25 that passes through the cooling member 22 can serve as a supporting basis, allowing the cooling member 22 to be more stably installed on the drying tower 10.
  • the drying tower 10 has an air outlet 12.
  • the cooling member 22 extends on the outer wall of the drying tower 10 to a position adjacent to the air outlet 12.
  • the cooling member 22 is extended to the air outlet 12 to increase the cooling at the air outlet 12 and reduce the air outlet temperature to meet the process requirements.
  • the drying tower 10 includes a first portion 13 and a second portion 14 having an air outlet 12.
  • the cross-sectional area S in the second portion 14 gradually decreases from one end of the second portion 14 close to the first portion 13 to one end of the second portion 14 having the air outlet 12, and the cooling member 22 is disposed in the first portion 13 and extends to the second portion 14.
  • the cross-sectional area S in the second component decreases as it approaches the air outlet 12 , which indicates that the second component has a structure that is larger at the top and smaller at the bottom.
  • the second component has a conical design, which makes it easier for the dried materials to be uniformly collected and discharged.
  • Extending the cooling member 22 to the second portion 14 can increase the cooling of the second member, thereby reducing the outlet air temperature of the drying tower 10 and further meeting the process requirements.
  • the cooling mechanism 20 further includes a discharge member 24 disposed on the drying tower 10 .
  • the discharge member 24 has a discharge port 241 communicating with the cooling channel 23 .
  • the discharge member 24 can be arranged at the top of the drying tower 10, or at the bottom of the drying tower 10.
  • the cooling medium can be input from the bottom of the drying tower 10, and the flow direction of the cooling medium is generally from bottom to top.
  • the top and bottom of the drying tower 10 can be understood as: when the drying tower 10 is working normally, the higher end of the drying tower 10 in the vertical direction is the top, and the relatively lower end is the bottom, etc.
  • the installation method of the discharge member 24 on the drying tower 10 may be, but is not limited to, bolt connection, clamping, riveting, welding, bonding, etc. There are many ways to connect the discharge port 241 with the cooling channel 23. For ease of understanding, the discharge member 24 is set at the top of the drying tower 10 as an example for explanation.
  • the discharge member 24 can be set at intervals on the top of the drying tower 10 so that a channel is formed between the discharge member 24 and the top of the drying tower 10; then the cooling member 22 is surrounded by the outer periphery of the discharge member 24 and connected, so that an integral cover or cover structure can be formed between the discharge member 24 and the cooling member 22, and directly sleeved on the drying tower 10, at this time, the cooling channel 23 on the cooling member 22 and the channel between the discharge member 24 and the top of the drying tower 10 are connected; or, the discharge member 24 is covered on the top of the drying tower 10; then the cooling member 22 is set around the side of the drying tower 10, and one end of the cooling member 22 is extended to the outer periphery of the discharge member 24.
  • an opening communicating with the interior of the discharge member 24 can be provided (the discharge member 24 can be a hollow structure in this case), so that the opening is communicated with the cooling channel 23 between the cooling member 22 and the drying tower 10, so that the cooling channel 23 is communicated with the discharge port 241.
  • the discharge member 24 and the cooling member 22 are an integral structure, which is integrally sleeved on the outer wall of the drying tower 10.
  • the discharge member 24 is provided at the top of the drying tower 10, which can support the equipment, for example: it can support the installation of the spray head of the drying tower 10, and can be used for Maintenance personnel climb to the top of the tower to carry out maintenance, etc.
  • the discharge member 24 is provided so that the cooling medium flows out from the discharge port 241 , which facilitates the continuous flow of new cooling medium into the cooling channel 23 , thereby improving the cooling effect of the drying tower 10 .
  • the number of the discharge ports 241 is at least two, and all the discharge ports 241 are arranged at intervals around the outer circumference of the drying tower 10 .
  • the number of the discharge ports 241 and the spacing between two adjacent discharge ports 241 can be determined according to the actual cooling requirements and are not specifically limited here.
  • a circle of discharge ports 241 can be arranged, or multiple circles of discharge ports 241 distributed up and down can be arranged.
  • the discharge ports 241 can be evenly spaced on the discharge member 24 at the periphery of the drying tower 10, so that the cooling medium is discharged more evenly.
  • the outlets 241 are arranged at intervals around the outer circumference of the drying tower 10, so that the cooling medium in the cooling channel 23 flows out from different outlets 241, which is conducive to changing the flow path of the cooling medium in the cooling channel 23, making the cooling medium more evenly distributed and improving the cooling effect.
  • the drying device 100 further includes a heat-insulating layer 30 , and the heat-insulating layer 30 is sleeved outside the cooling element 22 .
  • the insulation layer 30 refers to a structure that can reduce the heat transfer rate, for example, it can be but not limited to asbestos layer, silicate layer, rock wool layer, expanded perlite layer, etc. There are many ways to connect the insulation layer 30 to the cooling element 22, for example, it can be but not limited to bolt connection, bonding, welding, clamping, etc.
  • An insulation layer 30 is provided outside the cooling element 22 to reduce heat loss in the cooling channel 23, so that the cooling medium and the drying tower 10 can fully exchange heat, thereby keeping the inner wall 11 of the drying tower 10 at the required temperature for a long time, reducing the probability of material sticking to the wall due to excessively high temperature of the inner wall 11.
  • the drying device 100 further includes a heat exchanger 40 , and the heat exchanger 40 is connected to one end of the cooling member 22 for the cooling medium to flow into.
  • the heat exchanger 40 refers to a device that can exchange heat with a cooling medium, for example: it can be designed as a structure such as a heat dissipation fin.
  • the heat exchanger 40 can be connected to the input end of the cooling channel 23 to reduce the temperature of the cooling medium.
  • the power source 21 is a blower fan
  • the heat exchanger 40 can be connected between the power source 21 and one end of the cooling element 22 for the cooling medium to flow in.
  • the heat exchanger 40 can be connected to one end of the cooling element 22 through the flow equalizer 26.
  • the heat exchanger 40 is used to perform heat exchange with the cooling medium in advance to change the temperature of the cooling medium so as to better meet the cooling demand of the inner wall 11 of the drying tower 10 .
  • the present application provides a battery preparation system, including any of the above Drying device 100.
  • the present application provides a drying device 100, in which a cooling member 22 is arranged between the drying tower 10 and the insulation layer 30, and air is supplied from the bottom of the cooling member 22 to introduce normal temperature air lower than the temperature of the drying tower 10 to cool the inner wall 11.
  • the cooling member 22 is provided with an insulation layer 30 outside to keep the inner wall 11 at the required temperature for a long time, so that the material does not melt when it contacts the inner wall 11.
  • a number of annular reinforcement members 25 are welded between the drying tower 10 and the cooling member 22.
  • a power source 21 (such as a fan, etc.) is installed at the bottom of the drying tower 10 to pump normal temperature air into the cooling channel 23, and through the flow port 251 on the reinforcement member 25, it reaches the top of the drying tower 10, and an exhaust port 241 is provided at the top to exhaust hot air.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

一种干燥装置及包括其的电池制备系统。干燥装置包括干燥塔(10)与冷却机构(20)。在干燥塔(10)上设置冷却机构(20),利用冷却机构(20)对干燥塔(10)的内壁(11)进行冷却降温,使得干燥塔内壁(11)的温度控制在所需温度范围内,降低物料挂壁现象的发生几率。

Description

干燥装置及电池制备系统
交叉引用
本申请引用于2023年3月16日递交的名称为“干燥装置及电池制备系统”的第2023205036983号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及干燥设备技术领域,特别是涉及干燥装置及电池制备系统。
背景技术
喷雾干燥是指将热风由塔口吹入干燥塔内,与雾化后的物料进行接触,使得物料中的水分被快速干燥的过程。然而,在雾化干燥过程中,物料很容易粘附在干燥塔内壁上,出现物料挂壁现象,影响物料的产出率和制粒质量。
发明内容
基于此,有必要提供一种干燥装置及电池制备系统,降低物料挂壁现象的发生几率,提升物料的产出率和制粒质量。
第一方面,本申请提供了一种干燥装置,包括:干燥塔;冷却机构,设于干燥塔上,用于对干燥塔的内壁进行降温,其中,所述冷却机构包括加强件及设于所述干燥塔外壁的冷却件,所述加强件至少部分连接于所述冷却件与所述干燥塔外壁之间。
上述的干燥装置,在干燥塔上设置冷却机构,利用冷却机构对干燥塔的内壁进行冷却降温,使得干燥塔内壁的温度控制在所需温度范围内。这样当干燥塔进行喷雾干燥作业时,物料与干燥塔内壁接触后,不会因内壁温度较高而出现熔融粘附现象,降低物料挂壁现象的发生几率,从而提升物料的产生率和制粒质量。同时,在冷却件与干燥塔之间设置加强件,提升两者之间的连接强度,使得冷却件在干燥塔上的安装结构更加稳定,便于冷却介质在冷却件内对干燥塔稳定降温;同时也有利于加强干燥塔的强度。
在一些实施例中,冷却机构包括动力源及设于干燥塔外壁的冷却件,冷却件内具有冷却通道,动力源用于驱使冷却介质在冷却通道中流动。如此,利用动力源驱使冷却介质在冷却通道内流动,使得冷却介质与干燥塔之间进行热量交换,实现对干燥塔的内壁降温的效果,降低物料挂壁现象的发生。
在一些实施例中,冷却件环设于干燥塔的外周,并与干燥塔的外壁之间形成冷却 通道。如此,将冷却件包围在干燥塔外,使得冷却件与干燥塔之间形成冷却通道,从而使得冷却介质直接在干燥塔外壁流动,有利于提升换热效果。
在一些实施例中,冷却机构还包括环设于干燥塔外周的均流器,冷却通道的流入端与均流器连通,动力源用于驱使均流器中的冷却介质流入冷却通道中。如此,在冷却通道的流入端设置均流器,利用均流器将冷却介质均匀分散进入冷却通道中,使得干燥塔的内壁温度分布更为均匀,进一步降低物料挂壁现象的发生;同时,也有利于提升物料的制粒质量。
在一些实施例中,加强件环设于干燥塔的外周设置,且加强件位于冷却通道中的部分上设有流通口,所述流通口用于供冷却通道的冷却介质流通。如此,在加强件上贯穿设有流通口,使得冷却介质能越过加强件在冷却通道流动顺畅,提升干燥塔的降温效果。
在一些实施例中,加强件在干燥塔的径向上远离干燥塔的一端穿出冷却件设置。如此,将加强件一端穿出冷却件,使得加强件与冷却件之间的连接面积增加,有利于提升连接强度;同时,加强件上穿入冷却件内的部分能作为支撑基础,使得冷却件更稳定安装在干燥塔上。
在一些实施例中,干燥塔具有出风口,冷却件在干燥塔的外壁上延伸至邻近于出风口处。如此,将冷却件延伸至出风口处,增加出风口处的冷却降温,降低出风温度,使之满足工艺需求。
在一些实施例中,干燥塔包括第一部分及具有出风口的第二部分,第二部分内的横截面积S从第二部分靠近第一部分的一端至第二部分具有出风口的一端逐渐减小,冷却件设于第一部分,并延伸至第二部分。如此,将冷却件延伸至第二部分,可增加第二部件上的冷却降温,使得干燥塔的出风温度降低,进一步满足工艺需求。
在一些实施例中,冷却机构还包括设于干燥塔上的排出件,排出件上具有与冷却通道连通的排出口。如此,设置排出件,使得冷却介质由排出口流出,方便新的冷却介质持续流入冷却通道内,提升干燥塔的降温效果。
在一些实施例中,排出口的数量为至少两个,全部排出口绕干燥塔的外周间隔设置。如此,排出口绕干燥塔的外周间隔设置,使得冷却通道中的冷却介质从不同的排出口流出,这样有利于改变冷却介质在冷却通道中的流动路径,使得冷却介质分布更为均匀,提升降温效果。
在一些实施例中,干燥装置还包括保温层,保温层套设于冷却件外。如此,在冷却件外设置保温层,减少冷却通道内热量的损失,使得冷却介质与干燥塔充分换热,从而使得干燥塔内壁长时间保持需求温度,降低物料因内壁温度过高出现粘壁现象的几率。
在一些实施例中,干燥装置还包括换热器,换热器与冷却件上供冷却介质流入的一端连通。如此,利用换热器预先与冷却介质进行换热,改变冷却介质的温度,使之更加满足干燥塔内壁的降温需求。
第二方面,本申请提供了一种电池制备系统,包括以上任一项的干燥装置。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为一个或多个实施例中所述的干燥装置结构示意图;
图2为图1中的加强件结构示意图;
图3为图1中A处的局部放大示意图;
图4为一个或多个实施例中所述的具有换热器的干燥装置结构示意图。
100、干燥装置;10、干燥塔;11、内壁;12、出风口;13、第一部分;14、第二部分;20、冷却机构;21、动力源;22、冷却件;23、冷却通道;24、排出件;241、排出口;25、加强件;251、流通口;26、均流器;30、保温层;40、换热器;X、高度方向。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主 次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
喷雾干燥是指将热风由塔口进入干燥塔内,与雾化后的物料进行接触,使得物料中的水分被快速干燥的过程。在干燥过程中,热风持续通入干燥塔内后,会加热干燥塔内部,使得干燥塔的内壁温度达到一定温度值。对于一些温度敏感的物料,比如:其可为但不仅限于纳米电燃料、羽毛酶解蛋白、中药浸膏或者其他含糖分高的物料等,若该物料与干燥塔的内壁发生接触时,很容易因高温熔化而粘附在干燥塔的内壁上,出现物料挂壁现象。随着挂壁现象的增加,粘附在干燥塔内壁上的物料增多,导致干燥塔产出的物料量减少,浪费材料,从而导致产品产出率降低。
同时,粘附在干燥塔内壁上的物料在热风的吹动下,会发生部分脱落。由于脱落的物料因熔融后,其颗粒粒度发生变化,普遍大于正常干燥后的物料粒径,因此,脱落的 物料会混入干燥后的物料中,影响产品粒径的质量。
基于此,为了有效降低物料挂壁现象的发生几率,提升物料的产出率和制粒质量,请参考图1,本申请设计了一种干燥装置100,在干燥塔10上布置冷却机构20,利用冷却机构20对干燥塔10的内壁11进行冷却降温。这样当干燥塔10进行喷雾干燥作业时,物料与干燥塔10内壁11接触后,不会因内壁11温度较高而出现熔融粘附现象,降低物料挂壁现象的发生几率,从而提升物料的产生率和制粒质量。
同时,利用冷却机构20对干燥塔10内壁11进行冷却降温,使得物料不易粘附在干燥塔10内壁11上,降低了干燥塔10内壁11的清理难度。另外,若随着更多物料粘附在干燥塔10内壁11上时,会缩小干燥塔10内部空间,使得制粒空间变小,会影响设备的制粒效果。为此,通过冷却机构20对内壁11进行降温,同样可减少物料挂壁现象发生的几率,降低干燥塔10内部空间缩小的程度,提升设备制粒效果。
本申请提供的干燥装置100可适用于不同物料的喷雾干燥过程,比如:该干燥装置100可应用于但不限于纳米电燃料的喷雾干燥过程中等。
根据本申请的一些实施例,请参考图1,本申请提供了一种干燥装置100,干燥装置100包括:干燥塔10与冷却机构20。冷却机构20设于干燥塔10上,用于对干燥塔10的内壁11进行降温;其中,冷却机构20包括加强件25及设于干燥塔10外壁的冷却件22,加强件25至少部分连接于冷却件22与干燥塔10外壁之间。
干燥塔10是指对物料进行干燥的设备,其内部可通入热风,利用热风将雾化后的物料进行干燥。热风输入干燥塔10内的方式可由上而下输入,也可由下而上输入;甚至也可由干燥塔10的侧面输入。干燥塔10的形状可有多种设计,比如:其可设计为但不仅限于圆柱形、圆锥形、长方体等形状。当干燥塔10设计成锥形结构时,其锥形部分可对干燥后的物料起到汇聚的作用,方便物料统一输出。
不难理解地,物料进入干燥塔10内的方式通常由干燥塔10的顶部或侧面进入,比如:在干燥塔10的顶部设置雾化喷嘴,利用雾化喷嘴将物料雾化喷入干燥塔10内,以使物料与热风接触。
冷却机构20是指能对干燥塔10的内壁11进行降温的设备,其对干燥塔10内壁11的冷却方式有多种,比如:利用风冷或水冷的方式对干燥塔10进行降温;或者,也可采用半导体制冷片的方式对干燥塔10进行降温等。冷却机构20在干燥塔10上布置也有多种,比如:冷却机构20可布置在干燥塔10的外壁;或者,冷却机构20可嵌入在干燥塔10的塔壁内等。
冷却机构20可设计成板状结构,比如:水冷板结构等,也可设计成管状结构,比 如:冷却水管结构等。
冷却件22是指能允许冷却介质流动,使得冷却介质和干燥塔10之间能进行热量交换的结构,冷却件22可设计成中空结构,其内部可直接作为冷却通道23;也可设计为板或片状结构,此时冷却件22的外表面可具有冷却的通道,比如:冷却件22可与干燥塔10的外壁之间形成间隙,而该间隙可作为冷却的通道。当冷却件22设计成中空结构时,其可为管状或中空板状结构,其中,管状的冷却件22可缠绕在干燥塔10的外壁上。
加强件25是指连接在冷却件22与干燥塔10外壁之间的结构,其分别与冷却件22、干燥塔10之间的连接方式有多种,比如:加强件25可以螺栓连接、焊接、卡接、粘接、铆接、销接或一体成型方式等连接在冷却件22与干燥塔10之间。
需要说明的是,图1中展示的加强件25不是横向贯穿干燥塔10设置,而是环绕在加强件25的外周,呈环形结构。当然,图1中展示的加强件25仅为一个实施例,并不能以此解读为对本方案保护范围的限定,比如:在冷却件22与干燥塔10之间,加强件25可为块状结构,也可为环状结构等。当加强件25为环状结构时,加强件25则周向连接在冷却件22与干燥塔10之间。加强件25的数量可为一个,也可为多个。当加强件25的数量为多个时,全部的加强件25在冷却件22与干燥件之间的分布也有多种设计,比如:部分的加强件25沿干燥塔10的高度方向X间隔排布;或者,部分的加强件25绕干燥塔10的周向间隔排列等。
当干燥塔10进行喷雾干燥作业时,物料与干燥塔10内壁11接触后,不会因内壁11温度较高而出现熔融粘附现象,降低物料挂壁现象的发生几率,从而提升物料的产生率和制粒质量。同时,在冷却件22与干燥塔10之间设置加强件25,提升两者之间的连接强度,使得冷却件22在干燥塔10上的安装结构更加稳定,便于冷却介质在冷却件22内对干燥塔10稳定降温;同时也有利于加强干燥塔10的强度。
根据本申请的一些实施例,请参考图1,冷却机构20还包括动力源21。冷却件22具有冷却通道23,动力源21用于驱使冷却介质在冷却通道23中流动。
动力源21是指能为冷却介质的流动提供动力的设备,其可为风机,也可为动力泵等。当动力源21为风机时,冷却介质可为空气、二氧化碳等。其中,空气可为干燥塔10外的空气,利用风机以鼓入或抽吸的方式,将干燥塔10外的空气输送至冷却通道23中。当动力源21为动力泵时,冷却介质可为自来水、甘油型冷却液等。
动力源21的功率可设置为可调状态,即动力源21为变频可调的设备,这样可根据干燥塔10内壁11的降温需要,通过改变动力源21的功率,控制冷却介质的流入量(比如调节冷却通道23的进风量),比如:可在干燥塔10的内壁11上间隔一定距离设置温度 监控装置(比如温度传感器等),实时检测干燥塔10内壁11上不同区域的温度变化,以调整通入的冷空气量。另外,若通入的冷却介质量过多,也会导致干燥塔10的内壁11出现结露现象,对此,也可通过改变动力源21的频率,减少冷却介质的流入量,降低内壁11的结露现象的发生几率。
利用动力源21驱使冷却介质在冷却通道23内流动,使得冷却介质与干燥塔10之间进行热量交换,实现对干燥塔10的内壁11降温的效果,降低物料挂壁现象的发生。
根据本申请的一些实施例,请参考图1,冷却件22环设于干燥塔10的外周,并与干燥塔10的外壁之间形成冷却通道23。
冷却件22环设在干燥塔10的外周,可理解为冷却件22包围在干燥塔10外,与干燥塔10的外壁之间存在一定间隙,将该间隙直接作为冷却通道23,使得冷却介质与干燥塔10外壁直接接触,从而使得换热效果更佳。
同时,冷却件22环设在干燥塔10外,其固定方式有多种,比如:冷却件22以螺栓连接、焊接、卡接、铆接等方式固定在干燥塔10的外壁上。
将冷却件22包围在干燥塔10外,使得冷却件22与干燥塔10之间形成冷却通道23,从而使得冷却介质直接在干燥塔10外壁流动,有利于提升换热效果。
根据本申请的一些实施例,请参考图1,冷却机构20还包括环设于干燥塔10外周的均流器26。冷却通道23的流入端与均流器26连通,动力源21用于驱使均流器26中的冷却介质流入冷却通道23中。
均流器26是指能将冷却介质均匀分散开,使得冷却介质较为均匀流入冷却通道23中的设备。当冷却介质在动力源21的作用下进入均流器26内时,由于均流器26为环设在干燥塔10外周的结构,因此,进入的冷却介质在均流器26内环绕干燥塔10的外周流动,使得冷却介质进入冷却通道23之前分散开。具体到一些实施例中,均流器26可设计成环形且中空的箱体结构。
冷却通道23的流入端是指冷却通道23上供冷却介质开始流入的一端,由于冷却通道23由冷却件22环设在干燥塔10的外周形成,因此,冷却通道23的流入端也呈现或近似呈现环形端。当冷却通道23的流入端与均流器26连通时,不难理解地,冷却通道23的流入端应与均流器26环形连通,即冷却通道23与均流器26之间的连通口为环绕干燥塔10的外周设置,这样充满均流器26内的冷却介质能在不同方位上同步流入冷却通道23中,使得冷却介质在冷却通道23内均匀分散。
当动力源21为鼓吹式设备时,动力源21可通过均流器26与冷却通道23连通;当动力源21为抽吸式设备时,均流器26连通在冷却通道23的流入端,动力源21则与冷 却通道23的流出端连通。
在冷却通道23的流入端设置均流器26,利用均流器26将冷却介质均匀分散进入冷却通道23中,使得干燥塔10的内壁11温度分布更为均匀,进一步降低物料挂壁现象的发生;同时,也有利于提升物料的制粒质量。
根据本申请的一些实施例,请参考图1,冷却机构20还包括加强件25,加强件25至少部分连接于冷却件22与干燥塔10外壁之间。
根据本申请的一些实施例,请参考图2,加强件25环设于干燥塔10的外周,且加强件25位于冷却通道23中的部分上设有流通口251,流通口251用于供冷却通道23的冷却介质流通。
加强件25绕干燥塔10的外周延伸,可形成环状结构,由于加强件25位于冷却件22与干燥塔10之间,因此环形设计的加强件25会对冷却介质的流动造成一定的阻碍。为使冷却介质顺畅流动,加强件25上贯穿设有流通口251,利用流通口251使得冷却介质能越过加强件25在冷却通道23内流动。
在同一加强件25上,流通口251的数量可为一个,也可为多个。当流通口251的数量为多个时,全部流通口251在加强件25上绕干燥塔10的外周间隔排布。
在加强件25上贯穿设有流通口251,使得冷却介质能越过加强件25在冷却通道23流动顺畅,提升干燥塔10的降温效果。
根据本申请的一些实施例,请参考图3,加强件25在干燥塔10的径向上远离干燥塔10的一端穿出冷却件22设置。
加强件25一端穿出冷却件22应理解为加强件25的一端嵌入至冷却件22内部,并从冷却件22的内部伸出。加强件25一端穿出冷却件22时,需对加强件25穿入冷却件22内部的部分进行密封,比如:在冷却件22与加强件25之间进行焊接、涂覆密封胶等。当冷却件22的外设置保温结构时,加强件25远离干燥塔10的一端贯穿冷却件22的同时,也可贯穿该保温结构。另外,当加强件25被设计成环形结构时,加强件25上远离干燥塔10的一端也可理解为环形结构的外侧端。
将加强件25一端穿出冷却件22,使得加强件25与冷却件22之间的连接面积增加,有利于提升连接强度;同时,加强件25上穿入冷却件22内的部分能作为支撑基础,使得冷却件22更稳定安装在干燥塔10上。
根据本申请的一些实施例,干燥塔10具有出风口12。冷却件22在干燥塔10的外壁上延伸至邻近于出风口12处。
在干燥的过程中,对热风的进风温度与出风温度的控制相当重要,其能决定着产 品的质量以及干燥松密度等,因此这两个温度需严格控制。将冷却件22延伸至出风口12处,即冷却流道延伸至出风口12处,这样能增加出风口12处的冷却降温,降低出风温度,使之满足工艺需求。
将冷却件22延伸至出风口12处,增加出风口12处的冷却降温,降低出风温度,使之满足工艺需求。
根据本申请的一些实施例,请参考图1,干燥塔10包括第一部分13及具有出风口12的第二部分14。第二部分14内的横截面积S从第二部分14靠近第一部分13的一端至第二部分14具有出风口12的一端逐渐减小,冷却件22设于第一部分13,并延伸至第二部分14。
第二部件内的横截面积S越靠近出风口12处越小,这说明第二部件呈上大下小结构,比如:第二部件呈现锥型设计等,这样能便于干燥后的物料统一汇集排出。
将冷却件22延伸至第二部分14,可增加第二部件上的冷却降温,使得干燥塔10的出风温度降低,进一步满足工艺需求。
根据本申请的一些实施例,请参考图1,冷却机构20还包括设于干燥塔10上的排出件24。排出件24上具有与冷却通道23连通的排出口241。
排出件24可设置在干燥塔10的顶部,也可设置在干燥塔10的底部等。当排出件24设置在干燥塔10的顶部时,冷却介质可由干燥塔10的底部输入,此时冷却介质的流动方向大致为由下而上流动。其中,干燥塔10的顶部和底部分别可理解为:干燥塔10在正常工作时,干燥塔10在竖直方向处于较高的一端为顶部,处于相对较低的一端为底部等。
排出件24在干燥塔10上的安装方式可为但不限于螺栓连接、卡接、铆接、焊接、粘接等。排出口241与冷却通道23之间连通的方式有多种,为便于理解,以排出件24设置在干燥塔10的顶部为例进行说明,可将排出件24间隔设置在干燥塔10的顶部,使得排出件24与干燥塔10的顶部之间形成通道;再将冷却件22围在排出件24的外周并进行连接,使得排出件24与冷却件22之间可形成一整体盖体或罩体结构,并直接套在干燥塔10上,此时冷却件22上的冷却通道23和排出件24与干燥塔10的顶部之间的通道连通;或者,将排出件24盖设在干燥塔10的顶部;再将冷却件22环设在干燥塔10的侧面,并将冷却件22的一端延伸至围设在排出件24的外周。此时,可在排出件24设置与自身内部连通的开口(此时排出件24可为中空结构),使得该开口和冷却件22和干燥塔10之间的冷却通道23连通,从而使得冷却通道23与排出口241保持相通。具体到一些实施例中,排出件24与冷却件22之间为一整体结构,整体套在干燥塔10的外壁。另外,排出件24设置在干燥塔10的顶部,可起到设备支撑,比如:可支撑干燥塔10的喷雾头安装、可供 维护人员登塔顶进行维护等。
设置排出件24,使得冷却介质由排出口241流出,方便新的冷却介质持续流入冷却通道23内,提升干燥塔10的降温效果。
根据本申请的一些实施例,请参考图1,排出口241的数量为至少两个,全部排出口241绕干燥塔10的外周间隔设置。
排出口241的数量和相邻两个排出口241之间的间距可根据实际降温需求而定,在此不作具体限定。同时,排出口241绕干燥塔10的外周间隔设置时,可设置一圈的排出口241,也可设置多圈上下分布的排出口241。具体到一些实施例中,排出口241在排出件24上可等间隔分布在干燥塔10的外周,使得冷却介质排出更加均匀。
排出口241绕干燥塔10的外周间隔设置,使得冷却通道23中的冷却介质从不同的排出口241流出,这样有利于改变冷却介质在冷却通道23中的流动路径,使得冷却介质分布更为均匀,提升降温效果。
根据本申请的一些实施例,请参考图1,干燥装置100还包括保温层30,保温层30套设于冷却件22外。
保温层30是指能降低热量的传递速率的结构,比如:其可为但不限于石棉层、硅酸盐层、岩棉层、膨胀珍珠岩层等。保温层30在冷却件22上的连接方式有多种,比如:其可为但不限于螺栓连接、粘接、焊接、卡接等。
在冷却件22外设置保温层30,减少冷却通道23内热量的损失,使得冷却介质与干燥塔10充分换热,从而使得干燥塔10内壁11长时间保持需求温度,降低物料因内壁11温度过高出现粘壁现象的几率。
根据本申请的一些实施例,请参考图4,干燥装置100还包括换热器40,换热器40与冷却件22上供冷却介质流入的一端连通。
换热器40是指能与冷却介质进行换热的设备,比如:其可设计成散热翅片等结构。当冷却介质(比如常温空气等)的温度无法满足降温需求时,可以在冷却通道23的输入端接入换热器40,降低冷却介质的温度。当动力源21为鼓吹式风机时,换热器40可连通在动力源21与冷却件22上供冷却介质流入的一端之间。需要注意的是,当冷却件22上供冷却介质流入的一端连接有均流器26时,换热器40可通过均流器26与冷却件22的一端连通。
利用换热器40预先与冷却介质进行换热,改变冷却介质的温度,使之更加满足干燥塔10内壁11的降温需求。
根据本申请的一些实施例,本申请提供了一种电池制备系统,包括以上任一项的 干燥装置100。
根据本申请的一些实施例,请参考图1至图4,本申请提供了一种干燥装置100,在干燥塔10和保温层30之间设置冷却件22,从冷却件22的底部送风,通入低于干燥塔10温度的常温空气,对内壁11进行降温。冷却件22外设保温层30,使内壁11长时间保持需求温度,使物料接触到内壁11时,不致熔融。另外,干燥塔10与冷却件22之间焊有若干环状加强件25。干燥塔10底部安装动力源21(比如风机等),将常温空气抽送到冷却通道23内,通过加强件25上流通口251,到达干燥塔10顶部,顶部设有排出口241,排出热空气。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种干燥装置,包括:
    干燥塔(10);
    冷却机构(20),设于所述干燥塔(10)上,用于对所述干燥塔(10)的内壁(11)进行降温;
    其中,所述冷却机构(20)包括加强件(25)及设于所述干燥塔(10)外壁的冷却件(22),所述加强件(25)至少部分连接于所述冷却件(22)与所述干燥塔(10)外壁之间。
  2. 根据权利要求1所述的干燥装置,其中,所述冷却机构(20)还包括动力源(21),所述冷却件(22)具有冷却通道(23),所述动力源(21)用于驱使冷却介质在所述冷却通道(23)中流动。
  3. 根据权利要求2所述的干燥装置,其中,所述冷却件(22)环设于所述干燥塔(10)的外周,并与所述干燥塔(10)的外壁之间形成所述冷却通道(23)。
  4. 根据权利要求3所述的干燥装置,其中,所述冷却机构(20)还包括环设于所述干燥塔(10)外周的均流器(26),所述冷却通道(23)的流入端与所述均流器(26)连通,所述动力源(21)用于驱使所述均流器(26)中的冷却介质流入所述冷却通道(23)中。
  5. 根据权利要求2所述的干燥装置,其中,所述加强件(25)环设于所述干燥塔(10)的外周,且所述加强件(25)位于所述冷却通道(23)中的部分上设有流通口(251),所述流通口(251)用于供所述冷却通道(23)的冷却介质流通。
  6. 根据权利要求1所述的干燥装置,其中,所述加强件(25)在所述干燥塔(10)的径向上远离所述干燥塔(10)的一端穿出所述冷却件(22)设置。
  7. 根据权利要求1-6任一项所述的干燥装置,其中,所述干燥塔(10)具有出风口(12),所述冷却件(22)在所述干燥塔(10)的外壁上延伸至邻近于所述出风口(12)处。
  8. 根据权利要求7所述的干燥装置,其中,所述干燥塔(10)包括第一部分(13)及具有所述出风口(12)的第二部分(14),所述第二部分(14)内的横截面积S从所述第二部分(14)靠近所述第一部分(13)的一端至所述第二部分(14)具有出风口(12)的一端逐渐减小,所述冷却件(22)设于所述第一部分(13),并延伸至所述第二部分(14)。
  9. 根据权利要求2-8任一项所述的干燥装置,其中,所述冷却机构(20)还包括设于所述干燥塔(10)上的排出件(24),所述排出件(24)上具有与所述冷却通道(23)连通的排出口(241)。
  10. 根据权利要求9所述的干燥装置,其中,所述排出口(241)的数量为至少两个,全部所述排出口(241)绕所述干燥塔(10)的外周间隔设置。
  11. 根据权利要求1-10任一项所述的干燥装置,其中,所述干燥装置还包括保温层(30),所述保温层(30)套设于所述冷却件(22)外。
  12. 根据权利要求1-10任一项所述的干燥装置,其中,所述干燥装置还包括换热器(40),所述换热器(40)与所述冷却件(22)上供冷却介质流入的一端连通。
  13. 一种电池制备系统,包括权利要求1-12任一项所述的干燥装置。
PCT/CN2023/097133 2023-03-16 2023-05-30 干燥装置及电池制备系统 WO2024187595A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237038016A KR20240140786A (ko) 2023-03-16 2023-05-30 건조장치 및 배터리 제조 시스템
EP23792850.2A EP4454728A1 (en) 2023-03-16 2023-05-30 Drying device and battery preparation system
US18/492,423 US20240310123A1 (en) 2023-03-16 2023-10-23 Drying apparatus and system for preparing batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202320503698.3 2023-03-16
CN202320503698.3U CN219208996U (zh) 2023-03-16 2023-03-16 干燥装置及电池制备系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/492,423 Continuation US20240310123A1 (en) 2023-03-16 2023-10-23 Drying apparatus and system for preparing batteries

Publications (1)

Publication Number Publication Date
WO2024187595A1 true WO2024187595A1 (zh) 2024-09-19

Family

ID=86736905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/097133 WO2024187595A1 (zh) 2023-03-16 2023-05-30 干燥装置及电池制备系统

Country Status (2)

Country Link
CN (1) CN219208996U (zh)
WO (1) WO2024187595A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118846541A (zh) * 2024-09-29 2024-10-29 连云港华昌生物工程有限公司 一种氨基酸的制备干燥装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR889439A (fr) * 1940-07-12 1944-01-10 Ig Farbenindustrie Ag Procédé de séchage par pulvérisation
CN105363231A (zh) * 2015-11-28 2016-03-02 南京威安新材料科技有限公司 可防止催化剂粘壁的离心喷雾干燥装置
CN206081677U (zh) * 2016-08-31 2017-04-12 上海大川原干燥设备有限公司 干燥塔壁夹套冷却装置
CN108325226A (zh) * 2018-02-27 2018-07-27 沈阳味丹生物科技有限公司 一种新型干燥塔
CN209714315U (zh) * 2019-01-12 2019-12-03 无锡市林洲干燥设备有限公司 防粘壁喷雾干燥系统
CN213724882U (zh) * 2020-10-29 2021-07-20 无锡市卓灵干燥设备有限公司 一种温度敏感的液体喷雾干燥系统
CN215822371U (zh) * 2021-08-03 2022-02-15 康码(上海)生物科技有限公司 一种用于热敏生物制品原液的低温喷雾干燥机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR889439A (fr) * 1940-07-12 1944-01-10 Ig Farbenindustrie Ag Procédé de séchage par pulvérisation
CN105363231A (zh) * 2015-11-28 2016-03-02 南京威安新材料科技有限公司 可防止催化剂粘壁的离心喷雾干燥装置
CN206081677U (zh) * 2016-08-31 2017-04-12 上海大川原干燥设备有限公司 干燥塔壁夹套冷却装置
CN108325226A (zh) * 2018-02-27 2018-07-27 沈阳味丹生物科技有限公司 一种新型干燥塔
CN209714315U (zh) * 2019-01-12 2019-12-03 无锡市林洲干燥设备有限公司 防粘壁喷雾干燥系统
CN213724882U (zh) * 2020-10-29 2021-07-20 无锡市卓灵干燥设备有限公司 一种温度敏感的液体喷雾干燥系统
CN215822371U (zh) * 2021-08-03 2022-02-15 康码(上海)生物科技有限公司 一种用于热敏生物制品原液的低温喷雾干燥机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118846541A (zh) * 2024-09-29 2024-10-29 连云港华昌生物工程有限公司 一种氨基酸的制备干燥装置

Also Published As

Publication number Publication date
CN219208996U (zh) 2023-06-20

Similar Documents

Publication Publication Date Title
CN105082543B (zh) 3d打印设备及3d打印设备的效应器
WO2017152594A1 (zh) 结冰温度可控的用于制备微米级冰球颗粒的喷雾冷冻塔
WO2024187595A1 (zh) 干燥装置及电池制备系统
CN205897907U (zh) 一种高效冷却装置
CN213363321U (zh) 一种回转窑外壁冷却设备
WO2022120947A1 (zh) 空调室内机和空调器
US20240310123A1 (en) Drying apparatus and system for preparing batteries
CN207094907U (zh) 一种辐射式空调器
CN212863230U (zh) 一种石灰石粉进料装置
CN210880493U (zh) 一种工业用吹膜机冷却装置
CN208717480U (zh) 一种涤纶长丝束生产用环吹风装置
CN207891415U (zh) 一种用于重稀土扩渗工艺的真空炉
CN209278112U (zh) 一种高温熔盐泵隔热装置
CN208133374U (zh) 一种用于eva造粒的旋风冷却桶
CN206828576U (zh) 退火炉旋流喷射热风循环结构
CN219841722U (zh) 消失模的烘干房结构
CN113145021A (zh) 防止热气回流的化料配置系统
JP7527365B2 (ja) 燃焼室及びガス装置
CN112742305A (zh) 一种用于控制超微粉粒子成型的控制器
CN221740150U (zh) 一种石灰窑用中心风帽
CN221271779U (zh) 一种用于绝缘材料生产的冷却装置
CN220056663U (zh) 一种玻璃幻彩热喷装置
CN212778513U (zh) 一种l-苯丙氨酸生产用烘干装置
CN216481754U (zh) 一种具有面膜加热功能的美妆冰箱
CN221933861U (zh) 一种用于提高喷雾冷凝效果的装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023792850

Country of ref document: EP

Effective date: 20231030

WWE Wipo information: entry into national phase

Ref document number: 2023568344

Country of ref document: JP