[go: up one dir, main page]

WO2024185804A1 - Solar cell element, solar cell module and method for producing solar cell element - Google Patents

Solar cell element, solar cell module and method for producing solar cell element Download PDF

Info

Publication number
WO2024185804A1
WO2024185804A1 PCT/JP2024/008486 JP2024008486W WO2024185804A1 WO 2024185804 A1 WO2024185804 A1 WO 2024185804A1 JP 2024008486 W JP2024008486 W JP 2024008486W WO 2024185804 A1 WO2024185804 A1 WO 2024185804A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface side
receiving surface
curvature
substrate
solar cell
Prior art date
Application number
PCT/JP2024/008486
Other languages
French (fr)
Japanese (ja)
Inventor
唯人 牧
訓太 吉河
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2024185804A1 publication Critical patent/WO2024185804A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/16Photovoltaic cells having only PN heterojunction potential barriers
    • H10F10/164Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells
    • H10F10/165Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells
    • H10F10/166Photovoltaic cells having only PN heterojunction potential barriers comprising heterojunctions with Group IV materials, e.g. ITO/Si or GaAs/SiGe photovoltaic cells the heterojunctions being Group IV-IV heterojunctions, e.g. Si/Ge, SiGe/Si or Si/SiC photovoltaic cells the Group IV-IV heterojunctions being heterojunctions of crystalline and amorphous materials, e.g. silicon heterojunction [SHJ] photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/70Surface textures, e.g. pyramid structures

Definitions

  • the present invention relates to solar cells, solar cell modules, and methods for manufacturing solar cells.
  • Double-sided electrode type solar cells in which electrodes are formed on both the light-receiving surface and the back surface
  • back-surface electrode type also called back-contact type or back-surface junction type; hereafter referred to as back-contact type
  • solar cells in which electrodes are formed only on the back surface.
  • double-sided electrode type solar cells electrodes are formed on the light-receiving surface, so the metallic luster of this electrode is noticeable.
  • back-contact type solar cells no electrodes are formed on the light-receiving surface, so the light-receiving surface is uniformly black, making it highly aesthetically pleasing.
  • Patent Document 1 discloses a back-contact type solar cell.
  • a back-contact type solar cell comprises a crystalline silicon substrate, a first conductive type semiconductor layer and a first electrode layer formed in sequence on a portion of the back surface of the substrate, and a second conductive type semiconductor layer and a second electrode layer formed in sequence on another portion of the back surface of the substrate.
  • This solar cell also comprises an optical adjustment layer (anti-reflection layer) formed in sequence on the light-receiving surface side of the substrate.
  • a pyramidal, fine uneven structure known as a texture structure is formed on the light-receiving surface of a crystalline silicon substrate. This reduces the reflection of incident light on the light-receiving surface and improves the light trapping effect in the substrate.
  • a textured structure can also be formed on the back side of a crystalline silicon substrate. This increases the efficiency of collecting light that passes through the substrate without being absorbed.
  • an uneven structure is formed on the light-receiving surface and back surface of a crystalline silicon substrate, an uneven structure is also formed on the side surface of the crystalline silicon substrate.
  • the present invention aims to provide a solar cell, a solar cell module, and a method for manufacturing a solar cell that reduces color unevenness on the individual light receiving surfaces when modularized.
  • the present invention also aims to provide a solar cell and a method for manufacturing a solar cell that reduces chipping.
  • each solar cell in which multiple solar cells are arranged in a two-dimensional shape, by highlighting the peripheral edge of the light-receiving surface of each solar cell, each solar cell can be viewed three-dimensionally, and this visibility effect makes the color distribution of the light-receiving surface of the multiple solar cells less noticeable.
  • the solar cell according to the present invention is a back-contact type solar cell including a crystalline silicon substrate having an uneven structure on the light-receiving surface side, an optical adjustment layer formed on the light-receiving surface side of the substrate, a first conductive type semiconductor layer formed on a part of the back surface side of the substrate opposite the light-receiving surface side, a second conductive type semiconductor layer formed on another part of the back surface side of the substrate, a first electrode layer formed on the first conductive type semiconductor layer, and a second electrode layer formed on the second conductive type semiconductor layer, wherein the radius of curvature of the top portion of at least a part of the uneven structure of the peripheral portion of the light-receiving surface side of the substrate is larger than the radius of curvature of the top portion of the uneven structure of the central portion of the light-receiving surface side, the uneven structure of the substrate is reflected in the light-receiving surface of the solar cell, and the radius of curvature of the top portion of at least a part of
  • the solar cell module according to the present invention has the above-mentioned solar cells arranged in a two-dimensional manner.
  • the solar cell manufacturing method according to the present invention is the solar cell manufacturing method described above, in which, in the step of forming an uneven structure on the light-receiving surface side of the crystalline silicon substrate, the flow rate of the etching solution in at least a portion of the periphery of the light-receiving surface side is controlled to be faster than the flow rate of the etching solution in the center of the light-receiving surface side.
  • chipping at the edge of the crystalline silicon substrate can be reduced by controlling the radius of curvature of the edge (periphery of the light-receiving surface, periphery of the back surface, and edge face), particularly the top portion of the uneven structure on the side surface (edge face), so that it is larger.
  • the solar cell according to the present invention is a solar cell comprising a crystalline silicon substrate having an uneven structure on the light-receiving surface side, back surface side and side surface, a first conductive type semiconductor layer formed on the light-receiving surface side or back surface side of the substrate, a second conductive type semiconductor layer formed on the light-receiving surface side or back surface side of the substrate, a first electrode layer formed on the first conductive type semiconductor layer, and a second electrode layer formed on the second conductive type semiconductor layer, wherein the radius of curvature of the top portion of the uneven structure on the side surface of the substrate is greater than the radius of curvature of the top portion of the uneven structure in the center of the light-receiving surface side and the radius of curvature of the top portion of the uneven structure in the center of the back surface side.
  • the solar cell manufacturing method according to the present invention is the solar cell manufacturing method described above, in which, in the process of forming an uneven structure on the light-receiving surface side, back surface side, and side surface side of the crystalline silicon substrate, the flow rate of the etching solution on at least a portion of the periphery of the light-receiving surface side and on the side surface is controlled to be faster than the flow rate of the etching solution in the center of the light-receiving surface side, and the flow rate of the etching solution on at least a portion of the periphery of the back surface side and on the side surface is controlled to be faster than the flow rate of the etching solution in the center of the back surface side.
  • the present invention it is possible to reduce color unevenness on the light receiving surface of each solar cell in a modularized system. In addition, according to the present invention, it is possible to reduce chipping in solar cells.
  • FIG. 1 is a diagram showing a solar cell module according to a first embodiment as viewed from the light receiving surface side.
  • 1 is a diagram showing a solar cell according to a first embodiment as viewed from the light-receiving surface side.
  • 1 is a diagram showing a solar cell according to a first embodiment as viewed from the back surface side.
  • 4 is a cross-sectional view taken along line IV-IV of the solar cell shown in FIG. 3.
  • 3 is a cross-sectional view showing an uneven structure in the center of the light-receiving surface side of the substrate shown in FIG. 2.
  • 3 is a cross-sectional view showing an uneven structure of a peripheral portion on a light-receiving surface side of the substrate shown in FIG. 2.
  • FIG. 4 is a cross-sectional view showing an uneven structure in the center of the rear surface side of the substrate shown in FIG. 3.
  • 4 is a cross-sectional view showing an uneven structure of the peripheral portion on the back surface side of the substrate shown in FIG. 3.
  • 4 is a cross-sectional view showing the uneven structure on the side surface of the substrate shown in FIGS. 2 and 3.
  • FIG. 13 is a diagram showing a solar cell module according to a modified example of the first embodiment, viewed from the light receiving surface side.
  • FIG. 13 is a view of a solar cell according to a modified example of the first embodiment, viewed from the light-receiving surface side.
  • FIG. 3 is a cross-sectional view showing an uneven structure in the center of the light-receiving surface side of the substrate shown in FIG. 2 (second embodiment);
  • 3 is a cross-sectional view showing an uneven structure of a peripheral portion on the light-receiving surface side of the substrate shown in FIG. 2 (second embodiment);
  • FIG. 1 is a view of a solar cell module according to a first embodiment as viewed from the light receiving surface side.
  • the solar cell module 100 shown in Fig. 1 includes a plurality of solar cells 1 arranged two-dimensionally at equal intervals.
  • the solar cells 1 are connected in series and/or parallel by known interconnectors (not shown), such as tabs.
  • the solar cells 1 are sealed by a light receiving surface protection member, a back surface protection member, and a sealing material (not shown).
  • FIG. 2 is a view of the solar cell according to the first embodiment as viewed from the light-receiving surface side
  • Fig. 3 is a view of the solar cell according to the first embodiment as viewed from the back surface side
  • Fig. 4 is a cross-sectional view of the solar cell shown in Fig. 3 along line IV-IV.
  • the solar cell 1 shown in Figs. 2 to 4 is a back-contact type (also called back surface junction type or back surface electrode type) heterojunction solar cell.
  • the solar cell 1 includes a crystalline silicon substrate 11 having two main surfaces, and the main surface of the substrate 11 has a first region 7 and a second region 8.
  • the first region 7 has a so-called comb-like shape and has multiple finger portions 7f that correspond to the teeth of the comb, and busbar portions 7b that correspond to the supports of the teeth of the comb.
  • the busbar portions 7b extend in a first direction (X direction) along one side of the substrate 11, and the finger portions 7f extend from the busbar portions 7b in a second direction (Y direction) that intersects with the first direction.
  • the second region 8 has a so-called comb shape, and has multiple finger portions 8f that correspond to the teeth of the comb, and a busbar portion 8b that corresponds to the support portion of the teeth of the comb.
  • the busbar portion 8b extends in a first direction (X direction) along one side portion of the substrate 11 that faces the other side portion, and the finger portion 8f extends in a second direction (Y direction) from the busbar portion 8b.
  • the finger portions 7f and 8f are strip-shaped extending in the second direction (Y direction) and are arranged alternately in the first direction (X direction).
  • the first region 7 and the second region 8 may be formed in a stripe pattern.
  • the solar cell 1 comprises a crystalline silicon substrate 11, and a passivation layer 13 and an optical adjustment layer 15, which are stacked in this order on the light-receiving surface side of the substrate 11.
  • the solar cell 1 also comprises a passivation layer 23, a first conductivity type semiconductor layer 25, and a first electrode layer 27, which are stacked in this order on a portion (first region 7) of the back surface side of the substrate 11.
  • the solar cell 1 also comprises a passivation layer 33, a second conductivity type semiconductor layer 35, and a second electrode layer 37, which are stacked in this order on another portion (second region 8) of the back surface side of the substrate 11.
  • the substrate 11 is formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon.
  • the substrate 11 is, for example, an n-type substrate in which a crystalline silicon material is doped with an n-type dopant.
  • the substrate 11 may be, for example, a p-type substrate in which a crystalline silicon material is doped with a p-type dopant.
  • An example of an n-type dopant is phosphorus (P).
  • An example of a p-type dopant is boron (B).
  • the substrate 11 functions as a photoelectric conversion substrate that absorbs incident light from the light-receiving surface side and generates photocarriers (electrons and holes).
  • the dark current is relatively small, and a relatively high output (stable output regardless of illuminance) can be obtained even when the intensity of the incident light is low.
  • the substrate 11 has a pyramidal micro-uneven structure, known as a texture structure, on the light-receiving surface side. This reduces the reflection of incident light on the light-receiving surface, improving the light trapping effect of the substrate 11.
  • the back side of the substrate 11 has a pyramidal, fine uneven structure called a texture structure. This increases the efficiency of collecting light that passes through the substrate 11 without being absorbed.
  • the side surface of the substrate 11 has a pyramidal, fine uneven structure called a texture structure.
  • Passivation layer 13 is formed on the light-receiving surface side of substrate 11.
  • Passivation layer 23 is formed in first region 7 on the back side of substrate 11.
  • Passivation layer 33 is formed in second region 8 on the back side of substrate 11.
  • Passivation layers 13, 23, and 33 are formed of a material whose main component is, for example, an intrinsic (i-type) amorphous silicon material. Passivation layers 13, 23, and 33 suppress recombination of carriers generated in substrate 11 and increase carrier recovery efficiency.
  • the optical adjustment layer 15 is formed on the passivation layer 13 on the light-receiving surface side of the substrate 11.
  • the optical adjustment layer 15 functions as an anti-reflection layer that prevents reflection of incident light, and also functions as a protective layer that protects the light-receiving surface side of the substrate 11 and the passivation layer 13.
  • the optical adjustment layer 15 is formed of an insulating material, for example, silicon oxide (SiO), silicon nitride (SiN), or a composite thereof such as silicon oxynitride (SiON).
  • the first conductive type semiconductor layer 25 is formed on the passivation layer 23, i.e., in the first region 7 on the back side of the substrate 11.
  • the second conductive type semiconductor layer 35 is formed on the passivation layer 33, i.e., in the second region 8 on the back side of the substrate 11. That is, the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 35 have a band-like shape and extend in the Y direction.
  • the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 35 are alternately arranged in the X direction. A portion of the second conductive type semiconductor layer 35 may overlap a portion of the adjacent first conductive type semiconductor layer 25 (not shown).
  • the first conductive type semiconductor layer 25 is formed, for example, from an amorphous silicon material.
  • the first conductive type semiconductor layer 25 is, for example, a p-type semiconductor layer in which an amorphous silicon material is doped with a p-type dopant (for example, the above-mentioned boron (B)).
  • a p-type dopant for example, the above-mentioned boron (B)
  • the second conductive type semiconductor layer 35 is formed, for example, from an amorphous silicon material.
  • the second conductive type semiconductor layer 35 is, for example, an n-type semiconductor layer in which an amorphous silicon material is doped with an n-type dopant (for example, the above-mentioned phosphorus (P)).
  • P phosphorus
  • the first conductive type semiconductor layer 25 may be an n-type semiconductor layer
  • the second conductive type semiconductor layer 35 may be a p-type semiconductor layer.
  • the first electrode layer 27 is formed on the first conductive type semiconductor layer 25, i.e., in the first region 7 on the back side of the substrate 11.
  • the second electrode layer 37 is formed on the second conductive type semiconductor layer 35, i.e., in the second region 8 on the back side of the substrate 11.
  • the first electrode layer 27 and the second electrode layer 37 are strip-shaped and extend in the Y direction.
  • the first electrode layer 27 and the second electrode layer 37 are alternately provided in the X direction.
  • the first electrode layer 27 is formed on the first conductivity type semiconductor layer 25, and the second electrode layer 37 is formed on the second conductivity type semiconductor layer 35.
  • the first electrode layer 27 has a transparent electrode layer 28 and a metal electrode layer 29 formed in that order on the first conductivity type semiconductor layer 25.
  • the second electrode layer 37 has a transparent electrode layer 38 and a metal electrode layer 39 formed in that order on the second conductivity type semiconductor layer 35.
  • the transparent electrode layers 28, 38 are formed from a transparent conductive material.
  • transparent conductive materials include ITO (Indium Tin Oxide: a composite oxide of indium oxide and tin oxide).
  • the metal electrode layers 29, 39 are formed from a conductive paste material containing, for example, a metal powder such as silver.
  • Fig. 5 is a cross-sectional view showing the uneven structure of the central portion Af1 on the light-receiving surface side of the substrate 11 shown in Fig. 2
  • Fig. 6 is a cross-sectional view showing the uneven structure of the peripheral portion Af2 on the light-receiving surface side of the substrate 11 shown in Fig. 2.
  • Fig. 7 is a cross-sectional view showing the uneven structure of the central portion Ar1 on the back surface side of the substrate 11 shown in Fig. 3
  • Fig. 8 is a cross-sectional view showing the uneven structure of the peripheral portion Ar2 on the back surface side of the substrate 11 shown in Fig. 3.
  • Fig. 9 is a cross-sectional view showing the uneven structure of the side surface As of the substrate 11 shown in Figs. 2 and 3.
  • the radius of curvature Rf2 of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side.
  • the uneven structure of the substrate 11 is reflected in the light-receiving surface of the solar cell 1.
  • the radius of curvature of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side.
  • the film thickness of the peripheral portion Af2 on the light-receiving surface side is thinner than the film thickness of the central portion Af1 on the light-receiving surface side.
  • the radius of curvature Rr2 of the top portion of the uneven structure in the peripheral portion Ar2 on the back side is larger than the radius of curvature Rr1 of the top portion of the uneven structure in the central portion Ar1 on the back side.
  • anisotropic etching is performed on the light-receiving surface side and back surface side of the crystalline silicon substrate 11 to form a pyramidal fine uneven structure called a texture structure (crystalline silicon substrate formation process). At this time, anisotropic etching is also performed on the side surface of the crystalline silicon substrate 11, and a pyramidal fine uneven structure is formed in the same way as on the light-receiving surface side and back surface side.
  • An example of the etching solution is an alkaline solution such as an aqueous solution of potassium hydroxide.
  • the flow rate of the etching solution in the peripheral portion Af2 on the light-receiving surface side is controlled to be faster than the flow rate of the etching solution in the central portion Af1 on the light-receiving surface side.
  • the flow rate of the etching solution in the peripheral portion Ar2 on the back surface side is controlled to be faster than the flow rate of the etching solution in the central portion Ar1 on the back surface side.
  • the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side, the radius of curvature Rf2 of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side, the radius of curvature Rr1 of the top portion of the uneven structure of the central portion Ar1 on the back surface side, the radius of curvature Rr2 of the top portion of the uneven structure of the peripheral portion Ar2 on the back surface side, and the radius of curvature Rs of the top portion of the uneven structure on the side surface As satisfy the following relationship.
  • the passivation layer 13 and the optical adjustment layer 15 are formed on the entire light receiving surface of the substrate 11 (optical adjustment layer formation process).
  • the passivation layer 13 and the optical adjustment layer 15 can be formed, for example, by CVD (chemical vapor deposition) or PVD (physical vapor deposition).
  • the uneven structure of the substrate 11 is reflected on the light-receiving surface of the solar cell 1, and the radius of curvature of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side of the solar cell 1 is greater than the radius of curvature of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side. Also, in the passivation layer 13 and optical adjustment layer 15 of the solar cell 1, the film thickness of the peripheral portion Af2 on the light-receiving surface side is thinner than the film thickness of the central portion Af1 on the light-receiving surface side.
  • a passivation layer 23 and a first conductive type semiconductor layer 25 are formed on a portion of the back surface of the substrate 11, specifically in the first region 7 (semiconductor layer formation process).
  • a passivation layer material film and a first conductive type semiconductor layer material film may be formed on the entire back surface of the substrate 11 using a CVD method or a PVD method, and then the passivation layer 23 and the first conductive type semiconductor layer 25 may be patterned using a resist generated using a photolithography technique or a printing technique, or an etching method using a metal mask.
  • examples of etching solutions for p-type semiconductor layer material films include acidic solutions such as hydrofluoric acid containing ozone or a mixture of nitric acid and hydrofluoric acid, and examples of etching solutions for n-type semiconductor layer material films include alkaline solutions such as an aqueous solution of potassium hydroxide.
  • a mask may be used to simultaneously form and pattern the passivation layer 23 and the first conductive type semiconductor layer 25.
  • a passivation layer 33 and a second conductive type semiconductor layer 35 are formed on another part of the back side of the substrate 11, specifically in the second region 8 (semiconductor layer formation process).
  • a passivation layer material film and a second conductive type semiconductor layer material film may be formed on the entire back side of the substrate 11 using a CVD method or a PVD method, and then the passivation layer 33 and the second conductive type semiconductor layer 35 may be patterned using a resist generated using a photolithography technique or a printing technique, or an etching method using a metal mask.
  • a mask may be used to simultaneously form and pattern the passivation layer 33 and the second conductive type semiconductor layer 35.
  • the order in which the passivation layers 13, 23, 33, the optical adjustment layer 15, the first conductive type semiconductor layer 25, and the second conductive type semiconductor layer 35 are formed is not limited.
  • a first electrode layer 27 and a second electrode layer 37 are formed on the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 35 on the back side of the substrate 11, specifically in the first region 7 and the second region 8 (electrode layer formation process).
  • a transparent electrode layer material film may be formed on the entire back surface of the substrate 11 using a CVD or PVD method, and then the transparent electrode layers 28, 38 may be patterned using a resist generated using a photolithography or printing technique, or an etching method using a metal mask.
  • an etching solution for the transparent electrode layer material film for example, hydrochloric acid or an aqueous solution of ferric chloride is used.
  • a metal electrode layer 29 is formed on the transparent electrode layer 28, and a metal electrode layer 39 is formed on the transparent electrode layer 38, thereby forming the first electrode layer 27 and the second electrode layer 37.
  • the radius of curvature Rf2 of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side, and the uneven structure of the substrate 11 is reflected in the light-receiving surface of the solar cell 1, and in the solar cell 1, the radius of curvature of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side.
  • the solar cell 1 can be viewed three-dimensionally within the solar cell module 100, and the color distribution inside the solar cell module 100 becomes less noticeable.
  • the film thickness of the peripheral portion Af2 on the light-receiving surface side is thinner than the film thickness of the central portion Af1 on the light-receiving surface side. In this way, when the film thickness of the peripheral portion Af2 on the light-receiving surface side becomes thinner, the reflection of light at the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side increases, and for example, it appears white.
  • the solar cell 1 can be viewed three-dimensionally within the solar cell module 100, and the color distribution inside the solar cell module 100 becomes less noticeable.
  • chipping may occur at the edge of the substrate 11.
  • the radius of curvature Rf2 of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side.
  • the radius of curvature Rr2 of the top portion of the uneven structure of the peripheral portion Ar2 on the back surface side is larger than the radius of curvature Rr1 of the top portion of the uneven structure of the central portion Ar1 on the back surface side.
  • these radii of curvature satisfy the following relational expression.
  • anisotropic etching forms an uneven structure not only on the light-receiving surface and back surface of the substrate 11, but also on the side surfaces (end surfaces). Furthermore, chipping is likely to occur in the uneven structure on the side surfaces of the ends of the substrate 11 (periphery of the light-receiving surface, periphery of the back surface, side surfaces).
  • the present invention is not limited to the above-mentioned first embodiment and various modifications and variations are possible.
  • the above-mentioned first embodiment illustrates a form in which a large-sized semiconductor substrate (wafer) of a specified size (e.g., a 6-inch semi-square shape) is used as is.
  • the present invention is not limited to this, and may be a form in which a half-cut solar cell is used in which a large-sized semiconductor substrate of a specified size is cut into two pieces, as shown in Figures 10 and 11, or a form in which a solar cell is used in which a large-sized semiconductor substrate of a specified size is cut into three or more pieces.
  • the radius of curvature Rf2 of the top portion of the uneven structure of at least a portion of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side
  • the radius of curvature of the top portion of the uneven structure of at least a portion of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side.
  • the film thickness of at least a portion of the peripheral portion Af2 on the light-receiving surface side is thinner than the film thickness of the central portion Af1 on the light-receiving surface side.
  • the radius of curvature Rr2 of the apex portion of the uneven structure of at least a part of the peripheral portion Ar2 on the back side is larger than the radius of curvature Rr1 of the apex portion of the uneven structure of the central portion Ar1 on the back side. Furthermore, it is sufficient that these radii of curvature satisfy the following relational expression.
  • the configuration of the solar cell module 100 according to the second embodiment is the same as the configuration of the solar cell module 100 according to the first embodiment shown in FIG.
  • the configuration of the solar cell 1 according to the second embodiment is the same as the configuration of the solar cell 1 according to the first embodiment shown in FIGS. 2 to 4, except for the following points.
  • Figure 12 is a cross-sectional view showing the uneven structure of the central portion Af1 on the light-receiving surface side of the substrate 11 shown in Figure 2
  • Figure 13 is a cross-sectional view showing the uneven structure of the peripheral portion Af2 on the light-receiving surface side of the substrate 11 shown in Figure 2.
  • the radius of curvature Rf2 of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side.
  • the radius of curvature Rr2 of the top portion of the uneven structure in the peripheral portion Ar2 on the back side is larger than the radius of curvature Rr1 of the top portion of the uneven structure in the central portion Ar1 on the back side.
  • the radius of curvature Rs of the top portion of the uneven structure on the side As is greater than the radius of curvature Rf1 of the top portion of the uneven structure on the central portion Af1 on the light receiving surface side, and the radius of curvature Rr1 of the top portion of the uneven structure on the central portion Ar1 on the back surface side.
  • anisotropic etching is performed on the light receiving surface side and back surface side of the crystalline silicon substrate 11 to form a pyramidal fine uneven structure called a texture structure (crystalline silicon substrate formation process). At this time, anisotropic etching is also performed on the side surface of the crystalline silicon substrate 11 to form a pyramidal fine uneven structure called a texture structure.
  • An example of the etching solution is an alkaline solution such as an aqueous solution of potassium hydroxide.
  • the flow rate of the etching solution in the peripheral portion Af2 on the light-receiving surface side is controlled to be faster than the flow rate of the etching solution in the central portion Af1 on the light-receiving surface side.
  • the flow rate of the etching solution in the peripheral portion Ar2 on the back surface side is controlled to be faster than the flow rate of the etching solution in the central portion Ar1 on the back surface side.
  • the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side, the radius of curvature Rf2 of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side, the radius of curvature Rr1 of the top portion of the uneven structure of the central portion Ar1 on the back surface side, the radius of curvature Rr2 of the top portion of the uneven structure of the peripheral portion Ar2 on the back surface side, and the radius of curvature Rs of the top portion of the uneven structure on the side surface As satisfy the following relationship.
  • the passivation layer 13 and the optical adjustment layer 15 are formed on the entire light receiving surface of the substrate 11 (optical adjustment layer formation process).
  • the passivation layer 13 and the optical adjustment layer 15 can be formed, for example, by CVD (chemical vapor deposition) or PVD (physical vapor deposition).
  • a passivation layer 23 and a first conductive type semiconductor layer 25 are formed on a portion of the back side of the substrate 11, specifically in the first region 7 (semiconductor layer formation process).
  • a passivation layer material film and a first conductive type semiconductor layer material film may be formed on the entire back side of the substrate 11 using a CVD method or a PVD method, and then the passivation layer 23 and the first conductive type semiconductor layer 25 may be patterned using a resist generated using a photolithography technique or a printing technique, or an etching method using a metal mask.
  • examples of etching solutions for p-type semiconductor layer material films include acidic solutions such as hydrofluoric acid containing ozone or a mixture of nitric acid and hydrofluoric acid, and examples of etching solutions for n-type semiconductor layer material films include alkaline solutions such as an aqueous solution of potassium hydroxide.
  • a mask may be used to simultaneously form and pattern the passivation layer 23 and the first conductive type semiconductor layer 25.
  • a passivation layer 33 and a second conductive type semiconductor layer 35 are formed on another part of the back side of the substrate 11, specifically in the second region 8 (semiconductor layer formation process).
  • a passivation layer material film and a second conductive type semiconductor layer material film may be formed on the entire back side of the substrate 11 using a CVD method or a PVD method, and then the passivation layer 33 and the second conductive type semiconductor layer 35 may be patterned using a resist generated using a photolithography technique or a printing technique, or an etching method using a metal mask.
  • a mask may be used to simultaneously form and pattern the passivation layer 33 and the second conductive type semiconductor layer 35.
  • the order in which the passivation layers 13, 23, 33, the optical adjustment layer 15, the first conductive type semiconductor layer 25, and the second conductive type semiconductor layer 35 are formed is not limited.
  • a first electrode layer 27 and a second electrode layer 37 are formed on the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 35 on the back side of the substrate 11, specifically in the first region 7 and the second region 8 (electrode layer formation process).
  • a transparent electrode layer material film may be formed on the entire back surface of the substrate 11 using a CVD or PVD method, and then the transparent electrode layers 28, 38 may be patterned using a resist generated using a photolithography or printing technique, or an etching method using a metal mask.
  • An example of an etching solution for the transparent electrode layer material film is an aqueous solution of hydrochloric acid or ferric chloride.
  • a metal electrode layer 29 is formed on the transparent electrode layer 28, and a metal electrode layer 39 is formed on the transparent electrode layer 38, thereby forming the first electrode layer 27 and the second electrode layer 37.
  • chipping may occur at the edge of the substrate 11.
  • anisotropic etching forms an uneven structure not only on the light-receiving surface and back surface but also on the side surfaces (end surfaces) of substrate 11.
  • ends of substrate 11 peripheral portion of the light-receiving surface, peripheral portion of the back surface, and side surfaces
  • chipping is likely to occur in the uneven structure on the side surfaces.
  • the radius of curvature Rs of the top portion of the uneven structure on the side surface As is larger than the radius of curvature Rf1 of the top portion of the uneven structure on the central portion Af1 on the light-receiving surface side, and the radius of curvature Rr1 of the top portion of the uneven structure on the central portion Ar1 on the back surface side.
  • the radius of curvature Rs of the top portion of the uneven structure on the side surface in particular to be larger chipping at the edge of the substrate 11 can be reduced. This makes it possible to improve the productivity of the solar cell 1.
  • the radius of curvature Rf2 of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side.
  • the radius of curvature Rr2 of the top portion of the uneven structure of the peripheral portion Ar2 on the back side is larger than the radius of curvature Rr1 of the top portion of the uneven structure of the central portion Ar1 on the back side.
  • the present invention has been described above, but the present invention is not limited to the above-mentioned second embodiment, and various modifications and variations are possible.
  • the above-mentioned second embodiment illustrates a form in which a large-sized semiconductor substrate (wafer) of a specified size (e.g., a 6-inch semi-square shape) is used as is.
  • the present invention is not limited to this, and may be a form in which a half-cut solar cell is used in which a large-sized semiconductor substrate of a specified size is cut into two pieces, as shown in Figures 10 and 11, or a form in which a solar cell is used in which a large-sized semiconductor substrate of a specified size is cut into three or more pieces.
  • the radius of curvature Rf2 of the top portion of at least a portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side should be larger than the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side.
  • the radius of curvature Rr2 of the top portion of at least a portion of the uneven structure in the peripheral portion Ar2 on the back side may be greater than the radius of curvature Rr1 of the top portion of the uneven structure in the central portion Ar1 on the back side.
  • a back-contact type solar cell is exemplified.
  • the present invention is not limited to this, and can also be applied to a double-sided electrode type solar cell.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention provides a solar cell element which has reduced color unevenness of each light-receiving surface when formed into a module. A solar cell element 1 according to the present invention is a back contact solar cell element which is provided with: a crystalline silicon substrate 11 that has a relief structure on the light-receiving surface side; an optical adjustment layer that is formed on the light-receiving surface side of the substrate 11; a first electrode layer and a semiconductor layer that has a first conductivity type, which are formed on a part of the back surface side of the substrate 11; and a second electrode layer and a semiconductor layer that has a second conductivity type, which are formed on another part of the back surface side of the substrate 11. With respect to the substrate 11, the radius of curvature of a top portion of the relief structure in at least a part of a peripheral part Af2 on the light-receiving surface side is larger than the radius of curvature of a top portion of the relief structure in a central part Af1 on the light-receiving surface side. The relief structure of the substrate 11 is reflected in the light-receiving surface of the solar cell element 1. With respect to the solar cell element 1, the radius of curvature of a top portion of the relief structure in at least a part of the peripheral part Af2 on the light-receiving surface side is larger than the radius of curvature of a top portion of the relief structure in the central part Af1 on the light-receiving surface side.

Description

太陽電池セル、太陽電池モジュールおよび太陽電池セルの製造方法Solar cell, solar cell module, and method for manufacturing solar cell

 本発明は、太陽電池セル、太陽電池モジュールおよび太陽電池セルの製造方法に関する。 The present invention relates to solar cells, solar cell modules, and methods for manufacturing solar cells.

 太陽電池セルとして、受光面側および裏面側の両面に電極が形成された両面電極型の太陽電池セルと、裏面側のみに電極が形成された裏面電極型(バックコンタクト型、裏面接合型ともいう。以下ではバックコンタクト型という。)の太陽電池セルとがある。両面電極型の太陽電池セルでは、受光面側に電極が形成されるため、この電極による金属光沢が目立つ。一方、バックコンタクト型の太陽電池セルでは、受光面側に電極が形成されないため、受光面側が一様に黒色であり、意匠性が高い。特許文献1には、バックコンタクト型の太陽電池セルが開示されている。 There are two types of solar cells: double-sided electrode type solar cells, in which electrodes are formed on both the light-receiving surface and the back surface, and back-surface electrode type (also called back-contact type or back-surface junction type; hereafter referred to as back-contact type) solar cells, in which electrodes are formed only on the back surface. In double-sided electrode type solar cells, electrodes are formed on the light-receiving surface, so the metallic luster of this electrode is noticeable. On the other hand, in back-contact type solar cells, no electrodes are formed on the light-receiving surface, so the light-receiving surface is uniformly black, making it highly aesthetically pleasing. Patent Document 1 discloses a back-contact type solar cell.

 例えば、バックコンタクト型の太陽電池セルは、結晶質シリコン基板と、基板の裏面側の一部に順に形成された第1導電型半導体層および第1電極層と、基板の裏面側の他の一部に順に形成された第2導電型半導体層および第2電極層とを備える。また、この太陽電池セルは、基板の受光面側に順に形成された光学調整層(反射防止層)を備える。 For example, a back-contact type solar cell comprises a crystalline silicon substrate, a first conductive type semiconductor layer and a first electrode layer formed in sequence on a portion of the back surface of the substrate, and a second conductive type semiconductor layer and a second electrode layer formed in sequence on another portion of the back surface of the substrate. This solar cell also comprises an optical adjustment layer (anti-reflection layer) formed in sequence on the light-receiving surface side of the substrate.

特開2014-75526号公報JP 2014-75526 A

 バックコンタクト型の太陽電池セルでは、製膜条件のばらつきまたは製膜装置内の位置等により、受光面側の光学調整層の膜厚に個々のばらつきが生じ、その結果、受光面の色に個々のばらつきが生じる。 In back-contact solar cells, individual variations occur in the film thickness of the optical adjustment layer on the light-receiving surface due to variations in film-forming conditions or the position within the film-forming device, which results in individual variations in the color of the light-receiving surface.

 上述したように、バックコンタクト型の太陽電池セルでは、受光面側に電極が形成されない。そのため、複数のバックコンタクト型の太陽電池セルが2次元状に配置された太陽電池モジュールでは、これらの太陽電池セルの受光面の色ムラが目立ちやすい。 As mentioned above, in back-contact solar cells, no electrodes are formed on the light-receiving surface. Therefore, in solar cell modules in which multiple back-contact solar cells are arranged in a two-dimensional pattern, color unevenness on the light-receiving surface of these solar cells is easily noticeable.

 また、太陽電池セルでは、結晶質シリコン基板の受光面側に、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を形成することが知られている。これにより、受光面において入射光の反射が低減し、基板における光閉じ込め効果が向上する。 It is also known that in solar cells, a pyramidal, fine uneven structure known as a texture structure is formed on the light-receiving surface of a crystalline silicon substrate. This reduces the reflection of incident light on the light-receiving surface and improves the light trapping effect in the substrate.

 結晶質シリコン基板の裏面側においても、テクスチャ構造を形成することが知られている。これにより、基板に吸収されず通過してしまった光の回収効率が高まる。 It is known that a textured structure can also be formed on the back side of a crystalline silicon substrate. This increases the efficiency of collecting light that passes through the substrate without being absorbed.

 結晶質シリコン基板の受光面側および裏面側に凹凸構造を形成すると、結晶質シリコン基板の側面側にも凹凸構造が形成される。 When an uneven structure is formed on the light-receiving surface and back surface of a crystalline silicon substrate, an uneven structure is also formed on the side surface of the crystalline silicon substrate.

 結晶質シリコン基板の受光面側、裏面側および側面側に凹凸構造を形成すると、結晶質シリコン基板の端部(受光面の周縁部、裏面の周縁部および端面)、特に側面(端面)において、亀裂、欠け等のチッピングが生じることがある。 When an uneven structure is formed on the light-receiving surface, back surface and side surfaces of a crystalline silicon substrate, cracks, chipping, etc. may occur on the edges of the crystalline silicon substrate (the periphery of the light-receiving surface, the periphery and end surface of the back surface), especially on the side surfaces (end surfaces).

 本発明は、モジュール化において個々の受光面の色ムラを低減する太陽電池セル、太陽電池モジュールおよび太陽電池セルの製造方法を提供することを目的とする。また、本発明は、チッピングを低減する太陽電池セルおよび太陽電池セルの製造方法を提供することを目的とする。 The present invention aims to provide a solar cell, a solar cell module, and a method for manufacturing a solar cell that reduces color unevenness on the individual light receiving surfaces when modularized. The present invention also aims to provide a solar cell and a method for manufacturing a solar cell that reduces chipping.

 本願発明者(ら)は、複数の太陽電池セルが2次元状に配置された太陽電池モジュールにおいて、個々の太陽電池セルの受光面の周縁部を目立たせることにより、個々の太陽電池セルが立体的に視認され、この視認効果により、複数の太陽電池セルの受光面の色調分布が目立ちにくくなることを見出した。 The inventor(s) of the present application have discovered that in a solar cell module in which multiple solar cells are arranged in a two-dimensional shape, by highlighting the peripheral edge of the light-receiving surface of each solar cell, each solar cell can be viewed three-dimensionally, and this visibility effect makes the color distribution of the light-receiving surface of the multiple solar cells less noticeable.

 そこで、本発明に係る太陽電池セルは、受光面側に凹凸構造を有する結晶質シリコン基板と、前記基板の前記受光面側に形成された光学調整層と、前記基板の前記受光面側と反対側の裏面側の一部に形成された第1導電型半導体層と、前記基板の前記裏面側の他の一部に形成された第2導電型半導体層と、前記第1導電型半導体層の上に形成された第1電極層と、前記第2導電型半導体層の上に形成された第2電極層とを備えるバックコンタクト型の太陽電池セルであって、前記基板において、前記受光面側の周縁部の少なくとも一部の凹凸構造の頂上部分の曲率半径は、前記受光面側の中央部の凹凸構造の頂上部分の曲率半径よりも大きく、前記太陽電池セルの受光面には、前記基板の凹凸構造が反映されており、前記太陽電池セルにおいて、前記受光面側の周縁部の少なくとも一部の凹凸構造の頂上部分の曲率半径は、前記受光面側の中央部の凹凸構造の頂上部分の曲率半径よりも大きい。 The solar cell according to the present invention is a back-contact type solar cell including a crystalline silicon substrate having an uneven structure on the light-receiving surface side, an optical adjustment layer formed on the light-receiving surface side of the substrate, a first conductive type semiconductor layer formed on a part of the back surface side of the substrate opposite the light-receiving surface side, a second conductive type semiconductor layer formed on another part of the back surface side of the substrate, a first electrode layer formed on the first conductive type semiconductor layer, and a second electrode layer formed on the second conductive type semiconductor layer, wherein the radius of curvature of the top portion of at least a part of the uneven structure of the peripheral portion of the light-receiving surface side of the substrate is larger than the radius of curvature of the top portion of the uneven structure of the central portion of the light-receiving surface side, the uneven structure of the substrate is reflected in the light-receiving surface of the solar cell, and the radius of curvature of the top portion of at least a part of the uneven structure of the peripheral portion of the light-receiving surface side of the solar cell is larger than the radius of curvature of the top portion of the uneven structure of the central portion of the light-receiving surface side.

 また、本発明に係る太陽電池モジュールは、上記の太陽電池セルが2次元状に配置されている。 In addition, the solar cell module according to the present invention has the above-mentioned solar cells arranged in a two-dimensional manner.

 また、本発明に係る太陽電池セルの製造方法は、上記の太陽電池セルの製造方法であって、前記結晶質シリコン基板の受光面側に凹凸構造を形成する工程において、前記受光面側の周縁部の少なくとも一部におけるエッチング溶液の流速が、前記受光面側の中央部におけるエッチング溶液の流速よりも速くなるように制御する。 The solar cell manufacturing method according to the present invention is the solar cell manufacturing method described above, in which, in the step of forming an uneven structure on the light-receiving surface side of the crystalline silicon substrate, the flow rate of the etching solution in at least a portion of the periphery of the light-receiving surface side is controlled to be faster than the flow rate of the etching solution in the center of the light-receiving surface side.

 加えて、本願発明者(ら)は、結晶質シリコン基板の端部(受光面の周縁部、裏面の周縁部および端面)、特に側面(端面)の凹凸構造の頂上部分の曲率半径が大きくなるように制御することにより、結晶質シリコン基板の端部のチッピングが低減することを見出した。 In addition, the inventor(s) of the present application discovered that chipping at the edge of the crystalline silicon substrate can be reduced by controlling the radius of curvature of the edge (periphery of the light-receiving surface, periphery of the back surface, and edge face), particularly the top portion of the uneven structure on the side surface (edge face), so that it is larger.

 そこで、本発明に係る太陽電池セルは、受光面側、裏面側および側面側に凹凸構造を有する結晶質シリコン基板と、前記基板の前記受光面側または裏面側に形成された第1導電型半導体層と、前記基板の前記受光面側または裏面側に形成された第2導電型半導体層と、前記第1導電型半導体層の上に形成された第1電極層と、前記第2導電型半導体層の上に形成された第2電極層とを備える太陽電池セルであって、前記基板において、前記側面側の凹凸構造の頂上部分の曲率半径は、前記受光面側の中央部の凹凸構造の頂上部分の曲率半径、および、前記裏面側の中央部の凹凸構造の頂上部分の曲率半径よりも大きい。 The solar cell according to the present invention is a solar cell comprising a crystalline silicon substrate having an uneven structure on the light-receiving surface side, back surface side and side surface, a first conductive type semiconductor layer formed on the light-receiving surface side or back surface side of the substrate, a second conductive type semiconductor layer formed on the light-receiving surface side or back surface side of the substrate, a first electrode layer formed on the first conductive type semiconductor layer, and a second electrode layer formed on the second conductive type semiconductor layer, wherein the radius of curvature of the top portion of the uneven structure on the side surface of the substrate is greater than the radius of curvature of the top portion of the uneven structure in the center of the light-receiving surface side and the radius of curvature of the top portion of the uneven structure in the center of the back surface side.

 また、本発明に係る太陽電池セルの製造方法は、上記の太陽電池セルの製造方法であって、前記結晶質シリコン基板の受光面側、裏面側および側面側に凹凸構造を形成する工程において、前記受光面側の周縁部の少なくとも一部および前記側面側におけるエッチング溶液の流速が、前記受光面側の中央部におけるエッチング溶液の流速よりも速くなるように制御し、前記裏面側の周縁部の少なくとも一部および前記側面側におけるエッチング溶液の流速が、前記裏面側の中央部におけるエッチング溶液の流速よりも速くなるように制御する。 The solar cell manufacturing method according to the present invention is the solar cell manufacturing method described above, in which, in the process of forming an uneven structure on the light-receiving surface side, back surface side, and side surface side of the crystalline silicon substrate, the flow rate of the etching solution on at least a portion of the periphery of the light-receiving surface side and on the side surface is controlled to be faster than the flow rate of the etching solution in the center of the light-receiving surface side, and the flow rate of the etching solution on at least a portion of the periphery of the back surface side and on the side surface is controlled to be faster than the flow rate of the etching solution in the center of the back surface side.

 本発明によれば、モジュール化において個々の太陽電池セルの受光面の色ムラを低減することができる。また、本発明によれば、太陽電池セルにおいて、チッピングを低減することができる。 According to the present invention, it is possible to reduce color unevenness on the light receiving surface of each solar cell in a modularized system. In addition, according to the present invention, it is possible to reduce chipping in solar cells.

第1実施形態に係る太陽電池モジュールを受光面側からみた図である。1 is a diagram showing a solar cell module according to a first embodiment as viewed from the light receiving surface side. 第1実施形態に係る太陽電池セルを受光面側からみた図である。1 is a diagram showing a solar cell according to a first embodiment as viewed from the light-receiving surface side. 第1実施形態に係る太陽電池セルを裏面側からみた図である。1 is a diagram showing a solar cell according to a first embodiment as viewed from the back surface side. 図3に示す太陽電池セルにおけるIV-IV線断面図である。4 is a cross-sectional view taken along line IV-IV of the solar cell shown in FIG. 3. 図2に示す基板の受光面側の中央部の凹凸構造を示す断面図である。3 is a cross-sectional view showing an uneven structure in the center of the light-receiving surface side of the substrate shown in FIG. 2. 図2に示す基板の受光面側の周縁部の凹凸構造を示す断面図である。3 is a cross-sectional view showing an uneven structure of a peripheral portion on a light-receiving surface side of the substrate shown in FIG. 2. 図3に示す基板の裏面側の中央部の凹凸構造を示す断面図である。4 is a cross-sectional view showing an uneven structure in the center of the rear surface side of the substrate shown in FIG. 3. 図3に示す基板の裏面側の周縁部の凹凸構造を示す断面図である。4 is a cross-sectional view showing an uneven structure of the peripheral portion on the back surface side of the substrate shown in FIG. 3. 図2および図3に示す基板の側面側の凹凸構造を示す断面図である。4 is a cross-sectional view showing the uneven structure on the side surface of the substrate shown in FIGS. 2 and 3. FIG. 第1実施形態の変形例に係る太陽電池モジュールを受光面側からみた図である。13 is a diagram showing a solar cell module according to a modified example of the first embodiment, viewed from the light receiving surface side. FIG. 第1実施形態の変形例に係る太陽電池セルを受光面側からみた図である。13 is a view of a solar cell according to a modified example of the first embodiment, viewed from the light-receiving surface side. FIG. 図2に示す基板の受光面側の中央部の凹凸構造を示す断面図である(第2実施形態)。3 is a cross-sectional view showing an uneven structure in the center of the light-receiving surface side of the substrate shown in FIG. 2 (second embodiment); 図2に示す基板の受光面側の周縁部の凹凸構造を示す断面図である(第2実施形態)。3 is a cross-sectional view showing an uneven structure of a peripheral portion on the light-receiving surface side of the substrate shown in FIG. 2 (second embodiment);

 以下、添付の図面を参照して本発明の実施形態の一例について説明する。なお、各図面において同一または相当の部分に対しては同一の符号を附すこととする。また、便宜上、ハッチングや部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。 Below, an example of an embodiment of the present invention will be described with reference to the attached drawings. Note that the same reference numerals will be used to refer to the same or equivalent parts in each drawing. For convenience, hatching and component reference numerals may be omitted, in which case other drawings should be referenced.

[第1実施形態]
(太陽電池モジュール)
 図1は、第1実施形態に係る太陽電池モジュールを受光面側からみた図である。図1に示す太陽電池モジュール100は、等間隔で離間して、2次元状に配列された複数の太陽電池セル1を備える。太陽電池セル1は、例えば、タブ等の公知のインターコネクタ(図示省略)によって直列および/または並列に接続されている。太陽電池セル1は、受光面保護部材、裏面保護部材および封止材(図示省略)によって封止されている。
[First embodiment]
(Solar cell module)
Fig. 1 is a view of a solar cell module according to a first embodiment as viewed from the light receiving surface side. The solar cell module 100 shown in Fig. 1 includes a plurality of solar cells 1 arranged two-dimensionally at equal intervals. The solar cells 1 are connected in series and/or parallel by known interconnectors (not shown), such as tabs. The solar cells 1 are sealed by a light receiving surface protection member, a back surface protection member, and a sealing material (not shown).

(太陽電池セル)
 図2は、第1実施形態に係る太陽電池セルを受光面側からみた図であり、図3は、第1実施形態に係る太陽電池セルを裏面側からみた図であり、図4は、図3に示す太陽電池セルにおけるIV-IV線断面図である。図2~図4に示す太陽電池セル1は、バックコンタクト型(裏面接合型、裏面電極型ともいう。)であってヘテロ接合型の太陽電池セルである。太陽電池セル1は、2つの主面を備える結晶質シリコン基板11を備え、基板11の主面において第1領域7と第2領域8とを有する。
(Solar cell)
Fig. 2 is a view of the solar cell according to the first embodiment as viewed from the light-receiving surface side, Fig. 3 is a view of the solar cell according to the first embodiment as viewed from the back surface side, and Fig. 4 is a cross-sectional view of the solar cell shown in Fig. 3 along line IV-IV. The solar cell 1 shown in Figs. 2 to 4 is a back-contact type (also called back surface junction type or back surface electrode type) heterojunction solar cell. The solar cell 1 includes a crystalline silicon substrate 11 having two main surfaces, and the main surface of the substrate 11 has a first region 7 and a second region 8.

 第1領域7は、いわゆる櫛型の形状をなし、櫛歯に相当する複数のフィンガー部7fと、櫛歯の支持部に相当するバスバー部7bとを有する。バスバー部7bは、基板11の一方の辺部に沿って第1方向(X方向)に延在し、フィンガー部7fは、バスバー部7bから、第1方向に交差する第2方向(Y方向)に延在する。 The first region 7 has a so-called comb-like shape and has multiple finger portions 7f that correspond to the teeth of the comb, and busbar portions 7b that correspond to the supports of the teeth of the comb. The busbar portions 7b extend in a first direction (X direction) along one side of the substrate 11, and the finger portions 7f extend from the busbar portions 7b in a second direction (Y direction) that intersects with the first direction.

 同様に、第2領域8は、いわゆる櫛型の形状であり、櫛歯に相当する複数のフィンガー部8fと、櫛歯の支持部に相当するバスバー部8bとを有する。バスバー部8bは、基板11の一方の辺部に対向する他方の辺部に沿って第1方向(X方向)に延在し、フィンガー部8fは、バスバー部8bから、第2方向(Y方向)に延在する。 Similarly, the second region 8 has a so-called comb shape, and has multiple finger portions 8f that correspond to the teeth of the comb, and a busbar portion 8b that corresponds to the support portion of the teeth of the comb. The busbar portion 8b extends in a first direction (X direction) along one side portion of the substrate 11 that faces the other side portion, and the finger portion 8f extends in a second direction (Y direction) from the busbar portion 8b.

 フィンガー部7fとフィンガー部8fとは、第2方向(Y方向)に延在する帯状をなしており、第1方向(X方向)に交互に設けられている。なお、第1領域7および第2領域8は、ストライプ状に形成されてもよい。 The finger portions 7f and 8f are strip-shaped extending in the second direction (Y direction) and are arranged alternately in the first direction (X direction). The first region 7 and the second region 8 may be formed in a stripe pattern.

 図4に示すように、太陽電池セル1は、結晶質シリコン基板11と、基板11の受光面側に順に積層されたパッシベーション層13および光学調整層15を備える。また、太陽電池セル1は、基板11の裏面側の一部(第1領域7)に順に積層されたパッシベーション層23、第1導電型半導体層25および第1電極層27を備える。また、太陽電池セル1は、基板11の裏面側の他の一部(第2領域8)に順に積層されたパッシベーション層33、第2導電型半導体層35および第2電極層37を備える。 As shown in FIG. 4, the solar cell 1 comprises a crystalline silicon substrate 11, and a passivation layer 13 and an optical adjustment layer 15, which are stacked in this order on the light-receiving surface side of the substrate 11. The solar cell 1 also comprises a passivation layer 23, a first conductivity type semiconductor layer 25, and a first electrode layer 27, which are stacked in this order on a portion (first region 7) of the back surface side of the substrate 11. The solar cell 1 also comprises a passivation layer 33, a second conductivity type semiconductor layer 35, and a second electrode layer 37, which are stacked in this order on another portion (second region 8) of the back surface side of the substrate 11.

 基板11は、単結晶シリコンまたは多結晶シリコン等の結晶質シリコン材料で形成される。基板11は、例えば結晶質シリコン材料にn型ドーパントがドープされたn型の基板である。なお、基板11は、例えば結晶質シリコン材料にp型ドーパントがドープされたp型の基板であってもよい。n型ドーパントとしては、例えばリン(P)が挙げられる。p型ドーパントとしては、例えばホウ素(B)が挙げられる。基板11は、受光面側からの入射光を吸収して光キャリア(電子および正孔)を生成する光電変換基板として機能する。 The substrate 11 is formed of a crystalline silicon material such as single crystal silicon or polycrystalline silicon. The substrate 11 is, for example, an n-type substrate in which a crystalline silicon material is doped with an n-type dopant. The substrate 11 may be, for example, a p-type substrate in which a crystalline silicon material is doped with a p-type dopant. An example of an n-type dopant is phosphorus (P). An example of a p-type dopant is boron (B). The substrate 11 functions as a photoelectric conversion substrate that absorbs incident light from the light-receiving surface side and generates photocarriers (electrons and holes).

 基板11の材料として結晶質シリコンが用いられることにより、暗電流が比較的に小さく、入射光の強度が低い場合であっても比較的高出力(照度によらず安定した出力)が得られる。 By using crystalline silicon as the material for the substrate 11, the dark current is relatively small, and a relatively high output (stable output regardless of illuminance) can be obtained even when the intensity of the incident light is low.

 基板11は、受光面側に、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を有している。これにより、受光面において入射光の反射が低減し、基板11における光閉じ込め効果が向上する。 The substrate 11 has a pyramidal micro-uneven structure, known as a texture structure, on the light-receiving surface side. This reduces the reflection of incident light on the light-receiving surface, improving the light trapping effect of the substrate 11.

 また、基板11は、裏面側に、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を有している。これにより、基板11に吸収されず通過してしまった光の回収効率が高まる。 In addition, the back side of the substrate 11 has a pyramidal, fine uneven structure called a texture structure. This increases the efficiency of collecting light that passes through the substrate 11 without being absorbed.

 また、基板11は、側面側に、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を有している。 In addition, the side surface of the substrate 11 has a pyramidal, fine uneven structure called a texture structure.

 パッシベーション層13は、基板11の受光面側に形成されている。パッシベーション層23は、基板11の裏面側の第1領域7に形成されている。パッシベーション層33は、基板11の裏面側の第2領域8に形成されている。パッシベーション層13,23,33は、例えば真性(i型)アモルファスシリコン材料を主成分とする材料で形成される。パッシベーション層13,23,33は、基板11で生成されたキャリアの再結合を抑制し、キャリアの回収効率を高める。 Passivation layer 13 is formed on the light-receiving surface side of substrate 11. Passivation layer 23 is formed in first region 7 on the back side of substrate 11. Passivation layer 33 is formed in second region 8 on the back side of substrate 11. Passivation layers 13, 23, and 33 are formed of a material whose main component is, for example, an intrinsic (i-type) amorphous silicon material. Passivation layers 13, 23, and 33 suppress recombination of carriers generated in substrate 11 and increase carrier recovery efficiency.

 光学調整層15は、基板11の受光面側のパッシベーション層13上に形成されている。光学調整層15は、入射光の反射を防止する反射防止層として機能するとともに、基板11の受光面側およびパッシベーション層13を保護する保護層として機能する。光学調整層15は、例えば酸化珪素(SiO)、窒化珪素(SiN)、または酸窒化珪素(SiON)のようなそれらの複合物等の絶縁体材料で形成される。 The optical adjustment layer 15 is formed on the passivation layer 13 on the light-receiving surface side of the substrate 11. The optical adjustment layer 15 functions as an anti-reflection layer that prevents reflection of incident light, and also functions as a protective layer that protects the light-receiving surface side of the substrate 11 and the passivation layer 13. The optical adjustment layer 15 is formed of an insulating material, for example, silicon oxide (SiO), silicon nitride (SiN), or a composite thereof such as silicon oxynitride (SiON).

 第1導電型半導体層25は、パッシベーション層23上に、すなわち基板11の裏面側の第1領域7に形成されている。一方、第2導電型半導体層35は、パッシベーション層33上に、すなわち基板11の裏面側の第2領域8に形成されている。すなわち、第1導電型半導体層25および第2導電型半導体層35は、帯状の形状をなし、Y方向に延在する。第1導電型半導体層25と第2導電型半導体層35とは、X方向に交互に並んでいる。第2導電型半導体層35の一部は、隣接する第1導電型半導体層25の一部の上に重なっていてもよい(図示省略)。 The first conductive type semiconductor layer 25 is formed on the passivation layer 23, i.e., in the first region 7 on the back side of the substrate 11. On the other hand, the second conductive type semiconductor layer 35 is formed on the passivation layer 33, i.e., in the second region 8 on the back side of the substrate 11. That is, the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 35 have a band-like shape and extend in the Y direction. The first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 35 are alternately arranged in the X direction. A portion of the second conductive type semiconductor layer 35 may overlap a portion of the adjacent first conductive type semiconductor layer 25 (not shown).

 第1導電型半導体層25は、例えばアモルファスシリコン材料で形成される。第1導電型半導体層25は、例えばアモルファスシリコン材料にp型ドーパント(例えば、上述したホウ素(B))がドープされたp型の半導体層である。 The first conductive type semiconductor layer 25 is formed, for example, from an amorphous silicon material. The first conductive type semiconductor layer 25 is, for example, a p-type semiconductor layer in which an amorphous silicon material is doped with a p-type dopant (for example, the above-mentioned boron (B)).

 第2導電型半導体層35は、例えばアモルファスシリコン材料で形成される。第2導電型半導体層35は、例えばアモルファスシリコン材料にn型ドーパント(例えば、上述したリン(P))がドープされたn型の半導体層である。なお、第1導電型半導体層25がn型の半導体層であり、第2導電型半導体層35がp型の半導体層であってもよい。 The second conductive type semiconductor layer 35 is formed, for example, from an amorphous silicon material. The second conductive type semiconductor layer 35 is, for example, an n-type semiconductor layer in which an amorphous silicon material is doped with an n-type dopant (for example, the above-mentioned phosphorus (P)). Note that the first conductive type semiconductor layer 25 may be an n-type semiconductor layer, and the second conductive type semiconductor layer 35 may be a p-type semiconductor layer.

 第1電極層27は、第1導電型半導体層25上に、すなわち基板11の裏面側の第1領域7に形成されている。一方、第2電極層37は、第2導電型半導体層35上に、すなわち基板11の裏面側の第2領域8に形成されている。すなわち、第1電極層27および第2電極層37は、帯状の形状をなし、Y方向に延在する。第1電極層27と第2電極層37とは、X方向に交互に設けられている。 The first electrode layer 27 is formed on the first conductive type semiconductor layer 25, i.e., in the first region 7 on the back side of the substrate 11. On the other hand, the second electrode layer 37 is formed on the second conductive type semiconductor layer 35, i.e., in the second region 8 on the back side of the substrate 11. In other words, the first electrode layer 27 and the second electrode layer 37 are strip-shaped and extend in the Y direction. The first electrode layer 27 and the second electrode layer 37 are alternately provided in the X direction.

 第1電極層27は、第1導電型半導体層25上に形成されており、第2電極層37は、第2導電型半導体層35上に形成されている。第1電極層27は、第1導電型半導体層25上に順に形成された透明電極層28と金属電極層29とを有する。第2電極層37は、第2導電型半導体層35上に順に形成された透明電極層38と金属電極層39とを有する。 The first electrode layer 27 is formed on the first conductivity type semiconductor layer 25, and the second electrode layer 37 is formed on the second conductivity type semiconductor layer 35. The first electrode layer 27 has a transparent electrode layer 28 and a metal electrode layer 29 formed in that order on the first conductivity type semiconductor layer 25. The second electrode layer 37 has a transparent electrode layer 38 and a metal electrode layer 39 formed in that order on the second conductivity type semiconductor layer 35.

 透明電極層28,38は、透明な導電性材料で形成される。透明導電性材料としては、ITO(Indium Tin Oxide:酸化インジウムおよび酸化スズの複合酸化物)等が挙げられる。金属電極層29,39は、例えば、銀等の金属粉末を含有する導電性ペースト材料で形成される。 The transparent electrode layers 28, 38 are formed from a transparent conductive material. Examples of transparent conductive materials include ITO (Indium Tin Oxide: a composite oxide of indium oxide and tin oxide). The metal electrode layers 29, 39 are formed from a conductive paste material containing, for example, a metal powder such as silver.

 次に、図2~図9を参照して、基板11の凹凸構造について説明する。図5は、図2に示す基板11の受光面側の中央部Af1の凹凸構造を示す断面図であり、図6は、図2に示す基板11の受光面側の周縁部Af2の凹凸構造を示す断面図である。図7は、図3に示す基板11の裏面側の中央部Ar1の凹凸構造を示す断面図であり、図8は、図3に示す基板11の裏面側の周縁部Ar2の凹凸構造を示す断面図である。図9は、図2および図3に示す基板11の側面側Asの凹凸構造を示す断面図である。 Next, the uneven structure of the substrate 11 will be described with reference to Figs. 2 to 9. Fig. 5 is a cross-sectional view showing the uneven structure of the central portion Af1 on the light-receiving surface side of the substrate 11 shown in Fig. 2, and Fig. 6 is a cross-sectional view showing the uneven structure of the peripheral portion Af2 on the light-receiving surface side of the substrate 11 shown in Fig. 2. Fig. 7 is a cross-sectional view showing the uneven structure of the central portion Ar1 on the back surface side of the substrate 11 shown in Fig. 3, and Fig. 8 is a cross-sectional view showing the uneven structure of the peripheral portion Ar2 on the back surface side of the substrate 11 shown in Fig. 3. Fig. 9 is a cross-sectional view showing the uneven structure of the side surface As of the substrate 11 shown in Figs. 2 and 3.

 図2、図5および図6に示すように、基板11において、受光面側の周縁部Af2の凹凸構造の頂上部分の曲率半径Rf2は、受光面側の中央部Af1の凹凸構造の頂上部分の曲率半径Rf1よりも大きい。太陽電池セル1の受光面には、基板11の凹凸構造が反映されている。これにより、太陽電池セル1において、受光面側の周縁部Af2の凹凸構造の頂上部分の曲率半径は、受光面側の中央部Af1の凹凸構造の頂上部分の曲率半径よりも大きい。 As shown in Figures 2, 5 and 6, in the substrate 11, the radius of curvature Rf2 of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side. The uneven structure of the substrate 11 is reflected in the light-receiving surface of the solar cell 1. As a result, in the solar cell 1, the radius of curvature of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side.

 また、太陽電池セル1のパッシベーション層13および光学調整層15において、受光面側の周縁部Af2の膜厚は、受光面側の中央部Af1の膜厚よりも薄い。 In addition, in the passivation layer 13 and the optical adjustment layer 15 of the solar cell 1, the film thickness of the peripheral portion Af2 on the light-receiving surface side is thinner than the film thickness of the central portion Af1 on the light-receiving surface side.

 また、図3、図7および図8に示すように、基板11において、裏面側の周縁部Ar2の凹凸構造の頂上部分の曲率半径Rr2は、裏面側の中央部Ar1の凹凸構造の頂上部分の曲率半径Rr1よりも大きい。 Also, as shown in Figures 3, 7, and 8, in the substrate 11, the radius of curvature Rr2 of the top portion of the uneven structure in the peripheral portion Ar2 on the back side is larger than the radius of curvature Rr1 of the top portion of the uneven structure in the central portion Ar1 on the back side.

 また、図9に示すように、基板11の側面As側の凹凸構造の頂上部分の曲率半径をRsとすると、これらの曲率半径は以下の関係式を満たす。
Rs>Rf2>Rf1>Rr2>Rr1
Furthermore, as shown in FIG. 9, when the radius of curvature of the top portion of the uneven structure on the side surface As of the substrate 11 is taken as Rs, these radii of curvature satisfy the following relational expression.
Rs>Rf2>Rf1>Rr2>Rr1

(太陽電池セルの製造方法)
 以下、図2~図9に示す第1実施形態に係る太陽電池セル1の製造方法について説明する。
(Method of manufacturing solar cell)
A method for manufacturing the solar cell 1 according to the first embodiment shown in FIGS. 2 to 9 will now be described.

 まず、結晶質シリコン基板11の受光面側および裏面側に、異方性エッチングを行うことにより、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を形成する(結晶質シリコン基板形成工程)。このとき、結晶質シリコン基板11の側面でも、異方性エッチングが行われ、受光面側および裏面側と同様にピラミッド型の微細な凹凸構造が形成される。エッチング溶液としては、例えば水酸化カリウム水溶液のようなアルカリ性溶液が挙げられる。 First, anisotropic etching is performed on the light-receiving surface side and back surface side of the crystalline silicon substrate 11 to form a pyramidal fine uneven structure called a texture structure (crystalline silicon substrate formation process). At this time, anisotropic etching is also performed on the side surface of the crystalline silicon substrate 11, and a pyramidal fine uneven structure is formed in the same way as on the light-receiving surface side and back surface side. An example of the etching solution is an alkaline solution such as an aqueous solution of potassium hydroxide.

 このとき、受光面側の周縁部Af2におけるエッチング溶液の流速が、受光面側の中央部Af1におけるエッチング溶液の流速よりも速くなるように制御する。また、裏面側の周縁部Ar2におけるエッチング溶液の流速が、裏面側の中央部Ar1におけるエッチング溶液の流速よりも速くなるように制御する。 At this time, the flow rate of the etching solution in the peripheral portion Af2 on the light-receiving surface side is controlled to be faster than the flow rate of the etching solution in the central portion Af1 on the light-receiving surface side. Also, the flow rate of the etching solution in the peripheral portion Ar2 on the back surface side is controlled to be faster than the flow rate of the etching solution in the central portion Ar1 on the back surface side.

 これにより、受光面側の中央部Af1の凹凸構造の頂上部分の曲率半径Rf1、受光面側の周縁部Af2の凹凸構造の頂上部分の曲率半径Rf2、裏面側の中央部Ar1の凹凸構造の頂上部分の曲率半径Rr1、裏面側の周縁部Ar2の凹凸構造の頂上部分の曲率半径Rr2、および、側面As側の凹凸構造の頂上部分の曲率半径Rsは、以下の関係式を満たすこととなる。
Rs>Rf2>Rf1>Rr2>Rr1
As a result, the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side, the radius of curvature Rf2 of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side, the radius of curvature Rr1 of the top portion of the uneven structure of the central portion Ar1 on the back surface side, the radius of curvature Rr2 of the top portion of the uneven structure of the peripheral portion Ar2 on the back surface side, and the radius of curvature Rs of the top portion of the uneven structure on the side surface As satisfy the following relationship.
Rs>Rf2>Rf1>Rr2>Rr1

 次に、基板11の受光面側の全面に、パッシベーション層13および光学調整層15を形成する(光学調整層形成工程)。パッシベーション層13および光学調整層15の形成方法としては、例えばCVD法(化学気相堆積法)またはPVD法(物理気相堆積法)が用いられる。 Next, the passivation layer 13 and the optical adjustment layer 15 are formed on the entire light receiving surface of the substrate 11 (optical adjustment layer formation process). The passivation layer 13 and the optical adjustment layer 15 can be formed, for example, by CVD (chemical vapor deposition) or PVD (physical vapor deposition).

 このとき、太陽電池セル1の受光面には、基板11の凹凸構造が反映され、太陽電池セル1において、受光面側の周縁部Af2の凹凸構造の頂上部分の曲率半径は、受光面側の中央部Af1の凹凸構造の頂上部分の曲率半径よりも大きくなる。また、太陽電池セル1のパッシベーション層13および光学調整層15において、受光面側の周縁部Af2の膜厚は、受光面側の中央部Af1の膜厚よりも薄くなる。 At this time, the uneven structure of the substrate 11 is reflected on the light-receiving surface of the solar cell 1, and the radius of curvature of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side of the solar cell 1 is greater than the radius of curvature of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side. Also, in the passivation layer 13 and optical adjustment layer 15 of the solar cell 1, the film thickness of the peripheral portion Af2 on the light-receiving surface side is thinner than the film thickness of the central portion Af1 on the light-receiving surface side.

 次に、基板11の裏面側の一部に、具体的には第1領域7に、パッシベーション層23および第1導電型半導体層25を形成する(半導体層形成工程)。例えば、CVD法またはPVD法を用いて、基板11の裏面側の全面にパッシベーション層材料膜および第1導電型半導体層材料膜を製膜した後、フォトリソグラフィ技術または印刷技術を用いて生成するレジスト、またはメタルマスクを利用したエッチング法を用いて、パッシベーション層23および第1導電型半導体層25をパターニングしてもよい。 Next, a passivation layer 23 and a first conductive type semiconductor layer 25 are formed on a portion of the back surface of the substrate 11, specifically in the first region 7 (semiconductor layer formation process). For example, a passivation layer material film and a first conductive type semiconductor layer material film may be formed on the entire back surface of the substrate 11 using a CVD method or a PVD method, and then the passivation layer 23 and the first conductive type semiconductor layer 25 may be patterned using a resist generated using a photolithography technique or a printing technique, or an etching method using a metal mask.

 なお、p型半導体層材料膜に対するエッチング溶液としては、例えばオゾンを含有するフッ酸、または硝酸とフッ酸の混合液のような酸性溶液が挙げられ、n型半導体層材料膜に対するエッチング溶液としては、例えば水酸化カリウム水溶液のようなアルカリ性溶液が挙げられる。 Incidentally, examples of etching solutions for p-type semiconductor layer material films include acidic solutions such as hydrofluoric acid containing ozone or a mixture of nitric acid and hydrofluoric acid, and examples of etching solutions for n-type semiconductor layer material films include alkaline solutions such as an aqueous solution of potassium hydroxide.

 または、CVD法またはPVD法を用いて、基板11の裏面側にパッシベーション層および第1導電型半導体層を積層する際に、マスクを用いて、パッシベーション層23および第1導電型半導体層25の製膜およびパターニングを同時に行ってもよい。 Alternatively, when a passivation layer and a first conductive type semiconductor layer are laminated on the back side of the substrate 11 using a CVD method or a PVD method, a mask may be used to simultaneously form and pattern the passivation layer 23 and the first conductive type semiconductor layer 25.

 次に、基板11の裏面側の他の一部に、具体的には第2領域8に、パッシベーション層33および第2導電型半導体層35を形成する(半導体層形成工程)。例えば、上述同様に、CVD法またはPVD法を用いて、基板11の裏面側の全面にパッシベーション層材料膜および第2導電型半導体層材料膜を製膜した後、フォトリソグラフィ技術または印刷技術を用いて生成するレジスト、またはメタルマスクを利用したエッチング法を用いて、パッシベーション層33および第2導電型半導体層35をパターニングしてもよい。 Next, a passivation layer 33 and a second conductive type semiconductor layer 35 are formed on another part of the back side of the substrate 11, specifically in the second region 8 (semiconductor layer formation process). For example, as described above, a passivation layer material film and a second conductive type semiconductor layer material film may be formed on the entire back side of the substrate 11 using a CVD method or a PVD method, and then the passivation layer 33 and the second conductive type semiconductor layer 35 may be patterned using a resist generated using a photolithography technique or a printing technique, or an etching method using a metal mask.

 または、CVD法またはPVD法を用いて、基板11の裏面側にパッシベーション層および第2導電型半導体層を積層する際に、マスクを用いて、パッシベーション層33および第2導電型半導体層35の製膜およびパターニングを同時に行ってもよい。 Alternatively, when a passivation layer and a second conductive type semiconductor layer are laminated on the back side of the substrate 11 using a CVD method or a PVD method, a mask may be used to simultaneously form and pattern the passivation layer 33 and the second conductive type semiconductor layer 35.

 なお、パッシベーション層13,23,33、光学調整層15、第1導電型半導体層25および第2導電型半導体層35の形成順序は限定されない。 The order in which the passivation layers 13, 23, 33, the optical adjustment layer 15, the first conductive type semiconductor layer 25, and the second conductive type semiconductor layer 35 are formed is not limited.

 次に、基板11の裏面側の第1導電型半導体層25および第2導電型半導体層35上に、具体的には第1領域7および第2領域8に、第1電極層27および第2電極層37を形成する(電極層形成工程)。 Next, a first electrode layer 27 and a second electrode layer 37 are formed on the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 35 on the back side of the substrate 11, specifically in the first region 7 and the second region 8 (electrode layer formation process).

 例えば、CVD法またはPVD法を用いて、基板11の裏面側の全面に透明電極層材料膜を製膜した後、フォトリソグラフィ技術または印刷技術を用いて生成するレジスト、またはメタルマスクを利用したエッチング法を用いて、透明電極層28,38をパターニングしてもよい。透明電極層材料膜に対するエッチング溶液としては、例えば塩酸または塩化第二鉄水溶液が用いられる。 For example, a transparent electrode layer material film may be formed on the entire back surface of the substrate 11 using a CVD or PVD method, and then the transparent electrode layers 28, 38 may be patterned using a resist generated using a photolithography or printing technique, or an etching method using a metal mask. As an etching solution for the transparent electrode layer material film, for example, hydrochloric acid or an aqueous solution of ferric chloride is used.

 その後、例えばパターン印刷法または塗布法を用いて、透明電極層28上に金属電極層29を形成し、透明電極層38の上に金属電極層39を形成することにより、第1電極層27および第2電極層37を形成する。
 以上の工程により、図2~図9に示す第1実施形態に係るバックコンタクト型の太陽電池セル1が完成する。
Then, for example, using a pattern printing method or a coating method, a metal electrode layer 29 is formed on the transparent electrode layer 28, and a metal electrode layer 39 is formed on the transparent electrode layer 38, thereby forming the first electrode layer 27 and the second electrode layer 37.
Through the above steps, the back contact type solar cell 1 according to the first embodiment shown in FIGS. 2 to 9 is completed.

 以上説明したように、第1実施形態の太陽電池セル1によれば、基板11において、受光面側の周縁部Af2の凹凸構造の頂上部分の曲率半径Rf2は、受光面側の中央部Af1の凹凸構造の頂上部分の曲率半径Rf1よりも大きく、太陽電池セル1の受光面には基板11の凹凸構造が反映されており、太陽電池セル1において、受光面側の周縁部Af2の凹凸構造の頂上部分の曲率半径は、受光面側の中央部Af1の凹凸構造の頂上部分の曲率半径よりも大きい。 As described above, in the solar cell 1 of the first embodiment, in the substrate 11, the radius of curvature Rf2 of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side, and the uneven structure of the substrate 11 is reflected in the light-receiving surface of the solar cell 1, and in the solar cell 1, the radius of curvature of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side.

 このように、受光面側の周縁部Af2の凹凸構造の頂上部分の曲率半径Rf2が大きくなるよう制御すると、受光面側の周縁部Af2の凹凸構造の頂上部分での光の反射が増加し、例えば白色に見える。このように、受光面側の周縁部Af2のテクスチャ形状を制御して、太陽電池セル1の受光面側の周縁部Af2を敢えて目立たせることにより、太陽電池モジュール100内で太陽電池セル1が立体的に視認でき、太陽電池モジュール100内部の色調分布が目立ちにくくなる。 In this way, by controlling the radius of curvature Rf2 of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side to be larger, the reflection of light at the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side increases, and it appears white, for example. In this way, by controlling the texture shape of the peripheral portion Af2 on the light-receiving surface side and deliberately making the peripheral portion Af2 on the light-receiving surface side of the solar cell 1 stand out, the solar cell 1 can be viewed three-dimensionally within the solar cell module 100, and the color distribution inside the solar cell module 100 becomes less noticeable.

 また、第1実施形態の太陽電池セル1によれば、光学調整層15において、受光面側の周縁部Af2の膜厚は、受光面側の中央部Af1の膜厚よりも薄い。このように、受光面側の周縁部Af2の膜厚が薄くなると、受光面側の周縁部Af2の凹凸構造の頂上部分での光の反射が増加し、例えば白色に見える。 Furthermore, according to the solar cell 1 of the first embodiment, in the optical adjustment layer 15, the film thickness of the peripheral portion Af2 on the light-receiving surface side is thinner than the film thickness of the central portion Af1 on the light-receiving surface side. In this way, when the film thickness of the peripheral portion Af2 on the light-receiving surface side becomes thinner, the reflection of light at the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side increases, and for example, it appears white.

 このように、受光面側の周縁部Af2のテクスチャ形状に加えて光学調整層15の膜厚を制御して、太陽電池セル1の受光面側の周縁部Af2を敢えて目立たせることにより、太陽電池モジュール100内で太陽電池セル1が立体的に視認でき、太陽電池モジュール100内部の色調分布が目立ちにくくなる。 In this way, by controlling the thickness of the optical adjustment layer 15 in addition to the texture shape of the peripheral portion Af2 on the light receiving surface side, and deliberately making the peripheral portion Af2 on the light receiving surface side of the solar cell 1 stand out, the solar cell 1 can be viewed three-dimensionally within the solar cell module 100, and the color distribution inside the solar cell module 100 becomes less noticeable.

 ここで、基板11の受光面および/または裏面に凹凸構造を形成すると、基板11の端部においてチッピングが生じることがある。 If an uneven structure is formed on the light receiving surface and/or back surface of the substrate 11, chipping may occur at the edge of the substrate 11.

 この点に関し、第1実施形態の太陽電池セル1によれば、基板11において、受光面側の周縁部Af2の凹凸構造の頂上部分の曲率半径Rf2は、受光面側の中央部Af1の凹凸構造の頂上部分の曲率半径Rf1よりも大きい。また、基板11において、裏面側の周縁部Ar2の凹凸構造の頂上部分の曲率半径Rr2は、裏面側の中央部Ar1の凹凸構造の頂上部分の曲率半径Rr1よりも大きい。また、これらの曲率半径は、以下の関係式を満たす。
Rf2>Rf1>Rr2>Rr1
In this regard, according to the solar cell 1 of the first embodiment, in the substrate 11, the radius of curvature Rf2 of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side. Also, in the substrate 11, the radius of curvature Rr2 of the top portion of the uneven structure of the peripheral portion Ar2 on the back surface side is larger than the radius of curvature Rr1 of the top portion of the uneven structure of the central portion Ar1 on the back surface side. Also, these radii of curvature satisfy the following relational expression.
Rf2>Rf1>Rr2>Rr1

 このように、受光面側の周縁部Af2の凹凸構造の頂上部分の曲率半径Rf2が大きくなるよう制御することにより、基板11の端部のチッピングを減少することができる。そのため、太陽電池セル1の生産性を向上することができる。また、裏面側の周縁部Ar2の凹凸構造の頂上部分の曲率半径Rr2が大きくなるよう制御することにより、基板11の端部のチッピングを減少することができる。その結果、太陽電池セル1の生産性を向上することができる。 In this way, by controlling the radius of curvature Rf2 of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side to be larger, chipping at the edge of the substrate 11 can be reduced. This makes it possible to improve the productivity of the solar cell 1. In addition, by controlling the radius of curvature Rr2 of the top portion of the uneven structure of the peripheral portion Ar2 on the back surface side to be larger, chipping at the edge of the substrate 11 can be reduced. This makes it possible to improve the productivity of the solar cell 1.

 ここで、異方性エッチングでは、基板11の受光面および裏面のみならず、側面(端面)にも凹凸構造が形成される。そして、基板11の端部(受光面周縁部、裏面周縁部、側面)のうち側面の凹凸構造においてチッピングが生じやすい。 Here, anisotropic etching forms an uneven structure not only on the light-receiving surface and back surface of the substrate 11, but also on the side surfaces (end surfaces). Furthermore, chipping is likely to occur in the uneven structure on the side surfaces of the ends of the substrate 11 (periphery of the light-receiving surface, periphery of the back surface, side surfaces).

 この点に関し、第1実施形態の太陽電池セル1によれば、基板11において、側面側の凹凸構造の頂上部分の曲率半径をRsとすると、これらの曲率半径は、以下の関係式を満たす。
Rs>Rf2>Rf1>Rr2>Rr1
In this regard, in the solar cell 1 of the first embodiment, when the radius of curvature of the top portion of the uneven structure on the side surface of the substrate 11 is taken as Rs, these radii of curvature satisfy the following relational expression.
Rs>Rf2>Rf1>Rr2>Rr1

 このように、特に側面側の凹凸構造の頂上部分の曲率半径Rsが大きくなるよう制御することにより、基板11の端部のチッピングを減少することができる。そのため、太陽電池セル1の生産性を向上することができる。 In this way, by controlling the radius of curvature Rs to be large, particularly at the top of the uneven structure on the side surface, chipping at the edge of the substrate 11 can be reduced. This makes it possible to improve the productivity of the solar cell 1.

 以上、本発明の第1実施形態について説明したが、本発明は上述した第1実施形態に限定されることなく、種々の変更および変形が可能である。例えば、上述した第1実施形態では、規定サイズ(例えば、6インチのセミスクエア形状)の大判半導体基板(Wafer)をそのまま用いる形態を例示した。しかし、本発明はこれに限定されず、図10および図11に示すように、規定サイズの大判半導体基板を2つに切断したハーフカットの太陽電池セルを用いる形態であってもよいし、規定サイズの大判半導体基板を3つ以上に切断した太陽電池セルを用いる形態であってもよい。 The above describes the first embodiment of the present invention, but the present invention is not limited to the above-mentioned first embodiment and various modifications and variations are possible. For example, the above-mentioned first embodiment illustrates a form in which a large-sized semiconductor substrate (wafer) of a specified size (e.g., a 6-inch semi-square shape) is used as is. However, the present invention is not limited to this, and may be a form in which a half-cut solar cell is used in which a large-sized semiconductor substrate of a specified size is cut into two pieces, as shown in Figures 10 and 11, or a form in which a solar cell is used in which a large-sized semiconductor substrate of a specified size is cut into three or more pieces.

 この場合、基板11において、受光面側の周縁部Af2の少なくとも一部の凹凸構造の頂上部分の曲率半径Rf2が、受光面側の中央部Af1の凹凸構造の頂上部分の曲率半径Rf1よりも大きければよく、太陽電池セル1において、受光面側の周縁部Af2の少なくとも一部の凹凸構造の頂上部分の曲率半径が、受光面側の中央部Af1の凹凸構造の頂上部分の曲率半径よりも大きければよい。また、光学調整層15において、受光面側の周縁部Af2の少なくとも一部の膜厚が、受光面側の中央部Af1の膜厚よりも薄ければよい。 In this case, in the substrate 11, it is sufficient that the radius of curvature Rf2 of the top portion of the uneven structure of at least a portion of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side, and in the solar cell 1, it is sufficient that the radius of curvature of the top portion of the uneven structure of at least a portion of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side. Also, in the optical adjustment layer 15, it is sufficient that the film thickness of at least a portion of the peripheral portion Af2 on the light-receiving surface side is thinner than the film thickness of the central portion Af1 on the light-receiving surface side.

 また、基板11において、裏面側の周縁部Ar2の少なくとも一部の凹凸構造の頂上部分の曲率半径Rr2が、裏面側の中央部Ar1の凹凸構造の頂上部分の曲率半径Rr1よりも大きければよい。また、これらの曲率半径が以下の関係式を満たせばよい。
Rs>Rf2>Rf1>Rr2>Rr1
In addition, in the substrate 11, it is sufficient that the radius of curvature Rr2 of the apex portion of the uneven structure of at least a part of the peripheral portion Ar2 on the back side is larger than the radius of curvature Rr1 of the apex portion of the uneven structure of the central portion Ar1 on the back side. Furthermore, it is sufficient that these radii of curvature satisfy the following relational expression.
Rs>Rf2>Rf1>Rr2>Rr1

[第2実施形態]
 上述した第1実施形態では、太陽電池モジュール100内部の色調分布を目立ちにくくし、かつ、基板11の端部のチッピングを減少するために、各曲率半径が以下の関係式を満たす形態について説明した。
Rs>Rf2>Rf1>Rr2>Rr1
[Second embodiment]
In the above-described first embodiment, a configuration has been described in which each radius of curvature satisfies the following relational expression in order to make the color distribution inside the solar cell module 100 less noticeable and to reduce chipping at the end of the substrate 11.
Rs>Rf2>Rf1>Rr2>Rr1

 第2実施形態では、基板11の端部のチッピングを減少するために、各曲率半径が以下の関係式を満たす形態について説明する。
Rs>Rf2>Rf1
Rs>Rr2>Rr1
In the second embodiment, a configuration in which each radius of curvature satisfies the following relational expression in order to reduce chipping at the end of the substrate 11 will be described.
Rs>Rf2>Rf1
Rs>Rr2>Rr1

(太陽電池モジュール)
 第2実施形態に係る太陽電池モジュール100の構成は、図1に示す第1実施形態に係る太陽電池モジュール100の構成と同一である。
(Solar cell module)
The configuration of the solar cell module 100 according to the second embodiment is the same as the configuration of the solar cell module 100 according to the first embodiment shown in FIG.

(太陽電池セル)
 第2実施形態に係る太陽電池セル1の構成は、以下の点を除いて、図2~図4に示す第1実施形態に係る太陽電池セル1の構成と同一である。
(Solar cell)
The configuration of the solar cell 1 according to the second embodiment is the same as the configuration of the solar cell 1 according to the first embodiment shown in FIGS. 2 to 4, except for the following points.

 次に、図2~図4、図12~図13および図7~図9を参照して、基板11の凹凸構造について説明する。図12は、図2に示す基板11の受光面側の中央部Af1の凹凸構造を示す断面図であり、図13は、図2に示す基板11の受光面側の周縁部Af2の凹凸構造を示す断面図である。 Next, the uneven structure of the substrate 11 will be described with reference to Figures 2 to 4, 12 to 13, and 7 to 9. Figure 12 is a cross-sectional view showing the uneven structure of the central portion Af1 on the light-receiving surface side of the substrate 11 shown in Figure 2, and Figure 13 is a cross-sectional view showing the uneven structure of the peripheral portion Af2 on the light-receiving surface side of the substrate 11 shown in Figure 2.

 図2、図12および図13に示すように、基板11において、受光面側の周縁部Af2の凹凸構造の頂上部分の曲率半径Rf2は、受光面側の中央部Af1の凹凸構造の頂上部分の曲率半径Rf1よりも大きい。 As shown in Figures 2, 12, and 13, in the substrate 11, the radius of curvature Rf2 of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side.

 また、図3、図7および図8に示すように、基板11において、裏面側の周縁部Ar2の凹凸構造の頂上部分の曲率半径Rr2は、裏面側の中央部Ar1の凹凸構造の頂上部分の曲率半径Rr1よりも大きい。 Also, as shown in Figures 3, 7, and 8, in the substrate 11, the radius of curvature Rr2 of the top portion of the uneven structure in the peripheral portion Ar2 on the back side is larger than the radius of curvature Rr1 of the top portion of the uneven structure in the central portion Ar1 on the back side.

 また、図9に示すように、基板11の側面As側の凹凸構造の頂上部分の曲率半径をRsとすると、これらの曲率半径は以下の関係式を満たす。
Rs>Rf2>Rf1
Rs>Rr2>Rr1
Furthermore, as shown in FIG. 9, when the radius of curvature of the top portion of the uneven structure on the side surface As of the substrate 11 is taken as Rs, these radii of curvature satisfy the following relational expression.
Rs>Rf2>Rf1
Rs>Rr2>Rr1

 すなわち、基板11において、側面As側の凹凸構造の頂上部分の曲率半径Rsは、受光面側の中央部Af1の凹凸構造の頂上部分の曲率半径Rf1、および、裏面側の中央部Ar1の凹凸構造の頂上部分の曲率半径Rr1よりも大きい。 In other words, in the substrate 11, the radius of curvature Rs of the top portion of the uneven structure on the side As is greater than the radius of curvature Rf1 of the top portion of the uneven structure on the central portion Af1 on the light receiving surface side, and the radius of curvature Rr1 of the top portion of the uneven structure on the central portion Ar1 on the back surface side.

(太陽電池セルの製造方法)
 以下、図2~図4、図12~図13および図7~図9に示す本実施形態に係る太陽電池セル1の製造方法について説明する。
(Method of manufacturing solar cell)
A method for manufacturing the solar cell 1 according to this embodiment shown in FIGS. 2 to 4, 12 to 13, and 7 to 9 will now be described.

 まず、結晶質シリコン基板11の受光面側および裏面側に、異方性エッチングを行うことにより、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造を形成する(結晶質シリコン基板形成工程)。このとき、結晶質シリコン基板11の側面でも、異方性エッチングが行われ、テクスチャ構造と呼ばれるピラミッド型の微細な凹凸構造が形成される。エッチング溶液としては、例えば水酸化カリウム水溶液のようなアルカリ性溶液が挙げられる。 First, anisotropic etching is performed on the light receiving surface side and back surface side of the crystalline silicon substrate 11 to form a pyramidal fine uneven structure called a texture structure (crystalline silicon substrate formation process). At this time, anisotropic etching is also performed on the side surface of the crystalline silicon substrate 11 to form a pyramidal fine uneven structure called a texture structure. An example of the etching solution is an alkaline solution such as an aqueous solution of potassium hydroxide.

 このとき、受光面側の周縁部Af2におけるエッチング溶液の流速が、受光面側の中央部Af1におけるエッチング溶液の流速よりも速くなるように制御する。また、裏面側の周縁部Ar2におけるエッチング溶液の流速が、裏面側の中央部Ar1におけるエッチング溶液の流速よりも速くなるように制御する。 At this time, the flow rate of the etching solution in the peripheral portion Af2 on the light-receiving surface side is controlled to be faster than the flow rate of the etching solution in the central portion Af1 on the light-receiving surface side. Also, the flow rate of the etching solution in the peripheral portion Ar2 on the back surface side is controlled to be faster than the flow rate of the etching solution in the central portion Ar1 on the back surface side.

 これにより、受光面側の中央部Af1の凹凸構造の頂上部分の曲率半径Rf1、受光面側の周縁部Af2の凹凸構造の頂上部分の曲率半径Rf2、裏面側の中央部Ar1の凹凸構造の頂上部分の曲率半径Rr1、裏面側の周縁部Ar2の凹凸構造の頂上部分の曲率半径Rr2、および、側面As側の凹凸構造の頂上部分の曲率半径Rsは、以下の関係式を満たすこととなる。
Rs>Rf2>Rf1
Rs>Rr2>Rr1
As a result, the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side, the radius of curvature Rf2 of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side, the radius of curvature Rr1 of the top portion of the uneven structure of the central portion Ar1 on the back surface side, the radius of curvature Rr2 of the top portion of the uneven structure of the peripheral portion Ar2 on the back surface side, and the radius of curvature Rs of the top portion of the uneven structure on the side surface As satisfy the following relationship.
Rs>Rf2>Rf1
Rs>Rr2>Rr1

 次に、基板11の受光面側の全面に、パッシベーション層13および光学調整層15を形成する(光学調整層形成工程)。パッシベーション層13および光学調整層15の形成方法としては、例えばCVD法(化学気相堆積法)またはPVD法(物理気相堆積法)が用いられる。 Next, the passivation layer 13 and the optical adjustment layer 15 are formed on the entire light receiving surface of the substrate 11 (optical adjustment layer formation process). The passivation layer 13 and the optical adjustment layer 15 can be formed, for example, by CVD (chemical vapor deposition) or PVD (physical vapor deposition).

 次に、基板11の裏面側の一部に、具体的には第1領域7に、パッシベーション層23および第1導電型半導体層25を形成する(半導体層形成工程)。例えば、CVD法またはPVD法を用いて、基板11の裏面側の全面にパッシベーション層材料膜および第1導電型半導体層材料膜を製膜した後、フォトリソグラフィ技術または印刷技術を用いて生成するレジスト、またはメタルマスクを利用したエッチング法を用いて、パッシベーション層23および第1導電型半導体層25をパターニングしてもよい。 Next, a passivation layer 23 and a first conductive type semiconductor layer 25 are formed on a portion of the back side of the substrate 11, specifically in the first region 7 (semiconductor layer formation process). For example, a passivation layer material film and a first conductive type semiconductor layer material film may be formed on the entire back side of the substrate 11 using a CVD method or a PVD method, and then the passivation layer 23 and the first conductive type semiconductor layer 25 may be patterned using a resist generated using a photolithography technique or a printing technique, or an etching method using a metal mask.

 なお、p型半導体層材料膜に対するエッチング溶液としては、例えばオゾンを含有するフッ酸、または硝酸とフッ酸の混合液のような酸性溶液が挙げられ、n型半導体層材料膜に対するエッチング溶液としては、例えば水酸化カリウム水溶液のようなアルカリ性溶液が挙げられる。 Incidentally, examples of etching solutions for p-type semiconductor layer material films include acidic solutions such as hydrofluoric acid containing ozone or a mixture of nitric acid and hydrofluoric acid, and examples of etching solutions for n-type semiconductor layer material films include alkaline solutions such as an aqueous solution of potassium hydroxide.

 または、CVD法またはPVD法を用いて、基板11の裏面側にパッシベーション層および第1導電型半導体層を積層する際に、マスクを用いて、パッシベーション層23および第1導電型半導体層25の製膜およびパターニングを同時に行ってもよい。 Alternatively, when a passivation layer and a first conductive type semiconductor layer are laminated on the back side of the substrate 11 using a CVD method or a PVD method, a mask may be used to simultaneously form and pattern the passivation layer 23 and the first conductive type semiconductor layer 25.

 次に、基板11の裏面側の他の一部に、具体的には第2領域8に、パッシベーション層33および第2導電型半導体層35を形成する(半導体層形成工程)。例えば、上述同様に、CVD法またはPVD法を用いて、基板11の裏面側の全面にパッシベーション層材料膜および第2導電型半導体層材料膜を製膜した後、フォトリソグラフィ技術または印刷技術を用いて生成するレジスト、またはメタルマスクを利用したエッチング法を用いて、パッシベーション層33および第2導電型半導体層35をパターニングしてもよい。 Next, a passivation layer 33 and a second conductive type semiconductor layer 35 are formed on another part of the back side of the substrate 11, specifically in the second region 8 (semiconductor layer formation process). For example, as described above, a passivation layer material film and a second conductive type semiconductor layer material film may be formed on the entire back side of the substrate 11 using a CVD method or a PVD method, and then the passivation layer 33 and the second conductive type semiconductor layer 35 may be patterned using a resist generated using a photolithography technique or a printing technique, or an etching method using a metal mask.

 または、CVD法またはPVD法を用いて、基板11の裏面側にパッシベーション層および第2導電型半導体層を積層する際に、マスクを用いて、パッシベーション層33および第2導電型半導体層35の製膜およびパターニングを同時に行ってもよい。 Alternatively, when a passivation layer and a second conductive type semiconductor layer are laminated on the back side of the substrate 11 using a CVD method or a PVD method, a mask may be used to simultaneously form and pattern the passivation layer 33 and the second conductive type semiconductor layer 35.

 なお、パッシベーション層13,23,33、光学調整層15、第1導電型半導体層25および第2導電型半導体層35の形成順序は限定されない。 The order in which the passivation layers 13, 23, 33, the optical adjustment layer 15, the first conductive type semiconductor layer 25, and the second conductive type semiconductor layer 35 are formed is not limited.

 次に、基板11の裏面側の第1導電型半導体層25および第2導電型半導体層35上に、具体的には第1領域7および第2領域8に、第1電極層27および第2電極層37を形成する(電極層形成工程)。 Next, a first electrode layer 27 and a second electrode layer 37 are formed on the first conductive type semiconductor layer 25 and the second conductive type semiconductor layer 35 on the back side of the substrate 11, specifically in the first region 7 and the second region 8 (electrode layer formation process).

 例えば、CVD法またはPVD法を用いて、基板11の裏面側の全面に透明電極層材料膜を製膜した後、フォトリソグラフィ技術または印刷技術を用いて生成するレジスト、またはメタルマスクを利用したエッチング法を用いて、透明電極層28,38をパターニングしてもよい。透明電極層材料膜に対するエッチング溶液としては、例えば塩酸または塩化第二鉄水溶液が用いられる。 For example, a transparent electrode layer material film may be formed on the entire back surface of the substrate 11 using a CVD or PVD method, and then the transparent electrode layers 28, 38 may be patterned using a resist generated using a photolithography or printing technique, or an etching method using a metal mask. An example of an etching solution for the transparent electrode layer material film is an aqueous solution of hydrochloric acid or ferric chloride.

 その後、例えばパターン印刷法または塗布法を用いて、透明電極層28上に金属電極層29を形成し、透明電極層38の上に金属電極層39を形成することにより、第1電極層27および第2電極層37を形成する。
 以上の工程により、図2~図4、図12~図13および図7~図9に示す本実施形態に係るバックコンタクト型の太陽電池セル1が完成する。
Thereafter, for example, using a pattern printing method or a coating method, a metal electrode layer 29 is formed on the transparent electrode layer 28, and a metal electrode layer 39 is formed on the transparent electrode layer 38, thereby forming the first electrode layer 27 and the second electrode layer 37.
Through the above steps, the back contact type solar cell 1 according to this embodiment shown in FIGS. 2 to 4, 12 to 13, and 7 to 9 is completed.

 ここで、基板11の受光面および/または裏面に凹凸構造を形成すると、基板11の端部においてチッピングが生じることがある。
 ここで、異方性エッチングでは、基板11の受光面および裏面のみならず、側面(端面)にも凹凸構造が形成される。そして、基板11の端部(受光面周縁部、裏面周縁部、側面)のうち側面の凹凸構造においてチッピングが生じやすい。
Here, when a concave-convex structure is formed on the light-receiving surface and/or the back surface of the substrate 11, chipping may occur at the edge of the substrate 11.
Here, anisotropic etching forms an uneven structure not only on the light-receiving surface and back surface but also on the side surfaces (end surfaces) of substrate 11. Among the ends of substrate 11 (periphery of the light-receiving surface, peripheral portion of the back surface, and side surfaces), chipping is likely to occur in the uneven structure on the side surfaces.

 この点に関し、第2実施形態の太陽電池セル1によれば、基板11において、側面As側の凹凸構造の頂上部分の曲率半径Rsは、受光面側の中央部Af1の凹凸構造の頂上部分の曲率半径Rf1、および、裏面側の中央部Ar1の凹凸構造の頂上部分の曲率半径Rr1よりも大きい。これにより、特に側面側の凹凸構造の頂上部分の曲率半径Rsが大きくなるよう制御することにより、基板11の端部のチッピングを減少することができる。そのため、太陽電池セル1の生産性を向上することができる。 In this regard, according to the solar cell 1 of the second embodiment, in the substrate 11, the radius of curvature Rs of the top portion of the uneven structure on the side surface As is larger than the radius of curvature Rf1 of the top portion of the uneven structure on the central portion Af1 on the light-receiving surface side, and the radius of curvature Rr1 of the top portion of the uneven structure on the central portion Ar1 on the back surface side. As a result, by controlling the radius of curvature Rs of the top portion of the uneven structure on the side surface in particular to be larger, chipping at the edge of the substrate 11 can be reduced. This makes it possible to improve the productivity of the solar cell 1.

 また、第2実施形態の太陽電池セル1によれば、基板11において、受光面側の周縁部Af2の凹凸構造の頂上部分の曲率半径Rf2は、受光面側の中央部Af1の凹凸構造の頂上部分の曲率半径Rf1よりも大きい。このように、受光面側の周縁部Af2の凹凸構造の頂上部分の曲率半径Rf2が大きくなるよう制御することにより、基板11の端部のチッピングを減少することができる。そのため、太陽電池セル1の生産性を向上することができる。 Furthermore, according to the solar cell 1 of the second embodiment, in the substrate 11, the radius of curvature Rf2 of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side is larger than the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side. In this way, by controlling the radius of curvature Rf2 of the top portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side to be larger, chipping of the edge of the substrate 11 can be reduced. As a result, the productivity of the solar cell 1 can be improved.

 なお、本願発明者(ら)の知見によれば、基板11の端部(受光面周縁部、裏面周縁部、側面)のうち側面の凹凸構造においてチッピングが生じやすい。そのため、これらの曲率半径は、以下の関係式を満たすことが好ましい。
Rs>Rf2>Rf1
According to the knowledge of the present inventor(s), chipping is likely to occur in the uneven structure of the side surface among the ends (periphery of the light receiving surface, peripheral portion of the back surface, and side surfaces) of the substrate 11. Therefore, it is preferable that the radii of curvature of these satisfy the following relational expression.
Rs>Rf2>Rf1

 また、第2実施形態の太陽電池セル1によれば、基板11において、裏面側の周縁部Ar2の凹凸構造の頂上部分の曲率半径Rr2は、裏面側の中央部Ar1の凹凸構造の頂上部分の曲率半径Rr1よりも大きい。このように、裏面側の周縁部Ar2の凹凸構造の頂上部分の曲率半径Rr2が大きくなるよう制御することにより、基板11の端部のチッピングを減少することができる。その結果、太陽電池セル1の生産性を向上することができる。 Furthermore, according to the solar cell 1 of the second embodiment, in the substrate 11, the radius of curvature Rr2 of the top portion of the uneven structure of the peripheral portion Ar2 on the back side is larger than the radius of curvature Rr1 of the top portion of the uneven structure of the central portion Ar1 on the back side. In this way, by controlling the radius of curvature Rr2 of the top portion of the uneven structure of the peripheral portion Ar2 on the back side to be larger, chipping at the edge of the substrate 11 can be reduced. As a result, the productivity of the solar cell 1 can be improved.

 なお、本願発明者(ら)の知見によれば、基板11の端部(受光面周縁部、裏面周縁部、側面)のうち側面の凹凸構造においてチッピングが生じやすい。そのため、これらの曲率半径は、以下の関係式を満たすことが好ましい。
Rs>Rr2>Rr1
According to the knowledge of the present inventor(s), chipping is likely to occur in the uneven structure of the side surface among the ends (periphery of the light receiving surface, peripheral portion of the back surface, and side surfaces) of the substrate 11. Therefore, it is preferable that the radii of curvature of these satisfy the following relational expression.
Rs>Rr2>Rr1

 以上、本発明の第2実施形態について説明したが、本発明は上述した第2実施形態に限定されることなく、種々の変更および変形が可能である。例えば、上述した第2実施形態では、規定サイズ(例えば、6インチのセミスクエア形状)の大判半導体基板(Wafer)をそのまま用いる形態を例示した。しかし、本発明はこれに限定されず、図10および図11に示すように、規定サイズの大判半導体基板を2つに切断したハーフカットの太陽電池セルを用いる形態であってもよいし、規定サイズの大判半導体基板を3つ以上に切断した太陽電池セルを用いる形態であってもよい。 The second embodiment of the present invention has been described above, but the present invention is not limited to the above-mentioned second embodiment, and various modifications and variations are possible. For example, the above-mentioned second embodiment illustrates a form in which a large-sized semiconductor substrate (wafer) of a specified size (e.g., a 6-inch semi-square shape) is used as is. However, the present invention is not limited to this, and may be a form in which a half-cut solar cell is used in which a large-sized semiconductor substrate of a specified size is cut into two pieces, as shown in Figures 10 and 11, or a form in which a solar cell is used in which a large-sized semiconductor substrate of a specified size is cut into three or more pieces.

 この場合、基板11において、受光面側の周縁部Af2の少なくとも一部の凹凸構造の頂上部分の曲率半径Rf2が、受光面側の中央部Af1の凹凸構造の頂上部分の曲率半径Rf1よりも大きければよい。 In this case, in the substrate 11, the radius of curvature Rf2 of the top portion of at least a portion of the uneven structure of the peripheral portion Af2 on the light-receiving surface side should be larger than the radius of curvature Rf1 of the top portion of the uneven structure of the central portion Af1 on the light-receiving surface side.

 また、基板11において、裏面側の周縁部Ar2の少なくとも一部の凹凸構造の頂上部分の曲率半径Rr2が、裏面側の中央部Ar1の凹凸構造の頂上部分の曲率半径Rr1よりも大きければよい。 Furthermore, in the substrate 11, the radius of curvature Rr2 of the top portion of at least a portion of the uneven structure in the peripheral portion Ar2 on the back side may be greater than the radius of curvature Rr1 of the top portion of the uneven structure in the central portion Ar1 on the back side.

 また、上述した第2実施形態では、バックコンタクト型の太陽電池セルについて例示した。しかし、本発明はこれに限定されず、両面電極型の太陽電池セルにも適用可能である。 In addition, in the second embodiment described above, a back-contact type solar cell is exemplified. However, the present invention is not limited to this, and can also be applied to a double-sided electrode type solar cell.

 1 太陽電池
 7 第1領域
 7f フィンガー部
 7b バスバー部
 8 第2領域
 8f フィンガー部
 8b バスバー部
 11 結晶質シリコン基板
 13,23,33 パッシベーション層
 15 光学調整層
 25 第1導電型半導体層
 27 第1電極層
 28 第1透明電極層
 29 第1金属電極層
 35 第2導電型半導体層
 37 第2電極層
 38 第2透明電極層
 39 第2金属電極層
 100 太陽電池モジュール
REFERENCE SIGNS LIST 1 solar cell 7 first region 7f finger portion 7b busbar portion 8 second region 8f finger portion 8b busbar portion 11 crystalline silicon substrate 13, 23, 33 passivation layer 15 optical adjustment layer 25 first conductive type semiconductor layer 27 first electrode layer 28 first transparent electrode layer 29 first metal electrode layer 35 second conductive type semiconductor layer 37 second electrode layer 38 second transparent electrode layer 39 second metal electrode layer 100 solar cell module

Claims (13)

 受光面側に凹凸構造を有する結晶質シリコン基板と、
 前記基板の前記受光面側に形成された光学調整層と、
 前記基板の前記受光面側と反対側の裏面側の一部に形成された第1導電型半導体層と、
 前記基板の前記裏面側の他の一部に形成された第2導電型半導体層と、
 前記第1導電型半導体層の上に形成された第1電極層と、
 前記第2導電型半導体層の上に形成された第2電極層と、
を備えるバックコンタクト型の太陽電池セルであって、
 前記基板において、前記受光面側の周縁部の少なくとも一部の凹凸構造の頂上部分の曲率半径は、前記受光面側の中央部の凹凸構造の頂上部分の曲率半径よりも大きく、
 前記太陽電池セルの受光面には、前記基板の凹凸構造が反映されており、
 前記太陽電池セルにおいて、前記受光面側の周縁部の少なくとも一部の凹凸構造の頂上部分の曲率半径は、前記受光面側の中央部の凹凸構造の頂上部分の曲率半径よりも大きい、
太陽電池セル。
a crystalline silicon substrate having an uneven structure on a light receiving surface side;
an optical adjustment layer formed on the light receiving surface side of the substrate;
a first conductive type semiconductor layer formed on a part of a back surface side of the substrate opposite to the light receiving surface side;
a second conductive type semiconductor layer formed on another part of the back surface side of the substrate;
a first electrode layer formed on the first conductive type semiconductor layer;
a second electrode layer formed on the second conductive type semiconductor layer;
A back contact type solar cell comprising:
In the substrate, a radius of curvature of a top portion of at least a part of the concave-convex structure in a peripheral portion on the light receiving surface side is larger than a radius of curvature of a top portion of the concave-convex structure in a central portion on the light receiving surface side,
The light receiving surface of the solar cell reflects the uneven structure of the substrate,
In the solar cell, a radius of curvature of a top portion of the uneven structure of at least a part of the peripheral portion on the light receiving surface side is larger than a radius of curvature of a top portion of the uneven structure of a central portion on the light receiving surface side.
Solar cell.
 前記光学調整層において、前記受光面側の周縁部の少なくとも一部の膜厚は、前記受光面側の中央部の膜厚よりも薄い、請求項1に記載の太陽電池セル。 The solar cell according to claim 1, wherein the thickness of at least a portion of the optical adjustment layer at the periphery on the light receiving surface side is thinner than the thickness of the central portion on the light receiving surface side.  前記基板は、前記裏面側に凹凸構造を有しており、
 前記基板において、前記裏面側の周縁部の少なくとも一部の凹凸構造の頂上部分の曲率半径は、前記裏面側の中央部の凹凸構造の頂上部分の曲率半径よりも大きい、請求項1または2に記載の太陽電池セル。
The substrate has a concave-convex structure on the back surface side,
The solar cell according to claim 1 or 2, wherein in the substrate, the radius of curvature of the top portion of the uneven structure of at least a portion of the peripheral portion on the back surface side is larger than the radius of curvature of the top portion of the uneven structure of the central portion on the back surface side.
 前記基板において、前記受光面側の中央部の凹凸構造の頂上部分の曲率半径をRf1とし、前記受光面側の周縁部の少なくとも一部の凹凸構造の頂上部分の曲率半径をRf2とし、前記裏面側の中央部の凹凸構造の頂上部分の曲率半径をRr1とし、前記裏面側の周縁部の少なくとも一部の凹凸構造の頂上部分の曲率半径をRr2とすると、これらの曲率半径は以下の関係式を満たす、
Rf2>Rf1>Rr2>Rr1
請求項3に記載の太陽電池セル。
In the substrate, if the radius of curvature of the apex portion of the concave-convex structure in the central portion on the light-receiving surface side is Rf1, the radius of curvature of the apex portion of at least a portion of the concave-convex structure in the peripheral portion on the light-receiving surface side is Rf2, the radius of curvature of the apex portion of the concave-convex structure in the central portion on the back surface side is Rr1, and the radius of curvature of the apex portion of at least a portion of the concave-convex structure in the peripheral portion on the back surface side is Rr2, these radii of curvature satisfy the following relational expression:
Rf2>Rf1>Rr2>Rr1
The solar cell according to claim 3 .
 前記基板は、側面側に凹凸構造を有しており、
 前記基板において、前記側面側の凹凸構造の頂上部分の曲率半径をRsとすると、これらの曲率半径は以下の関係式を満たす、
Rs>Rf2>Rf1>Rr2>Rr1
請求項4に記載の太陽電池セル。
The substrate has a concave-convex structure on a side surface thereof,
In the substrate, when the radius of curvature of the top portion of the uneven structure on the side surface is Rs, these radii of curvature satisfy the following relational expression:
Rs>Rf2>Rf1>Rr2>Rr1
The solar cell according to claim 4 .
 請求項1または2に記載の太陽電池セルが2次元状に配置された太陽電池モジュール。 A solar cell module in which the solar cells according to claim 1 or 2 are arranged in a two-dimensional manner.  請求項1または2に記載の太陽電池セルの製造方法であって、
 前記結晶質シリコン基板の受光面側に凹凸構造を形成する工程において、前記受光面側の周縁部の少なくとも一部におけるエッチング溶液の流速が、前記受光面側の中央部におけるエッチング溶液の流速よりも速くなるように制御する、
太陽電池セルの製造方法。
A method for producing a solar cell according to claim 1 or 2, comprising the steps of:
In the step of forming a concave-convex structure on the light-receiving surface side of the crystalline silicon substrate, a flow rate of the etching solution in at least a part of a peripheral portion of the light-receiving surface side is controlled to be faster than a flow rate of the etching solution in a central portion of the light-receiving surface side.
A method for manufacturing solar cells.
 受光面側、裏面側および側面側に凹凸構造を有する結晶質シリコン基板と、
 前記基板の前記受光面側または裏面側に形成された第1導電型半導体層と、
 前記基板の前記受光面側または裏面側に形成された第2導電型半導体層と、
 前記第1導電型半導体層の上に形成された第1電極層と、
 前記第2導電型半導体層の上に形成された第2電極層と、
を備える太陽電池セルであって、
 前記基板において、前記側面側の凹凸構造の頂上部分の曲率半径は、前記受光面側の中央部の凹凸構造の頂上部分の曲率半径、および、前記裏面側の中央部の凹凸構造の頂上部分の曲率半径よりも大きい、
太陽電池セル。
a crystalline silicon substrate having an uneven structure on a light receiving surface side, a back surface side, and a side surface side;
a first conductive type semiconductor layer formed on the light receiving surface side or the back surface side of the substrate;
a second conductive type semiconductor layer formed on the light receiving surface side or the back surface side of the substrate;
a first electrode layer formed on the first conductive type semiconductor layer;
a second electrode layer formed on the second conductive type semiconductor layer;
A solar cell comprising:
In the substrate, a radius of curvature of a top portion of the concave-convex structure on the side surface is larger than a radius of curvature of a top portion of the concave-convex structure in a central portion of the light receiving surface side and a radius of curvature of a top portion of the concave-convex structure in a central portion of the back surface side.
Solar cell.
 前記基板において、前記受光面側の周縁部の少なくとも一部の凹凸構造の頂上部分の曲率半径は、前記受光面側の中央部の凹凸構造の頂上部分の曲率半径よりも大きい、請求項8に記載の太陽電池セル。 The solar cell according to claim 8, wherein the radius of curvature of the top portion of at least a portion of the uneven structure in the peripheral portion of the light-receiving surface side of the substrate is greater than the radius of curvature of the top portion of the uneven structure in the center of the light-receiving surface side.  前記基板において、前記側面側の凹凸構造の頂上部分の曲率半径をRsとし、前記受光面側の中央部の凹凸構造の頂上部分の曲率半径をRf1とし、前記受光面側の周縁部の少なくとも一部の凹凸構造の頂上部分の曲率半径をRf2とすると、これらの曲率半径は以下の関係式を満たす、
Rs>Rf2>Rf1
請求項9に記載の太陽電池セル。
In the substrate, if the radius of curvature of the top portion of the uneven structure on the side surface is Rs, the radius of curvature of the top portion of the uneven structure in the central portion on the light-receiving surface side is Rf1, and the radius of curvature of the top portion of at least a portion of the uneven structure in the peripheral portion on the light-receiving surface side is Rf2, these radii of curvature satisfy the following relational expression:
Rs>Rf2>Rf1
The solar cell according to claim 9 .
 前記基板において、前記裏面側の周縁部の少なくとも一部の凹凸構造の頂上部分の曲率半径は、前記裏面側の中央部の凹凸構造の頂上部分の曲率半径よりも大きい、請求項8に記載の太陽電池セル。 The solar cell according to claim 8, wherein the radius of curvature of the top portion of the uneven structure of at least a portion of the peripheral portion of the back surface side of the substrate is greater than the radius of curvature of the top portion of the uneven structure of the central portion of the back surface side.  前記基板において、前記側面側の凹凸構造の頂上部分の曲率半径をRsとし、前記裏面側の中央部の凹凸構造の頂上部分の曲率半径をRr1とし、前記裏面側の周縁部の少なくとも一部の凹凸構造の頂上部分の曲率半径をRr2とすると、これらの曲率半径は以下の関係式を満たす、
Rs>Rr2>Rr1
請求項11に記載の太陽電池セル。
In the substrate, when the radius of curvature of the top portion of the uneven structure on the side surface is Rs, the radius of curvature of the top portion of the uneven structure in the central portion of the back surface is Rr1, and the radius of curvature of the top portion of at least a portion of the uneven structure in the peripheral portion of the back surface is Rr2, these radii of curvature satisfy the following relational expression:
Rs>Rr2>Rr1
The solar cell according to claim 11.
 請求項8~12のいずれか1項に記載の太陽電池セルの製造方法であって、
 前記結晶質シリコン基板の受光面側、裏面側および側面側に凹凸構造を形成する工程において、
 前記受光面側の周縁部の少なくとも一部および前記側面側におけるエッチング溶液の流速が、前記受光面側の中央部におけるエッチング溶液の流速よりも速くなるように制御し、
 前記裏面側の周縁部の少なくとも一部および前記側面側におけるエッチング溶液の流速が、前記裏面側の中央部におけるエッチング溶液の流速よりも速くなるように制御する、
太陽電池セルの製造方法。
A method for producing a solar cell according to any one of claims 8 to 12, comprising the steps of:
In the step of forming a concave-convex structure on a light receiving surface side, a back surface side and a side surface of the crystalline silicon substrate,
controlling a flow rate of the etching solution in at least a part of the peripheral portion of the light-receiving surface side and in the side surface side to be faster than a flow rate of the etching solution in a central portion of the light-receiving surface side;
a flow rate of the etching solution on at least a part of the peripheral portion of the rear surface side and on the side surface is controlled to be faster than a flow rate of the etching solution on the central portion of the rear surface side;
A method for manufacturing solar cells.
PCT/JP2024/008486 2023-03-09 2024-03-06 Solar cell element, solar cell module and method for producing solar cell element WO2024185804A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2023-036644 2023-03-09
JP2023036645 2023-03-09
JP2023-036645 2023-03-09
JP2023036644 2023-03-09

Publications (1)

Publication Number Publication Date
WO2024185804A1 true WO2024185804A1 (en) 2024-09-12

Family

ID=92675236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/008486 WO2024185804A1 (en) 2023-03-09 2024-03-06 Solar cell element, solar cell module and method for producing solar cell element

Country Status (1)

Country Link
WO (1) WO2024185804A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018194A1 (en) * 2011-08-02 2013-02-07 三菱電機株式会社 Method for manufacturing solar cell, and system for manufacturing solar cell
CN103137721A (en) * 2011-11-28 2013-06-05 茂迪股份有限公司 Silicon substrate, manufacturing method of solar cell substrate, and solar cell
JP2015185587A (en) * 2014-03-20 2015-10-22 シャープ株式会社 Photoelectric conversion element and method for producing photoelectric conversion element
CN107946378A (en) * 2016-10-12 2018-04-20 英属开曼群岛商精曜有限公司 Solar battery structure
JP6598091B2 (en) * 2012-10-23 2019-10-30 パナソニックIpマネジメント株式会社 Solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018194A1 (en) * 2011-08-02 2013-02-07 三菱電機株式会社 Method for manufacturing solar cell, and system for manufacturing solar cell
CN103137721A (en) * 2011-11-28 2013-06-05 茂迪股份有限公司 Silicon substrate, manufacturing method of solar cell substrate, and solar cell
JP6598091B2 (en) * 2012-10-23 2019-10-30 パナソニックIpマネジメント株式会社 Solar cell
JP2015185587A (en) * 2014-03-20 2015-10-22 シャープ株式会社 Photoelectric conversion element and method for producing photoelectric conversion element
CN107946378A (en) * 2016-10-12 2018-04-20 英属开曼群岛商精曜有限公司 Solar battery structure

Similar Documents

Publication Publication Date Title
KR101142861B1 (en) Solar cell and manufacturing method of the same
US11374141B2 (en) Solar cell assembly and method of manufacturing solar cell
US20100252109A1 (en) Thin film type solar cell and method for manufacturing the same
KR20140019099A (en) Photoelectric device
WO2013125036A1 (en) Photovoltaic element, method for manufacturing same, and photovoltaic module
US9997647B2 (en) Solar cells and manufacturing method thereof
US9184320B2 (en) Photoelectric conversion device
US20110308589A1 (en) Photoelectric conversion device and method for manufacturing the same
JP2015146335A (en) Photovoltaic element and method of producing the same
JP5266375B2 (en) Thin film solar cell and manufacturing method thereof
US12107176B2 (en) Solar cell and method for manufacturing solar cell
WO2024185804A1 (en) Solar cell element, solar cell module and method for producing solar cell element
KR20120106259A (en) Solar cell and method of manufacturing the same
JP7202456B2 (en) SOLAR CELL AND SOLAR CELL MANUFACTURING METHOD
KR20130057286A (en) Photovoltaic device and manufacturing method thereof
US20240021742A1 (en) Solar cell and method for manufacturing solar cell
KR101303594B1 (en) Thin film type solar cell using glass substrate with surface texture and preparation method thereof
CN112567535B (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
JP7169440B2 (en) SOLAR CELL MANUFACTURING METHOD AND SOLAR CELL
KR101447052B1 (en) Solar Cell, Mask for fabricating solar cell electrode and method for fabricating the solar cell
WO2019053957A1 (en) Solar cell, solar cell production method, and solar cell module
KR101122048B1 (en) Solar cell and method for manufacturing the same
JP2022130823A (en) SOLAR CELL AND SOLAR CELL MANUFACTURING METHOD
JP2024121542A (en) Back contact solar cell and method for manufacturing the same
KR102233886B1 (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24767171

Country of ref document: EP

Kind code of ref document: A1