[go: up one dir, main page]

WO2024185337A1 - Control device, winding switching system, vehicle, control method, and control program - Google Patents

Control device, winding switching system, vehicle, control method, and control program Download PDF

Info

Publication number
WO2024185337A1
WO2024185337A1 PCT/JP2024/002516 JP2024002516W WO2024185337A1 WO 2024185337 A1 WO2024185337 A1 WO 2024185337A1 JP 2024002516 W JP2024002516 W JP 2024002516W WO 2024185337 A1 WO2024185337 A1 WO 2024185337A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
switching
control value
connection state
value
Prior art date
Application number
PCT/JP2024/002516
Other languages
French (fr)
Japanese (ja)
Inventor
将岐 津田
Original Assignee
住友電気工業株式会社
住友電装株式会社
株式会社オートネットワーク技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電装株式会社, 株式会社オートネットワーク技術研究所 filed Critical 住友電気工業株式会社
Publication of WO2024185337A1 publication Critical patent/WO2024185337A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays

Definitions

  • This disclosure relates to a control device, a winding switching system, a vehicle, a control method, and a control program.
  • This application claims priority to Japanese Application No. 2023-032764, filed on March 3, 2023, and incorporates by reference all of the contents of said Japanese application.
  • Patent Document 1 discloses a device that identifies a period during which the AC motor current is below a predetermined value and switches the windings during the identified period in order to prevent surge voltages.
  • a control device is a control device for controlling an AC motor capable of switching the connection state of multiple windings from a first connection state to a second connection state, and includes a switching command unit that commands a winding switching device that switches the connection state of the multiple windings to execute zero-cross switching that switches the connection state of the multiple windings from the first connection state to the second connection state at a zero-cross point of a current flowing through the windings, and a control value switching unit that switches a control value for controlling the AC motor from a first control value used for the first connection state to a second control value used for the second connection state when the zero-cross switching is executed, and the control value switching unit gradually changes the control value from the first control value to the second control value.
  • FIG. 1 is a diagram illustrating an example of the configuration of a winding switching system according to the first embodiment.
  • FIG. 2 is a circuit diagram showing an example of the configuration of the winding switching device according to the first embodiment.
  • FIG. 3 is a circuit diagram showing an example of the configuration of the control circuit.
  • FIG. 4 is a timing chart showing an example of transition of the states of the signals in the winding switching device according to the first embodiment.
  • FIG. 5 is a block diagram illustrating an example of a hardware configuration of the control device according to the first embodiment.
  • FIG. 6 is a functional block diagram illustrating an example of functions of the control device according to the first embodiment.
  • FIG. 7 is a control block diagram showing a motor control system of the control device according to the first embodiment.
  • FIG. 1 is a diagram illustrating an example of the configuration of a winding switching system according to the first embodiment.
  • FIG. 2 is a circuit diagram showing an example of the configuration of the winding switching device according to the first embodiment.
  • FIG. 3
  • FIG. 8 is a graph showing an example of a change in the control voltage value.
  • FIG. 9 is a flowchart showing an example of a motor control process performed by the control device according to the first embodiment.
  • FIG. 10 is a circuit diagram showing an example of the configuration of a winding switching device according to the second embodiment.
  • FIG. 11 is a circuit diagram showing an example of the configuration of a winding switching device according to the third embodiment.
  • FIG. 12 is a functional block diagram illustrating an example of functions of the control device according to the third embodiment.
  • FIG. 13 is a flowchart showing an example of a motor control process performed by the control device according to the third embodiment.
  • the control device is a control device for controlling an AC motor capable of switching the connection state of multiple windings from a first connection state to a second connection state, and includes a switching command unit that commands a winding switching device that switches the connection state of the multiple windings to execute zero-cross switching, which switches the connection state of the multiple windings from the first connection state to the second connection state at a zero-cross point of a current flowing through the windings, and a control value switching unit that switches a control value for controlling the AC motor from a first control value used in the first connection state to a second control value used in the second connection state when the zero-cross switching is executed, and the control value switching unit gradually changes the control value from the first control value to the second control value.
  • the AC motor may be a multi-phase AC motor
  • the control value switching unit may synchronize the change of each of the control values corresponding to each phase from the first control value to the second control value. This allows the control value of each phase to be gradually changed from the first control value to the second control value at the same timing.
  • the AC motor may be an n-phase AC motor (n is an integer equal to or greater than 3), and the control value switching unit may complete the change of each of the n control values from the first control value to the second control value after ⁇ (n-1)/n has elapsed since the start of the change, where ⁇ is the wavelength of the current supplied to the AC motor. This allows the control value of each phase to be gradually changed from the first control value to the second control value during a period that matches the phase difference of the n-phase AC current.
  • the control value switching unit may start changing each of the n control values from the first control value to the second control value at a zero cross point of a current of a first phase of the n-phase AC. This allows the control value of each phase to be gradually changed from the first control value to the second control value during the period from the zero cross point of the first phase to the zero cross point of the nth phase.
  • control device may further include a specification unit that specifies n switching timings at which the winding switching device executes the zero-crossing switching in each of the n phases, and the control value switching unit may start changing each of the n control values from the first control value to the second control value at the first switching timing of the n switching timings specified by the specification unit. This allows the control value of each phase to be gradually changed from the first control value to the second control value during the period from the time when the zero-crossing switching is executed in the first phase to the time when the zero-crossing switching is executed in the nth phase.
  • the control device may further include a parameter value determination unit that determines a parameter value of a control parameter used to determine the control value, and a control value determination unit that determines the control value based on the parameter value determined by the parameter value determination unit, the control value determination unit determines the first control value and the second control value, and the control value switching unit may simultaneously hold the first control value and the second control value determined by the control value determination unit, and switch the control value from the held first control value to the held second control value. In this way, the control value switching unit can gradually change the control value of each phase based on the simultaneously held first control value and second control value.
  • the parameter value determination unit may determine a first parameter value that is a parameter value in the first connection state and a second parameter value that is a parameter value in the second connection state, and the control value determination unit may simultaneously hold the first parameter value and the second parameter value determined by the parameter value determination unit, determine the first control value based on the held first parameter value, and determine the second control value based on the held second parameter value. This allows the control value determination unit to determine each of the first control value and the second control value based on each of the first parameter value and second parameter value held simultaneously.
  • control value may be a voltage value of a voltage applied to the winding. This allows the voltage applied to the winding to be gradually changed, and the occurrence of surge voltage and oscillation of current control can be suppressed.
  • the winding switching system includes an AC motor capable of switching the connection state of a plurality of windings from a first connection state to a second connection state, a power converter that converts power output from a power source into AC power and supplies the AC power to the AC motor, a winding switching device that performs zero-cross switching to switch the connection state of the plurality of windings from the first connection state to the second connection state at a zero-cross point of a current flowing through the windings, and a control device.
  • the control device includes a switching command unit that commands the winding switching device to perform the zero-cross switching, and a control value switching unit that switches a control value for controlling the AC motor from a first control value used in the first connection state to a second control value used in the second connection state when the zero-cross switching is performed, and the control value switching unit gradually changes the control value from the first control value to the second control value. This makes it possible to prevent the control value from changing suddenly from the first control value to the second control value. Therefore, it is possible to suppress the generation of a surge voltage and suppress the transmission of current control of the motor.
  • the vehicle includes an AC motor capable of switching the connection state of a plurality of windings from a first connection state to a second connection state, a power converter that converts power output from a power source into AC power and supplies the AC power to the AC motor, a winding switching device that performs zero-cross switching to switch the connection state of the plurality of windings from the first connection state to the second connection state at a zero-cross point of a current flowing through the windings, and a control device.
  • the control device includes a switching command unit that commands the winding switching device to perform the zero-cross switching, and a control value switching unit that switches a control value for controlling the AC motor from a first control value used in the first connection state to a second control value used in the second connection state when the zero-cross switching is performed, and the control value switching unit gradually changes the control value from the first control value to the second control value. This makes it possible to prevent the control value from changing suddenly from the first control value to the second control value. Therefore, it is possible to suppress the generation of a surge voltage and suppress the transmission of current control of the motor.
  • the control method is a control method for controlling an AC motor capable of switching the connection state of multiple windings from a first connection state to a second connection state, and includes the steps of: instructing a winding switching device that switches the connection state of the multiple windings to execute zero-cross switching, which switches the connection state of the multiple windings from the first connection state to the second connection state at a zero-cross point of a current flowing through the windings; and, when the zero-cross switching is executed, switching a control value for controlling the AC motor from a first control value used for the first connection state to a second control value used for the second connection state, in which the control value is gradually changed from the first control value to the second control value in the step of switching the control value.
  • This makes it possible to prevent the control value from changing suddenly from the first control value to the second control value. Therefore, it is possible to suppress the generation of a surge voltage and suppress the transmission of current control of the motor.
  • the control program according to this embodiment is a control program for controlling an AC motor capable of switching the connection state of multiple windings from a first connection state to a second connection state, and causes a computer to execute the steps of instructing a winding switching device that switches the connection state of the multiple windings to execute zero-cross switching, which switches the connection state of the multiple windings from the first connection state to the second connection state at a zero-cross point of a current flowing through the windings, and switching a control value for controlling the AC motor from a first control value used for the first connection state to a second control value used for the second connection state when the zero-cross switching is executed, and in the step of switching the control value, the control value is gradually changed from the first control value to the second control value.
  • This makes it possible to prevent the control value from changing suddenly from the first control value to the second control value. Therefore, it is possible to suppress the generation of a surge voltage and suppress the transmission of current control of the motor.
  • the present disclosure can be realized not only as a control device having the above-mentioned characteristic configuration, a winding switching system including a control device, a vehicle including a control device, a control method having steps corresponding to characteristic processes in the control device, and a control program for causing a computer to execute the characteristic processes, but also as a semiconductor integrated circuit that realizes part or all of the control device.
  • FIG. 1 is a diagram illustrating an example of the configuration of a winding switching system according to the first embodiment.
  • the winding switching system 10 is mounted on a vehicle (hereinafter referred to as an "electric vehicle") that is propelled by a motor, such as an electric vehicle or a plug-in hybrid vehicle.
  • the winding switching system 10 includes a motor 20, a power converter 30, a battery 40, a control device 50, and a winding switching device 100.
  • the motor 20 is a driving motor that generates propulsive force for the electric vehicle.
  • the motor 20 is driven by three-phase AC power.
  • One example of the motor 20 is a permanent magnet synchronous motor.
  • a position sensor 26 is provided on the output shaft of the motor 20.
  • the position sensor 26 detects the rotation angle of the output shaft of the motor 20.
  • the position sensor 26 is, for example, a rotary encoder or a rotary potentiometer.
  • the position sensor 26 is connected to the control device 50 by a signal line. The detection signal of the position sensor 26 is output to the control device 50.
  • the battery 40 is a battery that supplies power to drive the motor 20.
  • the battery 40 is a secondary battery, for example a lithium ion battery.
  • the power converter 30 is an inverter that converts DC power supplied from the battery 40 into three-phase AC power.
  • the power converter 30 may also have the function of converting the three-phase AC power output when the motor 20 functions as a generator into DC power and charging the battery 40.
  • the power converter 30 includes legs for the U, V, and W phases.
  • the U-phase leg includes switches 31u and 32u
  • the V-phase leg includes switches 31v and 32v
  • the W-phase leg includes switches 31w and 32w.
  • the switches 31u, 32u, 31v, 32v, 31w, and 32w perform switching to convert DC power into three-phase AC power.
  • the switches 31u, 32u, 31v, 32v, 31w, and 32w are, for example, IGBTs (Insulated Gate Bipolar Transistors) or power MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors).
  • Power line 35u corresponding to U phase extends from the U phase leg
  • power line 35v corresponding to V phase extends from the V phase leg
  • power line 35w corresponding to W phase extends from the W phase leg.
  • current sensor 33u is provided on power line 35u
  • current sensor 33v is provided on power line 35v
  • current sensor 33w is provided on power line 35w.
  • Current sensor 33u detects the current value of current Iu of U phase.
  • Current sensor 33v detects the current value of current Iv of V phase.
  • Current sensor 33w detects the current value of current Iw of W phase.
  • Current sensors 33u, 33v, 33w can detect the current values of currents Iu, Iv, Iw flowing in power lines 35u, 35v, 35w, including DC and AC components.
  • the current sensors 33u, 33v, and 33w are, for example, DCCTs (direct current transformers) or shunt resistors.
  • Current sensors 33u, 33v, and 33w are connected to the control device 50 by signal lines. The detection values of current sensors 33u, 33v, and 33w are output to the control device 50.
  • the winding switching device 100 is disposed between the motor 20 and the power converter 30. However, the position of the winding switching device 100 is not limited to between the motor 20 and the power converter 30.
  • the power converter 30 and the winding switching device 100 are connected by power lines 35u, 35v, and 35w, and the winding switching device 100 and the motor 20 are connected by a plurality of power lines 25.
  • the winding switching device 100 switches the connection state of the multiple windings of the motor 20. The configuration of the winding switching device 100 will be described later.
  • the three-phase AC current output from the power converter 30 is supplied to the motor 20 via the winding switching device 100.
  • the control device 50 controls the power converter 30 and the winding switching device 100. Specifically, signal lines extend from the control device 50 to each of the switches 31u, 32u, 31v, 32v, 31w, and 32w, and the control device 50 controls the on/off timing of the switches 31u, 32u, 31v, 32v, 31w, and 32w. A signal line extends from the control device 50 to the winding switching device 100, and the control device 50 outputs a switching command signal to command the winding switching device 100 to switch the connection state of the windings.
  • FIG. 2 is a circuit diagram showing an example of the configuration of the winding switching device according to the first embodiment.
  • the motor 20 includes a plurality of windings 21u, 22u, 21v, 22v, 21w, and 22w.
  • the windings 21u and 22u correspond to the U phase
  • the windings 21v and 22v correspond to the V phase
  • the windings 21w and 22w correspond to the W phase.
  • the number of windings for each phase is not limited to two, and may be three or more.
  • the windings 22u, 22v, and 22w are connected at a neutral point 23.
  • the winding switching device 100 switches the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w for each phase between a series connection state and a parallel connection state.
  • the winding switching device 100 includes current sensors 101u, 101v, and 101w, zero-cross detection circuits 102u, 102v, and 102w, control circuits 103u, 103v, and 103w, and switching circuits 104u, 104v, and 104w.
  • the zero-cross detection circuits 102u, 102v, and 102w detect the zero-cross point (the point at which the AC signal output from the current sensors 101u, 101v, and 101w crosses the zero reference voltage) of the measurement value of the current sensors 101u, 101v, and 101w.
  • the zero-cross detection circuits 102u, 102v, and 102w compare the output voltage from the current sensors 101u, 101v, and 101w with zero voltage, and detect the point at which the output voltage from the current sensors 101u, 101v, and 101w matches the zero voltage as the zero-cross point.
  • the zero voltage is an example of a reference voltage.
  • the reference voltage is a voltage corresponding to the output voltage of the current sensors 101u, 101v, and 101w when the current flowing through the windings 21u, 22u, 21v, 22v, 21w, and 22w becomes zero current, and is not limited to zero voltage.
  • the zero-cross detection circuits 102u, 102v, and 102w are examples of a detection unit.
  • the switching circuits 104u, 104v, and 104w switch the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w between a series connection state and a parallel connection state when the zero-cross detection circuits 102u, 102v, and 102w detect a zero-cross point.
  • the switching circuits 104u, 104v, and 104w are an example of a switching unit.
  • the series connection state is an example of a first connection state
  • the parallel connection state is an example of a second connection state.
  • Power line 35u is connected to one end of winding 21u.
  • Power line 212u extends from the other end of winding 21u.
  • Power line 221u extends from one end of winding 22u, and power line 222u extends from the other end.
  • the switching circuit 104u includes semiconductor relays 111u, 112u, and 113u.
  • the semiconductor relays 111u, 112u, and 113u are, for example, IGBTs or power MOSFETs.
  • the power line 35u is drawn into the winding switching device 100. Inside the winding switching device 100, the power line 35u branches at a midpoint and is connected to a first terminal of a semiconductor relay 111u. The second terminal of the semiconductor relay 111u is connected to a first terminal of a semiconductor relay 112u. A power line 221u extending from the winding 22u is connected to the connection point between the second terminal of the semiconductor relay 111u and the first terminal of the semiconductor relay 112u.
  • the second terminal of the semiconductor relay 112u is connected to the first terminal of the semiconductor relay 113u.
  • a power line 212u extending from the winding 21u is connected to the connection point between the second terminal of the semiconductor relay 112u and the first terminal of the semiconductor relay 113u.
  • a power line 222u extending from the winding 22u is connected to the second terminal of the semiconductor relay 113u.
  • the windings 21u and 22u are connected in series.
  • the semiconductor relays 111u and 113u are in the ON state and the semiconductor relay 112u is in the OFF state, the windings 21u and 22u are connected in parallel.
  • a signal line extending from the control circuit 103u is connected to each of the gate terminals of the semiconductor relays 111u, 112u, and 113u.
  • the power lines 212u, 221u, and 222u extend from the motor 20 and are drawn into the winding switching device 100.
  • a current sensor 101u is attached to the power line 221u.
  • the current sensor 101u may be attached to the power lines 35u, 212u, or 222u instead of the power line 221u.
  • the current sensor 101u detects the U-phase current flowing through the power line 221u.
  • the current sensor 101u is, for example, an ACCT that detects only the AC component of the current.
  • the signal line extending from the current sensor 101u is connected to the zero-cross detection circuit 102u.
  • a signal line transmitting the output signal of the zero-cross detection circuit 102u (hereinafter referred to as the "zero-cross detection signal") extends from the zero-cross detection circuit 102u to the control circuit 103u.
  • a signal line extending from the control device 50 is connected to the control circuit 103u.
  • the zero-cross detection circuit 102u detects the zero-cross point of the measurement value by the current sensor 101u of the winding current flowing through the power line 221u.
  • the zero-cross detection circuit 102u is a comparator.
  • the inverting input of the comparator is set to a zero reference voltage, and the output signal of the current sensor 101u is applied to the non-inverting input.
  • the output of the comparator changes from low to high.
  • FIG. 3 is a circuit diagram showing an example of the configuration of the control circuit 103u.
  • the control circuit 103u includes AND circuits 131 and 133, a NOT circuit 132, and a latch circuit 120.
  • a signal line extending from the zero-cross detection circuit 102u is connected to a first input terminal of the AND circuit 131 and a first input terminal of the AND circuit 133.
  • a signal line extending from the control device 50 is connected to a second input terminal of the AND circuit 131.
  • the signal line from the control device 50 is connected to an input terminal of the NOT circuit 132.
  • a signal line extending from the output terminal of the NOT circuit 132 is connected to a second input terminal of the AND circuit 133.
  • the latch circuit 120 is an RS flip-flop.
  • the output terminal of the AND circuit 131 is connected to the input S (set) of the RS flip-flop 120.
  • the output terminal of the AND circuit 133 is connected to the input R (reset) of the RS flip-flop 120.
  • the RS flip-flop 120 includes two NOT circuits 121 and 123 and two NAND circuits 122 and 124. However, the RS flip-flop 120 may also be composed of two NOR circuits.
  • the output Q of the RS flip-flop 120 is connected to the gates of the semiconductor relays 111u and 113u.
  • the output Q bar of the RS flip-flop 120 is connected to the gate of the semiconductor relay 112u.
  • the zero-cross switching is an operation for switching the connection states of the windings 21u, 22u, 21v, 22v, 21w, and 22w between a series connection state and a parallel connection state at the zero-cross points of the winding currents Iu, Iv, and Iw. Note that the following description will be given representatively of the switching operation of the connection states of the windings 21u and 22u for the U phase. The same applies to the V and W phases, and therefore the description will be omitted.
  • FIG. 4 is a timing chart showing an example of the transition of the states of the signals of the winding switching device 100 according to the first embodiment.
  • the current sensor 101u measures the winding current Iu flowing through the power line 221u.
  • the zero-cross detection circuit 102u detects the zero-cross points of the measured value of the winding current Iu. That is, the zero-cross detection signal output from the zero-cross detection circuit 102u is low when the winding current Iu is not zero, and becomes high when the winding current Iu becomes zero. In FIG. 4, the zero-cross detection signal is low under normal conditions, and is high at times T1, T2, T3, and T4.
  • control device 50 sets the value of the switching command signal to Low, and when windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in parallel, control device 50 sets the value of the switching command signal to High.
  • the switching command signal is Low in the initial state and changes to High at a point between times T1 and T2.
  • the switching command signal changes again to Low at a point between times T3 and T4.
  • the zero-cross detection signal and the switching command signal are input to the AND circuit 131.
  • the AND circuit 131 outputs Low when the zero-cross detection signal and the switching command signal are a combination of (Low, Low), (Low, High), and (High, Low).
  • the AND circuit 131 outputs High when the zero-cross detection signal and the switching command signal are a combination of (High, High). That is, Low is normally input to S of the RS flip-flop 120, and High is input when a zero-cross point of the winding current Iu is detected and a parallel connection command for the windings 21u, 22u, 21v, 22v, 21w, and 22w is given.
  • the input signal to S is High at times T2 and T3.
  • the zero-cross detection signal and the inverted signal of the switching command signal are input to the AND circuit 133.
  • the AND circuit 133 outputs Low when the zero-cross detection signal and the switching command signal are combinations of (Low, Low), (High, Low), and (High, High).
  • the AND circuit 133 outputs High when the zero-cross detection signal and the switching command signal are combinations of (High, Low). That is, Low is normally input to R of the RS flip-flop 120, and High is input when a zero-cross point of the winding current Iu is detected and a series connection command for the windings 21u, 22u, 21v, 22v, 21w, and 22w is given.
  • the input signal of R is High at times T1 and T4.
  • RS flip-flop 120 holds the previous output values of Q and Q-bar when inputs S and R are Low and Low. When inputs S and R are Low and High, RS flip-flop 120 outputs Q and Q-bar as Low and High, and when inputs S and R are High and Low, Q and Q-bar as High and Low. In RS flip-flop 120, the combination of High and High inputs S and R is prohibited.
  • connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w can be switched between a series connection state and a parallel connection state at the timing of the zero-crossing points of the winding currents Iu, Iv, and Iw. Therefore, the occurrence of surge voltages is suppressed. Furthermore, there is no need for complex processing to identify the period during which the winding currents Iu, Iv, and Iw are below a predetermined value, and the winding switching device 100 can be configured without using a processor such as a CPU, FPGA, or ASIC.
  • Hardware configuration of the control device] 5 is a block diagram showing an example of a hardware configuration of the control device according to the first embodiment.
  • the control device 50 includes a processor 501, a non-volatile memory 502, a volatile memory 503, and an interface (I/F) 504.
  • the volatile memory 503 is, for example, a semiconductor memory such as SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory).
  • the non-volatile memory 502 is, for example, a flash memory, a hard disk, or a ROM (Read Only Memory).
  • the non-volatile memory 502 stores a motor control program 510, which is a computer program, and data used to execute the motor control program 510. Each function of the control device 50 is achieved by the motor control program 510 being executed by the processor 501.
  • the motor control program 510 can be stored in a recording medium such as a flash memory, a ROM, or a CD-ROM.
  • the processor 501 controls the power converter 30 and the winding switching device 100 using the motor control program 510.
  • the processor 501 is, for example, a CPU (Central Processing Unit). However, the processor 501 is not limited to a CPU.
  • the processor 501 may be a GPU (Graphics Processing Unit).
  • the processor 501 is, for example, a multi-core processor.
  • the processor 501 may be a single-core processor.
  • the processor 501 may be, for example, an ASIC (Application Specific Integrated Circuit), or a programmable logic device such as a gate array or an FPGA (Field Programmable Gate Array). In this case, the ASIC or the programmable logic device is configured to be capable of executing the same processing as the motor control program 510.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the I/F 504 is connected to the winding switching device 100 and the power converter 30.
  • the I/F 504 is, for example, an input/output interface or a communication interface.
  • the I/F 504 is connected to the current sensors 33u, 33v, and 33w provided in the power converter 30, and can acquire the current value of the U-phase current Iu, the current value of the V-phase current Iv, and the current value of the W-phase current Iw.
  • the I/F 504 is connected to each of the switches 31u, 32u, 31v, 32v, 31w, and 32w of the power converter 30, and can control the on/off of the switches 31u, 32u, 31v, 32v, 31w, and 32w.
  • the I/F 504 is connected to the control circuits 103u, 103v, and 103w of the winding switching device 100, and can output a switching command signal to the control circuits 103u, 103v, and 103w.
  • FIG. 6 is a functional block diagram illustrating an example of functions of the control device according to the first embodiment.
  • control device 50 executes the functions of the switching command unit 521, the parameter value determination unit 522, the control value determination unit 523, and the control value switching unit 524.
  • the switching command unit 521 commands the winding switching device 100 to execute zero-cross switching.
  • the command to execute zero-cross switching is issued by outputting a switching command signal to the control circuits 103u, 103v, and 103w. That is, as described above, when a switching command signal is input to the control circuits 103u, 103v, and 103w, a zero-cross detection signal is output from the zero-cross detection circuits 102u, 102v, and 102w at the time of detection of the next zero-cross point, and zero-cross switching is executed.
  • the parameter value determination unit 522 determines the parameter values of the control parameters used to determine the voltages (hereinafter also referred to as "control voltage values") to be applied to the windings 21u, 22u, 21v, 22v, 21w, and 22w. Specifically, the parameter value determination unit 522 determines the parameter values of the control parameters in the following control systems:
  • FIG. 7 is a control block diagram showing the motor control system of the control device according to the first embodiment. Below, the determination of the parameter values of the control parameters will be explained using FIG. 7.
  • the control device 50 sets a target torque 531 for the motor 20.
  • the target torque 531 is calculated, for example, from the target speed of the vehicle.
  • the target torque 531 is input to the torque current converter 532.
  • the torque current converter 532 converts the target torque 531 into a target current.
  • the conversion from the target torque 531 to the target current is performed based on the output characteristics of the motor 20 pre-stored in the control device 50. For example, the output characteristics when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in series are different from the output characteristics when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in parallel.
  • the non-volatile memory 502 of the control device 50 stores two types of output characteristics: the output characteristics when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in series, and the output characteristics when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in parallel.
  • the torque current converter 532 determines the target current according to the output characteristics according to the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w at that time.
  • the target current obtained by the torque current converter 532 is a current value in the dq coordinate system (hereinafter also referred to as the "dq current value”; the voltage value in the dq coordinate system is also referred to as the “dq voltage value”).
  • the detection values of the current sensors 33u, 33v, 33w and the detection value of the position sensor 26 are input to the current converter 533.
  • the current converter 533 converts the current values of each phase of the three-phase AC current into dq current values.
  • the detection values of the current sensors 33u, 33v, 33w, that is, the dq current values corresponding to the winding currents Iu, Iv, Iw, are output from the current converter 533.
  • the difference between the target current output from the torque current conversion unit 532 and the winding current output from the current conversion unit 533 is calculated.
  • the calculated difference is input to the F/B control unit 535.
  • the F/B control unit 535 calculates the feedback gain based on the difference between the input target current and the winding current. For example, the correspondence between the difference and the feedback gain is determined in advance. For example, two types of correspondence are determined: a correspondence when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in series, and a correspondence when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in parallel.
  • the F/B control unit 535 determines the feedback gain from the difference according to the correspondence according to the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w at that time.
  • the feedback gain is part of the drive voltage of the motor 20.
  • the F/B control unit 535 determines the feedback gain according to a predetermined control method.
  • the F/B control unit 535 can determine the feedback gain according to any one of P control (proportional control), PI control (proportional integral control), PD control (proportional differential control), and PID control (proportional integral differential control).
  • P control proportional control
  • PI control proportional integral control
  • PD control proportional differential control
  • PID control proportional integral differential control
  • the winding current output from the current conversion unit 533 and the detection value of the position sensor 26 are input to the electromotive force calculation unit 536.
  • the electromotive force calculation unit 536 calculates control components based on the induced voltage generated in the motor 20, such as non-interference control of the AC current of the motor 20 and mutual inductance between the d and q axes.
  • the induced voltage differs when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in series and when they are connected in parallel. Therefore, the electromotive force calculation unit 536 calculates the control components based on the induced voltage corresponding to the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w at that time.
  • Equation (1) The state equation (differential equation) of the permanent magnet synchronous motor in the dq coordinate system is expressed by equation (1).
  • the motor's rotational angular velocity
  • ⁇ a the magnet magnetic flux
  • Ra the winding resistance
  • Ld and Lq are the winding inductances
  • p is the differential symbol.
  • the influence of the interference term between the d-axis and q-axis due to the induced electromotive force is eliminated.
  • the d-axis and q-axis voltages are corrected as shown in the following equation (2).
  • vod is the d-axis component of the induced electromotive force
  • voq is the q-axis component of the induced electromotive force.
  • the feedback gain output from the F/B control unit 535 and the control component output from the electromotive force calculation unit 536 are input to the summing point 537.
  • the summing point 537 adds the feedback gain output from the F/B control unit 535 and the control component output from the electromotive force calculation unit 536 to calculate a control voltage value.
  • the control voltage value is an example of a "control value”.
  • the control voltage value is input to the voltage conversion unit 538.
  • the voltage conversion unit 538 converts the dq voltage value into a three-phase AC voltage.
  • the control voltage value of the three-phase AC voltage output from the voltage conversion unit 538 is input to the PWM unit 539.
  • the PWM unit 539 determines a duty ratio according to the input control voltage value, and generates PWM signals for driving each of the switches 31u, 32u, 31v, 32v, 31w, and 32w of the power converter 30 according to the determined duty ratio.
  • the PWM unit 539 outputs the generated PWM signals to each of the switches 31u, 32u, 31v, 32v, 31w, and 32w.
  • control parameters include a target current, a feedback gain, and a control component based on the induced voltage.
  • the parameter value determination unit 522 can determine each of the target current in the series connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w, the target current in the parallel connection state, the feedback gain in the series connection state, the feedback gain in the parallel connection state, the control component based on the induced voltage in the series connection state, and the control component based on the induced voltage in the parallel connection state.
  • the parameter value determination unit 522 determines each of the target current in the series connection state, the feedback gain in the series connection state, and the control component based on the induced voltage in the series connection state.
  • the parameter value determination unit 522 determines the target current in the parallel connection state, the feedback gain in the parallel connection state, and the control component based on the induced voltage in the parallel connection state.
  • the control value determination unit 523 determines the control voltage value. Specifically, the control value determination unit 523 can add the feedback gain determined by the parameter value determination unit 522 to a control component based on the induced voltage to calculate the control voltage value. The control value determination unit 523 determines the control voltage value in the series connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w, and the control voltage value in the parallel connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w.
  • control value determination unit 523 adds the feedback gain in the series connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w to the control component based on the induced voltage in the series connection state to calculate the control voltage value in the series connection state.
  • the control value determination unit 523 adds the feedback gain in the parallel connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w and the control component based on the induced voltage in the parallel connection state to calculate the control voltage value in the parallel connection state.
  • the parameter value determination unit 522 may determine, in the same control cycle, the target current, feedback gain, and control components based on the induced voltage when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in series, and the target current, feedback gain, and control components based on the induced voltage when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in parallel.
  • the control cycle is the control sequence in the above-mentioned control system, from when the PWM duty ratio is determined and a PWM signal is output, until the next duty ratio is determined and the next PWM signal is output.
  • the parameter value determination unit 522 can determine, in the same control cycle, each of the control components based on the target current, feedback gain, and induced voltage in the series connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w, and each of the control components based on the target current, feedback gain, and induced voltage in the parallel connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w.
  • the control device 50 decides to perform zero-cross switching in response to the gear shift instruction.
  • the control device 50 can determine that zero-cross switching will be performed soon.
  • the parameter value determination unit 522 when the parameter value determination unit 522 outputs a switching command signal to the winding switching device 100, the parameter value determination unit 522 can determine, in the same control cycle, the target current, feedback gain, and control components based on the induced voltage in the series connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w, and the target current, feedback gain, and control components based on the induced voltage in the parallel connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w.
  • the parameter value determination unit 522 can determine only the target current, feedback gain, and control components based on the induced voltage in the connection state (series connection state or parallel connection state) of the windings 21u, 22u, 21v, 22v, 21w, 22w21u, 22uIu, Iv, and Iw at that time.
  • control value determination unit 523 can simultaneously hold each of the control components based on the feedback gain and induced voltage in the series connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w determined by the parameter value determination unit 522, and each of the control components based on the feedback gain and induced voltage in the parallel connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w.
  • control value determination unit 523 can hold each of the control components based on the feedback gain and induced voltage in the series connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w determined by the parameter value determination unit 522, and each of the control components based on the feedback gain and induced voltage in the parallel connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w, in the same control cycle (the control cycle in which these parameter values are determined).
  • the control value determination unit 523 can determine the control voltage value in the series state by adding up the control components based on the feedback gain and induced voltage in the held series state, and can also determine the control voltage value in the parallel state by adding up the control components based on the feedback gain and induced voltage in the held parallel state. That is, the control value determination unit 523 can determine the control voltage value in the series state and the control voltage value in the parallel connection state in the same control cycle.
  • the control value determination unit 523 can determine, in the same control cycle, the control voltage value in the series connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w, and the control voltage value in the parallel connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w.
  • control value determination unit 523 can only determine the control voltage value in the connection state (series connection state or parallel connection state) of the windings 21u, 22u, 21v, 22v, 21w, 22w21u, 22uIu, Iv, Iw at that time.
  • the control value switching unit 524 switches the control voltage value between the control voltage value used in the series connection state (in the series connection state) and the control voltage value used in the parallel connection state (in the parallel connection state). Specifically, when the series connection state is switched to the parallel connection state by zero-cross switching, the control value switching unit 524 switches the control voltage value from the control voltage value in the series connection state to the control voltage value in the parallel connection state. When the parallel connection state is switched to the series connection state by zero-cross switching, the control value switching unit 524 switches the control voltage value from the control voltage value in the parallel connection state to the control voltage value in the series connection state.
  • the control voltage value in the connection state before switching is referred to as the "first control voltage value”
  • the control voltage value in the connection state after switching is referred to as the "second control voltage value”.
  • the control value switching unit 524 gradually changes the control voltage value from the first control voltage value to the second control voltage value.
  • the control value switching unit 524 changes the control voltage value from the first control voltage value to the second control voltage value in a ramp-like manner over time.
  • Figure 8 is a graph showing an example of changes in the control voltage value.
  • the vertical axis represents the voltage value (effective value) of the U phase
  • the horizontal axis represents time. The same is true for the V phase and W phase.
  • a PWM signal for applying the first control voltage value V1 to the windings 21u and 22u is output.
  • the control value switching unit 524 changes the control voltage value from the first control voltage value V to the second control voltage value V2 in a ramp-like manner during the period from time T11 to time T12 (hereinafter also referred to as the "switching period"). That is, during the switching period, the control voltage value takes a value between the first control voltage value V1 and the second control voltage value V2. In the example of FIG. 8, the second control voltage value V2 is higher than the first control voltage value V1. Therefore, during the switching period, the control voltage value gradually increases from the first control voltage value to the second control voltage value. By changing the control voltage value in this manner, it is possible to suppress the generation of a surge voltage due to switching of the control voltage value and to suppress oscillation of the current control.
  • control voltage value is not limited to a ramp shape.
  • control voltage value may change in a curved manner.
  • step changing the control voltage value includes changing the control voltage value in steps.
  • step changing the control voltage value is not limited to smoothly changing the control voltage value over time.
  • the control voltage value may be changed in multiple steps or discretely.
  • control value switching unit 524 synchronizes the changes of the U-phase control voltage value, the V-phase control voltage value, and the W-phase control voltage value from the first control voltage value to the second control voltage value.
  • synchronization means that the changes of the U-phase control voltage value, the V-phase control voltage value, and the W-phase control voltage value start at the same timing, and the changes of the U-phase control voltage value, the V-phase control voltage value, and the W-phase control voltage value are completed at the same timing.
  • the U-phase control voltage value, the V-phase control voltage value, and the W-phase control voltage value each start changing from the first control voltage value at the same timing (the start of the switching period) and reach the second control voltage value at the same timing (the end of the switching period).
  • the control value switching unit 524 completes the change of each of the n control voltage values from the first control voltage value to the second control voltage value after ⁇ (n-1)/n has elapsed since the start of the change.
  • is the period of the winding current.
  • n 3.
  • the phase of the V-phase current is shifted 2 ⁇ /3 from the phase of the U-phase current
  • the phase of the W-phase current is shifted 4 ⁇ /3 from the phase of the U-phase current.
  • the point of the V-phase current corresponding to a point on the waveform of the U-phase current is a point ⁇ /3 later than the point on the waveform of the U-phase current
  • the point of the W-phase current corresponding to a point on the waveform of the U-phase current is a point 2 ⁇ /3 later than the point on the waveform of the U-phase current. Therefore, by changing the control voltage values of the U-phase, V-phase, and W-phase as described above, the switching period can be adapted to the phase difference of the winding currents Iu, Iv, and Iw.
  • control value switching unit 524 starts changing each of the n control voltage values from the first control voltage value to the second control voltage value at the zero cross point of the U-phase current. This allows the change in the control voltage value of each phase to start at the zero cross point of the U-phase current, and the change in the control voltage value of each phase to be completed at the zero cross point of the W-phase current.
  • control value switching unit 524 simultaneously holds the first control voltage value and the second control voltage value determined by the control value determination unit 523.
  • the control value switching unit 524 switches the control voltage value from the held first control voltage value to the held second control voltage value.
  • the control value switching unit 524 can determine how to change the control voltage value from the first control voltage value to the second control voltage value.
  • control device 50 executes a motor control process by the processor 501 executing a motor control program 510.
  • FIG. 9 is a flowchart showing an example of motor control processing by the control device according to the first embodiment.
  • the processor 501 decides to execute zero-cross switching.
  • the processor 501 determines whether or not it has been decided to execute zero-cross switching (step S101).
  • the processor 501 acquires the detection values output from the current sensors 33u, 33v, and 33w and the detection value output from the position sensor 26 (step S102). The processor 501 calculates the rotation speed of the motor 20 based on the detection value from the position sensor 26.
  • the processor 501 determines the parameter values of the control parameters according to the connection states of the windings 21u, 22u, 21v, 22v, 21w, 22w21u, 22uIu, Iv, Iw at that time based on the current values of the acquired winding currents Iu, Iv, Iw and the rotation speed of the motor 20 (step S103).
  • the control parameters include a target current, a feedback gain, and a control component based on the induced voltage.
  • the processor 501 determines the control voltage value according to the connection state of the windings 21u, 22u, 21v, 22v, 21w, 22w, 21u, 22uIu, Iv, and Iw at that time based on the determined parameter values (step S104).
  • the processor 501 determines the duty ratio based on the determined control voltage value, and outputs a PWM signal with the determined duty ratio (step S105).
  • the switches 31u, 32u, 31v, 32v, 31w, and 32w are driven in accordance with the PWM signal, and the winding currents Iu, Iv, and Iw are supplied to the motor 20.
  • the processor 501 returns to step S101.
  • step S101 If it has been determined that zero-cross switching should be performed (YES in step S101), the processor 501 outputs a switching command signal to the winding switching device 100 (step S106). Next, the processor 501 acquires the detection values output from the current sensors 33u, 33v, and 33w and the detection value output from the position sensor 26 (step S107). The processor 501 calculates the rotation speed of the motor 20 based on the detection values from the position sensor 26.
  • the processor 501 determines the parameter values corresponding to the series state and the parallel state of the windings 21u, 22u, 21v, 22v, 21w, 22w21u, 22uIu, Iv, Iw based on the current values of the acquired winding currents Iu, Iv, Iw and the rotation speed of the motor 20 (step S108). That is, the processor 501 determines the target currents in each of the series connection state and the parallel connection state, the feedback gains for each of the series connection state and the parallel connection state, and the control components based on the induced voltages in each of the series connection state and the parallel connection state.
  • the processor 501 determines the control voltage value in the series connection state and the control voltage value in the parallel connection state based on the determined parameter values (step S109).
  • the processor 501 changes the control voltage value used to generate the PWM signal by a predetermined amount (step S110). That is, when the series connection state is switched to the parallel connection state by zero-cross switching, the processor 501 increases (or decreases) the control voltage value by a predetermined amount in order to switch from the control voltage value in the series connection state (first control voltage value) to the control voltage value in the parallel connection state (second control voltage value). When the parallel connection state is switched to the series connection state by zero-cross switching, the processor 501 increases (or decreases) the control voltage value by a predetermined amount in order to switch from the control voltage value in the parallel connection state (first control voltage value) to the control voltage value in the series connection state (second control voltage value).
  • the processor 501 determines the duty ratio based on the control voltage value after the predetermined change, and outputs a PWM signal with the determined duty ratio (step S111). Switches 31u, 32u, 31v, 32v, 31w, and 32w are driven in accordance with the PWM signal, and winding currents Iu, Iv, and Iw are supplied to the motor 20.
  • the processor 501 determines whether the control voltage value has reached the second control voltage value (step S112). If the control voltage value has not reached the second control voltage value (NO in step S112), the processor 501 returns to step S110. By repeating steps S110 to S112, the control voltage value gradually changes from the first control voltage value to the second control voltage value.
  • step S112 If the control voltage value reaches the second control voltage value (YES in step S112), the switching of the control voltage value from the first control voltage value to the second control voltage value is completed. In this case, the processor 501 returns to step S101.
  • the winding switching device of the second embodiment switches the connection state of the multiple windings of a motor between a full connection state in which all of the multiple windings are connected, and a partial connection state in which some of the multiple windings are connected.
  • FIG. 10 is a circuit diagram showing an example of the configuration of a winding switching device according to the second embodiment.
  • Motor 20A includes a plurality of windings 24u, 25u, 24v, 25v, 24w, and 25w. Windings 24u and 25u correspond to the U phase, windings 24v and 25v correspond to the V phase, and windings 24w and 25w correspond to the W phase. However, the number of windings for each phase is not limited to two, and may be three or more.
  • the winding switching device 100A switches the connection state of the windings 24u, 25u, 24v, 25v, 24w, and 25w for each phase between a fully connected state and a partially connected state.
  • the winding switching device 100A includes current sensors 131u, 131v, and 131w, zero-cross detection circuits 102u, 102v, and 102w, control circuits 103u, 103v, and 103w, and switching circuits 140u, 140v, and 140w.
  • the zero-cross detection circuits 102u, 102v, and 102w detect the zero-cross points of the measured values of the current sensors 131u, 131v, and 131w.
  • the configuration of the zero-cross detection circuits 102u, 102v, and 102w is the same as that of the first embodiment, so a description thereof will be omitted.
  • the switching circuits 140u, 140v, and 140w switch the connection state of the windings 24u, 25u, 24v, 25v, 24w, and 25w between a full connection state and a partial connection state when the zero-cross detection circuits 102u, 102v, and 102w detect a zero-cross point.
  • the switching circuits 140u, 140v, and 140w are an example of a switching unit.
  • the full connection state is an example of a first connection state
  • the partial connection state is an example of a second connection state.
  • Power line 35u is connected to one end of winding 24u.
  • the other end of winding 24u and one end of winding 25u are connected to each other, and power line 241u extends from the midpoint between winding 24u and winding 25u.
  • Power line 241u branches into power lines 242u and 243w.
  • Power line 251u extends from the other end of winding 25u.
  • Power line 251u branches into power lines 252u and 253w.
  • Power line 35v is connected to one end of winding 24v.
  • the other end of winding 24v and one end of winding 25v are connected to each other, and power line 241v extends from the midpoint between winding 24v and winding 25v.
  • Power line 241v branches into power lines 242v and 243u.
  • Power line 251v extends from the other end of winding 25v.
  • Power line 251v branches into power lines 252v and 253u.
  • Power line 35w is connected to one end of winding 24w.
  • the other end of winding 24w and one end of winding 25w are connected to each other, and power line 241w extends from the midpoint between winding 24w and winding 25w.
  • Power line 241w branches into power lines 242w and 243v.
  • Power line 251w extends from the other end of winding 25w.
  • Power line 251w branches into power lines 252w and 253v.
  • the switching circuit 140u includes semiconductor relays 141u and 142u.
  • the switching circuit 140v includes semiconductor relays 141v and 142v.
  • the switching circuit 140w includes semiconductor relays 141w and 142w.
  • the semiconductor relays 141u, 142u, 141v, 142v, 141w, and 142w are, for example, IGBTs or power MOSFETs.
  • the first terminal of the semiconductor relay 141u is connected to the power line 242u, and the second terminal is connected to the power line 243u.
  • the first terminal of the semiconductor relay 142u is connected to the power line 252u, and the second terminal is connected to the power line 253u.
  • the connection relationship between the switching circuits 140v and 140w is the same as that of the switching circuit 140u, so a description is omitted.
  • the power line 35u is drawn into the winding switching device 100.
  • a current sensor 131u is attached to the power line 35u.
  • the current sensor 131u detects the U-phase current flowing through the power line 35u.
  • the current sensor 131u is, for example, an ACCT that detects only the AC component of the current.
  • a signal line extending from the current sensor 131u is connected to the zero-cross detection circuit 102u. The same applies to the V-phase and W-phase.
  • the output Q of the RS flip-flop 120 in the control circuit 103u is connected to the gate of the semiconductor relay 141u.
  • the output Q bar of the RS flip-flop 120 is connected to the gate of the semiconductor relay 142u. The same is true for the V phase and the W phase.
  • winding switching device 100A according to the second embodiment are similar to those of the winding switching device 100 according to the first embodiment, so the same components are given the same reference numerals and their description is omitted.
  • control device 50 sets the value of the switching command signal to Low when the windings 24u, 25u, 24v, 25v, 24w, and 25w of the motor 20 are to be fully connected, and sets the value of the switching command signal to High when the windings 24u, 25u, 24v, 25v, 24w, and 25w are to be partially connected.
  • connection state of windings 21u, 22u, 21v, 22v, 21w, and 22w can be switched between a fully connected state and a partially connected state at the timing of the zero-crossing points of winding currents Iu, Iv, and Iw.
  • the configuration and operation of the power converter 30 and control device 50 according to the second embodiment are similar to those of the power converter 30 and control device 50 according to the first embodiment, and therefore will not be described.
  • [3. Third embodiment] 11 is a circuit diagram showing an example of the configuration of a winding switching device according to the third embodiment.
  • a signal indicating the timing for switching the connection states of the windings 21u, 22u, 21v, 22v, 21w, and 22w (hereinafter also referred to as a “switching timing signal”) is input to a control device 50.
  • the signal output from the output Q of the RS flip-flop 120 is a signal (switching timing signal) indicating the switching timing of the connection state of the windings 21u and 22u.
  • the signal line extending from the control circuit 103u to the gate terminal of the semiconductor relay 111u branches at the midpoint, and the branched end is connected to the control device 50.
  • the U-phase switching timing signal is input to the control device 50 through this signal line.
  • the signal line extending from the control circuit 103v to the gate terminal of the semiconductor relay 111v branches at the midpoint, and the branched end is connected to the control device 50.
  • the V-phase switching timing signal is input to the control device 50 through this signal line.
  • the W-phase switching timing signal is input to the control device 50 through this signal line. Specifically, the switching timing signal is input to the I/F 504 of the control device 50.
  • FIG. 12 is a functional block diagram showing an example of the functions of a control device according to the third embodiment.
  • the control device 50 executes the functions of the switching command unit 521, the parameter value determination unit 522, the control value determination unit 523, the control value switching unit 524, as well as the input unit 525 and the identification unit 526.
  • the input unit 525 receives a switching timing signal that is output when the winding switching device 100 executes zero-cross switching. That is, the input unit 525 receives a switching timing signal that is output from each of the control circuits 103u, 103v, and 103w of the winding switching device 100 to the gate terminals of the semiconductor relays 111u, 111v, and 111w.
  • the determination unit 526 determines the switching timing at which a zero-crossing switch is performed to switch the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w from a series connection state to a parallel connection state, or from a parallel connection state to a series connection state, at the zero-crossing points of the winding currents Iu, Iv, and Iw.
  • the determination unit 526 determines the switching timing based on the input of a switching timing signal at the input unit 525. For example, the determination unit 526 can determine the switching timing in the U phase, the switching timing in the V phase, and the switching timing in the W phase.
  • the control value switching unit 524 starts changing each of the n control voltage values from the first control voltage value to the second control voltage value based on the switching timing identified by the identification unit 526.
  • the control value switching unit 524 starts changing each of the control voltage value of the U phase, the control voltage value of the V phase, and the control voltage value of the W phase from the first control voltage value to the second control voltage value at the first switching timing of the three switching timings identified by the identification unit 526.
  • the control value switching unit 524 starts changing each of the control voltage value of the U phase, the control voltage value of the V phase, and the control voltage value of the W phase from the first control voltage value to the second control voltage value at the switching timing of the U phase.
  • the switching period can be set to 2 ⁇ /3.
  • FIG. 13 is a flowchart showing an example of motor control processing by the control device according to the third embodiment.
  • Steps S101 to S109 are the same as steps S101 to S109 in the first embodiment.
  • a switching timing signal is output from the winding switching device 100 to the control device 50.
  • the processor 501 determines the switching timing based on the switching timing signal.
  • the processor 501 determines whether or not the switching timing has arrived (step S201). If the switching timing has not arrived (NO in step S201), the processor 501 executes step S201 again.
  • Step S110 When the switching timing arrives (YES in step S201), the processor 501 changes the control voltage value used to generate the PWM signal by a predetermined amount (step S110).
  • Steps S110 to S112 are the same as steps S110 to S112 in the first embodiment. This makes it possible to start a gradual change in the control voltage value at the timing when the zero-cross switching is executed.
  • the determination unit 526 of the control device 50 detects zero crossing points of the winding currents Iu, Iv, Iw, and estimates the switching timing based on the detected zero crossing points. For example, the determination unit 526 can determine the waveforms of the winding currents Iu, Iv, Iw from the time-series detection values of the current sensors 33u, 33v, 33w, and detect the zero crossing points in each of the U-phase, V-phase, and W-phase.
  • the determination unit 526 can estimate that the next zero cross point after the switching command signal is input to the winding switching device 100 is the switching timing. For example, the determination unit 526 can estimate the switching timing for each of the U phase, V phase, and W phase.
  • the input unit 525 receives the detection values of the current sensors 33u, 33v, and 33w instead of the switching timing signal from the winding switching device 100.
  • the determination unit 526 detects the zero-crossing points of the winding currents Iu, Iv, and Iw based on the detection values of the current sensors 33u, 33v, and 33w input to the input unit 525.
  • control device 50 according to the fourth embodiment are similar to those of the control device 50 according to the third embodiment, and therefore will not be described.
  • Other configurations of the winding switching system according to the fourth embodiment are similar to those of the winding switching system 10 according to the first embodiment, and therefore will not be described.
  • Winding switching system 20 Motor 21u, 22u, 21v, 22v, 21w, 22w Winding 23 Neutral point 25 Power line 26 Position sensor 30 Power converter 31u, 32u, 31v, 32v, 31w, 32w Switch 33u, 33v, 33w Current sensor 35u, 35v, 35w Power line 40 Battery 50 Control device 501 Processor 502 Non-volatile memory 503 Volatile memory 504 Interface (I/F) 510 Motor control program 521 Switching command unit 522 Parameter value determination unit 523 Control value determination unit 524 Control value switching unit 525 Input unit 526 Identification unit 531 Target torque 532 Torque current conversion unit 533 Current conversion unit 534 Addition point 535 F/B control unit 536 Electromotive force calculation unit 537 Addition point 538 Voltage conversion unit 539 PWM unit 100 Winding switching device 101u, 101v, 101w Current sensor 102u, 102v, 102w Zero cross detection circuit 103u, 103v, 103w Control circuit 104u, 104v, 104w Switching

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

This control device is for controlling an AC motor capable of switching the connection status of a plurality of windings from a first connection status to a second connection status, the control device comprising: a switching command unit that commands a winding switching device that switches the connection status of the plurality of windings to execute zero-cross switching to switch the connection status of the plurality of windings from the first connection status to the second connection status at a zero-cross point of the current flowing in the windings; and a control value switching unit that switches a control value for controlling the AC motor from a first control value used in the first connection status to a second control value used in the second connection status when zero-cross switching is executed, the control value switching unit gradually changing the control value from the first control value to the second control value.

Description

制御装置、巻線切替システム、車両、制御方法、及び制御プログラムControl device, winding switching system, vehicle, control method, and control program
 本開示は、制御装置、巻線切替システム、車両、制御方法、及び制御プログラムに関する。本出願は、2023年3月3日出願の日本出願第2023-032764号に基づく優先権を主張し、前記日本出願に記載された全ての内容を援用するものである。 This disclosure relates to a control device, a winding switching system, a vehicle, a control method, and a control program. This application claims priority to Japanese Application No. 2023-032764, filed on March 3, 2023, and incorporates by reference all of the contents of said Japanese application.
 例えば電気自動車に搭載されるモータには、複数の巻線の接続を切り替えることによって、低速且つ高トルクの動作状態と、高速且つ低トルクの動作状態とを切り替えることが可能なものがある。特許文献1には、サージ電圧を防止するために、交流のモータ電流が所定値以下となっている期間を特定し、特定された期間において巻線を切り替える装置が開示されている。 For example, some motors installed in electric vehicles can switch between a low-speed, high-torque operating state and a high-speed, low-torque operating state by switching the connections of multiple windings. Patent Document 1 discloses a device that identifies a period during which the AC motor current is below a predetermined value and switches the windings during the identified period in order to prevent surge voltages.
特開2020-072632号公報JP 2020-072632 A
 本開示の一態様に係る制御装置は、複数の巻線の接続状態を第1接続状態から第2接続状態へ切り替えることが可能な交流モータを制御するための制御装置であって、前記複数の巻線の接続状態を切り替える巻線切替装置に、前記巻線に流れる電流のゼロクロス点において前記複数の巻線の接続状態を前記第1接続状態から前記第2接続状態へ切り替えるゼロクロス切替の実行を指令する切替指令部と、前記ゼロクロス切替が実行される際に、前記交流モータを制御するための制御値を、前記第1接続状態に用いられる第1制御値から、前記第2接続状態に用いられる第2制御値へ切り替える制御値切替部と、を備え、前記制御値切替部は、前記制御値を、前記第1制御値から前記第2制御値へ漸次変化させる。 A control device according to one aspect of the present disclosure is a control device for controlling an AC motor capable of switching the connection state of multiple windings from a first connection state to a second connection state, and includes a switching command unit that commands a winding switching device that switches the connection state of the multiple windings to execute zero-cross switching that switches the connection state of the multiple windings from the first connection state to the second connection state at a zero-cross point of a current flowing through the windings, and a control value switching unit that switches a control value for controlling the AC motor from a first control value used for the first connection state to a second control value used for the second connection state when the zero-cross switching is executed, and the control value switching unit gradually changes the control value from the first control value to the second control value.
図1は、第1実施形態に係る巻線切替システムの構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of the configuration of a winding switching system according to the first embodiment. 図2は、第1実施形態に係る巻線切替装置の構成の一例を示す回路図である。FIG. 2 is a circuit diagram showing an example of the configuration of the winding switching device according to the first embodiment. 図3は、制御回路の構成の一例を示す回路図である。FIG. 3 is a circuit diagram showing an example of the configuration of the control circuit. 図4は、第1実施形態に係る巻線切替装置の各信号の状態の遷移の一例を示すタイミングチャートである。FIG. 4 is a timing chart showing an example of transition of the states of the signals in the winding switching device according to the first embodiment. 図5は、第1実施形態に係る制御装置のハードウェア構成の一例を示すブロック図である。FIG. 5 is a block diagram illustrating an example of a hardware configuration of the control device according to the first embodiment. 図6は、第1実施形態に係る制御装置の機能の一例を示す機能ブロック図である。FIG. 6 is a functional block diagram illustrating an example of functions of the control device according to the first embodiment. 図7は、第1実施形態に係る制御装置のモータの制御系を示す制御ブロック図である。FIG. 7 is a control block diagram showing a motor control system of the control device according to the first embodiment. 図8は、制御電圧値の変化の一例を示すグラフである。FIG. 8 is a graph showing an example of a change in the control voltage value. 図9は、第1実施形態に係る制御装置によるモータ制御処理の一例を示すフローチャートである。FIG. 9 is a flowchart showing an example of a motor control process performed by the control device according to the first embodiment. 図10は、第2実施形態に係る巻線切替装置の構成の一例を示す回路図である。FIG. 10 is a circuit diagram showing an example of the configuration of a winding switching device according to the second embodiment. 図11は、第3実施形態に係る巻線切替装置の構成の一例を示す回路図である。FIG. 11 is a circuit diagram showing an example of the configuration of a winding switching device according to the third embodiment. 図12は、第3実施形態に係る制御装置の機能の一例を示す機能ブロック図である。FIG. 12 is a functional block diagram illustrating an example of functions of the control device according to the third embodiment. 図13は、第3実施形態に係る制御装置によるモータ制御処理の一例を示すフローチャートである。FIG. 13 is a flowchart showing an example of a motor control process performed by the control device according to the third embodiment.
 <本開示が解決しようとする課題>
 モータの巻線の切替前と切替後とでは、PWM(Pulse Width Modulation)信号のデューティ比等の制御値を変更する必要がある。このため、巻線の切替だけでなく制御値を切り替えるが、制御値の切替の際にサージ電圧が発生するおそれがある。その上、急激な制御値の変更により、モータの電流制御が発振するおそれもある。
<Problems to be Solved by the Present Disclosure>
Before and after switching the motor windings, it is necessary to change control values such as the duty ratio of a PWM (Pulse Width Modulation) signal. For this reason, not only the windings are switched but also the control values are switched, which may cause a surge voltage when the control values are switched. Furthermore, a sudden change in the control values may cause the motor current control to oscillate.
 <本開示の効果>
 本開示によれば、サージ電圧の発生を抑制し、モータの電流制御の発信を抑制することができる。
<Effects of the present disclosure>
According to the present disclosure, it is possible to suppress the occurrence of surge voltage and suppress the transmission of current control of the motor.
 <本開示の実施形態の概要>
 以下、本開示の実施形態の概要を列記して説明する。
Overview of the embodiments of the present disclosure
Below, an overview of the embodiments of the present disclosure will be listed and described.
 (1) 本実施形態に係る制御装置は、複数の巻線の接続状態を第1接続状態から第2接続状態へ切り替えることが可能な交流モータを制御するための制御装置であって、前記複数の巻線の接続状態を切り替える巻線切替装置に、前記巻線に流れる電流のゼロクロス点において前記複数の巻線の接続状態を前記第1接続状態から前記第2接続状態へ切り替えるゼロクロス切替の実行を指令する切替指令部と、前記ゼロクロス切替が実行される際に、前記交流モータを制御するための制御値を、前記第1接続状態に用いられる第1制御値から、前記第2接続状態に用いられる第2制御値へ切り替える制御値切替部と、を備え、前記制御値切替部は、前記制御値を、前記第1制御値から前記第2制御値へ漸次変化させる。これにより、制御値が第1制御値から第2制御値へ急激に変化することを防止することができる。したがって、サージ電圧の発生を抑制し、モータの電流制御の発信を抑制することができる。 (1) The control device according to this embodiment is a control device for controlling an AC motor capable of switching the connection state of multiple windings from a first connection state to a second connection state, and includes a switching command unit that commands a winding switching device that switches the connection state of the multiple windings to execute zero-cross switching, which switches the connection state of the multiple windings from the first connection state to the second connection state at a zero-cross point of a current flowing through the windings, and a control value switching unit that switches a control value for controlling the AC motor from a first control value used in the first connection state to a second control value used in the second connection state when the zero-cross switching is executed, and the control value switching unit gradually changes the control value from the first control value to the second control value. This makes it possible to prevent the control value from changing suddenly from the first control value to the second control value. Therefore, it is possible to suppress the generation of a surge voltage and suppress the transmission of current control of the motor.
 (2) 上記(1)において、前記交流モータは、多相交流モータであり、前記制御値切替部は、各相に対応する複数の前記制御値のそれぞれの前記第1制御値から前記第2制御値への変化を同期させてもよい。これにより、同じタイミングにおいて各相の制御値を第1制御値から第2制御値へ漸次変化させることができる。 (2) In the above (1), the AC motor may be a multi-phase AC motor, and the control value switching unit may synchronize the change of each of the control values corresponding to each phase from the first control value to the second control value. This allows the control value of each phase to be gradually changed from the first control value to the second control value at the same timing.
 (3) 上記(2)において、前記交流モータは、n相交流モータ(nは3以上の整数)であり、前記制御値切替部は、前記交流モータに供給される電流の波長をλとしたときに、n個の前記制御値のそれぞれの前記第1制御値から前記第2制御値への変化を、前記変化が開始してからλ(n-1)/n経過後に完了させてもよい。これにより、n相の交流電流の位相差に適合した期間において、各相の制御値を第1制御値から第2制御値へ漸次変化させることができる。 (3) In the above (2), the AC motor may be an n-phase AC motor (n is an integer equal to or greater than 3), and the control value switching unit may complete the change of each of the n control values from the first control value to the second control value after λ(n-1)/n has elapsed since the start of the change, where λ is the wavelength of the current supplied to the AC motor. This allows the control value of each phase to be gradually changed from the first control value to the second control value during a period that matches the phase difference of the n-phase AC current.
 (4) 上記(3)において、前記制御値切替部は、前記n相交流の第1の相の電流のゼロクロス点において前記n個の前記制御値のそれぞれの前記第1制御値から前記第2制御値への変化を開始させてもよい。これにより、第1の相におけるゼロクロス点から第nの相におけるゼロクロス点までの期間において、各相の制御値を第1制御値から第2制御値へ漸次変化させることができる。 (4) In the above (3), the control value switching unit may start changing each of the n control values from the first control value to the second control value at a zero cross point of a current of a first phase of the n-phase AC. This allows the control value of each phase to be gradually changed from the first control value to the second control value during the period from the zero cross point of the first phase to the zero cross point of the nth phase.
 (5) 上記(3)において、前記制御装置は、前記巻線切替装置が前記n相のそれぞれにおいて前記ゼロクロス切替を実行したn個の切替タイミングを特定する特定部をさらに備え、前記制御値切替部は、前記特定部によって特定された前記n個の切替タイミングのうちの最初の切替タイミングにおいて、前記n個の前記制御値のそれぞれの前記第1制御値から前記第2制御値への変化を開始させてもよい。これにより、第1の相においてゼロクロス切替が実行された時点から第nの相においてゼロクロス切替が実行された時点までの期間において、各相の制御値を第1制御値から第2制御値へ漸次変化させることができる。 (5) In the above (3), the control device may further include a specification unit that specifies n switching timings at which the winding switching device executes the zero-crossing switching in each of the n phases, and the control value switching unit may start changing each of the n control values from the first control value to the second control value at the first switching timing of the n switching timings specified by the specification unit. This allows the control value of each phase to be gradually changed from the first control value to the second control value during the period from the time when the zero-crossing switching is executed in the first phase to the time when the zero-crossing switching is executed in the nth phase.
 (6) 上記(1)から(5)のいずれか1つにおいて、前記制御装置は、前記制御値の決定に用いられる制御パラメータのパラメータ値を決定するパラメータ値決定部と、前記パラメータ値決定部によって決定された前記パラメータ値に基づいて、前記制御値を決定する制御値決定部と、をさらに備え、前記制御値決定部は、前記第1制御値と前記第2制御値とを決定し、前記制御値切替部は、前記制御値決定部によって決定された前記第1制御値及び前記第2制御値を同時に保持し、保持した前記第1制御値から、保持した前記第2制御値へ前記制御値を切り替えてもよい。これにより、制御値切替部は、同時に保持した第1制御値及び第2制御値に基づいて、各相の制御値を漸次変化させることができる。 (6) In any one of (1) to (5) above, the control device may further include a parameter value determination unit that determines a parameter value of a control parameter used to determine the control value, and a control value determination unit that determines the control value based on the parameter value determined by the parameter value determination unit, the control value determination unit determines the first control value and the second control value, and the control value switching unit may simultaneously hold the first control value and the second control value determined by the control value determination unit, and switch the control value from the held first control value to the held second control value. In this way, the control value switching unit can gradually change the control value of each phase based on the simultaneously held first control value and second control value.
 (7) 上記(6)において、前記パラメータ値決定部は、前記第1接続状態におけるパラメータ値である第1パラメータ値と、前記第2接続状態におけるパラメータ値である第2パラメータ値とを決定し、前記制御値決定部は、前記パラメータ値決定部によって決定された前記第1パラメータ値及び前記第2パラメータ値を同時に保持し、保持した前記第1パラメータ値に基づいて前記第1制御値を決定し、保持した前記第2パラメータ値に基づいて前記第2制御値を決定してもよい。これにより、制御値決定部は、同時に保持した第1パラメータ値及び第2パラメータ値のそれぞれに基づいて、第1制御値及び第2制御値のそれぞれを決定することができる。 (7) In the above (6), the parameter value determination unit may determine a first parameter value that is a parameter value in the first connection state and a second parameter value that is a parameter value in the second connection state, and the control value determination unit may simultaneously hold the first parameter value and the second parameter value determined by the parameter value determination unit, determine the first control value based on the held first parameter value, and determine the second control value based on the held second parameter value. This allows the control value determination unit to determine each of the first control value and the second control value based on each of the first parameter value and second parameter value held simultaneously.
 (8) 上記(1)から(7)のいずれか1つにおいて、前記制御値は、前記巻線に印加する電圧の電圧値であってもよい。これにより、巻線に印加する電圧を漸次変化させることができ、サージ電圧の発生及び電流制御の発振を抑制することができる。 (8) In any one of (1) to (7) above, the control value may be a voltage value of a voltage applied to the winding. This allows the voltage applied to the winding to be gradually changed, and the occurrence of surge voltage and oscillation of current control can be suppressed.
 (9) 本実施形態に係る巻線切替システムは、複数の巻線の接続状態を第1接続状態から第2接続状態へ切り替えることが可能な交流モータと、電源から出力される電力を交流電力に変換し、前記交流電力を前記交流モータに供給する電力変換器と、前記複数の巻線の接続状態を、前記巻線に流れる電流のゼロクロス点において前記第1接続状態から前記第2接続状態へ切り替えるゼロクロス切替を実行する巻線切替装置と、制御装置と、を備え、前記制御装置は、前記巻線切替装置に前記ゼロクロス切替の実行を指令する切替指令部と、前記ゼロクロス切替が実行される際に、前記交流モータを制御するための制御値を、前記第1接続状態に用いられる第1制御値から、前記第2接続状態に用いられる第2制御値へ切り替える制御値切替部と、を含み、前記制御値切替部は、前記制御値を、前記第1制御値から前記第2制御値へ漸次変化させる。これにより、制御値が第1制御値から第2制御値へ急激に変化することを防止することができる。したがって、サージ電圧の発生を抑制し、モータの電流制御の発信を抑制することができる。 (9) The winding switching system according to this embodiment includes an AC motor capable of switching the connection state of a plurality of windings from a first connection state to a second connection state, a power converter that converts power output from a power source into AC power and supplies the AC power to the AC motor, a winding switching device that performs zero-cross switching to switch the connection state of the plurality of windings from the first connection state to the second connection state at a zero-cross point of a current flowing through the windings, and a control device. The control device includes a switching command unit that commands the winding switching device to perform the zero-cross switching, and a control value switching unit that switches a control value for controlling the AC motor from a first control value used in the first connection state to a second control value used in the second connection state when the zero-cross switching is performed, and the control value switching unit gradually changes the control value from the first control value to the second control value. This makes it possible to prevent the control value from changing suddenly from the first control value to the second control value. Therefore, it is possible to suppress the generation of a surge voltage and suppress the transmission of current control of the motor.
 (10) 本実施形態に係る車両は、複数の巻線の接続状態を第1接続状態から第2接続状態へ切り替えることが可能な交流モータと、電源から出力される電力を交流電力に変換し、前記交流電力を前記交流モータに供給する電力変換器と、前記複数の巻線の接続状態を、前記巻線に流れる電流のゼロクロス点において前記第1接続状態から前記第2接続状態へ切り替えるゼロクロス切替を実行する巻線切替装置と、制御装置と、を備え、前記制御装置は、前記巻線切替装置に前記ゼロクロス切替の実行を指令する切替指令部と、前記ゼロクロス切替が実行される際に、前記交流モータを制御するための制御値を、前記第1接続状態に用いられる第1制御値から、前記第2接続状態に用いられる第2制御値へ切り替える制御値切替部と、を含み、前記制御値切替部は、前記制御値を、前記第1制御値から前記第2制御値へ漸次変化させる。これにより、制御値が第1制御値から第2制御値へ急激に変化することを防止することができる。したがって、サージ電圧の発生を抑制し、モータの電流制御の発信を抑制することができる。 (10) The vehicle according to this embodiment includes an AC motor capable of switching the connection state of a plurality of windings from a first connection state to a second connection state, a power converter that converts power output from a power source into AC power and supplies the AC power to the AC motor, a winding switching device that performs zero-cross switching to switch the connection state of the plurality of windings from the first connection state to the second connection state at a zero-cross point of a current flowing through the windings, and a control device. The control device includes a switching command unit that commands the winding switching device to perform the zero-cross switching, and a control value switching unit that switches a control value for controlling the AC motor from a first control value used in the first connection state to a second control value used in the second connection state when the zero-cross switching is performed, and the control value switching unit gradually changes the control value from the first control value to the second control value. This makes it possible to prevent the control value from changing suddenly from the first control value to the second control value. Therefore, it is possible to suppress the generation of a surge voltage and suppress the transmission of current control of the motor.
 (11) 本実施形態に係る制御方法は、複数の巻線の接続状態を第1接続状態から第2接続状態へ切り替えることが可能な交流モータを制御するための制御方法であって、前記複数の巻線の接続状態を切り替える巻線切替装置に、前記巻線に流れる電流のゼロクロス点において前記複数の巻線の接続状態を前記第1接続状態から前記第2接続状態へ切り替えるゼロクロス切替の実行を指令するステップと、前記ゼロクロス切替が実行される際に、前記交流モータを制御するための制御値を、前記第1接続状態に用いられる第1制御値から、前記第2接続状態に用いられる第2制御値へ切り替えるステップと、を含み、前記制御値を切り替えるステップにおいて、前記制御値を、前記第1制御値から前記第2制御値へ漸次変化させる。これにより、制御値が第1制御値から第2制御値へ急激に変化することを防止することができる。したがって、サージ電圧の発生を抑制し、モータの電流制御の発信を抑制することができる。 (11) The control method according to this embodiment is a control method for controlling an AC motor capable of switching the connection state of multiple windings from a first connection state to a second connection state, and includes the steps of: instructing a winding switching device that switches the connection state of the multiple windings to execute zero-cross switching, which switches the connection state of the multiple windings from the first connection state to the second connection state at a zero-cross point of a current flowing through the windings; and, when the zero-cross switching is executed, switching a control value for controlling the AC motor from a first control value used for the first connection state to a second control value used for the second connection state, in which the control value is gradually changed from the first control value to the second control value in the step of switching the control value. This makes it possible to prevent the control value from changing suddenly from the first control value to the second control value. Therefore, it is possible to suppress the generation of a surge voltage and suppress the transmission of current control of the motor.
 (12) 本実施形態に係る制御プログラムは、複数の巻線の接続状態を第1接続状態から第2接続状態へ切り替えることが可能な交流モータを制御するための制御プログラムであって、コンピュータに、前記複数の巻線の接続状態を切り替える巻線切替装置に、前記巻線に流れる電流のゼロクロス点において前記複数の巻線の接続状態を前記第1接続状態から前記第2接続状態へ切り替えるゼロクロス切替の実行を指令するステップと、前記ゼロクロス切替が実行される際に、前記交流モータを制御するための制御値を、前記第1接続状態に用いられる第1制御値から、前記第2接続状態に用いられる第2制御値へ切り替えるステップと、を実行させ、前記制御値を切り替えるステップにおいて、前記制御値を、前記第1制御値から前記第2制御値へ漸次変化させる。これにより、制御値が第1制御値から第2制御値へ急激に変化することを防止することができる。したがって、サージ電圧の発生を抑制し、モータの電流制御の発信を抑制することができる。 (12) The control program according to this embodiment is a control program for controlling an AC motor capable of switching the connection state of multiple windings from a first connection state to a second connection state, and causes a computer to execute the steps of instructing a winding switching device that switches the connection state of the multiple windings to execute zero-cross switching, which switches the connection state of the multiple windings from the first connection state to the second connection state at a zero-cross point of a current flowing through the windings, and switching a control value for controlling the AC motor from a first control value used for the first connection state to a second control value used for the second connection state when the zero-cross switching is executed, and in the step of switching the control value, the control value is gradually changed from the first control value to the second control value. This makes it possible to prevent the control value from changing suddenly from the first control value to the second control value. Therefore, it is possible to suppress the generation of a surge voltage and suppress the transmission of current control of the motor.
 本開示は、上記のような特徴的な構成を備える制御装置、制御装置を備える巻線切替システム、制御装置を備える車両、制御装置における特徴的な処理をステップとする制御方法、及び特徴的な処理をコンピュータに実行させるための制御プログラムとして実現することができるだけでなく、制御装置の一部又は全部を実現する半導体集積回路として実現することができる。 The present disclosure can be realized not only as a control device having the above-mentioned characteristic configuration, a winding switching system including a control device, a vehicle including a control device, a control method having steps corresponding to characteristic processes in the control device, and a control program for causing a computer to execute the characteristic processes, but also as a semiconductor integrated circuit that realizes part or all of the control device.
 <本開示の実施形態の詳細>
 以下、図面を参照しつつ、本発明の実施形態の詳細を説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
<Details of the embodiment of the present disclosure>
Hereinafter, the details of the embodiments of the present invention will be described with reference to the drawings. Note that at least some of the embodiments described below may be combined in any desired manner.
[1.第1実施形態]
[1-1.巻線切替システム]
 図1は、第1実施形態に係る巻線切替システムの構成の一例を示す図である。
[1. First embodiment]
[1-1. Winding switching system]
FIG. 1 is a diagram illustrating an example of the configuration of a winding switching system according to the first embodiment.
 巻線切替システム10は、電気自動車、プラグインハイブリッド車等のモータで推進する車両(以下、「電動車」という)に搭載される。巻線切替システム10は、モータ20と、電力変換器30と、バッテリ40と、制御装置50と、巻線切替装置100とを含む。 The winding switching system 10 is mounted on a vehicle (hereinafter referred to as an "electric vehicle") that is propelled by a motor, such as an electric vehicle or a plug-in hybrid vehicle. The winding switching system 10 includes a motor 20, a power converter 30, a battery 40, a control device 50, and a winding switching device 100.
 モータ20は、電動車の推進力を発生する走行用のモータである。モータ20は、三相交流電力によって駆動される。モータ20の一例は、永久磁石同期モータである。 The motor 20 is a driving motor that generates propulsive force for the electric vehicle. The motor 20 is driven by three-phase AC power. One example of the motor 20 is a permanent magnet synchronous motor.
 モータ20の出力軸には、位置センサ26が設けられている。位置センサ26は、モータ20の出力軸の回転角度を検出する。位置センサ26は、例えば、ロータリエンコーダ、ロータリーポテンショメータである。位置センサ26は、信号線によって制御装置50に接続されている。位置センサ26の検出信号は、制御装置50に出力される。 A position sensor 26 is provided on the output shaft of the motor 20. The position sensor 26 detects the rotation angle of the output shaft of the motor 20. The position sensor 26 is, for example, a rotary encoder or a rotary potentiometer. The position sensor 26 is connected to the control device 50 by a signal line. The detection signal of the position sensor 26 is output to the control device 50.
 バッテリ40は、モータ20を駆動するための電力を供給するための電池である。バッテリ40は、二次電池であり、例えばリチウムイオンバッテリである。 The battery 40 is a battery that supplies power to drive the motor 20. The battery 40 is a secondary battery, for example a lithium ion battery.
 電力変換器30は、バッテリ40から供給される直流電力を三相交流電力に変換するインバータである。電力変換器30は、モータ20が発電機として機能したときに出力する三相交流電力を直流電力に変換し、バッテリ40を充電する機能を有してもよい。 The power converter 30 is an inverter that converts DC power supplied from the battery 40 into three-phase AC power. The power converter 30 may also have the function of converting the three-phase AC power output when the motor 20 functions as a generator into DC power and charging the battery 40.
 電力変換器30は、U相、V相、及びW相それぞれのレグを含む。U相のレグは、スイッチ31u,32uを含み、V相のレグは、スイッチ31v,32vを含み、W相のレグは、スイッチ31w,32wを含む。スイッチ31u,32u,31v,32v,31w,32wがスイッチングを行うことにより、直流電力が三相交流電力に変換される。スイッチ31u,32u,31v,32v,31w,32wは、例えば、IGBT(Insulated Gate Bipolar Transistor)又はパワーMOSFET(Metal Oxide Semiconductor Field-Effect Transistor)である。 The power converter 30 includes legs for the U, V, and W phases. The U-phase leg includes switches 31u and 32u, the V-phase leg includes switches 31v and 32v, and the W-phase leg includes switches 31w and 32w. The switches 31u, 32u, 31v, 32v, 31w, and 32w perform switching to convert DC power into three-phase AC power. The switches 31u, 32u, 31v, 32v, 31w, and 32w are, for example, IGBTs (Insulated Gate Bipolar Transistors) or power MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors).
 U相のレグからは、U相に対応する電力線35uが延び、V相のレグからは、V相に対応する電力線35vが延び、W相のレグからは、W相に対応する電力線35wが延びている。電力変換器30において、電力線35uには電流センサ33uが設けられ、電力線35vには電流センサ33vが設けられ、電力線35wには電流センサ33wが設けられる。電流センサ33uは、U相の電流Iuの電流値を検出する。電流センサ33vは、V相の電流Ivの電流値を検出する。電流センサ33wは、W相の電流Iwの電流値を検出する。電流センサ33u,33v,33wは、直流成分及び交流成分を含め、電力線35u,35v,35wに流れる電流Iu,Iv,Iwの電流値を検出することができる。電流センサ33u,33v,33wは、例えば、DCCT(直流カレントトランス)又はシャント抵抗である。 Power line 35u corresponding to U phase extends from the U phase leg, power line 35v corresponding to V phase extends from the V phase leg, and power line 35w corresponding to W phase extends from the W phase leg. In power converter 30, current sensor 33u is provided on power line 35u, current sensor 33v is provided on power line 35v, and current sensor 33w is provided on power line 35w. Current sensor 33u detects the current value of current Iu of U phase. Current sensor 33v detects the current value of current Iv of V phase. Current sensor 33w detects the current value of current Iw of W phase. Current sensors 33u, 33v, 33w can detect the current values of currents Iu, Iv, Iw flowing in power lines 35u, 35v, 35w, including DC and AC components. The current sensors 33u, 33v, and 33w are, for example, DCCTs (direct current transformers) or shunt resistors.
 電流センサ33u,33v,33wは、信号線によって制御装置50に接続されている。電流センサ33u,33v,33wの検出値は、制御装置50に出力される。 Current sensors 33u, 33v, and 33w are connected to the control device 50 by signal lines. The detection values of current sensors 33u, 33v, and 33w are output to the control device 50.
 巻線切替装置100は、モータ20と電力変換器30との間に配置される。ただし、巻線切替装置100の位置は、モータ20と電力変換器30との間に限られない。電力変換器30と巻線切替装置100とは電力線35u,35v,35wによって接続されており、巻線切替装置100とモータ20とは複数の電力線25によって接続されている。巻線切替装置100は、モータ20の複数の巻線の接続状態を切り替える。巻線切替装置100の構成については後述する。電力変換器30から出力される三相交流電流は、巻線切替装置100を経由してモータ20に供給される。 The winding switching device 100 is disposed between the motor 20 and the power converter 30. However, the position of the winding switching device 100 is not limited to between the motor 20 and the power converter 30. The power converter 30 and the winding switching device 100 are connected by power lines 35u, 35v, and 35w, and the winding switching device 100 and the motor 20 are connected by a plurality of power lines 25. The winding switching device 100 switches the connection state of the multiple windings of the motor 20. The configuration of the winding switching device 100 will be described later. The three-phase AC current output from the power converter 30 is supplied to the motor 20 via the winding switching device 100.
 制御装置50は、電力変換器30及び巻線切替装置100を制御する。具体的には、制御装置50からスイッチ31u,32u,31v,32v,31w,32wのそれぞれに信号線が延びており、制御装置50はスイッチ31u,32u,31v,32v,31w,32wのオン/オフタイミングを制御する。制御装置50から巻線切替装置100に信号線が延びており、制御装置50は巻線切替装置100へ巻線の接続状態の切替を指令するための切替指令信号を出力する。 The control device 50 controls the power converter 30 and the winding switching device 100. Specifically, signal lines extend from the control device 50 to each of the switches 31u, 32u, 31v, 32v, 31w, and 32w, and the control device 50 controls the on/off timing of the switches 31u, 32u, 31v, 32v, 31w, and 32w. A signal line extends from the control device 50 to the winding switching device 100, and the control device 50 outputs a switching command signal to command the winding switching device 100 to switch the connection state of the windings.
[1-2.巻線切替装置の構成]
 図2は、第1実施形態に係る巻線切替装置の構成の一例を示す回路図である。モータ20は、複数の巻線21u,22u,21v,22v,21w,22wを含む。巻線21u,22uはU相に対応し、巻線21v,22vはV相に対応し、巻線21w,22wはW相に対応する。ただし、各相の巻線数は2つに限られず、3以上であってもよい。巻線22u,22v,22wは、中性点23において接続されている。
[1-2. Configuration of the winding switching device]
2 is a circuit diagram showing an example of the configuration of the winding switching device according to the first embodiment. The motor 20 includes a plurality of windings 21u, 22u, 21v, 22v, 21w, and 22w. The windings 21u and 22u correspond to the U phase, the windings 21v and 22v correspond to the V phase, and the windings 21w and 22w correspond to the W phase. However, the number of windings for each phase is not limited to two, and may be three or more. The windings 22u, 22v, and 22w are connected at a neutral point 23.
 巻線切替装置100は、相毎に、巻線21u,22u,21v,22v,21w,22wの接続状態を、直列接続状態及び並列接続状態の間で切り替える。巻線切替装置100は、電流センサ101u,101v,101wと、ゼロクロス検出回路102u,102v,102wと、制御回路103u,103v,103wと、切替回路104u,104v,104wとを含む。 The winding switching device 100 switches the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w for each phase between a series connection state and a parallel connection state. The winding switching device 100 includes current sensors 101u, 101v, and 101w, zero- cross detection circuits 102u, 102v, and 102w, control circuits 103u, 103v, and 103w, and switching circuits 104u, 104v, and 104w.
 ゼロクロス検出回路102u,102v,102wは、電流センサ101u,101v,101wの計測値のゼロクロス点(電流センサ101u,101v,101wから出力されるAC信号がゼロ基準電圧と交差する時点)を検出する。さらに具体的な一例では、ゼロクロス検出回路102u,102v,102wは、電流センサ101u,101v,101wからの出力電圧とゼロ電圧とを比較し、電流センサ101u,101v,101wからの出力電圧がゼロ電圧と一致した時点をゼロクロス点として検出する。ゼロ電圧は、基準電圧の一例である。基準電圧は、巻線21u,22u,21v,22v,21w,22wに流れる電流がゼロ電流となるときの電流センサ101u,101v,101wの出力電圧に対応する電圧であり、ゼロ電圧に限られない。ゼロクロス検出回路102u,102v,102wは、検出部の一例である。 The zero- cross detection circuits 102u, 102v, and 102w detect the zero-cross point (the point at which the AC signal output from the current sensors 101u, 101v, and 101w crosses the zero reference voltage) of the measurement value of the current sensors 101u, 101v, and 101w. In a more specific example, the zero- cross detection circuits 102u, 102v, and 102w compare the output voltage from the current sensors 101u, 101v, and 101w with zero voltage, and detect the point at which the output voltage from the current sensors 101u, 101v, and 101w matches the zero voltage as the zero-cross point. The zero voltage is an example of a reference voltage. The reference voltage is a voltage corresponding to the output voltage of the current sensors 101u, 101v, and 101w when the current flowing through the windings 21u, 22u, 21v, 22v, 21w, and 22w becomes zero current, and is not limited to zero voltage. The zero- cross detection circuits 102u, 102v, and 102w are examples of a detection unit.
 切替回路104u,104v,104wは、ゼロクロス検出回路102u,102v,102wがゼロクロス点を検出したタイミングで巻線21u,22u,21v,22v,21w,22wの接続状態を直列接続状態と並列接続状態との間で切り替える。切替回路104u,104v,104wは、切替部の一例である。直列接続状態は第1接続状態の一例であり、並列接続状態は第2接続状態の一例である。 The switching circuits 104u, 104v, and 104w switch the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w between a series connection state and a parallel connection state when the zero- cross detection circuits 102u, 102v, and 102w detect a zero-cross point. The switching circuits 104u, 104v, and 104w are an example of a switching unit. The series connection state is an example of a first connection state, and the parallel connection state is an example of a second connection state.
 以下、U相について、巻線切替装置100と、電力線35uと、モータ20との接続関係を代表して説明する。V相及びW相については同様であるので、説明を省略する。 Below, the connection relationship between the winding switching device 100, the power line 35u, and the motor 20 will be explained for the U phase. The same applies to the V and W phases, so the explanation will be omitted.
 電力線35uは、巻線21uの一端に接続されている。巻線21uの他端からは電力線212uが延びている。巻線22uの一端からは電力線221uが延びており、他端からは電力線222uが延びている。 Power line 35u is connected to one end of winding 21u. Power line 212u extends from the other end of winding 21u. Power line 221u extends from one end of winding 22u, and power line 222u extends from the other end.
 切替回路104uは、半導体リレー111u,112u及び113uを含む。半導体リレー111u,112u,113uは、例えばIGBT又はパワーMOSFETである。 The switching circuit 104u includes semiconductor relays 111u, 112u, and 113u. The semiconductor relays 111u, 112u, and 113u are, for example, IGBTs or power MOSFETs.
 電力線35uは、巻線切替装置100の内部に引き込まれる。巻線切替装置100内において、電力線35uは中間点で分岐し、半導体リレー111uの第1端子に接続されている。半導体リレー111uの第2端子は、半導体リレー112uの第1端子に接続されている。半導体リレー111uの第2端子と半導体リレー112uの第1端子の間の接続点には、巻線22uから延びる電力線221uが接続されている。 The power line 35u is drawn into the winding switching device 100. Inside the winding switching device 100, the power line 35u branches at a midpoint and is connected to a first terminal of a semiconductor relay 111u. The second terminal of the semiconductor relay 111u is connected to a first terminal of a semiconductor relay 112u. A power line 221u extending from the winding 22u is connected to the connection point between the second terminal of the semiconductor relay 111u and the first terminal of the semiconductor relay 112u.
 半導体リレー112uの第2端子は、半導体リレー113uの第1端子に接続されている。半導体リレー112uの第2端子と半導体リレー113uの第1端子の間の接続点には、巻線21uから延びる電力線212uが接続されている。半導体リレー113uの第2端子は、巻線22uから延びる電力線222uが接続されている。 The second terminal of the semiconductor relay 112u is connected to the first terminal of the semiconductor relay 113u. A power line 212u extending from the winding 21u is connected to the connection point between the second terminal of the semiconductor relay 112u and the first terminal of the semiconductor relay 113u. A power line 222u extending from the winding 22u is connected to the second terminal of the semiconductor relay 113u.
 半導体リレー111u及び113uがオフ状態であり、半導体リレー112uがオン状態である場合、巻線21u及び22uは直列接続される。半導体リレー111u及び113uがオン状態であり、半導体リレー112uがオフ状態である場合、巻線21u及び22uは並列接続される。 When the semiconductor relays 111u and 113u are in the OFF state and the semiconductor relay 112u is in the ON state, the windings 21u and 22u are connected in series. When the semiconductor relays 111u and 113u are in the ON state and the semiconductor relay 112u is in the OFF state, the windings 21u and 22u are connected in parallel.
 半導体リレー111u,112u,113uのゲート端子のそれぞれには、制御回路103uから延びる信号線が接続されている。 A signal line extending from the control circuit 103u is connected to each of the gate terminals of the semiconductor relays 111u, 112u, and 113u.
 電力線212u,221u,222uは、モータ20から延び、巻線切替装置100の内部に引き込まれている。電力線221uには、電流センサ101uが取り付けられている。ただし、電流センサ101uは、電力線221uではなく、電力線35u,212u又は222uに取り付けられてもよい。電流センサ101uは、電力線221uに流れるU相の電流を検出する。電流センサ101uは、例えば、電流の交流成分のみを検出するACCTである。 The power lines 212u, 221u, and 222u extend from the motor 20 and are drawn into the winding switching device 100. A current sensor 101u is attached to the power line 221u. However, the current sensor 101u may be attached to the power lines 35u, 212u, or 222u instead of the power line 221u. The current sensor 101u detects the U-phase current flowing through the power line 221u. The current sensor 101u is, for example, an ACCT that detects only the AC component of the current.
 電流センサ101uから延びる信号線は、ゼロクロス検出回路102uに接続されている。ゼロクロス検出回路102uの出力信号(以下、「ゼロクロス検出信号」という)を伝送する信号線がゼロクロス検出回路102uから制御回路103uまで延びている。さらに、制御装置50から延びる信号線が、制御回路103uに接続されている。 The signal line extending from the current sensor 101u is connected to the zero-cross detection circuit 102u. A signal line transmitting the output signal of the zero-cross detection circuit 102u (hereinafter referred to as the "zero-cross detection signal") extends from the zero-cross detection circuit 102u to the control circuit 103u. Furthermore, a signal line extending from the control device 50 is connected to the control circuit 103u.
 ゼロクロス検出回路102uは、電力線221uに流れる巻線電流の電流センサ101uによる計測値のゼロクロス点を検出する。ゼロクロス検出回路102uは、コンパレータである。例えば、コンパレータの反転入力がゼロ基準電圧に設定され、電流センサ101uの出力信号が非反転入力に印加される。これにより、電流センサ101uから出力されるAC信号がゼロ基準電圧と交差するゼロクロス点で、コンパレータの出力がLowからHighへ変化する。 The zero-cross detection circuit 102u detects the zero-cross point of the measurement value by the current sensor 101u of the winding current flowing through the power line 221u. The zero-cross detection circuit 102u is a comparator. For example, the inverting input of the comparator is set to a zero reference voltage, and the output signal of the current sensor 101u is applied to the non-inverting input. As a result, at the zero-cross point where the AC signal output from the current sensor 101u crosses the zero reference voltage, the output of the comparator changes from low to high.
 図3は、制御回路103uの構成の一例を示す回路図である。制御回路103uは、AND回路131,133と、NOT回路132と、ラッチ回路120とを含む。AND回路131の第1入力端子及びAND回路133の第1入力端子には、ゼロクロス検出回路102uから延びる信号線が接続されている。AND回路131の第2入力端子には、制御装置50から延びる信号線が接続されている。さらに、制御装置50からの信号線は、NOT回路132の入力端子に接続されている。NOT回路132の出力端子から延びる信号線は、AND回路133の第2入力端子に接続されている。 FIG. 3 is a circuit diagram showing an example of the configuration of the control circuit 103u. The control circuit 103u includes AND circuits 131 and 133, a NOT circuit 132, and a latch circuit 120. A signal line extending from the zero-cross detection circuit 102u is connected to a first input terminal of the AND circuit 131 and a first input terminal of the AND circuit 133. A signal line extending from the control device 50 is connected to a second input terminal of the AND circuit 131. Furthermore, the signal line from the control device 50 is connected to an input terminal of the NOT circuit 132. A signal line extending from the output terminal of the NOT circuit 132 is connected to a second input terminal of the AND circuit 133.
 ラッチ回路120は、RSフリップフロップである。AND回路131の出力端子は、RSフリップフロップ120の入力S(セット)に接続されている。AND回路133の出力端子は、RSフリップフロップ120の入力R(リセット)に接続されている。RSフリップフロップ120は、2つのNOT回路121,123と、2つのNAND回路122,124とを含む。ただし、RSフリップフロップ120は、2つのNOR回路によって構成されてもよい。 The latch circuit 120 is an RS flip-flop. The output terminal of the AND circuit 131 is connected to the input S (set) of the RS flip-flop 120. The output terminal of the AND circuit 133 is connected to the input R (reset) of the RS flip-flop 120. The RS flip-flop 120 includes two NOT circuits 121 and 123 and two NAND circuits 122 and 124. However, the RS flip-flop 120 may also be composed of two NOR circuits.
 RSフリップフロップ120の出力Qは、半導体リレー111u及び113uのゲートに接続されている。RSフリップフロップ120の出力Qバーは、半導体リレー112uのゲートに接続されている。 The output Q of the RS flip-flop 120 is connected to the gates of the semiconductor relays 111u and 113u. The output Q bar of the RS flip-flop 120 is connected to the gate of the semiconductor relay 112u.
 RSフリップフロップ120の出力Qから出力される信号がLowであり、且つ、RSフリップフロップ120の出力Qバーから出力される信号がHighであるときには、半導体リレー111u及び113uがオフ状態であり、且つ、半導体リレー112uがオン状態である。つまり、このとき、巻線21u,22uは直列接続状態である。RSフリップフロップ120の出力Qから出力される信号がHighであり、且つ、RSフリップフロップ120の出力Qバーから出力される信号がLowであるときには、半導体リレー111u及び113uがオン状態であり、且つ、半導体リレー112uがオフ状態である。つまり、このとき、巻線21u,22uは並列接続状態である。RSフリップフロップ120の出力Qから出力される信号がLowからHighに切り替わり、且つ、RSフリップフロップ120の出力Qバーから出力される信号がHighからLowに切り替わると、半導体リレー111u及び113uがオフ状態からオン状態に切り替わり、且つ、半導体リレー112uがオン状態からオフ状態に切り替わる。つまり、巻線21u,22uは直列接続状態から並列接続状態に切り替わる。RSフリップフロップ120の出力Qから出力される信号がHighからLowに切り替わり、且つ、RSフリップフロップ120の出力Qバーから出力される信号がLowからHighに切り替わると、半導体リレー111u及び113uがオン状態からオフ状態に切り替わり、且つ、半導体リレー112uがオフ状態からオン状態に切り替わる。つまり、巻線21u,22uは並列接続状態から直列接続状態に切り替わる。 When the signal output from output Q of RS flip-flop 120 is low and the signal output from output Q bar of RS flip-flop 120 is high, semiconductor relays 111u and 113u are in the off state and semiconductor relay 112u is in the on state. In other words, at this time, windings 21u, 22u are in a series connection state. When the signal output from output Q of RS flip-flop 120 is high and the signal output from output Q bar of RS flip-flop 120 is low, semiconductor relays 111u and 113u are in the on state and semiconductor relay 112u is in the off state. In other words, at this time, windings 21u, 22u are in a parallel connection state. When the signal output from the output Q of the RS flip-flop 120 switches from Low to High and the signal output from the output Q bar of the RS flip-flop 120 switches from High to Low, the semiconductor relays 111u and 113u switch from OFF to ON, and the semiconductor relay 112u switches from ON to OFF. That is, the windings 21u and 22u switch from a serial connection state to a parallel connection state. When the signal output from the output Q of the RS flip-flop 120 switches from High to Low and the signal output from the output Q bar of the RS flip-flop 120 switches from Low to High, the semiconductor relays 111u and 113u switch from ON to OFF, and the semiconductor relay 112u switches from OFF to ON. In other words, windings 21u and 22u switch from a parallel connection state to a series connection state.
[1-3.巻線切替装置のゼロクロス切替]
 次に、巻線切替装置100のゼロクロス切替について説明する。ゼロクロス切替は、巻線電流Iu,Iv,Iwのゼロクロス点において巻線21u,22u,21v,22v,21w,22wの接続状態を直列接続状態と並列接続状態との間で切り替える動作である。なお、以下では、U相についての巻線21u,22uの接続状態の切替動作を代表して説明する。V相及びW相については同様であるので、説明を省略する。
[1-3. Zero-cross switching of winding switching device]
Next, the zero-cross switching of the winding switching device 100 will be described. The zero-cross switching is an operation for switching the connection states of the windings 21u, 22u, 21v, 22v, 21w, and 22w between a series connection state and a parallel connection state at the zero-cross points of the winding currents Iu, Iv, and Iw. Note that the following description will be given representatively of the switching operation of the connection states of the windings 21u and 22u for the U phase. The same applies to the V and W phases, and therefore the description will be omitted.
 図4は、第1実施形態に係る巻線切替装置100の各信号の状態の遷移の一例を示すタイミングチャートである。 FIG. 4 is a timing chart showing an example of the transition of the states of the signals of the winding switching device 100 according to the first embodiment.
 電流センサ101uは、電力線221uに流れる巻線電流Iuを計測する。ゼロクロス検出回路102uは、巻線電流Iuの計測値のゼロクロス点を検出する。すなわち、ゼロクロス検出回路102uから出力されるゼロクロス検出信号は、巻線電流Iuがゼロではない場合にLowであり、巻線電流Iuがゼロになった時点でHighになる。図4では、ゼロクロス検出信号は通常時にLowであり、時刻T1,T2,T3,T4においてHighである。 The current sensor 101u measures the winding current Iu flowing through the power line 221u. The zero-cross detection circuit 102u detects the zero-cross points of the measured value of the winding current Iu. That is, the zero-cross detection signal output from the zero-cross detection circuit 102u is low when the winding current Iu is not zero, and becomes high when the winding current Iu becomes zero. In FIG. 4, the zero-cross detection signal is low under normal conditions, and is high at times T1, T2, T3, and T4.
 制御装置50は、モータ20の巻線21u,22u,21v,22v,21w,22wを直列接続する場合には、切替指令信号の値をLowにし、巻線21u,22u,21v,22v,21w,22wを並列接続する場合には、切替指令信号の値をHighにする。図4では、切替指令信号は初期状態においてLowであり、時刻T1とT2との間のある時点でHighに変化する。切替指令信号は、時刻T3とT4との間のある時点で再びLowに変化する。 When windings 21u, 22u, 21v, 22v, 21w, and 22w of motor 20 are connected in series, control device 50 sets the value of the switching command signal to Low, and when windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in parallel, control device 50 sets the value of the switching command signal to High. In FIG. 4, the switching command signal is Low in the initial state and changes to High at a point between times T1 and T2. The switching command signal changes again to Low at a point between times T3 and T4.
 ゼロクロス検出信号及び切替指令信号は、AND回路131に入力される。AND回路131は、ゼロクロス検出信号及び切替指令信号が(Low,Low)、(Low,High)、及び(High,Low)の組み合わせの場合にはLowを出力する。AND回路131は、ゼロクロス検出信号及び切替指令信号が(High,High)の組み合わせの場合にはHighを出力する。すなわち、RSフリップフロップ120のSには、通常時にLowが入力され、巻線電流Iuのゼロクロス点が検出され、且つ、巻線21u,22u,21v,22v,21w,22wの並列接続指令が与えられた場合に、Highが入力される。図4では、時刻T2及びT3において、Sの入力信号がHighである。 The zero-cross detection signal and the switching command signal are input to the AND circuit 131. The AND circuit 131 outputs Low when the zero-cross detection signal and the switching command signal are a combination of (Low, Low), (Low, High), and (High, Low). The AND circuit 131 outputs High when the zero-cross detection signal and the switching command signal are a combination of (High, High). That is, Low is normally input to S of the RS flip-flop 120, and High is input when a zero-cross point of the winding current Iu is detected and a parallel connection command for the windings 21u, 22u, 21v, 22v, 21w, and 22w is given. In FIG. 4, the input signal to S is High at times T2 and T3.
 ゼロクロス検出信号と、切替指令信号の反転信号(NOT回路132による出力信号)が、AND回路133に入力される。AND回路133は、ゼロクロス検出信号及び切替指令信号が(Low,Low)、(High,Low)、及び(High,High)の組み合わせの場合にはLowを出力する。AND回路133は、ゼロクロス検出信号及び切替指令信号が(High,Low)の組み合わせの場合にはHighを出力する。すなわち、RSフリップフロップ120のRには、通常時にLowが入力され、巻線電流Iuのゼロクロス点が検出され、且つ、巻線21u,22u,21v,22v,21w,22wの直列接続指令が与えられた場合に、Highが入力される。図4では、時刻T1及びT4において、Rの入力信号がHighである。 The zero-cross detection signal and the inverted signal of the switching command signal (the output signal of the NOT circuit 132) are input to the AND circuit 133. The AND circuit 133 outputs Low when the zero-cross detection signal and the switching command signal are combinations of (Low, Low), (High, Low), and (High, High). The AND circuit 133 outputs High when the zero-cross detection signal and the switching command signal are combinations of (High, Low). That is, Low is normally input to R of the RS flip-flop 120, and High is input when a zero-cross point of the winding current Iu is detected and a series connection command for the windings 21u, 22u, 21v, 22v, 21w, and 22w is given. In FIG. 4, the input signal of R is High at times T1 and T4.
 RSフリップフロップ120は、入力S,RがLow,Lowの場合にQ,Qバーのそれまでの出力値を保持する。RSフリップフロップ120は、入力S,RがLow,Highの場合にQ,QバーがLow,Highを出力し、入力S,RがHigh,Lowの場合にQ,QバーがHigh,Lowを出力する。RSフリップフロップ120では、入力S,RがHigh,Highの組み合わせは禁止されている。 RS flip-flop 120 holds the previous output values of Q and Q-bar when inputs S and R are Low and Low. When inputs S and R are Low and High, RS flip-flop 120 outputs Q and Q-bar as Low and High, and when inputs S and R are High and Low, Q and Q-bar as High and Low. In RS flip-flop 120, the combination of High and High inputs S and R is prohibited.
 図4の例では、時刻T2まではQがLowであり、QバーがHighである。したがって、時刻T2までは半導体リレー111u及び113uがオフ状態であり、半導体リレー112uがオン状態である。このため、巻線21u及び22uが直列接続される。 In the example of FIG. 4, Q is low and Q bar is high until time T2. Therefore, until time T2, semiconductor relays 111u and 113u are in the off state, and semiconductor relay 112u is in the on state. Therefore, windings 21u and 22u are connected in series.
 時刻T2が到来すると、QがLowからHighに変化し、QバーがHighからLowに変化する。したがって、半導体リレー111u及び113uがオフ状態からオン状態に変化し、半導体リレー112uがオン状態からオフ状態に変化する。このため、巻線21u及び22uの接続状態が直列接続状態から並列接続状態に切り替わる。 When time T2 arrives, Q changes from low to high, and Q bar changes from high to low. Therefore, semiconductor relays 111u and 113u change from the off state to the on state, and semiconductor relay 112u changes from the on state to the off state. As a result, the connection state of windings 21u and 22u switches from a series connection state to a parallel connection state.
 時刻T2からT4まではQがHighであり、QバーがLowである。したがって、時刻T2からT4までは半導体リレー111u及び113uがオン状態を維持し、半導体リレー112uがオフ状態を維持する。このため、巻線21u及び22uの接続状態が並列接続状態で保持される。 From time T2 to T4, Q is High and Q bar is Low. Therefore, from time T2 to T4, semiconductor relays 111u and 113u maintain the ON state, and semiconductor relay 112u maintains the OFF state. Therefore, the connection state of windings 21u and 22u is maintained in a parallel connection state.
 時刻T4が到来すると、QがHighからLowに変化し、QバーがLowからHighに変化する。したがって、半導体リレー111u及び113uがオン状態からオフ状態に変化し、半導体リレー112uがオフ状態からオン状態に変化する。このため、巻線21u及び22uの接続状態が並列接続状態から直列接続状態に切り替わる。 When time T4 arrives, Q changes from High to Low, and Q bar changes from Low to High. Therefore, semiconductor relays 111u and 113u change from the ON state to the OFF state, and semiconductor relay 112u changes from the OFF state to the ON state. As a result, the connection state of windings 21u and 22u switches from a parallel connection state to a series connection state.
 時刻T4以降はQがLowであり、QバーがHighである。したがって、時刻T2までは半導体リレー111u及び113uがオフ状態を維持し、半導体リレー112uがオン状態を維持する。このため、巻線21u及び22uの接続状態が直列接続状態で保持される。 After time T4, Q is low and Q bar is high. Therefore, until time T2, semiconductor relays 111u and 113u maintain the off state, and semiconductor relay 112u maintains the on state. Therefore, the connection state of windings 21u and 22u is maintained in a series connection state.
 以上より、巻線電流Iu,Iv,Iwのゼロクロス点のタイミングで、巻線21u,22u,21v,22v,21w,22wの接続状態を直列接続状態と並列接続状態との間で切り替えることができる。したがって、サージ電圧の発生が抑制される。さらに、巻線電流Iu,Iv,Iwが所定値以下となっている期間を特定するような複雑な処理が必要なく、CPU、FPGA、ASIC等のプロセッサを用いずに巻線切替装置100を構成することができる。 As described above, the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w can be switched between a series connection state and a parallel connection state at the timing of the zero-crossing points of the winding currents Iu, Iv, and Iw. Therefore, the occurrence of surge voltages is suppressed. Furthermore, there is no need for complex processing to identify the period during which the winding currents Iu, Iv, and Iw are below a predetermined value, and the winding switching device 100 can be configured without using a processor such as a CPU, FPGA, or ASIC.
[1-4.制御装置のハードウェア構成]
 図5は、第1実施形態に係る制御装置のハードウェア構成の一例を示すブロック図である。制御装置50は、プロセッサ501と、不揮発性メモリ502と、揮発性メモリ503と、インタフェース(I/F)504とを含む。
[1-4. Hardware configuration of the control device]
5 is a block diagram showing an example of a hardware configuration of the control device according to the first embodiment. The control device 50 includes a processor 501, a non-volatile memory 502, a volatile memory 503, and an interface (I/F) 504.
 揮発性メモリ503は、例えばSRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)等の半導体メモリである。不揮発性メモリ502は、例えばフラッシュメモリ、ハードディスク、ROM(Read Only Memory)等である。不揮発性メモリ502には、コンピュータプログラムであるモータ制御プログラム510及びモータ制御プログラム510の実行に使用されるデータが格納される。制御装置50の各機能は、モータ制御プログラム510がプロセッサ501によって実行されることで発揮される。モータ制御プログラム510は、フラッシュメモリ、ROM、CD-ROMなどの記録媒体に記憶させることができる。プロセッサ501は、モータ制御プログラム510によって、電力変換器30及び巻線切替装置100を制御する。 The volatile memory 503 is, for example, a semiconductor memory such as SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory). The non-volatile memory 502 is, for example, a flash memory, a hard disk, or a ROM (Read Only Memory). The non-volatile memory 502 stores a motor control program 510, which is a computer program, and data used to execute the motor control program 510. Each function of the control device 50 is achieved by the motor control program 510 being executed by the processor 501. The motor control program 510 can be stored in a recording medium such as a flash memory, a ROM, or a CD-ROM. The processor 501 controls the power converter 30 and the winding switching device 100 using the motor control program 510.
 プロセッサ501は、例えばCPU(Central Processing Unit)である。ただし、プロセッサ501は、CPUに限られない。プロセッサ501は、GPU(Graphics Processing Unit)であってもよい。プロセッサ501は、例えば、マルチコアプロセッサである。プロセッサ501は、シングルコアプロセッサであってもよい。プロセッサ501は、例えば、ASIC(Application Specific Integrated Circuit)であってもよいし、ゲートアレイ、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスであってもよい。この場合、ASIC又はプログラマブルロジックデバイスは、モータ制御プログラム510と同一の処理を実行可能に構成される。 The processor 501 is, for example, a CPU (Central Processing Unit). However, the processor 501 is not limited to a CPU. The processor 501 may be a GPU (Graphics Processing Unit). The processor 501 is, for example, a multi-core processor. The processor 501 may be a single-core processor. The processor 501 may be, for example, an ASIC (Application Specific Integrated Circuit), or a programmable logic device such as a gate array or an FPGA (Field Programmable Gate Array). In this case, the ASIC or the programmable logic device is configured to be capable of executing the same processing as the motor control program 510.
 I/F504は、巻線切替装置100及び電力変換器30に接続されている。I/F504は、例えば入出力インタフェース又は通信インタフェースである。例えば、I/F504は、電力変換器30に設けられた電流センサ33u,33v,33wに接続されており、U相の電流Iuの電流値、V相の電流Ivの電流値、及びW相の電流Iwの電流値を取得することができる。例えば、I/F504は、電力変換器30のスイッチ31u,32u,31v,32v,31w,32wのそれぞれに接続されており、スイッチ31u,32u,31v,32v,31w,32wをオン/オフ制御することができる。例えば、I/F504は、巻線切替装置100の制御回路103u,103v,103wに接続されており、制御回路103u,103v,103wへ切替指令信号を出力することができる。 The I/F 504 is connected to the winding switching device 100 and the power converter 30. The I/F 504 is, for example, an input/output interface or a communication interface. For example, the I/F 504 is connected to the current sensors 33u, 33v, and 33w provided in the power converter 30, and can acquire the current value of the U-phase current Iu, the current value of the V-phase current Iv, and the current value of the W-phase current Iw. For example, the I/F 504 is connected to each of the switches 31u, 32u, 31v, 32v, 31w, and 32w of the power converter 30, and can control the on/off of the switches 31u, 32u, 31v, 32v, 31w, and 32w. For example, the I/F 504 is connected to the control circuits 103u, 103v, and 103w of the winding switching device 100, and can output a switching command signal to the control circuits 103u, 103v, and 103w.
[1-5.制御装置の機能]
 図6は、第1実施形態に係る制御装置の機能の一例を示す機能ブロック図である。
[1-5. Functions of the control device]
FIG. 6 is a functional block diagram illustrating an example of functions of the control device according to the first embodiment.
 プロセッサ501がモータ制御プログラム510を実行することにより、制御装置50は、切替指令部521と、パラメータ値決定部522と、制御値決定部523と、制御値切替部524との各機能を実行する。 When the processor 501 executes the motor control program 510, the control device 50 executes the functions of the switching command unit 521, the parameter value determination unit 522, the control value determination unit 523, and the control value switching unit 524.
 切替指令部521は、巻線切替装置100に、ゼロクロス切替の実行を指令する。ゼロクロス切替の実行指令は、制御回路103u,103v,103wへ切替指令信号を出力することで行われる。すなわち、上述したように、制御回路103u,103v,103wに切替指令信号が入力されると、次のゼロクロス点の検出時点において、ゼロクロス検出回路102u,102v,102wからゼロクロス検出信号が出力され、ゼロクロス切替が実行される。 The switching command unit 521 commands the winding switching device 100 to execute zero-cross switching. The command to execute zero-cross switching is issued by outputting a switching command signal to the control circuits 103u, 103v, and 103w. That is, as described above, when a switching command signal is input to the control circuits 103u, 103v, and 103w, a zero-cross detection signal is output from the zero- cross detection circuits 102u, 102v, and 102w at the time of detection of the next zero-cross point, and zero-cross switching is executed.
 パラメータ値決定部522は、巻線21u,22u,21v,22v,21w,22wに印加する電圧(以下、「制御電圧値」ともいう)の決定に用いられる制御パラメータのパラメータ値を決定する。具体的には、パラメータ値決定部522は、以下の制御系における制御パラメータのパラメータ値を決定する。 The parameter value determination unit 522 determines the parameter values of the control parameters used to determine the voltages (hereinafter also referred to as "control voltage values") to be applied to the windings 21u, 22u, 21v, 22v, 21w, and 22w. Specifically, the parameter value determination unit 522 determines the parameter values of the control parameters in the following control systems:
 図7は、第1実施形態に係る制御装置のモータの制御系を示す制御ブロック図である。以下、図7を用いて、制御パラメータのパラメータ値の決定について説明する。 FIG. 7 is a control block diagram showing the motor control system of the control device according to the first embodiment. Below, the determination of the parameter values of the control parameters will be explained using FIG. 7.
 制御装置50は、モータ20の目標トルク531を設定する。目標トルク531は、例えば、車両の目標速度等から算出される。 The control device 50 sets a target torque 531 for the motor 20. The target torque 531 is calculated, for example, from the target speed of the vehicle.
 目標トルク531は、トルク電流変換部532に入力される。トルク電流変換部532は、目標トルク531を目標電流に変換する。目標トルク531から目標電流への変換は、制御装置50に予め記憶されたモータ20の出力特性に基づいて行われる。例えば、巻線21u,22u,21v,22v,21w,22wが直列接続状態のときの出力特性と、巻線21u,22u,21v,22v,21w,22wが並列接続状態のときの出力特性とは異なる。例えば、制御装置50の不揮発性メモリ502には、巻線21u,22u,21v,22v,21w,22wが直列接続状態のときの出力特性と、巻線21u,22u,21v,22v,21w,22wが並列接続状態のときの出力特性との2種類の出力特性を記憶している。トルク電流変換部532は、その時点における巻線21u,22u,21v,22v,21w,22wの接続状態に応じた出力特性にしたがって、目標電流を決定する。トルク電流変換部532によって得られる目標電流は、dq座標系の電流値(以下、「dq電流値」ともいう。dq座標系の電圧値を「dq電圧値」ともいう)である。 The target torque 531 is input to the torque current converter 532. The torque current converter 532 converts the target torque 531 into a target current. The conversion from the target torque 531 to the target current is performed based on the output characteristics of the motor 20 pre-stored in the control device 50. For example, the output characteristics when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in series are different from the output characteristics when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in parallel. For example, the non-volatile memory 502 of the control device 50 stores two types of output characteristics: the output characteristics when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in series, and the output characteristics when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in parallel. The torque current converter 532 determines the target current according to the output characteristics according to the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w at that time. The target current obtained by the torque current converter 532 is a current value in the dq coordinate system (hereinafter also referred to as the "dq current value"; the voltage value in the dq coordinate system is also referred to as the "dq voltage value").
 電流センサ33u,33v,33wの検出値及び位置センサ26の検出値は、電流変換部533に入力される。電流変換部533は、三相交流電流の各相の電流値をdq電流値に変換する。電流変換部533からは、電流センサ33u,33v,33wの検出値、つまり、巻線電流Iu,Iv,Iwに対応するdq電流値が出力される。 The detection values of the current sensors 33u, 33v, 33w and the detection value of the position sensor 26 are input to the current converter 533. The current converter 533 converts the current values of each phase of the three-phase AC current into dq current values. The detection values of the current sensors 33u, 33v, 33w, that is, the dq current values corresponding to the winding currents Iu, Iv, Iw, are output from the current converter 533.
 加算点534において、トルク電流変換部532から出力された目標電流と、電流変換部533から出力された巻線電流との差分が算出される。算出された差分は、F/B制御部535に入力される。 At the summing point 534, the difference between the target current output from the torque current conversion unit 532 and the winding current output from the current conversion unit 533 is calculated. The calculated difference is input to the F/B control unit 535.
 F/B制御部535は、入力された目標電流と巻線電流との差分に基づいて、フィードバックゲインを算出する。例えば、差分とフィードバックゲインとの対応関係は、予め定められている。例えば、巻線21u,22u,21v,22v,21w,22wが直列接続状態のときの対応関係と、巻線21u,22u,21v,22v,21w,22wが並列接続状態のときの対応関係との2種類の対応関係が定められている。F/B制御部535は、その時点における巻線21u,22u,21v,22v,21w,22wの接続状態に応じた対応関係にしたがって、差分からフィードバックゲインを決定する。フィードバックゲインは、モータ20の駆動電圧の一部である。 The F/B control unit 535 calculates the feedback gain based on the difference between the input target current and the winding current. For example, the correspondence between the difference and the feedback gain is determined in advance. For example, two types of correspondence are determined: a correspondence when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in series, and a correspondence when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in parallel. The F/B control unit 535 determines the feedback gain from the difference according to the correspondence according to the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w at that time. The feedback gain is part of the drive voltage of the motor 20.
 F/B制御部535は、予め定められた制御方式によってフィードバックゲインを決定する。例えば、F/B制御部535は、P制御(比例制御)、PI制御(比例積分制御)、PD制御(比例微分制御)、PID制御(比例積分微分制御)のいずれか1つにしたがって、フィードバックゲインを決定することができる。上述した対応関係は、このような制御方式に応じて定められている。 The F/B control unit 535 determines the feedback gain according to a predetermined control method. For example, the F/B control unit 535 can determine the feedback gain according to any one of P control (proportional control), PI control (proportional integral control), PD control (proportional differential control), and PID control (proportional integral differential control). The above-mentioned correspondence is determined according to such a control method.
 電流変換部533から出力された巻線電流と、位置センサ26の検出値とは、起電力演算部536に入力される。起電力演算部536は、巻線電流及びモータ20の回転速度とに基づいて、モータ20に発生する誘起電圧に基づく制御成分、例えば、モータ20の交流電流の非干渉制御、dq軸間の相互インダクタンス等の制御成分を算出する。誘起電圧は、巻線21u,22u,21v,22v,21w,22wが直列接続状態のときと並列接続状態のときとで異なる。したがって、起電力演算部536は、その時点における巻線21u,22u,21v,22v,21w,22wの接続状態に対応する誘起電圧に基づく制御成分を算出する。 The winding current output from the current conversion unit 533 and the detection value of the position sensor 26 are input to the electromotive force calculation unit 536. Based on the winding current and the rotation speed of the motor 20, the electromotive force calculation unit 536 calculates control components based on the induced voltage generated in the motor 20, such as non-interference control of the AC current of the motor 20 and mutual inductance between the d and q axes. The induced voltage differs when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in series and when they are connected in parallel. Therefore, the electromotive force calculation unit 536 calculates the control components based on the induced voltage corresponding to the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w at that time.
 以下、非干渉制御について説明する。 The following explains non-interference control.
 d-q座標系における永久磁石同期モータの状態方程式(微分方程式)は式(1)で表される。

 ここで、ia=[id,iq]は電機子電流(巻線電流)、va=[vd,vq]は電機子電圧、ωはモータの回転角速度、Ψaは磁石磁束、Raは巻線抵抗、Ld,Lqは巻線のインダクタンス、pは微分記号である。
The state equation (differential equation) of the permanent magnet synchronous motor in the dq coordinate system is expressed by equation (1).

Here, ia = [id, iq] T is the armature current (winding current), va = [vd, vq] T is the armature voltage, ω is the motor's rotational angular velocity, Ψa is the magnet magnetic flux, Ra is the winding resistance, Ld and Lq are the winding inductances, and p is the differential symbol.
 非干渉制御では、誘導起電力によるd,q軸間の干渉項の影響を排除する。具体的には、次式(2)のようにd,q軸電圧を補正する。

 ここで、vodは誘導起電力のd軸成分であり、voqは誘導起電力のq軸成分である。
In the non-interference control, the influence of the interference term between the d-axis and q-axis due to the induced electromotive force is eliminated. Specifically, the d-axis and q-axis voltages are corrected as shown in the following equation (2).

Here, vod is the d-axis component of the induced electromotive force, and voq is the q-axis component of the induced electromotive force.
 式(2)を式(1)に代入すると、v’a=[v’d,v’q]を新たな入力とする次式(3)が導出される。
By substituting equation (2) into equation (1), the following equation (3) is derived with v'a=[v'd, v'q] as a new input.
 式(3)から、d軸及びq軸を非干渉化することができ、外乱deをキャンセルできることが分かる。 From equation (3), we can see that the d-axis and q-axis can be decoupled, and the disturbance de can be canceled.
 F/B制御部535から出力されたフィードバックゲインと、起電力演算部536から出力された制御成分とが加算点537に入力される。加算点537は、F/B制御部535から出力されたフィードバックゲインと、起電力演算部536から出力された制御成分とを加算し、制御電圧値を算出する。制御電圧値は、「制御値」の一例である。 The feedback gain output from the F/B control unit 535 and the control component output from the electromotive force calculation unit 536 are input to the summing point 537. The summing point 537 adds the feedback gain output from the F/B control unit 535 and the control component output from the electromotive force calculation unit 536 to calculate a control voltage value. The control voltage value is an example of a "control value".
 制御電圧値は、電圧変換部538に入力される。電圧変換部538は、dq電圧値を三相交流電圧に変換する。 The control voltage value is input to the voltage conversion unit 538. The voltage conversion unit 538 converts the dq voltage value into a three-phase AC voltage.
 電圧変換部538から出力された三相交流電圧の制御電圧値は、PWM部539に入力される。PWM部539は、入力された制御電圧値に応じたデューティ比を決定し、決定されたデューティ比にしたがって、電力変換器30のスイッチ31u,32u,31v,32v,31w,32wのそれぞれを駆動するためのPWM信号を生成する。PWM部539は、生成したPWM信号を、スイッチ31u,32u,31v,32v,31w,32wのそれぞれに出力する。 The control voltage value of the three-phase AC voltage output from the voltage conversion unit 538 is input to the PWM unit 539. The PWM unit 539 determines a duty ratio according to the input control voltage value, and generates PWM signals for driving each of the switches 31u, 32u, 31v, 32v, 31w, and 32w of the power converter 30 according to the determined duty ratio. The PWM unit 539 outputs the generated PWM signals to each of the switches 31u, 32u, 31v, 32v, 31w, and 32w.
 図6に戻る。制御パラメータは、目標電流、フィードバックゲイン、及び誘起電圧に基づく制御成分を含む。パラメータ値決定部522は、巻線21u,22u,21v,22v,21w,22wの直列接続状態における目標電流、並列接続状態における目標電流、直列接続状態におけるフィードバックゲイン、並列接続状態におけるフィードバックゲイン、直列接続状態における誘起電圧に基づく制御成分、及び並列接続状態における誘起電圧に基づく制御成分のそれぞれを決定することができる。つまり、パラメータ値決定部522は、巻線21u,22u,21v,22v,21w,22wが直列接続状態のときには、直列接続状態における目標電流、直列接続状態におけるフィードバックゲイン、及び直列接続状態における誘起電圧に基づく制御成分のそれぞれを決定する。パラメータ値決定部522は、巻線21u,22u,21v,22v,21w,22wが並列接続状態のときには、並列接続状態における目標電流、並列接続状態におけるフィードバックゲイン、及び並列接続状態における誘起電圧に基づく制御成分のそれぞれを決定する。 Returning to FIG. 6, the control parameters include a target current, a feedback gain, and a control component based on the induced voltage. The parameter value determination unit 522 can determine each of the target current in the series connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w, the target current in the parallel connection state, the feedback gain in the series connection state, the feedback gain in the parallel connection state, the control component based on the induced voltage in the series connection state, and the control component based on the induced voltage in the parallel connection state. In other words, when the windings 21u, 22u, 21v, 22v, 21w, and 22w are in the series connection state, the parameter value determination unit 522 determines each of the target current in the series connection state, the feedback gain in the series connection state, and the control component based on the induced voltage in the series connection state. When the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in parallel, the parameter value determination unit 522 determines the target current in the parallel connection state, the feedback gain in the parallel connection state, and the control component based on the induced voltage in the parallel connection state.
 制御値決定部523は、制御電圧値を決定する。具体的には、制御値決定部523は、パラメータ値決定部522によって決定されたフィードバックゲインと、誘起電圧に基づく制御成分とを加算し、制御電圧値を算出することができる。制御値決定部523は、巻線21u,22u,21v,22v,21w,22wの直列接続状態における制御電圧値と、巻線21u,22u,21v,22v,21w,22wの並列接続状態における制御電圧値とを決定する。すなわち、制御値決定部523は、巻線21u,22u,21v,22v,21w,22wの直列接続状態におけるフィードバックゲインと、直列接続状態における誘起電圧に基づく制御成分とを加算し、直列接続状態における制御電圧値を算出する。制御値決定部523は、巻線21u,22u,21v,22v,21w,22wの並列接続状態におけるフィードバックゲインと、並列接続状態における誘起電圧に基づく制御成分とを加算し、並列接続状態における制御電圧値を算出する。 The control value determination unit 523 determines the control voltage value. Specifically, the control value determination unit 523 can add the feedback gain determined by the parameter value determination unit 522 to a control component based on the induced voltage to calculate the control voltage value. The control value determination unit 523 determines the control voltage value in the series connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w, and the control voltage value in the parallel connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w. In other words, the control value determination unit 523 adds the feedback gain in the series connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w to the control component based on the induced voltage in the series connection state to calculate the control voltage value in the series connection state. The control value determination unit 523 adds the feedback gain in the parallel connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w and the control component based on the induced voltage in the parallel connection state to calculate the control voltage value in the parallel connection state.
 例えば、パラメータ値決定部522は、巻線21u,22u,21v,22v,21w,22wの直列接続状態における目標電流、フィードバックゲイン、及び誘起電圧に基づく制御成分のそれぞれと、巻線21u,22u,21v,22v,21w,22wの並列接続状態における目標電流、フィードバックゲイン、及び誘起電圧に基づく制御成分のそれぞれとを同じ制御サイクルにおいて決定してもよい。ここで、制御サイクルとは、上述した制御系において、PWMのデューティ比が決定され、PWM信号が出力されてから、次のデューティ比が決定され、次のPWM信号が出力されるまでの制御シーケンスである。 For example, the parameter value determination unit 522 may determine, in the same control cycle, the target current, feedback gain, and control components based on the induced voltage when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in series, and the target current, feedback gain, and control components based on the induced voltage when the windings 21u, 22u, 21v, 22v, 21w, and 22w are connected in parallel. Here, the control cycle is the control sequence in the above-mentioned control system, from when the PWM duty ratio is determined and a PWM signal is output, until the next duty ratio is determined and the next PWM signal is output.
 具体的な一例では、パラメータ値決定部522は、まもなくゼロクロス切替が実行される場合に、巻線21u,22u,21v,22v,21w,22wの直列接続状態における目標電流、フィードバックゲイン、及び誘起電圧に基づく制御成分のそれぞれと、巻線21u,22u,21v,22v,21w,22wの並列接続状態における目標電流、フィードバックゲイン、及び誘起電圧に基づく制御成分のそれぞれとを同じ制御サイクルにおいて決定することができる。例えば、図示しない変速指示器からの変速指示が制御装置50に与えられた場合に、制御装置50は、変速指示に応じて、ゼロクロス切替の実行を決定する。この場合、制御装置50は、まもなくゼロクロス切替が実行されると判断することができる。具体的な一例では、パラメータ値決定部522は、切替指令信号を巻線切替装置100へ出力した場合に、巻線21u,22u,21v,22v,21w,22wの直列接続状態における目標電流、フィードバックゲイン、及び誘起電圧に基づく制御成分のそれぞれと、巻線21u,22u,21v,22v,21w,22wの並列接続状態における目標電流、フィードバックゲイン、及び誘起電圧に基づく制御成分のそれぞれとを同じ制御サイクルにおいて決定することができる。ゼロクロス切替が実行され、後述するように制御電圧値が切り替えられてから、次の切替指令信号が出力されるまでの間は、パラメータ値決定部522は、その時点における巻線21u,22u,21v,22v,21w,22w21u,22uIu,Iv,Iwの接続状態(直列接続状態又は並列接続状態)における目標電流、フィードバックゲイン、及び誘起電圧に基づく制御成分のみを決定することができる。 In a specific example, when zero-cross switching is about to be performed, the parameter value determination unit 522 can determine, in the same control cycle, each of the control components based on the target current, feedback gain, and induced voltage in the series connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w, and each of the control components based on the target current, feedback gain, and induced voltage in the parallel connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w. For example, when a gear shift instruction is given to the control device 50 from a gear shift indicator (not shown), the control device 50 decides to perform zero-cross switching in response to the gear shift instruction. In this case, the control device 50 can determine that zero-cross switching will be performed soon. In a specific example, when the parameter value determination unit 522 outputs a switching command signal to the winding switching device 100, the parameter value determination unit 522 can determine, in the same control cycle, the target current, feedback gain, and control components based on the induced voltage in the series connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w, and the target current, feedback gain, and control components based on the induced voltage in the parallel connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w. During the period from when the zero-cross switching is performed and the control voltage value is switched as described below until the next switching command signal is output, the parameter value determination unit 522 can determine only the target current, feedback gain, and control components based on the induced voltage in the connection state (series connection state or parallel connection state) of the windings 21u, 22u, 21v, 22v, 21w, 22w21u, 22uIu, Iv, and Iw at that time.
 例えば、制御値決定部523は、パラメータ値決定部522によって決定された巻線21u,22u,21v,22v,21w,22wの直列接続状態におけるフィードバックゲイン及び誘起電圧に基づく制御成分のそれぞれと、巻線21u,22u,21v,22v,21w,22wの並列接続状態におけるフィードバックゲイン及び誘起電圧に基づく制御成分のそれぞれとを同時に保持することができる。すなわち、制御値決定部523は、パラメータ値決定部522によって決定された巻線21u,22u,21v,22v,21w,22wの直列接続状態におけるフィードバックゲイン及び誘起電圧に基づく制御成分のそれぞれと、巻線21u,22u,21v,22v,21w,22wの並列接続状態におけるフィードバックゲイン及び誘起電圧に基づく制御成分のそれぞれとを同じ制御サイクル(これらのパラメータ値が決定された制御サイクル)において保持することができる。 For example, the control value determination unit 523 can simultaneously hold each of the control components based on the feedback gain and induced voltage in the series connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w determined by the parameter value determination unit 522, and each of the control components based on the feedback gain and induced voltage in the parallel connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w. That is, the control value determination unit 523 can hold each of the control components based on the feedback gain and induced voltage in the series connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w determined by the parameter value determination unit 522, and each of the control components based on the feedback gain and induced voltage in the parallel connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w, in the same control cycle (the control cycle in which these parameter values are determined).
 制御値決定部523は、保持した直列状態におけるフィードバックゲイン及び誘起電圧に基づく制御成分を加算して直列状態における制御電圧値を決定し、これとともに、保持した並列状態におけるフィードバックゲイン及び誘起電圧に基づく制御成分を加算して並列状態における制御電圧値を決定することができる。すなわち、制御値決定部523は、同じ制御サイクルにおいて、直列状態における制御電圧値と、並列接続状態における制御電圧値とを決定することができる。 The control value determination unit 523 can determine the control voltage value in the series state by adding up the control components based on the feedback gain and induced voltage in the held series state, and can also determine the control voltage value in the parallel state by adding up the control components based on the feedback gain and induced voltage in the held parallel state. That is, the control value determination unit 523 can determine the control voltage value in the series state and the control voltage value in the parallel connection state in the same control cycle.
 具体的な一例では、制御値決定部523は、まもなくゼロクロス切替が実行される場合、すなわち、ゼロクロス切替の実行が決定され、切替指令信号が出力された場合に、巻線21u,22u,21v,22v,21w,22wの直列接続状態における制御電圧値と、巻線21u,22u,21v,22v,21w,22wの並列接続状態における制御電圧値とを同じ制御サイクルにおいて決定することができる。ゼロクロス切替が実行され、後述するように制御電圧値が切り替えられてから、次の切替指令信号が出力されるまでの間は、制御値決定部523は、その時点における巻線21u,22u,21v,22v,21w,22w21u,22uIu,Iv,Iwの接続状態(直列接続状態又は並列接続状態)における制御電圧値のみを決定することができる。 In one specific example, when zero-cross switching is about to be performed, that is, when it is decided to perform zero-cross switching and a switching command signal is output, the control value determination unit 523 can determine, in the same control cycle, the control voltage value in the series connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w, and the control voltage value in the parallel connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w. During the period from when zero-cross switching is performed and the control voltage value is switched as described below until the next switching command signal is output, the control value determination unit 523 can only determine the control voltage value in the connection state (series connection state or parallel connection state) of the windings 21u, 22u, 21v, 22v, 21w, 22w21u, 22uIu, Iv, Iw at that time.
 制御値切替部524は、ゼロクロス切替が実行される際に、制御電圧値を、直列接続状態に用いられる(直列接続状態における)制御電圧値と、並列接続状態に用いられる(並列接続状態における)制御電圧値との間で切り替える。具体的には、制御値切替部524は、ゼロクロス切替によって直列接続状態から並列接続状態へと切り替えられる場合、制御電圧値を、直列接続状態における制御電圧値から、並列接続状態における制御電圧値へ切り替える。制御値切替部524は、ゼロクロス切替によって並列接続状態から直列接続状態へと切り替えられる場合、制御電圧値を、並列接続状態における制御電圧値から、直列接続状態における制御電圧値へ切り替える。以下、切替前の接続状態における制御電圧値を「第1制御電圧値」といい、切替後の接続状態における制御電圧値を「第2制御電圧値」という。 When zero-cross switching is performed, the control value switching unit 524 switches the control voltage value between the control voltage value used in the series connection state (in the series connection state) and the control voltage value used in the parallel connection state (in the parallel connection state). Specifically, when the series connection state is switched to the parallel connection state by zero-cross switching, the control value switching unit 524 switches the control voltage value from the control voltage value in the series connection state to the control voltage value in the parallel connection state. When the parallel connection state is switched to the series connection state by zero-cross switching, the control value switching unit 524 switches the control voltage value from the control voltage value in the parallel connection state to the control voltage value in the series connection state. Hereinafter, the control voltage value in the connection state before switching is referred to as the "first control voltage value", and the control voltage value in the connection state after switching is referred to as the "second control voltage value".
 制御値切替部524は、制御電圧値を、第1制御電圧値から第2制御電圧値へ漸次変化させる。具体的な一例では、制御値切替部524は、制御電圧値を、第1制御電圧値から第2制御電圧値へ時間経過に応じてランプ状に変化させる。 The control value switching unit 524 gradually changes the control voltage value from the first control voltage value to the second control voltage value. In a specific example, the control value switching unit 524 changes the control voltage value from the first control voltage value to the second control voltage value in a ramp-like manner over time.
 図8は、制御電圧値の変化の一例を示すグラフである。図8において、縦軸はU相の電圧値(実効値)であり、横軸は時間である。なお、V相、W相においても同様である。 Figure 8 is a graph showing an example of changes in the control voltage value. In Figure 8, the vertical axis represents the voltage value (effective value) of the U phase, and the horizontal axis represents time. The same is true for the V phase and W phase.
 時刻T11の前までは第1制御電圧値V1を巻線21u,22uに印加するためのPWM信号が出力されている。制御値切替部524は、時刻T11から時刻T12までの期間(以下、「切替期間」ともいう)において、制御電圧値を第1制御電圧値Vから第2制御電圧値V2へランプ状に変化させる。すなわち、切替期間の途中において、制御電圧値は、第1制御電圧値V1と第2制御電圧値V2との間の値をとる。図8の例では、第1制御電圧値V1よりも第2制御電圧値V2の方が高い。このため、切替期間では、制御電圧値が第1制御電圧値から第2制御電圧値へ向かって徐々に増加する。このように制御電圧値を変化させることによって、制御電圧値の切替によるサージ電圧の発生を抑制し、電流制御の発振を抑制することができる。 Before time T11, a PWM signal for applying the first control voltage value V1 to the windings 21u and 22u is output. The control value switching unit 524 changes the control voltage value from the first control voltage value V to the second control voltage value V2 in a ramp-like manner during the period from time T11 to time T12 (hereinafter also referred to as the "switching period"). That is, during the switching period, the control voltage value takes a value between the first control voltage value V1 and the second control voltage value V2. In the example of FIG. 8, the second control voltage value V2 is higher than the first control voltage value V1. Therefore, during the switching period, the control voltage value gradually increases from the first control voltage value to the second control voltage value. By changing the control voltage value in this manner, it is possible to suppress the generation of a surge voltage due to switching of the control voltage value and to suppress oscillation of the current control.
 なお、制御電圧値の漸次的な変化は、ランプ状に限られない。例えば、制御電圧値を曲線的に変化させてもよい。 Note that the gradual change in the control voltage value is not limited to a ramp shape. For example, the control voltage value may change in a curved manner.
 ここで、制御電圧値を漸次変化させる、とは、制御電圧値を段階的に変化させることを含む。すなわち、制御電圧値を漸次変化させる、とは、制御電圧値を時間経過に応じて滑らかに変化させることに限定されない。例えば、制御電圧値を多段的又は離散的に変化させてもよい。 Here, "gradually changing the control voltage value" includes changing the control voltage value in steps. In other words, "gradually changing the control voltage value" is not limited to smoothly changing the control voltage value over time. For example, the control voltage value may be changed in multiple steps or discretely.
 図6に戻り、例えば、制御値切替部524は、U相の制御電圧値、V相の制御電圧値、及びW相の制御電圧値のそれぞれの第1制御電圧値から第2制御電圧値への変化を同期させる。ここでいう「同期」とは、U相の制御電圧値、V相の制御電圧値、及びW相の制御電圧値の変化を同じタイミングで開始させ、U相の制御電圧値、V相の制御電圧値、及びW相の制御電圧値の変化を同じタイミングで完了させること意味する。すなわち、U相の制御電圧値、V相の制御電圧値、及びW相の制御電圧値のそれぞれは、第1制御電圧値から同じタイミング(切替期間の開始時点)で変化し始め、第2制御電圧値に同じタイミング(切替期間の終了時点)で到達する。 Returning to FIG. 6, for example, the control value switching unit 524 synchronizes the changes of the U-phase control voltage value, the V-phase control voltage value, and the W-phase control voltage value from the first control voltage value to the second control voltage value. Here, "synchronization" means that the changes of the U-phase control voltage value, the V-phase control voltage value, and the W-phase control voltage value start at the same timing, and the changes of the U-phase control voltage value, the V-phase control voltage value, and the W-phase control voltage value are completed at the same timing. In other words, the U-phase control voltage value, the V-phase control voltage value, and the W-phase control voltage value each start changing from the first control voltage value at the same timing (the start of the switching period) and reach the second control voltage value at the same timing (the end of the switching period).
 具体的な一例では、制御値切替部524は、巻線電流がn相交流(ただし、nは3以上の整数)である場合において、n個の制御電圧値のそれぞれの第1制御電圧値から第2制御電圧値への変化を、変化が開始してからλ(n-1)/n経過後に完了させる。ここで、λは巻線電流の周期である。本実施形態では、n=3である。例えば、V相電流の位相はU相電流の位相から2π/3ずれており、W相電流の位相はU相電流の位相から4π/3ずれている。U送電流の波形の1点に対応するV相電流の点は、U送電流の波形の1点からλ/3後の点であり、U送電流の波形の1点に対応するW相電流の点は、U送電流の波形の1点から2λ/3後の点である。したがって、上記のようにU相、V相、W相の制御電圧値を変化させることにより、切替期間を巻線電流Iu,Iv,Iwの位相差に適合させることができる。 In a specific example, when the winding current is an n-phase AC (where n is an integer equal to or greater than 3), the control value switching unit 524 completes the change of each of the n control voltage values from the first control voltage value to the second control voltage value after λ(n-1)/n has elapsed since the start of the change. Here, λ is the period of the winding current. In this embodiment, n=3. For example, the phase of the V-phase current is shifted 2π/3 from the phase of the U-phase current, and the phase of the W-phase current is shifted 4π/3 from the phase of the U-phase current. The point of the V-phase current corresponding to a point on the waveform of the U-phase current is a point λ/3 later than the point on the waveform of the U-phase current, and the point of the W-phase current corresponding to a point on the waveform of the U-phase current is a point 2λ/3 later than the point on the waveform of the U-phase current. Therefore, by changing the control voltage values of the U-phase, V-phase, and W-phase as described above, the switching period can be adapted to the phase difference of the winding currents Iu, Iv, and Iw.
 具体的な一例では、制御値切替部524は、U相電流におけるゼロクロス点においてn個の制御電圧値のそれぞれの第1制御電圧値から第2制御電圧値への変化を開始させる。これにより、U相電流のゼロクロス点において各相の制御電圧値の変化を開始させ、W相電流のゼロクロス点において各相の制御電圧値の変化を完了させることができる。 In one specific example, the control value switching unit 524 starts changing each of the n control voltage values from the first control voltage value to the second control voltage value at the zero cross point of the U-phase current. This allows the change in the control voltage value of each phase to start at the zero cross point of the U-phase current, and the change in the control voltage value of each phase to be completed at the zero cross point of the W-phase current.
 例えば、制御値切替部524は、制御値決定部523によって決定された第1制御電圧値及び第2制御電圧値を同時に保持する。制御値切替部524は、保持した第1制御電圧値から、保持した第2制御電圧値へ制御電圧値を切り替える。制御値切替部524は、第1制御電圧値及び第2制御電圧値を同時に(すなわち、同一制御サイクルにおいて)保持することにより、第1制御電圧値から第2制御電圧値へ制御電圧値をどのように変化させるかを決定することができる。 For example, the control value switching unit 524 simultaneously holds the first control voltage value and the second control voltage value determined by the control value determination unit 523. The control value switching unit 524 switches the control voltage value from the held first control voltage value to the held second control voltage value. By holding the first control voltage value and the second control voltage value simultaneously (i.e., in the same control cycle), the control value switching unit 524 can determine how to change the control voltage value from the first control voltage value to the second control voltage value.
[1-6.制御装置の動作]
 次に、制御装置50の動作について説明する。制御装置50は、プロセッサ501がモータ制御プログラム510を実行することにより、モータ制御処理を実行する。
[1-6. Operation of the control device]
Next, a description will be given of the operation of the control device 50. The control device 50 executes a motor control process by the processor 501 executing a motor control program 510.
 図9は、第1実施形態に係る制御装置によるモータ制御処理の一例を示すフローチャートである。 FIG. 9 is a flowchart showing an example of motor control processing by the control device according to the first embodiment.
 例えば、変速指示が制御装置50に与えられた場合に、プロセッサ501は、ゼロクロス切替の実行を決定する。プロセッサ501は、ゼロクロス切替の実行を決定したか否かを判定する(ステップS101)。 For example, when a gear shift command is given to the control device 50, the processor 501 decides to execute zero-cross switching. The processor 501 determines whether or not it has been decided to execute zero-cross switching (step S101).
 ゼロクロス切替の実行を決定していない場合(ステップS101においてNO)、プロセッサ501は、電流センサ33u,33v,33wから出力される検出値及び位置センサ26から出力される検出値を取得する(ステップS102)。プロセッサ501は、位置センサ26からの検出値に基づいて、モータ20の回転速度を算出する。 If it has not been determined that zero-cross switching should be performed (NO in step S101), the processor 501 acquires the detection values output from the current sensors 33u, 33v, and 33w and the detection value output from the position sensor 26 (step S102). The processor 501 calculates the rotation speed of the motor 20 based on the detection value from the position sensor 26.
 プロセッサ501は、取得した巻線電流Iu,Iv,Iwの電流値及びモータ20の回転速度に基づいて、その時点における巻線21u,22u,21v,22v,21w,22w21u,22uIu,Iv,Iwの接続状態に応じた制御パラメータのパラメータ値を決定する(ステップS103)。制御パラメータには、目標電流、フィードバックゲイン、及び誘起電圧に基づく制御成分が含まれる。 The processor 501 determines the parameter values of the control parameters according to the connection states of the windings 21u, 22u, 21v, 22v, 21w, 22w21u, 22uIu, Iv, Iw at that time based on the current values of the acquired winding currents Iu, Iv, Iw and the rotation speed of the motor 20 (step S103). The control parameters include a target current, a feedback gain, and a control component based on the induced voltage.
 プロセッサ501は、決定したパラメータ値に基づいて、その時点における巻線21u,22u,21v,22v,21w,22w21u,22uIu,Iv,Iwの接続状態に応じた制御電圧値を決定する(ステップS104)。 The processor 501 determines the control voltage value according to the connection state of the windings 21u, 22u, 21v, 22v, 21w, 22w, 21u, 22uIu, Iv, and Iw at that time based on the determined parameter values (step S104).
 プロセッサ501は、決定した制御電圧値に基づいてデューティ比を決定し、決定したデューティ比のPWM信号を出力する(ステップS105)。PWM信号にしたがってスイッチ31u,32u,31v,32v,31w,32wが駆動され、モータ20に巻線電流Iu,Iv,Iwが供給される。ステップS105の後、プロセッサ501は、ステップS101に戻る。 The processor 501 determines the duty ratio based on the determined control voltage value, and outputs a PWM signal with the determined duty ratio (step S105). The switches 31u, 32u, 31v, 32v, 31w, and 32w are driven in accordance with the PWM signal, and the winding currents Iu, Iv, and Iw are supplied to the motor 20. After step S105, the processor 501 returns to step S101.
 ゼロクロス切替の実行を決定している場合(ステップS101においてYES)、プロセッサ501は、切替指令信号を巻線切替装置100へ出力する(ステップS106)。次にプロセッサ501は、電流センサ33u,33v,33wから出力される検出値及び位置センサ26から出力される検出値を取得する(ステップS107)。プロセッサ501は、位置センサ26からの検出値に基づいて、モータ20の回転速度を算出する。 If it has been determined that zero-cross switching should be performed (YES in step S101), the processor 501 outputs a switching command signal to the winding switching device 100 (step S106). Next, the processor 501 acquires the detection values output from the current sensors 33u, 33v, and 33w and the detection value output from the position sensor 26 (step S107). The processor 501 calculates the rotation speed of the motor 20 based on the detection values from the position sensor 26.
 プロセッサ501は、取得した巻線電流Iu,Iv,Iwの電流値及びモータ20の回転速度に基づいて、巻線21u,22u,21v,22v,21w,22w21u,22uIu,Iv,Iwの直列状態に応じたパラメータ値と、並列状態に応じたパラメータ値とのそれぞれを決定する(ステップS108)。すなわち、プロセッサ501は、直列接続状態及び並列接続状態のそれぞれにおける目標電流と、直列接続状態及び並列接続状態のそれぞれのためのフィードバックゲインと、直列接続状態及び並列接続状態のそれぞれにおける誘起電圧に基づく制御成分とを決定する。 The processor 501 determines the parameter values corresponding to the series state and the parallel state of the windings 21u, 22u, 21v, 22v, 21w, 22w21u, 22uIu, Iv, Iw based on the current values of the acquired winding currents Iu, Iv, Iw and the rotation speed of the motor 20 (step S108). That is, the processor 501 determines the target currents in each of the series connection state and the parallel connection state, the feedback gains for each of the series connection state and the parallel connection state, and the control components based on the induced voltages in each of the series connection state and the parallel connection state.
 プロセッサ501は、決定したパラメータ値に基づいて、直列接続状態における制御電圧値と、並列接続状態における制御電圧値とを決定する(ステップS109)。 The processor 501 determines the control voltage value in the series connection state and the control voltage value in the parallel connection state based on the determined parameter values (step S109).
 プロセッサ501は、PWM信号の生成に用いる制御電圧値を所定量変化させる(ステップS110)。すなわち、ゼロクロス切替によって直列接続状態から並列接続状態へ切り替えられた場合、プロセッサ501は、直列接続状態における制御電圧値(第1制御電圧値)から並列接続状態における制御電圧値(第2制御電圧値)へ切り替えるために、制御電圧値を所定量増加(又は減少)させる。ゼロクロス切替によって並列接続状態から直列接続状態へ切り替えられた場合、プロセッサ501は、並列接続状態における制御電圧値(第1制御電圧値)から直列接続状態における制御電圧値(第2制御電圧値)へ切り替えるために、制御電圧値を所定量増加(又は減少)させる。 The processor 501 changes the control voltage value used to generate the PWM signal by a predetermined amount (step S110). That is, when the series connection state is switched to the parallel connection state by zero-cross switching, the processor 501 increases (or decreases) the control voltage value by a predetermined amount in order to switch from the control voltage value in the series connection state (first control voltage value) to the control voltage value in the parallel connection state (second control voltage value). When the parallel connection state is switched to the series connection state by zero-cross switching, the processor 501 increases (or decreases) the control voltage value by a predetermined amount in order to switch from the control voltage value in the parallel connection state (first control voltage value) to the control voltage value in the series connection state (second control voltage value).
 プロセッサ501は、所定量変化後の制御電圧値に基づいてデューティ比を決定し、決定したデューティ比のPWM信号を出力する(ステップS111)。PWM信号にしたがってスイッチ31u,32u,31v,32v,31w,32wが駆動され、モータ20に巻線電流Iu,Iv,Iwが供給される。 The processor 501 determines the duty ratio based on the control voltage value after the predetermined change, and outputs a PWM signal with the determined duty ratio (step S111). Switches 31u, 32u, 31v, 32v, 31w, and 32w are driven in accordance with the PWM signal, and winding currents Iu, Iv, and Iw are supplied to the motor 20.
 プロセッサ501は、制御電圧値が第2制御電圧値に到達したか否かを判定する(ステップS112)。制御電圧値が第2制御電圧値に到達していない場合(ステップS112においてNO)、プロセッサ501は、ステップS110に戻る。ステップS110からS112を繰り返すことにより、制御電圧値が第1制御電圧値から第2制御電圧値へ漸次変化する。 The processor 501 determines whether the control voltage value has reached the second control voltage value (step S112). If the control voltage value has not reached the second control voltage value (NO in step S112), the processor 501 returns to step S110. By repeating steps S110 to S112, the control voltage value gradually changes from the first control voltage value to the second control voltage value.
 制御電圧値が第2制御電圧値に到達した場合(ステップS112においてYES)、制御電圧値の第1制御電圧値から第2制御電圧値への切替が完了する。この場合、プロセッサ501は、ステップS101に戻る。 If the control voltage value reaches the second control voltage value (YES in step S112), the switching of the control voltage value from the first control voltage value to the second control voltage value is completed. In this case, the processor 501 returns to step S101.
[2.第2実施形態]
 第2実施形態に係る巻線切替装置は、モータの複数の巻線の接続状態を、複数の巻線の全てを接続した全接続状態と、複数の巻線の一部を接続した部分接続状態との間で切り替える。
[2. Second embodiment]
The winding switching device of the second embodiment switches the connection state of the multiple windings of a motor between a full connection state in which all of the multiple windings are connected, and a partial connection state in which some of the multiple windings are connected.
 図10は、第2実施形態に係る巻線切替装置の構成の一例を示す回路図である。モータ20Aは、複数の巻線24u,25u,24v,25v,24w,25wを含む。巻線24u,25uはU相に対応し、巻線24v,25vはV相に対応し、巻線24w,25wはW相に対応する。ただし、各相の巻線数は2つに限られず、3以上であってもよい。 FIG. 10 is a circuit diagram showing an example of the configuration of a winding switching device according to the second embodiment. Motor 20A includes a plurality of windings 24u, 25u, 24v, 25v, 24w, and 25w. Windings 24u and 25u correspond to the U phase, windings 24v and 25v correspond to the V phase, and windings 24w and 25w correspond to the W phase. However, the number of windings for each phase is not limited to two, and may be three or more.
 巻線切替装置100Aは、相毎に、巻線24u,25u,24v,25v,24w,25wの接続状態を、全接続状態及び部分続状態の間で切り替える。巻線切替装置100Aは、電流センサ131u,131v,131wと、ゼロクロス検出回路102u,102v,102wと、制御回路103u,103v,103wと、切替回路140u,140v,140wとを含む。 The winding switching device 100A switches the connection state of the windings 24u, 25u, 24v, 25v, 24w, and 25w for each phase between a fully connected state and a partially connected state. The winding switching device 100A includes current sensors 131u, 131v, and 131w, zero- cross detection circuits 102u, 102v, and 102w, control circuits 103u, 103v, and 103w, and switching circuits 140u, 140v, and 140w.
 ゼロクロス検出回路102u,102v,102wは、電流センサ131u,131v,131wの計測値のゼロクロス点を検出する。ゼロクロス検出回路102u,102v,102wの構成は、第1実施形態と同様であるので、説明を省略する。 The zero- cross detection circuits 102u, 102v, and 102w detect the zero-cross points of the measured values of the current sensors 131u, 131v, and 131w. The configuration of the zero- cross detection circuits 102u, 102v, and 102w is the same as that of the first embodiment, so a description thereof will be omitted.
 切替回路140u,140v,140wは、ゼロクロス検出回路102u,102v,102wがゼロクロス点を検出したタイミングで巻線24u,25u,24v,25v,24w,25wの接続状態を全接続状態と部分接続状態との間で切り替える。切替回路140u,140v,140wは、切替部の一例である。全接続状態は第1接続状態の一例であり、部分接続状態は第2接続状態の一例である。 The switching circuits 140u, 140v, and 140w switch the connection state of the windings 24u, 25u, 24v, 25v, 24w, and 25w between a full connection state and a partial connection state when the zero- cross detection circuits 102u, 102v, and 102w detect a zero-cross point. The switching circuits 140u, 140v, and 140w are an example of a switching unit. The full connection state is an example of a first connection state, and the partial connection state is an example of a second connection state.
 電力線35uは、巻線24uの一端に接続されている。巻線24uの他端と巻線25uの一端とは互いに接続されており、巻線24uと巻線25uとの中間点からは電力線241uが延びている。電力線241uは電力線242u及び243wに分岐している。巻線25uの他端からは電力線251uが延びている。電力線251uは電力線252u及び253wに分岐している。 Power line 35u is connected to one end of winding 24u. The other end of winding 24u and one end of winding 25u are connected to each other, and power line 241u extends from the midpoint between winding 24u and winding 25u. Power line 241u branches into power lines 242u and 243w. Power line 251u extends from the other end of winding 25u. Power line 251u branches into power lines 252u and 253w.
 電力線35vは、巻線24vの一端に接続されている。巻線24vの他端と巻線25vの一端とは互いに接続されており、巻線24vと巻線25vとの中間点からは電力線241vが延びている。電力線241vは電力線242v及び243uに分岐している。巻線25vの他端からは電力線251vが延びている。電力線251vは電力線252v及び253uに分岐している。 Power line 35v is connected to one end of winding 24v. The other end of winding 24v and one end of winding 25v are connected to each other, and power line 241v extends from the midpoint between winding 24v and winding 25v. Power line 241v branches into power lines 242v and 243u. Power line 251v extends from the other end of winding 25v. Power line 251v branches into power lines 252v and 253u.
 電力線35wは、巻線24wの一端に接続されている。巻線24wの他端と巻線25wの一端とは互いに接続されており、巻線24wと巻線25wとの中間点からは電力線241wが延びている。電力線241wは電力線242w及び243vに分岐している。巻線25wの他端からは電力線251wが延びている。電力線251wは電力線252w及び253vに分岐している。 Power line 35w is connected to one end of winding 24w. The other end of winding 24w and one end of winding 25w are connected to each other, and power line 241w extends from the midpoint between winding 24w and winding 25w. Power line 241w branches into power lines 242w and 243v. Power line 251w extends from the other end of winding 25w. Power line 251w branches into power lines 252w and 253v.
 切替回路140uは、半導体リレー141u及び142uを含む。切替回路140vは、半導体リレー141v及び142vを含む。切替回路140wは、半導体リレー141w及び142wを含む。半導体リレー141u,142u,141v,142v,141w,142wは、例えばIGBT又はパワーMOSFETである。 The switching circuit 140u includes semiconductor relays 141u and 142u. The switching circuit 140v includes semiconductor relays 141v and 142v. The switching circuit 140w includes semiconductor relays 141w and 142w. The semiconductor relays 141u, 142u, 141v, 142v, 141w, and 142w are, for example, IGBTs or power MOSFETs.
 切替回路140uにおいて、半導体リレー141uの第1端子は電力線242uに接続されており、第2端子は電力線243uに接続されている。半導体リレー142uの第1端子は電力線252uに接続されており、第2端子は電力線253uに接続されている。切替回路140v,140wの接続関係は、切替回路140uと同様であるので、説明を省略する。 In the switching circuit 140u, the first terminal of the semiconductor relay 141u is connected to the power line 242u, and the second terminal is connected to the power line 243u. The first terminal of the semiconductor relay 142u is connected to the power line 252u, and the second terminal is connected to the power line 253u. The connection relationship between the switching circuits 140v and 140w is the same as that of the switching circuit 140u, so a description is omitted.
 半導体リレー141u,141v,141wがオフ状態であり、半導体リレー142u,142v,142wがオン状態である場合、巻線24u,25u,24v,25v,24w,25wの全てが接続される全接続状態となる。半導体リレー141u,141v,141wがオン状態であり、半導体リレー142u,142v,142wがオフ状態である場合、巻線24u,25u,24v,25v,24w,25wのうち、巻線24u,24v,24wのみが接続される部分接続状態となる。 When semiconductor relays 141u, 141v, and 141w are in the OFF state and semiconductor relays 142u, 142v, and 142w are in the ON state, a fully connected state is reached in which all of windings 24u, 25u, 24v, 25v, 24w, and 25w are connected. When semiconductor relays 141u, 141v, and 141w are in the ON state and semiconductor relays 142u, 142v, and 142w are in the OFF state, a partially connected state is reached in which only windings 24u, 24v, and 24w are connected among windings 24u, 25u, 24v, 25v, 24w, and 25w.
 電力線35uは、巻線切替装置100の内部に引き込まれる。電力線35uには、電流センサ131uが取り付けられている。電流センサ131uは、電力線35uに流れるU相の電流を検出する。電流センサ131uは、例えば、電流の交流成分のみを検出するACCTである。電流センサ131uから延びる信号線は、ゼロクロス検出回路102uに接続されている。V相、W相についても同様である。 The power line 35u is drawn into the winding switching device 100. A current sensor 131u is attached to the power line 35u. The current sensor 131u detects the U-phase current flowing through the power line 35u. The current sensor 131u is, for example, an ACCT that detects only the AC component of the current. A signal line extending from the current sensor 131u is connected to the zero-cross detection circuit 102u. The same applies to the V-phase and W-phase.
 制御回路103uのRSフリップフロップ120の出力Qは、半導体リレー141uのゲートに接続されている。RSフリップフロップ120の出力Qバーは、半導体リレー142uのゲートに接続されている。V相、W相についても同様である。 The output Q of the RS flip-flop 120 in the control circuit 103u is connected to the gate of the semiconductor relay 141u. The output Q bar of the RS flip-flop 120 is connected to the gate of the semiconductor relay 142u. The same is true for the V phase and the W phase.
 第2実施形態に係る巻線切替装置100Aのその他の構成は、第1実施形態に係る巻線切替装置100の構成と同様であるので、同一構成要素については同一符号を付し、その説明を省略する。 The other configurations of the winding switching device 100A according to the second embodiment are similar to those of the winding switching device 100 according to the first embodiment, so the same components are given the same reference numerals and their description is omitted.
 第2実施形態では、制御装置50は、モータ20の巻線24u,25u,24v,25v,24w,25wを全接続状態にする場合には、切替指令信号の値をLowにし、巻線24u,25u,24v,25v,24w,25wを部分接続する場合には、切替指令信号の値をHighにする。 In the second embodiment, the control device 50 sets the value of the switching command signal to Low when the windings 24u, 25u, 24v, 25v, 24w, and 25w of the motor 20 are to be fully connected, and sets the value of the switching command signal to High when the windings 24u, 25u, 24v, 25v, 24w, and 25w are to be partially connected.
 巻線が全接続状態のときに、ゼロクロス検出信号及び切替指令信号が共にHighとなったタイミングで、出力QがLowとなり、出力QバーがHighとなる。したがって、半導体リレー141uがオン状態からオフ状態に変化し、半導体リレー142uがオフ状態からオン状態に変化する。V相、W相についても同様である。このため、巻線24u,25u,24v,25v,24w,25wの接続状態が全接続状態から部分接続状態に切り替わる。 When the windings are in a fully connected state, output Q goes low and output Q bar goes high at the timing when both the zero-cross detection signal and the switching command signal go high. Therefore, semiconductor relay 141u changes from the on state to the off state, and semiconductor relay 142u changes from the off state to the on state. The same is true for the V phase and W phase. As a result, the connection states of windings 24u, 25u, 24v, 25v, 24w, and 25w switch from a fully connected state to a partially connected state.
 巻線が部分接続状態のときに、ゼロクロス検出信号がHighとなり、且つ、切替指令信号がLowとなったタイミングで、出力QがHighとなり、出力QバーがLowとなる。したがって、半導体リレー141uがオフ状態からオン状態に変化し、半導体リレー142uがオン状態からオフ状態に変化する。V相、W相についても同様である。このため、巻線24u,25u,24v,25v,24w,25wの接続状態が部分接続状態から全接続状態に切り替わる。 When the windings are in a partially connected state, the zero-cross detection signal goes high and the switching command signal goes low, causing output Q to go high and output Q bar to go low. Therefore, semiconductor relay 141u changes from the off state to the on state, and semiconductor relay 142u changes from the on state to the off state. The same is true for the V phase and W phase. As a result, the connection states of windings 24u, 25u, 24v, 25v, 24w, and 25w switch from a partially connected state to a fully connected state.
 以上より、巻線電流Iu,Iv,Iwのゼロクロス点のタイミングで、巻線21u,22u,21v,22v,21w,22wの接続状態を全接続状態と部分接続状態との間で切り替えることができる。 As a result, the connection state of windings 21u, 22u, 21v, 22v, 21w, and 22w can be switched between a fully connected state and a partially connected state at the timing of the zero-crossing points of winding currents Iu, Iv, and Iw.
 第2実施形態に係る電力変換器30及び制御装置50の構成及び動作については、第1実施形態に係る電力変換器30及び制御装置50の構成及び動作と同様であるので、説明を省略する。 The configuration and operation of the power converter 30 and control device 50 according to the second embodiment are similar to those of the power converter 30 and control device 50 according to the first embodiment, and therefore will not be described.
[3.第3実施形態]
 図11は、第3実施形態に係る巻線切替装置の構成の一例を示す回路図である。第3実施形態では、巻線21u,22u,21v,22v,21w,22wの接続状態の切替タイミングを示す信号(以下、「切替タイミング信号」ともいう)が制御装置50に入力される。
[3. Third embodiment]
11 is a circuit diagram showing an example of the configuration of a winding switching device according to the third embodiment. In the third embodiment, a signal indicating the timing for switching the connection states of the windings 21u, 22u, 21v, 22v, 21w, and 22w (hereinafter also referred to as a “switching timing signal”) is input to a control device 50.
 RSフリップフロップ120の出力Qから出力される信号は、巻線21u,22uの接続状態の切替タイミングを示す信号(切替タイミング信号)である。図11に示すように、制御回路103uから半導体リレー111uのゲート端子に延びる信号線は中間点で分岐しており、分岐先が制御装置50に接続されている。この信号線によって、U相の切替タイミング信号は制御装置50に入力される。同様に、制御回路103vから半導体リレー111vのゲート端子に延びる信号線は中間点で分岐しており、分岐先が制御装置50に接続されている。この信号線によって、V相の切替タイミング信号は制御装置50に入力される。制御回路103wから半導体リレー111wのゲート端子に延びる信号線は中間点で分岐しており、分岐先が制御装置50に接続されている。この信号線によって、W相の切替タイミング信号は制御装置50に入力される。具体的には、切替タイミング信号は、制御装置50のI/F504に入力される。 The signal output from the output Q of the RS flip-flop 120 is a signal (switching timing signal) indicating the switching timing of the connection state of the windings 21u and 22u. As shown in FIG. 11, the signal line extending from the control circuit 103u to the gate terminal of the semiconductor relay 111u branches at the midpoint, and the branched end is connected to the control device 50. The U-phase switching timing signal is input to the control device 50 through this signal line. Similarly, the signal line extending from the control circuit 103v to the gate terminal of the semiconductor relay 111v branches at the midpoint, and the branched end is connected to the control device 50. The V-phase switching timing signal is input to the control device 50 through this signal line. The signal line extending from the control circuit 103w to the gate terminal of the semiconductor relay 111w branches at the midpoint, and the branched end is connected to the control device 50. The W-phase switching timing signal is input to the control device 50 through this signal line. Specifically, the switching timing signal is input to the I/F 504 of the control device 50.
 図12は、第3実施形態に係る制御装置の機能の一例を示す機能ブロック図である。 FIG. 12 is a functional block diagram showing an example of the functions of a control device according to the third embodiment.
 プロセッサ501がモータ制御プログラム510を実行することにより、制御装置50は、切替指令部521と、パラメータ値決定部522と、制御値決定部523と、制御値切替部524とに加え、入力部525と、特定部526との各機能を実行する。 When the processor 501 executes the motor control program 510, the control device 50 executes the functions of the switching command unit 521, the parameter value determination unit 522, the control value determination unit 523, the control value switching unit 524, as well as the input unit 525 and the identification unit 526.
 入力部525は、巻線切替装置100がゼロクロス切替を実行するタイミングで出力する切替タイミング信号を受け付ける。すなわち、入力部525は、巻線切替装置100の制御回路103u,103v,103wのそれぞれから半導体リレー111u,111v,111wのそれぞれのゲート端子に出力される切替タイミング信号を受け付ける。 The input unit 525 receives a switching timing signal that is output when the winding switching device 100 executes zero-cross switching. That is, the input unit 525 receives a switching timing signal that is output from each of the control circuits 103u, 103v, and 103w of the winding switching device 100 to the gate terminals of the semiconductor relays 111u, 111v, and 111w.
 特定部526は、巻線21u,22u,21v,22v,21w,22wの接続状態を、巻線電流Iu,Iv,Iwのゼロクロス点において、直列接続状態から並列接続状態へ、又は、並列接続状態から直列接続状態へ切り替えるゼロクロス切替を実行した切替タイミングを特定する。具体的な一例では、特定部526は、入力部525における切替タイミング信号の入力に基づいて、切替タイミングを特定する。例えば、特定部526は、U相における切替タイミングと、V相における切替タイミングと、W相における切替タイミングとのそれぞれを特定することができる。 The determination unit 526 determines the switching timing at which a zero-crossing switch is performed to switch the connection state of the windings 21u, 22u, 21v, 22v, 21w, and 22w from a series connection state to a parallel connection state, or from a parallel connection state to a series connection state, at the zero-crossing points of the winding currents Iu, Iv, and Iw. In a specific example, the determination unit 526 determines the switching timing based on the input of a switching timing signal at the input unit 525. For example, the determination unit 526 can determine the switching timing in the U phase, the switching timing in the V phase, and the switching timing in the W phase.
 制御値切替部524は、特定部526によって特定された切替タイミングに基づいて、n個の制御電圧値のそれぞれの第1制御電圧値から第2制御電圧値値への変化を開始させる。具体的な一例では、制御値切替部524は、特定部526によって特定された3個の切替タイミングのうちの最初の切替タイミングにおいて、U相の制御電圧値、V相の制御電圧値、及びW相の制御電圧値のそれぞれの、第1制御電圧値から第2制御電圧値への変化を開始させる。例えば、U相の切替タイイングが最初の切替タイミングである場合、制御値切替部524は、U相の切替タイミングにおいて、U相の制御電圧値、V相の制御電圧値、及びW相の制御電圧値のそれぞれの、第1制御電圧値から第2制御電圧値への変化を開始させる。 The control value switching unit 524 starts changing each of the n control voltage values from the first control voltage value to the second control voltage value based on the switching timing identified by the identification unit 526. In a specific example, the control value switching unit 524 starts changing each of the control voltage value of the U phase, the control voltage value of the V phase, and the control voltage value of the W phase from the first control voltage value to the second control voltage value at the first switching timing of the three switching timings identified by the identification unit 526. For example, when the switching timing of the U phase is the first switching timing, the control value switching unit 524 starts changing each of the control voltage value of the U phase, the control voltage value of the V phase, and the control voltage value of the W phase from the first control voltage value to the second control voltage value at the switching timing of the U phase.
 ここで、切替期間は、2λ/3に設定することができる。これにより、W相における切替タイミングにおいて、U相の制御電圧値、V相の制御電圧値、及びW相の制御電圧値のそれぞれの、第1制御電圧値から第2制御電圧値への変化が完了する。 Here, the switching period can be set to 2λ/3. As a result, at the switching timing in the W phase, the control voltage value of the U phase, the control voltage value of the V phase, and the control voltage value of the W phase each completes changing from the first control voltage value to the second control voltage value.
 図13は、第3実施形態に係る制御装置によるモータ制御処理の一例を示すフローチャートである。 FIG. 13 is a flowchart showing an example of motor control processing by the control device according to the third embodiment.
 ステップS101からS109は、第1実施形態におけるステップS101からS109と同じである。 Steps S101 to S109 are the same as steps S101 to S109 in the first embodiment.
 第3実施形態では、巻線切替装置100から切替タイミング信号が制御装置50へ出力される。プロセッサ501は、切替タイミング信号に基づいて、切替タイミングを特定する。 In the third embodiment, a switching timing signal is output from the winding switching device 100 to the control device 50. The processor 501 determines the switching timing based on the switching timing signal.
 プロセッサ501は、切替タイミングが到来したか否かを判定する(ステップS201)。切替タイミングが到来していない場合(ステップS201においてNO)、プロセッサ501は、ステップS201を再度実行する。 The processor 501 determines whether or not the switching timing has arrived (step S201). If the switching timing has not arrived (NO in step S201), the processor 501 executes step S201 again.
 切替タイミングが到来した場合(ステップS201においてYES)、プロセッサ501は、PWM信号の生成に用いる制御電圧値を所定量変化させる(ステップS110)。ステップS110からS112は、第1実施形態におけるステップS110からS112と同じである。これにより、ゼロクロス切替が実行されたタイミングで、制御電圧値の漸次変化を開始することができる。 When the switching timing arrives (YES in step S201), the processor 501 changes the control voltage value used to generate the PWM signal by a predetermined amount (step S110). Steps S110 to S112 are the same as steps S110 to S112 in the first embodiment. This makes it possible to start a gradual change in the control voltage value at the timing when the zero-cross switching is executed.
[4.第4実施形態]
 第4実施形態に係る制御装置50の特定部526は、巻線電流Iu,Iv,Iwのゼロクロス点を検出し、検出したゼロクロス点に基づいて、切替タイミングを推定する。例えば、特定部526は、電流センサ33u,33v,33wの時系列の検出値から巻線電流Iu,Iv,Iwの波形を特定し、U相、V相、W相それぞれにおけるゼロクロス点を検出することができる。
[4. Fourth embodiment]
The determination unit 526 of the control device 50 according to the fourth embodiment detects zero crossing points of the winding currents Iu, Iv, Iw, and estimates the switching timing based on the detected zero crossing points. For example, the determination unit 526 can determine the waveforms of the winding currents Iu, Iv, Iw from the time-series detection values of the current sensors 33u, 33v, 33w, and detect the zero crossing points in each of the U-phase, V-phase, and W-phase.
 具体的な一例では、特定部526は、巻線切替装置100に切替指令信号が入力されてから次に到来するゼロクロス点が、切替タイミングであると推定することができる。例えば、特定部526は、U相、V相、W相それぞれにおける切替タイミングを推定することができる。 In one specific example, the determination unit 526 can estimate that the next zero cross point after the switching command signal is input to the winding switching device 100 is the switching timing. For example, the determination unit 526 can estimate the switching timing for each of the U phase, V phase, and W phase.
 第4実施形態では、入力部525は、巻線切替装置100から切替タイミング信号に代えて、電流センサ33u,33v,33wの検出値を受け付ける。特定部526は、入力部525に入力された電流センサ33u,33v,33wの検出値に基づいて、巻線電流Iu,Iv,Iwのゼロクロス点を検出する。 In the fourth embodiment, the input unit 525 receives the detection values of the current sensors 33u, 33v, and 33w instead of the switching timing signal from the winding switching device 100. The determination unit 526 detects the zero-crossing points of the winding currents Iu, Iv, and Iw based on the detection values of the current sensors 33u, 33v, and 33w input to the input unit 525.
 第4実施形態に係る制御装置50のその他の機能は、第3実施形態に係る制御装置50の機能と同様であるので、説明を省略する。第4実施形態に係る巻線切替システムのその他の構成については、第1実施形態に係る巻線切替システム10の構成と同様であるので、説明を省略する。 Other functions of the control device 50 according to the fourth embodiment are similar to those of the control device 50 according to the third embodiment, and therefore will not be described. Other configurations of the winding switching system according to the fourth embodiment are similar to those of the winding switching system 10 according to the first embodiment, and therefore will not be described.
[5.補記]
 今回開示された実施の形態はすべての点で例示であって、制限的ではない。本発明の権利範囲は、上述の実施形態ではなく請求の範囲によって示され、請求の範囲と均等の意味及びその範囲内でのすべての変更が含まれる。
[5. Supplementary Notes]
The embodiments disclosed herein are illustrative in all respects and are not restrictive. The scope of the present invention is defined by the claims, not the above-described embodiments, and includes the meaning equivalent to the claims and all modifications within the scope thereof.
 10 巻線切替システム
 20 モータ
 21u,22u,21v,22v,21w,22w 巻線
 23 中性点
 25 電力線
 26 位置センサ
 30 電力変換器
 31u,32u,31v,32v,31w,32w スイッチ
 33u,33v,33w 電流センサ
 35u,35v,35w 電力線
 40 バッテリ
 50 制御装置
 501 プロセッサ
 502 不揮発性メモリ
 503 揮発性メモリ
 504 インタフェース(I/F)
 510 モータ制御プログラム
 521 切替指令部
 522 パラメータ値決定部
 523 制御値決定部
 524 制御値切替部
 525 入力部
 526 特定部
 531 目標トルク
 532 トルク電流変換部
 533 電流変換部
 534 加算点
 535 F/B制御部
 536 起電力演算部
 537 加算点
 538 電圧変換部
 539 PWM部
 100 巻線切替装置
 101u,101v,101w 電流センサ
 102u,102v,102w ゼロクロス検出回路
 103u,103v,103w 制御回路
 104u,104v,104w 切替回路
 111u,112u,113u,111v,112v,113v,111w,112w,113w 半導体リレー
 212u,221u,222u,212v,221v,222v,212w,221w,222w 電力線
 131,133 AND回路
 132 NOT回路
 120 ラッチ回路(RSフリップフロップ)
 121,123 NOT回路
 122,124 NAND回路
 20A モータ
 24u,25u,24v,25v,24w,25w 巻線
 100A 巻線切替装置
 131u,131v,131w 電流センサ
 140u,140v,140w 切替回路
 141u,142u,141v,142v,141w,142w 半導体リレー
 241u,242u,243u,251u,252u,253u,241v,242v,243v,251v,252v,253v,241w,242w,243w,251w,252w,253w 電力線
 
10 Winding switching system 20 Motor 21u, 22u, 21v, 22v, 21w, 22w Winding 23 Neutral point 25 Power line 26 Position sensor 30 Power converter 31u, 32u, 31v, 32v, 31w, 32w Switch 33u, 33v, 33w Current sensor 35u, 35v, 35w Power line 40 Battery 50 Control device 501 Processor 502 Non-volatile memory 503 Volatile memory 504 Interface (I/F)
510 Motor control program 521 Switching command unit 522 Parameter value determination unit 523 Control value determination unit 524 Control value switching unit 525 Input unit 526 Identification unit 531 Target torque 532 Torque current conversion unit 533 Current conversion unit 534 Addition point 535 F/B control unit 536 Electromotive force calculation unit 537 Addition point 538 Voltage conversion unit 539 PWM unit 100 Winding switching device 101u, 101v, 101w Current sensor 102u, 102v, 102w Zero cross detection circuit 103u, 103v, 103w Control circuit 104u, 104v, 104w Switching circuit 111u, 112u, 113u, 111v, 112v, 113v, 111w, 112w, 113w Semiconductor relay 212u, 221u, 222u, 212v, 221v, 222v, 212w, 221w, 222w Power line 131, 133 AND circuit 132 NOT circuit 120 Latch circuit (RS flip-flop)
121, 123 NOT circuit 122, 124 NAND circuit 20A motor 24u, 25u, 24v, 25v, 24w, 25w Winding 100A Winding switching device 131u, 131v, 131w Current sensor 140u, 140v, 140w Switching circuit 141u, 142u, 141v, 142v, 141w, 142w Semiconductor relay 241u, 242u, 243u, 251u, 252u, 253u, 241v, 242v, 243v, 251v, 252v, 253v, 241w, 242w, 243w, 251w, 252w, 253w Power line

Claims (12)

  1.  複数の巻線の接続状態を第1接続状態から第2接続状態へ切り替えることが可能な交流モータを制御するための制御装置であって、
     前記複数の巻線の接続状態を切り替える巻線切替装置に、前記巻線に流れる電流のゼロクロス点において前記複数の巻線の接続状態を前記第1接続状態から前記第2接続状態へ切り替えるゼロクロス切替の実行を指令する切替指令部と、
     前記ゼロクロス切替が実行される際に、前記交流モータを制御するための制御値を、前記第1接続状態に用いられる第1制御値から、前記第2接続状態に用いられる第2制御値へ切り替える制御値切替部と、
     を備え、
     前記制御値切替部は、前記制御値を、前記第1制御値から前記第2制御値へ漸次変化させる、
     制御装置。
    A control device for controlling an AC motor capable of switching a connection state of a plurality of windings from a first connection state to a second connection state,
    a switching command unit that commands a winding switching device that switches the connection states of the plurality of windings to execute zero-cross switching to switch the connection states of the plurality of windings from the first connection state to the second connection state at a zero-cross point of a current flowing through the windings;
    a control value switching unit that switches a control value for controlling the AC motor from a first control value used in the first connection state to a second control value used in the second connection state when the zero-crossing switching is performed;
    Equipped with
    The control value switching unit gradually changes the control value from the first control value to the second control value.
    Control device.
  2.  前記交流モータは、多相交流モータであり、
     前記制御値切替部は、各相に対応する複数の前記制御値のそれぞれの前記第1制御値から前記第2制御値への変化を同期させる、
     請求項1に記載の制御装置。
    the AC motor is a polyphase AC motor,
    The control value switching unit synchronizes a change from the first control value to the second control value of each of the plurality of control values corresponding to each phase.
    The control device according to claim 1 .
  3.  前記交流モータは、n相交流モータ(nは3以上の整数)であり、
     前記制御値切替部は、前記交流モータに供給される電流の波長をλとしたときに、n個の前記制御値のそれぞれの前記第1制御値から前記第2制御値への変化を、前記変化が開始してからλ(n-1)/n経過後に完了させる、
     請求項2に記載の制御装置。
    The AC motor is an n-phase AC motor (n is an integer of 3 or more),
    the control value switching unit completes a change of each of the n control values from the first control value to the second control value after λ(n−1)/n has elapsed since the start of the change, when λ is a wavelength of the current supplied to the AC motor.
    The control device according to claim 2.
  4.  前記制御値切替部は、前記n相交流の第1の相の電流のゼロクロス点において前記n個の前記制御値のそれぞれの前記第1制御値から前記第2制御値への変化を開始させる、
     請求項3に記載の制御装置。
    the control value switching unit starts changing each of the n control values from the first control value to the second control value at a zero cross point of a current of a first phase of the n-phase AC.
    The control device according to claim 3.
  5.  前記制御装置は、前記巻線切替装置が前記n相のそれぞれにおいて前記ゼロクロス切替を実行したn個の切替タイミングを特定する特定部をさらに備え、
     前記制御値切替部は、前記特定部によって特定された前記n個の切替タイミングのうちの最初の切替タイミングにおいて、前記n個の前記制御値のそれぞれの前記第1制御値から前記第2制御値への変化を開始させる、
     請求項3に記載の制御装置。
    The control device further includes an identification unit that identifies n switching timings at which the winding switching device executes the zero-crossing switching for each of the n phases,
    the control value switching unit starts changing each of the n control values from the first control value to the second control value at an initial switching timing among the n switching timings identified by the identification unit.
    The control device according to claim 3.
  6.  前記制御装置は、
     前記制御値の決定に用いられる制御パラメータのパラメータ値を決定するパラメータ値決定部と、
     前記パラメータ値決定部によって決定された前記パラメータ値に基づいて、前記制御値を決定する制御値決定部と、
     をさらに備え、
     前記制御値決定部は、前記第1制御値と前記第2制御値とを決定し、
     前記制御値切替部は、前記制御値決定部によって決定された前記第1制御値及び前記第2制御値を同時に保持し、保持した前記第1制御値から、保持した前記第2制御値へ前記制御値を切り替える、
     請求項1から請求項5のいずれか1項に記載の制御装置。
    The control device includes:
    a parameter value determination unit that determines a parameter value of a control parameter used in determining the control value;
    a control value determination unit that determines the control value based on the parameter value determined by the parameter value determination unit;
    Further equipped with
    the control value determination unit determines the first control value and the second control value;
    the control value switching unit simultaneously holds the first control value and the second control value determined by the control value determination unit, and switches the control value from the held first control value to the held second control value.
    The control device according to any one of claims 1 to 5.
  7.  前記パラメータ値決定部は、前記第1接続状態におけるパラメータ値である第1パラメータ値と、前記第2接続状態におけるパラメータ値である第2パラメータ値とを決定し、
     前記制御値決定部は、前記パラメータ値決定部によって決定された前記第1パラメータ値及び前記第2パラメータ値を同時に保持し、保持した前記第1パラメータ値に基づいて前記第1制御値を決定し、保持した前記第2パラメータ値に基づいて前記第2制御値を決定する、
     請求項6に記載の制御装置。
    the parameter value determination unit determines a first parameter value that is a parameter value in the first connection state and a second parameter value that is a parameter value in the second connection state;
    the control value determination unit simultaneously holds the first parameter value and the second parameter value determined by the parameter value determination unit, determines the first control value based on the held first parameter value, and determines the second control value based on the held second parameter value.
    The control device according to claim 6.
  8.  前記制御値は、前記巻線に印加する電圧の電圧値である、
     請求項1から請求項7のいずれか1項に記載の制御装置。
    The control value is a voltage value of a voltage applied to the winding.
    The control device according to any one of claims 1 to 7.
  9.  複数の巻線の接続状態を第1接続状態から第2接続状態へ切り替えることが可能な交流モータと、
     電源から出力される電力を交流電力に変換し、前記交流電力を前記交流モータに供給する電力変換器と、
     前記複数の巻線の接続状態を、前記巻線に流れる電流のゼロクロス点において前記第1接続状態から前記第2接続状態へ切り替えるゼロクロス切替を実行する巻線切替装置と、
     制御装置と、
     を備え、
     前記制御装置は、
     前記巻線切替装置に前記ゼロクロス切替の実行を指令する切替指令部と、
     前記ゼロクロス切替が実行される際に、前記交流モータを制御するための制御値を、前記第1接続状態に用いられる第1制御値から、前記第2接続状態に用いられる第2制御値へ切り替える制御値切替部と、
     を含み、
     前記制御値切替部は、前記制御値を、前記第1制御値から前記第2制御値へ漸次変化させる、
     巻線切替システム。
    an AC motor capable of switching a connection state of a plurality of windings from a first connection state to a second connection state;
    a power converter that converts power output from a power source into AC power and supplies the AC power to the AC motor;
    a winding switching device that performs zero-cross switching to switch a connection state of the plurality of windings from the first connection state to the second connection state at a zero-cross point of a current flowing through the windings;
    A control device;
    Equipped with
    The control device includes:
    A switching command unit that commands the winding switching device to execute the zero-cross switching;
    a control value switching unit that switches a control value for controlling the AC motor from a first control value used in the first connection state to a second control value used in the second connection state when the zero-crossing switching is performed;
    Including,
    The control value switching unit gradually changes the control value from the first control value to the second control value.
    Winding switching system.
  10.  複数の巻線の接続状態を第1接続状態から第2接続状態へ切り替えることが可能な交流モータと、
     電源から出力される電力を交流電力に変換し、前記交流電力を前記交流モータに供給する電力変換器と、
     前記複数の巻線の接続状態を、前記巻線に流れる電流のゼロクロス点において前記第1接続状態から前記第2接続状態へ切り替えるゼロクロス切替を実行する巻線切替装置と、
     制御装置と、
     を備え、
     前記制御装置は、
     前記巻線切替装置に前記ゼロクロス切替の実行を指令する切替指令部と、
     前記ゼロクロス切替が実行される際に、前記交流モータを制御するための制御値を、前記第1接続状態に用いられる第1制御値から、前記第2接続状態に用いられる第2制御値へ切り替える制御値切替部と、
     を含み、
     前記制御値切替部は、前記制御値を、前記第1制御値から前記第2制御値へ漸次変化させる、
     車両。
    an AC motor capable of switching a connection state of a plurality of windings from a first connection state to a second connection state;
    a power converter that converts power output from a power source into AC power and supplies the AC power to the AC motor;
    a winding switching device that performs zero-cross switching to switch a connection state of the plurality of windings from the first connection state to the second connection state at a zero-cross point of a current flowing through the windings;
    A control device;
    Equipped with
    The control device includes:
    A switching command unit that commands the winding switching device to execute the zero-cross switching;
    a control value switching unit that switches a control value for controlling the AC motor from a first control value used in the first connection state to a second control value used in the second connection state when the zero-crossing switching is performed;
    Including,
    The control value switching unit gradually changes the control value from the first control value to the second control value.
    vehicle.
  11.  複数の巻線の接続状態を第1接続状態から第2接続状態へ切り替えることが可能な交流モータを制御するための制御方法であって、
     前記複数の巻線の接続状態を切り替える巻線切替装置に、前記巻線に流れる電流のゼロクロス点において前記複数の巻線の接続状態を前記第1接続状態から前記第2接続状態へ切り替えるゼロクロス切替の実行を指令するステップと、
     前記ゼロクロス切替が実行される際に、前記交流モータを制御するための制御値を、前記第1接続状態に用いられる第1制御値から、前記第2接続状態に用いられる第2制御値へ切り替えるステップと、
     を含み、
     前記制御値を切り替えるステップにおいて、前記制御値を、前記第1制御値から前記第2制御値へ漸次変化させる、
     制御方法。
    1. A control method for controlling an AC motor capable of switching a connection state of a plurality of windings from a first connection state to a second connection state, comprising:
    instructing a winding switching device that switches the connection states of the plurality of windings to execute zero-cross switching to switch the connection states of the plurality of windings from the first connection state to the second connection state at a zero-cross point of a current flowing through the windings;
    switching a control value for controlling the AC motor from a first control value used in the first connection state to a second control value used in the second connection state when the zero-crossing switching is performed;
    Including,
    In the step of switching the control value, the control value is gradually changed from the first control value to the second control value.
    Control methods.
  12.  複数の巻線の接続状態を第1接続状態から第2接続状態へ切り替えることが可能な交流モータを制御するための制御プログラムであって、
     コンピュータに、
     前記複数の巻線の接続状態を切り替える巻線切替装置に、前記巻線に流れる電流のゼロクロス点において前記複数の巻線の接続状態を前記第1接続状態から前記第2接続状態へ切り替えるゼロクロス切替の実行を指令するステップと、
     前記ゼロクロス切替が実行される際に、前記交流モータを制御するための制御値を、前記第1接続状態に用いられる第1制御値から、前記第2接続状態に用いられる第2制御値へ切り替えるステップと、
     を実行させ、
     前記制御値を切り替えるステップにおいて、前記制御値を、前記第1制御値から前記第2制御値へ漸次変化させる、
     制御プログラム。
     
    1. A control program for controlling an AC motor capable of switching a connection state of a plurality of windings from a first connection state to a second connection state,
    On the computer,
    instructing a winding switching device that switches the connection states of the plurality of windings to execute zero-cross switching to switch the connection states of the plurality of windings from the first connection state to the second connection state at a zero-cross point of a current flowing through the windings;
    switching a control value for controlling the AC motor from a first control value used in the first connection state to a second control value used in the second connection state when the zero-crossing switching is performed;
    Run the command,
    In the step of switching the control value, the control value is gradually changed from the first control value to the second control value.
    Control program.
PCT/JP2024/002516 2023-03-03 2024-01-26 Control device, winding switching system, vehicle, control method, and control program WO2024185337A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-032764 2023-03-03
JP2023032764 2023-03-03

Publications (1)

Publication Number Publication Date
WO2024185337A1 true WO2024185337A1 (en) 2024-09-12

Family

ID=92674422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/002516 WO2024185337A1 (en) 2023-03-03 2024-01-26 Control device, winding switching system, vehicle, control method, and control program

Country Status (1)

Country Link
WO (1) WO2024185337A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146695A (en) * 2015-02-06 2016-08-12 株式会社安川電機 Driving device and transport machine
JP2020043740A (en) * 2018-09-13 2020-03-19 マツダ株式会社 Motor generator control device
JP2022036727A (en) * 2020-08-24 2022-03-08 株式会社Soken Controller for inverter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146695A (en) * 2015-02-06 2016-08-12 株式会社安川電機 Driving device and transport machine
JP2020043740A (en) * 2018-09-13 2020-03-19 マツダ株式会社 Motor generator control device
JP2022036727A (en) * 2020-08-24 2022-03-08 株式会社Soken Controller for inverter

Similar Documents

Publication Publication Date Title
JP5741966B2 (en) AC motor control device
US8497645B2 (en) Control device for electric motor drive device
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
WO2009113509A1 (en) Inverter device
US20030128009A1 (en) Motor control apparatus and method
CN109728761B (en) Motor drive control device
JP5534252B2 (en) AC motor control device
JP5910583B2 (en) AC motor control device
JP5483218B2 (en) AC motor control device
JP6685452B1 (en) Control device for rotating electric machine
JP5621998B2 (en) AC motor control device
JP6293401B2 (en) Motor controller for air conditioner and air conditioner
WO2024185337A1 (en) Control device, winding switching system, vehicle, control method, and control program
CN108432120B (en) Control device for rotating electric machine
US8729847B2 (en) Methods, systems and apparatus for generating current commands used to control operation of an electric machine
WO2024185274A1 (en) Control device, line-switching system, control method, and control program
JP2023183491A (en) AC rotating machine control device and vehicle generator motor device
WO2024185335A1 (en) Control device, winding switching system, control method, and control program
CN113039717B (en) AC rotary motor control device
WO2024185339A1 (en) Control device, winding switching system, vehicle, control method, and control program
JP2004064837A (en) Motor drive control device
JP2002209386A (en) Power conversion device and drive control method for polyphase load
JP5910582B2 (en) AC motor control device
WO2024236867A1 (en) Motor control device and motor control method
JP2024048986A (en) Control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24766712

Country of ref document: EP

Kind code of ref document: A1