[go: up one dir, main page]

WO2024185319A1 - Room-temperature-curable organopolysiloxane composition and base material - Google Patents

Room-temperature-curable organopolysiloxane composition and base material Download PDF

Info

Publication number
WO2024185319A1
WO2024185319A1 PCT/JP2024/001769 JP2024001769W WO2024185319A1 WO 2024185319 A1 WO2024185319 A1 WO 2024185319A1 JP 2024001769 W JP2024001769 W JP 2024001769W WO 2024185319 A1 WO2024185319 A1 WO 2024185319A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
curable organopolysiloxane
component
room
organopolysiloxane composition
Prior art date
Application number
PCT/JP2024/001769
Other languages
French (fr)
Japanese (ja)
Inventor
晃 打它
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2024185319A1 publication Critical patent/WO2024185319A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present invention relates to a room-temperature curable organopolysiloxane composition suitable as a coating agent for substrates such as underwater structures and ships, and to substrates coated with a cured product of this composition.
  • RTV silicone rubber compositions room temperature curable silicone rubber compositions
  • RTV silicone rubber compositions has excellent weather resistance, durability, heat resistance, cold resistance, etc. compared to other hydrocarbon-based organic rubbers, and is therefore used in various fields, particularly in the construction field, where it is widely used for bonding glass to glass, bonding metal to glass, sealing concrete joints, etc.
  • it has also become widely used as a coating material for buildings, plants, the inner and outer surfaces of water pipes, etc.
  • liquid crystal peripherals and power circuit boards the demand for which has been rapidly increasing in recent years.
  • aquatic organisms that live in the waters of the sea, rivers, etc., such as barnacles, oysters, sea squirts, serpula, mussels, mussels, moss animals, green laver, and sea lettuce, attach and grow on the splash areas and submerged surfaces of the structures, causing various damages.
  • these organisms attach to the hull of a ship, etc., frictional resistance with the water increases and the sailing speed decreases, which increases fuel consumption to maintain a certain speed, which is economically disadvantageous.
  • a non-toxic antifouling paint composition that contains liquid paraffin or petrolatum in an RTV silicone rubber composition that can reduce the surface tension of the coating film and provide antifouling properties, as a paint that prevents the attachment and growth of aquatic organisms and does not contain a toxic antifouling agent
  • JP Patent Publication No. 58-13673 Patent Document 1
  • JP Patent Publication No. 62-84166 Patent Document 2
  • hydrocarbon-based bleed oils such as liquid paraffin and petrolatum have extremely low compatibility with silicone, there is a drawback in that the antifouling performance decreases within a short period of time.
  • non-toxic antifouling paint composition in which the volume shrinkage associated with the curing of the reactive curing silicone resin causes the poorly compatible and non-reactive polar group-containing silicone resin to bleed to the surface, and in combination with the low surface tension of the reactive curing silicone resin, it exhibits antifouling properties (JP Patent Publication No. 2503986: Patent Document 3, JP Patent Publication No. 2952375: Patent Document 4).
  • the non-toxic antifouling paint composition uses oil-bleeding of silicone resins containing polyoxyethylene groups in which ethylene oxide, propylene oxide, etc.
  • silicone resins are attached to the Si atom via a C-C bond as the poorly compatible and non-reactive polar group-containing silicone resin, or silicone resins in which alkoxy groups have been introduced to the molecular terminals via ethylene oxide or propylene oxide groups attached to the Si atom, resulting in problems with environmental safety and health.
  • RTV silicone rubber compositions contained in conventional antifouling paint compositions are moisture-curing types, with the majority being oxime-curing types.
  • the reasons for this include the fact that good curing can be achieved without the use of harmful organotin catalysts, and that the strength of the cured film is high.
  • oxime-curing types generate methyl ethyl ketoxime (MEKO) during curing, they tend to be avoided in the antifouling paint market, mainly in Europe, due to concerns about the burden on the environment. It is possible to prevent the generation of MEKO with alcohol-curing types, but alcohol-curing types generally require organotin compounds as a curing catalyst.
  • alcohol-curing types cure more slowly than oxime-curing types, so when used as antifouling paints, workability may decrease.
  • the present invention has been made in consideration of the above circumstances, and aims to provide a room-temperature curable organopolysiloxane composition that does not contain organotin compounds that are problematic in terms of environmental safety and health, and that is of a curing type that does not generate MEKO during curing, which is often avoided in the antifouling paint market, yet has excellent fast curing properties, and the resulting cured coating film has excellent rubber strength and exhibits excellent antifouling performance for a long period of time, as well as a substrate coated (covered) with the cured product of said composition.
  • room-temperature curable organopolysiloxane compositions have no reported health hazards, such as carcinogenicity or reproductive toxicity to the human body, or environmental hazards, such as toxicity to aquatic organisms, and that by using a hydrolyzable organosilane compound with a cyclic ketone compound, such as cyclobutanone or cyclopentanone, as a leaving group (leaving compound), which has a relatively high flash point, as a curing agent, it is possible to prepare a room-temperature curable organopolysiloxane composition that does not generate MEKO during curing and does not contain organotin compounds, and that this composition has excellent fast-curing properties, and further, by blending a specific bleed oil, the cured coating film obtained has excellent rubber strength and surface smoothness, and exhibits excellent anti-fouling performance for a long period of time, which led to the creation of the present invention
  • a room-temperature curable organopolysiloxane composition comprising the following components (A) to (D): (A) 100 parts by mass of an organopolysiloxane having a viscosity ⁇ (A) at 25° C. of 100 to 100,000 mPa ⁇ s, which is represented by the following general formula (1): HO-(SiR 1 2 O) a -H (1) (In the formula, R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and each R 1 may be the same or different.
  • a is an integer of 50 or more.
  • B a hydrolyzable organosilane compound represented by the following general formula (2) and/or a partial hydrolysis condensate thereof: 1 to 40 parts by mass, (In the formula, R2 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, n is an integer from 1 to 8, and m is 3 or 4.)
  • C a curing catalyst (excluding organotin compounds): 0.001 to 10 parts by mass, and
  • the room temperature curable organopolysiloxane composition of the present invention does not contain organotin compounds which are useful as curing catalysts but have environmental, safety and hygiene problems, and has excellent fast curing properties while being a curing type that does not generate MEKO during curing, which is often avoided in the antifouling paint market, and the resulting cured coating film has excellent rubber strength, and when used as an antifouling paint, it exhibits excellent antifouling performance for a long period of time. It is particularly suitable for application to underwater structures, ships, etc., to prevent the attachment and growth of aquatic organisms on the substrate surfaces of underwater structures, ships, etc., and the effect is well sustained.
  • the coating film obtained from the room temperature curable organopolysiloxane composition of the present invention is non-toxic, and when the coating film is provided on the surface of a substrate such as an underwater structure or a ship, it prevents the attachment and growth of aquatic organisms for a long period of time, and exhibits excellent antifouling properties.
  • the room temperature curable organopolysiloxane composition of the present invention is highly suitable for applications such as coating materials requiring water resistance, such as ship bottom paints, paints for seawater inlet pipes to power plants, and fishnet paints, moisture-proof coating materials requiring moisture resistance, such as LCDs and PDPs, adhesive seals between electric wires and resin coatings, adhesive seals between resin cases or resin connectors and electric wires, and adhesive seals for reduced pressure or pressurized chambers, and is particularly useful as ship bottom paints, paints for seawater inlet pipes to power plants, and fishnet paints, for preventing the attachment and growth of aquatic organisms on the surfaces of these materials.
  • coating materials requiring water resistance such as ship bottom paints, paints for seawater inlet pipes to power plants, and fishnet paints
  • moisture-proof coating materials requiring moisture resistance such as LCDs and PDPs
  • adhesive seals between electric wires and resin coatings adhesive seals between resin cases or resin connectors and electric wires
  • the present invention will now be described in further detail.
  • the room-temperature-curable organopolysiloxane composition of the present invention is characterized by containing the following components (A) to (D):
  • Component (A) used in the room temperature curable organopolysiloxane composition of the present invention is an organopolysiloxane represented by the following general formula (1) and having a viscosity ⁇ (A) at 25° C. of 100 to 100,000 mPa ⁇ s. HO-(SiR 1 2 O) a -H (1) (In the formula, R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and each R 1 may be the same or different. a is an integer of 50 or more.)
  • Component (A) is a linear diorganopolysiloxane having a main chain consisting of repeating diorganosiloxane units as shown in formula (1), both ends of the molecular chain being blocked with hydroxyl groups (silanol groups) bonded to silicon atoms, and having a viscosity ⁇ (A) of 100 to 100,000 mPa s at 25°C. It functions as the main agent (base polymer) of the room-temperature-curable organopolysiloxane composition of the present invention.
  • R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms, such as alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, octyl, 2-ethylhexyl, nonyl, and decyl, cycloalkyl groups such as cyclohexyl, alkenyl groups such as vinyl, allyl, propenyl, isopropenyl, butenyl, and hexenyl, aryl groups such as phenyl and tolyl, and aralkyl groups such as benzyl and phenylethyl.
  • alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl,
  • the hydrogen atoms of these hydrocarbon groups may be partially substituted with halogen atoms such as chlorine, fluorine, and bromine, such as a trifluoropropyl group.
  • the unsubstituted or substituted monovalent hydrocarbon group of R1 is preferably one that does not contain an aliphatic unsaturated bond, more preferably an alkyl group such as a methyl group, or an aryl group such as a phenyl group, and particularly preferably a methyl group.
  • the R1s may be the same group or different groups.
  • a which indicates the number of repetitions (or degree of polymerization) of the bifunctional diorganosiloxane units (SiR 1 2 O 2/2 ) that constitute the main chain, is an integer of 50 or more, preferably an integer from 50 to 1,500, more preferably an integer from 100 to 1,300, and particularly preferably an integer from 200 to 1,000.
  • the degree of polymerization (or molecular weight) can be determined, for example, as a polystyrene-equivalent number average degree of polymerization (or number average molecular weight) in gel permeation chromatography (GPC) analysis using toluene, tetrahydrofuran (THF) or the like as a developing solvent.
  • the organopolysiloxane of component (A) has a viscosity ⁇ (A) at 25°C of 100 to 100,000 mPa ⁇ s, preferably 300 to 50,000 mPa ⁇ s, more preferably 500 to 30,000 mPa ⁇ s, and particularly preferably 700 to 20,000 mPa ⁇ s. If the viscosity ⁇ (A) of the organopolysiloxane is less than the lower limit (100 mPa ⁇ s), a large amount of component (C) described below is required, which is economically disadvantageous.
  • the viscosity ⁇ (A) of the organopolysiloxane exceeds the upper limit (100,000 mPa ⁇ s), workability decreases, which is not preferable.
  • the viscosity is a value measured at 25° C. using a B-type rotational viscometer (for example, BL type, BH type, BS type, etc.) (the same applies below).
  • the organopolysiloxane of component (A) may be used alone or in combination of two or more types.
  • the component (B) used in the room-temperature-curable organopolysiloxane composition of the present invention is a hydrolyzable organosilane compound and/or a partial hydrolysis condensate thereof, which is represented by the following general formula (2) and has three or four cycloalkenyloxy groups as hydrolyzable groups bonded to silicon atoms in the molecule, and is used as a crosslinking agent (curing agent) and is characterized in that it releases a cyclic ketone compound such as cyclobutanone or cyclopentanone as a leaving group (leaving substance) upon hydrolysis.
  • a cyclic ketone compound such as cyclobutanone or cyclopentanone
  • partial hydrolysis condensate refers to an organosiloxane oligomer having three or more, preferably four or more, residual hydrolyzable groups in the molecule, which is produced by partially hydrolyzing and condensing the hydrolyzable organosilane compound.
  • R2 is a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • n is an integer from 1 to 8
  • m is 3 or 4.
  • R 2 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aralkyl group having 7 to 10 carbon atoms
  • examples of R 2 include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, octyl, 2-ethylhexyl, nonyl, and decyl groups, alkenyl groups such as vinyl, allyl, propenyl, isopropenyl, butenyl, and hexenyl groups, aryl groups such as phenyl and tolyl groups, and aralkyl groups
  • n is an integer of 1 to 8, preferably an integer of 2 to 6, more preferably an integer of 2 to 4, and even more preferably 2 or 3.
  • n is 0, no cyclic structure is formed.
  • n is an integer of 9 or more, the molecular weight of the hydrolyzable organosilane compound becomes large, making purification by distillation difficult and increasing the amount of addition required to ensure storage stability, which is disadvantageous in terms of cost.
  • m is 3 or 4. If this number is less than 3 (i.e., if m is 0, 1, or 2), rubber hardening through a crosslinking reaction does not occur, making the compound unsuitable as a crosslinker for room temperature curable organopolysiloxane compositions.
  • the leaving group (leaving compound) generated by hydrolysis of the hydrolyzable organosilane compound represented by the above general formula (2) is a cyclic ketone compound such as cyclopropanone, cyclobutanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, cyclononanone, cyclodecanone, etc., preferably cyclobutanone and cyclopentanone, more preferably cyclopentanone.
  • cyclobutanone and cyclopentanone being harmful to human health, such as carcinogenicity or reproductive toxicity, or environmentally, such as being toxic to aquatic organisms.
  • Cyclopentanone is also mass-produced industrially, is easily available, and is highly cost-competitive, making it advantageous for the production of the hydrolyzable organosilane compound of component (B), as described below.
  • the hydrolyzable organosilane compound of component (B) can be produced, for example, by reacting a chlorosilane compound corresponding to the hydrolyzable organosilane compound represented by general formula (2), which is the product, with a cyclic ketone compound in the presence of a catalyst and a basic substance (e.g., dehydrochlorination reaction).
  • This reaction formula is represented, for example, by the following formula [1].
  • chlorosilane compound examples include the following.
  • Examples of the cyclic ketone compound include the following.
  • the amount of the cyclic ketone compound to be reacted with the chlorosilane compound is preferably 0.95 to 3.0 moles, more preferably 0.99 to 2.5 moles, and even more preferably 1.0 to 2.0 moles, per mole of chlorine atoms in the chlorosilane compound. If the amount of the cyclic ketone compound added is small, the reaction may not terminate, and if too much is added, purification may take a long time, increasing the production time.
  • the catalyst used in the reaction includes monovalent or divalent metallic copper compounds, such as, but not limited to, copper chloride, copper bromide, copper iodide, copper sulfate, copper nitrate, copper carbonate, basic copper carbonate, copper formate, copper acetate, and copper butyrate.
  • the amount of catalyst (metallic copper compound) added is preferably 0.001 to 0.5 mol, more preferably 0.002 to 0.2 mol, and even more preferably 0.003 to 0.1 mol, per mol of the chlorosilane compound. If the amount of catalyst added is too small, the reaction may not be completed, whereas if the amount of catalyst added is too large, it is disadvantageous in terms of cost.
  • a basic substance having low nucleophilicity such as trimethylamine, triethylamine, tripropylamine, tributylamine, urea, diazabicycloundecene, diazabicyclononene, etc.
  • trimethylamine, triethylamine, and tributylamine are preferred, and triethylamine is particularly preferred.
  • the amount of the basic substance added is preferably 0.95 to 2.5 mol, more preferably 0.99 to 2.0 mol, and even more preferably 1.0 to 1.5 mol, per mol of chlorine atoms in the chlorosilane compound. If the amount of the basic substance added is small, the reaction may not be completed, whereas if the amount of the basic substance added is too large, it is economically disadvantageous.
  • a commonly used solvent may be used in the production of the hydrolyzable organosilane compound of component (B).
  • the solvent include organic solvents such as aromatic hydrocarbons, such as toluene, xylene, and benzene; aliphatic hydrocarbons, such as pentane, hexane, heptane, nonane, octane, and decane; ethers, such as dimethyl ether, methyl ethyl ether, tetrahydrofuran, and dioxane; halogenated hydrocarbons, such as perchloroethane, perchloroethylene, trichloroethane, chloroform, and carbon tetrachloride; amides, such as dimethylformamide; and esters, such as ethyl acetate, methyl acetate, and butyl acetate.
  • the amount of the solvent used is not particularly limited, but is usually in the range of 10 to 500 parts by
  • the reaction conditions for the chlorosilane compound and the cyclic ketone compound are usually such that the chlorosilane compound is dropped into the cyclic ketone compound at a temperature of 0 to 120°C, preferably 0 to 100°C, and the reaction is carried out at 50 to 120°C, preferably 60 to 100°C, for 1 to 48 hours, more preferably 3 to 30 hours. If the reaction temperature is too low, the reaction may not be completed, and if the reaction temperature is too high, the product may become significantly colored. In addition, if the reaction time is too short, the reaction may not be completed, and if the reaction time is too long, it is disadvantageous to productivity.
  • purification can be performed by distilling the target product under reduced pressure, the degree of reduction being preferably 1 ⁇ 10 ⁇ 5 to 3,000 Pa, more preferably 1 ⁇ 10 ⁇ 5 to 2,000 Pa, and the temperature during purification being preferably 100 to 250° C., more preferably 120 to 230° C. If the pressure during reduction (degree of reduction) is too high, distillation may become difficult. If the temperature during purification is too low, purification by distillation may become difficult, and if it is too high, coloration or decomposition of the reaction product may occur.
  • hydrolyzable organosilane compound of component (B) examples include those represented by the following formula: In this case, Me represents a methyl group.
  • the component (B) may be used alone or in combination of two or more types.
  • the amount of component (B) is 1 to 40 parts by mass, preferably 3 to 30 parts by mass, and more preferably 5 to 20 parts by mass, per 100 parts by mass of component (A). If the amount of component (B) is less than the lower limit of 1 part by mass, the shelf life of the composition may deteriorate when stored in a sealed container. If the amount of component (B) is more than the upper limit of 40 parts by mass, the curability of the room-temperature-curable organopolysiloxane composition may decrease significantly, and the adhesiveness may also deteriorate.
  • hydrolyzable organosilane compound and/or partial hydrolysis condensate thereof of component (B) are clearly distinguished from the silane coupling agent and/or partial hydrolysis condensate thereof of component (F) as an optional component described later in that they do not contain in their molecule a monovalent hydrocarbon group having at least one functional group containing one or more atoms selected from a nitrogen atom, a sulfur atom, and an oxygen atom, or in that the hydrolyzable group bonded to a silicon atom in their molecule is a cycloalkenyloxy group.
  • the curing catalyst (C) is used to promote the hydrolysis and condensation reaction of the present composition with moisture in the air, and is generally called a curing catalyst. Any known compounds commonly used in room temperature curable silicone resin compositions can be used, except for organotin compounds which pose environmental safety concerns.
  • Examples of the curing catalyst of the component (C) include titanate esters or titanium chelate compounds such as tetraisopropoxytitanium, tetra-n-butoxytitanium, tetrakis(2-ethylhexoxy)titanium, isopropoxytitanium bis(ethylacetoacetate), isopropoxybis(acetylacetonate)titanium, and titanium isopropoxyoctylene glycol; phosphazene-containing compounds such as N,N,N',N',N'',N''-hexamethyl-N'''-(trimethylsilylmethyl)-phosphorimidic triamide;
  • Examples of the component (C) include amine compounds or salts thereof, such as dodecylamine and dodecylamine phosphate; quaternary ammonium salts, such as benzyltriethylammonium acetate; dialkylhydroxylamines, such as
  • the amount of these curing catalysts used may be what is called a catalytic amount, and the blending amount of component (C) is 0.001 to 10 parts by mass, preferably 0.005 to 10 parts by mass, and more preferably 0.01 to 5 parts by mass, per 100 parts by mass of the organopolysiloxane of component (A). If the amount is less than 0.001 part by mass, good rapid curing properties cannot be obtained, resulting in the inconvenience of long curing times. Conversely, if the amount exceeds 10 parts by mass, curing will be too fast, shortening the allowable range of working time after application of the composition and deteriorating the mechanical properties of the resulting rubber.
  • the (D) component is a bleed oil, and is not particularly limited as long as it is a non-reactive (non-condensation reactive) liquid organic compound that does not undergo a condensation reaction with the (A) component diorganopolysiloxane and the (B) component hydrolyzable organosilane compound and/or its partial hydrolysis condensate, and is also incompatible (bleeding) in the crosslinked cured matrix.
  • polyether, polyacrylate, polymethacrylate, polyisobutylene, and organopolysiloxane are preferred, polyether and organopolysiloxane are particularly preferred, and organopolysiloxane is even more preferred.
  • the organopolysiloxane (so-called silicone oil) that can be used as the bleed oil is a non-functional silicone oil whose main chain is a siloxane skeleton (particularly a linear diorganopolysiloxane structure consisting of repeated difunctional diorganosiloxane units) and whose molecular chain ends are blocked with triorganosiloxy groups, and there are no particular restrictions on the silicone oil as long as it bleeds from within the silicone rubber cured product (crosslinked organosiloxane matrix) obtained by curing the room temperature curable organopolysiloxane composition of the present invention to the surface of the cured product.
  • a dimethyl silicone oil in which all of the organo groups (unsubstituted or substituted monovalent hydrocarbon groups) bonded to silicon atoms in the diorganosiloxane units constituting the siloxane skeleton of the main chain are methyl groups, a methylphenyl silicone oil in which some of the methyl groups of this dimethyl silicone oil are substituted with phenyl groups, an amino-modified silicone oil in which a monoamine, diamine or amino-polyether group is substituted, an epoxy-, alicyclic epoxy, epoxy-polyether or epoxy-aralkyl group is substituted, a carbinol-modified silicone oil in which a carbinol group is substituted, a mercapto-modified silicone oil in which a mercapto group is substituted, a carboxyl-modified silicone oil in which a carboxyl group is substituted, a methacryl-modified silicone oil in which a methacryl group is substituted, a polyether
  • alkyl-modified silicone oil higher fatty acid-modified silicone oil substituted with a higher fatty acid ester group
  • fluoroalkyl-modified silicone oil substituted with a fluoroalkyl group among which methylphenyl silicone oil, polyether-modified silicone oil, long-chain ( C6-18 ) alkyl-modified silicone oil, etc. are preferred.
  • the viscosity ⁇ (D ) of component (D) at 25° C. is preferably 20 to 30,000 mPa ⁇ s, more preferably 30 to 5,000 mPa ⁇ s, and even more preferably 50 to 1,000 mPa ⁇ s. If the viscosity ⁇ (D) at 25° C. is less than 20 mPa ⁇ s, the soil resistance may be poor, and if it is more than 30,000 mPa ⁇ s, the viscosity of the composition may be too high, making it difficult to use, and the soil resistance may also decrease.
  • the bleed oil of component (D) preferably has a ratio [ ⁇ (D) / ⁇ (A)] of the viscosity ⁇ (D) of component (D) at 25°C to the viscosity ⁇ (A ) of component (A) at 25°C of the component (D) in terms of bleeding properties, soil resistance, and the like, of 0.05 to 1, more preferably 0.06 to 0.8, even more preferably 0.07 to 0.5, and particularly preferably 0.08 to 0.3.
  • the component (D) may use one type alone, or two or more types in combination.
  • the blending amount of component (D) is 0.01 to 100 parts by mass, and preferably 10 to 100 parts by mass, per 100 parts by mass of component (A). If the blending amount of component (D) is within the above range, for example, when used as an antifouling paint, an (antifouling) coating film with excellent antifouling properties and coating film strength tends to be obtained, whereas if the blending amount is less than the above range, the antifouling properties may decrease, and if the blending amount is more than the above range, the coating film strength may decrease.
  • the room temperature curable organopolysiloxane composition of the present invention may contain the following components as necessary.
  • the component (E) is a filler (inorganic filler and/or organic resin filler), which is an optional component that can be blended as necessary, and is used to give sufficient mechanical strength to the cured product formed from this composition.
  • fillers can be used as this filler, and examples of fillers that can be used include fine powder silica (pulverized silica), spherical silica, and fumed silica (fumed silica), wet silica such as precipitated silica and sol-gel silica, reinforcing silica fillers such as silica whose surface has been hydrophobized with an organic silicon compound, glass beads, glass balloons, transparent resin beads, silica aerogel, diatomaceous earth, metal oxides such as iron oxide, zinc oxide, titanium oxide, and fumed metal oxides, quartz powder (crystalline silica fine powder), reinforcing agents such as carbon black, talc, zeolite, and bentonite, asbestos, glass fiber, carbon fiber, metal carbonates such as calcium carbonate, magnesium carbonate, and zinc carbonate, asbestos, glass wool, fine mica, fused silica powder, and synthetic resin powders such as polystyrene, polyvinyl chloride, and polypropylene.
  • the specific surface area of a silica-based filler such as fumed silica is usually preferably 30 to 400 m2 /g, more preferably 50 to 300 m2 /g. If the specific surface area of the silica-based filler is less than 30 m2 /g, the shape retention of the composition may decrease, whereas if the specific surface area exceeds 400 m2 /g, the viscosity of the composition may increase significantly, decreasing workability.
  • the component (E) may use one type alone, or two or more types in combination.
  • the amount of component (E) blended is preferably 0 to 100 parts by mass, and when blended, 1 part by mass or more, particularly 3 to 60 parts by mass, per 100 parts by mass of component (A). If more than 100 parts by mass is used, not only does the viscosity of the composition increase and workability deteriorate, but the rubber strength after curing decreases, making it difficult to obtain rubber elasticity.
  • the component (F) is an adhesion promoter, which is an optional component that can be blended as necessary, and is used to provide sufficient adhesion to the cured product formed from this composition.
  • a silane coupling agent such as a carbon-functional group-containing hydrolyzable silane (so-called CF silane) having two or more hydrolyzable groups such as an alkenyl group or a functional group having at least one heteroatom selected from oxygen atoms, nitrogen atoms, and sulfur atoms (excluding guanidyl groups) and an unsubstituted or substituted alkoxy group in the molecule
  • a known one other than the components (B) and (C) is preferably used, and examples thereof include vinyl silane coupling agents, (meth)acrylic silane coupling agents, epoxy silane coupling agents, amino silane coupling agents, mercapto silane coupling agents, isocyanate coupling agents, etc.
  • the coupling agent examples include vinyl tris( ⁇ -methoxyethoxy)silane, ⁇ -methacryloxypropyl trimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyl trimethoxysilane, ⁇ -glycidoxypropyl trimethoxysilane, ⁇ -glycidoxypropyl methyl diethoxysilane, ⁇ -aminopropyl triethoxysilane, 3-2-(aminoethylamino)propyl trimethoxysilane, ⁇ -mercaptopropyl trimethoxysilane, isocyanate propyl triethoxysilane, isocyanate propyl trimethoxysilane, etc.
  • aminosilane coupling agents such as ⁇ -aminopropyl triethoxysilane and 3-2-(aminoethylamino)propyl trimethoxysilane
  • epoxy silane coupling agents such as ⁇ -glycidoxypropyl trimethoxysilane and ⁇ -(3,4-epoxycyclohexyl)ethyl trimethoxysilane
  • isocyanate silane coupling agents such as isocyanate propyl triethoxysilane are particularly preferred.
  • the component (F) may use one type alone, or two or more types in combination.
  • the amount of component (F) is preferably 0 to 20 parts by mass, and when used, 0.1 part by mass or more, particularly 0.1 to 10 parts by mass, per 100 parts by mass of component (A). When adhesion can be achieved without the use of an adhesion promoter depending on the filler and adherend, this need not be used.
  • the room temperature curable organopolysiloxane composition of the present invention may contain additives other than the above components, provided the addition does not impair the object of the present invention.
  • additives include isoparaffin as a wetter or thixotropy improver, three-dimensional network polysiloxane (so-called silicone resin) consisting of trimethylsiloxy units [( CH3 ) 3SiO1 /2 units] and SiO2 units as a crosslink density improver, etc.
  • colorants such as pigments, dyes, and fluorescent whitening agents, surface modifiers other than component (D) such as antifungal agents, antibacterial agents, and organic liquids incompatible with silicone, and solvents such as toluene, xylene, solvent volatile oils, cyclohexane, methylcyclohexane, and low-boiling point isoparaffins may be added.
  • the room temperature curable organopolysiloxane composition of the present invention can be produced, for example, by mixing the above-mentioned components under normal pressure or reduced pressure, preferably under a reduced pressure of -0.09 to -0.01 MPa, and mixing without heating, preferably at 60° C. or less, usually for about 15 minutes to 3 hours, preferably for about 30 minutes to 2 hours.
  • the composition contains a filler of component (E)
  • the composition is produced by previously mixing components (A) and (E) under reduced pressure, preferably under a reduced pressure of -0.09 to -0.01 MPa, with heating, preferably at 80 to 160° C., for about 30 minutes to 3 hours, and then mixing the remaining components under normal pressure or reduced pressure, preferably under a reduced pressure of -0.09 to -0.01 MPa, with heating, preferably at 60° C. or less, usually for about 30 minutes to 3 hours, thereby obtaining a cured coating film with superior surface smoothness and viscosity stability over time.
  • the room temperature curable organopolysiloxane composition of the present invention When used as a coating material or paint, particularly as an antifouling paint, it has excellent stability during preparation, storage, and preservation, and also has good fast curing properties.
  • the resulting coating film has a good balance of rubber properties such as hardness, tensile strength, and elongation, and also has excellent antifouling properties, making it particularly suitable for use as an antifouling coating film.
  • the viscosity of the room temperature curable organopolysiloxane composition of the present invention at 25°C is preferably 500 to 200,000 mPa ⁇ s, and particularly preferably 1,000 to 150,000 mPa ⁇ s, which is a viscosity that is particularly suitable for coating.
  • the above-described room-temperature curable organopolysiloxane composition of the present invention is coated (applied) onto the surface of various substrates and cured to form a coating layer, thereby obtaining a coated substrate.
  • the method for coating the composition is not particularly limited, and can be appropriately selected from known methods such as spray coating, spin coating, dip coating, roller coating, brush coating, bar coating, and flow coating.
  • the room-temperature curable organopolysiloxane composition of the present invention can also be further diluted with the above-mentioned solvents to suit various coating methods when coated (applied).
  • the room temperature curable organopolysiloxane composition of the present invention is highly suitable for applications such as coating materials requiring water resistance, such as ship bottom paints, paints for seawater inlet pipes at power plants, and fishing net paints; moisture-proof coating materials for LCDs and PDPs requiring moisture resistance; adhesive seals between electric wires and resin coatings; adhesive seals between resin cases or resin connectors and electric wires; and adhesive seals for vacuum or pressurized chambers.
  • the composition can be used as a substrate to coat underwater structures such as ships, port facilities, buoys, pipelines, bridges, offshore bases, offshore oil field drilling equipment, power plant water conduit pipes, aquaculture nets, and fixed nets.
  • the cured coating film of the composition is non-toxic and poses no environmental problems, and can prevent the attachment and growth of aquatic organisms over a long period of time, exhibiting excellent antifouling properties.
  • the amount of the room-temperature-curable organopolysiloxane composition of the present invention to be coated on a substrate such as an underwater structure or a ship is not particularly limited, but it is preferably an amount that results in a film thickness after curing of 10 to 1,000 ⁇ m, and particularly 50 to 500 ⁇ m.
  • the room-temperature-curable organopolysiloxane composition of the present invention may be applied and cured at room temperature (normal temperature).
  • the film thickness can be measured by, for example, a spectroscopic reflectance measurement method, an X-ray reflectance measurement method, a spectroscopic ellipsometry measurement method, an X-ray fluorescence measurement method, or the like.
  • parts means “parts by mass”
  • the viscosity is the value measured with a B-type rotational viscometer at 25°C
  • the film thickness is the value measured by a spectroscopic ellipsometry measurement method using a spectroscopic ellipsometer.
  • the method for synthesizing the hydrolyzable organosilane compound of component (B) is as follows:
  • Example 1 room temperature curable organopolysiloxane compositions are described below.
  • the obtained base was passed once through a triple roll, after which 10 parts of hydrolyzable organosilane compound 1, 0.4 parts of ⁇ -aminopropyltriethoxysilane, and 0.5 parts of tetramethylguanidylpropyltrimethoxysilane were added, and mixed for 30 minutes at 20 to 40° C. under a reduced pressure of ⁇ 0.06 to ⁇ 0.04 MPa until the mixture became uniform.
  • component (D): dimethylsiloxane-diphenylsiloxane copolymer capped with trimethylsiloxy at both ends having a viscosity ⁇ (D) of 300 mPa ⁇ s was added and mixed for 30 minutes at 20 to 40° C. under a reduced pressure of ⁇ 0.06 to ⁇ 0.04 MPa until the mixture was homogenous, thereby preparing Composition 1 having a viscosity of 15,300 mPa ⁇ s.
  • Example 2 Composition 2 having a viscosity of 15,600 mPa ⁇ s was prepared in the same manner as in Example 1, except that 0.4 parts of 3-2-(aminoethylamino)propyltrimethoxysilane was used instead of the ⁇ -aminopropyltriethoxysilane in Example 1.
  • silanol groups hydroxyl groups bonded to silicon atoms
  • the resulting base was passed once through a triple roll mill, after which 10 parts of hydrolyzable organosilane compound 2, 0.4 parts of ⁇ -aminopropyltriethoxysilane, and 0.5 parts of tetramethylguanidylpropyltrimethoxysilane were added, and mixed for 30 minutes at 20 to 40° C. under a reduced pressure of ⁇ 0.06 to ⁇ 0.04 MPa until the mixture became uniform. Further, 30 parts of ⁇ , ⁇ -trimethylsiloxy-dimethyldiphenylpolysiloxane (component (D)) having a viscosity ⁇ (D) of 300 mPa ⁇ s was added and mixed for 30 minutes at 20 to 40° C.
  • component (D) component having a viscosity ⁇ (D) of 300 mPa ⁇ s
  • composition 3 having a viscosity of 16,100 mPa ⁇ s.
  • the ratio [ ⁇ (D) / ⁇ (A)] of the viscosity ⁇ (D) of component (D) at 25° C. to the viscosity ⁇ ( A ) of component (A ) at 25° C. was 0.20.
  • Example 4 Composition 4 having a viscosity of 15,900 mPa ⁇ s was prepared in the same manner as in Example 3, except that 0.4 parts of 3-2-(aminoethylamino)propyltrimethoxysilane was used instead of the ⁇ -aminopropyltriethoxysilane in Example 3.
  • silanol groups hydroxyl groups bonded to silicon atoms
  • the resulting base was passed once through a triple roll mill, after which 10 parts of hydrolyzable organosilane compound 1, 0.4 parts of ⁇ -aminopropyltriethoxysilane, and 0.5 parts of tetramethylguanidylpropyltrimethoxysilane were added, and mixed for 30 minutes at 20 to 40° C. under a reduced pressure of ⁇ 0.06 to ⁇ 0.04 MPa until the mixture became uniform.
  • composition 5 having a viscosity of 9,200 mPa ⁇ s.
  • the ratio [ ⁇ (D) / ⁇ (A) ] of the viscosity ⁇ ( D) of component (D) at 25° C. to the viscosity ⁇ (A ) of component (A) at 25° C. was 0.086.
  • Example 6 Composition 6 having a viscosity of 9,600 mPa ⁇ s was prepared in the same manner as in Example 5, except that 0.4 parts of 3-2-(aminoethylamino)propyltrimethoxysilane was used instead of the ⁇ -aminopropyltriethoxysilane in Example 5.
  • Composition 7 having a viscosity of 17,900 mPa ⁇ s was prepared in the same manner as in Example 1, except that 30 parts of the ⁇ , ⁇ -trimethylsiloxy-dimethyldiphenylpolysiloxane having a viscosity of 300 mPa ⁇ s was not blended in.
  • Composition 8 having a viscosity of 14,500 mPa ⁇ s was prepared in the same manner as in Example 1, except that 10 parts of methyltrimethoxysilane was used instead of the hydrolyzable organosilane compound 1 in Example 1.
  • the obtained base was passed through a triple roll once, and then 4.5 parts of methyltrimethoxysilane, 1.5 parts of a hydrolysis condensate of methyltrimethoxysilane (average 3-4 monomers), 0.4 parts of ⁇ -aminopropyltriethoxysilane, and 2 parts of isopropoxytitaniumbis(ethylacetoacetate) were added, and mixed for 30 minutes at 20-40° C. under a reduced pressure of -0.06 to -0.04 MPa until the mixture became uniform.
  • composition 9 having a viscosity of 10,600 mPa ⁇ s.
  • compositions 1 to 7 and 9, excluding composition 8 that did not harden, were uniformly mixed with 10 g of xylene to prepare a test coating sample.
  • a mild steel plate of 100 mm x 100 mm x 1 mm (thickness) was attached to the center of a tin plate of 1,000 mm x 1,000 mm x 1 mm (thickness), and airless spray coating was performed with the tin plate standing vertically.
  • the presence or absence of clogging of the spraying tool (sprayability) was confirmed (visually) according to the following criteria, and the critical film thickness at which the film sagging occurred was measured after the coating film dried.
  • Bad Clogging of the equipment when spraying.
  • compositions 1 to 7 and 9 were mixed with 10 g of xylene on a plate that had been previously coated with an epoxy-based anticorrosive paint (film thickness 200 ⁇ m) so that the cured film thickness was 200 ⁇ m.
  • a test paint sample was prepared, and then spray-painted to prepare a test coated plate.
  • the test coated plate thus prepared was cured for 7 days under the conditions of 23°C/50% RH.
  • the test coated plate after curing was subjected to a suspension test at a depth of 1.5 m off the coast of Kanagawa Prefecture for 12 months.
  • the adhesion state of shellfish such as barnacles and seaweed was observed after 3, 6, and 12 months.
  • (F) Adhesion A test plate was pre-coated with an epoxy-based anticorrosive paint (film thickness 200 ⁇ m), and 90 g of each of compositions 1 to 7 and 9, excluding composition 8 that was not cured, was uniformly mixed with 10 g of xylene so that the cured film thickness was 200 ⁇ m. The test plate was then spray-coated. After a certain time (30 minutes, 60 minutes, 90 minutes) from coating, a cutter was used to make a cut that reached the anticorrosive paint on the coating surface, and the coating adhesion was evaluated by rubbing the cut with a finger in a perpendicular direction. The case where the coating did not peel off was evaluated as ⁇ , and the case where the coating peeled off was evaluated as ⁇ . The test results are shown in Tables 1 and 2.
  • the room temperature curable organopolysiloxane composition of the present invention is an environmentally friendly composition that does not contain organotin compounds and does not generate methyl ethyl ketoxime (MEKO) during curing.
  • MEKO methyl ethyl ketoxime
  • the resulting coating film has coating film strength, coating film hardness, rubber properties, water resistance, and moisture resistance, making it highly suitable for applications such as coating materials that require water resistance, such as ship bottom paints, paints for seawater inlet pipes to power plants, and paints for fishing nets, moisture-proof coating materials that require moisture resistance, such as LCDs and PDPs, adhesive seals between electric wires and resin coatings, adhesive seals between resin cases or resin connectors and electric wires, and adhesive seals for reduced pressure or pressurized chambers.
  • it can be used as a ship bottom paint, paint for seawater inlet pipes to power plants, paint for fishing nets, etc. to prevent the attachment and growth of aquatic organisms on the surfaces of these materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a room-temperature-curable organopolysiloxane composition containing, at a specific ratio, (A) organopolysiloxane having a viscosity μ(A) of 100 to 100,000 mPa•s at 25°C, represented by formula (1): (1): HO - (SiR1 2O)a - H (where R1 is an independently unsubstituted or substituted monovalent hydrocarbon group having a carbon number from 1 to 10, and a is an integer of 50 or greater), (B) a hydrolyzable organosilane compound and/or a partial hydrolytic condensation thereof represented by formula (2): (2) (where R2 is a monovalent hydrocarbon group having a carbon number from 1 to 10, n is any integer from 1 to 8, and m is 3 or 4), (C) a curing catalyst (excluding organotin compounds), and (D) a bleed oil. The room-temperature-curable organopolysiloxane composition is free of organotin compounds, which are problematic in terms of environmental safety and hygiene, does not generate methylethyl ketone oxime (MEKO) during curing, and has excellent rapid curing properties. Furthermore, the cured coating film obtained is excellent in rubber strength and surface smoothness and demonstrates excellent antifouling performance for a long period of time.

Description

室温硬化性オルガノポリシロキサン組成物及び基材Room temperature curable organopolysiloxane composition and substrate
 本発明は、水中構造物や船舶などの基材のコーティング剤として好適な室温硬化性オルガノポリシロキサン組成物及びこの組成物の硬化物でコーティングされた基材に関する。 The present invention relates to a room-temperature curable organopolysiloxane composition suitable as a coating agent for substrates such as underwater structures and ships, and to substrates coated with a cured product of this composition.
 従来から、室温(通常、25℃±10℃)で大気中の湿気により縮合反応することにより架橋・硬化してゴム弾性体(シリコーンゴム硬化物)を与える室温硬化性シリコーンゴム組成物としては種々のものが知られている。室温硬化性シリコーンゴム組成物(以下、RTVシリコーンゴム組成物という)から得られるゴム(シリコーンゴム)は、他の炭化水素系有機ゴムと比較して優れた耐候性、耐久性、耐熱性、耐寒性等を有することから各種分野で使用され、特に建築分野においては、ガラス同士の接着用、金属とガラスとの接着用、コンクリート目地のシール用等に多用されている。また近年では、建築物、プラント類、水管内面、水管外面等のコーティング材として広く利用されるようになってきた。更に、電気・電子分野では、近年急速に需要が伸びてきている液晶周辺や電源回路基板のコーティング材としても使用されている。 Conventionally, various room temperature curable silicone rubber compositions have been known that undergo a condensation reaction with moisture in the air at room temperature (usually 25°C ± 10°C) to crosslink and cure to give a rubber elastic body (cured silicone rubber product). The rubber (silicone rubber) obtained from room temperature curable silicone rubber compositions (hereinafter referred to as RTV silicone rubber compositions) has excellent weather resistance, durability, heat resistance, cold resistance, etc. compared to other hydrocarbon-based organic rubbers, and is therefore used in various fields, particularly in the construction field, where it is widely used for bonding glass to glass, bonding metal to glass, sealing concrete joints, etc. In recent years, it has also become widely used as a coating material for buildings, plants, the inner and outer surfaces of water pipes, etc. Furthermore, in the electrical and electronic fields, it is also used as a coating material for liquid crystal peripherals and power circuit boards, the demand for which has been rapidly increasing in recent years.
 ところで、水中構造物や船舶などが設置され又は就航すると、その飛沫部から没水部表面に亘り、海、河川等の水中に棲息しているフジツボ、カキ、ホヤ、セルプラ、ムラサキイガイ、カラスガイ、フサコケムシ、アオノリ、アオサ等の水生生物が付着・生育して種々の被害が発生する。例えば、船舶などの船体にこれら生物が付着した場合、水との摩擦抵抗が増大し、航行速度が低下することから、一定の速度を維持するためには燃料消費量が増加し、経済的に不利である。また、港湾施設等の水中又は水面に固定させておく構造物(水中構造物)に生物が付着すると、これらが有する個々の機能を十分に発揮することが困難となり、基材を侵食することもある。更に、養殖網、定置網等に生物が付着すると網目が閉塞して魚類が死滅してしまうことがある。 When underwater structures or ships are installed or put into service, aquatic organisms that live in the waters of the sea, rivers, etc., such as barnacles, oysters, sea squirts, serpula, mussels, mussels, moss animals, green laver, and sea lettuce, attach and grow on the splash areas and submerged surfaces of the structures, causing various damages. For example, when these organisms attach to the hull of a ship, etc., frictional resistance with the water increases and the sailing speed decreases, which increases fuel consumption to maintain a certain speed, which is economically disadvantageous. In addition, when organisms attach to structures (underwater structures) that are fixed to the water or water surface of port facilities, etc., it becomes difficult for these structures to fully perform their individual functions, and they may even erode the base material. Furthermore, when organisms attach to aquaculture nets, fixed nets, etc., the meshes can become clogged and fish can die.
 水中構造物や船舶などへの水生生物の付着・生育の防止対策としては、有機錫化合物、亜酸化銅等の毒性防汚剤を配合した防汚塗料を構造物に塗装して対応していたが、水生生物の付着・生育はほぼ防止できたものの、毒性防汚剤を用いているために、塗料の製造や塗装時において環境安全衛生上好ましくなく、しかも水中において塗膜から毒性の防汚剤が徐々に溶出し、長期的にみれば水域を汚染するおそれがあることから、その使用が法的に禁止されることとなった。  Measures to prevent the attachment and growth of aquatic organisms on underwater structures and ships have been implemented by painting the structures with antifouling paints containing toxic antifouling agents such as organotin compounds and cuprous oxide. Although this has been successful in preventing the attachment and growth of aquatic organisms, the use of toxic antifouling agents is undesirable from the standpoint of environmental safety and health during the manufacture and application of the paint, and the toxic antifouling agents gradually leach out of the paint film in water, posing the risk of polluting waters in the long term. As a result, its use has been legally prohibited.
 そこで、水生生物の付着・生育の防止効果があり、毒性防汚剤を含有しない塗料として、塗膜の表面張力を低くして防汚性を付与させることが可能なRTVシリコーンゴム組成物に流動パラフィン又はペトロラタムを配合した無毒性防汚塗料組成物が提案された(特開昭58-13673号公報:特許文献1、特開昭62-84166号公報:特許文献2)。しかし、流動パラフィンやペトロラタムなどの炭化水素系ブリードオイルはシリコーンとの相溶性が著しく低いため、短期間のうちに防汚性能が低下するという欠点があった。また、反応硬化型シリコーン樹脂の硬化に伴う体積収縮によって、相溶性が乏しく非反応性の極性基含有シリコーン樹脂が表面へにじみ出し、反応硬化型シリコーン樹脂のもつ低表面張力と相俟って防汚性を示す無毒性防汚塗料組成物(特許第2503986号公報:特許文献3、特許第2952375号公報:特許文献4)も提案されている。しかしながら、前記無毒性防汚塗料組成物は、相溶性が乏しく非反応性の極性基含有シリコーン樹脂として、Si原子にC-C結合を介してエチレンオキサイド、プロピレンオキサイド等が付加しているポリオキシエチレン基を有するシリコーン樹脂、又はSi原子にエチレンオキサイド又はプロピレンオキサイド基を介して分子末端にアルコキシ基が導入されたシリコーン樹脂をオイルブリードさせているために、環境安全衛生に問題があった。 Therefore, a non-toxic antifouling paint composition was proposed that contains liquid paraffin or petrolatum in an RTV silicone rubber composition that can reduce the surface tension of the coating film and provide antifouling properties, as a paint that prevents the attachment and growth of aquatic organisms and does not contain a toxic antifouling agent (JP Patent Publication No. 58-13673: Patent Document 1, JP Patent Publication No. 62-84166: Patent Document 2). However, because hydrocarbon-based bleed oils such as liquid paraffin and petrolatum have extremely low compatibility with silicone, there is a drawback in that the antifouling performance decreases within a short period of time. In addition, a non-toxic antifouling paint composition has also been proposed in which the volume shrinkage associated with the curing of the reactive curing silicone resin causes the poorly compatible and non-reactive polar group-containing silicone resin to bleed to the surface, and in combination with the low surface tension of the reactive curing silicone resin, it exhibits antifouling properties (JP Patent Publication No. 2503986: Patent Document 3, JP Patent Publication No. 2952375: Patent Document 4). However, the non-toxic antifouling paint composition uses oil-bleeding of silicone resins containing polyoxyethylene groups in which ethylene oxide, propylene oxide, etc. are attached to the Si atom via a C-C bond as the poorly compatible and non-reactive polar group-containing silicone resin, or silicone resins in which alkoxy groups have been introduced to the molecular terminals via ethylene oxide or propylene oxide groups attached to the Si atom, resulting in problems with environmental safety and health.
 また、従来の防汚塗料組成物に含有するRTVシリコーンゴム組成物は湿気硬化型が殆どであるが、その中でもオキシム硬化型が大半を占めている。その理由は、有害な有機錫触媒を使用しなくても良好な硬化性が得られること、硬化した被膜強度が大きいことなどが挙げられる。しかし、オキシム硬化型は硬化時にメチルエチルケトオキシム(MEKO)を発生することから、欧州を中心とした防汚塗料市場では環境に対する負荷を考慮して敬遠されがちである。アルコール硬化型ではMEKOを発生させないことは可能だが、一般的にアルコール硬化型は硬化触媒として有機錫化合物が必要である。また、アルコール硬化型の硬化性はオキシム硬化型と比較して硬化が遅いため、防汚塗料とした場合、作業性が低下する可能性がある。 Moreover, most of the RTV silicone rubber compositions contained in conventional antifouling paint compositions are moisture-curing types, with the majority being oxime-curing types. The reasons for this include the fact that good curing can be achieved without the use of harmful organotin catalysts, and that the strength of the cured film is high. However, since oxime-curing types generate methyl ethyl ketoxime (MEKO) during curing, they tend to be avoided in the antifouling paint market, mainly in Europe, due to concerns about the burden on the environment. It is possible to prevent the generation of MEKO with alcohol-curing types, but alcohol-curing types generally require organotin compounds as a curing catalyst. Furthermore, alcohol-curing types cure more slowly than oxime-curing types, so when used as antifouling paints, workability may decrease.
 従って、硬化時にMEKOを発生させず、有機錫化合物を含有せず、かつ速硬化性に優れる防汚塗料として適用できるRTVシリコーンゴム組成物が世界的に求められている。 Therefore, there is a global demand for RTV silicone rubber compositions that do not generate MEKO during curing, do not contain organotin compounds, and have excellent fast-curing properties and can be used as antifouling paints.
特開昭58-13673号公報Japanese Unexamined Patent Publication No. 58-13673 特開昭62-84166号公報Japanese Patent Application Laid-Open No. 62-84166 特許第2503986号公報Patent No. 2503986 特許第2952375号公報Patent No. 2952375
 本発明は、上記事情に鑑みなされたもので、環境安全衛生面で問題のある有機錫化合物が非含有であり、かつ硬化時に防汚塗料市場で敬遠されがちなMEKOを発生させない硬化型としながらも、優れた速硬化性を有し、得られる硬化塗膜はゴム強度に優れ、かつ長期間優れた防汚性能が発揮される室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物でコーティング(被覆)された基材を提供することを目的とする。 The present invention has been made in consideration of the above circumstances, and aims to provide a room-temperature curable organopolysiloxane composition that does not contain organotin compounds that are problematic in terms of environmental safety and health, and that is of a curing type that does not generate MEKO during curing, which is often avoided in the antifouling paint market, yet has excellent fast curing properties, and the resulting cured coating film has excellent rubber strength and exhibits excellent antifouling performance for a long period of time, as well as a substrate coated (covered) with the cured product of said composition.
 本発明者は、上記目的を達成するために鋭意研究を重ねた結果、室温硬化性オルガノポリシロキサン組成物において、人体に対しての発がん性や生殖毒性など健康有害性、水生生物毒性など環境有害性の報告例がなく、比較的引火点の高い、シクロブタノンやシクロペンタノン等の環状ケトン化合物を脱離基(脱離化合物)とする加水分解性オルガノシラン化合物を硬化剤として使用することで、硬化時にMEKOを発生せず、有機錫化合物を非含有とする室温硬化性オルガノポリシロキサン組成物を調製でき、該組成物は速硬化性に優れ、更に特定のブリードオイルを配合することにより得られる硬化塗膜はゴム強度、表面平滑性に優れ、長期間優れた防汚性能が発揮されることを見出し、本発明をなすに至った。 The inventors conducted extensive research to achieve the above-mentioned objective, and as a result, discovered that room-temperature curable organopolysiloxane compositions have no reported health hazards, such as carcinogenicity or reproductive toxicity to the human body, or environmental hazards, such as toxicity to aquatic organisms, and that by using a hydrolyzable organosilane compound with a cyclic ketone compound, such as cyclobutanone or cyclopentanone, as a leaving group (leaving compound), which has a relatively high flash point, as a curing agent, it is possible to prepare a room-temperature curable organopolysiloxane composition that does not generate MEKO during curing and does not contain organotin compounds, and that this composition has excellent fast-curing properties, and further, by blending a specific bleed oil, the cured coating film obtained has excellent rubber strength and surface smoothness, and exhibits excellent anti-fouling performance for a long period of time, which led to the creation of the present invention.
 従って、本発明は、下記に示す室温硬化性オルガノポリシロキサン組成物、及びこの組成物の硬化物でコーティングされた基材を提供する。
〔1〕
 下記(A)~(D)成分を含有する室温硬化性オルガノポリシロキサン組成物。
(A)下記一般式(1)で示される25℃における粘度μ(A)が100~100,000mPa・sのオルガノポリシロキサン:100質量部、
  HO-(SiR1 2O)a-H     (1)
(式中、R1は炭素数1~10の非置換又は置換の一価炭化水素基であり、各R1は互いに同一であっても異種の基であってもよい。aは50以上の整数である。)
(B)下記一般式(2)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:1~40質量部、
Figure JPOXMLDOC01-appb-C000002
(式中、R2は炭素数1~10の一価炭化水素基であり、nは1~8の整数であり、mは3又は4である。)
(C)硬化触媒(但し、有機錫化合物を除く):0.001~10質量部、及び
(D)ブリードオイル:0.01~100質量部。
〔2〕
 (B)成分の加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物が、加水分解によって環状ケトン化合物を脱離するものである[1]に記載の室温硬化性オルガノポリシロキサン組成物。
〔3〕
 脱離する環状ケトン化合物がシクロブタノン又はシクロペンタノンである[2]に記載の室温硬化性オルガノポリシロキサン組成物。
〔4〕
 前記(D)成分の25℃における粘度μ(D)が20~30,000mPa・sである〔1〕~〔3〕のいずれかに記載の室温硬化性オルガノポリシロキサン組成物。
〔5〕
 前記(A)成分の25℃における粘度μ(A)に対する(D)成分の25℃における粘度μ(D)の比[μ(D)/μ(A)]が、0.05~1である〔1〕~〔4〕のいずれかに記載の室温硬化性オルガノポリシロキサン組成物。
〔6〕
 (A)成分100質量部に対して、更に、
(E)充填剤:1~100質量部、及び
(F)接着促進剤:0.1~20質量部
から選ばれる1種以上を含有する〔1〕~〔5〕のいずれかに記載の室温硬化性オルガノポリシロキサン組成物。
〔7〕
 水中構造物又は船舶のコーティング用である〔1〕~〔6〕のいずれかに記載の室温硬化性オルガノポリシロキサン組成物。
〔8〕
 〔1〕~〔7〕のいずれかに記載の室温硬化性オルガノポリシロキサン組成物の硬化物でコーティングされた基材。
〔9〕
 水中構造物又は船舶である〔8〕に記載の基材。
Accordingly, the present invention provides the room temperature curable organopolysiloxane composition described below, and a substrate coated with the cured product of this composition.
[1]
A room-temperature curable organopolysiloxane composition comprising the following components (A) to (D):
(A) 100 parts by mass of an organopolysiloxane having a viscosity μ (A) at 25° C. of 100 to 100,000 mPa·s, which is represented by the following general formula (1):
HO-(SiR 1 2 O) a -H (1)
(In the formula, R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and each R 1 may be the same or different. a is an integer of 50 or more.)
(B) a hydrolyzable organosilane compound represented by the following general formula (2) and/or a partial hydrolysis condensate thereof: 1 to 40 parts by mass,
Figure JPOXMLDOC01-appb-C000002
(In the formula, R2 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, n is an integer from 1 to 8, and m is 3 or 4.)
(C) a curing catalyst (excluding organotin compounds): 0.001 to 10 parts by mass, and (D) a bleed oil: 0.01 to 100 parts by mass.
[2]
The room-temperature-curable organopolysiloxane composition according to [1], wherein the hydrolyzable organosilane compound and/or partial hydrolysis condensate thereof of component (B) is one that releases a cyclic ketone compound by hydrolysis.
[3]
The room-temperature-curable organopolysiloxane composition according to [2], wherein the cyclic ketone compound that is eliminated is cyclobutanone or cyclopentanone.
[4]
The room-temperature-curable organopolysiloxane composition according to any one of [1] to [3], wherein the viscosity μ (D) of component (D) at 25° C. is 20 to 30,000 mPa·s.
[5]
The room-temperature-curable organopolysiloxane composition according to any one of [1] to [4], wherein the ratio of the viscosity μ (D) of component (D) at 25°C to the viscosity μ(A) of component (A) at 25°C [μ (D)(A) ] is 0.05 to 1.
[6]
Further, for every 100 parts by mass of the component (A),
The room-temperature-curable organopolysiloxane composition according to any one of [1] to [5], further comprising one or more selected from the group consisting of (E) a filler: 1 to 100 parts by mass, and (F) an adhesion promoter: 0.1 to 20 parts by mass.
[7]
The room-temperature-curable organopolysiloxane composition according to any one of [1] to [6], which is used for coating underwater structures or ships.
[8]
A substrate coated with a cured product of the room-temperature-curable organopolysiloxane composition according to any one of [1] to [7].
[9]
The substrate according to [8], which is an underwater structure or a ship.
 本発明の室温硬化性オルガノポリシロキサン組成物は、硬化触媒としては有用であるものの環境安全衛生面で問題のある有機錫化合物が非含有であり、かつ硬化時に防汚塗料市場で敬遠されがちなMEKOを発生させない硬化型としながらも優れた速硬化性を有し、かつ得られる硬化塗膜は、ゴム強度に優れ、また防汚塗料として用いれば、長期間優れた防汚性能が発揮される。特に水中構造物や船舶などに塗装され、水中構造物や船舶などの基材表面への水生生物の付着・生育を防止するために好適であり、その効果の持続性が良好である。
 即ち、本発明の室温硬化性オルガノポリシロキサン組成物より得られる塗膜は、無毒であり、該塗膜を水中構造物や船舶などの基材表面に設けた場合、長期間にわたって水生生物の付着・生育を防止し、優れた防汚性を示すものである。従って、本発明の室温硬化性オルガノポリシロキサン組成物は、船底塗料、発電所海水導入管用塗料、魚網塗料等の耐水性が必要なコーティング材料、LCDやPDP等の耐湿性が必要な防湿コーティング材料、電線と樹脂被覆間の接着シール、樹脂ケース、又は樹脂コネクタと電線の間の接着シール、減圧又は加圧チャンバーの接着シール等の用途に対する適合性が高く、とりわけ、船底塗料、発電所海水導入管用塗料、魚網塗料等として、これらの表面への水生生物の付着・生育を防止することに有用である。
The room temperature curable organopolysiloxane composition of the present invention does not contain organotin compounds which are useful as curing catalysts but have environmental, safety and hygiene problems, and has excellent fast curing properties while being a curing type that does not generate MEKO during curing, which is often avoided in the antifouling paint market, and the resulting cured coating film has excellent rubber strength, and when used as an antifouling paint, it exhibits excellent antifouling performance for a long period of time. It is particularly suitable for application to underwater structures, ships, etc., to prevent the attachment and growth of aquatic organisms on the substrate surfaces of underwater structures, ships, etc., and the effect is well sustained.
That is, the coating film obtained from the room temperature curable organopolysiloxane composition of the present invention is non-toxic, and when the coating film is provided on the surface of a substrate such as an underwater structure or a ship, it prevents the attachment and growth of aquatic organisms for a long period of time, and exhibits excellent antifouling properties. Therefore, the room temperature curable organopolysiloxane composition of the present invention is highly suitable for applications such as coating materials requiring water resistance, such as ship bottom paints, paints for seawater inlet pipes to power plants, and fishnet paints, moisture-proof coating materials requiring moisture resistance, such as LCDs and PDPs, adhesive seals between electric wires and resin coatings, adhesive seals between resin cases or resin connectors and electric wires, and adhesive seals for reduced pressure or pressurized chambers, and is particularly useful as ship bottom paints, paints for seawater inlet pipes to power plants, and fishnet paints, for preventing the attachment and growth of aquatic organisms on the surfaces of these materials.
 以下、本発明を更に詳細に説明する。
<室温硬化性オルガノポリシロキサン組成物>
 本発明の室温硬化性オルガノポリシロキサン組成物は、下記(A)~(D)成分を含有することを特徴とするものである。
The present invention will now be described in further detail.
<Room-temperature-curable organopolysiloxane composition>
The room-temperature-curable organopolysiloxane composition of the present invention is characterized by containing the following components (A) to (D):
[(A)成分 オルガノポリシロキサン]
 本発明の室温硬化性オルガノポリシロキサン組成物に用いられる(A)成分は、下記一般式(1)で示される25℃における粘度μ(A)が100~100,000mPa・sのオルガノポリシロキサンである。
  HO-(SiR1 2O)a-H     (1)
(式中、R1は炭素数1~10の非置換又は置換の一価炭化水素基であり、各R1は互いに同一であっても異種の基であってもよい。aは50以上の整数である。)
[Component (A): Organopolysiloxane]
Component (A) used in the room temperature curable organopolysiloxane composition of the present invention is an organopolysiloxane represented by the following general formula (1) and having a viscosity μ (A) at 25° C. of 100 to 100,000 mPa·s.
HO-(SiR 1 2 O) a -H (1)
(In the formula, R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and each R 1 may be the same or different. a is an integer of 50 or more.)
 (A)成分は、式(1)に示すように主鎖がジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がケイ素原子に結合した水酸基(シラノール基)で封鎖されている、25℃における粘度μ(A)が100~100,000mPa・sの、直鎖状のジオルガノポリシロキサンであり、本発明の室温硬化性オルガノポリシロキサン組成物の主剤(ベースポリマー)として作用するものである。 Component (A) is a linear diorganopolysiloxane having a main chain consisting of repeating diorganosiloxane units as shown in formula (1), both ends of the molecular chain being blocked with hydroxyl groups (silanol groups) bonded to silicon atoms, and having a viscosity μ (A) of 100 to 100,000 mPa s at 25°C. It functions as the main agent (base polymer) of the room-temperature-curable organopolysiloxane composition of the present invention.
 上記式(1)中、R1は炭素数1~10、特に炭素数1~6の非置換又は置換の一価炭化水素基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基等のアルケニル基、フェニル基、トリル基等のアリール基、ベンジル基、フェニルエチル基等のアラルキル基が挙げられる。あるいはこれらの炭化水素基の水素原子が部分的に塩素、フッ素、臭素といったハロゲン原子等で置換された基、例えばトリフルオロプロピル基などが挙げられる。R1の非置換又は置換の一価炭化水素基としては、脂肪族不飽和結合を含まないものが好ましく、具体的には、メチル基等のアルキル基、フェニル基等のアリール基がより好ましく、メチル基が特に好ましい。このR1は同一の基であっても異種の基であってもよい。 In the above formula (1), R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms, such as alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, octyl, 2-ethylhexyl, nonyl, and decyl, cycloalkyl groups such as cyclohexyl, alkenyl groups such as vinyl, allyl, propenyl, isopropenyl, butenyl, and hexenyl, aryl groups such as phenyl and tolyl, and aralkyl groups such as benzyl and phenylethyl. Alternatively, the hydrogen atoms of these hydrocarbon groups may be partially substituted with halogen atoms such as chlorine, fluorine, and bromine, such as a trifluoropropyl group. The unsubstituted or substituted monovalent hydrocarbon group of R1 is preferably one that does not contain an aliphatic unsaturated bond, more preferably an alkyl group such as a methyl group, or an aryl group such as a phenyl group, and particularly preferably a methyl group. The R1s may be the same group or different groups.
 上記式(1)中、主鎖を構成する2官能性のジオルガノシロキサン単位(SiR1 22/2)の繰り返し数(又は重合度)を示すaは50以上の整数であり、好ましくは50~1,500の整数であり、より好ましくは100~1,300の整数であり、特に好ましくは200~1,000の整数である。
 本発明において、重合度(又は分子量)は、例えば、トルエン、テトラヒドロフラン(THF)等を展開溶媒としたゲルパーミエーションクロマトグラフィー(GPC)分析におけるポリスチレン換算の数平均重合度(又は数平均分子量)等として求めることができる。
In the above formula (1), a, which indicates the number of repetitions (or degree of polymerization) of the bifunctional diorganosiloxane units (SiR 1 2 O 2/2 ) that constitute the main chain, is an integer of 50 or more, preferably an integer from 50 to 1,500, more preferably an integer from 100 to 1,300, and particularly preferably an integer from 200 to 1,000.
In the present invention, the degree of polymerization (or molecular weight) can be determined, for example, as a polystyrene-equivalent number average degree of polymerization (or number average molecular weight) in gel permeation chromatography (GPC) analysis using toluene, tetrahydrofuran (THF) or the like as a developing solvent.
 (A)成分のオルガノポリシロキサンは、組成物の粘度等を適切な範囲として作業性を向上させるとともに、十分な硬化性を付与することを考慮すると、25℃における粘度μ(A)が100~100,000mPa・sであり、好ましくは300~50,000mPa・sであり、更に好ましくは500~30,000mPa・sであり、特に好ましくは700~20,000mPa・sである。オルガノポリシロキサンの粘度μ(A)が上記下限値(100mPa・s)未満であると、後述する(C)成分が多量に必要となるため、経済的に不利となる。また、オルガノポリシロキサンの粘度μ(A)が上記上限値(100,000mPa・s)超では、作業性が低下するので、好ましくない。ここで、粘度は、B型回転粘度計(例えば、BL型、BH型、BS型等)による25℃における測定値である(以下、同じ)。 In order to improve workability and provide sufficient curability by keeping the viscosity of the composition within an appropriate range, the organopolysiloxane of component (A) has a viscosity μ (A) at 25°C of 100 to 100,000 mPa·s, preferably 300 to 50,000 mPa·s, more preferably 500 to 30,000 mPa·s, and particularly preferably 700 to 20,000 mPa·s. If the viscosity μ (A) of the organopolysiloxane is less than the lower limit (100 mPa·s), a large amount of component (C) described below is required, which is economically disadvantageous. If the viscosity μ (A) of the organopolysiloxane exceeds the upper limit (100,000 mPa·s), workability decreases, which is not preferable. Here, the viscosity is a value measured at 25° C. using a B-type rotational viscometer (for example, BL type, BH type, BS type, etc.) (the same applies below).
 (A)成分のオルガノポリシロキサンは、1種単独で用いてもよく、2種以上を併用してもよい。 The organopolysiloxane of component (A) may be used alone or in combination of two or more types.
[(B)成分 加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物]
 本発明の室温硬化性オルガノポリシロキサン組成物に用いられる(B)成分は、下記一般式(2)で示される、分子中のケイ素原子に結合した加水分解性基としてシクロアルケニルオキシ基を3個又は4個有する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物で、架橋剤(硬化剤)として用いられるものであり、加水分解によってシクロブタノンやシクロペンタノン等の環状ケトン化合物を脱離基(脱離物質)として放出するものであることを特徴とする。
 なお、本発明において「部分加水分解縮合物」とは、該加水分解性オルガノシラン化合物を部分的に加水分解・縮合して生成する、分子中に残存加水分解性基を3個以上、好ましくは4個以上有するオルガノシロキサンオリゴマーを意味する。
Figure JPOXMLDOC01-appb-C000003
(式中、R2は炭素数1~10の一価炭化水素基であり、nは1~8の整数であり、mは3又は4である。)
[Component (B): Hydrolyzable organosilane compound and/or partial hydrolysis condensate thereof]
The component (B) used in the room-temperature-curable organopolysiloxane composition of the present invention is a hydrolyzable organosilane compound and/or a partial hydrolysis condensate thereof, which is represented by the following general formula (2) and has three or four cycloalkenyloxy groups as hydrolyzable groups bonded to silicon atoms in the molecule, and is used as a crosslinking agent (curing agent) and is characterized in that it releases a cyclic ketone compound such as cyclobutanone or cyclopentanone as a leaving group (leaving substance) upon hydrolysis.
In the present invention, the term "partial hydrolysis condensate" refers to an organosiloxane oligomer having three or more, preferably four or more, residual hydrolyzable groups in the molecule, which is produced by partially hydrolyzing and condensing the hydrolyzable organosilane compound.
Figure JPOXMLDOC01-appb-C000003
(In the formula, R2 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, n is an integer from 1 to 8, and m is 3 or 4.)
 上記一般式(2)において、R2は炭素数1~10、好ましくは炭素数1~6の、一価炭化水素基であり、より好ましくは炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数6~10のアリール基又は炭素数7~10のアラルキル基であり、このR2としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基等のアルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基等のアルケニル基、フェニル基、トリル基等のアリール基、ベンジル基、フェニルエチル基等のアラルキル基などを例示することができる。これらの中でも、メチル基、エチル基、ビニル基、フェニル基が好ましく、メチル基、ビニル基、フェニル基が特に好ましい。 In the above general formula (2), R 2 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aralkyl group having 7 to 10 carbon atoms, and examples of R 2 include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, octyl, 2-ethylhexyl, nonyl, and decyl groups, alkenyl groups such as vinyl, allyl, propenyl, isopropenyl, butenyl, and hexenyl groups, aryl groups such as phenyl and tolyl groups, and aralkyl groups such as benzyl and phenylethyl groups. Among these, methyl, ethyl, vinyl, and phenyl groups are preferred, and methyl, vinyl, and phenyl groups are particularly preferred.
 上記一般式(2)において、nは1~8の整数、好ましくは2~6の整数、より好ましくは2~4の整数、更に好ましくは2又は3である。nが0では環状構造とならない。nが9以上の整数となると、加水分解性オルガノシラン化合物の分子量が大きくなり、蒸留による精製が困難となったり、保存性を確保するのに必要な添加量が多くなり、コスト的に不利になる。 In the above general formula (2), n is an integer of 1 to 8, preferably an integer of 2 to 6, more preferably an integer of 2 to 4, and even more preferably 2 or 3. When n is 0, no cyclic structure is formed. When n is an integer of 9 or more, the molecular weight of the hydrolyzable organosilane compound becomes large, making purification by distillation difficult and increasing the amount of addition required to ensure storage stability, which is disadvantageous in terms of cost.
 また、上述したとおり、mは3又は4である。この数が3未満である場合(即ち、mが0、1又は2である場合)は架橋反応によるゴム硬化が起こらず、室温硬化性オルガノポリシロキサン組成物の架橋剤として不適である。 As mentioned above, m is 3 or 4. If this number is less than 3 (i.e., if m is 0, 1, or 2), rubber hardening through a crosslinking reaction does not occur, making the compound unsuitable as a crosslinker for room temperature curable organopolysiloxane compositions.
 また、上記一般式(2)で示される加水分解性オルガノシラン化合物の加水分解によって生じる脱離基(脱離化合物)は、シクロプロパノン、シクロブタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、シクロノナノン、シクロデカノンなどの環状ケトン化合物であり、好ましくはシクロブタノン、シクロペンタノンであり、更に好ましくはシクロペンタノンである。シクロブタノン、シクロペンタノンは人体に対しての発がん性や生殖毒性など健康有害性、水生生物毒性など環境有害性の報告例がない。また、シクロペンタノンは、工業的に大量生産されており、入手も容易でコスト競争力が高いため、後述するように(B)成分の加水分解性オルガノシラン化合物の製造にも有利である。 The leaving group (leaving compound) generated by hydrolysis of the hydrolyzable organosilane compound represented by the above general formula (2) is a cyclic ketone compound such as cyclopropanone, cyclobutanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, cyclononanone, cyclodecanone, etc., preferably cyclobutanone and cyclopentanone, more preferably cyclopentanone. There have been no reports of cyclobutanone and cyclopentanone being harmful to human health, such as carcinogenicity or reproductive toxicity, or environmentally, such as being toxic to aquatic organisms. Cyclopentanone is also mass-produced industrially, is easily available, and is highly cost-competitive, making it advantageous for the production of the hydrolyzable organosilane compound of component (B), as described below.
 (B)成分の加水分解性オルガノシラン化合物は、例えば、生成物である一般式(2)で示される加水分解性オルガノシラン化合物に対応するクロロシラン化合物と環状ケトン化合物を触媒及び塩基性物質の存在下に反応(例えば脱塩酸反応)させることで製造できる。この反応式は、例えば下記式[1]で表される。 The hydrolyzable organosilane compound of component (B) can be produced, for example, by reacting a chlorosilane compound corresponding to the hydrolyzable organosilane compound represented by general formula (2), which is the product, with a cyclic ketone compound in the presence of a catalyst and a basic substance (e.g., dehydrochlorination reaction). This reaction formula is represented, for example, by the following formula [1].
Figure JPOXMLDOC01-appb-C000004
(式中、R2、n、mは前記の通りである。)
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 2 , n, and m are as defined above.)
 ここで、クロロシラン化合物としては、下記に示すものが例示できる。
Figure JPOXMLDOC01-appb-C000005
Examples of the chlorosilane compound include the following.
Figure JPOXMLDOC01-appb-C000005
 また、環状ケトン化合物としては、下記に示すものが例示できる。
Figure JPOXMLDOC01-appb-C000006
Examples of the cyclic ketone compound include the following.
Figure JPOXMLDOC01-appb-C000006
 クロロシラン化合物と反応させる環状ケトン化合物の添加量は、クロロシラン化合物中の塩素原子数1モルに対して、0.95~3.0モルが好ましく、0.99~2.5モルがより好ましく、1.0~2.0モルが更に好ましい。環状ケトン化合物の添加量が少ないと反応が終結しないおそれがあり、環状ケトン化合物の添加量が多すぎると精製に時間がかかり、製造時間が増加してしまう場合がある。 The amount of the cyclic ketone compound to be reacted with the chlorosilane compound is preferably 0.95 to 3.0 moles, more preferably 0.99 to 2.5 moles, and even more preferably 1.0 to 2.0 moles, per mole of chlorine atoms in the chlorosilane compound. If the amount of the cyclic ketone compound added is small, the reaction may not terminate, and if too much is added, purification may take a long time, increasing the production time.
 反応に使用する触媒としては、1価もしくは2価の金属銅化合物が挙げられ、例えば、塩化銅、臭化銅、ヨウ化銅、硫酸銅、硝酸銅、炭酸銅、塩基性炭酸銅、ギ酸銅、酢酸銅、酪酸銅などが例示できるがこれらに限られるものではない。
 触媒(金属銅化合物)の添加量としては、クロロシラン化合物1モルに対して0.001~0.5モルが好ましく、0.002~0.2モルがより好ましく、0.003~0.1モルが更に好ましい。触媒の添加量が少ないと反応が終結しないおそれがあり、触媒の添加量が多すぎるとコスト的に不利となる。
The catalyst used in the reaction includes monovalent or divalent metallic copper compounds, such as, but not limited to, copper chloride, copper bromide, copper iodide, copper sulfate, copper nitrate, copper carbonate, basic copper carbonate, copper formate, copper acetate, and copper butyrate.
The amount of catalyst (metallic copper compound) added is preferably 0.001 to 0.5 mol, more preferably 0.002 to 0.2 mol, and even more preferably 0.003 to 0.1 mol, per mol of the chlorosilane compound. If the amount of catalyst added is too small, the reaction may not be completed, whereas if the amount of catalyst added is too large, it is disadvantageous in terms of cost.
 反応に使用する塩基性物質としては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、尿素、ジアザビシクロウンデセン、ジアザビシクロノネンなどの求核性の低い塩基性物質が使用できる。この中でもトリメチルアミン、トリエチルアミン、トリブチルアミンが好ましく、特にトリエチルアミンが好ましい。
 塩基性物質の添加量としては、クロロシラン化合物中の塩素原子数1モルに対して0.95~2.5モルが好ましく、0.99~2.0モルがより好ましく、1.0~1.5モルが更に好ましい。塩基性物質の添加量が少ないと反応が終結しないおそれがあり、塩基性物質の添加量が多すぎると経済的に不利である。
As the basic substance used in the reaction, a basic substance having low nucleophilicity such as trimethylamine, triethylamine, tripropylamine, tributylamine, urea, diazabicycloundecene, diazabicyclononene, etc. can be used. Among these, trimethylamine, triethylamine, and tributylamine are preferred, and triethylamine is particularly preferred.
The amount of the basic substance added is preferably 0.95 to 2.5 mol, more preferably 0.99 to 2.0 mol, and even more preferably 1.0 to 1.5 mol, per mol of chlorine atoms in the chlorosilane compound. If the amount of the basic substance added is small, the reaction may not be completed, whereas if the amount of the basic substance added is too large, it is economically disadvantageous.
 (B)成分の加水分解性オルガノシラン化合物の製造には、一般に使用される溶剤を使用してもよく、溶剤としては、例えば、トルエン、キシレン、ベンゼン等の芳香族炭化水素類、ペンタン、ヘキサン、ヘプタン、ノナン、オクタン、デカンなどの脂肪族炭化水素類、ジメチルエーテル、メチルエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、パークロロエタン、パークロロエチレン、トリクロロエタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素、ジメチルホルムアミドなどのアミド類、酢酸エチル、酢酸メチル、酢酸ブチルなどのエステル類などの有機溶剤が挙げられる。
 溶剤の使用量としては特に限定されないが、通常、使用する環状ケトン化合物100質量部に対して、10~500質量部、好ましくは30~400質量部、より好ましくは50~300質量部等の範囲で使用される。
[0043] A commonly used solvent may be used in the production of the hydrolyzable organosilane compound of component (B). Examples of the solvent include organic solvents such as aromatic hydrocarbons, such as toluene, xylene, and benzene; aliphatic hydrocarbons, such as pentane, hexane, heptane, nonane, octane, and decane; ethers, such as dimethyl ether, methyl ethyl ether, tetrahydrofuran, and dioxane; halogenated hydrocarbons, such as perchloroethane, perchloroethylene, trichloroethane, chloroform, and carbon tetrachloride; amides, such as dimethylformamide; and esters, such as ethyl acetate, methyl acetate, and butyl acetate.
The amount of the solvent used is not particularly limited, but is usually in the range of 10 to 500 parts by mass, preferably 30 to 400 parts by mass, and more preferably 50 to 300 parts by mass, per 100 parts by mass of the cyclic ketone compound used.
 クロロシラン化合物と環状ケトン化合物との反応条件としては、通常、0~120℃、好ましくは0~100℃の温度下でクロロシラン化合物を環状ケトン化合物に滴下し、50~120℃、好ましくは60~100℃で1~48時間、更に好ましくは3~30時間程度反応させることが好ましい。反応時の温度が低すぎると反応が完結しない場合があり、反応時の温度が高すぎると生成物の着色が大きくなる場合がある。また、反応時間が短すぎると反応が完結しない場合があり、反応時間が長すぎると生産性に不利に働く。
 また、反応終了後の精製は減圧環境下で目的物を蒸留することで可能であり、減圧度は好ましくは1×10-5~3,000Pa、より好ましくは1×10-5~2,000Paであり、精製時の温度は好ましくは100~250℃、より好ましくは120~230℃である。減圧時の圧力(減圧度)が高すぎると蒸留が困難となる場合がある。また、精製時の温度が低すぎると、蒸留による精製が困難となる場合があり、高すぎると反応物の着色や分解を招くおそれがある。
The reaction conditions for the chlorosilane compound and the cyclic ketone compound are usually such that the chlorosilane compound is dropped into the cyclic ketone compound at a temperature of 0 to 120°C, preferably 0 to 100°C, and the reaction is carried out at 50 to 120°C, preferably 60 to 100°C, for 1 to 48 hours, more preferably 3 to 30 hours. If the reaction temperature is too low, the reaction may not be completed, and if the reaction temperature is too high, the product may become significantly colored. In addition, if the reaction time is too short, the reaction may not be completed, and if the reaction time is too long, it is disadvantageous to productivity.
After the reaction is completed, purification can be performed by distilling the target product under reduced pressure, the degree of reduction being preferably 1×10 −5 to 3,000 Pa, more preferably 1×10 −5 to 2,000 Pa, and the temperature during purification being preferably 100 to 250° C., more preferably 120 to 230° C. If the pressure during reduction (degree of reduction) is too high, distillation may become difficult. If the temperature during purification is too low, purification by distillation may become difficult, and if it is too high, coloration or decomposition of the reaction product may occur.
 (B)成分の加水分解性オルガノシラン化合物の具体例としては、例えば、下記式で表されるものが挙げられる。なお、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000007
Specific examples of the hydrolyzable organosilane compound of component (B) include those represented by the following formula: In this case, Me represents a methyl group.
Figure JPOXMLDOC01-appb-C000007
 (B)成分は、1種単独で用いてもよく、2種以上を併用してもよい。
 (B)成分の配合量は、(A)成分100質量部に対して1~40質量部であり、好ましくは3~30質量部であり、更に好ましくは5~20質量部である。(B)成分の配合量が上記下限値の1質量部未満であると、密封容器中に保管した際の保存性が悪化する場合がある。また、(B)成分の配合量が上記上限値の40質量部を超えると、室温硬化性オルガノポリシロキサン組成物の硬化性が著しく低下し、更には接着性が悪化する場合がある。
 なお、(B)成分の加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物は、分子中に、窒素原子、硫黄原子及び酸素原子から選ばれる1種以上の原子を含む官能性基を少なくとも1個有する一価炭化水素基を有しないものである点又は分子中のケイ素原子に結合した加水分解性基がシクロアルケニルオキシ基である点において、後述する任意成分としての(F)成分のシランカップリング剤及び/又はその部分加水分解縮合物とは明確に区別されるものである。
The component (B) may be used alone or in combination of two or more types.
The amount of component (B) is 1 to 40 parts by mass, preferably 3 to 30 parts by mass, and more preferably 5 to 20 parts by mass, per 100 parts by mass of component (A). If the amount of component (B) is less than the lower limit of 1 part by mass, the shelf life of the composition may deteriorate when stored in a sealed container. If the amount of component (B) is more than the upper limit of 40 parts by mass, the curability of the room-temperature-curable organopolysiloxane composition may decrease significantly, and the adhesiveness may also deteriorate.
The hydrolyzable organosilane compound and/or partial hydrolysis condensate thereof of component (B) are clearly distinguished from the silane coupling agent and/or partial hydrolysis condensate thereof of component (F) as an optional component described later in that they do not contain in their molecule a monovalent hydrocarbon group having at least one functional group containing one or more atoms selected from a nitrogen atom, a sulfur atom, and an oxygen atom, or in that the hydrolyzable group bonded to a silicon atom in their molecule is a cycloalkenyloxy group.
[(C)成分 硬化触媒]
 (C)成分の硬化触媒は、本組成物と空気中の水分との加水分解縮合反応を促進させるために使用され、一般的に硬化触媒と呼ばれるものである。これは湿分の存在下で硬化する室温硬化性シリコーン樹脂組成物に通常使用されている公知のものを使用することができるが、環境安全面に問題のある有機錫化合物は除く。
[(C) component curing catalyst]
The curing catalyst (C) is used to promote the hydrolysis and condensation reaction of the present composition with moisture in the air, and is generally called a curing catalyst. Any known compounds commonly used in room temperature curable silicone resin compositions can be used, except for organotin compounds which pose environmental safety concerns.
 (C)成分の硬化触媒としては、例えば、テトライソプロポキシチタン、テトラ-n-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン、イソプロポキシチタンビス(エチルアセトアセテート)、イソプロポキシビス(アセチルアセトナート)チタン、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステル又はチタンキレート化合物、N,N,N’,N’,N’’,N’’-ヘキサメチル-N’’’-(トリメチルシリルメチル)-ホスホリミディックトリアミド等のホスファゼン含有化合物;ヘキシルアミン、リン酸ドデシルアミン等のアミン化合物又はその塩;ベンジルトリエチルアンモニウムアセテート等の第4級アンモニウム塩;ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン;テトラメチルグアニジルプロピルトリメトキシシラン、テトラメチルグアニジルプロピルメチルジメトキシシラン、テトラメチルグアニジルプロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシラン及びシロキサン等が例示されるが、(C)成分はこれらに限定されない。
 また、(C)成分は1種でも2種以上混合して使用してもよい。
Examples of the curing catalyst of the component (C) include titanate esters or titanium chelate compounds such as tetraisopropoxytitanium, tetra-n-butoxytitanium, tetrakis(2-ethylhexoxy)titanium, isopropoxytitanium bis(ethylacetoacetate), isopropoxybis(acetylacetonate)titanium, and titanium isopropoxyoctylene glycol; phosphazene-containing compounds such as N,N,N',N',N'',N''-hexamethyl-N'''-(trimethylsilylmethyl)-phosphorimidic triamide; Examples of the component (C) include amine compounds or salts thereof, such as dodecylamine and dodecylamine phosphate; quaternary ammonium salts, such as benzyltriethylammonium acetate; dialkylhydroxylamines, such as dimethylhydroxylamine and diethylhydroxylamine; and silanes and siloxanes containing a guanidyl group, such as tetramethylguanidylpropyltrimethoxysilane, tetramethylguanidylpropylmethyldimethoxysilane, and tetramethylguanidylpropyltris(trimethylsiloxy)silane, but the component (C) is not limited to these.
The component (C) may be used alone or in combination of two or more.
 これらの硬化触媒の使用量はいわゆる触媒量でよく、(C)成分の配合量は前記(A)成分のオルガノポリシロキサン100質量部に対して0.001~10質量部であり、特に0.005~10質量部が好ましく、更に0.01~5質量部が好ましい。0.001質量部未満であると良好な速硬化性を得ることができないため、硬化に時間がかかる不具合を生じる。逆に、10質量部を超える量になると、硬化が速すぎるため、組成物塗布後の作業時間の許容範囲が短くなったり、得られるゴムの機械特性が低下したりする。 The amount of these curing catalysts used may be what is called a catalytic amount, and the blending amount of component (C) is 0.001 to 10 parts by mass, preferably 0.005 to 10 parts by mass, and more preferably 0.01 to 5 parts by mass, per 100 parts by mass of the organopolysiloxane of component (A). If the amount is less than 0.001 part by mass, good rapid curing properties cannot be obtained, resulting in the inconvenience of long curing times. Conversely, if the amount exceeds 10 parts by mass, curing will be too fast, shortening the allowable range of working time after application of the composition and deteriorating the mechanical properties of the resulting rubber.
[(D)成分 ブリードオイル]
 (D)成分は、ブリードオイルであり、(A)成分のジオルガノポリシロキサン及び(B)成分の加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物と縮合反応しない非反応性(非縮合反応性)の液状有機化合物であり、なおかつ架橋した硬化物マトリックス中において非相溶性(ブリード性)の液状有機化合物であれば、特に限定されない。その中でも好ましくはポリエーテル、ポリアクリレート、ポリメタクリレート、ポリイソブチレン、オルガノポリシロキサンであり、特に好ましくはポリエーテル、オルガノポリシロキサンであり、更に好ましくはオルガノポリシロキサンである。
[Component (D): Bleed Oil]
The (D) component is a bleed oil, and is not particularly limited as long as it is a non-reactive (non-condensation reactive) liquid organic compound that does not undergo a condensation reaction with the (A) component diorganopolysiloxane and the (B) component hydrolyzable organosilane compound and/or its partial hydrolysis condensate, and is also incompatible (bleeding) in the crosslinked cured matrix. Among these, polyether, polyacrylate, polymethacrylate, polyisobutylene, and organopolysiloxane are preferred, polyether and organopolysiloxane are particularly preferred, and organopolysiloxane is even more preferred.
 ブリードオイルとして使用可能なオルガノポリシロキサン(いわゆるシリコーンオイル)は、主鎖がシロキサン骨格(特には、2官能性のジオルガノシロキサン単位の繰り返しからなる直鎖状のジオルガノポリシロキサン構造)であり、分子鎖末端がトリオルガノシロキシ基で封鎖された無官能性のシリコーンオイルであり、本発明の室温硬化性オルガノポリシロキサン組成物を硬化してなるシリコーンゴム硬化物(架橋したオルガノシロキサンマトリックス)中から硬化物の表面にブリードしていくシリコーンオイルなら特に制限されない。 The organopolysiloxane (so-called silicone oil) that can be used as the bleed oil is a non-functional silicone oil whose main chain is a siloxane skeleton (particularly a linear diorganopolysiloxane structure consisting of repeated difunctional diorganosiloxane units) and whose molecular chain ends are blocked with triorganosiloxy groups, and there are no particular restrictions on the silicone oil as long as it bleeds from within the silicone rubber cured product (crosslinked organosiloxane matrix) obtained by curing the room temperature curable organopolysiloxane composition of the present invention to the surface of the cured product.
 例えば、主鎖のシロキサン骨格を構成するジオルガノシロキサン単位中のケイ素原子に結合したオルガノ基(非置換又は置換1価炭化水素基)の全てがメチル基であるジメチルシリコーンオイル、このジメチルシリコーンオイルのメチル基の一部がそれぞれフェニル基に置換されたメチルフェニルシリコーンオイル、モノアミン、ジアミン又はアミノ・ポリエーテル基に置換されたアミノ変性シリコーンオイル、エポキシ、脂環式エポキシ、エポキシ・ポリエーテル又はエポキシ・アラルキル基に置換されたエポキシ変性シリコーンオイル、カルビノール基に置換されたカルビノール変性シリコーンオイル、メルカプト基に置換されたメルカプト変性シリコーンオイル、カルボキシル基に置換されたカルボキシル変性シリコーンオイル、メタクリル基に置換されたメタクリル変性シリコーンオイル、ポリエーテル又はポリエーテル・長鎖(C6-18)アルキル・アラルキル基に置換されたポリエーテル変性シリコーンオイル、長鎖(C6-18)アルキル又は長鎖(C6-18)アルキル・アラルキル基に置換された長鎖(C6-18)アルキル変性シリコーンオイル、高級脂肪酸エステル基に置換された高級脂肪酸変性シリコーンオイル、フロロアルキル基に置換されたフロロアルキル変性シリコーンオイル等が挙げられ、中でもメチルフェニルシリコーンオイル、ポリエーテル変性シリコーンオイル、長鎖(C6-18)アルキル変性シリコーンオイル等が好ましい。 For example, there is a dimethyl silicone oil in which all of the organo groups (unsubstituted or substituted monovalent hydrocarbon groups) bonded to silicon atoms in the diorganosiloxane units constituting the siloxane skeleton of the main chain are methyl groups, a methylphenyl silicone oil in which some of the methyl groups of this dimethyl silicone oil are substituted with phenyl groups, an amino-modified silicone oil in which a monoamine, diamine or amino-polyether group is substituted, an epoxy-, alicyclic epoxy, epoxy-polyether or epoxy-aralkyl group is substituted, a carbinol-modified silicone oil in which a carbinol group is substituted, a mercapto-modified silicone oil in which a mercapto group is substituted, a carboxyl-modified silicone oil in which a carboxyl group is substituted, a methacryl-modified silicone oil in which a methacryl group is substituted, a polyether- or polyether-long-chain (C 6-18 ) alkyl-aralkyl group is substituted, and a long-chain (C 6-18 ) alkyl or a long-chain (C 6-18 ) alkyl-aralkyl group is substituted. ) alkyl-modified silicone oil, higher fatty acid-modified silicone oil substituted with a higher fatty acid ester group, and fluoroalkyl-modified silicone oil substituted with a fluoroalkyl group, among which methylphenyl silicone oil, polyether-modified silicone oil, long-chain ( C6-18 ) alkyl-modified silicone oil, etc. are preferred.
 また、(D)成分の25℃における粘度μ(D)は20~30,000mPa・sであることが好ましく、より好ましくは30~5,000mPa・sであり、更に好ましくは50~1,000mPa・sである。25℃における粘度μ(D)が20mPa・s未満であると防汚性が劣る場合があり、30,000mPa・sより高いと組成物の粘度が高すぎて使用しにくい場合があり、また防汚性も低下する可能性がある。 The viscosity μ (D ) of component (D) at 25° C. is preferably 20 to 30,000 mPa·s, more preferably 30 to 5,000 mPa·s, and even more preferably 50 to 1,000 mPa·s. If the viscosity μ (D) at 25° C. is less than 20 mPa·s, the soil resistance may be poor, and if it is more than 30,000 mPa·s, the viscosity of the composition may be too high, making it difficult to use, and the soil resistance may also decrease.
 また、(D)成分のブリードオイルは、前記(A)成分の25℃における粘度μ(A)に対する該(D)成分の25℃における粘度μ(D)の比[μ(D)/μ(A)]が、ブリード性、防汚性等の点から0.05~1であることが好ましく、0.06~0.8であることがより好ましく、0.07~0.5であることが更に好ましく、0.08~0.3であることが特に好ましい。 Furthermore, the bleed oil of component (D) preferably has a ratio [μ (D) /μ(A)] of the viscosity μ (D) of component (D) at 25°C to the viscosity μ (A ) of component (A) at 25°C of the component (D) in terms of bleeding properties, soil resistance, and the like, of 0.05 to 1, more preferably 0.06 to 0.8, even more preferably 0.07 to 0.5, and particularly preferably 0.08 to 0.3.
 (D)成分は、1種単独で用いてもよく、2種以上を併用してもよい。
 (D)成分の配合量は、(A)成分100質量部に対して0.01~100質量部であり、好ましくは10~100質量部である。(D)成分の配合量が上記範囲にあると、例えば、防汚塗料として用いた場合に、防汚性、塗膜強度共に優れた(防汚)塗膜が得られる傾向があり、上記範囲より少ないと防汚性が低下する場合があり、また上記範囲より多いと塗膜強度が低下することがある。
The component (D) may use one type alone, or two or more types in combination.
The blending amount of component (D) is 0.01 to 100 parts by mass, and preferably 10 to 100 parts by mass, per 100 parts by mass of component (A). If the blending amount of component (D) is within the above range, for example, when used as an antifouling paint, an (antifouling) coating film with excellent antifouling properties and coating film strength tends to be obtained, whereas if the blending amount is less than the above range, the antifouling properties may decrease, and if the blending amount is more than the above range, the coating film strength may decrease.
 本発明の室温硬化性オルガノポリシロキサン組成物には、必要に応じて、以下の成分を配合してもよい。
[(E)成分 充填剤]
 (E)成分は充填剤(無機質充填剤及び/又は有機樹脂充填剤)であり、必要に応じて配合できる任意成分であり、この組成物から形成される硬化物に十分な機械的強度を与えるために使用される。この充填剤としては公知のものを使用することができ、例えば微粉末シリカ(粉砕シリカ)、球状シリカ、煙霧質シリカ(ヒュームドシリカ)等の乾式シリカ、沈降性シリカ、ゾル-ゲルシリカ等の湿式シリカ、これらのシリカ表面を有機ケイ素化合物で疎水化処理したシリカなどの補強性シリカ系充填剤、ガラスビーズ、ガラスバルーン、透明樹脂ビーズ、シリカエアロゲル、珪藻土、酸化鉄、酸化亜鉛、酸化チタン、煙霧状金属酸化物などの金属酸化物、石英粉末(結晶性シリカ微粉末)、カーボンブラック、タルク、ゼオライト及びベントナイト等の補強剤、アスベスト、ガラス繊維、炭素繊維、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛などの金属炭酸塩、アスベスト、ガラスウール、微粉マイカ、溶融シリカ粉末、ポリスチレン、ポリ塩化ビニル、ポリプロピレンなどの合成樹脂粉末等が使用される。これらの充填剤のうち、シリカ、炭酸カルシウム、ゼオライトなどの無機質充填剤が好ましく、特に煙霧質シリカが好ましい。
The room temperature curable organopolysiloxane composition of the present invention may contain the following components as necessary.
[Component (E): Filler]
The component (E) is a filler (inorganic filler and/or organic resin filler), which is an optional component that can be blended as necessary, and is used to give sufficient mechanical strength to the cured product formed from this composition. Known fillers can be used as this filler, and examples of fillers that can be used include fine powder silica (pulverized silica), spherical silica, and fumed silica (fumed silica), wet silica such as precipitated silica and sol-gel silica, reinforcing silica fillers such as silica whose surface has been hydrophobized with an organic silicon compound, glass beads, glass balloons, transparent resin beads, silica aerogel, diatomaceous earth, metal oxides such as iron oxide, zinc oxide, titanium oxide, and fumed metal oxides, quartz powder (crystalline silica fine powder), reinforcing agents such as carbon black, talc, zeolite, and bentonite, asbestos, glass fiber, carbon fiber, metal carbonates such as calcium carbonate, magnesium carbonate, and zinc carbonate, asbestos, glass wool, fine mica, fused silica powder, and synthetic resin powders such as polystyrene, polyvinyl chloride, and polypropylene. Among these fillers, inorganic fillers such as silica, calcium carbonate, and zeolite are preferred, and fumed silica is particularly preferred.
 煙霧質シリカ等のシリカ系充填剤のBET法による比表面積は、通常、30~400m2/gが好ましく、50~300m2/gがより好ましい。シリカ系充填剤の比表面積が30m2/g未満では組成物の形状維持性が低下するおそれがあり、比表面積が400m2/gを超えると、組成物の粘度が著しく高くなり、作業性が低下するおそれがある。 The specific surface area of a silica-based filler such as fumed silica, as measured by the BET method, is usually preferably 30 to 400 m2 /g, more preferably 50 to 300 m2 /g. If the specific surface area of the silica-based filler is less than 30 m2 /g, the shape retention of the composition may decrease, whereas if the specific surface area exceeds 400 m2 /g, the viscosity of the composition may increase significantly, decreasing workability.
 (E)成分は、1種単独で用いてもよく、2種以上を併用してもよい。
 (E)成分の配合量は、前記(A)成分100質量部に対して0~100質量部、配合する場合は1質量部以上、特に3~60質量部とすることが好ましい。100質量部よりも多量に使用すると、組成物の粘度が増大して作業性が悪くなるばかりでなく、硬化後のゴム強度が低下してゴム弾性が得難くなる。
The component (E) may use one type alone, or two or more types in combination.
The amount of component (E) blended is preferably 0 to 100 parts by mass, and when blended, 1 part by mass or more, particularly 3 to 60 parts by mass, per 100 parts by mass of component (A). If more than 100 parts by mass is used, not only does the viscosity of the composition increase and workability deteriorate, but the rubber strength after curing decreases, making it difficult to obtain rubber elasticity.
[(F)成分 接着促進剤]
 (F)成分は接着促進剤であり、必要に応じて配合できる任意成分であり、この組成物から形成される硬化物に十分な接着性を与えるために使用される。接着促進剤(例えば、分子中に、アルケニル基、又は酸素原子、窒素原子及び硫黄原子から選ばれる少なくとも1種のヘテロ原子を有する官能性基(但し、グアニジル基を除く)と非置換又は置換アルコキシ基等の加水分解性基を2個以上有する、炭素官能性基含有加水分解性シラン(いわゆるCFシラン)等のシランカップリング剤)としては、(B)、(C)成分以外の、公知のものが好適に使用され、ビニルシランカップリング剤、(メタ)アクリルシランカップリング剤、エポキシシランカップリング剤、アミノシランカップリング剤、メルカプトシランカップリング剤、イソシアネートシランカップリング剤などが例示され、具体的には、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-アミノプロピルトリエトキシシラン、3-2-(アミノエチルアミノ)プロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、イソシアネートプロピルトリエトキシシラン、イソシアネートプロピルトリメトキシシラン等が例示される。これらのうち、特にγ-アミノプロピルトリエトキシシラン、3-2-(アミノエチルアミノ)プロピルトリメトキシシラン等のアミノシランカップリング剤、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシランカップリング剤、イソシアネートプロピルトリエトキシシラン等のイソシアネートシランカップリング剤が好ましい。
[Component (F): Adhesion promoter]
The component (F) is an adhesion promoter, which is an optional component that can be blended as necessary, and is used to provide sufficient adhesion to the cured product formed from this composition. As the adhesion promoter (for example, a silane coupling agent such as a carbon-functional group-containing hydrolyzable silane (so-called CF silane) having two or more hydrolyzable groups such as an alkenyl group or a functional group having at least one heteroatom selected from oxygen atoms, nitrogen atoms, and sulfur atoms (excluding guanidyl groups) and an unsubstituted or substituted alkoxy group in the molecule), a known one other than the components (B) and (C) is preferably used, and examples thereof include vinyl silane coupling agents, (meth)acrylic silane coupling agents, epoxy silane coupling agents, amino silane coupling agents, mercapto silane coupling agents, isocyanate coupling agents, etc. Specific examples of the coupling agent include vinyl tris(β-methoxyethoxy)silane, γ-methacryloxypropyl trimethoxysilane, β-(3,4-epoxycyclohexyl)ethyl trimethoxysilane, γ-glycidoxypropyl trimethoxysilane, γ-glycidoxypropyl methyl diethoxysilane, γ-aminopropyl triethoxysilane, 3-2-(aminoethylamino)propyl trimethoxysilane, γ-mercaptopropyl trimethoxysilane, isocyanate propyl triethoxysilane, isocyanate propyl trimethoxysilane, etc. Among these, aminosilane coupling agents such as γ-aminopropyl triethoxysilane and 3-2-(aminoethylamino)propyl trimethoxysilane, epoxy silane coupling agents such as γ-glycidoxypropyl trimethoxysilane and β-(3,4-epoxycyclohexyl)ethyl trimethoxysilane, and isocyanate silane coupling agents such as isocyanate propyl triethoxysilane are particularly preferred.
 (F)成分は、1種単独で用いてもよく、2種以上を併用してもよい。
 (F)成分は前記(A)成分100質量部に対して0~20質量部、配合する場合は0.1質量部以上、特に0.1~10質量部配合するのが好ましい。充填剤及び被着体により接着促進剤を使用しなくても接着するときは、これを使用しなくてもよい。
The component (F) may use one type alone, or two or more types in combination.
The amount of component (F) is preferably 0 to 20 parts by mass, and when used, 0.1 part by mass or more, particularly 0.1 to 10 parts by mass, per 100 parts by mass of component (A). When adhesion can be achieved without the use of an adhesion promoter depending on the filler and adherend, this need not be used.
[その他の成分]
 また、本発明の室温硬化性オルガノポリシロキサン組成物には、本発明の目的を損なわない範囲において上記成分以外に、添加剤等を配合してもよい。
 例えば、ウェッターやチキソトロピー向上剤としてのイソパラフィン、架橋密度向上剤としてのトリメチルシロキシ単位〔(CH33SiO1/2単位〕とSiO2単位とからなる三次元網状ポリシロキサン(いわゆるシリコーンレジン)等が挙げられる。更に、必要に応じて、顔料、染料、蛍光増白剤等の着色剤、防かび剤、抗菌剤、シリコーンと非相溶の有機液体等の(D)成分以外の表面改質剤、トルエン、キシレン、溶剤揮発油、シクロヘキサン、メチルシクロヘキサン、低沸点イソパラフィン等の溶剤を添加してもよい。
[Other ingredients]
Furthermore, the room temperature curable organopolysiloxane composition of the present invention may contain additives other than the above components, provided the addition does not impair the object of the present invention.
Examples of such additives include isoparaffin as a wetter or thixotropy improver, three-dimensional network polysiloxane (so-called silicone resin) consisting of trimethylsiloxy units [( CH3 ) 3SiO1 /2 units] and SiO2 units as a crosslink density improver, etc. Furthermore, if necessary, colorants such as pigments, dyes, and fluorescent whitening agents, surface modifiers other than component (D) such as antifungal agents, antibacterial agents, and organic liquids incompatible with silicone, and solvents such as toluene, xylene, solvent volatile oils, cyclohexane, methylcyclohexane, and low-boiling point isoparaffins may be added.
 また、本発明の室温硬化性オルガノポリシロキサン組成物には、更に、添加剤として、老化防止剤、酸化防止剤、帯電防止剤、酸化アンチモン、塩化パラフィン等の難燃剤など公知の添加剤を配合することができる。 The room temperature curable organopolysiloxane composition of the present invention can further contain known additives such as antioxidants, antioxidants, antistatic agents, antimony oxide, and flame retardants such as chlorinated paraffin.
[室温硬化性オルガノポリシロキサン組成物の製造]
 本発明の室温硬化性オルガノポリシロキサン組成物は、例えば、上記各成分を常圧下又は減圧下、好ましくは-0.09~-0.01MPaの減圧下で混合し、非加熱下、好ましくは60℃以下で、通常、15分~3時間、好ましくは30分~2時間程度混合することによって製造することができる。また、組成物に(E)成分の充填剤を含む場合には、予め(A)成分と(E)成分を減圧下、好ましくは-0.09~-0.01MPaの減圧下に、加熱下、好ましくは80~160℃で、30分~3時間程度混合し、残りの成分を、常圧下又は減圧下、好ましくは-0.09~-0.01MPaの減圧下に、非加熱下、好ましくは60℃以下で、通常30分~3時間程度混合することによって製造することにより、硬化塗膜の表面平滑性、経時での粘度安定性がより優れたものが得られる。
[Preparation of Room Temperature Curable Organopolysiloxane Composition]
The room temperature curable organopolysiloxane composition of the present invention can be produced, for example, by mixing the above-mentioned components under normal pressure or reduced pressure, preferably under a reduced pressure of -0.09 to -0.01 MPa, and mixing without heating, preferably at 60° C. or less, usually for about 15 minutes to 3 hours, preferably for about 30 minutes to 2 hours. When the composition contains a filler of component (E), the composition is produced by previously mixing components (A) and (E) under reduced pressure, preferably under a reduced pressure of -0.09 to -0.01 MPa, with heating, preferably at 80 to 160° C., for about 30 minutes to 3 hours, and then mixing the remaining components under normal pressure or reduced pressure, preferably under a reduced pressure of -0.09 to -0.01 MPa, with heating, preferably at 60° C. or less, usually for about 30 minutes to 3 hours, thereby obtaining a cured coating film with superior surface smoothness and viscosity stability over time.
 本発明の室温硬化性オルガノポリシロキサン組成物をコーティング材、塗料、特に防汚塗料等として用いると、調製・保管・貯蔵時の安定性にも優れ、速硬化性も良好であり、得られる塗膜は、硬さ、引張強さ、伸び等のゴム物性にバランスよく優れ、しかも、防汚性等にも優れたものであるため、特に防汚塗膜として好適に用いることができる。 When the room temperature curable organopolysiloxane composition of the present invention is used as a coating material or paint, particularly as an antifouling paint, it has excellent stability during preparation, storage, and preservation, and also has good fast curing properties. The resulting coating film has a good balance of rubber properties such as hardness, tensile strength, and elongation, and also has excellent antifouling properties, making it particularly suitable for use as an antifouling coating film.
 なお、本発明の室温硬化性オルガノポリシロキサン組成物は、25℃における粘度が好ましくは500~200,000mPa・s、特に好ましくは1,000~150,000mPa・sであり、特に塗装に適した粘度である。 The viscosity of the room temperature curable organopolysiloxane composition of the present invention at 25°C is preferably 500 to 200,000 mPa·s, and particularly preferably 1,000 to 150,000 mPa·s, which is a viscosity that is particularly suitable for coating.
 以上説明した本発明の室温硬化性オルガノポリシロキサン組成物を各種の基材の表面にコーティング(塗布)し、硬化させて被覆層を形成することで被覆基材が得られる。このとき、組成物のコーティング方法は、特に制限されず、その具体例としてはスプレーコート、スピンコート、ディップコート、ローラーコート、刷毛塗り、バーコート、フローコート等の公知の方法から適宜選択して用いることができる。なお、本発明の室温硬化性オルガノポリシロキサン組成物は、コーティング(塗布)時に更に各種コーティング方法に合わせて上述した溶剤にて希釈して用いることも可能である。 The above-described room-temperature curable organopolysiloxane composition of the present invention is coated (applied) onto the surface of various substrates and cured to form a coating layer, thereby obtaining a coated substrate. In this case, the method for coating the composition is not particularly limited, and can be appropriately selected from known methods such as spray coating, spin coating, dip coating, roller coating, brush coating, bar coating, and flow coating. The room-temperature curable organopolysiloxane composition of the present invention can also be further diluted with the above-mentioned solvents to suit various coating methods when coated (applied).
 本発明の室温硬化性オルガノポリシロキサン組成物は、船底塗料、発電所海水導入管用塗料、魚網塗料等の耐水性が必要なコーティング材料、LCDやPDP等の耐湿性が必要な防湿コーティング材料、電線と樹脂被覆間の接着シール、樹脂ケース、又は樹脂コネクタと電線の間の接着シール、減圧又は加圧チャンバーの接着シール等の用途に対する適合性が高く、とりわけ、基材として船舶、港湾施設、ブイ、パイプライン、橋梁、海底基地、海底油田掘削設備、発電所の導水路管、養殖網、定置網等の水中構造物にコーティングすることができ、該組成物の硬化塗膜は、無毒であり、環境面において何らの問題もなく、かつ、長期間にわたって水生生物の付着・生育を防止し、優れた防汚性を示すものとなり得る。 The room temperature curable organopolysiloxane composition of the present invention is highly suitable for applications such as coating materials requiring water resistance, such as ship bottom paints, paints for seawater inlet pipes at power plants, and fishing net paints; moisture-proof coating materials for LCDs and PDPs requiring moisture resistance; adhesive seals between electric wires and resin coatings; adhesive seals between resin cases or resin connectors and electric wires; and adhesive seals for vacuum or pressurized chambers. In particular, the composition can be used as a substrate to coat underwater structures such as ships, port facilities, buoys, pipelines, bridges, offshore bases, offshore oil field drilling equipment, power plant water conduit pipes, aquaculture nets, and fixed nets. The cured coating film of the composition is non-toxic and poses no environmental problems, and can prevent the attachment and growth of aquatic organisms over a long period of time, exhibiting excellent antifouling properties.
 本発明の室温硬化性オルガノポリシロキサン組成物の水中構造物や船舶などの基材へのコーティング量としては、特に限定されるものではないが、硬化後の膜厚が10~1,000μm、特に50~500μmとなる量とすることが好ましい。なお、本発明の室温硬化性オルガノポリシロキサン組成物は、室温(常温)で塗布、硬化させればよい。
 なお、膜厚は、例えば、分光反射率測定法、エックス線反射率測定法、分光エリプソメトリー測定法、蛍光エックス線測定法等の手段により測定できる。
The amount of the room-temperature-curable organopolysiloxane composition of the present invention to be coated on a substrate such as an underwater structure or a ship is not particularly limited, but it is preferably an amount that results in a film thickness after curing of 10 to 1,000 μm, and particularly 50 to 500 μm. The room-temperature-curable organopolysiloxane composition of the present invention may be applied and cured at room temperature (normal temperature).
The film thickness can be measured by, for example, a spectroscopic reflectance measurement method, an X-ray reflectance measurement method, a spectroscopic ellipsometry measurement method, an X-ray fluorescence measurement method, or the like.
 以下、合成例、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれら実施例に制限されるものではない。なお、下記の具体例において、「部」は「質量部」を意味し、また粘度は25℃でのB型回転粘度計による測定値を示したものであり、更に、膜厚は分光エリプソメーターを用いた分光エリプソメトリー測定法により測定した値である。 The present invention will be specifically explained below with synthesis examples, working examples, and comparative examples, but the present invention is not limited to these examples. In the following specific examples, "parts" means "parts by mass," the viscosity is the value measured with a B-type rotational viscometer at 25°C, and the film thickness is the value measured by a spectroscopic ellipsometry measurement method using a spectroscopic ellipsometer.
 (B)成分の加水分解性オルガノシラン化合物の合成方法は、以下の通りである。 The method for synthesizing the hydrolyzable organosilane compound of component (B) is as follows:
[合成例1]加水分解性オルガノシラン化合物1の合成
 機械攪拌機、温度計、還流管及び滴下ロートを備えた5,000mLの四つ口セパラブルフラスコに、シクロペンタノン834g(9.9モル)、トリエチルアミン825g(8.2モル)、塩化銅(I)5g(0.05モル)、ヘキサン1,500mLを仕込み、40~60℃の範囲でビニルトリクロロシラン400g(2.47モル)を約2時間かけて滴下した。その後、80℃で12時間撹拌後、生成したトリエチルアミン塩酸塩を濾過して取り除き、ろ液から100℃、常圧の条件でヘキサンを留去したのち、180℃、300Paの条件で蒸留することで加水分解性オルガノシラン化合物1を得た(収量532g、収率69%)。この反応式は、下記式[2]で表される。
Figure JPOXMLDOC01-appb-C000008
[Synthesis Example 1] Synthesis of hydrolyzable organosilane compound 1 834g (9.9 mol) of cyclopentanone, 825g (8.2 mol) of triethylamine, 5g (0.05 mol) of copper (I) chloride, and 1,500mL of hexane were charged into a 5,000mL four-necked separable flask equipped with a mechanical stirrer, a thermometer, a reflux tube, and a dropping funnel, and 400g (2.47 mol) of vinyltrichlorosilane was dropped over about 2 hours at a temperature of 40 to 60°C. After stirring at 80°C for 12 hours, the generated triethylamine hydrochloride was removed by filtration, and hexane was distilled from the filtrate at 100°C and normal pressure, followed by distillation at 180°C and 300 Pa to obtain hydrolyzable organosilane compound 1 (yield 532g, yield 69%). This reaction formula is represented by the following formula [2].
Figure JPOXMLDOC01-appb-C000008
[合成例2]加水分解性オルガノシラン化合物2の合成
 機械攪拌機、温度計、還流管及び滴下ロートを備えた5,000mLの四つ口セパラブルフラスコに、シクロペンタノン834g(9.9モル)、トリエチルアミン825g(8.2モル)、塩化銅(I)5g(0.05モル)、ヘキサン1,500mLを仕込み、40~60℃の範囲でメチルトリクロロシラン368g(2.47モル)を約2時間かけて滴下した。その後、80℃で12時間撹拌後、生成したトリエチルアミン塩酸塩を濾過して取り除き、ろ液から100℃、常圧の条件でヘキサンを留去したのち、170℃、300Paの条件で蒸留することで加水分解性オルガノシラン化合物2を得た(収量519g、収率71%)。この反応式は、下記式[3]で表される。
Figure JPOXMLDOC01-appb-C000009
[Synthesis Example 2] Synthesis of hydrolyzable organosilane compound 2 834g (9.9 mol) of cyclopentanone, 825g (8.2 mol) of triethylamine, 5g (0.05 mol) of copper (I) chloride, and 1,500mL of hexane were charged into a 5,000mL four-necked separable flask equipped with a mechanical stirrer, a thermometer, a reflux tube, and a dropping funnel, and 368g (2.47 mol) of methyltrichlorosilane was dropped over about 2 hours at a temperature of 40 to 60°C. After stirring for 12 hours at 80°C, the generated triethylamine hydrochloride was removed by filtration, and hexane was distilled from the filtrate at 100°C and normal pressure, followed by distillation at 170°C and 300 Pa to obtain hydrolyzable organosilane compound 2 (yield 519g, yield 71%). This reaction formula is represented by the following formula [3].
Figure JPOXMLDOC01-appb-C000009
 以下、室温硬化性オルガノポリシロキサン組成物の実施例について記載する。
[実施例1]
 粘度μ(A)が1,500mPa・sの分子鎖両末端がシラノール基(ケイ素原子に結合した水酸基)で封鎖された直鎖状ジメチルポリシロキサン((A)成分:前記一般式(1)において、R1=メチル基、a=約310に該当するジメチルポリシロキサン)を90部、表面処理されていないBET比表面積が200m2/gの煙霧質シリカ10部を均一に混合し、150℃で2時間、-0.08MPaの減圧下にて混合した。2時間後、得られたベースを3本ロールに一回通した後、加水分解性オルガノシラン化合物1を10部とγ-アミノプロピルトリエトキシシラン0.4部とテトラメチルグアニジルプロピルトリメトキシシラン0.5部を加えて、-0.06~-0.04MPaの減圧下、20~40℃にて均一になるまで30分間混合した。更に、粘度μ(D)が300mPa・sのα,ω-トリメチルシロキシ-ジメチルジフェニルポリシロキサン((D)成分:両末端トリメチルシロキシ封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体)30部を加えて-0.06~-0.04MPaの減圧下、20~40℃にて均一になるまで30分間混合して粘度15,300mPa・sの組成物1を調製した。
 組成物1において、(A)成分の25℃における粘度μ(A)に対する(D)成分の25℃における粘度μ(D)の比[μ(D)/μ(A)]は0.20である。
Examples of room temperature curable organopolysiloxane compositions are described below.
[Example 1]
90 parts of linear dimethylpolysiloxane (component (A): dimethylpolysiloxane in which R 1 =methyl and a =approximately 310 in the above general formula (1)) having a viscosity μ (A) of 1,500 mPa·s and both molecular chain terminals are blocked with silanol groups (hydroxyl groups bonded to silicon atoms) were uniformly mixed with 10 parts of untreated fumed silica having a BET specific surface area of 200 m 2 /g, and mixed at 150° C. for 2 hours under a reduced pressure of −0.08 MPa. After 2 hours, the obtained base was passed once through a triple roll, after which 10 parts of hydrolyzable organosilane compound 1, 0.4 parts of γ-aminopropyltriethoxysilane, and 0.5 parts of tetramethylguanidylpropyltrimethoxysilane were added, and mixed for 30 minutes at 20 to 40° C. under a reduced pressure of −0.06 to −0.04 MPa until the mixture became uniform. Further, 30 parts of an α,ω-trimethylsiloxy-dimethyldiphenylpolysiloxane (component (D): dimethylsiloxane-diphenylsiloxane copolymer capped with trimethylsiloxy at both ends) having a viscosity μ (D) of 300 mPa·s was added and mixed for 30 minutes at 20 to 40° C. under a reduced pressure of −0.06 to −0.04 MPa until the mixture was homogenous, thereby preparing Composition 1 having a viscosity of 15,300 mPa·s.
In composition 1, the ratio [μ (D)(A) ] of the viscosity μ (A) of component (A) at 25° C. to the viscosity μ (D) of component (D) at 25° C. was 0.20.
[実施例2]
 実施例1のγ-アミノプロピルトリエトキシシランの代わりに、3-2-(アミノエチルアミノ)プロピルトリメトキシシラン0.4部を用いた以外は実施例1と同様にして粘度15,600mPa・sの組成物2を調製した。
[Example 2]
Composition 2 having a viscosity of 15,600 mPa·s was prepared in the same manner as in Example 1, except that 0.4 parts of 3-2-(aminoethylamino)propyltrimethoxysilane was used instead of the γ-aminopropyltriethoxysilane in Example 1.
[実施例3]
 粘度μ(A)が1,500mPa・sの分子鎖両末端がシラノール基(ケイ素原子に結合した水酸基)で封鎖された直鎖状ジメチルポリシロキサン((A)成分:前記一般式(1)において、R1=メチル基、a=約310に該当するジメチルポリシロキサン)を90部、表面処理されていないBET比表面積が200m2/gの煙霧質シリカ10部を均一に混合し、150℃で2時間、-0.08MPaの減圧下にて混合した。2時間後、得られたベースを3本ロールに一回通した後、加水分解性オルガノシラン化合物2を10部とγ-アミノプロピルトリエトキシシラン0.4部とテトラメチルグアニジルプロピルトリメトキシシラン0.5部を加えて、-0.06~-0.04MPaの減圧下、20~40℃にて均一になるまで30分間混合した。更に、粘度μ(D)が300mPa・sのα,ω-トリメチルシロキシ-ジメチルジフェニルポリシロキサン((D)成分)30部を加えて-0.06~-0.04MPaの減圧下、20~40℃にて均一になるまで30分間混合して粘度16,100mPa・sの組成物3を調製した。
 組成物3において、(A)成分の25℃における粘度μ(A)に対する(D)成分の25℃における粘度μ(D)の比[μ(D)/μ(A)]は0.20である。
[Example 3]
90 parts of a linear dimethylpolysiloxane (component (A): dimethylpolysiloxane in which R 1 =methyl and a =approximately 310 in the above general formula (1)) having a viscosity μ (A) of 1,500 mPa·s and both molecular chain terminals are blocked with silanol groups (hydroxyl groups bonded to silicon atoms) were uniformly mixed with 10 parts of untreated fumed silica having a BET specific surface area of 200 m 2 /g, and mixed at 150° C. for 2 hours under a reduced pressure of −0.08 MPa. After 2 hours, the resulting base was passed once through a triple roll mill, after which 10 parts of hydrolyzable organosilane compound 2, 0.4 parts of γ-aminopropyltriethoxysilane, and 0.5 parts of tetramethylguanidylpropyltrimethoxysilane were added, and mixed for 30 minutes at 20 to 40° C. under a reduced pressure of −0.06 to −0.04 MPa until the mixture became uniform. Further, 30 parts of α,ω-trimethylsiloxy-dimethyldiphenylpolysiloxane (component (D)) having a viscosity μ (D) of 300 mPa·s was added and mixed for 30 minutes at 20 to 40° C. under a reduced pressure of −0.06 to −0.04 MPa until homogenous, preparing composition 3 having a viscosity of 16,100 mPa·s.
In composition 3, the ratio [μ (D) /μ(A)] of the viscosity μ (D) of component (D) at 25° C. to the viscosity μ( A ) of component (A ) at 25° C. was 0.20.
[実施例4]
 実施例3のγ-アミノプロピルトリエトキシシランの代わりに、3-2-(アミノエチルアミノ)プロピルトリメトキシシラン0.4部を用いた以外は実施例3と同様にして粘度15,900mPa・sの組成物4を調製した。
[Example 4]
Composition 4 having a viscosity of 15,900 mPa·s was prepared in the same manner as in Example 3, except that 0.4 parts of 3-2-(aminoethylamino)propyltrimethoxysilane was used instead of the γ-aminopropyltriethoxysilane in Example 3.
[実施例5]
 粘度μ(A)が700mPa・sの分子鎖両末端がシラノール基(ケイ素原子に結合した水酸基)で封鎖された直鎖状ジメチルポリシロキサン((A)成分:前記一般式(1)において、R1=メチル基、a=約270に該当するジメチルポリシロキサン)を90部、表面処理されていないBET比表面積が200m2/gの煙霧質シリカ10部を均一に混合し、150℃で2時間、-0.08MPaの減圧下にて混合した。2時間後、得られたベースを3本ロールに一回通した後、加水分解性オルガノシラン化合物1を10部とγ-アミノプロピルトリエトキシシラン0.4部とテトラメチルグアニジルプロピルトリメトキシシラン0.5部を加えて、-0.06~-0.04MPaの減圧下、20~40℃にて均一になるまで30分間混合した。更に、粘度μ(D)が60mPa・sのポリエーテル変性ポリシロキサン((D)成分:X-22-2516:信越化学工業(株)製)30部を加えて-0.06~-0.04MPaの減圧下、20~40℃にて均一になるまで30分間混合して粘度9,200mPa・sの組成物5を調製した。
 組成物5において、(A)成分の25℃における粘度μ(A)に対する(D)成分の25℃における粘度μ(D)の比[μ(D)/μ(A)]は0.086である。
[Example 5]
90 parts of linear dimethylpolysiloxane (component (A): dimethylpolysiloxane in which R 1 =methyl and a =approximately 270 in the above general formula (1)) having a viscosity μ (A) of 700 mPa·s and both molecular chain terminals are blocked with silanol groups (hydroxyl groups bonded to silicon atoms) were uniformly mixed with 10 parts of untreated fumed silica having a BET specific surface area of 200 m 2 /g, and mixed at 150° C. for 2 hours under a reduced pressure of −0.08 MPa. After 2 hours, the resulting base was passed once through a triple roll mill, after which 10 parts of hydrolyzable organosilane compound 1, 0.4 parts of γ-aminopropyltriethoxysilane, and 0.5 parts of tetramethylguanidylpropyltrimethoxysilane were added, and mixed for 30 minutes at 20 to 40° C. under a reduced pressure of −0.06 to −0.04 MPa until the mixture became uniform. Further, 30 parts of a polyether-modified polysiloxane (component (D): X-22-2516: manufactured by Shin-Etsu Chemical Co., Ltd.) having a viscosity μ (D) of 60 mPa·s was added and mixed for 30 minutes at 20 to 40° C. under a reduced pressure of −0.06 to −0.04 MPa until the mixture became uniform, thereby preparing Composition 5 having a viscosity of 9,200 mPa·s.
In composition 5, the ratio [μ (D)(A) ] of the viscosity μ ( D) of component (D) at 25° C. to the viscosity μ(A ) of component (A) at 25° C. was 0.086.
[実施例6]
 実施例5のγ-アミノプロピルトリエトキシシランの代わりに、3-2-(アミノエチルアミノ)プロピルトリメトキシシラン0.4部を用いた以外は実施例5と同様にして粘度9,600mPa・sの組成物6を調製した。
[Example 6]
Composition 6 having a viscosity of 9,600 mPa·s was prepared in the same manner as in Example 5, except that 0.4 parts of 3-2-(aminoethylamino)propyltrimethoxysilane was used instead of the γ-aminopropyltriethoxysilane in Example 5.
[比較例1]
 実施例1の組成物において、粘度が300mPa・sのα,ω-トリメチルシロキシ-ジメチルジフェニルポリシロキサン30部を配合しなかったこと以外は、実施例1と同様にして粘度17,900mPa・sの組成物7を調製した。
[Comparative Example 1]
Composition 7 having a viscosity of 17,900 mPa·s was prepared in the same manner as in Example 1, except that 30 parts of the α,ω-trimethylsiloxy-dimethyldiphenylpolysiloxane having a viscosity of 300 mPa·s was not blended in.
[比較例2]
 実施例1の加水分解性オルガノシラン化合物1の代わりに、メチルトリメトキシシラン10部を用いた以外は、実施例1と同様にして粘度14,500mPa・sの組成物8を調製した。
[Comparative Example 2]
Composition 8 having a viscosity of 14,500 mPa·s was prepared in the same manner as in Example 1, except that 10 parts of methyltrimethoxysilane was used instead of the hydrolyzable organosilane compound 1 in Example 1.
[比較例3]
 分子鎖両末端がトリメトキシシリル基で封鎖された、25℃における粘度が900mPa・sのジメチルポリシロキサン90部、表面処理されていないBET比表面積が200m2/gの煙霧状シリカ10部を均一に混合し、150℃で2時間、-0.08MPaの減圧下にて混合した。2時間後、得られたベースを3本ロールに一回通した後、メチルトリメトキシシラン4.5部とメチルトリメトキシシランの加水分解縮合物(平均3~4量体)を1.5部、更にγ-アミノプロピルトリエトキシシラン0.4部とイソプロポキシチタンビス(エチルアセトアセテート)2部を加えて、-0.06~-0.04MPaの減圧下、20~40℃にて均一になるまで30分間混合した。更に、粘度が300mPa・sのα,ω-トリメチルシロキシ-ジメチルジフェニルポリシロキサン30部を加えて-0.06~-0.04MPaの減圧下、20~40℃にて均一になるまで30分間混合して粘度10,600mPa・sの組成物9を調製した。
[Comparative Example 3]
90 parts of dimethylpolysiloxane, both ends of which are blocked with trimethoxysilyl groups and have a viscosity of 900 mPa·s at 25° C., and 10 parts of non-surface-treated fumed silica with a BET specific surface area of 200 m2 /g were mixed uniformly and mixed under a reduced pressure of -0.08 MPa at 150° C. for 2 hours. After 2 hours, the obtained base was passed through a triple roll once, and then 4.5 parts of methyltrimethoxysilane, 1.5 parts of a hydrolysis condensate of methyltrimethoxysilane (average 3-4 monomers), 0.4 parts of γ-aminopropyltriethoxysilane, and 2 parts of isopropoxytitaniumbis(ethylacetoacetate) were added, and mixed for 30 minutes at 20-40° C. under a reduced pressure of -0.06 to -0.04 MPa until the mixture became uniform. Further, 30 parts of α,ω-trimethylsiloxy-dimethyldiphenylpolysiloxane having a viscosity of 300 mPa·s was added and mixed for 30 minutes at 20 to 40° C. under a reduced pressure of −0.06 to −0.04 MPa until homogenous, to prepare Composition 9 having a viscosity of 10,600 mPa·s.
<性能試験>
 上記で得られた組成物を用いて、下記に示す試験方法により各種性能試験を行った。
<Performance test>
Using the compositions obtained above, various performance tests were carried out according to the test methods shown below.
[試験方法]
(A)硬化性確認
 JIS K 6249に規定された方法に準じて、塗布厚200μmにおけるタックフリータイムを測定した。
[Test Method]
(A) Confirmation of Curability According to the method specified in JIS K 6249, the tack-free time at a coating thickness of 200 μm was measured.
(B)硬化後物性
 硬化しなかった組成物8を除く、組成物1~7、9を用いて2mm厚のシートを成形し、23℃/50%RHで7日間硬化させ、JIS K 6249に準じてゴム物性(硬さ、伸び、引張強さ)を測定した。
(B) Physical Properties after Curing Compositions 1 to 7 and 9, excluding composition 8 which was not cured, were molded into sheets having a thickness of 2 mm, which were cured at 23° C./50% RH for 7 days, and the rubber physical properties (hardness, elongation, tensile strength) were measured in accordance with JIS K 6249.
(C)塗装作業性
 上記硬化しなかった組成物8を除く、組成物1~7、9を90gとキシレン10gをそれぞれ均一に混合し、試験用塗料サンプルを調製した。大きさ1,000mm×1,000mm×1mm(厚)のブリキ板中央に、100mm×100mm×1mm(厚)の軟鋼板を貼り付け、ブリキ板を垂直に立て掛けた状態でエアレススプレー塗装を行い、スプレー時の器具のツマリの有無(スプレー性)の確認(目視)を下記の基準にて評価し、また膜のタレが生じる限界膜厚を塗膜乾燥後測定した。
〔スプレー性〕
 良好:スプレー時の器具のツマリ無
 不良:スプレー時の器具のツマリ有
(C) Coating workability Each of compositions 1 to 7 and 9, excluding composition 8 that did not harden, was uniformly mixed with 10 g of xylene to prepare a test coating sample. A mild steel plate of 100 mm x 100 mm x 1 mm (thickness) was attached to the center of a tin plate of 1,000 mm x 1,000 mm x 1 mm (thickness), and airless spray coating was performed with the tin plate standing vertically. The presence or absence of clogging of the spraying tool (sprayability) was confirmed (visually) according to the following criteria, and the critical film thickness at which the film sagging occurred was measured after the coating film dried.
[Sprayability]
Good: No clogging of the equipment when spraying. Bad: Clogging of the equipment when spraying.
(D)防汚性
 エポキシ系防食塗料(膜厚200μm)を用いて予め塗装した被塗板に、硬化膜厚が200μmになるように、硬化しなかった組成物8を除く、組成物1~7、9を90gとキシレン10gをそれぞれ均一に混合し、試験用塗料サンプルを調製したのち、スプレー塗装して試験塗板とした。このように作製した試験塗板を、23℃/50%RHの条件で7日間かけて硬化させた。硬化後の試験塗板を神奈川県海岸の沖合いに1.5mの深さで12か月間にわたって懸垂試験を行った。3,6,12か月経過時のフジツボ等の貝類、海藻類の付着状況を観察した。
(D) Antifouling properties: 90 g of each of compositions 1 to 7 and 9, except for composition 8 that was not cured, was mixed with 10 g of xylene on a plate that had been previously coated with an epoxy-based anticorrosive paint (film thickness 200 μm) so that the cured film thickness was 200 μm. A test paint sample was prepared, and then spray-painted to prepare a test coated plate. The test coated plate thus prepared was cured for 7 days under the conditions of 23°C/50% RH. The test coated plate after curing was subjected to a suspension test at a depth of 1.5 m off the coast of Kanagawa Prefecture for 12 months. The adhesion state of shellfish such as barnacles and seaweed was observed after 3, 6, and 12 months.
(E)塗料安定性
 上記試験用塗料サンプル調製後、密閉した状態で23℃/6ヶ月経過後の塗料状態(安定性)及び塗装作業性について試験を行った。塗料状態(安定性)は開缶後の塗料を撹拌し、ツブゲージ(粒ゲージ)にて検査し、下記の基準にて評価した。塗装作業性は上記と同様にして測定した。
〔塗料状態〕
 良好:ツブゲージの塗料表面上に50μm以上のツブ(不均一な固形部分
    )の存在が目視にて確認されない場合
 不良:ツブゲージの塗料表面上に50μm以上のツブ(不均一な固形部分
    )の存在が目視にて確認される場合
(E) Paint Stability After preparing the above test paint samples, the paint condition (stability) and painting workability after 6 months at 23°C in a sealed state were tested. The paint condition (stability) was evaluated by stirring the paint after opening the can and inspecting it with a grain gauge (particle gauge) and using the following criteria. Painting workability was measured in the same manner as above.
[Paint condition]
Good: No grains (uneven solid parts) of 50 μm or more are visually confirmed on the paint surface of the grain gauge. Bad: Grains (uneven solid parts) of 50 μm or more are visually confirmed on the paint surface of the grain gauge.
(F)接着性
 エポキシ系防食塗料(膜厚200μm)を用いて予め塗装した被塗板に、硬化膜厚が200μmになるように、硬化しなかった組成物8を除く、組成物1~7、9を90gとキシレン10gをそれぞれ均一に混合し、試験用塗料サンプルを調製したのち、スプレー塗布して試験塗板とした。塗布してから一定時間(30分、60分、90分)で塗膜表面に、カッターを使用して防食塗料まで達する切り込みを入れた後、切り込みに対して垂直方向に指で強く擦ることで塗膜の接着性を評価した。塗膜が剥がれない場合を○、塗膜が剥がれる場合を×として評価した。
 これらの試験結果を表1,2に示す。
(F) Adhesion A test plate was pre-coated with an epoxy-based anticorrosive paint (film thickness 200 μm), and 90 g of each of compositions 1 to 7 and 9, excluding composition 8 that was not cured, was uniformly mixed with 10 g of xylene so that the cured film thickness was 200 μm. The test plate was then spray-coated. After a certain time (30 minutes, 60 minutes, 90 minutes) from coating, a cutter was used to make a cut that reached the anticorrosive paint on the coating surface, and the coating adhesion was evaluated by rubbing the cut with a finger in a perpendicular direction. The case where the coating did not peel off was evaluated as ○, and the case where the coating peeled off was evaluated as ×.
The test results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 なお、これまで本発明を上記に示した実施形態をもって説明してきたが、本発明は上記実施形態に限定されるものではなく、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれるものである。 Although the present invention has been described using the embodiments shown above, the present invention is not limited to the above embodiments and can be modified within the scope of what a person skilled in the art can conceive, and any embodiment is within the scope of the present invention as long as it achieves the effects of the present invention.
 本発明の室温硬化性オルガノポリシロキサン組成物は、環境面を重視した、有機錫化合物を含有せず、硬化時にメチルエチルケトオキシム(MEKO)を発生しない組成物である。また、速硬化性に優れ、得られた塗膜は、塗膜強度、塗膜硬度、ゴム物性、耐水性、耐湿性を有することから、船底塗料、発電所海水導入管用塗料、魚網塗料等の耐水性が必要なコーティング材料、LCDやPDP等の耐湿性が必要な防湿コーティング材料、電線と樹脂被覆間の接着シール、樹脂ケース、又は樹脂コネクタと電線の間の接着シール、減圧又は加圧チャンバーの接着シール等の用途に対する適合性が高く、とりわけ、船底塗料、発電所海水導入管用塗料、魚網塗料等として、これらの表面への水生生物の付着・生育を防止することができる。 The room temperature curable organopolysiloxane composition of the present invention is an environmentally friendly composition that does not contain organotin compounds and does not generate methyl ethyl ketoxime (MEKO) during curing. In addition, it has excellent fast curing properties, and the resulting coating film has coating film strength, coating film hardness, rubber properties, water resistance, and moisture resistance, making it highly suitable for applications such as coating materials that require water resistance, such as ship bottom paints, paints for seawater inlet pipes to power plants, and paints for fishing nets, moisture-proof coating materials that require moisture resistance, such as LCDs and PDPs, adhesive seals between electric wires and resin coatings, adhesive seals between resin cases or resin connectors and electric wires, and adhesive seals for reduced pressure or pressurized chambers. In particular, it can be used as a ship bottom paint, paint for seawater inlet pipes to power plants, paint for fishing nets, etc. to prevent the attachment and growth of aquatic organisms on the surfaces of these materials.

Claims (9)

  1.  下記(A)~(D)成分を含有する室温硬化性オルガノポリシロキサン組成物。
    (A)下記一般式(1)で示される25℃における粘度μ(A)が100~100,000mPa・sのオルガノポリシロキサン:100質量部、
      HO-(SiR1 2O)a-H     (1)
    (式中、R1は炭素数1~10の非置換又は置換の一価炭化水素基であり、各R1は互いに同一であっても異種の基であってもよい。aは50以上の整数である。)
    (B)下記一般式(2)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:1~40質量部、
    Figure JPOXMLDOC01-appb-C000001
    (式中、R2は炭素数1~10の一価炭化水素基であり、nは1~8の整数であり、mは3又は4である。)
    (C)硬化触媒(但し、有機錫化合物を除く):0.001~10質量部、及び
    (D)ブリードオイル:0.01~100質量部。
    A room-temperature curable organopolysiloxane composition comprising the following components (A) to (D):
    (A) 100 parts by mass of an organopolysiloxane having a viscosity μ (A) at 25° C. of 100 to 100,000 mPa·s, which is represented by the following general formula (1):
    HO-(SiR 1 2 O) a -H (1)
    (In the formula, R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and each R 1 may be the same or different. a is an integer of 50 or more.)
    (B) a hydrolyzable organosilane compound represented by the following general formula (2) and/or a partial hydrolysis condensate thereof: 1 to 40 parts by mass,
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R2 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, n is an integer from 1 to 8, and m is 3 or 4.)
    (C) a curing catalyst (excluding organotin compounds): 0.001 to 10 parts by mass, and (D) a bleed oil: 0.01 to 100 parts by mass.
  2.  (B)成分の加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物が、加水分解によって環状ケトン化合物を脱離するものである請求項1に記載の室温硬化性オルガノポリシロキサン組成物。 The room-temperature curable organopolysiloxane composition according to claim 1, wherein the hydrolyzable organosilane compound and/or its partial hydrolysis condensate of component (B) releases a cyclic ketone compound by hydrolysis.
  3.  脱離する環状ケトン化合物がシクロブタノン又はシクロペンタノンである請求項2に記載の室温硬化性オルガノポリシロキサン組成物。 The room temperature curable organopolysiloxane composition according to claim 2, wherein the cyclic ketone compound that is eliminated is cyclobutanone or cyclopentanone.
  4.  前記(D)成分の25℃における粘度μ(D)が20~30,000mPa・sである請求項1に記載の室温硬化性オルガノポリシロキサン組成物。 2. The room-temperature-curable organopolysiloxane composition according to claim 1, wherein component (D) has a viscosity μ (D) at 25° C. of 20 to 30,000 mPa·s.
  5.  前記(A)成分の25℃における粘度μ(A)に対する(D)成分の25℃における粘度μ(D)の比[μ(D)/μ(A)]が、0.05~1である請求項1に記載の室温硬化性オルガノポリシロキサン組成物。 2. The room-temperature-curable organopolysiloxane composition according to claim 1, wherein the ratio [μ (D)(A) ] of the viscosity μ( A ) of component (A) at 25°C to the viscosity μ(D) of component (D) at 25°C is 0.05 to 1.
  6.  (A)成分100質量部に対して、更に、
    (E)充填剤:1~100質量部、及び
    (F)接着促進剤:0.1~20質量部
    から選ばれる1種以上を含有する請求項1に記載の室温硬化性オルガノポリシロキサン組成物。
    Further, for every 100 parts by mass of the component (A),
    2. The room-temperature-curable organopolysiloxane composition according to claim 1, further comprising one or more selected from the group consisting of (E) a filler: 1 to 100 parts by mass, and (F) an adhesion promoter: 0.1 to 20 parts by mass.
  7.  水中構造物又は船舶のコーティング用である請求項1に記載の室温硬化性オルガノポリシロキサン組成物。 The room temperature curable organopolysiloxane composition according to claim 1, which is used for coating underwater structures or ships.
  8.  請求項1~7のいずれか1項に記載の室温硬化性オルガノポリシロキサン組成物の硬化物でコーティングされた基材。 A substrate coated with a cured product of the room temperature curable organopolysiloxane composition according to any one of claims 1 to 7.
  9.  水中構造物又は船舶である請求項8に記載の基材。 The substrate according to claim 8, which is an underwater structure or a ship.
PCT/JP2024/001769 2023-03-03 2024-01-23 Room-temperature-curable organopolysiloxane composition and base material WO2024185319A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-032607 2023-03-03
JP2023032607 2023-03-03

Publications (1)

Publication Number Publication Date
WO2024185319A1 true WO2024185319A1 (en) 2024-09-12

Family

ID=92674394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/001769 WO2024185319A1 (en) 2023-03-03 2024-01-23 Room-temperature-curable organopolysiloxane composition and base material

Country Status (1)

Country Link
WO (1) WO2024185319A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330688A (en) * 1997-05-27 1998-12-15 General Electric Co <Ge> Sprayable condensation curable silicone fouling removal coating and article coated with the coating
JPH1112541A (en) * 1997-06-16 1999-01-19 General Electric Co <Ge> Anti-fouling coating of condensation curing silicone and article coated with the same
JP2005089560A (en) * 2003-09-16 2005-04-07 Shin Etsu Chem Co Ltd Antifouling condensation-curing organopolysiloxane composition and underwater structure
JP2006160983A (en) * 2004-12-10 2006-06-22 Shin Etsu Chem Co Ltd Antifouling condensation-curing organopolysiloxane composition and underwater structure
WO2022113437A1 (en) * 2020-11-26 2022-06-02 信越化学工業株式会社 Room temperature curable organopolysiloxane composition, article, hydrolyzable organosilane compound and method for producing same
JP2023161342A (en) * 2022-04-25 2023-11-07 信越化学工業株式会社 Room temperature-curable organopolysiloxane composition and article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330688A (en) * 1997-05-27 1998-12-15 General Electric Co <Ge> Sprayable condensation curable silicone fouling removal coating and article coated with the coating
JPH1112541A (en) * 1997-06-16 1999-01-19 General Electric Co <Ge> Anti-fouling coating of condensation curing silicone and article coated with the same
JP2005089560A (en) * 2003-09-16 2005-04-07 Shin Etsu Chem Co Ltd Antifouling condensation-curing organopolysiloxane composition and underwater structure
JP2006160983A (en) * 2004-12-10 2006-06-22 Shin Etsu Chem Co Ltd Antifouling condensation-curing organopolysiloxane composition and underwater structure
WO2022113437A1 (en) * 2020-11-26 2022-06-02 信越化学工業株式会社 Room temperature curable organopolysiloxane composition, article, hydrolyzable organosilane compound and method for producing same
JP2023161342A (en) * 2022-04-25 2023-11-07 信越化学工業株式会社 Room temperature-curable organopolysiloxane composition and article

Similar Documents

Publication Publication Date Title
JP6964728B2 (en) Antifouling paint composition, antifouling coating film, laminated antifouling coating film, base material with antifouling coating film and its manufacturing method, and antifouling method
EP2172523B1 (en) Process for Producing Room Temperature Vulcanizable Organopolysiloxane Composition and Base Material Coated with Composition Obtained by the Production Process
US6451437B1 (en) Curable composition, coating composition, paint, antifouling paint, cured product thereof and method of rendering base material antifouling
EP3608367B1 (en) Room-temperature-curable organopolysiloxane composition and base material
JP2952375B2 (en) Non-toxic antifouling paint composition
JP7037666B2 (en) Antifouling paint composition, antifouling coating film, base material with antifouling coating film and its manufacturing method
CN101568597A (en) Curable composition, antifouling coating composition, antifouling coating film, base with antifouling coating film, and method for preventing fouling on base
EP3456786B1 (en) Room-temperature-curable organopolysiloxane composition, and base coated with cured object obtained from said composition
JP7574861B2 (en) Room temperature curable organopolysiloxane composition and article, hydrolyzable organosilane compound and method for producing same
JP2503986B2 (en) Non-toxic antifouling paint composition
JP6847128B2 (en) Antifouling paint composition, antifouling coating film, base material with antifouling coating film and its manufacturing method, and antifouling method
JP2001181509A (en) Curable composition, coating composition, paint, antifouling paint, cured product thereof, and antifouling method for substrate
JP6487159B2 (en) Antifouling paint composition, antifouling film, method for producing antifouling film and antifouling substrate
WO2024185319A1 (en) Room-temperature-curable organopolysiloxane composition and base material
JP7042111B2 (en) Antifouling paint composition, antifouling coating film, base material with antifouling coating film and its manufacturing method, and method for improving storage stability of antifouling paint composition.
US20250002729A1 (en) Antifouling coating composition
JP2013049747A (en) Room temperature curable organopolysiloxane composition, method for producing the same, and substrate
WO2023204213A1 (en) Antifouling coating composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24766694

Country of ref document: EP

Kind code of ref document: A1