[go: up one dir, main page]

WO2024185136A1 - Antenna device and wireless device - Google Patents

Antenna device and wireless device Download PDF

Info

Publication number
WO2024185136A1
WO2024185136A1 PCT/JP2023/009102 JP2023009102W WO2024185136A1 WO 2024185136 A1 WO2024185136 A1 WO 2024185136A1 JP 2023009102 W JP2023009102 W JP 2023009102W WO 2024185136 A1 WO2024185136 A1 WO 2024185136A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
conductor
antenna device
antenna
power supply
Prior art date
Application number
PCT/JP2023/009102
Other languages
French (fr)
Japanese (ja)
Inventor
良英 高橋
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2023/009102 priority Critical patent/WO2024185136A1/en
Publication of WO2024185136A1 publication Critical patent/WO2024185136A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • This disclosure relates to an antenna device and a wireless device.
  • EIRP equivalent isotropically radiated power
  • Patent Document 1 discloses an antenna structure with a microstrip line.
  • a power feed circuit is formed on the front surface of a printed circuit board, and a ground layer is formed on the back surface of the printed circuit board.
  • a ground layer is formed on the back surface of the printed circuit board.
  • the purpose of this disclosure is to provide an antenna device and a wireless device that enable improved antenna gain at low cost.
  • the antenna device comprises a substrate, a plurality of antenna elements arranged on a first surface of the substrate, a power supply circuit arranged on a second surface, which is the reverse surface of the first surface of the substrate, and a first conductor arranged in a position opposite the power supply circuit, and a gap is formed between the power supply circuit and the first conductor.
  • the antenna device includes a substrate, a plurality of antenna elements arranged on a first surface of the substrate, a power supply circuit arranged on a second surface of the substrate opposite the first surface, which distributes power to the plurality of antenna elements, and a conductor arranged opposite the power supply circuit and functioning as a ground for the power supply circuit, with an air gap formed between the power supply circuit and the conductor.
  • a wireless device in one aspect of the present invention, includes an antenna device and a transceiver, the antenna device including a substrate, a plurality of antenna elements arranged on a first surface of the substrate, a power supply circuit arranged on a second surface of the substrate that is the reverse side of the first surface, and a first conductor arranged in a position opposite the power supply circuit, with a gap formed between the power supply circuit and the first conductor.
  • This disclosure makes it possible to provide an antenna device and a wireless device that can improve antenna gain at low cost.
  • FIG. 1 is a diagram illustrating a configuration of an antenna device according to a first embodiment.
  • 13 is a diagram illustrating a configuration of an antenna device according to a second embodiment.
  • FIG. 11 is a cross-sectional view of an antenna device according to a second embodiment.
  • 13A and 13B are diagrams illustrating an example of dimensions of an antenna device according to a second embodiment.
  • 13 is a diagram illustrating an example of a wireless device having an antenna device according to a second embodiment.
  • 13 is a diagram illustrating a configuration of an antenna device according to a first modified example of the second embodiment.
  • FIG. 13 is a diagram illustrating a configuration of an antenna device according to a second modified example of the second embodiment.
  • FIG. 13 is a diagram illustrating a configuration of an antenna device according to a third embodiment.
  • FIG. FIG. 11 is a cross-sectional view of an antenna device according to a third embodiment.
  • 13A and 13B are diagrams illustrating a first example of arrangement of a support member in the third embodiment.
  • 13A and 13B are diagrams illustrating a second arrangement example of the support member in the third embodiment.
  • 13 is a diagram illustrating an example of a wireless device having an antenna device according to a third embodiment.
  • FIG. 1 is a diagram showing a configuration of an antenna device 1 according to a first embodiment of the present disclosure.
  • the antenna device 1 in this embodiment includes a substrate 10, an antenna element 20, a power supply circuit 30, and a conductor 40.
  • Antenna device 1 is a device that performs transmission processing of radio frequency signals.
  • An electrical wiring pattern is provided on the substrate 10 of the antenna device 1, and a plurality of antenna elements 20 are arranged on one side, the first side, of the substrate 10.
  • the plurality of antenna elements 20 are arranged along the X direction in FIG. 1 (the direction from the back side to the front side of the paper, or the opposite direction).
  • the substrate 10 may be referred to as a printed circuit board.
  • the antenna element 20 of the antenna device 1 is disposed on a first surface, which is one surface of the substrate 10.
  • the antenna element 20 functions as a primary resonator for the transceiver of the antenna device 1 to transmit and receive signals.
  • the power supply circuit 30 of the antenna device 1 is disposed on the second surface, which is the reverse side of the first surface of the substrate 10.
  • the power supply circuit 30 is a circuit that supplies power to the multiple antenna elements 20.
  • the conductor 40 of the antenna device 1 serves as the first conductor and is disposed in a position opposite the power supply circuit 30.
  • the conductor 40 functions as the ground of the power supply circuit 30.
  • a gap 50 is formed between the power supply circuit 30 and the conductor 40.
  • the gap 50 is, for example, an air layer.
  • the antenna device 1 of this embodiment By having the structure shown in FIG. 1, in the antenna device 1 of this embodiment, electromagnetic waves propagate through the gap 50 formed between the substrate 10 and the conductor 40. On the other hand, as described above, in a typical microstrip line, electromagnetic waves propagate through a printed circuit board. Here, the air present in the gap has a lower relative dielectric constant than the printed circuit board. Therefore, the antenna device 1 of this embodiment can reduce dielectric loss during power supply compared to an antenna device having a typical microstrip line.
  • the following effect is obtained by the electromagnetic waves propagating through the gap 50. That is, in the antenna device 1 of this embodiment, it is not necessary to use a printed circuit board with a low dielectric constant and low dielectric tangent, which is generally considered to be expensive, and a versatile, low-cost board can be used.
  • the antenna device 1 in this embodiment makes it possible to improve antenna gain at low cost.
  • FIG. 2 is a diagram showing the configuration of the antenna device 2 in this embodiment.
  • the antenna device 2 in this embodiment is an array antenna device including a substrate 10, a plurality of antenna elements 21, a power supply circuit 30, a conductor 41, an antenna element power supply section 60, a radome 70, a radome connection section 80, an antenna element 22, and a bandpass filter 90.
  • Antenna device 2 is a device that performs transmission processing of radio frequency signals.
  • An electrical wiring pattern is provided on the substrate 10 of the antenna device 2, and a plurality of antenna elements 21 are arranged on a first surface, which is one side of the substrate 10.
  • the plurality of antenna elements 21 are arranged along the X direction in FIG. 2.
  • the substrate 10 may be referred to as a printed circuit board.
  • the substrate 10 may be, for example, a general-purpose glass epoxy substrate, but is not limited to this.
  • the antenna element 21 of the antenna device 2 is disposed on a first surface, which is one side of the substrate 10.
  • the first surface is the direction of radio wave emission from the antenna element 21, and may be referred to as the front surface or upper surface.
  • the second surface of the substrate 10, which is opposite to the first surface, may be referred to as the back surface or lower surface.
  • the antenna element 21 functions as a primary resonator for transmitting and receiving signals by the transceiver 100, which will be described later.
  • the multiple antenna elements 21 are disposed on the first surface of the substrate 10 at a predetermined distance apart.
  • the antenna element 21 may be, for example, a patch antenna or a dipole antenna, but is not limited to these.
  • the antenna device 2 emits radio waves from the antenna element 22 in the Z direction in FIG. 2 (the direction in which the first surface of the substrate 10 is oriented) due to dual resonance between the antenna element 21 and the antenna element 22 described below, making it possible to transmit and receive signals to and from a communication device in that direction.
  • the power supply circuit 30 of the antenna device 2 is disposed on the second surface, which is the reverse side of the first surface of the substrate 10.
  • the power supply circuit 30 is a circuit that supplies power to the multiple antenna elements 21.
  • the power supply circuit 30 is disposed along the multiple antenna elements 21.
  • the power supply circuit 30 distributes power to the multiple antenna elements 21.
  • the power supply circuit 30 is electrically connected to an antenna element power supply unit 60, which will be described later.
  • the power supply circuit 30 is connected to a connector 130, which will be described later. In FIG. 2, the power supply circuit 30 is connected to the connector 130 on the second surface side of the substrate 10, passes through the first surface side of the substrate 10, and is again formed on the second surface side of the substrate 10.
  • the power supply circuit 30 may be connected to the connector 130 on the second surface side of the substrate 10, and may be formed only on the second surface side without passing through the first surface side of the substrate 10.
  • the connector 130 may be a coaxial connector, but is not limited thereto.
  • the conductor 41 of the antenna device 2 serves as a first conductor and is disposed in a position facing the power supply circuit 30.
  • the conductor 41 functions as a ground for the power supply circuit 30.
  • a portion of the conductor 41 is adjacent to the substrate 10.
  • the material of the conductor 41 may be, for example, a metal, but is not limited to this.
  • the conductor 41 may be formed in combination with an insulator as long as at least the surface is a conductor.
  • the conductor 41 may be formed by covering the surface of an insulating material such as plastic or resin with a conductor such as metal plating.
  • a gap 51 is formed between the power supply circuit 30 and the conductor 41.
  • the gap 51 is, for example, an air layer. The positional relationship between the power supply circuit 30, the conductor 41, and the gap 51 will be described in detail with reference to FIG. 3.
  • FIG. 3 is a cross-sectional view of the antenna device 2 of this embodiment. Specifically, FIG. 3 is a cross-sectional view of the antenna device 2 of this embodiment shown in FIG. 2 at the dotted line portion (a).
  • the void 51 is formed along the power supply circuit 30. Electromagnetic waves generated from the power supply circuit 30 propagate through the void 51.
  • the void 51 may be formed in a rectangular parallelepiped shape as shown in FIG. 3, but is not limited to this.
  • the void 51 is further formed so as to be surrounded by the substrate 10 and the conductor 41.
  • the void 51 may be formed by cutting a part of the rectangular parallelepiped conductor 41 and placing it adjacent to the substrate 10. Alternatively, the void 51 may be formed by placing the conductor 41 cast in a U-shape adjacent to the substrate 10.
  • the shape of the conductor 41 that forms the void 51 and the method of creating that shape are not limited to the above.
  • the size of the gap 51 may be determined by the characteristic impedance, but is not limited to this.
  • the size of the gap 51 may be determined by the characteristic impedance of the connector 130, for example.
  • the characteristic impedance of the connector 130 may be 50 ⁇ .
  • Components that affect the characteristic impedance include the width of the power supply circuit 30 and the distance from the second surface of the substrate 10 to the surface of the conductor 41 that faces the second surface of the substrate 10. In other words, components that affect the characteristic impedance include the Y-direction dimension of the power supply circuit 30 in FIG. 3 and the Z-direction dimension of the gap 51 in FIG. 3.
  • the distance between the side surfaces of the conductor 41 adjacent to the gap 51 (the Y-direction dimension of the gap 51), indicated by the bidirectional arrow in FIG. 3, as long as possible. This is because the distance between the side surfaces of the conductor 41 adjacent to the gap 51 affects the characteristic impedance if it is shorter than a certain value.
  • FIG. 4 is a diagram showing an example of dimensions in the cross section of the antenna device 2 of this embodiment shown in FIG. 3.
  • the example dimensions of the antenna device 2 shown in FIG. 4 are an example of design and are not limited thereto.
  • the distance from the second surface of the substrate 10 to the surface of the conductor 41 facing the second surface of the substrate 10 may be, for example, 0.5 mm.
  • the width of the power supply circuit 30 (the dimension in the Y direction of the power supply circuit 30 in FIG. 4) may be, for example, 2.0 mm.
  • the distance between the side surfaces of the conductor 41 adjacent to the gap 51 (the dimension in the Y direction of the gap 51 in FIG. 4) may be, for example, 8.0 mm or more.
  • the thickness of the substrate 10 (the dimension in the Z direction of the substrate 10 in FIG. 4) may be 1.0 mm.
  • the thickness of the conductor 41 may be 1.5 mm.
  • the distance between one end of the power supply circuit 30 and the side of the conductor 41 adjacent to the gap 51 (the dimension in the Y direction between one end of the power supply circuit 30 and one end of the gap 51 in FIG. 4) may be 3.0 mm.
  • the antenna element power supply section 60 of the antenna device 2 connects the power supply circuit 30 arranged on the second surface of the substrate 10 to the antenna element 21.
  • the antenna element power supply section 60 may be a through hole formed in the substrate 10, but is not limited to this.
  • the radome 70 of the antenna device 2 is disposed opposite to the first surface of the substrate 10 and covers the first surface.
  • the radome 70 is connected to the substrate 10 via a radome connection part 80 described later.
  • the radome 70 has a function of protecting the first surface of the substrate 10 and the antenna element 21.
  • the radome 70 has a function of dissipating heat generated in the antenna device 2 or in a radio connected to the antenna device 2 to the outside.
  • the main heat source of the heat generated in the antenna device 2 or in a radio connected to the antenna device 2 is, for example, a transceiver 100 described later.
  • the transceiver 100 is thermally connected to the conductor 41 via a bandpass filter 90 described later.
  • the heat from the transceiver 100 propagates through the conductor 41 and is transferred to the radome 70.
  • the heat source and the conductor 41 may be adjacent and directly connected. Also, the heat source and the conductor 41 may be connected via another component, and the heat from the heat source may be transferred to the conductor 41 via the other component.
  • the other part may be a metal part, but is not limited to this.
  • the material of the radome 70 may be, for example, a resin, or a metal having high thermal conductivity, such as aluminum, silver, or copper.
  • the radome 70 may be, for example, made of the same material as the conductor 41.
  • the radome 70 may be thermally connected to the conductor 41. However, the material of the radome 70 is not limited to the above.
  • the radome connection part 80 of the antenna device 2 connects the substrate 10 and the radome 70.
  • the radome 70 and the radome connection part 80 serve as the second conductor.
  • the radome connection part 80 is fixed to the conductor 41 and the substrate 10 by the fastening part 140.
  • the fastening part 140 may be, for example, a screw, but is not limited to this.
  • the antenna element 22 of the antenna device is disposed on the radome 70.
  • the multiple antenna elements 22 are arranged along the X direction in FIG. 2.
  • the multiple antenna elements 22 are disposed on the radome 70 at a predetermined distance apart.
  • the antenna element 22 is disposed in a position facing the antenna element 21.
  • the antenna element 22 may be, for example, a slot antenna, but is not limited to this.
  • the antenna element 22 couples and resonates with the antenna element 21.
  • the bandpass filter 90 of the antenna device 2 is connected to the power supply circuit 30 via the connector 130.
  • the bandpass filter 90 is also connected to the conductor 41.
  • the antenna device 2 of this embodiment has the structure shown in Figures 2 and 3, and thus has the same effect as the first embodiment. Furthermore, the antenna device 2 of this embodiment can adjust and maintain the size of the gap by using the shape of the conductor 41. Therefore, compared to the antenna device 3 of the third embodiment described below, it is possible to maintain a higher dimensional accuracy of the gap. This makes it possible to maintain a reduction in dielectric loss during power supply.
  • the antenna device 2 in this embodiment may be mounted on a wireless device.
  • An example of a wireless device 5 having the antenna device 2 in this embodiment is shown in FIG. 5.
  • the wireless device 5 shown in FIG. 5 is a device that performs wireless communication, and includes the antenna device 2 in this embodiment and a transceiver 100.
  • the transceiver 100 is a mechanism for the antenna device 2 to transmit and receive signals.
  • the transceiver 100 may be disposed adjacent to the bandpass filter 90.
  • the transceiver 100 may also be referred to as a transceiver, an RF (Radio Frequency) circuit, or an amplifier.
  • the radome 70 and antenna element 22 of the antenna device 2 are located on the surface of the wireless device 5. As shown in FIG. 5, the radome 70 of the antenna device 2 may be extended to cover the surface of the wireless device 5.
  • the wireless device 5 shown in FIG. 5 is, for example, a base station device.
  • the base station device may be, for example, a Node B, an e-Node B, a g-Node B, a Home Node B, or a Home e-Node B.
  • a base station device equipped with the antenna device 2 of this embodiment can increase the equivalent isotropic radiated power compared to a base station device equipped with a conventional antenna device.
  • the wireless device 5 equipped with the antenna device 2 of this embodiment is not limited to a base station device, and may be other wireless devices that perform wireless communication.
  • the heat transfer path from the heat source to the radome includes the substrate, which reduces the heat transfer efficiency.
  • the heat transfer path from the heat source to the radome 70 is the heat source, conductor 41, fastening part 140, radome connection part 80, and radome 70. Therefore, by forming the conductor 41, fastening part 140, and radome connection part 80 from a material with high thermal conductivity, the heat dissipation effect can be improved.
  • the conductor 41 of the antenna device 2 and the radome connecting portion 80 are thermally connected by using the fastening portion 140.
  • a hole may be formed in the substrate 10 and the conductor 41 and the radome connecting portion 80 may be directly connected to each other.
  • a conductor connection portion 110 is disposed on a part of the substrate 10.
  • the conductor connection portion 110 is disposed on a portion of the substrate 10 that contacts the conductor 41 and the radome connection portion 80.
  • the conductor connection portion 110 may also be a protrusion formed on the radome connection portion 80 or the conductor 41.
  • it may be a protrusion provided on the surface of the radome connection portion 80 adjacent to the substrate 10. The protrusion may protrude from the radome connection portion 80 in the opposite direction to the Z-direction arrow in FIG. 6.
  • the conductor connection portion 110 may be a protrusion provided on the surface of the conductor 41 adjacent to the substrate 10.
  • the protrusion may protrude from the conductor connection portion 110 in the same direction as the Z-direction arrow in FIG. 6.
  • the conductor 41 and the radome connection portion 80 may be directly connected by drilling a hole in the portion of the substrate 10 that contacts the conductor 41 and the radome connection portion 80 and fitting a protrusion into the hole.
  • a hole may be formed in the substrate 10, the conductor 41 or the radome connection part 80 may be inserted into the hole, and the conductor 41 and the radome connection part 80 may be directly connected.
  • the radome 70, the radome connection part 80, and the conductor connection part 110 are preferably made of a material with high thermal conductivity.
  • the radome 70, the radome connection part 80, and the conductor connection part 110 may be made of a conductor such as a metal.
  • the conductor 41 of the antenna device 2 and the radome connecting portion 80 are thermally connected by using the fastening portion 140.
  • the conductor 41 and the radome connecting portion 80 may be thermally connected by providing a through hole 150 in a part of the substrate 10.
  • FIG. 7 is an enlarged view showing the configuration of the antenna device 2 in the second modified example of this embodiment.
  • a plurality of through holes 150 are formed in the substrate 10.
  • the through holes 150 are formed in a portion of the substrate 10 that contacts the conductor 41 and the radome connection portion 80. That is, the conductor 41 and the radome connection portion 80 are connected via the through holes 150 formed in the substrate 10.
  • the conductor 41 and the radome connection portion 80 are connected in the Z direction in FIG. 7 via the through holes 150.
  • the radome 70 and the radome connection portion 80 are preferably formed of a material with high thermal conductivity.
  • the radome 70 and the radome connection portion 80 may be formed of a conductor such as a metal.
  • FIG. 8 is a diagram showing the configuration of the antenna device 3 in this embodiment.
  • the antenna device 3 in this embodiment includes a substrate 10, an antenna element 21, a power supply circuit 30, a conductor 42, a support member 120, an antenna element power supply section 60, a radome 70, a radome connection section 80, an antenna element 22, and a bandpass filter 90.
  • the conductor 42 of the antenna device 3 is disposed in a position facing the power supply circuit 30 on the second surface of the substrate 10.
  • the conductor 42 functions as a ground for the power supply circuit 30.
  • the material of the conductor 42 may be, for example, a metal, but is not limited to this.
  • the conductor 42 is adjacent to the support member 120 described below.
  • the support member 120 of the antenna device 3 is disposed between the conductor 42 and the substrate 10.
  • the support member 120 has a function of maintaining the gap 52 between the conductor 42 and the substrate 10 at a predetermined dimension.
  • the material of the support member 120 may be, for example, a metal, but is not limited to this.
  • the support member 120 may also be referred to as a spacer.
  • the shape of the support member 120 may be, for example, a rectangular parallelepiped, but is not limited to this.
  • a gap 52 is formed between the power supply circuit 30, the conductor 42, and the support member 120.
  • the gap 52 is, for example, an air layer. The positional relationship between the power supply circuit 30, the conductor 42, the support member 120, and the gap 52 will be described in detail with reference to FIG. 9.
  • FIG. 9 is a cross-sectional view of the antenna device 3 of this embodiment.
  • FIG. 9 is a cross-sectional view of the antenna device 3 of this embodiment shown in FIG. 8 at the dotted line portion (b).
  • the void 52 is formed along the power supply circuit 30. Electromagnetic waves generated from the power supply circuit 30 propagate through the void 52.
  • the void 52 may be formed in a rectangular parallelepiped shape as shown in FIG. 9, but is not limited to this.
  • the void 52 is further formed so as to be surrounded by the substrate 10, the conductor 42, and the support member 120.
  • the size of the gap 52 may be determined by the characteristic impedance, but is not limited to this.
  • the size of the gap 52 may be determined by, for example, the characteristic impedance of the connector 130.
  • the characteristic impedance of the connector 130 may be 50 ⁇ .
  • Components that affect the characteristic impedance include the width of the power supply circuit 30 and the distance from the second surface of the substrate 10 to the surface of the conductor 42 facing the second surface of the substrate 10. In other words, components that affect the characteristic impedance include the Y-direction dimension of the power supply circuit 30 in FIG. 9 and the Z-direction dimension of the gap 52 in FIG. 3.
  • the distance from the second surface of the substrate 10 to the surface of the conductor 42 facing the second surface of the substrate 10 may be, for example, 0.5 mm.
  • the distance between the sides of the support member 120 adjacent to the gap 52 may be, for example, 8.0 mm or more.
  • FIG. 10 is an example of the arrangement of the support members 120 in this embodiment.
  • the support members 120 may be arranged in a plurality of locations along the outer periphery of the substrate 10.
  • the support members 120 may be arranged at regular intervals. When the support members 120 are arranged sparsely as in FIG. 10, the number of support members 120 used is small, and therefore costs can be reduced.
  • the support members 120 may be arranged densely along the outer periphery of the substrate 10.
  • FIG. 11 is also an example of the arrangement of the support members 120 in this embodiment. As shown in FIG. 11, the support members 120 may be arranged in a plurality of locations along the power supply circuit 30. When the support members 120 are arranged densely as in FIG.
  • the dimensions of the gaps 52 are likely to be kept constant.
  • the heat dissipation efficiency is higher than when the support members 120 are arranged sparsely.
  • the support members 120 may be arranged sparsely along the power supply circuit 30.
  • the antenna device 3 of this embodiment has the same effects as the second embodiment by having the structure shown in Figures 8 to 11. Moreover, the antenna device 3 of this embodiment is easier to design so that the mass of the conductor is smaller than that of the antenna device 2 of the second embodiment, so that it is possible to achieve low cost and low mass. Moreover, the antenna device 3 in this embodiment may be mounted on a wireless device, similar to the antenna device 2 in the second embodiment.
  • An example of a wireless device 6 having the antenna device 3 in this embodiment is shown in Fig. 12.
  • the wireless device 6 shown in Fig. 12 is a device that performs wireless communication, and has the antenna device 3 in this embodiment and a transceiver 100.
  • the transceiver 100 may be the same as the transceiver included in the wireless device 6 shown in Fig. 5.
  • the radome 70 and antenna element 22 of the antenna device 3 are located on the surface of the wireless device 6. Note that, as shown in Fig. 12, the radome 70 of the antenna device 3 may be extended to cover the surface of the wireless device 6.
  • the wireless device 6 shown in FIG. 12 is, for example, a base station device.
  • the base station device may be, for example, a Node B, an e-Node B, a g-Node B, a Home Node B, or a Home e-Node B.
  • a base station device equipped with the antenna device 3 of this embodiment can increase the equivalent isotropic radiated power compared to a base station device equipped with a conventional antenna device. In addition, it can achieve lower costs and lower mass compared to a base station device equipped with the antenna device 2 of the second embodiment.
  • the wireless device 6 equipped with the antenna device 3 of this embodiment is not limited to a base station device, and may be other wireless devices that perform wireless communication.
  • (Appendix 1) A substrate; a plurality of antenna elements disposed on a first surface of the substrate; a power supply circuit disposed on a second surface of the substrate, the second surface being a surface opposite to the first surface; a first conductor disposed at a position facing the power supply circuit; an air gap is formed between the power supply circuit and the first conductor; Antenna device. (Appendix 2) The gap is formed along the power supply circuit. 2. The antenna device of claim 1. (Appendix 3) a portion of the first conductor adjacent to the substrate; The gap is formed so as to be surrounded by the substrate and the first conductor. 3. The antenna device according to claim 2.
  • (Appendix 4) a support member disposed between the first conductor and the substrate; the gap is formed by the substrate, the first conductor, and the support member.
  • the antenna device of claim 1. (Appendix 5) The member is arranged in plurality along the outer periphery of the substrate. 5.
  • the antenna device according to claim 4. (Appendix 6) The member is arranged in plurality along the power supply circuit. 5.
  • the antenna device according to claim 4. (Appendix 7) an antenna element feeding section that connects the plurality of antenna elements and the feeding circuit; 7.
  • the antenna device of claim 8. (Appendix 10) the first conductor and the connection portion are connected via a through hole formed in the substrate, the radome and the connection portion are a second conductor; 9.
  • the antenna device of claim 8. (Appendix 11)
  • the antenna element feed portion is a through hole formed in the substrate. 8.
  • the plurality of antenna elements include patch antennas; 5.
  • the plurality of antenna elements include a dipole antenna; 5.
  • the antenna device according to claim 3 or 4. The antenna device is an array antenna device. 5.
  • the antenna device according to claim 3 or 4. (Appendix 15)
  • the substrate includes a glass epoxy substrate. 5.
  • the antenna device according to claim 3 or 4. (Appendix 16) the first conductor is a metal; 5.
  • the antenna device according to claim 3 or 4. (Appendix 17) the second conductor is a metal; 11.
  • a substrate A substrate; a plurality of antenna elements disposed on a first surface of the substrate; a power supply circuit disposed on a second surface of the substrate, the second surface being a surface opposite to the first surface, and configured to distribute power to the plurality of antenna elements; a conductor that is disposed in a position facing the power supply circuit and functions as a ground of the power supply circuit; An air gap is formed between the power supply circuit and the conductor.
  • Antenna device A substrate; a plurality of antenna elements disposed on a first surface of the substrate; a power supply circuit disposed on a second surface of the substrate, the second surface being a surface opposite to the first surface, and configured to distribute power to the plurality of antenna elements; a conductor that is disposed in a position facing the power supply circuit and functions as a ground of the power supply circuit; An air gap is formed between the power supply circuit and the conductor.
  • a substrate A substrate; a plurality of antenna elements disposed on a first surface of the substrate; a power supply circuit disposed on a second surface of the substrate, the second surface being a surface opposite to the first surface; a first conductor disposed at a position facing the power supply circuit; an air gap is formed between the power supply circuit and the first conductor; An antenna device; A transceiver; Wireless device.

Landscapes

  • Details Of Aerials (AREA)

Abstract

[Problem] To achieve cost reduction and gain enhancement for antennas. [Solution] An antenna device of the present disclosure comprises: a substrate; a plurality of antenna elements that are disposed on a first surface of the substrate; a power-feeding circuit that is disposed on a second surface of the substrate that is the reverse side of the first surface; and a first conductor that is disposed to a position facing the power-feeding circuit. A void is formed between the power-feeding circuit and the first conductor.

Description

アンテナ装置及び無線装置Antenna device and radio device
 本開示は、アンテナ装置及び無線装置に関する。 This disclosure relates to an antenna device and a wireless device.
 5G向け基地局装置において、等価等方放射電力(EIRP:Equivalent Isotropically Radiated Power)の増加および消費電力減少が求められている。EIRP増加のためには、無線機の送信電力を大きくするか、もしくはアンテナ利得を向上する必要がある。しかし、無線機の送信電力を大きくすることは、基地局装置の消費電力の増大につながってしまう。従ってEIRP増加のためには、アンテナ利得を向上することが望ましい。 In 5G base station equipment, there is a demand for an increase in equivalent isotropically radiated power (EIRP) and a decrease in power consumption. In order to increase EIRP, it is necessary to increase the transmission power of the radio equipment or improve the antenna gain. However, increasing the transmission power of the radio equipment leads to an increase in the power consumption of the base station equipment. Therefore, in order to increase EIRP, it is desirable to improve the antenna gain.
国際公開第2022/176285号International Publication No. 2022/176285
 ここで、アンテナ素子を多数配列するアレーアンテナ装置において、同一アンテナ面積でアンテナ利得を向上させるためには、給電回路で発生する電力損失を小さくすることが重要である。給電回路とは、アレーアンテナ装置において無線回路部から給電された電力を各素子に分配する回路のことである。特許文献1には、マイクロストリップ線路を備えるアンテナ構造が開示されている。一般的にマイクロストリップ線路は、プリント基板の表面に給電回路が形成され、プリント基板の裏面にグランド層が形成されている。この場合、電磁波がプリント基板内を伝搬するため、誘電体損が発生し、アンテナ利得が低下してしまう。そのため、マイクロストリップ線路を備えるアンテナ構造においてアンテナ利得を向上させるためには、例えば、低誘電率および低誘電正接のプリント基板を使用することが考えられる。 Here, in an array antenna device in which many antenna elements are arranged, in order to improve the antenna gain with the same antenna area, it is important to reduce the power loss that occurs in the power feed circuit. The power feed circuit is a circuit that distributes the power fed from the radio circuit section to each element in the array antenna device. Patent Document 1 discloses an antenna structure with a microstrip line. Generally, in a microstrip line, a power feed circuit is formed on the front surface of a printed circuit board, and a ground layer is formed on the back surface of the printed circuit board. In this case, since electromagnetic waves propagate inside the printed circuit board, dielectric loss occurs and the antenna gain decreases. Therefore, in order to improve the antenna gain in an antenna structure with a microstrip line, it is possible to use, for example, a printed circuit board with a low dielectric constant and low dielectric loss tangent.
 しかし、低誘電率および低誘電正接のプリント基板は一般的に高コストである。そこで、より低コストで、アンテナ利得を向上させることができる構造が求められている。 However, printed circuit boards with low dielectric constants and low dielectric tangents are generally expensive. Therefore, there is a demand for a structure that can improve antenna gain at a lower cost.
 本開示の目的は、上述した課題を鑑み、低コストでアンテナ利得の向上を可能とするアンテナ装置及び無線装置を提供することにある。 In consideration of the above-mentioned problems, the purpose of this disclosure is to provide an antenna device and a wireless device that enable improved antenna gain at low cost.
 本発明の一態様におけるアンテナ装置は、基板と、前記基板の第1面に配置された複数のアンテナ素子と、前記基板の第1面の裏面である第2面に配置された給電回路と、前記給電回路に対向する位置に配置された第1の導体と、を備え、前記給電回路と前記第1の導体との間には空隙が形成されている。 In one aspect of the present invention, the antenna device comprises a substrate, a plurality of antenna elements arranged on a first surface of the substrate, a power supply circuit arranged on a second surface, which is the reverse surface of the first surface of the substrate, and a first conductor arranged in a position opposite the power supply circuit, and a gap is formed between the power supply circuit and the first conductor.
 本発明の一態様におけるアンテナ装置は、基板と、前記基板の第1面に配置された複数のアンテナ素子と、前記基板の前記第1面の裏面である第2面に配置され、前記複数のアンテナ素子に電力を分配する給電回路と、前記給電回路に対向する位置に配置され、前記給電回路のグランドとして機能する導体と、を備え、前記給電回路と前記導体との間には空隙が形成されている。 In one aspect of the present invention, the antenna device includes a substrate, a plurality of antenna elements arranged on a first surface of the substrate, a power supply circuit arranged on a second surface of the substrate opposite the first surface, which distributes power to the plurality of antenna elements, and a conductor arranged opposite the power supply circuit and functioning as a ground for the power supply circuit, with an air gap formed between the power supply circuit and the conductor.
 本発明の一態様における無線装置は、基板と、前記基板の第1面に配置された複数のアンテナ素子と、前記基板の前記第1面の裏面である第2面に配置された給電回路と、前記給電回路に対向する位置に配置された第1の導体と、を備え、前記給電回路と前記第1の導体との間には空隙が形成されている、アンテナ装置と、送受信機と、を備える。 In one aspect of the present invention, a wireless device includes an antenna device and a transceiver, the antenna device including a substrate, a plurality of antenna elements arranged on a first surface of the substrate, a power supply circuit arranged on a second surface of the substrate that is the reverse side of the first surface, and a first conductor arranged in a position opposite the power supply circuit, with a gap formed between the power supply circuit and the first conductor.
 本開示によれば、低コストでアンテナ利得の向上を可能とするアンテナ装置及び無線装置を提供できる。 This disclosure makes it possible to provide an antenna device and a wireless device that can improve antenna gain at low cost.
第1実施形態におけるアンテナ装置の構成を示す図である。1 is a diagram illustrating a configuration of an antenna device according to a first embodiment. 第2実施形態におけるアンテナ装置の構成を示す図である。13 is a diagram illustrating a configuration of an antenna device according to a second embodiment. 第2実施形態におけるアンテナ装置の断面図である。FIG. 11 is a cross-sectional view of an antenna device according to a second embodiment. 第2実施形態におけるアンテナ装置の寸法例を示す図である。13A and 13B are diagrams illustrating an example of dimensions of an antenna device according to a second embodiment. 第2実施形態におけるアンテナ装置を有する無線装置の例を示す図である。13 is a diagram illustrating an example of a wireless device having an antenna device according to a second embodiment. 第2実施形態の変形例1におけるアンテナ装置の構成を示す図である。13 is a diagram illustrating a configuration of an antenna device according to a first modified example of the second embodiment. FIG. 第2実施形態の変形例2におけるアンテナ装置の構成を示す図である。13 is a diagram illustrating a configuration of an antenna device according to a second modified example of the second embodiment. FIG. 第3実施形態におけるアンテナ装置の構成を示す図である。13 is a diagram illustrating a configuration of an antenna device according to a third embodiment. FIG. 第3実施形態におけるアンテナ装置の断面図である。FIG. 11 is a cross-sectional view of an antenna device according to a third embodiment. 第3実施形態における支持部材の配置例1を示す図である。13A and 13B are diagrams illustrating a first example of arrangement of a support member in the third embodiment. 第3実施形態における支持部材の配置例2を示す図である。13A and 13B are diagrams illustrating a second arrangement example of the support member in the third embodiment. 第3実施形態におけるアンテナ装置を有する無線装置の例を示す図である。13 is a diagram illustrating an example of a wireless device having an antenna device according to a third embodiment.
 次に、本発明を実施するための形態について図面を参照して詳細に説明する。なお、各図面および明細書記載の各実施の形態において、同様の機能を備える構成要素には同様の符号が与えられている。 Next, the embodiments for implementing the present invention will be described in detail with reference to the drawings. Note that in each drawing and each embodiment described in the specification, components having similar functions are given similar reference numerals.
<第1実施形態>
 図1は、本開示の第1実施形態におけるアンテナ装置1の構成を示す図である。
First Embodiment
FIG. 1 is a diagram showing a configuration of an antenna device 1 according to a first embodiment of the present disclosure.
 図1を参照すると、本実施形態におけるアンテナ装置1は、基板10と、アンテナ素子20と、給電回路30と、導体40とを備える。 Referring to FIG. 1, the antenna device 1 in this embodiment includes a substrate 10, an antenna element 20, a power supply circuit 30, and a conductor 40.
 アンテナ装置1は、無線周波数の信号の伝送処理を行う装置である。 Antenna device 1 is a device that performs transmission processing of radio frequency signals.
 アンテナ装置1の基板10には、電気配線パターンが設けられており、基板10の片面である第1面に、複数のアンテナ素子20が配置されている。なお、複数のアンテナ素子20は、図1におけるX方向(紙面奥側から手前側に向かう方向又はその逆方向)に沿って設けられている。基板10は、プリント基板と称されてもよい。 An electrical wiring pattern is provided on the substrate 10 of the antenna device 1, and a plurality of antenna elements 20 are arranged on one side, the first side, of the substrate 10. The plurality of antenna elements 20 are arranged along the X direction in FIG. 1 (the direction from the back side to the front side of the paper, or the opposite direction). The substrate 10 may be referred to as a printed circuit board.
 アンテナ装置1のアンテナ素子20は、基板10の片面である第1面に配置されている。アンテナ素子20は、アンテナ装置1の送受信機が信号を送受信するための1次共振器として機能する。 The antenna element 20 of the antenna device 1 is disposed on a first surface, which is one surface of the substrate 10. The antenna element 20 functions as a primary resonator for the transceiver of the antenna device 1 to transmit and receive signals.
 アンテナ装置1の給電回路30は、基板10の第1面の裏面である第2面に配置されている。給電回路30は、電力を複数のアンテナ素子20に給電する回路である。 The power supply circuit 30 of the antenna device 1 is disposed on the second surface, which is the reverse side of the first surface of the substrate 10. The power supply circuit 30 is a circuit that supplies power to the multiple antenna elements 20.
 アンテナ装置1の導体40は、第1の導体を担い、給電回路30に対向する位置に配置されている。導体40は、給電回路30のグランドとして機能する。 The conductor 40 of the antenna device 1 serves as the first conductor and is disposed in a position opposite the power supply circuit 30. The conductor 40 functions as the ground of the power supply circuit 30.
 更に、給電回路30と導体40との間には、空隙50が形成されている。空隙50は例えば、空気層である。 Furthermore, a gap 50 is formed between the power supply circuit 30 and the conductor 40. The gap 50 is, for example, an air layer.
 図1に示す構造を有することにより、本実施形態のアンテナ装置1においては、電磁波が基板10と導体40との間に形成された空隙50内を伝搬する。一方で、上述の通り、一般的なマイクロストリップ線路においては、電磁波がプリント基板内を伝播する。ここで、空隙内に存在する空気はプリント基板と比較して比誘電率が低い。そのため、本実施形態におけるアンテナ装置1は、一般的なマイクロストリップ線路を有するアンテナ装置と比較して、給電時の誘電体損をより少なくすることができる。 By having the structure shown in FIG. 1, in the antenna device 1 of this embodiment, electromagnetic waves propagate through the gap 50 formed between the substrate 10 and the conductor 40. On the other hand, as described above, in a typical microstrip line, electromagnetic waves propagate through a printed circuit board. Here, the air present in the gap has a lower relative dielectric constant than the printed circuit board. Therefore, the antenna device 1 of this embodiment can reduce dielectric loss during power supply compared to an antenna device having a typical microstrip line.
 更に、本実施形態のアンテナ装置1においては、電磁波が空隙50内を伝搬することで、次のような効果も得られる。すなわち、本実施形態のアンテナ装置1においては、一般的に高コストとされる低誘電率および低誘電正接のプリント基板を用いる必要はなく、汎用性の高い低コストの基板を用いることができる。 Furthermore, in the antenna device 1 of this embodiment, the following effect is obtained by the electromagnetic waves propagating through the gap 50. That is, in the antenna device 1 of this embodiment, it is not necessary to use a printed circuit board with a low dielectric constant and low dielectric tangent, which is generally considered to be expensive, and a versatile, low-cost board can be used.
 以上のように、本実施形態におけるアンテナ装置1は、低コストでアンテナ利得を向上させることが可能となる。 As described above, the antenna device 1 in this embodiment makes it possible to improve antenna gain at low cost.
<第2実施形態>
 本開示の第2実施形態におけるアンテナ装置2について説明する。
Second Embodiment
An antenna device 2 according to a second embodiment of the present disclosure will be described.
 図2は、本実施形態におけるアンテナ装置2の構成を示す図である。 FIG. 2 is a diagram showing the configuration of the antenna device 2 in this embodiment.
 図2を参照すると、本実施形態におけるアンテナ装置2は、基板10と、複数のアンテナ素子21と、給電回路30と、導体41と、アンテナ素子給電部60と、レドーム70と、レドーム接続部80と、アンテナ素子22と、バンドパスフィルタ90と、を備えるアレーアンテナ装置である。 Referring to FIG. 2, the antenna device 2 in this embodiment is an array antenna device including a substrate 10, a plurality of antenna elements 21, a power supply circuit 30, a conductor 41, an antenna element power supply section 60, a radome 70, a radome connection section 80, an antenna element 22, and a bandpass filter 90.
 アンテナ装置2は、無線周波数の信号の伝送処理を行う装置である。 Antenna device 2 is a device that performs transmission processing of radio frequency signals.
 アンテナ装置2の基板10には、電気配線パターンが設けられており、基板10の片面である第1面に、複数のアンテナ素子21が配置されている。なお、複数のアンテナ素子21は、図2におけるX方向に沿って設けられている。基板10は、プリント基板と称されてもよい。基板10は、例えば汎用のガラスエポキシ基板でもよいが、これに限定されない。 An electrical wiring pattern is provided on the substrate 10 of the antenna device 2, and a plurality of antenna elements 21 are arranged on a first surface, which is one side of the substrate 10. The plurality of antenna elements 21 are arranged along the X direction in FIG. 2. The substrate 10 may be referred to as a printed circuit board. The substrate 10 may be, for example, a general-purpose glass epoxy substrate, but is not limited to this.
 アンテナ装置2のアンテナ素子21は、基板10の片面である第1面に配置されている。第1面は、アンテナ素子21からの電波放射方向であり、表面又は上面と称されてもよい。また、基板10における第1面と逆側の第2面は、裏面又は下面と称されてもよい。アンテナ素子21は、後述する送受信機100が信号を送受信するための1次共振器として機能する。複数のアンテナ素子21は、基板10の第1面に、所定の離隔距離をとって配置される。アンテナ素子21は、例えばパッチアンテナやダイポールアンテナでもよいが、これに限定されない。 The antenna element 21 of the antenna device 2 is disposed on a first surface, which is one side of the substrate 10. The first surface is the direction of radio wave emission from the antenna element 21, and may be referred to as the front surface or upper surface. The second surface of the substrate 10, which is opposite to the first surface, may be referred to as the back surface or lower surface. The antenna element 21 functions as a primary resonator for transmitting and receiving signals by the transceiver 100, which will be described later. The multiple antenna elements 21 are disposed on the first surface of the substrate 10 at a predetermined distance apart. The antenna element 21 may be, for example, a patch antenna or a dipole antenna, but is not limited to these.
 アンテナ装置2は、アンテナ素子21と、後述するアンテナ素子22との双共振により、アンテナ素子22から、図2におけるZ方向(基板10の第1面が指向する方向)に電波を放射して、当該方向の通信装置と信号を送受信することが可能となる。 The antenna device 2 emits radio waves from the antenna element 22 in the Z direction in FIG. 2 (the direction in which the first surface of the substrate 10 is oriented) due to dual resonance between the antenna element 21 and the antenna element 22 described below, making it possible to transmit and receive signals to and from a communication device in that direction.
 アンテナ装置2の給電回路30は、基板10の第1面の裏面である第2面に配置されている。給電回路30は、電力を複数のアンテナ素子21に給電する回路である。給電回路30は、複数のアンテナ素子21に沿って配置されている。給電回路30は、複数のアンテナ素子21に電力を分配する。給電回路30は、後述するアンテナ素子給電部60と電気的に接続されている。給電回路30は、後述するコネクタ130と接続されている。図2において、給電回路30は、基板10の第2面側でコネクタ130と接続し、基板10の第1面側を通って再度基板10の第2面側に形成されている。ただし、給電回路30は、基板10の第2面側でコネクタ130と接続し、基板10の第1面側を通ることなく第2面側でのみ形成されてもよい。具体的には、コネクタ130は、同軸コネクタでもよいが、これに限定されない。 The power supply circuit 30 of the antenna device 2 is disposed on the second surface, which is the reverse side of the first surface of the substrate 10. The power supply circuit 30 is a circuit that supplies power to the multiple antenna elements 21. The power supply circuit 30 is disposed along the multiple antenna elements 21. The power supply circuit 30 distributes power to the multiple antenna elements 21. The power supply circuit 30 is electrically connected to an antenna element power supply unit 60, which will be described later. The power supply circuit 30 is connected to a connector 130, which will be described later. In FIG. 2, the power supply circuit 30 is connected to the connector 130 on the second surface side of the substrate 10, passes through the first surface side of the substrate 10, and is again formed on the second surface side of the substrate 10. However, the power supply circuit 30 may be connected to the connector 130 on the second surface side of the substrate 10, and may be formed only on the second surface side without passing through the first surface side of the substrate 10. Specifically, the connector 130 may be a coaxial connector, but is not limited thereto.
 後述する図3のように、アンテナ装置2の導体41は、第1の導体を担い、給電回路30に対向する位置に配置されている。導体41は、給電回路30のグランドとして機能する。導体41の一部は基板10に隣接する。導体41の材質は例えば、金属でもよいが、これに限定されない。また、導体41は、少なくとも表面が導体であればよく、絶縁体との組み合わせで形成されてもよい。例えば、導体41は、プラスチックや樹脂などの絶縁性の材料を、金属メッキなどの導体で表面を覆うことで形成されることとしてもよい。 As shown in FIG. 3 described later, the conductor 41 of the antenna device 2 serves as a first conductor and is disposed in a position facing the power supply circuit 30. The conductor 41 functions as a ground for the power supply circuit 30. A portion of the conductor 41 is adjacent to the substrate 10. The material of the conductor 41 may be, for example, a metal, but is not limited to this. Furthermore, the conductor 41 may be formed in combination with an insulator as long as at least the surface is a conductor. For example, the conductor 41 may be formed by covering the surface of an insulating material such as plastic or resin with a conductor such as metal plating.
 更に、給電回路30と導体41との間には、空隙51が形成されている。空隙51は例えば、空気層である。給電回路30と導体41と空隙51の位置関係について、図3を用いて詳細に説明する。 Furthermore, a gap 51 is formed between the power supply circuit 30 and the conductor 41. The gap 51 is, for example, an air layer. The positional relationship between the power supply circuit 30, the conductor 41, and the gap 51 will be described in detail with reference to FIG. 3.
 図3は、本実施形態のアンテナ装置2の断面図である。具体的には、図3は、図2に示す本実施形態のアンテナ装置2の(a)の点線部における断面図である。 FIG. 3 is a cross-sectional view of the antenna device 2 of this embodiment. Specifically, FIG. 3 is a cross-sectional view of the antenna device 2 of this embodiment shown in FIG. 2 at the dotted line portion (a).
 空隙51は、給電回路30に沿って形成されている。給電回路30から発生する電磁波は空隙51内を伝搬する。空隙51は、図3のように直方体型に形成されてもよいが、これに限定されない。空隙51は更に、基板10と、導体41とで囲うように形成されている。空隙51は、直方体型の導体41の一部を切削し、基板10に隣接させることで形成されてもよい。あるいは、空隙51は、コの字型に鋳造された導体41を基板10に隣接させることで形成されてもよい。ただし、空隙51を形成する導体41の形状や、その形状の作成方法は、上記に限定されない。 The void 51 is formed along the power supply circuit 30. Electromagnetic waves generated from the power supply circuit 30 propagate through the void 51. The void 51 may be formed in a rectangular parallelepiped shape as shown in FIG. 3, but is not limited to this. The void 51 is further formed so as to be surrounded by the substrate 10 and the conductor 41. The void 51 may be formed by cutting a part of the rectangular parallelepiped conductor 41 and placing it adjacent to the substrate 10. Alternatively, the void 51 may be formed by placing the conductor 41 cast in a U-shape adjacent to the substrate 10. However, the shape of the conductor 41 that forms the void 51 and the method of creating that shape are not limited to the above.
 空隙51の大きさは、特性インピーダンスにより決定されてもよいが、これに限定されない。空隙51の大きさは、例えばコネクタ130の特性インピーダンスにより決定されてもよい。コネクタ130の特性インピーダンスは、50Ωでもよい。特性インピーダンスに影響がある構成要素としては、給電回路30の幅と、基板10の第2面から、基板10の第2面と対向する導体41の面までの距離と、が挙げられる。言い換えると、特性インピーダンスに影響がある構成要素としては、図3における給電回路30のY方向の寸法と、図3における空隙51のZ方向の寸法と、が挙げられる。また、図3において双方向の矢印で示した、空隙51に隣接する導体41の側面同士の距離(空隙51のY方向の寸法)は、できるだけ長くすることが好ましい。これは、空隙51に隣接する導体41の側面同士の距離は、所定より短い場合には、特性インピーダンスに影響を及ぼすためである。 The size of the gap 51 may be determined by the characteristic impedance, but is not limited to this. The size of the gap 51 may be determined by the characteristic impedance of the connector 130, for example. The characteristic impedance of the connector 130 may be 50Ω. Components that affect the characteristic impedance include the width of the power supply circuit 30 and the distance from the second surface of the substrate 10 to the surface of the conductor 41 that faces the second surface of the substrate 10. In other words, components that affect the characteristic impedance include the Y-direction dimension of the power supply circuit 30 in FIG. 3 and the Z-direction dimension of the gap 51 in FIG. 3. In addition, it is preferable to make the distance between the side surfaces of the conductor 41 adjacent to the gap 51 (the Y-direction dimension of the gap 51), indicated by the bidirectional arrow in FIG. 3, as long as possible. This is because the distance between the side surfaces of the conductor 41 adjacent to the gap 51 affects the characteristic impedance if it is shorter than a certain value.
 図4は、図3に示す本実施形態のアンテナ装置2の断面における寸法例を示す図である。図4に示すアンテナ装置2の寸法例は設計の一例であり、これに限定されない。図4のように、基板10の第2面から、基板10の第2面と対向する導体41の面までの距離(空隙51のZ方向の寸法)は例えば、0.5mmでもよい。給電回路30の幅(図4における給電回路30のY方向の寸法)は、例えば、2.0mmでもよい。空隙51に隣接する導体41の側面同士の距離(図4における空隙51のY方向の寸法)は、例えば、8.0mmでもよいし、8.0mm以上でもよい。基板10の厚み(図4における基板10のZ方向の寸法)は1.0mmでもよい。導体41の厚みは1.5mmでもよい。給電回路30の一端と、空隙51に隣接する導体41の側面との間の距離(図4における給電回路30の一端と、空隙51の一端との間のY方向の寸法)は3.0mmでもよい。 FIG. 4 is a diagram showing an example of dimensions in the cross section of the antenna device 2 of this embodiment shown in FIG. 3. The example dimensions of the antenna device 2 shown in FIG. 4 are an example of design and are not limited thereto. As shown in FIG. 4, the distance from the second surface of the substrate 10 to the surface of the conductor 41 facing the second surface of the substrate 10 (the dimension in the Z direction of the gap 51) may be, for example, 0.5 mm. The width of the power supply circuit 30 (the dimension in the Y direction of the power supply circuit 30 in FIG. 4) may be, for example, 2.0 mm. The distance between the side surfaces of the conductor 41 adjacent to the gap 51 (the dimension in the Y direction of the gap 51 in FIG. 4) may be, for example, 8.0 mm or more. The thickness of the substrate 10 (the dimension in the Z direction of the substrate 10 in FIG. 4) may be 1.0 mm. The thickness of the conductor 41 may be 1.5 mm. The distance between one end of the power supply circuit 30 and the side of the conductor 41 adjacent to the gap 51 (the dimension in the Y direction between one end of the power supply circuit 30 and one end of the gap 51 in FIG. 4) may be 3.0 mm.
 ここで、図2の説明に戻る。 Now, let's return to the explanation of Figure 2.
 アンテナ装置2のアンテナ素子給電部60は、基板10の第2面に配置された給電回路30と、アンテナ素子21とを接続する。アンテナ素子給電部60は、基板10に形成されたスルーホールでもよいが、これに限定されない。 The antenna element power supply section 60 of the antenna device 2 connects the power supply circuit 30 arranged on the second surface of the substrate 10 to the antenna element 21. The antenna element power supply section 60 may be a through hole formed in the substrate 10, but is not limited to this.
 アンテナ装置2のレドーム70は、基板10の第1面に対向して配置されており、該第1面を覆っている。レドーム70は、後述するレドーム接続部80を介して基板10に接続する。レドーム70は、基板10の第1面やアンテナ素子21を保護する機能を持つ。更に、レドーム70は、アンテナ装置2内あるいはアンテナ装置2に接続する無線機内で発生した熱を外部に放散する機能を持つ。なお、アンテナ装置2内あるいはアンテナ装置2に接続する無線機内で発生する熱の主な熱源は、例えば、後述する送受信機100である。例えば、後述する図5に示すように、送受信機100は後述するバンドパスフィルタ90を介して導体41と熱的に接続されている。そして、送受信機100からの熱は、導体41内を伝搬してレドーム70に伝わる。熱源と導体41は隣接し、直接接続されていてもよい。また、熱源と導体41は、別の部品を介して接続し、熱源からの熱は、該別の部品を介して導体41に伝達する構造としてもよい。上記別の部品は、金属部品であってもよいが、これに限定されない。レドーム70の材質は、例えば樹脂でもよいし、高い熱伝導性を有するアルミニウム、銀、銅等の金属であってもよい。レドーム70は例えば、導体41と同じ材質でもよい。レドーム70は、導体41と熱的に接続していてもよい。ただし、レドーム70の材質は上記に限定されない。 The radome 70 of the antenna device 2 is disposed opposite to the first surface of the substrate 10 and covers the first surface. The radome 70 is connected to the substrate 10 via a radome connection part 80 described later. The radome 70 has a function of protecting the first surface of the substrate 10 and the antenna element 21. Furthermore, the radome 70 has a function of dissipating heat generated in the antenna device 2 or in a radio connected to the antenna device 2 to the outside. The main heat source of the heat generated in the antenna device 2 or in a radio connected to the antenna device 2 is, for example, a transceiver 100 described later. For example, as shown in FIG. 5 described later, the transceiver 100 is thermally connected to the conductor 41 via a bandpass filter 90 described later. Then, the heat from the transceiver 100 propagates through the conductor 41 and is transferred to the radome 70. The heat source and the conductor 41 may be adjacent and directly connected. Also, the heat source and the conductor 41 may be connected via another component, and the heat from the heat source may be transferred to the conductor 41 via the other component. The other part may be a metal part, but is not limited to this. The material of the radome 70 may be, for example, a resin, or a metal having high thermal conductivity, such as aluminum, silver, or copper. The radome 70 may be, for example, made of the same material as the conductor 41. The radome 70 may be thermally connected to the conductor 41. However, the material of the radome 70 is not limited to the above.
 アンテナ装置2のレドーム接続部80は、基板10とレドーム70を接続する。よって、レドーム70及びレドーム接続部80は、第2の導体を担う。なお、レドーム接続部80は、締結部140により、導体41と、基板10とに固定されている。締結部140は、例えば、ネジであってもよいが、これに限定されない。 The radome connection part 80 of the antenna device 2 connects the substrate 10 and the radome 70. Thus, the radome 70 and the radome connection part 80 serve as the second conductor. The radome connection part 80 is fixed to the conductor 41 and the substrate 10 by the fastening part 140. The fastening part 140 may be, for example, a screw, but is not limited to this.
 アンテナ装置のアンテナ素子22は、レドーム70に配置されている。複数のアンテナ素子22は、図2のX方向に沿って設けられている。複数のアンテナ素子22は、レドーム70に、所定の離隔距離をとって配置されている。アンテナ素子22は、アンテナ素子21に対向する位置に配置されている。アンテナ素子22は、例えばスロットアンテナでもよいが、これに限定されない。アンテナ素子22は、アンテナ素子21と結合共振する。 The antenna element 22 of the antenna device is disposed on the radome 70. The multiple antenna elements 22 are arranged along the X direction in FIG. 2. The multiple antenna elements 22 are disposed on the radome 70 at a predetermined distance apart. The antenna element 22 is disposed in a position facing the antenna element 21. The antenna element 22 may be, for example, a slot antenna, but is not limited to this. The antenna element 22 couples and resonates with the antenna element 21.
 アンテナ装置2のバンドパスフィルタ90は、コネクタ130を介して給電回路30と接続されている。また、バンドパスフィルタ90は、導体41とも接続されている。 The bandpass filter 90 of the antenna device 2 is connected to the power supply circuit 30 via the connector 130. The bandpass filter 90 is also connected to the conductor 41.
 本実施形態のアンテナ装置2は、図2、図3に示す構造を有することにより、第1実施形態同様の効果を有する。また、本実施形態のアンテナ装置2は、導体41の形状によって空隙の寸法を調整及び維持することができる。そのため、後述する第3実施形態のアンテナ装置3と比較して、空隙の寸法精度をより高く保つことができる。これにより、給電時の誘電体損の減少を保持することができる。 The antenna device 2 of this embodiment has the structure shown in Figures 2 and 3, and thus has the same effect as the first embodiment. Furthermore, the antenna device 2 of this embodiment can adjust and maintain the size of the gap by using the shape of the conductor 41. Therefore, compared to the antenna device 3 of the third embodiment described below, it is possible to maintain a higher dimensional accuracy of the gap. This makes it possible to maintain a reduction in dielectric loss during power supply.
 また、本実施形態におけるアンテナ装置2は、無線装置に搭載されることとしてもよい。本実施形態におけるアンテナ装置2を有する無線装置5の例を図5に示す。図5に示す無線装置5は、無線通信を行う装置であって、本実施形態におけるアンテナ装置2と、送受信機100とを有する。送受信機100は、アンテナ装置2が信号を送受信するための機構である。送受信機100は、バンドパスフィルタ90と隣接して配置されてもよい。また、送受信機100は、トランシーバ、RF(Radio Frequency)回路、アンプと称されてもよい。アンテナ装置2のレドーム70とアンテナ素子22とは、無線装置5の表面に位置する。なお、図5のように、アンテナ装置2のレドーム70は無線装置5の表面を覆うように延長されてもよい。 The antenna device 2 in this embodiment may be mounted on a wireless device. An example of a wireless device 5 having the antenna device 2 in this embodiment is shown in FIG. 5. The wireless device 5 shown in FIG. 5 is a device that performs wireless communication, and includes the antenna device 2 in this embodiment and a transceiver 100. The transceiver 100 is a mechanism for the antenna device 2 to transmit and receive signals. The transceiver 100 may be disposed adjacent to the bandpass filter 90. The transceiver 100 may also be referred to as a transceiver, an RF (Radio Frequency) circuit, or an amplifier. The radome 70 and antenna element 22 of the antenna device 2 are located on the surface of the wireless device 5. As shown in FIG. 5, the radome 70 of the antenna device 2 may be extended to cover the surface of the wireless device 5.
 なお、図5に示す無線装置5は、例えば基地局装置である。基地局装置は、例えば、Node B、e-Node B、g-Node B、Home Node B、Home e-Node Bであってもよい。本実施形態のアンテナ装置2を搭載した基地局装置は、従来のアンテナ装置を搭載した基地局装置と比較して、等価等方放射電力を増加させることができる。なお、本実施形態のアンテナ装置2を搭載する無線装置5は、基地局装置に限らず、無線通信を行う他の無線装置でもよい。 The wireless device 5 shown in FIG. 5 is, for example, a base station device. The base station device may be, for example, a Node B, an e-Node B, a g-Node B, a Home Node B, or a Home e-Node B. A base station device equipped with the antenna device 2 of this embodiment can increase the equivalent isotropic radiated power compared to a base station device equipped with a conventional antenna device. The wireless device 5 equipped with the antenna device 2 of this embodiment is not limited to a base station device, and may be other wireless devices that perform wireless communication.
 更に、一般的なマイクロストリップ線路を用いたアンテナ装置においては、熱源からレドームへの熱の伝達経路に基板が含まれるため、熱伝導効率が悪化する。一方、本実施形態における熱源からレドーム70への熱の伝達経路は、熱源が導体41に直接接続される場合には、熱源、導体41、締結部140、レドーム接続部80、レドーム70、となる。そのため、導体41、締結部140、レドーム接続部80を熱伝導性の高い材質で形成することで、放熱効果を高めることができる。加えて、本実施形態においては、一般的なマイクロストリップ線路を用いたアンテナ装置と比較して、レドームへの熱伝導効率を上げるための更なる金属部品の追加が不要である。そのため、低コスト化および低質量化を実現できる。 Furthermore, in an antenna device using a general microstrip line, the heat transfer path from the heat source to the radome includes the substrate, which reduces the heat transfer efficiency. On the other hand, in this embodiment, when the heat source is directly connected to the conductor 41, the heat transfer path from the heat source to the radome 70 is the heat source, conductor 41, fastening part 140, radome connection part 80, and radome 70. Therefore, by forming the conductor 41, fastening part 140, and radome connection part 80 from a material with high thermal conductivity, the heat dissipation effect can be improved. In addition, in this embodiment, compared to an antenna device using a general microstrip line, it is not necessary to add any further metal parts to increase the heat transfer efficiency to the radome. Therefore, it is possible to achieve low cost and low mass.
(変形例1)
 本実施形態では、アンテナ装置2の導体41とレドーム接続部80とを、締結部140を用いて熱的に接続している。これに代えて、基板10に穴を空け、導体41とレドーム接続部80とを直接接続してもよい。
(Variation 1)
In this embodiment, the conductor 41 of the antenna device 2 and the radome connecting portion 80 are thermally connected by using the fastening portion 140. Alternatively, a hole may be formed in the substrate 10 and the conductor 41 and the radome connecting portion 80 may be directly connected to each other.
 図6は、本実施形態の変形例1におけるアンテナ装置2の構成を示す拡大図である。図6を参照すると、基板10の一部に導体接続部110が配置されている。導体接続部110は、基板10の、導体41とレドーム接続部80とに接する部分に配置されている。また、導体接続部110は、レドーム接続部80あるいは導体41に形成された突起物としてもよい。例えば、レドーム接続部80の、基板10に隣接する面に設けた突起物でもよい。該突起物は、レドーム接続部80から、図6のZ方向の矢印と逆方向に突起してもよい。あるいは、導体接続部110は、導体41の、基板10に隣接する面に設けた突起物でもよい。該突起物は、導体接続部110から、図6のZ方向の矢印と同方向に突起してもよい。基板10の、導体41とレドーム接続部80とに接する部分に穴を空け、突起物をはめ込むことで導体41とレドーム接続部80を直接接続してもよい。言い換えると、基板10に穴が形成され、導体41もしくはレドーム接続部80が該穴に挿入され、導体41とレドーム接続部80が直接接続されていてもよい。レドーム70、レドーム接続部80、導体接続部110は熱伝導性の高い材質で形成されていることが好ましい。具体的には、レドーム70、レドーム接続部80、導体接続部110は金属などの導体で形成されていてもよい。 6 is an enlarged view showing the configuration of the antenna device 2 in the first modified example of this embodiment. Referring to FIG. 6, a conductor connection portion 110 is disposed on a part of the substrate 10. The conductor connection portion 110 is disposed on a portion of the substrate 10 that contacts the conductor 41 and the radome connection portion 80. The conductor connection portion 110 may also be a protrusion formed on the radome connection portion 80 or the conductor 41. For example, it may be a protrusion provided on the surface of the radome connection portion 80 adjacent to the substrate 10. The protrusion may protrude from the radome connection portion 80 in the opposite direction to the Z-direction arrow in FIG. 6. Alternatively, the conductor connection portion 110 may be a protrusion provided on the surface of the conductor 41 adjacent to the substrate 10. The protrusion may protrude from the conductor connection portion 110 in the same direction as the Z-direction arrow in FIG. 6. The conductor 41 and the radome connection portion 80 may be directly connected by drilling a hole in the portion of the substrate 10 that contacts the conductor 41 and the radome connection portion 80 and fitting a protrusion into the hole. In other words, a hole may be formed in the substrate 10, the conductor 41 or the radome connection part 80 may be inserted into the hole, and the conductor 41 and the radome connection part 80 may be directly connected. The radome 70, the radome connection part 80, and the conductor connection part 110 are preferably made of a material with high thermal conductivity. Specifically, the radome 70, the radome connection part 80, and the conductor connection part 110 may be made of a conductor such as a metal.
 本変形例では、熱源が導体41に直接接続される場合には、熱源から導体41、導体接続部110、レドーム接続部80という伝達経路を介してレドーム70に熱が伝導される。これにより第2実施形態同様の放熱効果を有する。 In this modified example, when the heat source is directly connected to the conductor 41, heat is conducted from the heat source to the radome 70 via a transmission path that includes the conductor 41, the conductor connection part 110, and the radome connection part 80. This provides the same heat dissipation effect as the second embodiment.
(変形例2)
 本実施形態では、アンテナ装置2の導体41とレドーム接続部80とを、締結部140を用いて熱的に接続している。これに代えて、基板10の一部にスルーホール150を設けることで、導体41とレドーム接続部80とを熱的に接続してもよい。
(Variation 2)
In this embodiment, the conductor 41 of the antenna device 2 and the radome connecting portion 80 are thermally connected by using the fastening portion 140. Alternatively, the conductor 41 and the radome connecting portion 80 may be thermally connected by providing a through hole 150 in a part of the substrate 10.
 図7は、本実施形態の変形例2におけるアンテナ装置2の構成を示す拡大図である。図7を参照すると、基板10に複数のスルーホール150が形成されている。また、スルーホール150は、基板10の、導体41とレドーム接続部80とに接する部分に形成されている。すなわち、導体41とレドーム接続部80が、基板10に形成されたスルーホール150を介して接続されている。導体41とレドーム接続部80とは、スルーホール150を介して、図7におけるZ方向において接続されている。また、レドーム70およびレドーム接続部80は、熱伝導性の高い材質で形成されていることが好ましい。具体的には、レドーム70およびレドーム接続部80は、金属などの導体で形成されていてもよい。 FIG. 7 is an enlarged view showing the configuration of the antenna device 2 in the second modified example of this embodiment. Referring to FIG. 7, a plurality of through holes 150 are formed in the substrate 10. The through holes 150 are formed in a portion of the substrate 10 that contacts the conductor 41 and the radome connection portion 80. That is, the conductor 41 and the radome connection portion 80 are connected via the through holes 150 formed in the substrate 10. The conductor 41 and the radome connection portion 80 are connected in the Z direction in FIG. 7 via the through holes 150. The radome 70 and the radome connection portion 80 are preferably formed of a material with high thermal conductivity. Specifically, the radome 70 and the radome connection portion 80 may be formed of a conductor such as a metal.
 本変形例では、熱源が導体41に直接接続される場合には、熱源から導体41、スルーホール150、レドーム接続部80という伝達経路を介してレドーム70に熱が伝導される。これにより、第2実施形態と同様の放熱効果を有する。 In this modified example, when the heat source is directly connected to the conductor 41, heat is conducted from the heat source to the radome 70 via the transmission path of the conductor 41, the through hole 150, and the radome connection part 80. This provides the same heat dissipation effect as the second embodiment.
<第3実施形態>
 本開示の第3実施形態におけるアンテナ装置3について説明する。なお、以下において第2実施形態と同様の構成については同一の符号を付し、その説明を省略する。
Third Embodiment
An antenna device 3 according to a third embodiment of the present disclosure will be described. Note that, in the following, the same components as those in the second embodiment are denoted by the same reference numerals, and description thereof will be omitted.
 図8は、本実施形態におけるアンテナ装置3の構成を示す図である。 FIG. 8 is a diagram showing the configuration of the antenna device 3 in this embodiment.
 図8を参照すると、本実施形態におけるアンテナ装置3は、基板10と、アンテナ素子21と、給電回路30と、導体42と、支持部材120と、アンテナ素子給電部60と、レドーム70と、レドーム接続部80と、アンテナ素子22と、バンドパスフィルタ90と、を備える。 Referring to FIG. 8, the antenna device 3 in this embodiment includes a substrate 10, an antenna element 21, a power supply circuit 30, a conductor 42, a support member 120, an antenna element power supply section 60, a radome 70, a radome connection section 80, an antenna element 22, and a bandpass filter 90.
 アンテナ装置3の導体42は、基板10の第2面上の給電回路30に対向する位置に配置されている。導体42は、給電回路30のグランドとして機能する。導体42の材質は例えば、金属でもよいが、これに限定されない。導体42は、後述する支持部材120と隣接する。 The conductor 42 of the antenna device 3 is disposed in a position facing the power supply circuit 30 on the second surface of the substrate 10. The conductor 42 functions as a ground for the power supply circuit 30. The material of the conductor 42 may be, for example, a metal, but is not limited to this. The conductor 42 is adjacent to the support member 120 described below.
 アンテナ装置3の支持部材120は、導体42と基板10の間に配置されている。支持部材120は、導体42と基板10との間の空隙52を所定の寸法で保持する機能を持つ。支持部材120の材質は、例えば金属でもよいが、これに限定されない。支持部材120は、スペーサと称されてもよい。支持部材120の形状は、例えば直方体でもよいが、これに限定されない。 The support member 120 of the antenna device 3 is disposed between the conductor 42 and the substrate 10. The support member 120 has a function of maintaining the gap 52 between the conductor 42 and the substrate 10 at a predetermined dimension. The material of the support member 120 may be, for example, a metal, but is not limited to this. The support member 120 may also be referred to as a spacer. The shape of the support member 120 may be, for example, a rectangular parallelepiped, but is not limited to this.
 給電回路30と導体42と支持部材120との間には、空隙52が形成されている。空隙52は例えば、空気層である。給電回路30と導体42と支持部材120と空隙52との位置関係について、図9を用いて詳細に説明する。 A gap 52 is formed between the power supply circuit 30, the conductor 42, and the support member 120. The gap 52 is, for example, an air layer. The positional relationship between the power supply circuit 30, the conductor 42, the support member 120, and the gap 52 will be described in detail with reference to FIG. 9.
 図9は、本実施形態のアンテナ装置3の断面図である。図9は、図8に示す本実施形態のアンテナ装置3の、(b)の点線部における断面図である。 FIG. 9 is a cross-sectional view of the antenna device 3 of this embodiment. FIG. 9 is a cross-sectional view of the antenna device 3 of this embodiment shown in FIG. 8 at the dotted line portion (b).
 空隙52は、給電回路30に沿って形成されている。給電回路30から発生する電磁波は空隙52内を伝搬する。空隙52は、図9のように直方体型に形成されてもよいが、これに限定されない。空隙52は更に、基板10と、導体42と、支持部材120とで囲うように形成されている。 The void 52 is formed along the power supply circuit 30. Electromagnetic waves generated from the power supply circuit 30 propagate through the void 52. The void 52 may be formed in a rectangular parallelepiped shape as shown in FIG. 9, but is not limited to this. The void 52 is further formed so as to be surrounded by the substrate 10, the conductor 42, and the support member 120.
 空隙52の大きさは、特性インピーダンスにより決定されてもよいが、これに限定されない。空隙52の大きさは、例えばコネクタ130の特性インピーダンスにより決定されてもよい。コネクタ130の特性インピーダンスは、50Ωでもよい。特性インピーダンスに影響がある構成要素としては、給電回路30の幅と、基板10の第2面から、基板10の第2面と対向する導体42の面までの距離と、が挙げられる。言い換えると、特性インピーダンスに影響がある構成要素としては、図9における給電回路30のY方向の寸法と、図3における空隙52のZ方向の寸法と、が挙げられる。基板10の第2面から、基板10の第2面と対向する導体42の面までの距離(空隙52のZ方向の寸法)は例えば、0.5mmでもよい。また、図9において双方向の矢印で示した、空隙52に隣接する支持部材120の側面同士の距離(空隙52のY方向の寸法)は、できるだけ長くすることが好ましい。これは、空隙52に隣接する支持部材120の側面同士の距離は、所定より短い場合には、特性インピーダンスに影響を及ぼすためである。空隙52に隣接する支持部材120の側面同士の距離は、例えば、8.0mmでもよいし、8.0mm以上でもよい。 The size of the gap 52 may be determined by the characteristic impedance, but is not limited to this. The size of the gap 52 may be determined by, for example, the characteristic impedance of the connector 130. The characteristic impedance of the connector 130 may be 50Ω. Components that affect the characteristic impedance include the width of the power supply circuit 30 and the distance from the second surface of the substrate 10 to the surface of the conductor 42 facing the second surface of the substrate 10. In other words, components that affect the characteristic impedance include the Y-direction dimension of the power supply circuit 30 in FIG. 9 and the Z-direction dimension of the gap 52 in FIG. 3. The distance from the second surface of the substrate 10 to the surface of the conductor 42 facing the second surface of the substrate 10 (the Z-direction dimension of the gap 52) may be, for example, 0.5 mm. In addition, it is preferable to make the distance between the side surfaces of the support members 120 adjacent to the gap 52 (the Y-direction dimension of the gap 52), indicated by the double-headed arrow in FIG. 9, as long as possible. This is because if the distance between the sides of the support member 120 adjacent to the gap 52 is shorter than a certain distance, it affects the characteristic impedance. The distance between the sides of the support member 120 adjacent to the gap 52 may be, for example, 8.0 mm or more.
 支持部材120が配置される位置については、図8のアンテナ装置3の上面図の一例である、図10と図11を用いて説明する。 The position where the support member 120 is arranged will be explained using Figures 10 and 11, which are examples of top views of the antenna device 3 in Figure 8.
 図10は、本実施形態における支持部材120の配置例の一つである。図10のように、支持部材120は、基板10の外周に沿って複数配置されていてもよい。支持部材120は、一定の間隔で配置されてもよい。図10のように疎に支持部材120を配置する場合は、用いる支持部材120の数が少ないため、低コスト化ができる。なお、支持部材120は、基板10の外周に沿って密に配置されてもよい。同様に図11も、本実施形態における支持部材120の配置例の一つである。図11のように、支持部材120は、給電回路30に沿って複数配置されていてもよい。図11のように密に支持部材120を配置する場合は、空隙52の寸法が一定に保持されやすい。空隙52の寸法が一定に保持されると、疎に配置する場合と比較して放熱効率が高くなる。なお、支持部材120は、給電回路30に沿って疎に配置されてもよい。 10 is an example of the arrangement of the support members 120 in this embodiment. As shown in FIG. 10, the support members 120 may be arranged in a plurality of locations along the outer periphery of the substrate 10. The support members 120 may be arranged at regular intervals. When the support members 120 are arranged sparsely as in FIG. 10, the number of support members 120 used is small, and therefore costs can be reduced. The support members 120 may be arranged densely along the outer periphery of the substrate 10. Similarly, FIG. 11 is also an example of the arrangement of the support members 120 in this embodiment. As shown in FIG. 11, the support members 120 may be arranged in a plurality of locations along the power supply circuit 30. When the support members 120 are arranged densely as in FIG. 11, the dimensions of the gaps 52 are likely to be kept constant. When the dimensions of the gaps 52 are kept constant, the heat dissipation efficiency is higher than when the support members 120 are arranged sparsely. The support members 120 may be arranged sparsely along the power supply circuit 30.
 本実施形態のアンテナ装置3は、図8から図11に示す構造を有することにより、第2実施形態同様の効果を有する。また、本実施形態のアンテナ装置3は、第2実施形態のアンテナ装置2と比較して、導体の質量が小さくなるよう設計しやすいため、低コスト化および低質量化を実現できる。
また、本実施形態におけるアンテナ装置3は、第2実施形態のアンテナ装置2と同様、無線装置に搭載されることとしてもよい。本実施形態におけるアンテナ装置3を有する無線装置6の例を図12に示す。図12に示す無線装置6は、無線通信を行う装置であって、本実施形態におけるアンテナ装置3と、送受信機100とを有する。送受信機100は、図5に示す無線装置6が有する送受信機と同様であってもよい。アンテナ装置3のレドーム70とアンテナ素子22とは、無線装置6の表面に位置する。なお、図12のように、アンテナ装置3のレドーム70は無線装置6の表面を覆うように延長されてもよい。
The antenna device 3 of this embodiment has the same effects as the second embodiment by having the structure shown in Figures 8 to 11. Moreover, the antenna device 3 of this embodiment is easier to design so that the mass of the conductor is smaller than that of the antenna device 2 of the second embodiment, so that it is possible to achieve low cost and low mass.
Moreover, the antenna device 3 in this embodiment may be mounted on a wireless device, similar to the antenna device 2 in the second embodiment. An example of a wireless device 6 having the antenna device 3 in this embodiment is shown in Fig. 12. The wireless device 6 shown in Fig. 12 is a device that performs wireless communication, and has the antenna device 3 in this embodiment and a transceiver 100. The transceiver 100 may be the same as the transceiver included in the wireless device 6 shown in Fig. 5. The radome 70 and antenna element 22 of the antenna device 3 are located on the surface of the wireless device 6. Note that, as shown in Fig. 12, the radome 70 of the antenna device 3 may be extended to cover the surface of the wireless device 6.
 なお、図12に示す無線装置6は、例えば基地局装置である。基地局装置は、例えば、Node B、e-Node B、g-Node B、Home Node B、Home e-Node Bであってもよい。本実施形態のアンテナ装置3を搭載した基地局装置は、従来のアンテナ装置を搭載した基地局装置と比較して、等価等方放射電力を増加させることができる。また、第2の実施形態のアンテナ装置2を搭載した基地局装置と比較して、低コスト化及び低質量化を実現できる。なお、本実施形態のアンテナ装置3を搭載する無線装置6は、基地局装置に限らず、無線通信を行う他の無線装置でもよい。 The wireless device 6 shown in FIG. 12 is, for example, a base station device. The base station device may be, for example, a Node B, an e-Node B, a g-Node B, a Home Node B, or a Home e-Node B. A base station device equipped with the antenna device 3 of this embodiment can increase the equivalent isotropic radiated power compared to a base station device equipped with a conventional antenna device. In addition, it can achieve lower costs and lower mass compared to a base station device equipped with the antenna device 2 of the second embodiment. The wireless device 6 equipped with the antenna device 3 of this embodiment is not limited to a base station device, and may be other wireless devices that perform wireless communication.
 なお、本開示は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。また、本開示は、それぞれの実施の形態を適宜組み合わせて実施されてもよい。 Note that this disclosure is not limited to the above-described embodiments, and can be modified as appropriate without departing from the spirit of the disclosure. In addition, this disclosure can be implemented by combining the respective embodiments as appropriate.
 また、上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 基板と、
 前記基板の第1面に配置された複数のアンテナ素子と、
 前記基板の前記第1面の裏面である第2面に配置された給電回路と、
 前記給電回路に対向する位置に配置された第1の導体と、を備え、
 前記給電回路と前記第1の導体との間には空隙が形成されている、
アンテナ装置。
 (付記2)
 前記空隙は、前記給電回路に沿って形成されている、
付記1に記載のアンテナ装置。
 (付記3)
 前記第1の導体の一部は前記基板に隣接し、
 前記空隙は、前記基板と、前記第1の導体とで囲うように形成されている、
付記2に記載のアンテナ装置。
 (付記4)
 前記第1の導体と前記基板との間に配置された支持部材をさらに備え、
 前記空隙は、前記基板と、前記第1の導体と、前記支持部材と、で形成されている、
付記1に記載のアンテナ装置。
 (付記5)
 前記部材は、前記基板の外周に沿って複数配置されている、
付記4に記載のアンテナ装置。
 (付記6)
 前記部材は、前記給電回路に沿って複数配置されている、
付記4に記載のアンテナ装置。
 (付記7)
 前記複数のアンテナ素子と前記給電回路を接続するアンテナ素子給電部を備える、
 付記1乃至6のいずれか一項に記載のアンテナ装置。
 (付記8)
 前記基板の前記第1面側を覆うレドームと、
 前記基板と前記レドームとを接続する接続部と、をさらに備える、
 付記7に記載のアンテナ装置。
 (付記9)
 前記基板には穴が形成され、
 前記第1の導体もしくは前記接続部が前記穴に挿入され、前記第1の導体と前記接続部が直接接続されており、
 前記レドームおよび前記接続部は第2の導体である、
付記8に記載のアンテナ装置。
 (付記10)
 前記第1の導体と前記接続部が、前記基板に形成されたスルーホールを介して接続されており、
 前記レドームおよび前記接続部は第2の導体である、
付記8に記載のアンテナ装置。
 (付記11) 
 前記アンテナ素子給電部は、前記基板に形成されたスルーホールである、
付記7に記載のアンテナ装置。
 (付記12)
 前記複数のアンテナ素子はパッチアンテナを含む、
付記3又は4に記載のアンテナ装置。
 (付記13)
 前記複数のアンテナ素子はダイポールアンテナを含む、
付記3又は4に記載のアンテナ装置。
 (付記14)
 前記アンテナ装置は、アレーアンテナ装置である、
付記3又は4に記載のアンテナ装置。
 (付記15)
 前記基板は、ガラスエポキシ基板を含む、
付記3又は4に記載のアンテナ装置。
 (付記16)
 前記第1の導体は、金属である、
付記3又は4に記載のアンテナ装置。
 (付記17)
 前記第2の導体は、金属である、
付記9又は10に記載のアンテナ装置。
 (付記18)
 基板と、
 前記基板の第1面に配置された複数のアンテナ素子と、
 前記基板の前記第1面の裏面である第2面に配置され、前記複数のアンテナ素子に電力を分配する給電回路と、
 前記給電回路に対向する位置に配置され、前記給電回路のグランドとして機能する導体と、を備え、
 前記給電回路と前記導体との間には空隙が形成されている、
アンテナ装置。
 (付記19)
 基板と、
 前記基板の第1面に配置された複数のアンテナ素子と、
 前記基板の前記第1面の裏面である第2面に配置された給電回路と、
 前記給電回路に対向する位置に配置された第1の導体と、を備え、
 前記給電回路と前記第1の導体との間には空隙が形成されている、
 アンテナ装置と、
 送受信機と、を備える、
無線装置。
Furthermore, some or all of the above-described embodiments can be described as, but are not limited to, the following supplementary notes.
(Appendix 1)
A substrate;
a plurality of antenna elements disposed on a first surface of the substrate;
a power supply circuit disposed on a second surface of the substrate, the second surface being a surface opposite to the first surface;
a first conductor disposed at a position facing the power supply circuit;
an air gap is formed between the power supply circuit and the first conductor;
Antenna device.
(Appendix 2)
The gap is formed along the power supply circuit.
2. The antenna device of claim 1.
(Appendix 3)
a portion of the first conductor adjacent to the substrate;
The gap is formed so as to be surrounded by the substrate and the first conductor.
3. The antenna device according to claim 2.
(Appendix 4)
a support member disposed between the first conductor and the substrate;
the gap is formed by the substrate, the first conductor, and the support member.
2. The antenna device of claim 1.
(Appendix 5)
The member is arranged in plurality along the outer periphery of the substrate.
5. The antenna device according to claim 4.
(Appendix 6)
The member is arranged in plurality along the power supply circuit.
5. The antenna device according to claim 4.
(Appendix 7)
an antenna element feeding section that connects the plurality of antenna elements and the feeding circuit;
7. An antenna device according to claim 1 .
(Appendix 8)
a radome covering the first surface side of the substrate;
a connection portion that connects the substrate and the radome,
8. The antenna device of claim 7.
(Appendix 9)
A hole is formed in the substrate,
the first conductor or the connection portion is inserted into the hole, and the first conductor and the connection portion are directly connected to each other;
the radome and the connection portion are a second conductor;
9. The antenna device of claim 8.
(Appendix 10)
the first conductor and the connection portion are connected via a through hole formed in the substrate,
the radome and the connection portion are a second conductor;
9. The antenna device of claim 8.
(Appendix 11)
The antenna element feed portion is a through hole formed in the substrate.
8. The antenna device of claim 7.
(Appendix 12)
the plurality of antenna elements include patch antennas;
5. The antenna device according to claim 3 or 4.
(Appendix 13)
the plurality of antenna elements include a dipole antenna;
5. The antenna device according to claim 3 or 4.
(Appendix 14)
The antenna device is an array antenna device.
5. The antenna device according to claim 3 or 4.
(Appendix 15)
The substrate includes a glass epoxy substrate.
5. The antenna device according to claim 3 or 4.
(Appendix 16)
the first conductor is a metal;
5. The antenna device according to claim 3 or 4.
(Appendix 17)
the second conductor is a metal;
11. The antenna device according to claim 9 or 10.
(Appendix 18)
A substrate;
a plurality of antenna elements disposed on a first surface of the substrate;
a power supply circuit disposed on a second surface of the substrate, the second surface being a surface opposite to the first surface, and configured to distribute power to the plurality of antenna elements;
a conductor that is disposed in a position facing the power supply circuit and functions as a ground of the power supply circuit;
An air gap is formed between the power supply circuit and the conductor.
Antenna device.
(Appendix 19)
A substrate;
a plurality of antenna elements disposed on a first surface of the substrate;
a power supply circuit disposed on a second surface of the substrate, the second surface being a surface opposite to the first surface;
a first conductor disposed at a position facing the power supply circuit;
an air gap is formed between the power supply circuit and the first conductor;
An antenna device;
A transceiver;
Wireless device.
 1、2、3 アンテナ装置
 5、6 無線装置
 10 基板
 20、21、22 アンテナ素子
 30 給電回路
 40、41、42 導体
 50、51、52 空隙
 60 アンテナ素子給電部
 70 レドーム
 80 レドーム接続部
 90 バンドパスフィルタ
 100 送受信機
 110 導体接続部
 120 支持部材
 130 コネクタ
 140 締結部
 150 スルーホール
REFERENCE SIGNS LIST 1, 2, 3 Antenna device 5, 6 Radio device 10 Substrate 20, 21, 22 Antenna element 30 Power supply circuit 40, 41, 42 Conductor 50, 51, 52 Gap 60 Antenna element power supply section 70 Radome 80 Radome connection section 90 Bandpass filter 100 Transmitter/receiver 110 Conductor connection section 120 Support member 130 Connector 140 Fastening section 150 Through hole

Claims (19)

  1.  基板と、
     前記基板の第1面に配置された複数のアンテナ素子と、
     前記基板の前記第1面の裏面である第2面に配置された給電回路と、
     前記給電回路に対向する位置に配置された第1の導体と、を備え、
     前記給電回路と前記第1の導体との間には空隙が形成されている、
    アンテナ装置。
    A substrate;
    a plurality of antenna elements disposed on a first surface of the substrate;
    a power supply circuit disposed on a second surface of the substrate, the second surface being a surface opposite to the first surface;
    a first conductor disposed at a position facing the power supply circuit;
    an air gap is formed between the power supply circuit and the first conductor;
    Antenna device.
  2.  前記空隙は、前記給電回路に沿って形成されている、
    請求項1に記載のアンテナ装置。
    The gap is formed along the power supply circuit.
    2. The antenna device according to claim 1.
  3.  前記第1の導体の一部は前記基板に隣接し、
     前記空隙は、前記基板と、前記第1の導体とで囲うように形成されている、
    請求項2に記載のアンテナ装置。
    a portion of the first conductor adjacent to the substrate;
    The gap is formed so as to be surrounded by the substrate and the first conductor.
    3. The antenna device according to claim 2.
  4.  前記第1の導体と前記基板との間に配置された支持部材をさらに備え、
     前記空隙は、前記基板と、前記第1の導体と、前記支持部材と、で形成されている、
    請求項1に記載のアンテナ装置。
    a support member disposed between the first conductor and the substrate;
    the gap is formed by the substrate, the first conductor, and the support member.
    2. The antenna device according to claim 1.
  5.  前記支持部材は、前記基板の外周に沿って複数配置されている、
    請求項4に記載のアンテナ装置。
    The support members are arranged in a plurality along the outer periphery of the substrate.
    5. The antenna device according to claim 4.
  6.  前記支持部材は、前記給電回路に沿って複数配置されている、
    請求項4に記載のアンテナ装置。
    The support member is arranged in a plurality of members along the power supply circuit.
    5. The antenna device according to claim 4.
  7.  前記複数のアンテナ素子と前記給電回路を接続するアンテナ素子給電部を備える、
     請求項1乃至6のいずれか一項に記載のアンテナ装置。
    an antenna element feeding section that connects the plurality of antenna elements and the feeding circuit;
    An antenna device according to any one of the preceding claims.
  8.  前記基板の前記第1面側を覆うレドームと、
     前記基板と前記レドームとを接続する接続部と、をさらに備える、
     請求項7に記載のアンテナ装置。
    a radome covering the first surface side of the substrate;
    a connection portion that connects the substrate and the radome,
    8. The antenna device according to claim 7.
  9.  前記基板には穴が形成され、
      前記第1の導体もしくは前記接続部が前記穴に挿入され、前記第1の導体と前記接続部が直接接続されており、
     前記レドームおよび前記接続部は第2の導体である、
    請求項8に記載のアンテナ装置。
    A hole is formed in the substrate,
    the first conductor or the connection portion is inserted into the hole, and the first conductor and the connection portion are directly connected to each other;
    the radome and the connection portion are a second conductor;
    9. The antenna device according to claim 8.
  10.  前記第1の導体と前記接続部が、前記基板に形成されたスルーホールを介して接続されており、
     前記レドームおよび前記接続部は第2の導体である、
    請求項8に記載のアンテナ装置。
    the first conductor and the connection portion are connected via a through hole formed in the substrate,
    the radome and the connection portion are a second conductor;
    9. The antenna device according to claim 8.
  11.  前記アンテナ素子給電部は、前記基板に形成されたスルーホールである、
    請求項7に記載のアンテナ装置。
    The antenna element feed portion is a through hole formed in the substrate.
    8. The antenna device according to claim 7.
  12.  前記複数のアンテナ素子はパッチアンテナを含む、
    請求項3又は4に記載のアンテナ装置。
    the plurality of antenna elements include patch antennas;
    5. The antenna device according to claim 3 or 4.
  13.  前記複数のアンテナ素子はダイポールアンテナを含む、
    請求項3又は4に記載のアンテナ装置。
    the plurality of antenna elements include a dipole antenna;
    5. The antenna device according to claim 3 or 4.
  14.  前記アンテナ装置は、アレーアンテナ装置である、
    請求項3又は4に記載のアンテナ装置。
    The antenna device is an array antenna device.
    5. The antenna device according to claim 3 or 4.
  15.  前記基板は、ガラスエポキシ基板を含む、
    請求項3又は4に記載のアンテナ装置。
    The substrate includes a glass epoxy substrate.
    5. The antenna device according to claim 3 or 4.
  16.  前記第1の導体は、金属である、
    請求項3又は4に記載のアンテナ装置。
    the first conductor is a metal;
    5. The antenna device according to claim 3 or 4.
  17.  前記第2の導体は、金属である、
    請求項9又は10に記載のアンテナ装置。
    the second conductor is a metal;
    11. An antenna device according to claim 9 or 10.
  18.  基板と、
     前記基板の第1面に配置された複数のアンテナ素子と、
     前記基板の前記第1面の裏面である第2面に配置され、前記複数のアンテナ素子に電力を分配する給電回路と、
     前記給電回路に対向する位置に配置され、前記給電回路のグランドとして機能する導体と、を備え、
     前記給電回路と前記導体との間には空隙が形成されている、
    アンテナ装置。
    A substrate;
    a plurality of antenna elements disposed on a first surface of the substrate;
    a power supply circuit disposed on a second surface of the substrate, the second surface being a surface opposite to the first surface, and configured to distribute power to the plurality of antenna elements;
    a conductor that is disposed in a position facing the power supply circuit and functions as a ground of the power supply circuit;
    An air gap is formed between the power supply circuit and the conductor.
    Antenna device.
  19.  基板と、
     前記基板の第1面に配置された複数のアンテナ素子と、
     前記基板の前記第1面の裏面である第2面に配置された給電回路と、
     前記給電回路に対向する位置に配置された第1の導体と、を備え、
     前記給電回路と前記第1の導体との間には空隙が形成されている、
     アンテナ装置と、
     送受信機と、を備える、
    無線装置。
    A substrate;
    a plurality of antenna elements disposed on a first surface of the substrate;
    a power supply circuit disposed on a second surface of the substrate, the second surface being a surface opposite to the first surface;
    a first conductor disposed at a position facing the power supply circuit;
    an air gap is formed between the power supply circuit and the first conductor;
    An antenna device;
    A transceiver;
    Wireless device.
PCT/JP2023/009102 2023-03-09 2023-03-09 Antenna device and wireless device WO2024185136A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/009102 WO2024185136A1 (en) 2023-03-09 2023-03-09 Antenna device and wireless device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/009102 WO2024185136A1 (en) 2023-03-09 2023-03-09 Antenna device and wireless device

Publications (1)

Publication Number Publication Date
WO2024185136A1 true WO2024185136A1 (en) 2024-09-12

Family

ID=92674567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009102 WO2024185136A1 (en) 2023-03-09 2023-03-09 Antenna device and wireless device

Country Status (1)

Country Link
WO (1) WO2024185136A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260830A (en) * 1993-02-04 1994-09-16 Electronique Serge Dassault Improved microstrip antenna arrangement, especially for UHF receivers
JP2013219723A (en) * 2012-04-12 2013-10-24 Hitachi Cable Ltd Antenna device
WO2022176285A1 (en) * 2021-02-17 2022-08-25 日本電気株式会社 Antenna device and radome

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260830A (en) * 1993-02-04 1994-09-16 Electronique Serge Dassault Improved microstrip antenna arrangement, especially for UHF receivers
JP2013219723A (en) * 2012-04-12 2013-10-24 Hitachi Cable Ltd Antenna device
WO2022176285A1 (en) * 2021-02-17 2022-08-25 日本電気株式会社 Antenna device and radome

Similar Documents

Publication Publication Date Title
US7755545B2 (en) Antenna and method of manufacturing the same, and portable wireless terminal using the same
US9698487B2 (en) Array antenna
US6876328B2 (en) Multiple-resonant antenna, antenna module, and radio device using the multiple-resonant antenna
TWI425713B (en) Three-band antenna device with resonance generation
US8378894B2 (en) Antenna device
JP2012147263A (en) Antenna module and radio communication equipment
JP3139975B2 (en) Antenna device
US7372412B2 (en) Transceiver-integrated antenna
CN103378412A (en) Antenna device
CN104185926B (en) Antenna installation
US6697023B1 (en) Built-in multi-band mobile phone antenna with meandering conductive portions
CN116780184B (en) Electronic equipment
US20070229367A1 (en) Antenna apparatus
US11973278B2 (en) Antenna structure and electronic device
JP5213039B2 (en) Single-sided radiation antenna
US7598912B2 (en) Planar antenna structure
KR20080108847A (en) Curved Monopole Antenna
JP3002277B2 (en) Planar antenna
JPH11274845A (en) Antenna system
WO2024185136A1 (en) Antenna device and wireless device
JP3514305B2 (en) Chip antenna
JP3824998B2 (en) Dielectric waveguide antenna
CN116995415A (en) an antenna
US20220336956A1 (en) Antenna structure
CN101728624A (en) Feed-in structure of antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23926346

Country of ref document: EP

Kind code of ref document: A1