WO2024185002A1 - Power conversion device - Google Patents
Power conversion device Download PDFInfo
- Publication number
- WO2024185002A1 WO2024185002A1 PCT/JP2023/008288 JP2023008288W WO2024185002A1 WO 2024185002 A1 WO2024185002 A1 WO 2024185002A1 JP 2023008288 W JP2023008288 W JP 2023008288W WO 2024185002 A1 WO2024185002 A1 WO 2024185002A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- period
- bridge circuit
- voltage
- power conversion
- conversion device
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/22—Conversion of DC power input into DC power output with intermediate conversion into AC
- H02M3/24—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
- H02M3/28—Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
Definitions
- the present invention relates to a power conversion device.
- an isolated DC/DC converter as described in Patent Document 1, is an example of a power conversion device that uses a transformer (hereinafter referred to as "transformer”) to insulate the input side from the output side, converts the input direct current (DC) voltage to a DC voltage of a predetermined level, and outputs it.
- transformer hereinafter referred to as "transformer”
- This DC/DC converter is of the DAB (Dual Active Bridge) type, and includes a transformer having a primary winding and a secondary winding, an input bridge circuit that is connected to the primary winding side and is the high-voltage side composed of switching elements, an output bridge circuit that is connected to the secondary winding side and is the low-voltage side composed of switching elements with a resonance function, and a control circuit that operates the switching elements of the input bridge circuit and the output bridge circuit to perform constant voltage or constant current operation.
- DAB Direct Active Bridge
- this DC input voltage is switched by the switching elements in the input bridge circuit and converted into an AC (alternating current) voltage.
- the converted AC voltage is converted into an AC voltage according to the turns ratio of the transformer's primary and secondary windings and its leakage inductance.
- the converted AC voltage is switched by the switching elements in the output bridge circuit and converted into a specified DC voltage, and a constant DC output voltage is output.
- the transformer current charges and discharges the parasitic capacitance of the switching elements.
- the voltage has a certain slope depending on the time it takes to charge the parasitic capacitance, and by performing switching when the voltage is zero (i.e., soft switching), it is possible to suppress switching losses that occur in the switching elements and also reduce surge voltages and noise caused by switching.
- the DC-DC converter described in Patent Document 1 includes, for example, a bridge circuit, a transformer, an inductance element, a capacitor, and a control unit. Such a DC-DC converter 1 performs power conversion by utilizing the electrical energy flowing through the inductance element. In some cases, the inductance element may use leakage inductance inherent in the transformer.
- the object of the present invention is to provide a power conversion device that can suppress the decrease in power conversion efficiency.
- One example of the present invention is a power conversion device including a first bridge circuit, a second bridge circuit, a transformer disposed between the first bridge circuit and the second bridge circuit, and a control unit that operates the first and second bridge circuits
- the control unit is a power conversion device that calculates a voltage ratio between an input voltage and an output voltage, and determines the input side Hi period so that, relative to the voltage ratio, there are cases where the input side Hi period on the first bridge circuit side is increased and cases where the input side Hi period is decreased.
- the present invention makes it possible to suppress the decrease in power conversion efficiency.
- FIG. 1 is a diagram illustrating an example of a configuration of a DC-DC converter according to a first embodiment.
- FIG. 4 is a diagram showing an example of voltage waveforms on the input/output side according to the embodiment.
- FIG. 11 is a diagram showing an example of voltage waveforms on the input/output side in the comparative example.
- the present invention relates to a power conversion device that converts and outputs power supplied from an input side.
- a power conversion device that converts and outputs power supplied from an input side.
- a single-phase isolated DC/DC converter will be described as shown in the circuit diagram of FIG. 1.
- This single-phase isolated DC/DC converter can be used bidirectionally by inverting the input and output, and has a capacitor 10 that smoothes the DC input voltage Vin.
- a first bridge circuit e.g., primary bridge circuit 20
- a primary winding of a transformer for input/output insulation is connected via an inductor to output nodes N1 and N2 of the primary bridge circuit.
- Input nodes N11 and N12 of a second bridge circuit are connected to the secondary winding 42 of the transformer.
- an input voltage detection unit detects a DC input voltage detection value Vin
- an output voltage detection unit detects a DC output voltage detection value Vout, although not shown in the figure.
- a load ZL is connected to the output side of the secondary bridge circuit 50 via a smoothing capacitor 60.
- a control circuit 70 is provided which outputs four first control signals G1, G2, G3, G4 and four second control signals G11, G12, G13, G14 for controlling the switching of the primary bridge circuit 20 and the secondary bridge circuit 50.
- the control circuit 70 includes, for example, a microcomputer having a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), input/output ports, and various other circuits.
- the CPU of this microcomputer realizes control to operate the first bridge circuit and the second bridge circuit by reading and executing a program stored in the ROM. Specifically, it has a function of adjusting the switching timing of the switching elements in the first bridge circuit and the second bridge circuit.
- control circuit 70 may be configured to include a table in which the Hi period [deg] of the input side voltage Vin_ac on the first bridge circuit side, the Hi period [deg] of the output side voltage Vout_ac on the second bridge circuit side, and the phase difference [deg] of the output voltage between the first bridge circuit and the second bridge circuit are stored for the calculated input/output voltage ratio d and the target value of the output current flowing through the load ZL.
- the primary bridge circuit 20 is made up of four first switching elements 201, 202, 203, and 204 connected in a bridge configuration, which are turned on/off by four first control signals G1 to G4. They are turned on/off by the control signals G1 to G4 input to the gates.
- An inductor (not shown) and the primary winding 41 of the transformer 40 are connected in series between the output nodes N1 and N2 of the primary bridge circuit 20.
- a capacitor is connected in parallel to each of the first switching elements 201, 202, 203, and 204 (not shown).
- the inductor together with four capacitors connected in parallel to the switching elements, constitutes an LC resonant circuit, but in FIG. 1, this inductor is omitted from the configuration.
- the primary-side bridge circuit 20 converts the DC input voltage Vin into an AC voltage and supplies it to the primary winding 41 side by turning on/off the first switching elements 201-204.
- the primary-side bridge circuit 20 has the function of rectifying the AC voltage supplied from the primary winding 41 side by the first diodes 211-214 and outputting a DC voltage.
- the input nodes N11 and N12 of the secondary bridge circuit 50 are connected to both ends of the secondary winding 42.
- the secondary bridge circuit 50 has the same configuration as the primary bridge circuit 20, and four second switching elements 501, 502, 503, and 504 are connected in a bridge configuration and are turned on/off by four second control signals G11, G12, G13, and G14, respectively.
- Each of the switching elements 501 to 504 is driven by a gate-emitter voltage Vge, and is turned on/off by each of the second control signals G11 to G14 input to the gate.
- the collector-emitter of switching element 501, input node N11, and the collector-emitter of switching element 502 are connected in series to form a first series circuit.
- the collector-emitter of switching element 503, input node N12, and the collector-emitter of switching element 504 are connected in series to form a second series circuit.
- Second return means such as second diodes 511, 512, 513, and 514, are connected in anti-parallel between the collector and emitter of each of the switching elements 501 to 504.
- second capacitors (not shown in the figure), which are second capacitance elements for resonance, are connected in parallel to each of the switching elements 501 to 504.
- the four second capacitors form an LC resonance circuit together with the inductance of the secondary winding 42, but these second capacitors may also be formed by the parasitic capacitance of each of the switching elements 501 to 504.
- the DC voltage output from the secondary bridge circuit 50 is smoothed by a smoothing capacitor 60 to become a DC output voltage Vout, which is then supplied to the load ZL.
- FIG. 1 an example has been described in which no inductance element is disposed between the primary bridge circuit 20 or the secondary bridge circuit 50 and the transformer 40.
- the present invention is not limited to such a configuration, and may be configured such that an inductance element is disposed between the AC side of one of the primary bridge circuit 20 or the secondary bridge circuit 50 and the transformer 40. Alternatively, it may be configured such that an inductance element is disposed between the AC side of both the primary bridge circuit 20 and the secondary bridge circuit 50 and the transformer 40.
- FIG. 2 is a diagram showing voltage waveforms in the isolated DC/DC converter of this embodiment.
- the vertical axis indicates the input voltage V in_ac , which is the voltage between nodes N1 and N2, and the horizontal axis indicates time or phase [deg].
- the vertical axis indicates the Hi period 22 of the input voltage V in_ac
- the horizontal axis indicates the input/output voltage ratio d.
- the vertical axis indicates the Hi period 25 of the output voltage V out_ac
- the horizontal axis indicates the input/output voltage ratio d.
- the vertical axis indicates the output voltage V out_ac , which is the voltage between nodes N11 and N12
- the horizontal axis indicates time or phase [deg].
- the input voltage Vin_ac has a pulse-like voltage waveform.
- the input voltage Vin_ac has a Hi period of 22 [deg].
- the amplitude 221 of the input voltage Vin_ac is constant.
- the control circuit 70 controls the Hi period 22 of the input voltage Vin_ac so as to increase the Hi period 22 of the input voltage Vin_ac as the voltage ratio d increases. Also, in the case of a voltage ratio 28 higher than the voltage ratio 26, the control circuit 70 controls the Hi period 22 of the input voltage Vin_ac so as to decrease the Hi period 22 of the input voltage Vin_ac as the voltage ratio d increases.
- the output voltage V out_ac has a pulse-like voltage waveform.
- the output voltage V out_ac has a Hi period of 25 [deg].
- the control circuit 70 controls the Hi period 25 of the output voltage V out_ac so as to decrease the Hi period 25 of the output voltage V out_ac as the voltage ratio d increases, and further increase the Hi period 25 of the output voltage V out_ac as the voltage ratio d increases. Furthermore, in the case of a voltage ratio 28 higher than the voltage ratio 26, the control circuit 70 controls the Hi period 25 of the output voltage V out_ac so as to reduce the Hi period 25 of the output voltage V out_ac as the voltage ratio d increases.
- FIG. 3 is a diagram showing a voltage waveform in an isolated DC/DC converter as a comparative example.
- the first row from the top in FIG. 3 shows the input voltage V in_ac , which is the voltage between nodes N1 and N2, on the vertical axis, and the horizontal axis shows time or phase [deg].
- the vertical axis shows the Hi period of the input voltage
- the horizontal axis shows the input/output voltage ratio d.
- the vertical axis shows the Hi period of the output voltage
- the horizontal axis shows the input/output voltage ratio d.
- the vertical axis shows the output voltage V out_ac , which is the voltage between nodes N11 and N12
- the horizontal axis shows time or phase [deg].
- the control circuit 70 controls the Hi period 22 of the input voltage Vin_ac so as to increase the Hi period 22 of the input voltage Vin_ac as the voltage ratio d increases. Also, in case 28 of a voltage ratio higher than voltage ratio 26, the control circuit 70 controls the Hi period 22 of the input voltage Vin_ac so as to keep the Hi period 22 of the input voltage Vin_ac constant as the voltage ratio d increases.
- the output voltage V out_ac has a pulsed voltage waveform.
- the output voltage V out_ac has a Hi period of 25 [deg].
- the control circuit 70 controls the Hi period 25 of the output voltage V out_ac so that the Hi period 25 of the output voltage V out_ac remains constant as the voltage ratio d increases. Also, in case 28 of a voltage ratio higher than voltage ratio 26, the control circuit 70 controls the Hi period 25 of the output voltage V out_ac so that the Hi period 25 of the output voltage V out_ac decreases as the voltage ratio d increases.
- the power conversion efficiency of the power conversion device can be increased compared to the conventional case.
- the power conversion efficiency can also be increased in the relationship between the Hi period of the input voltage and the output current flowing through the load ZL.
- the power conversion efficiency can also be increased in the relationship between the Hi period of the output voltage and the output current flowing through the load ZL, so that the power conversion efficiency can be increased overall in the control of the power conversion device.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
本発明は、電力変換装置に関する。 The present invention relates to a power conversion device.
従来、絶縁型DC/DCコンバータは、例えば、特許文献1に記載されているように、変圧器(以下「トランス」という。)を用いて入力側と出力側とを絶縁し、入力される直流(DC)電圧を所定レベルのDC電圧に変換して出力する電力変換装置の一例である。このDC/DCコンバータは、DAB(Dual Active Bridge)方式になっており、1次巻線及び2次巻線を有するトランスと、その1次巻線側に接続され、スイッチング素子により構成される高圧側である入力側ブリッジ回路と、その2次巻線側に接続され、共振機能付きのスイッチング素子により構成される低圧側である出力側ブリッジ回路と、その入力側ブリッジ回路及び出力側ブリッジ回路のスイッチング素子を操作して定電圧または定電流動作を行わせる制御回路とを備えている。 Conventionally, an isolated DC/DC converter, as described in Patent Document 1, is an example of a power conversion device that uses a transformer (hereinafter referred to as "transformer") to insulate the input side from the output side, converts the input direct current (DC) voltage to a DC voltage of a predetermined level, and outputs it. This DC/DC converter is of the DAB (Dual Active Bridge) type, and includes a transformer having a primary winding and a secondary winding, an input bridge circuit that is connected to the primary winding side and is the high-voltage side composed of switching elements, an output bridge circuit that is connected to the secondary winding side and is the low-voltage side composed of switching elements with a resonance function, and a control circuit that operates the switching elements of the input bridge circuit and the output bridge circuit to perform constant voltage or constant current operation.
例えば、所定の電圧のDC電圧が入力されると、このDC入力電圧が、入力側ブリッジ回路内のスイッチング素子によりスイッチングされてAC(交流)電圧に変換される。変換されたAC電圧は、トランスの1次巻線と2次巻線の巻数比およびその漏れインダクタンスに応じたAC電圧に変換される。変換されたAC電圧は、出力側ブリッジ回路内のスイッチング素子によりスイッチングされ、所定のDC電圧に変換されて一定のDC出力電圧が出力される。 For example, when a DC voltage of a specified voltage is input, this DC input voltage is switched by the switching elements in the input bridge circuit and converted into an AC (alternating current) voltage. The converted AC voltage is converted into an AC voltage according to the turns ratio of the transformer's primary and secondary windings and its leakage inductance. The converted AC voltage is switched by the switching elements in the output bridge circuit and converted into a specified DC voltage, and a constant DC output voltage is output.
入力側ブリッジ回路及び出力側ブリッジ回路において、トランス電流により、スイッチング素子の寄生容量の充放電動作を行う。この時、寄生容量への充電にかかる時間により電圧が一定の傾斜を持ち、電圧がゼロとなった状態でスイッチング(即ち、ソフトスイッチング)を行うことにより、スイッチング素子で生じるスイッチング損失を抑制でき、更に、スイッチングにより生じるサージ電圧やノイズ等も低減できる。 In the input bridge circuit and output bridge circuit, the transformer current charges and discharges the parasitic capacitance of the switching elements. At this time, the voltage has a certain slope depending on the time it takes to charge the parasitic capacitance, and by performing switching when the voltage is zero (i.e., soft switching), it is possible to suppress switching losses that occur in the switching elements and also reduce surge voltages and noise caused by switching.
特許文献1に記載されたDC-DCコンバータは、例えば、ブリッジ回路と、トランスと、インダクタンス素子と、コンデンサと、制御部とを備える。かかるDC-DCコンバータ1は、インダクタンス素子に流れる電気エネルギーを利用して電力変換を行う。場合によっては、インダクタンス素子はトランスに内在する漏れインダクタンスを用いる場合もある。 The DC-DC converter described in Patent Document 1 includes, for example, a bridge circuit, a transformer, an inductance element, a capacitor, and a control unit. Such a DC-DC converter 1 performs power conversion by utilizing the electrical energy flowing through the inductance element. In some cases, the inductance element may use leakage inductance inherent in the transformer.
特許文献1に記載された従来のDC/DCコンバータでは、入力側ブリッジ回路及び出力側ブリッジ回路において、制御回路の制御により、ソフトスイッチング動作が可能である。しかし、入力側ブリッジ回路と出力側ブリッジ回路との間の位相差(即ち、制御回路からの出力指令値)と入出力電圧の電圧比により、ソフトスイッチング動作が行われない動作範囲が存在する。これにより、損失やノイズ等が増加するという課題があった。 In the conventional DC/DC converter described in Patent Document 1, soft switching operation is possible in the input bridge circuit and the output bridge circuit by control of the control circuit. However, there is an operating range in which soft switching operation does not occur, depending on the phase difference between the input bridge circuit and the output bridge circuit (i.e., the output command value from the control circuit) and the voltage ratio between the input and output voltages. This causes problems such as increased losses and noise.
更に、位相差の条件によってはトランスの鉄損や銅損による損失の大きさが顕著になり電力変換効率が低下してしまうおそれがあった。 Furthermore, depending on the phase difference conditions, the magnitude of losses due to iron loss and copper loss in the transformer could become significant, resulting in a decrease in power conversion efficiency.
本発明の目的は、電力変換効率の低下を抑制することができる電力変換装置を提供することにある。 The object of the present invention is to provide a power conversion device that can suppress the decrease in power conversion efficiency.
本発明の一例としては、第1のブリッジ回路と、第2のブリッジ回路と、第1のブリッジ回路と第2のブリッジ回路の間に配置されたトランスと、第1および第2のブリッジ回路を動作させる制御部とを備える電力変換装置であって、
前記制御部は、入力電圧と出力電圧との電圧比率を演算し、前記電圧比率に対して、第1のブリッジ回路側の入力側Hi期間を増加させる場合と、前記入力側Hi期間を減少させる場合とを有するように、前記入力側Hi期間を決定する電力変換装置である。
One example of the present invention is a power conversion device including a first bridge circuit, a second bridge circuit, a transformer disposed between the first bridge circuit and the second bridge circuit, and a control unit that operates the first and second bridge circuits,
The control unit is a power conversion device that calculates a voltage ratio between an input voltage and an output voltage, and determines the input side Hi period so that, relative to the voltage ratio, there are cases where the input side Hi period on the first bridge circuit side is increased and cases where the input side Hi period is decreased.
本発明によれば、電力変換効率の低下を抑制することができる。 The present invention makes it possible to suppress the decrease in power conversion efficiency.
本発明は、入力側から供給される電力を変換して出力する電力変換装置に関する発明である。本実施例では、電力変換装置の一例として、図1の回路図に示すように、単相用の絶縁型DC/DCコンバータについて説明をする。 The present invention relates to a power conversion device that converts and outputs power supplied from an input side. In this embodiment, as an example of a power conversion device, a single-phase isolated DC/DC converter will be described as shown in the circuit diagram of FIG. 1.
この単相用の絶縁型DC/DCコンバータは、入出力を反転して双方向に使用できるコンバータであり、DCの入力電圧Vinを平滑するコンデンサ10を有している。コンデンサ10の両端電極には、第1のブリッジ回路(例えば、1次側ブリッジ回路20)が接続されている。1次側ブリッジ回路の出力側ノードN1、N2には、インダクタを介して、入出力間絶縁用のトランスの1次巻線が接続されている。トランスの2次巻線42には、第2のブリッジ回路(例えば、2次側ブリッジ回路50)の入力側ノードN11、N12が接続されている。 This single-phase isolated DC/DC converter can be used bidirectionally by inverting the input and output, and has a capacitor 10 that smoothes the DC input voltage Vin. A first bridge circuit (e.g., primary bridge circuit 20) is connected to both ends of the capacitor 10. A primary winding of a transformer for input/output insulation is connected via an inductor to output nodes N1 and N2 of the primary bridge circuit. Input nodes N11 and N12 of a second bridge circuit (e.g., secondary bridge circuit 50) are connected to the secondary winding 42 of the transformer.
図1では図示は省略したが、入力電圧検出部がDCの入力電圧検出値Vinを検出する。また、同様に図示は省略したが、出力電圧検出部がDCの出力電圧検出値Voutを検出する。
2次側ブリッジ回路50の出力側には、平滑用のコンデンサ60を介して、負荷ZLが接続される。更に、1次側ブリッジ回路20及び2次側ブリッジ回路50のスイッチングを制御するための4つの第1の制御信号G1、G2、G3、G4、及び4つの第2の制御信号G11、G12、G13、G14を出力する制御回路70が設けられている。
1, an input voltage detection unit detects a DC input voltage detection value Vin, and an output voltage detection unit detects a DC output voltage detection value Vout, although not shown in the figure.
A load ZL is connected to the output side of the secondary bridge circuit 50 via a smoothing capacitor 60. Furthermore, a control circuit 70 is provided which outputs four first control signals G1, G2, G3, G4 and four second control signals G11, G12, G13, G14 for controlling the switching of the primary bridge circuit 20 and the secondary bridge circuit 50.
制御回路70(制御部)は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入出力ポートなどを有するマイクロコンピュータや各種の回路を含む。このマイクロコンピュータのCPUは、ROMに記憶されているプログラムを読み出して実行することにより、第1のブリッジ回路および第2のブリッジ回路を動作させる制御を実現する。具体的には、第1のブリッジ回路および第2のブリッジ回路におけるスイッチング素子のスイッチングタイミングの調整機能を備える。 The control circuit 70 (control unit) includes, for example, a microcomputer having a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), input/output ports, and various other circuits. The CPU of this microcomputer realizes control to operate the first bridge circuit and the second bridge circuit by reading and executing a program stored in the ROM. Specifically, it has a function of adjusting the switching timing of the switching elements in the first bridge circuit and the second bridge circuit.
制御回路70は、第1のブリッジ回路及び第2のブリッジ回路における入力電圧検出値Vinと出力電圧検出値Voutの入出力電圧比率d(d=Vout/Vin)を演算し、入出力電圧比率dと負荷ZLに流れる出力電流目標値に基づいて、第1のブリッジ回路側の入力側電圧Vin_acのHi期間[deg]と第2のブリッジ回路側の出力側電圧のHi期間[deg]と第1のブリッジ回路と第2のブリッジ回路の出力電圧位相差[deg]を決定する。例えば、制御回路70は、演算された入出力電圧比率dと負荷ZLに流れる出力電流目標値に対して、対応する第1のブリッジ回路側の入力側電圧Vin_acのHi期間[deg]、第2のブリッジ回路側の出力側電圧Vout_acのHi期間[deg]、第1のブリッジ回路と第2のブリッジ回路の出力電圧の位相差[deg]が格納されたテーブルを備える構成としてもよい。 The control circuit 70 calculates an input/output voltage ratio d (d=Vout/Vin) between the input voltage detection value Vin and the output voltage detection value Vout in the first bridge circuit and the second bridge circuit, and determines the Hi period [deg] of the input side voltage Vin_ac on the first bridge circuit side, the Hi period [deg] of the output side voltage Vout on the second bridge circuit side, and the output voltage phase difference [deg] between the first bridge circuit and the second bridge circuit based on the input/output voltage ratio d and the target value of the output current flowing through the load ZL. For example, the control circuit 70 may be configured to include a table in which the Hi period [deg] of the input side voltage Vin_ac on the first bridge circuit side, the Hi period [deg] of the output side voltage Vout_ac on the second bridge circuit side, and the phase difference [deg] of the output voltage between the first bridge circuit and the second bridge circuit are stored for the calculated input/output voltage ratio d and the target value of the output current flowing through the load ZL.
1次側ブリッジ回路20は、4つの第1の制御信号G1~G4によってそれぞれオン/オフ動作する4個の第1のスイッチング素子201、202、203、204がブリッジ形に接続されている。ゲートに入力される各制御信号G1~G4によってオン/オフ動作する。 The primary bridge circuit 20 is made up of four first switching elements 201, 202, 203, and 204 connected in a bridge configuration, which are turned on/off by four first control signals G1 to G4. They are turned on/off by the control signals G1 to G4 input to the gates.
1次側ブリッジ回路20の出力側ノードN1、N2間には、インダクタ(図では省略)及びトランス40の1次巻線41が直列に接続されている。また、第1のスイッチング素子201、202、203、204には、それぞれにコンデンサが並列に接続されている(図では省略)。 An inductor (not shown) and the primary winding 41 of the transformer 40 are connected in series between the output nodes N1 and N2 of the primary bridge circuit 20. In addition, a capacitor is connected in parallel to each of the first switching elements 201, 202, 203, and 204 (not shown).
インダクタは、スイッチング素子に並列に接続された、4個のコンデンサと共に、LC共振回路を構成するものであるが、図1では、このインダクタを省略した構成としている。図1における構成においては、1次側ブリッジ回路20は、第1のスイッチング素子201~204のオン/オフ動作により、DCの入力電圧VinをAC電圧に変換して1次巻線41側へ供給する。又は、1次側ブリッジ回路20は、第1のダイオード211~214により、1次巻線41側から供給されるAC電圧を整流してDC電圧を出力する機能を有している。 The inductor, together with four capacitors connected in parallel to the switching elements, constitutes an LC resonant circuit, but in FIG. 1, this inductor is omitted from the configuration. In the configuration in FIG. 1, the primary-side bridge circuit 20 converts the DC input voltage Vin into an AC voltage and supplies it to the primary winding 41 side by turning on/off the first switching elements 201-204. Alternatively, the primary-side bridge circuit 20 has the function of rectifying the AC voltage supplied from the primary winding 41 side by the first diodes 211-214 and outputting a DC voltage.
2次巻線42の両端電極には、2次側ブリッジ回路50の入力側ノードN11、N12が接続されている。2次側ブリッジ回路50は、1次側ブリッジ回路20と同一の構成であり、4つの第2の制御信号G11、G12、G13、G14によってそれぞれオン/オフ動作する4個の第2のスイッチング素子501、502、503、504がブリッジ形に接続されている。各スイッチング素子501~504は、ゲート・エミッタ間電圧Vgeで駆動され、ゲートに入力される各第2の制御信号G11~G14によってオン/オフ動作する。 The input nodes N11 and N12 of the secondary bridge circuit 50 are connected to both ends of the secondary winding 42. The secondary bridge circuit 50 has the same configuration as the primary bridge circuit 20, and four second switching elements 501, 502, 503, and 504 are connected in a bridge configuration and are turned on/off by four second control signals G11, G12, G13, and G14, respectively. Each of the switching elements 501 to 504 is driven by a gate-emitter voltage Vge, and is turned on/off by each of the second control signals G11 to G14 input to the gate.
スイッチング素子501のコレクタ・エミッタと、入力側ノードN11と、スイッチング素子502のコレクタ・エミッタとが、直列に接続されて第1の直列回路が構成されている。同様に、スイッチング素子503のコレクタ・エミッタと、入力側ノードN12と、スイッチング素子504のコレクタ・エミッタとが、直列に接続されて第2の直列回路が構成されている。 The collector-emitter of switching element 501, input node N11, and the collector-emitter of switching element 502 are connected in series to form a first series circuit. Similarly, the collector-emitter of switching element 503, input node N12, and the collector-emitter of switching element 504 are connected in series to form a second series circuit.
これらの第1の直列回路と第2の直列回路とは、並列に接続されている。各スイッチング素子501~504のコレクタ・エミッタ間には、第2の還流手段である例えば第2のダイオード511、512、513、514がそれぞれ逆並列に接続される。更に、共振用の第2の容量素子である第2のコンデンサ(図では省略)が、それぞれ、各スイッチング素子501~504に並列に接続されている。4個の第2のコンデンサは、2次巻線42のインダクタンスと共にLC共振回路を構成するものであるが、これらの第2のコンデンサを、各スイッチング素子501~504の寄生容量により構成してもよい。 These first and second series circuits are connected in parallel. Second return means, such as second diodes 511, 512, 513, and 514, are connected in anti-parallel between the collector and emitter of each of the switching elements 501 to 504. Furthermore, second capacitors (not shown in the figure), which are second capacitance elements for resonance, are connected in parallel to each of the switching elements 501 to 504. The four second capacitors form an LC resonance circuit together with the inductance of the secondary winding 42, but these second capacitors may also be formed by the parasitic capacitance of each of the switching elements 501 to 504.
2次側ブリッジ回路50から出力されるDC電圧は、平滑用のコンデンサ60により平滑されてDCの出力電圧Voutとなり、この出力電圧Voutが負荷ZLに供給される構成になっている。 The DC voltage output from the secondary bridge circuit 50 is smoothed by a smoothing capacitor 60 to become a DC output voltage Vout, which is then supplied to the load ZL.
2次側ブリッジ回路50は、第2のダイオード511~514により、2次巻線42側から供給されるAC電圧を整流してDC電圧を出力する。又は、2次側ブリッジ回路50は、スイッチング素子501~504のオン/オフ動作により、DCの入力電圧をAC電圧に変換して2次巻線42側へ供給する機能を有している。 The secondary bridge circuit 50 rectifies the AC voltage supplied from the secondary winding 42 side using the second diodes 511-514 and outputs a DC voltage. Alternatively, the secondary bridge circuit 50 has the function of converting the DC input voltage into an AC voltage and supplying it to the secondary winding 42 side by turning on/off the switching elements 501-504.
図1では、1次側ブリッジ回路20もしくは2次側ブリッジ回路50とトランス40との間には、インダクタンス素子を配置しない例で説明をした。そのような構成に限らず、1次側ブリッジ回路20もしくは2次側ブリッジ回路50の一方の交流側とトランス40との間に、インダクタンス素子を配置するような構成としてもよい。または、1次側ブリッジ回路20および2次側ブリッジ回路50の両方の交流側とトランス40との間に、インダクタンス素子を配置するような構成としてしてもよい。 In FIG. 1, an example has been described in which no inductance element is disposed between the primary bridge circuit 20 or the secondary bridge circuit 50 and the transformer 40. The present invention is not limited to such a configuration, and may be configured such that an inductance element is disposed between the AC side of one of the primary bridge circuit 20 or the secondary bridge circuit 50 and the transformer 40. Alternatively, it may be configured such that an inductance element is disposed between the AC side of both the primary bridge circuit 20 and the secondary bridge circuit 50 and the transformer 40.
図2は、本実施例である絶縁型DC/DCコンバータにおける電圧波形を示す図である。図2において上から1段目は、縦軸がノードN1、N2間の電圧である入力側電圧Vin_acを示し、横軸は時間または位相[deg]を示す。図2において2段目は、縦軸が入力側電圧Vin_acのHi期間22を示し、横軸は入出力電圧比率dを示す。図2において3段目は、縦軸が出力側電圧Vout_acのHi期間25を示し、横軸は入出力電圧比率dを示す。図2において4段目は、縦軸がノードN11、N12間の電圧である出力側電圧Vout_acを示し、横軸は時間または位相[deg]を示す。 FIG. 2 is a diagram showing voltage waveforms in the isolated DC/DC converter of this embodiment. In the first row from the top in FIG. 2, the vertical axis indicates the input voltage V in_ac , which is the voltage between nodes N1 and N2, and the horizontal axis indicates time or phase [deg]. In the second row in FIG. 2, the vertical axis indicates the Hi period 22 of the input voltage V in_ac , and the horizontal axis indicates the input/output voltage ratio d. In the third row in FIG. 2, the vertical axis indicates the Hi period 25 of the output voltage V out_ac , and the horizontal axis indicates the input/output voltage ratio d. In the fourth row in FIG. 2, the vertical axis indicates the output voltage V out_ac , which is the voltage between nodes N11 and N12, and the horizontal axis indicates time or phase [deg].
図2の1段目に示すように、入力側電圧Vin_acは、パルス状の電圧波形である。入力側電圧Vin_acは、入力側電圧Vin_acのHi期間22[deg]を有する。また、入力側電圧Vin_acの振幅221は一定である。 2, the input voltage Vin_ac has a pulse-like voltage waveform. The input voltage Vin_ac has a Hi period of 22 [deg]. The amplitude 221 of the input voltage Vin_ac is constant.
図2の2段目に示すように、入力側電圧Vin_acのHi期間22は、トランス巻数比(=N)と等しい電圧比率26を境界として、電圧比率dに対する変化の傾向が変わる。
この電圧比率26のときは、出力電圧検出値Vout=入力電圧検出値(Vin)×トランス巻数比Nの関係になるときである。
As shown in the second row of FIG. 2, the tendency of change in the Hi period 22 of the input voltage Vin_ac with respect to the voltage ratio d changes at a voltage ratio 26 that is equal to the transformer turns ratio (=N).
When the voltage ratio is 26, the relationship is expressed as follows: output voltage detection value Vout=input voltage detection value (Vin)×transformer turns ratio N.
本実施例では、電圧比率26より低い電圧比率の場合27には、電圧比率dが増加するに従い、入力側電圧Vin_acのHi期間22を増加させるように制御回路70が、入力側電圧Vin_acのHi期間22を制御する。また、電圧比率26より高い電圧比率の場合28には、電圧比率dが増加するに従い、入力側電圧Vin_acのHi期間22を減少させるように、制御回路70が、入力側電圧Vin_acのHi期間22を制御する。 In this embodiment, in the case of a voltage ratio 27 lower than the voltage ratio 26, the control circuit 70 controls the Hi period 22 of the input voltage Vin_ac so as to increase the Hi period 22 of the input voltage Vin_ac as the voltage ratio d increases. Also, in the case of a voltage ratio 28 higher than the voltage ratio 26, the control circuit 70 controls the Hi period 22 of the input voltage Vin_ac so as to decrease the Hi period 22 of the input voltage Vin_ac as the voltage ratio d increases.
図2の4段目に示すように、出力側電圧Vout_acは、パルス状の電圧波形である。出力側電圧Vout_acは、出力側電圧Vout_acのHi期間25[deg]を有する。 2, the output voltage V out_ac has a pulse-like voltage waveform. The output voltage V out_ac has a Hi period of 25 [deg].
図2の3段目に示すように、本実施例では、電圧比率26より低い電圧比率の場合27には、電圧比率dが増加するに従い、出力側電圧Vout_acのHi期間25を減少させ、さらに、電圧比率dが増加するに従い、出力側電圧Vout_acのHi期間25を増加させるように、制御回路70が、出力側電圧Vout_acのHi期間25を制御する。
また、電圧比率26より高い電圧比率の場合28には、電圧比率dが増加するに従い、出力側電圧Vout_acのHi期間25を減少させるように、制御回路70が、出力側電圧Vout_acのHi期間25を制御する。
As shown in the third row of FIG. 2 , in this embodiment, in the case of a voltage ratio 27 lower than voltage ratio 26, the control circuit 70 controls the Hi period 25 of the output voltage V out_ac so as to decrease the Hi period 25 of the output voltage V out_ac as the voltage ratio d increases, and further increase the Hi period 25 of the output voltage V out_ac as the voltage ratio d increases.
Furthermore, in the case of a voltage ratio 28 higher than the voltage ratio 26, the control circuit 70 controls the Hi period 25 of the output voltage V out_ac so as to reduce the Hi period 25 of the output voltage V out_ac as the voltage ratio d increases.
本実施例の特徴を示すために図3を用いて比較例を説明する。図3は、比較例としての絶縁型DC/DCコンバータにおける電圧波形を示す図である。図2と同様に、図3において上から1段目は、縦軸がノードN1、N2間の電圧である入力側電圧Vin_acを示し、横軸は時間または位相[deg]を示す。図3において2段目は、縦軸が入力側電圧のHi期間を示し、横軸は入出力電圧比率dを示す。図3において3段目は、縦軸が出力側電圧のHi期間を示し、横軸は入出力電圧比率dを示す。図3において4段目は、縦軸がノードN11、N12間の電圧である出力側電圧Vout_acを示し、横軸は時間または位相[deg]を示す。 In order to show the features of this embodiment, a comparative example will be described with reference to FIG. 3. FIG. 3 is a diagram showing a voltage waveform in an isolated DC/DC converter as a comparative example. As in FIG. 2, the first row from the top in FIG. 3 shows the input voltage V in_ac , which is the voltage between nodes N1 and N2, on the vertical axis, and the horizontal axis shows time or phase [deg]. In the second row in FIG. 3, the vertical axis shows the Hi period of the input voltage, and the horizontal axis shows the input/output voltage ratio d. In the third row in FIG. 3, the vertical axis shows the Hi period of the output voltage, and the horizontal axis shows the input/output voltage ratio d. In the fourth row in FIG. 3, the vertical axis shows the output voltage V out_ac , which is the voltage between nodes N11 and N12, and the horizontal axis shows time or phase [deg].
図3の上から2段目に示すように、比較例では、電圧比率26より低い電圧比率の場合27には、電圧比率dが増加するに従い、入力側電圧Vin_acのHi期間22を増加させるように制御回路70が、入力側電圧Vin_acのHi期間22を制御する。また、電圧比率26より高い電圧比率の場合28には、電圧比率dが増加するに従い、入力側電圧Vin_acのHi期間22が一定となるように、制御回路70が、入力側電圧Vin_acのHi期間22を制御する。 3, in the comparative example, in case 27 of a voltage ratio lower than voltage ratio 26, the control circuit 70 controls the Hi period 22 of the input voltage Vin_ac so as to increase the Hi period 22 of the input voltage Vin_ac as the voltage ratio d increases. Also, in case 28 of a voltage ratio higher than voltage ratio 26, the control circuit 70 controls the Hi period 22 of the input voltage Vin_ac so as to keep the Hi period 22 of the input voltage Vin_ac constant as the voltage ratio d increases.
図3の4段目に示すように、比較例では、出力側電圧Vout_acは、パルス状の電圧波形である。出力側電圧Vout_acは、出力側電圧Vout_acのHi期間25[deg]を有する。 3, in the comparative example, the output voltage V out_ac has a pulsed voltage waveform. The output voltage V out_ac has a Hi period of 25 [deg].
図3の3段目に示すように、比較例では、電圧比率26より低い電圧比率の場合27には、出力側電圧Vout_acのHi期間25は、電圧比率dが増加するに従い、出力側電圧Vout_acのHi期間25は一定となるように、制御回路70が、出力側電圧Vout_acのHi期間25を制御する。また、電圧比率26より高い電圧比率の場合28には、電圧比率dが増加するに従い、出力側電圧Vout_acのHi期間25を減少させるように、制御回路70が、出力側電圧Vout_acのHi期間25を制御する。 3, in the comparative example, in case 27 of a voltage ratio lower than voltage ratio 26, the control circuit 70 controls the Hi period 25 of the output voltage V out_ac so that the Hi period 25 of the output voltage V out_ac remains constant as the voltage ratio d increases. Also, in case 28 of a voltage ratio higher than voltage ratio 26, the control circuit 70 controls the Hi period 25 of the output voltage V out_ac so that the Hi period 25 of the output voltage V out_ac decreases as the voltage ratio d increases.
電圧比率26より低い電圧比率の場合27には、スイッチング素子の損失、トランスの銅損が支配的になる。また、電圧比率26より高い電圧比率の場合28には、トランスの鉄損が支配的になる。 When the voltage ratio is lower than voltage ratio 26 (27), the losses in the switching elements and the copper losses in the transformer become dominant. When the voltage ratio is higher than voltage ratio 26 (28), the iron losses in the transformer become dominant.
図2と図3の入力側電圧のHi期間を比較すると、本実施例と比較例との違いを見ることができる。さらに、出力側電圧のHi期間についても本実施例と比較例との違いが見て取れる。 Comparing the Hi period of the input voltage in Figures 2 and 3, the difference between this embodiment and the comparative example can be seen. Furthermore, the difference between this embodiment and the comparative example can also be seen in the Hi period of the output voltage.
本実施例によれば、入力側電圧のHi期間、出力側電圧のHi期間を、電圧比率に応じて、制御することで、スイッチング素子の損失、トランスの銅損、およびトランスの鉄損を抑えて、電力変換効率の低下を抑制することができる。 In this embodiment, by controlling the Hi period of the input voltage and the Hi period of the output voltage according to the voltage ratio, it is possible to suppress losses in the switching elements, copper losses in the transformer, and iron losses in the transformer, thereby preventing a decrease in power conversion efficiency.
本実施例によれば、電力変換装置の電力変換効率を、従来に比べて高くできる。また、入力側電圧のHi期間と負荷ZLに流れる出力電流との関係においても電力変換効率を高めることができる。また、出力側電圧のHi期間と負荷ZLに流れる出力電流との関係においても電力変換効率を高めることができるので、電力変換装置の制御において総合的に、電力変換効率を高めることができる。 According to this embodiment, the power conversion efficiency of the power conversion device can be increased compared to the conventional case. The power conversion efficiency can also be increased in the relationship between the Hi period of the input voltage and the output current flowing through the load ZL. The power conversion efficiency can also be increased in the relationship between the Hi period of the output voltage and the output current flowing through the load ZL, so that the power conversion efficiency can be increased overall in the control of the power conversion device.
20…1次側ブリッジ回路
40…トランス
10、60…コンデンサ
50…2次側ブリッジ回路
70…制御回路
20: Primary bridge circuit 40: Transformer 10, 60: Capacitor 50: Secondary bridge circuit 70: Control circuit
Claims (9)
第1のブリッジ回路と第2のブリッジ回路の間に配置されたトランスと、
第1および第2のブリッジ回路を動作させる制御部とを備える電力変換装置であって、
前記制御部は、
入力電圧と出力電圧との電圧比率を演算し、
前記電圧比率に対して、第1のブリッジ回路側の入力側Hi期間を増加させる場合と、前記入力側Hi期間を減少させる場合とを有するように、前記入力側Hi期間を決定する電力変換装置。 A first bridge circuit and a second bridge circuit,
a transformer disposed between the first bridge circuit and the second bridge circuit;
A power conversion device including a control unit that operates the first and second bridge circuits,
The control unit is
Calculates the voltage ratio between the input voltage and the output voltage.
A power conversion device that determines the input side Hi period so that there are cases where the input side Hi period of a first bridge circuit is increased and cases where the input side Hi period is decreased with respect to the voltage ratio.
前記制御部は、
前記電圧比率が低い領域では、前記電圧比率に対して、前記入力側Hi期間を増加させる場合を有し、
前記電圧比率が高い領域では、前記電圧比率に対して、前記入力側Hi期間を減少させる場合を有するように、前記入力側Hi期間を決定する電力変換装置。 2. The power conversion device according to claim 1,
The control unit is
In a region where the voltage ratio is low, the input side Hi period may be increased with respect to the voltage ratio;
A power conversion device that determines the input side Hi period so that there are cases where the input side Hi period is reduced with respect to the voltage ratio in a region where the voltage ratio is high.
前記制御部は、
前記電圧比率に対して、前記入力側Hi期間を増加させる場合において、第2のブリッジ回路側の出力側Hi期間を増加させる場合を有するように、前記出力側Hi期間を決定する電力変換装置。 2. The power conversion device according to claim 1,
The control unit is
A power conversion device that determines the output side Hi period so that, when the input side Hi period is increased for the voltage ratio, the output side Hi period of a second bridge circuit is increased.
前記制御部は、
前記電圧比率に対して、前記入力側Hi期間を減少させる場合において、第2のブリッジ回路側の出力側Hi期間を減少させる場合を有するように、前記出力側Hi期間を決定する電力変換装置。 2. The power conversion device according to claim 1,
The control unit is
A power conversion device that determines the output side Hi period so that, when the input side Hi period is reduced with respect to the voltage ratio, the output side Hi period of a second bridge circuit is reduced.
前記制御部は、
前記電圧比率が低い領域では、前記入力側Hi期間が増加する場合において、第2のブリッジ回路側の出力側Hi期間が増加する場合を有するように、前記入力側Hi期間、前記出力側Hi期間を決定し、
前記電圧比率が高い領域では、前記入力側Hi期間が減少する場合において、前記出力側Hi期間が減少する場合を有するように、前記入力側Hi期間、前記出力側Hi期間を決定する電力変換装置。 2. The power conversion device according to claim 1,
The control unit is
determining the input side Hi period and the output side Hi period such that, in a region where the voltage ratio is low, when the input side Hi period increases, the output side Hi period of the second bridge circuit increases;
A power conversion device that determines the input side Hi period and the output side Hi period such that, in a region where the voltage ratio is high, when the input side Hi period decreases, the output side Hi period also decreases.
前記電圧比率が、前記トランスの一次側と二次側の巻数比に等しい値で、前記電圧比率の高い領域と低い領域を区分けする電力変換装置。 3. The power conversion device according to claim 2,
A power conversion device in which a high voltage ratio region and a low voltage ratio region are separated by a value of the voltage ratio equal to a turns ratio between the primary side and the secondary side of the transformer.
第1のブリッジ回路および第2のブリッジ回路の少なくとも一方の交流側と前記トランスとの間に配置されたインダクタンス素子を有する電力変換装置。 2. The power conversion device according to claim 1,
A power conversion device comprising an inductance element disposed between the AC side of at least one of a first bridge circuit and a second bridge circuit and the transformer.
第1のブリッジ回路と第2のブリッジ回路の間に配置されたトランスと、
第1および第2のブリッジ回路を動作させる制御部とを備える電力変換装置の制御方法であって、
前記制御部は、
入力側電圧と出力側電圧との電圧比率を演算し、
前記電圧比率に対して、第1のブリッジ回路側の入力側Hi期間が増加する場合と、前記入力側Hi期間が減少する場合とを有するように、前記入力側Hi期間を決定する電力変換装置の制御方法。 A first bridge circuit and a second bridge circuit,
a transformer disposed between the first bridge circuit and the second bridge circuit;
A control method for a power conversion device including a control unit that operates first and second bridge circuits,
The control unit is
Calculate the voltage ratio between the input voltage and the output voltage.
A control method for a power conversion device, which determines the input side Hi period so that there are cases where the input side Hi period of a first bridge circuit increases and cases where the input side Hi period decreases with respect to the voltage ratio.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380083136.0A CN120322946A (en) | 2023-03-06 | 2023-03-06 | Power conversion device |
PCT/JP2023/008288 WO2024185002A1 (en) | 2023-03-06 | 2023-03-06 | Power conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/008288 WO2024185002A1 (en) | 2023-03-06 | 2023-03-06 | Power conversion device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024185002A1 true WO2024185002A1 (en) | 2024-09-12 |
Family
ID=92674267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/008288 WO2024185002A1 (en) | 2023-03-06 | 2023-03-06 | Power conversion device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN120322946A (en) |
WO (1) | WO2024185002A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012144249A1 (en) * | 2011-04-18 | 2012-10-26 | 三菱電機株式会社 | Power conversion device and in-vehicle power supply device equipped with same |
WO2015004825A1 (en) * | 2013-07-11 | 2015-01-15 | 三菱電機株式会社 | Dc-dc converter |
WO2016125292A1 (en) * | 2015-02-05 | 2016-08-11 | 株式会社安川電機 | Dc-dc converter, electric power converter, electric power generation system and method for dc-dc conversion |
-
2023
- 2023-03-06 CN CN202380083136.0A patent/CN120322946A/en active Pending
- 2023-03-06 WO PCT/JP2023/008288 patent/WO2024185002A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012144249A1 (en) * | 2011-04-18 | 2012-10-26 | 三菱電機株式会社 | Power conversion device and in-vehicle power supply device equipped with same |
WO2015004825A1 (en) * | 2013-07-11 | 2015-01-15 | 三菱電機株式会社 | Dc-dc converter |
WO2016125292A1 (en) * | 2015-02-05 | 2016-08-11 | 株式会社安川電機 | Dc-dc converter, electric power converter, electric power generation system and method for dc-dc conversion |
Also Published As
Publication number | Publication date |
---|---|
CN120322946A (en) | 2025-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6942852B2 (en) | Insulated DC / DC converter for wide output voltage range and its control method | |
TWI767718B (en) | Isolated resonant converter and control method thereof | |
JP6722353B2 (en) | DC/DC converter | |
US9318945B2 (en) | Resonant-mode power supply with a multi-winding inductor | |
US8542501B2 (en) | Switching power-supply apparatus | |
US8780585B2 (en) | Double phase-shifting full-bridge DC-to-DC converter | |
WO2014174809A1 (en) | Bidirectional dc-dc convertor | |
KR100427703B1 (en) | Switching power supply unit | |
US20110176335A1 (en) | Resonant converters and burst mode control method thereof | |
US20120155124A1 (en) | Three-phase power supply with three-phase three-level dc/dc converter | |
US20190157978A1 (en) | Multi-phase llc converters connected in parallel and series | |
CN107820669B (en) | Double-bridge DC/DC power converter | |
KR20180004675A (en) | Bidirectional Converter with Auxiliary LC Resonant Circuit and Operating Method thereof | |
US20200266713A1 (en) | DC-DC converter | |
US20240186908A1 (en) | Power supply apparatus, three-phase transformer circuit, and charging pile | |
Chen et al. | Analysis and design considerations of an improved ZVS full-bridge DC-DC converter | |
WO2024185002A1 (en) | Power conversion device | |
US9871450B2 (en) | Isolated step-up converter | |
WO2018148932A1 (en) | Dc to dc converter | |
JP7376247B2 (en) | power converter | |
US11342858B2 (en) | Power converter apparatus including LLC resonant circuits and wide range of output voltage with higher efficiency | |
JP2021191193A (en) | Power converter | |
JP2020022299A (en) | Power supply device | |
JP7386737B2 (en) | Rectifier circuit and switching power supply using the same | |
US12101034B2 (en) | Power converter apparatus converting input power having a predetermined voltage into output power having a predetermined output voltage over wide range with higher efficiency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23926216 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2025504935 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: CN2023800831360 Country of ref document: CN |