WO2024181509A1 - Solid electrolytic capacitor and manufacturing method - Google Patents
Solid electrolytic capacitor and manufacturing method Download PDFInfo
- Publication number
- WO2024181509A1 WO2024181509A1 PCT/JP2024/007355 JP2024007355W WO2024181509A1 WO 2024181509 A1 WO2024181509 A1 WO 2024181509A1 JP 2024007355 W JP2024007355 W JP 2024007355W WO 2024181509 A1 WO2024181509 A1 WO 2024181509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrolyte
- solid electrolytic
- electrolytic capacitor
- examples
- acid
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/035—Liquid electrolytes, e.g. impregnating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/07—Dielectric layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/145—Liquid electrolytic capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/15—Solid electrolytic capacitors
Definitions
- the present invention relates to a solid electrolytic capacitor whose electrolyte layer contains an electrolyte solution and a solid electrolyte, and a manufacturing method thereof.
- Capacitors are used for a variety of purposes. For example, in the field of power electronics, power from an AC power source is converted to DC power by a converter circuit, and this DC power is then converted to the desired AC power by an inverter circuit. In this type of power supply circuit, smoothing capacitors are provided to suppress pulsations in the DC output from the converter circuit and smooth the DC before inputting it to the inverter circuit. In addition, decoupling capacitors are provided near semiconductor switching elements such as gallium nitride to ensure stable operation and remove noise from the semiconductor switching elements.
- Electrolytic capacitors are easier to achieve higher capacitance than film capacitors, and can easily meet this demand.
- Electrolytic capacitors have valve metals such as tantalum or aluminum as anode and cathode foils.
- the anode foil is enlarged by forming the valve metal into a sintered compact or etched foil, and the enlarged surface has a dielectric film formed by a process such as anodizing.
- An electrolyte is placed between the anode and cathode foils.
- Electrolytic capacitors can increase the specific surface area by expanding the surface area of the anode foil, which gives them a large electrostatic capacitance and allows them to meet the demand for higher capacity.
- solid electrolytic capacitors that use solid electrolytes are attracting attention. Solid electrolytic capacitors are small and have a large capacity, and the high conductivity of the solid electrolyte results in low equivalent series resistance.
- TCNQ Manganese dioxide and 7,7,8,8-tetracyanoquinodimethane (TCNQ) complexes are known as solid electrolytes.
- conductive polymers derived from monomers with ⁇ -conjugated double bonds such as poly(3,4-ethylenedioxythiophene) (PEDOT), which has a slow reaction rate and excellent adhesion to dielectric films, have rapidly become popular as solid electrolytes.
- Conductive polymers use acid compounds such as polyanions as dopants, and have a partial structure within the monomer molecule that acts as a dopant, resulting in high conductivity.
- high voltage resistance capacitors are expected.
- smoothing capacitors with a voltage resistance of 250V are used in the inverters that drive the motors installed in electric vehicles.
- hybrid-type solid electrolytic capacitors used in such high voltage fields it is necessary to form a dielectric film with a chemical formation voltage of 300V or more on the anode foil.
- Dielectric films with a formation voltage of 300V or more contain many voids and are susceptible to chemical dissolution. Therefore, in order to provide a high film repair effect and suppress leakage current, it is possible to consider methods such as increasing the solute concentration of the electrolyte contained in hybrid-type solid electrolytic capacitors or increasing the amount of water in the electrolyte.
- ESR equivalent series resistance
- the present invention has been proposed to solve the above problems, and its purpose is to provide a hybrid-type solid electrolytic capacitor that has good capacitor characteristics and a high withstand voltage, and a manufacturing method thereof.
- the solid electrolytic capacitor of this embodiment is a solid electrolytic capacitor having a capacitor element, the capacitor element having an anode body containing a valve metal, a cathode body facing the anode body, and an electrolyte layer interposed between the anode body and the cathode body and containing an electrolyte solution and a solid electrolyte, the anode body having a dielectric film on its surface with a withstand voltage of 300 V or more, the electrolyte solution containing a solute of 0.08 mol/kg or more and 0.34 mol/kg or less, and moisture of 1 wt % or more and 10 wt % or less with respect to the total amount of the electrolyte contained in the capacitor element.
- the electrolyte may contain 15 wt % or more of a pressure resistance improver based on the total amount of the electrolyte.
- the pressure resistance improver may be an alkylene oxide-added polyol or a derivative thereof having a molecular weight of 600 or more.
- the electrolyte layer may further contain a compound having a hydroxyl group and a boiling point of 150°C or higher.
- the compound may be ethylene glycol, diethylene glycol, glycerin, or two or more of these.
- the anode body may have a pseudo-boehmite layer on the dielectric coating, and the amount of the pseudo-boehmite layer may be 0.1 mg/cm 2 or more and 1.97 mg/cm 2 or less.
- the method for manufacturing a solid electrolytic capacitor of this embodiment is a method for manufacturing a solid electrolytic capacitor having a capacitor element composed of an anode body, a cathode body, and an electrolyte layer, and includes a chemical conversion process for forming a dielectric film having a withstand voltage of 300 V or more on the surface of the anode body, a first electrolyte layer formation process for applying and drying a conductive polymer liquid between the anode body and the cathode body or on the capacitor element, and a second electrolyte layer formation process for impregnating the capacitor element with an electrolyte, the electrolyte containing a solute of 0.08 mol/kg or more and 0.34 mol/kg or less, and adjusting the moisture content of the total amount of the electrolyte contained in the capacitor element to 1 wt% or more and 10 wt% or less.
- the present invention makes it possible to achieve a high withstand voltage of 300V or more while maintaining low leakage current and low ESR.
- the upper graph shows the relationship between solute concentration and ESR, and the lower graph shows the relationship between solute concentration and leakage current (LC).
- LC solute concentration and leakage current
- 1 is a graph showing the relationship between moisture content and leakage current (LC).
- 1 is a graph showing the relationship between a voltage resistance improver and a voltage resistance.
- a solid electrolytic capacitor is a passive element that obtains capacitance by the dielectric polarization action of a dielectric film and stores and discharges electric charge.
- the solid electrolytic capacitor includes a capacitor element.
- the capacitor element includes an anode body, a cathode body, an electrolyte layer, and a separator.
- a dielectric film is formed on the surface of the anode foil.
- the anode body and the cathode body face each other with the dielectric film in between.
- the electrolyte layer is interposed between the dielectric film of the anode body and the cathode body.
- the electrolyte layer is in close contact with the dielectric film of the anode body and functions as a true cathode, and extends between the dielectric film and the cathode body to create a conductive path.
- This solid electrolytic capacitor is a so-called hybrid type that has an electrolytic solution and a solid electrolyte.
- the electrolyte layer contains at least an electrolytic solution and a solid electrolyte.
- the separator separates the anode body and the cathode body to prevent short circuits, and also holds the electrolyte layer in place. If the solid electrolyte can hold the shape of the electrolyte layer by itself and isolate the anode body and cathode body, the separator can be eliminated from the solid electrolytic capacitor.
- the anode and cathode bodies are alternately stacked with an electrolyte layer between them.
- the capacitor element may be a flat plate type that omits the exterior, or, for example, the capacitor element may be covered with a laminate film, or may be sealed by molding, dip coating, or printing a resin such as a heat-resistant resin or an insulating resin.
- the anode and cathode bodies are alternately stacked with an electrolyte layer between them and wound.
- the capacitor element is housed in a cylindrical case with a bottom. The opening of the case is sealed with a sealing body by crimping.
- the process moves to the aging process, where a DC voltage is applied to the solid electrolytic capacitor at high temperature to repair the oxide film that was damaged during the winding and other steps of the manufacturing process of the solid electrolytic capacitor. This completes the process of forming the solid electrolytic capacitor.
- the anode body is a foil made of a valve metal.
- the anode body is a long strip of valve metal stretched, and in the laminated type, the anode body is a flat plate or a sintered body obtained by molding and sintering powder into a flat plate.
- Valve metals include aluminum, tantalum, niobium, niobium oxide, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony.
- the purity of the anode body is preferably 99.9% or more, but impurities such as silicon, iron, copper, magnesium, and zinc may be included.
- a surface expansion layer is formed on one or both sides of the anode body.
- the surface expansion layer is a surface layer that has been treated to increase the surface area beyond the projected area, and can be an etching layer formed by etching the foil, a sintered layer formed by attaching valve metal powder to the foil and sintering it, or a deposition layer formed by depositing valve metal particles onto the foil.
- the surface expansion layer has a porous structure, consisting of tunnel-shaped pits, spongy pits, or spaces between densely packed powder or particles.
- Tunnel-shaped etching pits are holes dug in the foil thickness direction and may penetrate the foil body. These tunnel-shaped etching pits are typically formed by passing a direct current in an acidic aqueous solution such as hydrochloric acid, in which halogen ions are present. The tunnel-shaped etching pits are further expanded in diameter by passing a direct current in an acidic aqueous solution such as nitric acid. The spongy etching pits make the expanded surface layer into a sponge-like layer with fine gaps that are connected together in a space. These spongy etching pits are formed by passing an alternating current in an acidic aqueous solution such as hydrochloric acid, in which halogen ions are present.
- the sintered layer is produced by attaching a powder of a valve action metal, which is the same or different from the foil body, to the foil body and sintering it.
- the powder can be obtained by a milling method, atomization method, melt spinning method, rotating disk method, rotating electrode method, etc.
- the powder is made into a paste using a binder or solvent, which is applied to the foil body and dried.
- the powder is then sintered by heating in a vacuum or reducing atmosphere, etc.
- the atomization method may be any of water atomization method, gas atomization method, and water gas atomization method.
- the vapor deposition layer is produced by, for example, a resistance heating vapor deposition method or an electron beam heating vapor deposition method. This vapor deposition layer is formed by heating and evaporating a valve action metal, which is the same or different from the foil body, using resistance heat or electron beam energy, and depositing the vapor of the valve action metal particles on the surface of the foil body.
- the dielectric coating is formed on the surface of the anode body, following the unevenness of the surface expansion layer.
- the dielectric coating is typically an oxide coating formed by anodizing the surface of the anode body. If the anode body is aluminum foil, the dielectric coating is an aluminum oxide layer formed by oxidizing the surface of the anode body, following the unevenness of the surface expansion layer.
- the dielectric coating is formed by chemical conversion treatment.
- the conversion solution is a solution that does not contain halogen ions, and examples of such solutions include phosphoric acid-based conversion solutions such as ammonium dihydrogen phosphate, boric acid-based conversion solutions such as ammonium borate, and adipic acid-based conversion solutions such as ammonium adipate.
- a dielectric film with a withstand voltage of 300V or more is formed so that the product rated withstand voltage can be set to at least 250V. That is, while the anode is immersed in the conversion solution, a voltage is applied while a constant current is passed through it until the conversion voltage reaches 300V or more.
- Voids that have been generated in the dielectric film by applying a voltage of 300V or more may be repaired by depolarization.
- Depolarization includes heat treatment, phosphate treatment, or both.
- Heat treatment involves exposing the film to a temperature environment of 450°C or more in the atmosphere, for example, to open up isolated voids inside the dielectric film.
- Phosphate treatment enlarges cracks and openings that lead to the voids.
- the anode body is immersed in a phosphoric acid solution or ammonium dihydrogen phosphate solution. This makes it easier for the re-chemical solution to penetrate into the voids.
- the pseudo-boehmite layer contains hydrated oxide of aluminum, and is AlOOH.xH 2 O.
- the dielectric coating is a layer of aluminum oxide containing ⁇ -alumina, which is a crystalline oxide. This pseudo-boehmite layer is dense inside and deteriorates the impregnation of the conductive polymer of the solid electrolyte into the anode foil, but functions as a resistance layer to improve the withstand voltage of the solid electrolytic capacitor.
- the pseudo-boehmite layer is formed by a pre-chemical treatment process, which is a process that precedes the chemical treatment and is performed after the surface enlarging process of the anode foil.
- the pre-chemical treatment process the anode foil is immersed in pure water at 80°C or higher or in boiling water. The immersion time can be determined based on the balance between the withstand voltage and the electrostatic capacitance, depending on the desired thickness of the pseudo-boehmite layer.
- the chemical treatment transforms the pseudo-boehmite layer into a dielectric oxide film layer from the interface between the unoxidized aluminum foil and the pseudo-boehmite layer toward the outer surface of the pseudo-boehmite layer.
- the pseudo-boehmite layer is adjusted to have an amount of 0.1 mg/ cm2 or more and 1.97 mg/ cm2 or less.
- the amount of the pseudo-boehmite layer fall within this range, the solid electrolytic capacitor can be more effectively compatible with a high withstand voltage and a low ESR.
- the initial ESR that is, the ESR after aging and in a non-energized state except for inspection, becomes low.
- the amount of the pseudo-boehmite layer can be changed by changing the immersion time in pure water in the pre-chemical treatment.
- the anode foil may be immersed in phosphoric acid or the like for a short time for acid treatment, the pseudo-boehmite layer may be dissolved from the surface, and a series of steps may be repeated to perform a repair chemical treatment.
- the anode foil is immersed in a chemical solution and a voltage is applied.
- a chemical solution a phosphoric acid-based chemical solution such as ammonium dihydrogen phosphate, a boric acid-based chemical solution such as ammonium borate, an adipic acid-based chemical solution such as ammonium adipate, or a chemical solution in which boric acid and a dicarboxylic acid such as citric acid are mixed may be used.
- the applied voltage may be in accordance with the desired withstand voltage.
- the cathode body is a foil made of an elongated valve metal.
- the purity of the cathode foil is preferably 99% or more, but impurities such as silicon, iron, copper, magnesium, and zinc may be included.
- the foil body is a plain foil with a flat surface, or a surface-expanding layer is formed on the surface by surface-expanding.
- An oxide film may be formed on the surface-expanding layer intentionally or naturally.
- a thin oxide film of about 1 to 10 V may be intentionally formed by chemical conversion treatment.
- a natural oxide film is formed by the reaction of the cathode foil with oxygen in the air.
- the cathode body is preferably a laminate of a metal layer and a carbon layer.
- the carbon layer of the cathode body is arranged facing the anode body.
- the carbon layer is made into a paste form, and is formed by applying it onto the electrolyte layer after the electrolyte layer is formed on the anode body, and then curing it by heating.
- the metal layer is, for example, a silver layer, and is formed by applying it into a paste form on top of the carbon layer, and then curing it by heating.
- the cathode body may further include a laminated conductive layer.
- the conductive layer contains a conductive material and is a layer with higher conductivity than the oxide film. This conductive layer is laminated on one or both sides of the cathode foil and is located as the outermost layer of the cathode body. Examples of conductive materials include titanium, zirconium, tantalum, niobium, nitrides or carbides of these, aluminum carbide, carbon materials, and composites or mixtures of these.
- This conductive layer may be a laminate of multiple layers, and each layer may be of a different type.
- the conductive layer and the cathode body may have a pressure-welded structure. After the conductive layers are laminated, a press treatment is applied. In the pressure-welded structure, the conductive layer is pressed into the pores of the surface-expanding layer, and the conductive layer is deformed along the uneven surface of the surface-expanding layer.
- the pressure-welded structure improves the adhesion and fixation between the conductive layer and the cathode body, and reduces the ESR of the solid electrolytic capacitor.
- the solvent of the electrolyte is a protic organic polar solvent or an aprotic organic polar solvent, and may be used alone or in combination of two or more.
- the electrolyte also contains water.
- the solute contained in the electrolyte is an organic acid or its salt, an inorganic acid or its salt, or a composite compound of an organic acid and an inorganic acid or its salt, and may be used alone or in combination of two or more. When the solute is a salt, an ionically dissociable salt is selected.
- the solute is contained in the electrolyte at a ratio of 0.08 mol/kg or more and 0.34 mol/kg or less relative to the total amount of the electrolyte. If the solute is less than 0.08 mol/kg, the leakage current (LC) will be high in a hybrid-type solid electrolytic capacitor having a dielectric film with a withstand voltage of 300V or more. On the other hand, if the solute is more than 0.34 mol/kg, the ESR will rise sharply in a hybrid-type solid electrolytic capacitor having a dielectric film with a withstand voltage of 300V or more. If the solute range is 0.08 mol/kg or more and 0.34 mol/kg or less, a hybrid-type solid electrolytic capacitor having a dielectric film with a withstand voltage of 300V or more can achieve both low leakage current and low ESR.
- the amount of moisture in the electrolyte is between 1 wt% and 10 wt% of the total amount of electrolyte.
- This amount of moisture is the percentage of the electrolyte impregnated in the solid electrolytic capacitor, and is measured by extracting the electrolyte after impregnation from the solid electrolytic capacitor by centrifugation.
- the moisture in the electrolyte is the sum of the moisture added to the electrolyte and the moisture mixed into the capacitor element during the manufacturing process of the solid electrolytic capacitor.
- the amount of moisture in the electrolyte can be adjusted to be between 1 wt% and 10 wt% of the total amount of electrolyte.
- the leakage current (LC) will increase sharply in a hybrid-type solid electrolytic capacitor with a dielectric film with a withstand voltage of 300V or more. If the moisture content in the electrolyte is more than 10 wt%, the leakage current (LC) will actually increase in a hybrid-type solid electrolytic capacitor with a dielectric film with a withstand voltage of 300V or more. Since there is no significant change in ESR in terms of the relationship between moisture content and ESR, low leakage current and low ESR can be achieved simultaneously if the moisture content in the electrolyte is in the range of 1 wt% to 10 wt%.
- solute is not particularly limited.
- organic acids include carboxylic acids such as oxalic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, benzoic acid, toluic acid, enanthic acid, malonic acid, 1,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid, azelaic acid, undecanedioic acid, dodecanedioic acid, and tridecanedioic acid, as well as phenols and sulfonic acids.
- carboxylic acids such as oxalic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, benzoic acid, toluic
- inorganic acids examples include boric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, carbonic acid, and silicic acid.
- composite compounds of organic and inorganic acids include borodisalicylic acid, borodioxalic acid, and borodiglycolic acid.
- These salts of organic acids, salts of inorganic acids, and at least one salt of a complex compound of an organic acid and an inorganic acid include ammonium salts, quaternary ammonium salts, quaternary amidinium salts, amine salts, sodium salts, potassium salts, etc.
- Examples of the quaternary ammonium ions of the quaternary ammonium salts include tetramethylammonium, triethylmethylammonium, tetraethylammonium, etc.
- Examples of the quaternary amidiniums include ethyldimethylimidazolinium, tetramethylimidazolinium, etc.
- Examples of the amines of the amine salts include primary amines, secondary amines, and tertiary amines.
- Examples of primary amines include methylamine, ethylamine, propylamine, etc.
- secondary amines include dimethylamine, diethylamine, ethylmethylamine, dibutylamine, etc.
- tertiary amines include trimethylamine, triethylamine, tripropylamine, tributylamine, ethyldimethylamine, ethyldiisopropylamine, etc.
- Protic organic polar solvents in the solvent include monohydric alcohols, polyhydric alcohols, and oxyalcohol compounds.
- monohydric alcohols include ethanol, propanol, butanol, pentanol, hexanol, cyclobutanol, cyclopentanol, cyclohexanol, and benzyl alcohol.
- polyhydric alcohols and oxyalcohol compounds include ethylene glycol, propylene glycol, glycerin, polyglycerin, diethylene glycol, dipropylene glycol, methyl cellosolve, ethyl cellosolve, methoxypropylene glycol, and dimethoxypropanol.
- aprotic organic polar solvents include sulfones, amides, lactones, cyclic amides, nitriles, and sulfoxides.
- sulfones include dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, sulfolane, 3-methyl sulfolane, and 2,4-dimethyl sulfolane.
- amides include N-methylformamide, N,N-dimethylformamide, N-ethylformamide, N,N-diethylformamide, N-methylacetamide, N,N-dimethylacetamide, N-ethylacetamide, and N,N-diethylacetamide.
- lactones and cyclic amides include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, N-methyl-2-pyrrolidone, ethylene carbonate, propylene carbonate, butylene carbonate, and isobutylene carbonate.
- nitriles include acetonitrile, 3-methoxypropionitrile, and glutaronitrile.
- sulfoxides include dimethyl sulfoxide.
- the electrolyte may contain a polymer solvent as a pressure resistance improver.
- this polymer solvent include polyols with alkylene oxide added thereto or derivatives thereof.
- This pressure resistance improver may improve the voltage resistance of the solid electrolytic capacitor.
- This pressure resistance improver is preferably added so as to occupy 15 wt % or more of the electrolyte solvent, and particularly improves the voltage resistance of the solid electrolytic capacitor.
- Polyols or derivatives thereof to which alkylene oxide has been added include polyethylene glycol, polyethylene glycol glyceryl ether, polyethylene glycol diglyceryl ether, polyethylene glycol triglyceryl ether, polypropylene glycol, polypropylene glycol glyceryl ether, polypropylene glycol diglyceryl ether, polypropylene glycol triglyceryl ether, polyoxyethylene glycerin, polyoxypropylene glycerin, glycols containing ethylene oxide and propylene oxide, and glycerin containing ethylene oxide and propylene oxide.
- polyols to which alkylene oxides having a molecular weight of 600 or more have been added are particularly preferred, as they particularly improve the withstand voltage of solid electrolytic capacitors.
- additives can also be added to the electrolyte.
- additives include complex compounds of boric acid and polysaccharides (mannitol, sorbitol, etc.), complex compounds of boric acid and polyhydric alcohols, boric acid esters, nitro compounds, phosphate esters, colloidal silica, etc. These may be used alone or in combination of two or more.
- Nitro compounds suppress the generation of hydrogen gas in the solid electrolytic capacitor. Examples of nitro compounds include o-nitrobenzoic acid, m-nitrobenzoic acid, p-nitrobenzoic acid, o-nitrophenol, m-nitrophenol, p-nitrophenol, etc.
- the capacitor element is immersed in the electrolyte, and the electrolyte is impregnated into the voids within the capacitor element. If necessary, a pressure reduction or pressure increase may be performed to allow the electrolyte to be impregnated into smaller voids.
- the electrolyte impregnation process may be repeated multiple times. For example, the pressure inside the capacitor element may be reduced, and the electrolyte may be injected into the capacitor element while pressurizing the electrolyte.
- the solid electrolyte contained in the electrolyte layer is preferably a conductive polymer from the viewpoint of adhesion to the dielectric film.
- the conductive polymer is a self-doped conjugated polymer doped with a dopant molecule in the molecule or an externally doped conjugated polymer doped with an external dopant molecule.
- the conjugated polymer is obtained by chemically oxidizing or electrolytically oxidizing a monomer having a ⁇ -conjugated double bond or a derivative thereof.
- the conductive polymer exhibits high conductivity by performing a doping reaction on the conjugated polymer. That is, the conductivity is exhibited by adding a small amount of a dopant such as an acceptor that easily accepts electrons or a donor that easily gives electrons to the conjugated polymer.
- conjugated polymers can be used without any particular limitations. Examples include polypyrrole, polythiophene, polyaniline, etc. These conjugated polymers can be used alone or in combination of two or more types, or can be copolymers of two or more types of monomers.
- conjugated polymers formed by polymerizing thiophene or its derivatives
- conjugated polymers formed by polymerizing 3,4-ethylenedioxythiophene i.e., 2,3-dihydrothieno[3,4-b][1,4]dioxine
- 3-alkylthiophene 3-alkoxythiophene
- 3-alkyl-4-alkoxythiophene 3,4-alkylthiophene, 3,4-alkoxythiophene, or derivatives thereof.
- thiophene derivative a compound selected from thiophenes having substituents at the 3rd and 4th positions is preferred, and the substituents at the 3rd and 4th positions of the thiophene ring may form a ring together with the carbons at the 3rd and 4th positions.
- the alkyl group or alkoxy group preferably has 1 to 16 carbon atoms.
- a polymer of 3,4-ethylenedioxythiophene called EDOT i.e., poly(3,4-ethylenedioxythiophene) called PEDOT
- EDOT 3,4-ethylenedioxythiophene
- PEDOT poly(3,4-ethylenedioxythiophene)
- alkylated ethylenedioxythiophene in which an alkyl group is added to 3,4-ethylenedioxythiophene may be used, such as methylated ethylenedioxythiophene (i.e., 2-methyl-2,3-dihydro-thieno[3,4-b][1,4]dioxine) and ethylated ethylenedioxythiophene (i.e., 2-ethyl-2,3-dihydro-thieno[3,4-b][1,4]dioxine).
- the dopant may be an inorganic acid such as a polyanion, boric acid, nitric acid, or phosphoric acid, or an organic acid such as acetic acid, oxalic acid, citric acid, tartaric acid, squaric acid, rhodizonic acid, croconic acid, salicylic acid, p-toluenesulfonic acid, 1,2-dihydroxy-3,5-benzenedisulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, borodisalicylic acid, bisoxalate boric acid, sulfonylimide acid, dodecylbenzenesulfonic acid, propylnaphthalenesulfonic acid, or butylnaphthalenes
- Polyanions include, for example, substituted or unsubstituted polyalkylenes, substituted or unsubstituted polyalkenylenes, substituted or unsubstituted polyimides, substituted or unsubstituted polyamides, and substituted or unsubstituted polyesters, and include polymers consisting only of structural units having an anionic group, and polymers consisting of structural units having an anionic group and structural units not having an anionic group.
- polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallylsulfonic acid, polyacrylic sulfonic acid, polymethacrylic sulfonic acid, poly(2-acrylamido-2-methylpropanesulfonic acid), polyisoprene sulfonic acid, polyacrylic acid, polymethacrylic acid, and polymaleic acid.
- the method of incorporating the conductive polymer into the electrolyte layer is not particularly limited.
- the conductive polymer liquid may be impregnated into the capacitor element to fill the electrolyte layer.
- the conductive polymer liquid may be applied or ejected between the anode body and the cathode body.
- the conductive polymer liquid is applied to the dielectric film of the anode body, the cathode body, the separator, or a combination of these.
- the conductive polymer liquid may be applied individually to the dielectric film of the anode body, the cathode body, the separator, or a combination of these.
- the conductive polymer liquid is a liquid in which conductive polymer particles or powder are dispersed or dissolved.
- a decompression treatment or a pressurization treatment may be performed as necessary.
- the impregnation process of the conductive polymer liquid may be repeated multiple times. After the capacitor element is impregnated with the conductive polymer liquid, a part of the dispersion medium or solvent is removed by a drying process.
- the solvent or dispersion medium of the conductive polymer liquid may be water, an organic solvent, or a mixture of these, as long as it disperses or dissolves the conductive polymer particles or powder.
- organic solvents include polar solvents, alcohols, esters, hydrocarbons, carbonate compounds, ether compounds, chain ethers, heterocyclic compounds, nitrile compounds, and sulfones.
- Polar solvents include N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, etc.
- Alcohols include methanol, ethanol, propanol, butanol, etc.
- Esters include ethyl acetate, propyl acetate, butyl acetate, etc.
- Hydrocarbons include hexane, heptane, benzene, toluene, xylene, etc.
- Carbonate compounds include ethylene carbonate, propylene carbonate, etc.
- Ether compounds include dioxane, diethyl ether, etc.
- Chain ethers include ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, etc.
- Heterocyclic compounds include 3-methyl-2-oxazolidinone, etc.
- Nitrile compounds include acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, benzonitrile, etc.
- sulfones include dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, sulfolane, 3-methyl sulfolane, and 2,4-dimethyl sulfolane.
- a high-boiling point solvent having a hydroxyl group and a boiling point of 150°C or higher is preferred.
- This high-boiling point solvent improves the chemical conversion properties of the dielectric film and increases the voltage resistance of the solid electrolytic capacitor.
- high-boiling point solvents include polyhydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, polyoxyethylene glycol, glycerin, and polyglycerin, or combinations of two or more of these. High-boiling point solvents can be left in the electrolyte layer due to their high boiling point, resulting in reduced ESR and improved voltage resistance.
- the pH of the conductive polymer liquid may be adjusted.
- pH adjusters include ammonia water, sodium hydroxide, primary amines, secondary amines, and tertiary amines.
- Conventional additives such as organic binders, surfactants, dispersants, defoamers, coupling agents, antioxidants, and ultraviolet absorbers may also be added to the conductive polymer liquid. It is also possible to significantly reduce the ESR by adding additives to the conductive polymer liquid or by increasing the number of times the capacitor element is impregnated with the conductive polymer liquid.
- separator examples include cellulose papers such as kraft, Manila hemp, esparto, hemp, and rayon, and mixed papers thereof; polyester-based resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and derivatives thereof; polytetrafluoroethylene-based resins, polyvinylidene fluoride-based resins, vinylon-based resins, polyamide-based resins such as aliphatic polyamides, semi-aromatic polyamides, and fully aromatic polyamides; polyimide-based resins, polyethylene resins, polypropylene resins, trimethylpentene resins, polyphenylene sulfide resins, acrylic resins, and polyvinyl alcohol resins. These resins can be used alone or in combination.
- Examples 1 to 5 Solid electrolytic capacitors of Examples 1 to 5 and Comparative Examples 1 to 3 were produced.
- an anode body and a cathode body were produced using aluminum foil.
- the anode body was subjected to an etching process to form a surface enlargement layer consisting of tunnel-shaped etching pits.
- the anode body was subjected to a chemical conversion process to form a dielectric film.
- the anode body was immersed in an ammonium borate aqueous solution, and a voltage was applied so that the withstand voltage of the anode body was 650 V.
- the cathode body is a plain aluminum foil that has not been enlarged or chemically treated.
- Lead wires were connected to the anode body and cathode body, and the anode body and cathode body were wound facing each other with a cellulose-based separator in between.
- the wound body was immersed in an aqueous solution of ammonium borate, and a constant current of 10 mA was applied while a voltage of 550 V was applied, thereby carrying out a repair chemical treatment. It was then washed with pure water and dried at 105°C.
- the wound body was immersed in a conductive polymer liquid, and a solid electrolyte was applied to the dielectric film of the anode body, the cathode body, and the separator. After immersing the wound body in the conductive polymer liquid, the wound body was dried at 110°C for 1 hour.
- poly(3,4-ethylenedioxythiophene) particles doped with polystyrene sulfonic acid were dispersed as the conductive polymer.
- the dispersion medium was a mixture of 50 wt% water and 50 wt% ethylene glycol, and a conductive polymer solution was prepared with a conductive polymer concentration of 1 wt%. 2 wt% sorbitol was added to the conductive polymer solution based on the total amount of the conductive polymer solution.
- the conductive polymer was dispersed using an ultrasonic homogenizer.
- the wound body on which the conductive polymer electrolyte layer was formed was impregnated with an electrolyte.
- the solvent of the electrolyte was composed of ethylene glycol, which accounted for 60 wt% of the total amount of the solvent, and polyethylene glycol, which accounted for 40 wt% of the total amount of the solvent.
- the molecular weight of the polyethylene glycol was 1000.
- the solute of the electrolyte was ammonium azelaate.
- the moisture content of the electrolyte was set to 5 wt% of the electrolyte contained in the solid electrolytic capacitor.
- the moisture content of the electrolyte was adjusted by controlling the amount of moisture added to the electrolyte and the moisture that was mixed in during the manufacturing process of the solid electrolytic capacitor.
- the moisture content was also measured by extracting the electrolyte from the manufactured solid electrolytic capacitor by centrifugation.
- Examples 1 to 5 and Comparative Examples 1 to 3 have different solute concentrations (mol/kg) in the electrolyte, as shown in Table 1 below.
- Table 1 the moisture content in the electrolyte is expressed as the moisture content of the electrolyte in the product.
- each solid electrolytic capacitor was aged by applying a voltage.
- the size of each solid electrolytic capacitor, including the exterior case and rubber seal, was 10 mm in diameter and 12.5 mm in height, and the rated capacitance was 5.6 ⁇ F.
- the leakage current (LC), initial ESR, and electrolytic solution resistivity of the solid electrolytic capacitors of Examples 1 to 5 and Comparative Examples 1 to 3 were measured.
- the leakage current was measured as the value of an oscilloscope 20 minutes after applying 475 V in a temperature environment of 105°C.
- the ESR was measured under the following conditions: ambient temperature of 20°C, an LCR meter (E4980A, manufactured by Agilent Technologies), an AC current level of 1.0 Vrms, and a measurement frequency of 100 kHz.
- the resistivity was measured at a temperature of 30°C using an electrical conductivity meter (CM-42X, manufactured by DKK-TOA Corporation).
- Table 2 below shows the measurement results of leakage current (LC), initial ESR, and resistivity of the solid electrolytic capacitors of Examples 1 to 5 and Comparative Examples 1 to 3.
- LC leakage current
- Table 2 shows the measurement results of leakage current (LC), initial ESR, and resistivity of the solid electrolytic capacitors of Examples 1 to 5 and Comparative Examples 1 to 3.
- a graph showing the relationship between solute concentration and ESR and a graph showing the relationship between solute concentration and leakage current (LC) were created.
- the upper graph in Figure 1 is a graph showing the relationship between solute concentration and ESR
- the lower graph is a graph showing the relationship between solute concentration and leakage current (LC).
- the concentration of the solute in the electrolyte is 0.08 mol/kg or more and 0.34 mol/kg or less, thereby achieving both low leakage current (LC) and low ESR.
- the specific resistance of the electrolyte is the lowest in Comparative Example 3, which has the highest solute concentration, but its ESR is the highest.
- the difference in the specific resistance of the electrolyte between Example 1 and Example 3 is nearly two times, but it can be confirmed that both have low ESR.
- Example 6 to 8 Solid electrolytic capacitors of Examples 6 to 8 and Comparative Examples 4 to 6 were produced. Except for the moisture content in the electrolyte impregnated in the solid electrolytic capacitor, Examples 6 to 8 and Comparative Examples 4 to 6 were produced with the same composition, configuration, manufacturing method and manufacturing conditions as the electrolyte of the solid electrolytic capacitor of Example 2. The moisture content of the electrolyte in the product was adjusted by controlling the addition of moisture to the electrolyte and the moisture mixed in during the manufacturing process of the solid electrolytic capacitor.
- the leakage current (LC) when the moisture content is low or high, the leakage current (LC) is high. However, it can be confirmed that when the moisture content in the electrolyte is between 1 wt% and 10 wt%, the leakage current (LC) is low.
- Example 9 to 11 Solid electrolytic capacitors of Examples 9 to 11, Comparative Examples 7 to 9, and Reference Examples 1 to 5 were produced. Examples 9 to 11 and Comparative Examples 7 to 9 all had the same solute concentration but different moisture contents. Examples 9 to 11 and Comparative Examples 7 to 9 had different formation voltages for the anode foil compared to Examples 2, 6 to 8, and Comparative Examples 4 to 6. In addition, Examples 9 to 11 and Comparative Examples 7 to 9 were produced with the same composition, configuration, manufacturing method, and manufacturing conditions as the electrolyte of the solid electrolytic capacitors of Examples 2, 6 to 8, and Comparative Examples 4 to 6.
- the anode bodies of Examples 9 to 11 and Comparative Examples 7 to 9 were immersed in an aqueous solution of ammonium borate during chemical conversion treatment, and a voltage was applied to them. A voltage was applied to the anode bodies until the final voltage reached 360 V.
- Reference Examples 1 to 5 all have the same solute concentration, but different moisture percentages.
- the anode bodies of Reference Examples 1 to 5 were immersed in an aqueous solution of ammonium borate during chemical conversion treatment, and voltage was applied. Voltage was applied to the anode bodies until the final voltage reached 160 V.
- Reference Examples 1 to 5 were produced with the same composition, configuration, manufacturing method, and manufacturing conditions as the electrolyte of the solid electrolytic capacitors of Examples 2 and 6 to 8 and Comparative Examples 4 to 6.
- the leakage current (LC), initial ESR, and electrolytic solution resistivity of the solid electrolytic capacitors of Examples 9 to 11, Comparative Examples 7 to 9, and Reference Examples 1 to 5 were measured.
- the measurement conditions for leakage current and ESR were the same as those of Examples 1 to 5 and Comparative Examples 1 to 3.
- the hybrid-type solid electrolytic capacitor with a dielectric film with a withstand voltage of 360 V had high leakage current (LC) when the moisture content was low and high, just as in the case of a withstand voltage of 650 V shown in Table 4.
- LC leakage current
- the electrolyte contains a solute of 0.08 mol/kg or more and 0.34 mol/kg or less, and a water content of 1 wt% or more and 10 wt% or less of the total amount of the electrolyte, thereby achieving both low leakage current (LC) and low ESR.
- Example 12 to 17 Next, the solid electrolytic capacitors of Examples 12 to 17 were produced.
- the solvent in the electrolytic solution was composed of polyethylene glycol and ethylene glycol having a molecular weight of 1000, which are pressure resistance improvers.
- the solid electrolytic capacitors of Examples 12 to 17 were produced with the same composition, configuration, manufacturing method, and manufacturing conditions as the electrolytic solution of the solid electrolytic capacitor of Example 2.
- the breakdown voltage of the solid electrolytic capacitors of Examples 12 to 17 and Example 2 was measured.
- the breakdown voltage was measured as follows. That is, a voltage was applied to the solid electrolytic capacitor at 105°C. The starting voltage was 200V, and the applied voltage was increased by 1V every 10 seconds. The voltage when the current flowing through the solid electrolytic capacitor reached 1mA was taken as the breakdown voltage.
- the voltage resistance of solid electrolytic capacitors is improved when a polymeric voltage resistance improver is added to an electrolytic capacitor.
- the effect of improving voltage resistance is enhanced when the voltage resistance improver is added so that it occupies 15 wt % or more of the electrolyte solvent.
- Example 18 to 21 solid electrolytic capacitors of Examples 18 to 21 were produced.
- the types of voltage resistance improvers contained in the electrolytic solution of Examples 18 to 21 were different from those of Example 2.
- Examples 18 to 21 were produced with the same composition, the same configuration, and the same manufacturing method and manufacturing conditions as the electrolytic solution of the solid electrolytic capacitor of Example 2.
- the solvent in the electrolyte of Examples 18 to 20 is polyethylene glycol, which is a pressure resistance improver, but the molecular weight of the polyethylene glycol is different from that of Example 2.
- the solvent in the electrolyte of Example 21 is an alkylene oxide-added glycerin derivative, which is a pressure resistance improver.
- the molecular weight of the alkylene oxide-added glycerin derivative is 3000.
- the breakdown voltage of the solid electrolytic capacitors of Examples 18 to 21 and Example 2 was measured.
- the breakdown voltage was measured as follows. That is, a voltage was applied to the solid electrolytic capacitor at 105°C. The starting voltage was 200V, and the applied voltage was increased by 1V every 10 seconds. The voltage when the current flowing through the solid electrolytic capacitor reached 1mA was taken as the breakdown voltage.
- the voltage resistance improving effect was particularly high when the polymer acting as the voltage resistance improving agent was an alkylene oxide-added polyol or its derivative with a molecular weight of 600 or more.
- Example 22 to 25 solid electrolytic capacitors of Examples 22 to 25 were produced.
- the solvent of the conductive polymer liquid used to form the solid electrolyte was composed of ethylene glycol and water.
- the amount of ethylene glycol in Examples 22 to 25 is different from that in Example 2.
- Examples 22 to 25 were produced with the same composition, configuration, manufacturing method, and manufacturing conditions as the electrolytic solution of the solid electrolytic capacitor of Example 2.
- the breakdown voltage of the solid electrolytic capacitors of Examples 22 to 25 and Example 2 was measured.
- the breakdown voltage was measured as follows. That is, a voltage was applied to the solid electrolytic capacitor at 105°C. The starting voltage was 200V, and the applied voltage was increased by 1V every 10 seconds. The voltage when the current flowing through the solid electrolytic capacitor reached 1mA was taken as the breakdown voltage.
- Example 26 to 28 solid electrolytic capacitors of Examples 26 to 28 were produced.
- Examples 26 to 28 differ from Example 2 in the solvent of the conductive polymer liquid when forming the solid electrolyte. While the solvent of the conductive polymer liquid in Example 2 is composed of water and ethylene glycol, Example 26 is composed of diethylene glycol and water, Example 27 is composed of glycerin and water, and Example 28 is composed of sulfolane and water.
- diethylene glycol and glycerin are compounds that have a hydroxyl group and a boiling point of 150°C or higher, just like ethylene glycol.
- Sulfolane is a compound that does not have a hydroxyl group and has a boiling point of 150°C or higher.
- composition ratio of diethylene glycol, glycerin or sulfolane to water is the same as the composition ratio of ethylene glycol to water in Example 2.
- Examples 26 to 28 are produced with the same composition, structure, manufacturing method and manufacturing conditions as the electrolyte of the solid electrolytic capacitor in Example 2.
- the breakdown voltage of the solid electrolytic capacitors of Examples 26 to 28 and Example 2 was measured.
- the breakdown voltage was measured as follows. That is, a voltage was applied to the solid electrolytic capacitor at 105°C. The starting voltage was 200V, and the applied voltage was increased by 1V every 10 seconds. The voltage when the current flowing through the solid electrolytic capacitor reached 1mA was taken as the breakdown voltage.
- Example 29 to 33 The solid electrolytic capacitors of Examples 29 to 33 were produced.
- the solid electrolytic capacitors of Examples 2 and 29 to 33 were provided with an anode body having a pseudo-boehmite layer. That is, in Examples 2 and 29 to 33, a surface-enlarging layer made of tunnel-shaped etching pits was formed by etching, and then the chemical pretreatment step was performed.
- the aluminum foil was immersed in boiled pure water to form a pseudo-boehmite layer on the surface of the aluminum foil.
- the amount of pseudo-boehmite was adjusted by adjusting the immersion time of the aluminum foil in boiled pure water.
- the same chemical treatment as in Example 2 was performed, and the pseudo-boehmite layer was transformed into a dielectric film, leaving only the outermost layer.
- Example 2 Voltage resistance and ESR test
- the amount of pseudo-boehmite is different in Example 2 and Examples 29 to 33.
- the ESR and withstand voltage of the solid electrolytic capacitors of Example 2 and Examples 29 to 33 with different amounts of pseudo-boehmite were measured.
- the initial ESR measurement conditions were an ambient temperature of 20°C, an LCR meter (Agilent Technologies, E4980A), an AC current level of 1.0 Vrms, and a measurement frequency of 100 kHz.
- a voltage was applied to the solid electrolytic capacitor at 105°C.
- the starting voltage was 200V, and the applied voltage was increased by 1V every 10 seconds.
- the voltage when the current flowing through the solid electrolytic capacitor reached 1 mA was taken as the withstand voltage.
- the amount of the pseudo-boehmite layer was adjusted to 0.1 mg/ cm2 or more and 1.97 mg/ cm2 or less.
- the solid electrolytic capacitors of Examples 2 and 26 to 30 have high withstand voltage and low ESR.
- the ESR is at least half or less compared to Example 33, and the ESR is particularly low.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
本発明は、電解質層に電解液と固体電解質を含む固体電解コンデンサ及び製造方法に関する。 The present invention relates to a solid electrolytic capacitor whose electrolyte layer contains an electrolyte solution and a solid electrolyte, and a manufacturing method thereof.
コンデンサは各種用途で用いられる。例えばパワーエレクトロニクスの分野において、交流電源の電力をコンバータ回路で直流電力に変換し、この直流電力をインバータ回路にて所望の交流電力に変換する電源回路には、コンバータ回路から出力される直流の脈動を抑制して平滑化してからインバータ回路に入力するために、平滑コンデンサが設けられている。また、窒化ガリウム等の半導体スイッチング素子の安定動作やノイズ除去のために、デカップリングコンデンサが当該半導体スイッチング素子の近傍に設けられる。 Capacitors are used for a variety of purposes. For example, in the field of power electronics, power from an AC power source is converted to DC power by a converter circuit, and this DC power is then converted to the desired AC power by an inverter circuit. In this type of power supply circuit, smoothing capacitors are provided to suppress pulsations in the DC output from the converter circuit and smooth the DC before inputting it to the inverter circuit. In addition, decoupling capacitors are provided near semiconductor switching elements such as gallium nitride to ensure stable operation and remove noise from the semiconductor switching elements.
近年の大電力化に伴い、コンデンサに対する高容量化の要求が強くなっている。電解コンデンサは、フィルムコンデンサよりも高容量化が容易であり、この高容量化の要求に応えやすい。電解コンデンサは、タンタルあるいはアルミニウム等のような弁作用金属を陽極箔及び陰極箔として備えている。陽極箔は、弁作用金属を焼結体あるいはエッチング箔等の形状にすることで拡面化され、拡面化された表面に陽極酸化等の処理によって誘電体皮膜を有する。陽極箔と陰極箔との間には電解質が介在する。 With the recent trend towards higher power, there is a growing demand for capacitors with higher capacitance. Electrolytic capacitors are easier to achieve higher capacitance than film capacitors, and can easily meet this demand. Electrolytic capacitors have valve metals such as tantalum or aluminum as anode and cathode foils. The anode foil is enlarged by forming the valve metal into a sintered compact or etched foil, and the enlarged surface has a dielectric film formed by a process such as anodizing. An electrolyte is placed between the anode and cathode foils.
電解コンデンサは、陽極箔の拡面化により比表面積を大きくすることができ、そのため大きな静電容量を有し、高容量化の要求に答えることができるものである。電解コンデンサのなかでも、固体電解質を用いた固体電解コンデンサが注目されている。固体電解コンデンサは、小型及び大容量であり、且つ固体電解質の高導電性により低等価直列抵抗である。 Electrolytic capacitors can increase the specific surface area by expanding the surface area of the anode foil, which gives them a large electrostatic capacitance and allows them to meet the demand for higher capacity. Among electrolytic capacitors, solid electrolytic capacitors that use solid electrolytes are attracting attention. Solid electrolytic capacitors are small and have a large capacity, and the high conductivity of the solid electrolyte results in low equivalent series resistance.
固体電解質としては、二酸化マンガンや7,7,8,8-テトラシアノキノジメタン(TCNQ)錯体が知られている。近年は、反応速度が緩やかで、また誘電体皮膜との密着性に優れたポリ(3,4-エチレンジオキシチオフェン)(PEDOT)等の、π共役二重結合を有するモノマーから誘導された導電性高分子が固体電解質として急速に普及している。導電性高分子は、ポリアニオン等の酸化合物がドーパントとして用いられ、またモノマー分子内にドーパントとして作用する部分構造を有し、高い導電性が発現する。 Manganese dioxide and 7,7,8,8-tetracyanoquinodimethane (TCNQ) complexes are known as solid electrolytes. In recent years, conductive polymers derived from monomers with π-conjugated double bonds, such as poly(3,4-ethylenedioxythiophene) (PEDOT), which has a slow reaction rate and excellent adhesion to dielectric films, have rapidly become popular as solid electrolytes. Conductive polymers use acid compounds such as polyanions as dopants, and have a partial structure within the monomer molecule that acts as a dopant, resulting in high conductivity.
しかしながら、固体電解コンデンサは、コンデンサ素子に電解液を含浸させた液体型の電解コンデンサと比べて、誘電体である陽極酸化皮膜の欠陥部の修復作用に乏しく、漏れ電流が増大する虞がある。そこで、セパレータを介在させて陽極箔と陰極箔とを対向させたコンデンサ素子に固体電解質層を形成すると共に、コンデンサ素子の空隙に駆動用電解液を含浸させた所謂ハイブリッドタイプの固体電解コンデンサが提案されている。 However, compared to liquid-type electrolytic capacitors, in which the capacitor element is impregnated with an electrolyte, solid electrolytic capacitors are poor at repairing defects in the anodized film, which acts as a dielectric, and there is a risk of increased leakage current. For this reason, so-called hybrid-type solid electrolytic capacitors have been proposed, in which a solid electrolyte layer is formed in a capacitor element in which an anode foil and a cathode foil face each other with a separator in between, and the gaps in the capacitor element are impregnated with a driving electrolyte.
一方で、パワーエレクトロニクス等の分野によっては、高耐電圧のコンデンサが期待されている。例えば、電気自動車に搭載されるモータ駆動用のインバータには、250Vの耐電圧を有する平滑用途のキャパシタが用いられている。このような高耐電圧分野で使用されるハイブリッドタイプの固体電解コンデンサでは、化成電圧が300V以上の誘電体皮膜を陽極箔に形成する必要がある。 On the other hand, in some fields such as power electronics, high voltage resistance capacitors are expected. For example, smoothing capacitors with a voltage resistance of 250V are used in the inverters that drive the motors installed in electric vehicles. In hybrid-type solid electrolytic capacitors used in such high voltage fields, it is necessary to form a dielectric film with a chemical formation voltage of 300V or more on the anode foil.
化成電圧が300V以上の誘電体皮膜内にはボイドが多く含まれ、また誘電体皮膜が化学溶解し易くなる。そこで、高い皮膜修復作用を備えて漏れ電流を抑制すべく、ハイブリッドタイプの固体電解コンデンサに含有させる電解液の溶質濃度を高くしたり、電解液内の水分量を多くする方法が考えられる。 Dielectric films with a formation voltage of 300V or more contain many voids and are susceptible to chemical dissolution. Therefore, in order to provide a high film repair effect and suppress leakage current, it is possible to consider methods such as increasing the solute concentration of the electrolyte contained in hybrid-type solid electrolytic capacitors or increasing the amount of water in the electrolyte.
一般的に、電解液のみを備える高耐電圧用途の電解コンデンサであれば、電解液の溶質濃度を高めるとESRは低下する。ところが、発明者らの鋭意研究の結果、化成電圧が300V以上の誘電体皮膜を形成したハイブリッドタイプの固体電解コンデンサは、電解液の溶質濃度を高めると等価直列抵抗(ESR)が高くなることがわかった。 Generally, in electrolytic capacitors for high voltage applications that contain only an electrolyte, increasing the solute concentration of the electrolyte reduces the ESR. However, as a result of intensive research by the inventors, it was found that in hybrid-type solid electrolytic capacitors that form a dielectric film with a formation voltage of 300V or more, increasing the solute concentration of the electrolyte increases the equivalent series resistance (ESR).
また、水分量を高めると、化成電圧が300V以上の誘電体皮膜を形成したハイブリッドタイプの固体電解コンデンサは、漏れ電流(LC)が高くなることがわかった。尚、化成電圧が100V以下の誘電体皮膜を形成したハイブリッドタイプの固体電解コンデンサであれば、水分量によって漏れ電流(LC)の差は見られなかった。 In addition, it was found that increasing the moisture content increases the leakage current (LC) of hybrid-type solid electrolytic capacitors with a dielectric film formed at a formation voltage of 300V or more. However, for hybrid-type solid electrolytic capacitors with a dielectric film formed at a formation voltage of 100V or less, no difference in leakage current (LC) was observed depending on the moisture content.
本発明は、上記課題を解決するために提案されたものであり、その目的は、良好なコンデンサ特性を有しつつ、高耐電圧が実現されたハイブリッドタイプの固体電解コンデンサ及び製造方法を提供することにある。 The present invention has been proposed to solve the above problems, and its purpose is to provide a hybrid-type solid electrolytic capacitor that has good capacitor characteristics and a high withstand voltage, and a manufacturing method thereof.
上記課題を解決すべく、本実施形態の固体電解コンデンサは、コンデンサ素子を備える固体電解コンデンサであって、前記コンデンサ素子は、弁作用金属を含む陽極体と、前記陽極体と対向する陰極体と、前記陽極体と前記陰極体との間に介在し、電解液と固体電解質とを含む電解質層と、を備え、前記陽極体は、表面に300V以上の耐電圧を有する誘電体皮膜を有し、前記電解液は、0.08mol/kg以上0.34mol/kg以下の溶質と、前記コンデンサ素子に含まれている当該電解液全量に対して1wt%以上10wt%以下の水分とを含む。 In order to solve the above problem, the solid electrolytic capacitor of this embodiment is a solid electrolytic capacitor having a capacitor element, the capacitor element having an anode body containing a valve metal, a cathode body facing the anode body, and an electrolyte layer interposed between the anode body and the cathode body and containing an electrolyte solution and a solid electrolyte, the anode body having a dielectric film on its surface with a withstand voltage of 300 V or more, the electrolyte solution containing a solute of 0.08 mol/kg or more and 0.34 mol/kg or less, and moisture of 1 wt % or more and 10 wt % or less with respect to the total amount of the electrolyte contained in the capacitor element.
前記電解液は、当該電解液全量に対して15wt%以上の耐圧向上剤を含むようにしてもよい。 The electrolyte may contain 15 wt % or more of a pressure resistance improver based on the total amount of the electrolyte.
前記耐圧向上剤は、分子量が600以上のアルキレンオキサイド付加ポリオール又はその誘導体であるようにしてもよい。 The pressure resistance improver may be an alkylene oxide-added polyol or a derivative thereof having a molecular weight of 600 or more.
前記電解質層は、ヒドロキシ基を有し、沸点が150℃以上の化合物を更に含むようにしてもよい。 The electrolyte layer may further contain a compound having a hydroxyl group and a boiling point of 150°C or higher.
前記化合物は、エチレングリコール、ジエチレングリコール、グリセリン又はこれらの2種以上であるようにしてもよい。 The compound may be ethylene glycol, diethylene glycol, glycerin, or two or more of these.
前記陽極体は、前記誘電体皮膜上に疑似ベーマイト層を有し、前記疑似ベーマイト層の量は、0.1mg/cm2以上1.97mg/cm2以下であるようにしてもよい。 The anode body may have a pseudo-boehmite layer on the dielectric coating, and the amount of the pseudo-boehmite layer may be 0.1 mg/cm 2 or more and 1.97 mg/cm 2 or less.
また、上記課題を解決すべく、本実施形態の固体電解コンデンサの製造方法は、陽極体、陰極体及び電解質層により成るコンデンサ素子を備える固体電解コンデンサの製造方法であって、表面に300V以上の耐電圧を有する誘電体皮膜を前記陽極体に形成する化成工程と、前記陽極体と前記陰極体の間又は前記コンデンサ素子に導電性高分子液を付着及び乾燥させる第1の電解質層形成工程と、前記コンデンサ素子に電解液を含浸させる第2の電解質層形成工程と、を含み、前記電解液には、0.08mol/kg以上0.34mol/kg以下の溶質を含ませ、前記コンデンサ素子に含まれる前記電解液全量に対する水分量を1wt%以上10wt%以下に調整する。 In order to solve the above problem, the method for manufacturing a solid electrolytic capacitor of this embodiment is a method for manufacturing a solid electrolytic capacitor having a capacitor element composed of an anode body, a cathode body, and an electrolyte layer, and includes a chemical conversion process for forming a dielectric film having a withstand voltage of 300 V or more on the surface of the anode body, a first electrolyte layer formation process for applying and drying a conductive polymer liquid between the anode body and the cathode body or on the capacitor element, and a second electrolyte layer formation process for impregnating the capacitor element with an electrolyte, the electrolyte containing a solute of 0.08 mol/kg or more and 0.34 mol/kg or less, and adjusting the moisture content of the total amount of the electrolyte contained in the capacitor element to 1 wt% or more and 10 wt% or less.
本発明によれば、低漏れ電流及び低ESRでありながら、300V以上の高耐電圧化を図ることができる。 The present invention makes it possible to achieve a high withstand voltage of 300V or more while maintaining low leakage current and low ESR.
以下、実施形態に係る固体電解コンデンサについて説明する。なお、本発明は、以下に説明する実施形態に限定されるものでない。 The solid electrolytic capacitor according to the embodiment will be described below. Note that the present invention is not limited to the embodiment described below.
(固体電解コンデンサ)
固体電解コンデンサは、誘電体皮膜の誘電分極作用により静電容量を得て電荷の蓄電及び放電を行う受動素子である。固体電解コンデンサは、コンデンサ素子を備えている。コンデンサ素子は、陽極体、陰極体、電解質層及びセパレータを備える。陽極箔の表面には誘電体皮膜が形成されている。陽極体と陰極体は、誘電体皮膜を挟んで対向している。電解質層は、陽極体の誘電体皮膜と陰極体の間に介在する。電解質層は、陽極体の誘電体皮膜と密着して、真の陰極として機能し、誘電体皮膜と陰極体の間に延在して導電パスを作出している。
(Solid electrolytic capacitor)
A solid electrolytic capacitor is a passive element that obtains capacitance by the dielectric polarization action of a dielectric film and stores and discharges electric charge. The solid electrolytic capacitor includes a capacitor element. The capacitor element includes an anode body, a cathode body, an electrolyte layer, and a separator. A dielectric film is formed on the surface of the anode foil. The anode body and the cathode body face each other with the dielectric film in between. The electrolyte layer is interposed between the dielectric film of the anode body and the cathode body. The electrolyte layer is in close contact with the dielectric film of the anode body and functions as a true cathode, and extends between the dielectric film and the cathode body to create a conductive path.
この固体電解コンデンサは、電解液と固体電解質を備えた所謂ハイブリッド型である。電解質層には、少なくとも電解液と固体電解質が含有している。セパレータは、ショート防止のために陽極体と陰極体を隔て、また電解質層を保持する。固体電解質によって、電解質層の形状が自力で保持され、また陽極体と陰極体とを隔離できる場合、セパレータは固体電解コンデンサから排除できる。 This solid electrolytic capacitor is a so-called hybrid type that has an electrolytic solution and a solid electrolyte. The electrolyte layer contains at least an electrolytic solution and a solid electrolyte. The separator separates the anode body and the cathode body to prevent short circuits, and also holds the electrolyte layer in place. If the solid electrolyte can hold the shape of the electrolyte layer by itself and isolate the anode body and cathode body, the separator can be eliminated from the solid electrolytic capacitor.
陽極体と陰極体とは、電解質層を挟んで交互に積層される。この積層型では、外装を省略した平板型とするほか、例えば、コンデンサ素子をラミネートフィルムによって被覆し、又は耐熱性樹脂や絶縁樹脂などの樹脂をモールド、ディップコート若しくは印刷することで封止する。または、陽極体と陰極体は、電解質層を挟んで交互に積層されて巻回される。この巻回型では、例えば、コンデンサ素子は有底筒状のケースに収容される。ケースの開口は、加締め加工により封口体で封止する。 The anode and cathode bodies are alternately stacked with an electrolyte layer between them. In this stacked type, the capacitor element may be a flat plate type that omits the exterior, or, for example, the capacitor element may be covered with a laminate film, or may be sealed by molding, dip coating, or printing a resin such as a heat-resistant resin or an insulating resin. Alternatively, the anode and cathode bodies are alternately stacked with an electrolyte layer between them and wound. In this wound type, for example, the capacitor element is housed in a cylindrical case with a bottom. The opening of the case is sealed with a sealing body by crimping.
コンデンサ素子を封止した後は、エージング工程に移って、高温下で固体電解コンデンサに直流電圧を印加し、固体電解コンデンサの巻回等の作製で損傷した酸化皮膜の修復を行う。これにより、固体電解コンデンサの完成品が形成される。 After sealing the capacitor element, the process moves to the aging process, where a DC voltage is applied to the solid electrolytic capacitor at high temperature to repair the oxide film that was damaged during the winding and other steps of the manufacturing process of the solid electrolytic capacitor. This completes the process of forming the solid electrolytic capacitor.
(陽極体)
陽極体は、弁作用金属を材料とした箔体である。巻回型では、陽極体は、弁作用金属を延伸した長尺の帯形状であり、積層型では、陽極体は、平板又は粉末を平板形に成型及び焼結した焼結体である。弁作用金属は、アルミニウム、タンタル、ニオブ、酸化ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス及びアンチモン等である。純度は、陽極体に関して99.9%以上が望ましいが、ケイ素、鉄、銅、マグネシウム、亜鉛等の不純物が含まれていてもよい。
(Anode body)
The anode body is a foil made of a valve metal. In the wound type, the anode body is a long strip of valve metal stretched, and in the laminated type, the anode body is a flat plate or a sintered body obtained by molding and sintering powder into a flat plate. Valve metals include aluminum, tantalum, niobium, niobium oxide, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony. The purity of the anode body is preferably 99.9% or more, but impurities such as silicon, iron, copper, magnesium, and zinc may be included.
陽極体の片面又は両面には、拡面層が形成されている。拡面層は、投影面積よりも表面積を増大させる処理がなされた表面層であり、箔体にエッチング処理を施したエッチング層、弁作用金属の粉体を箔体に付着及び焼結させた焼結層、又は箔体に弁作用金属粒子を蒸着した蒸着層である。即ち、拡面層は、多孔質構造を有し、トンネル状のピット、海綿状のピット、又は密集した粉体若しくは粒子間の空隙により成る。 A surface expansion layer is formed on one or both sides of the anode body. The surface expansion layer is a surface layer that has been treated to increase the surface area beyond the projected area, and can be an etching layer formed by etching the foil, a sintered layer formed by attaching valve metal powder to the foil and sintering it, or a deposition layer formed by depositing valve metal particles onto the foil. In other words, the surface expansion layer has a porous structure, consisting of tunnel-shaped pits, spongy pits, or spaces between densely packed powder or particles.
トンネル状のエッチングピットは、箔厚み方向に掘り込まれた孔であり、箔体を貫通していてもよい。このトンネル状のエッチングピットは、典型的には、塩酸等のハロゲンイオンが存在する酸性水溶液中で直流電流を流すことで形成される。トンネル状のエッチングピットは、更に、硝酸等の酸性水溶液中で直流電流を流すことで拡径される。海綿状のエッチングピットによって、拡面層は、空間状に細かい空隙が連なり拡がったスポンジ状の層になる。この海綿状のエッチングピットは、塩酸等のハロゲンイオンが存在する酸性水溶液中で交流電流を流すことで形成される。 Tunnel-shaped etching pits are holes dug in the foil thickness direction and may penetrate the foil body. These tunnel-shaped etching pits are typically formed by passing a direct current in an acidic aqueous solution such as hydrochloric acid, in which halogen ions are present. The tunnel-shaped etching pits are further expanded in diameter by passing a direct current in an acidic aqueous solution such as nitric acid. The spongy etching pits make the expanded surface layer into a sponge-like layer with fine gaps that are connected together in a space. These spongy etching pits are formed by passing an alternating current in an acidic aqueous solution such as hydrochloric acid, in which halogen ions are present.
焼結層は、箔体と同種又は異種の弁作用金属の粉末を箔体に付着させて焼結させることで作製される。粉末は、粉砕法、アトマイズ法、メルトスピニング法、回転円盤法、回転電極法等によって得られる。粉末は、バインダーや溶剤によってペースト化し、箔体に塗布及び乾燥させる。そして、真空又は還元雰囲気等で加熱することで焼結させる。アトマイズ法は、水アトマイズ法、ガスアトマイズ法、水ガスアトマイズ法のいずれでも良い。蒸着層は、例えば抵抗加熱式蒸着法又は電子線加熱式蒸着法により作製される。この蒸着層は、箔体と同種又は異種の弁作用金属を抵抗熱や電子線エネルギーによって加熱して蒸発させ、弁作用金属粒子の蒸気を箔体の表面に堆積させることで成膜する。 The sintered layer is produced by attaching a powder of a valve action metal, which is the same or different from the foil body, to the foil body and sintering it. The powder can be obtained by a milling method, atomization method, melt spinning method, rotating disk method, rotating electrode method, etc. The powder is made into a paste using a binder or solvent, which is applied to the foil body and dried. The powder is then sintered by heating in a vacuum or reducing atmosphere, etc. The atomization method may be any of water atomization method, gas atomization method, and water gas atomization method. The vapor deposition layer is produced by, for example, a resistance heating vapor deposition method or an electron beam heating vapor deposition method. This vapor deposition layer is formed by heating and evaporating a valve action metal, which is the same or different from the foil body, using resistance heat or electron beam energy, and depositing the vapor of the valve action metal particles on the surface of the foil body.
誘電体皮膜は、拡面層の凹凸に沿って陽極体の表層に形成されている。誘電体皮膜は、典型的には、陽極体の表層を陽極酸化させた酸化皮膜である。陽極体がアルミニウム箔であれば、誘電体皮膜は、拡面層の凹凸に沿って陽極体の表層を酸化させた酸化アルミニウム層である。誘電体皮膜は化成処理によって形成される。 The dielectric coating is formed on the surface of the anode body, following the unevenness of the surface expansion layer. The dielectric coating is typically an oxide coating formed by anodizing the surface of the anode body. If the anode body is aluminum foil, the dielectric coating is an aluminum oxide layer formed by oxidizing the surface of the anode body, following the unevenness of the surface expansion layer. The dielectric coating is formed by chemical conversion treatment.
化成処理では、化成液中で陽極体に対して、所望の耐電圧を目指して電圧印加する。化成液は、ハロゲンイオン不在の溶液であり、例えば、リン酸二水素アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液である。この固体電解コンデンサでは、製品定格耐電圧を少なくとも250Vに設定できるように、耐電圧が300V以上の誘電体皮膜を形成する。即ち、化成液に陽極体を浸漬しつつ、定電流を流しながら化成電圧が300V以上に達するまで電圧を印加する。 In chemical conversion treatment, a voltage is applied to the anode in the conversion solution until the desired withstand voltage is reached. The conversion solution is a solution that does not contain halogen ions, and examples of such solutions include phosphoric acid-based conversion solutions such as ammonium dihydrogen phosphate, boric acid-based conversion solutions such as ammonium borate, and adipic acid-based conversion solutions such as ammonium adipate. In this solid electrolytic capacitor, a dielectric film with a withstand voltage of 300V or more is formed so that the product rated withstand voltage can be set to at least 250V. That is, while the anode is immersed in the conversion solution, a voltage is applied while a constant current is passed through it until the conversion voltage reaches 300V or more.
尚、300V以上の電圧印加により誘電体皮膜内に発生したボイドを減極処理によって修復するようにしてもよい。減極処理は、熱処理、リン酸処理又はこれらの両方を含む。熱処理では、例えば大気中で450℃以上の温度環境下に晒し、誘電体皮膜内部に孤立したボイドを開門させる。リン酸処理では、ボイドに通じた亀裂部や開孔部を拡大する。このリン酸処理では、リン酸溶液又はリン酸二水素アンモニウム溶液に陽極体を浸漬する。これにより、再化成液がボイドに浸透し易くなる。 Voids that have been generated in the dielectric film by applying a voltage of 300V or more may be repaired by depolarization. Depolarization includes heat treatment, phosphate treatment, or both. Heat treatment involves exposing the film to a temperature environment of 450°C or more in the atmosphere, for example, to open up isolated voids inside the dielectric film. Phosphate treatment enlarges cracks and openings that lead to the voids. In this phosphate treatment, the anode body is immersed in a phosphoric acid solution or ammonium dihydrogen phosphate solution. This makes it easier for the re-chemical solution to penetrate into the voids.
誘電体皮膜上、即ち、誘電体皮膜よりも箔表面側には、疑似ベーマイト層を形成することが好ましい。疑似ベーマイト層は、アルミニウムの水和酸化物を含み、AlOOH・xH2Oである。誘電体皮膜は、結晶性酸化物であるγ-アルミナを含む酸化アルミニウムの層である。この疑似ベーマイト層は、内部が緻密であり、固体電解質の導電性高分子の陽極箔への含浸性を悪化させるが、抵抗層として機能して固体電解コンデンサの耐電圧を向上させる。 It is preferable to form a pseudo-boehmite layer on the dielectric coating, i.e., on the foil surface side of the dielectric coating. The pseudo-boehmite layer contains hydrated oxide of aluminum, and is AlOOH.xH 2 O. The dielectric coating is a layer of aluminum oxide containing γ-alumina, which is a crystalline oxide. This pseudo-boehmite layer is dense inside and deteriorates the impregnation of the conductive polymer of the solid electrolyte into the anode foil, but functions as a resistance layer to improve the withstand voltage of the solid electrolytic capacitor.
疑似ベーマイト層は、陽極箔の拡面化工程の後、化成処理の前工程に位置する化成前処理工程によって形成される。化成前処理工程では、陽極箔を80℃以上又は沸騰した純水に浸漬する。浸漬時間は、疑似ベーマイト層の目的の厚みに応じ、耐電圧と静電容量とのバランスにより決すればよい。疑似ベーマイト層を形成した場合、化成処理では、未酸化のアルミニウム箔と疑似ベーマイト層の境界面から疑似ベーマイト層の外面に向けて、疑似ベーマイト層を誘電体酸化皮膜層に変質させていくことになる。 The pseudo-boehmite layer is formed by a pre-chemical treatment process, which is a process that precedes the chemical treatment and is performed after the surface enlarging process of the anode foil. In the pre-chemical treatment process, the anode foil is immersed in pure water at 80°C or higher or in boiling water. The immersion time can be determined based on the balance between the withstand voltage and the electrostatic capacitance, depending on the desired thickness of the pseudo-boehmite layer. When a pseudo-boehmite layer is formed, the chemical treatment transforms the pseudo-boehmite layer into a dielectric oxide film layer from the interface between the unoxidized aluminum foil and the pseudo-boehmite layer toward the outer surface of the pseudo-boehmite layer.
疑似ベーマイト層は、0.1mg/cm2以上1.97mg/cm2以下の量になるように調整される。疑似ベーマイト層の量がこの範囲に収まることで、固体電解コンデンサの高い耐電圧と低ESRが更に良好に両立する。特に、疑似ベーマイト層は、0.1mg/cm2以上1.73mg/cm2以下の量になるように調整されると、初期のESR、即ちエージング以降、検品を除き、未通電の状態でのESRが低くなる。 The pseudo-boehmite layer is adjusted to have an amount of 0.1 mg/ cm2 or more and 1.97 mg/ cm2 or less. By having the amount of the pseudo-boehmite layer fall within this range, the solid electrolytic capacitor can be more effectively compatible with a high withstand voltage and a low ESR. In particular, when the pseudo-boehmite layer is adjusted to have an amount of 0.1 mg/ cm2 or more and 1.73 mg/ cm2 or less, the initial ESR, that is, the ESR after aging and in a non-energized state except for inspection, becomes low.
疑似ベーマイト層の量を0.1mg/cm2以上1.97mg/cm2以下又は0.1mg/cm2以上1.73mg/cm2以下の範囲に収めるための方法に限定はなく、各種手法を用いてよい。例えば、化成前処理における純水への浸漬時間を変化させることで、疑似ベーマイト層の量を変えることができる。また、化成処理工程の後工程として、陽極箔をリン酸等に短時間浸漬して酸処理し、疑似ベーマイト層を表面から溶解させ、修復化成処理を行う一連の工程を繰り返すようにしてもよい。修復化成処理では、陽極箔を化成液に浸漬し、電圧を印加する。化成液としては、リン酸二水素アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液、ホウ酸とクエン酸などのジカルボン酸を混合した化成液を用いることができる。印加電圧は、目的の耐電圧に応じればよい。 There is no limitation on the method for keeping the amount of the pseudo-boehmite layer within the range of 0.1 mg/ cm2 to 1.97 mg/ cm2 or 0.1 mg/ cm2 to 1.73 mg/ cm2 , and various methods may be used. For example, the amount of the pseudo-boehmite layer can be changed by changing the immersion time in pure water in the pre-chemical treatment. In addition, as a post-chemical treatment step, the anode foil may be immersed in phosphoric acid or the like for a short time for acid treatment, the pseudo-boehmite layer may be dissolved from the surface, and a series of steps may be repeated to perform a repair chemical treatment. In the repair chemical treatment, the anode foil is immersed in a chemical solution and a voltage is applied. As the chemical solution, a phosphoric acid-based chemical solution such as ammonium dihydrogen phosphate, a boric acid-based chemical solution such as ammonium borate, an adipic acid-based chemical solution such as ammonium adipate, or a chemical solution in which boric acid and a dicarboxylic acid such as citric acid are mixed may be used. The applied voltage may be in accordance with the desired withstand voltage.
(陰極体)
陰極体は、弁作用金属を延伸した箔体である。陰極箔の純度は、99%以上が望ましいが、ケイ素、鉄、銅、マグネシウム、亜鉛等の不純物が含まれていても良い。箔体は、表面が平坦なプレーン箔であり、又は拡面化により表面に拡面層が形成されている。拡面層には、意図的又は自然に酸化皮膜が形成されていてもよい。意図的には、化成処理により、1~10V程度の薄い酸化皮膜を形成してもよい。自然酸化皮膜は、陰極箔が空気中の酸素と反応することにより形成される。
(Cathode body)
The cathode body is a foil made of an elongated valve metal. The purity of the cathode foil is preferably 99% or more, but impurities such as silicon, iron, copper, magnesium, and zinc may be included. The foil body is a plain foil with a flat surface, or a surface-expanding layer is formed on the surface by surface-expanding. An oxide film may be formed on the surface-expanding layer intentionally or naturally. A thin oxide film of about 1 to 10 V may be intentionally formed by chemical conversion treatment. A natural oxide film is formed by the reaction of the cathode foil with oxygen in the air.
固体電解コンデンサが積層型である場合、陰極体は、金属層とカーボン層の積層体が好ましい。陰極体のカーボン層は陽極体に向けて配置される。カーボン層は、ペースト状にして、陽極体上に電解質層を形成された後に電解質層上に塗工し、加熱より硬化させることで形成される。金属層は例えば銀層であり、金属層は、ペースト状にして、カーボン層の上から塗工し、加熱により硬化させることで形成される。 When the solid electrolytic capacitor is a laminated type, the cathode body is preferably a laminate of a metal layer and a carbon layer. The carbon layer of the cathode body is arranged facing the anode body. The carbon layer is made into a paste form, and is formed by applying it onto the electrolyte layer after the electrolyte layer is formed on the anode body, and then curing it by heating. The metal layer is, for example, a silver layer, and is formed by applying it into a paste form on top of the carbon layer, and then curing it by heating.
また、陰極体は、更に導電層を積層して備えていてもよい。導電層は、導電性材料を含有し、酸化皮膜よりも高導電性の層である。この導電層は、陰極箔の片面又は両面に積層され、陰極体の最表層に位置する。導電性材料としては、例えばチタン、ジルコニウム、タンタル、ニオブ、これらの窒化物若しくは炭化物、炭化アルミニウム、炭素材、及びこれらの複合材又は混合材が挙げられる。 The cathode body may further include a laminated conductive layer. The conductive layer contains a conductive material and is a layer with higher conductivity than the oxide film. This conductive layer is laminated on one or both sides of the cathode foil and is located as the outermost layer of the cathode body. Examples of conductive materials include titanium, zirconium, tantalum, niobium, nitrides or carbides of these, aluminum carbide, carbon materials, and composites or mixtures of these.
この導電層は複数層が積層されてもよく、各層は異種の層であってもよい。導電層と陰極体とは圧接構造を有していてよい。導電層の積層後にプレス処理を加える。圧接構造は、拡面層の細孔に導電層が押し込まれ、また拡面層の凹凸面に沿って導電層が変形している。圧接構造は、導電層と陰極体との密着性及び定着性を向上させ、固体電解コンデンサのESRを低減させる。 This conductive layer may be a laminate of multiple layers, and each layer may be of a different type. The conductive layer and the cathode body may have a pressure-welded structure. After the conductive layers are laminated, a press treatment is applied. In the pressure-welded structure, the conductive layer is pressed into the pores of the surface-expanding layer, and the conductive layer is deformed along the uneven surface of the surface-expanding layer. The pressure-welded structure improves the adhesion and fixation between the conductive layer and the cathode body, and reduces the ESR of the solid electrolytic capacitor.
(電解質層)
(電解液)
電解液の溶媒は、プロトン性の有機極性溶媒又は非プロトン性の有機極性溶媒であり、単独又は2種類以上が組み合わせられる。また、電解液には水分が含有する。電解液に含まれる溶質は、有機酸若しくはその塩、無機酸若しくはその塩、又は有機酸と無機酸との複合化合物若しくはその塩であり、単独又は2種以上を組み合わせて用いられる。溶質が塩である場合、イオン解離性のある塩が選ばれる。
(Electrolyte layer)
(Electrolyte)
The solvent of the electrolyte is a protic organic polar solvent or an aprotic organic polar solvent, and may be used alone or in combination of two or more. The electrolyte also contains water. The solute contained in the electrolyte is an organic acid or its salt, an inorganic acid or its salt, or a composite compound of an organic acid and an inorganic acid or its salt, and may be used alone or in combination of two or more. When the solute is a salt, an ionically dissociable salt is selected.
溶質は、電解液全量に対して0.08mol/kg以上0.34mol/kg以下の割合で電解液に含まれる。溶質が0.08mol/kg未満であると、耐電圧が300V以上の誘電体皮膜を有するハイブリッドタイプの固体電解コンデンサでは、漏れ電流(LC)が高くなってしまう。一方、溶質が0.34mol/kg超であると、耐電圧が300V以上の誘電体皮膜を有するハイブリッドタイプの固体電解コンデンサでは、ESRが急上昇してしまう。溶質の範囲が0.08mol/kg以上0.34mol/kg以下であれば、耐電圧が300V以上の誘電体皮膜を有するハイブリッドタイプの固体電解コンデンサでは、低漏れ電流及び低ESRを両立できる。 The solute is contained in the electrolyte at a ratio of 0.08 mol/kg or more and 0.34 mol/kg or less relative to the total amount of the electrolyte. If the solute is less than 0.08 mol/kg, the leakage current (LC) will be high in a hybrid-type solid electrolytic capacitor having a dielectric film with a withstand voltage of 300V or more. On the other hand, if the solute is more than 0.34 mol/kg, the ESR will rise sharply in a hybrid-type solid electrolytic capacitor having a dielectric film with a withstand voltage of 300V or more. If the solute range is 0.08 mol/kg or more and 0.34 mol/kg or less, a hybrid-type solid electrolytic capacitor having a dielectric film with a withstand voltage of 300V or more can achieve both low leakage current and low ESR.
好ましくは、溶質は、電解液全量に対して0.08mol/kg以上0.24mol/kg以下の割合で電解液に含まれる。溶質が0.08mol/kg以上0.24mol/kg以下の範囲であると、耐電圧が300V以上の誘電体皮膜を有するハイブリッドタイプの固体電解コンデンサでは、低漏れ電流に加えて更に低いESRを両立できる。 Preferably, the solute is contained in the electrolyte at a ratio of 0.08 mol/kg or more and 0.24 mol/kg or less relative to the total amount of the electrolyte. When the solute is in the range of 0.08 mol/kg or more and 0.24 mol/kg or less, a hybrid-type solid electrolytic capacitor having a dielectric film with a withstand voltage of 300 V or more can achieve both a low leakage current and an even lower ESR.
電解液中の水分量は、電解液全量に対して1wt%以上10wt%以下である。この水分量は、固体電解コンデンサに含浸されている電解液に対する割合であり、固体電解コンデンサから含浸後の電解液を遠心分離で抽出して測定する。即ち、電解液中の水分とは、電解液に添加する水分と固体電解コンデンサの製造過程で、コンデンサ素子内に混入する水分の合計である。従って、固体電解コンデンサの製造過程で混入する水分と電解液に添加する水分とを制御することで、電解液中の水分量が電解液全量に対して1wt%以上10wt%以下になるように調整すればよい。 The amount of moisture in the electrolyte is between 1 wt% and 10 wt% of the total amount of electrolyte. This amount of moisture is the percentage of the electrolyte impregnated in the solid electrolytic capacitor, and is measured by extracting the electrolyte after impregnation from the solid electrolytic capacitor by centrifugation. In other words, the moisture in the electrolyte is the sum of the moisture added to the electrolyte and the moisture mixed into the capacitor element during the manufacturing process of the solid electrolytic capacitor. Therefore, by controlling the moisture mixed in during the manufacturing process of the solid electrolytic capacitor and the moisture added to the electrolyte, the amount of moisture in the electrolyte can be adjusted to be between 1 wt% and 10 wt% of the total amount of electrolyte.
電解液中の水分量が1wt%未満であると、耐電圧が300V以上の誘電体皮膜を有するハイブリッドタイプの固体電解コンデンサでは、漏れ電流(LC)が急増してしまう。電解液中の水分量が10wt%超であると、耐電圧が300V以上の誘電体皮膜を有するハイブリッドタイプの固体電解コンデンサの場合、漏れ電流(LC)はむしろ増大してしまう。水分量とESRとの関係ではESRは大きな変化はないことから、電解液中の水分量が1wt%以上10wt%以下の範囲であれば、低漏れ電流及び低ESRを両立できる。 If the moisture content in the electrolyte is less than 1 wt%, the leakage current (LC) will increase sharply in a hybrid-type solid electrolytic capacitor with a dielectric film with a withstand voltage of 300V or more. If the moisture content in the electrolyte is more than 10 wt%, the leakage current (LC) will actually increase in a hybrid-type solid electrolytic capacitor with a dielectric film with a withstand voltage of 300V or more. Since there is no significant change in ESR in terms of the relationship between moisture content and ESR, low leakage current and low ESR can be achieved simultaneously if the moisture content in the electrolyte is in the range of 1 wt% to 10 wt%.
溶質の種類については特に限定されない。有機酸としては、シュウ酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、アジピン酸、安息香酸、トルイル酸、エナント酸、マロン酸、1,6-デカンジカルボン酸、1,7-オクタンジカルボン酸、アゼライン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸等のカルボン酸、フェノール類、スルホン酸が挙げられる。また、無機酸としては、ホウ酸、リン酸、亜リン酸、次亜リン酸、炭酸、ケイ酸等が挙げられる。有機酸と無機酸の複合化合物としては、ボロジサリチル酸、ボロジ蓚酸、ボロジグリコール酸等が挙げられる。 The type of solute is not particularly limited. Examples of organic acids include carboxylic acids such as oxalic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, benzoic acid, toluic acid, enanthic acid, malonic acid, 1,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid, azelaic acid, undecanedioic acid, dodecanedioic acid, and tridecanedioic acid, as well as phenols and sulfonic acids. Examples of inorganic acids include boric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, carbonic acid, and silicic acid. Examples of composite compounds of organic and inorganic acids include borodisalicylic acid, borodioxalic acid, and borodiglycolic acid.
これら有機酸の塩、無機酸の塩、ならびに有機酸と無機酸の複合化合物の少なくとも1種の塩としては、アンモニウム塩、四級アンモニウム塩、四級化アミジニウム塩、アミン塩、ナトリウム塩、カリウム塩等が挙げられる。四級アンモニウム塩の四級アンモニウムイオンとしては、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等が挙げられる。四級化アミジニウムとしては、エチルジメチルイミダゾリニウム、テトラメチルイミダゾリニウムなどが挙げられる。アミン塩のアミンとしては、一級アミン、二級アミン、三級アミンが挙げられる。一級アミンとしては、メチルアミン、エチルアミン、プロピルアミンなど、二級アミンとしては、ジメチルアミン、ジエチルアミン、エチルメチルアミン、ジブチルアミンなど、三級アミンとしては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、エチルジメチルアミン、エチルジイソプロピルアミン等が挙げられる。 These salts of organic acids, salts of inorganic acids, and at least one salt of a complex compound of an organic acid and an inorganic acid include ammonium salts, quaternary ammonium salts, quaternary amidinium salts, amine salts, sodium salts, potassium salts, etc. Examples of the quaternary ammonium ions of the quaternary ammonium salts include tetramethylammonium, triethylmethylammonium, tetraethylammonium, etc. Examples of the quaternary amidiniums include ethyldimethylimidazolinium, tetramethylimidazolinium, etc. Examples of the amines of the amine salts include primary amines, secondary amines, and tertiary amines. Examples of primary amines include methylamine, ethylamine, propylamine, etc., secondary amines include dimethylamine, diethylamine, ethylmethylamine, dibutylamine, etc., and tertiary amines include trimethylamine, triethylamine, tripropylamine, tributylamine, ethyldimethylamine, ethyldiisopropylamine, etc.
また溶媒におけるプロトン性の有機極性溶媒としては、一価アルコール類、多価アルコール類及びオキシアルコール化合物類などが挙げられる。一価アルコール類としては、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロブタノール、シクロペンタノール、シクロヘキサノール、ベンジルアルコール等が挙げられる。多価アルコール類及びオキシアルコール化合物類としては、エチレングリコール、プロピレングリコール、グリセリン、ポリグリセリン、ジエチレングリコール、ジプロピレングリコール、メチルセロソルブ、エチルセロソルブ、メトキシプロピレングリコール、ジメトキシプロパノール等が挙げられる。 Protic organic polar solvents in the solvent include monohydric alcohols, polyhydric alcohols, and oxyalcohol compounds. Examples of monohydric alcohols include ethanol, propanol, butanol, pentanol, hexanol, cyclobutanol, cyclopentanol, cyclohexanol, and benzyl alcohol. Examples of polyhydric alcohols and oxyalcohol compounds include ethylene glycol, propylene glycol, glycerin, polyglycerin, diethylene glycol, dipropylene glycol, methyl cellosolve, ethyl cellosolve, methoxypropylene glycol, and dimethoxypropanol.
非プロトン性の有機極性溶媒としては、スルホン系、アミド系、ラクトン類、環状アミド系、ニトリル系、スルホキシド系などが代表として挙げられる。スルホン系としては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等が挙げられる。アミド系としては、N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-エチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-エチルアセトアミド、N,N-ジエチルアセトアミド等が挙げられる。ラクトン類、環状アミド系としては、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、N-メチル-2-ピロリドン、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、イソブチレンカーボネート等が挙げられる。ニトリル系としては、アセトニトリル、3-メトキシプロピオニトリル、グルタロニトリル等が挙げられる。スルホキシド系としてはジメチルスルホキシド等が挙げられる。 Representative examples of aprotic organic polar solvents include sulfones, amides, lactones, cyclic amides, nitriles, and sulfoxides. Examples of sulfones include dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, sulfolane, 3-methyl sulfolane, and 2,4-dimethyl sulfolane. Examples of amides include N-methylformamide, N,N-dimethylformamide, N-ethylformamide, N,N-diethylformamide, N-methylacetamide, N,N-dimethylacetamide, N-ethylacetamide, and N,N-diethylacetamide. Examples of lactones and cyclic amides include γ-butyrolactone, γ-valerolactone, δ-valerolactone, N-methyl-2-pyrrolidone, ethylene carbonate, propylene carbonate, butylene carbonate, and isobutylene carbonate. Examples of nitriles include acetonitrile, 3-methoxypropionitrile, and glutaronitrile. Examples of sulfoxides include dimethyl sulfoxide.
さらに、電解液には、耐圧向上剤としての高分子溶媒が含まれていてもよい。この高分子溶媒は、アルキレンオキサイドが付加されたポリオール又はその誘導体が挙げられる。この耐圧向上剤により、固体電解コンデンサの耐電圧を向上させてもよい。この耐圧向上剤は、電解液の溶媒中の15wt%以上を占めるように添加されると好ましく、特に固体電解コンデンサの耐電圧を向上させる。 Furthermore, the electrolyte may contain a polymer solvent as a pressure resistance improver. Examples of this polymer solvent include polyols with alkylene oxide added thereto or derivatives thereof. This pressure resistance improver may improve the voltage resistance of the solid electrolytic capacitor. This pressure resistance improver is preferably added so as to occupy 15 wt % or more of the electrolyte solvent, and particularly improves the voltage resistance of the solid electrolytic capacitor.
アルキレンオキサイドが付加されたポリオール又はその誘導体としては、ポリエチレングリコール、ポリエチレングリコールグリセリルエーテル、ポリエチレングリコールジグリセリルエーテル、ポリエチレングリコールトリグリセリルエーテル、ポリプロピレングリコール、ポリプロピレングリコールグリセリルエーテル、ポリプロピレングリコールジグリセリルエーテル、ポリプロピレングリコールトリグリセリルエーテル、ポリオキシエチレングリセリン、ポリオキシプロピレングリセリン、エチレンオキサイドとプロピレンオキサイドを含むグリコール、エチレンオキサイドとプロピレンオキサイドを含むグリセリンが挙げられる。この中でも、特に分子量が600以上のアルキレンオキサイドが付加されたポリオールが好ましく、固体電解コンデンサの耐電圧を特に向上させる。 Polyols or derivatives thereof to which alkylene oxide has been added include polyethylene glycol, polyethylene glycol glyceryl ether, polyethylene glycol diglyceryl ether, polyethylene glycol triglyceryl ether, polypropylene glycol, polypropylene glycol glyceryl ether, polypropylene glycol diglyceryl ether, polypropylene glycol triglyceryl ether, polyoxyethylene glycerin, polyoxypropylene glycerin, glycols containing ethylene oxide and propylene oxide, and glycerin containing ethylene oxide and propylene oxide. Among these, polyols to which alkylene oxides having a molecular weight of 600 or more have been added are particularly preferred, as they particularly improve the withstand voltage of solid electrolytic capacitors.
電解液には、他の添加剤を添加することもできる。添加剤としては、ホウ酸と多糖類(マンニット、ソルビットなど)との錯化合物、ホウ酸と多価アルコールとの錯化合物、ホウ酸エステル、ニトロ化合物、リン酸エステル、コロイダルシリカなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。ニトロ化合物は、固体電解コンデンサ内の水素ガスの発生量を抑制する。ニトロ化合物としては、o-ニトロ安息香酸、m-ニトロ安息香酸、p-ニトロ安息香酸、o-ニトロフェノール、m-ニトロフェノール、p-ニトロフェノール等が挙げられる。 Other additives can also be added to the electrolyte. Examples of additives include complex compounds of boric acid and polysaccharides (mannitol, sorbitol, etc.), complex compounds of boric acid and polyhydric alcohols, boric acid esters, nitro compounds, phosphate esters, colloidal silica, etc. These may be used alone or in combination of two or more. Nitro compounds suppress the generation of hydrogen gas in the solid electrolytic capacitor. Examples of nitro compounds include o-nitrobenzoic acid, m-nitrobenzoic acid, p-nitrobenzoic acid, o-nitrophenol, m-nitrophenol, p-nitrophenol, etc.
電解液は、コンデンサ素子を電解液に浸漬し、コンデンサ素子内の空隙に含浸させる。電解液をより細かな空隙内に含浸させるべく、必要に応じて減圧処理や加圧処理を行ってもよい。電解液の含浸工程は複数回繰り返してもよい。例えば、コンデンサ素子の内部を減圧し、電解液を加圧しながらコンデンサ素子の内部に電解液を注入してもよい。 The capacitor element is immersed in the electrolyte, and the electrolyte is impregnated into the voids within the capacitor element. If necessary, a pressure reduction or pressure increase may be performed to allow the electrolyte to be impregnated into smaller voids. The electrolyte impregnation process may be repeated multiple times. For example, the pressure inside the capacitor element may be reduced, and the electrolyte may be injected into the capacitor element while pressurizing the electrolyte.
(固体電解質)
電解質層に含有させる固体電解質は、誘電体皮膜への密着性の観点から、導電性高分子が好ましい。導電性高分子は、分子内のドーパント分子によりドープされた自己ドープ型又は外部ドーパント分子によりドープされた外部ドープ型の共役系高分子である。共役系高分子は、π共役二重結合を有するモノマー又はその誘導体を化学酸化重合または電解酸化重合することによって得られる。共役系高分子にドープ反応を行うことで導電性高分子は高い導電性を発現する。即ち、共役系高分子に電子を受け入れやすいアクセプター、若しくは電子を与えやすいドナーといったドーパントを少量添加することで導電性を発現する。
(Solid electrolyte)
The solid electrolyte contained in the electrolyte layer is preferably a conductive polymer from the viewpoint of adhesion to the dielectric film. The conductive polymer is a self-doped conjugated polymer doped with a dopant molecule in the molecule or an externally doped conjugated polymer doped with an external dopant molecule. The conjugated polymer is obtained by chemically oxidizing or electrolytically oxidizing a monomer having a π-conjugated double bond or a derivative thereof. The conductive polymer exhibits high conductivity by performing a doping reaction on the conjugated polymer. That is, the conductivity is exhibited by adding a small amount of a dopant such as an acceptor that easily accepts electrons or a donor that easily gives electrons to the conjugated polymer.
共役系高分子としては、公知のものを特に限定なく使用することができる。例えば、ポリピロール、ポリチオフェン、ポリアニリンなどが挙げられる。これら共役系高分子は、単独で用いられてもよく、2種類以上を組み合わせても良く、更に2種以上のモノマーの共重合体であってもよい。 Conventional conjugated polymers can be used without any particular limitations. Examples include polypyrrole, polythiophene, polyaniline, etc. These conjugated polymers can be used alone or in combination of two or more types, or can be copolymers of two or more types of monomers.
上記の共役系高分子のなかでも、チオフェン又はその誘導体が重合されて成る共役系高分子が好ましく、3,4-エチレンジオキシチオフェン(すなわち、2,3-ジヒドロチエノ[3,4-b][1,4]ジオキシン)、3-アルキルチオフェン、3-アルコキシチオフェン、3-アルキル-4-アルコキシチオフェン、3,4-アルキルチオフェン、3,4-アルコキシチオフェン又はこれらの誘導体が重合された共役系高分子が好ましい。チオフェン誘導体としては、3位と4位に置換基を有するチオフェンから選択された化合物が好ましく、チオフェン環の3位と4位の置換基は、3位と4位の炭素と共に環を形成していても良い。アルキル基やアルコキシ基の炭素数は1~16が適している。 Among the above conjugated polymers, preferred are conjugated polymers formed by polymerizing thiophene or its derivatives, and preferred are conjugated polymers formed by polymerizing 3,4-ethylenedioxythiophene (i.e., 2,3-dihydrothieno[3,4-b][1,4]dioxine), 3-alkylthiophene, 3-alkoxythiophene, 3-alkyl-4-alkoxythiophene, 3,4-alkylthiophene, 3,4-alkoxythiophene, or derivatives thereof. As the thiophene derivative, a compound selected from thiophenes having substituents at the 3rd and 4th positions is preferred, and the substituents at the 3rd and 4th positions of the thiophene ring may form a ring together with the carbons at the 3rd and 4th positions. The alkyl group or alkoxy group preferably has 1 to 16 carbon atoms.
特に、EDOTと呼称される3,4-エチレンジオキシチオフェンの重合体、即ち、PEDOTと呼称されるポリ(3,4-エチレンジオキシチオフェン)が特に好ましい。また、3,4-エチレンジオキシチオフェンにアルキル基が付加された、アルキル化エチレンジオキシチオフェンでもよく、例えば、メチル化エチレンジオキシチオフェン(すなわち、2-メチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)、エチル化エチレンジオキシチオフェン(すなわち、2-エチル-2,3-ジヒドロ-チエノ〔3,4-b〕〔1,4〕ジオキシン)などが挙げられる。 In particular, a polymer of 3,4-ethylenedioxythiophene called EDOT, i.e., poly(3,4-ethylenedioxythiophene) called PEDOT, is particularly preferred. In addition, alkylated ethylenedioxythiophene in which an alkyl group is added to 3,4-ethylenedioxythiophene may be used, such as methylated ethylenedioxythiophene (i.e., 2-methyl-2,3-dihydro-thieno[3,4-b][1,4]dioxine) and ethylated ethylenedioxythiophene (i.e., 2-ethyl-2,3-dihydro-thieno[3,4-b][1,4]dioxine).
ドーパントは、公知のものを特に限定なく使用することができる。ドーパントは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、高分子又は単量体を用いてもよい。例えば、ドーパントとしては、ポリアニオン、ホウ酸、硝酸、リン酸などの無機酸、酢酸、シュウ酸、クエン酸、酒石酸、スクアリン酸、ロジゾン酸、クロコン酸、サリチル酸、p-トルエンスルホン酸、1,2-ジヒドロキシ-3,5-ベンゼンジスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ボロジサリチル酸、ビスオキサレートホウ酸、スルホニルイミド酸、ドデシルベンゼンスルホン酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸などの有機酸が挙げられる。 Any known dopant can be used without any particular limitation. A single dopant may be used, or two or more dopants may be used in combination. A polymer or monomer may also be used. For example, the dopant may be an inorganic acid such as a polyanion, boric acid, nitric acid, or phosphoric acid, or an organic acid such as acetic acid, oxalic acid, citric acid, tartaric acid, squaric acid, rhodizonic acid, croconic acid, salicylic acid, p-toluenesulfonic acid, 1,2-dihydroxy-3,5-benzenedisulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, borodisalicylic acid, bisoxalate boric acid, sulfonylimide acid, dodecylbenzenesulfonic acid, propylnaphthalenesulfonic acid, or butylnaphthalenesulfonic acid.
ポリアニオンは、例えば、置換若しくは未置換のポリアルキレン、置換若しくは未置換のポリアルケニレン、置換若しくは未置換のポリイミド、置換若しくは未置換のポリアミド、置換若しくは未置換のポリエステルであって、アニオン基を有する構成単位のみからなるポリマー、アニオン基を有する構成単位とアニオン基を有さない構成単位とからなるポリマーが挙げられる。具体的には、ポリアニオンとしては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸などが挙げられる。 Polyanions include, for example, substituted or unsubstituted polyalkylenes, substituted or unsubstituted polyalkenylenes, substituted or unsubstituted polyimides, substituted or unsubstituted polyamides, and substituted or unsubstituted polyesters, and include polymers consisting only of structural units having an anionic group, and polymers consisting of structural units having an anionic group and structural units not having an anionic group. Specific examples of polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallylsulfonic acid, polyacrylic sulfonic acid, polymethacrylic sulfonic acid, poly(2-acrylamido-2-methylpropanesulfonic acid), polyisoprene sulfonic acid, polyacrylic acid, polymethacrylic acid, and polymaleic acid.
導電性高分子を電解質層に含有させる方法は、特に限定されない。例えば、導電性高分子液をコンデンサ素子に含浸させることで電解質層に充填すればよい。導電性高分子液を陽極体と陰極体との間に塗布又は吐出してもよい。陽極体と陰極体との間に導電性高分子液を付着させることで、陽極体の誘電体皮膜、陰極体、セパレータ又はこれらの複数に導電性高分子液が付着する。コンデンサ素子を組み立てる前に、陽極体の誘電体皮膜、陰極体、セパレータ又はこれらの複数に対して個別的に導電性高分子液を付着させるようにしてもよい。 The method of incorporating the conductive polymer into the electrolyte layer is not particularly limited. For example, the conductive polymer liquid may be impregnated into the capacitor element to fill the electrolyte layer. The conductive polymer liquid may be applied or ejected between the anode body and the cathode body. By applying the conductive polymer liquid between the anode body and the cathode body, the conductive polymer liquid is applied to the dielectric film of the anode body, the cathode body, the separator, or a combination of these. Before assembling the capacitor element, the conductive polymer liquid may be applied individually to the dielectric film of the anode body, the cathode body, the separator, or a combination of these.
導電性高分子液は、導電性高分子の粒子又は粉末が分散又は溶解した液体である。導電性高分子液のコンデンサ素子への含浸の促進を図るべく、必要に応じて減圧処理や加圧処理を施してもよい。導電性高分子液の含浸工程は複数回繰り返しても良い。導電性高分子液をコンデンサ素子に含浸させた後は、乾燥工程により分散媒又は溶媒の一部を除去する。 The conductive polymer liquid is a liquid in which conductive polymer particles or powder are dispersed or dissolved. In order to promote the impregnation of the conductive polymer liquid into the capacitor element, a decompression treatment or a pressurization treatment may be performed as necessary. The impregnation process of the conductive polymer liquid may be repeated multiple times. After the capacitor element is impregnated with the conductive polymer liquid, a part of the dispersion medium or solvent is removed by a drying process.
導電性高分子液の溶媒又は分散媒は、導電性高分子の粒子又は粉末が分散又は溶解するものであればよく、水、有機溶媒又はこれらの混合液である。有機溶媒としては、極性溶媒、アルコール類、エステル類、炭化水素類、カーボネート化合物、エーテル化合物、鎖状エーテル類、複素環化合物、ニトリル化合物、スルホン系などが好適に例示できる。 The solvent or dispersion medium of the conductive polymer liquid may be water, an organic solvent, or a mixture of these, as long as it disperses or dissolves the conductive polymer particles or powder. Suitable examples of organic solvents include polar solvents, alcohols, esters, hydrocarbons, carbonate compounds, ether compounds, chain ethers, heterocyclic compounds, nitrile compounds, and sulfones.
極性溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等が挙げられる。アルコール類としては、メタノール、エタノール、プロパノール、ブタノール等が挙げられる。エステル類としては、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。炭化水素類としては、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン等が挙げられる。カーボネート化合物としては、エチレンカーボネート、プロピレンカーボネート等が挙げられる。エーテル化合物としては、ジオキサン、ジエチルエーテル等が挙げられる。鎖状エーテル類としては、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等が挙げられる。複素環化合物としては、3-メチル-2-オキサゾリジノン等が挙げられる。ニトリル化合物としては、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等が挙げられる。スルホン系としては、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン等が挙げられる。 Polar solvents include N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide, etc. Alcohols include methanol, ethanol, propanol, butanol, etc. Esters include ethyl acetate, propyl acetate, butyl acetate, etc. Hydrocarbons include hexane, heptane, benzene, toluene, xylene, etc. Carbonate compounds include ethylene carbonate, propylene carbonate, etc. Ether compounds include dioxane, diethyl ether, etc. Chain ethers include ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, etc. Heterocyclic compounds include 3-methyl-2-oxazolidinone, etc. Nitrile compounds include acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, benzonitrile, etc. Examples of sulfones include dimethyl sulfone, ethyl methyl sulfone, diethyl sulfone, sulfolane, 3-methyl sulfolane, and 2,4-dimethyl sulfolane.
この中でも、溶媒としては、ヒドロキシ基を有し、沸点が150℃以上の高沸点溶媒が好ましい。この高沸点溶媒は、誘電体皮膜の化成性を向上させ、固体電解コンデンサの耐電圧を高める。高沸点溶媒としては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、ポリオキシエチレングリコール、グリセリン、ポリグリセリン等の多価アルコール、又はこれらの2種以上の組み合わせが挙げられる。高沸点溶媒は、沸点の高さにより電解質層に残留させることができ、ESR低減や耐電圧向上効果が得られる。 Among these, a high-boiling point solvent having a hydroxyl group and a boiling point of 150°C or higher is preferred. This high-boiling point solvent improves the chemical conversion properties of the dielectric film and increases the voltage resistance of the solid electrolytic capacitor. Examples of high-boiling point solvents include polyhydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, polyoxyethylene glycol, glycerin, and polyglycerin, or combinations of two or more of these. High-boiling point solvents can be left in the electrolyte layer due to their high boiling point, resulting in reduced ESR and improved voltage resistance.
導電性高分子液は、pHが調整されてもよい。pH調整剤としては、例えばアンモニア水、水酸化ナトリウム、一級アミン、二級アミン、三級アミンなどが挙げられる。また、導電性高分子液には、有機バインダー、界面活性剤、分散剤、消泡剤、カップリング剤、酸化防止剤、紫外線吸収剤等の慣用の添加剤を添加してもよい。導電性高分子液に添加剤を添加したり、導電性高分子液をコンデンサ素子へ含浸する回数を増やすことでESRを大幅に低下させることも可能である。 The pH of the conductive polymer liquid may be adjusted. Examples of pH adjusters include ammonia water, sodium hydroxide, primary amines, secondary amines, and tertiary amines. Conventional additives such as organic binders, surfactants, dispersants, defoamers, coupling agents, antioxidants, and ultraviolet absorbers may also be added to the conductive polymer liquid. It is also possible to significantly reduce the ESR by adding additives to the conductive polymer liquid or by increasing the number of times the capacitor element is impregnated with the conductive polymer liquid.
(セパレータ)
セパレータは、クラフト、マニラ麻、エスパルト、ヘンプ、レーヨン等のセルロース及びこれらの混合紙、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、それらの誘導体などのポリエステル系樹脂、ポリテトラフルオロエチレン系樹脂、ポリフッ化ビニリデン系樹脂、ビニロン系樹脂、脂肪族ポリアミド、半芳香族ポリアミド、全芳香族ポリアミド等のポリアミド系樹脂、ポリイミド系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、トリメチルペンテン樹脂、ポリフェニレンサルファイド樹脂、アクリル樹脂、ポリビニルアルコール樹脂等が挙げられ、これらの樹脂を単独で又は混合して用いることができる。
(Separator)
Examples of the separator include cellulose papers such as kraft, Manila hemp, esparto, hemp, and rayon, and mixed papers thereof; polyester-based resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and derivatives thereof; polytetrafluoroethylene-based resins, polyvinylidene fluoride-based resins, vinylon-based resins, polyamide-based resins such as aliphatic polyamides, semi-aromatic polyamides, and fully aromatic polyamides; polyimide-based resins, polyethylene resins, polypropylene resins, trimethylpentene resins, polyphenylene sulfide resins, acrylic resins, and polyvinyl alcohol resins. These resins can be used alone or in combination.
以下、実施例の固体電解コンデンサをさらに詳細に説明する。なお、本発明は、以下に説明する実施例に限定されるものでない。 The solid electrolytic capacitor of the embodiment will be described in more detail below. Note that the present invention is not limited to the embodiment described below.
(実施例1-5)
実施例1乃至5並びに比較例1乃至3の固体電解コンデンサを作製した。まず、アルミニウム箔を用いて陽極体及び陰極体を作製した。陽極体は、エッチング処理によりトンネル状のエッチングピットにより成る拡面層が形成された。次いで、陽極体を化成処理することで誘電体皮膜が形成された。化成処理に際し、陽極体は、ホウ酸アンモニウム水溶液に浸漬され、陽極体の耐電圧が650Vになるように電圧印加された。
(Examples 1 to 5)
Solid electrolytic capacitors of Examples 1 to 5 and Comparative Examples 1 to 3 were produced. First, an anode body and a cathode body were produced using aluminum foil. The anode body was subjected to an etching process to form a surface enlargement layer consisting of tunnel-shaped etching pits. Next, the anode body was subjected to a chemical conversion process to form a dielectric film. During the chemical conversion process, the anode body was immersed in an ammonium borate aqueous solution, and a voltage was applied so that the withstand voltage of the anode body was 650 V.
陰極体は、拡面化及び化成処理が未実施のプレーンのアルミニウム箔である。陽極体と陰極体にリード線を接続し、セルロース系のセパレータを介して陽極体と陰極体を対向させて巻回した。巻回体は、ホウ酸アンモニウム水溶液に浸漬され、10mAの定電流を流しながら電圧を550Vに達するまで電圧を印加することで、修復化成が施された。その後、純水で洗浄し、105℃で乾燥させた。 The cathode body is a plain aluminum foil that has not been enlarged or chemically treated. Lead wires were connected to the anode body and cathode body, and the anode body and cathode body were wound facing each other with a cellulose-based separator in between. The wound body was immersed in an aqueous solution of ammonium borate, and a constant current of 10 mA was applied while a voltage of 550 V was applied, thereby carrying out a repair chemical treatment. It was then washed with pure water and dried at 105°C.
この巻回体を導電性高分子液に浸漬し、陽極体の誘電体皮膜、陰極体及びセパレータに固体電解質を付着させた。巻回体を導電性高分子液に浸漬した後、巻回体を110℃で1時間乾燥させた。 The wound body was immersed in a conductive polymer liquid, and a solid electrolyte was applied to the dielectric film of the anode body, the cathode body, and the separator. After immersing the wound body in the conductive polymer liquid, the wound body was dried at 110°C for 1 hour.
導電性高分子液には、ポリスチレンスルホン酸でドーピングされたポリ(3,4-エチレンジオキシチオフェン)の粒子を導電性高分子として分散させた。分散媒は、50wt%の水と50wt%のエチレングリコールの混合液であり、導電性高分子の濃度が1wt%の導電性高分子液を調製した。導電性高分子液には、導電性高分子液全量に対して2wt%のソルビトールを添加した。導電性高分子は超音波ホモジナイザーにより分散させた。 In the conductive polymer solution, poly(3,4-ethylenedioxythiophene) particles doped with polystyrene sulfonic acid were dispersed as the conductive polymer. The dispersion medium was a mixture of 50 wt% water and 50 wt% ethylene glycol, and a conductive polymer solution was prepared with a conductive polymer concentration of 1 wt%. 2 wt% sorbitol was added to the conductive polymer solution based on the total amount of the conductive polymer solution. The conductive polymer was dispersed using an ultrasonic homogenizer.
更に、導電性高分子の電解質層を形成した巻回体に電解液を含浸させた。電解液の溶媒は、溶媒全量中の60wt%を占めるエチレングリコールと、溶媒全量中の40wt%を占めるポリエチレングリコールで組成されている。ポリエチレングリコールの分子量は1000である。電解液の溶質は、アゼライン酸アンモニウムとした。 Furthermore, the wound body on which the conductive polymer electrolyte layer was formed was impregnated with an electrolyte. The solvent of the electrolyte was composed of ethylene glycol, which accounted for 60 wt% of the total amount of the solvent, and polyethylene glycol, which accounted for 40 wt% of the total amount of the solvent. The molecular weight of the polyethylene glycol was 1000. The solute of the electrolyte was ammonium azelaate.
電解液中の水分は、固体電解コンデンサに含まれる電解液中の5wt%とした。電解液中の水分は、電解液への水分の添加および固体電解コンデンサの製造過程で混入する水分を制御することで調整した。また、水分量は、作製した固体電解コンデンサから遠心分離で電解液を抽出して測定した。 The moisture content of the electrolyte was set to 5 wt% of the electrolyte contained in the solid electrolytic capacitor. The moisture content of the electrolyte was adjusted by controlling the amount of moisture added to the electrolyte and the moisture that was mixed in during the manufacturing process of the solid electrolytic capacitor. The moisture content was also measured by extracting the electrolyte from the manufactured solid electrolytic capacitor by centrifugation.
実施例1乃至5並びに比較例1乃至3は、下表1に示すように、電解液の溶質の濃度(mol/kg)が異なる。下表1では、電解液中の水分を製品中電解液水分率と表記している。
(表1)
Examples 1 to 5 and Comparative Examples 1 to 3 have different solute concentrations (mol/kg) in the electrolyte, as shown in Table 1 below. In Table 1 below, the moisture content in the electrolyte is expressed as the moisture content of the electrolyte in the product.
(Table 1)
固体電解質と電解液で電解質層を形成した後、コンデンサ素子を収容した有底筒状の外装ケースの開口端部には封口ゴムが装着され、加締め加工によって封止された。各固体電解コンデンサは、電圧印加によってエージング処理した。各固体電解コンデンサは、外装ケースと封口ゴムを含む製品の大きさが直径10mmで高さ12.5mmであり、定格静電容量は5.6μFであった。 After forming an electrolyte layer with the solid electrolyte and electrolyte solution, a rubber seal was attached to the open end of the bottomed cylindrical exterior case housing the capacitor element, and the case was then sealed by crimping. Each solid electrolytic capacitor was aged by applying a voltage. The size of each solid electrolytic capacitor, including the exterior case and rubber seal, was 10 mm in diameter and 12.5 mm in height, and the rated capacitance was 5.6 μF.
(溶質濃度試験)
実施例1乃至5並びに比較例1乃至3の固体電解コンデンサの漏れ電流(LC)と初期のESRと電解液の比抵抗を測定した。漏れ電流は、105℃の温度環境下で、475Vを印加してから20分経過後のオシロスコープの値とした。ESRの測定条件は、周囲温度が20℃、LCRメーター(Agilent Technologies社製、E4980A)を用い、交流電流レベルを1.0Vrms、測定周波数を100kHzとした。比抵抗は、電気導電率計(東亜ディーケーケー株式会社製、CM-42X)にて30℃の温度で測定した。
(Solute concentration test)
The leakage current (LC), initial ESR, and electrolytic solution resistivity of the solid electrolytic capacitors of Examples 1 to 5 and Comparative Examples 1 to 3 were measured. The leakage current was measured as the value of an
実施例1乃至5並びに比較例1乃至3の固体電解コンデンサの漏れ電流(LC)と初期のESRと比抵抗の測定結果を下表2に示す。また、下表2に基づき、溶質濃度とESRの関係を示すグラフと、溶質濃度と漏れ電流(LC)の関係を示すグラフを作成した。図1の上図は溶質濃度とESRの関係を示すグラフであり、下図は溶質濃度と漏れ電流(LC)の関係を示すグラフである。 Table 2 below shows the measurement results of leakage current (LC), initial ESR, and resistivity of the solid electrolytic capacitors of Examples 1 to 5 and Comparative Examples 1 to 3. In addition, based on Table 2 below, a graph showing the relationship between solute concentration and ESR and a graph showing the relationship between solute concentration and leakage current (LC) were created. The upper graph in Figure 1 is a graph showing the relationship between solute concentration and ESR, and the lower graph is a graph showing the relationship between solute concentration and leakage current (LC).
(表2)
(Table 2)
表2及び図1に示すように、実施例1乃至5は、電解液中の溶質の濃度が0.08mol/kg以上0.34mol/kg以下であることにより、低漏れ電流(LC)及び低ESRを両立させていることが確認できる。電解液の比抵抗は、溶質濃度が最も高い比較例3が最も低いが、ESRは最も高くなっている。実施例1と実施例3との電解液の比抵抗の差は2倍近いが、両者とも低ESRであることが確認できる。 As shown in Table 2 and Figure 1, it can be confirmed that in Examples 1 to 5, the concentration of the solute in the electrolyte is 0.08 mol/kg or more and 0.34 mol/kg or less, thereby achieving both low leakage current (LC) and low ESR. The specific resistance of the electrolyte is the lowest in Comparative Example 3, which has the highest solute concentration, but its ESR is the highest. The difference in the specific resistance of the electrolyte between Example 1 and Example 3 is nearly two times, but it can be confirmed that both have low ESR.
(実施例6-8)
実施例6乃至8並びに比較例4乃至6の固体電解コンデンサを作製した。実施例6乃至8並びに比較例4乃至6は、固体電解コンデンサに含浸された電解液中の水分率を除き、実施例2の固体電解コンデンサの電解液と同一の組成、同一の構成、同一の製造方法及び製造条件で作製された。電解液への水分の添加および固体電解コンデンサの製造過程で混入する水分を制御することで、製品中電解液水分率を調整した。
(Examples 6 to 8)
Solid electrolytic capacitors of Examples 6 to 8 and Comparative Examples 4 to 6 were produced. Except for the moisture content in the electrolyte impregnated in the solid electrolytic capacitor, Examples 6 to 8 and Comparative Examples 4 to 6 were produced with the same composition, configuration, manufacturing method and manufacturing conditions as the electrolyte of the solid electrolytic capacitor of Example 2. The moisture content of the electrolyte in the product was adjusted by controlling the addition of moisture to the electrolyte and the moisture mixed in during the manufacturing process of the solid electrolytic capacitor.
実施例6乃至8並びに比較例4乃至6の水分率は、下表3の通りである。
(表3)
The moisture contents of Examples 6 to 8 and Comparative Examples 4 to 6 are shown in Table 3 below.
(Table 3)
(水分率試験)
実施例6乃至8並びに比較例4乃至6の固体電解コンデンサの漏れ電流(LC)と初期のESRと電解液の比抵抗を測定した。漏れ電流及びESRの測定条件は、実施例1乃至5並びに比較例1乃至3と同一である。
(Moisture content test)
The leakage current (LC), initial ESR, and specific resistance of the electrolyte were measured for the solid electrolytic capacitors of Examples 6 to 8 and Comparative Examples 4 to 6. The measurement conditions for the leakage current and ESR were the same as those of Examples 1 to 5 and Comparative Examples 1 to 3.
実施例2及び6乃至8並びに比較例4乃至6の固体電解コンデンサの漏れ電流(LC)と初期のESRと比抵抗の測定結果を下表4に示す。また、下表4に基づき、水分率と漏れ電流(LC)の関係を示すグラフを図2に示すように作成した。 The measurement results of the leakage current (LC), initial ESR, and resistivity of the solid electrolytic capacitors of Examples 2 and 6 to 8 and Comparative Examples 4 to 6 are shown in Table 4 below. In addition, based on Table 4 below, a graph showing the relationship between moisture content and leakage current (LC) was created as shown in Figure 2.
(表4)
(Table 4)
表4及び図2に示すように、水分率が低い場合と高い場合は、漏れ電流(LC)が高くなる。しかし、電解液中の水分率が1wt%以上10wt%以下であると、低漏れ電流(LC)となることが確認できる。 As shown in Table 4 and Figure 2, when the moisture content is low or high, the leakage current (LC) is high. However, it can be confirmed that when the moisture content in the electrolyte is between 1 wt% and 10 wt%, the leakage current (LC) is low.
(実施例9-11)
実施例9乃至11、比較例7乃至9、並びに参考例1乃至5の固体電解コンデンサを作製した。実施例9乃至11比較例7乃至9は、全て同一の溶質濃度であるが、水分率が異なる。実施例9乃至11比較例7乃至9は、実施例2及び6乃至8並びに比較例4乃至6と比べて、陽極箔の化成電圧が異なる。その他、実施例9乃至11比較例7乃至9は、実施例2及び6乃至8並びに比較例4乃至6の固体電解コンデンサの電解液と同一の組成、同一の構成、同一の製造方法及び製造条件で作製された。
(Examples 9 to 11)
Solid electrolytic capacitors of Examples 9 to 11, Comparative Examples 7 to 9, and Reference Examples 1 to 5 were produced. Examples 9 to 11 and Comparative Examples 7 to 9 all had the same solute concentration but different moisture contents. Examples 9 to 11 and Comparative Examples 7 to 9 had different formation voltages for the anode foil compared to Examples 2, 6 to 8, and Comparative Examples 4 to 6. In addition, Examples 9 to 11 and Comparative Examples 7 to 9 were produced with the same composition, configuration, manufacturing method, and manufacturing conditions as the electrolyte of the solid electrolytic capacitors of Examples 2, 6 to 8, and Comparative Examples 4 to 6.
実施例9乃至11並びに比較例7乃至9の陽極体は、化成処理に際し、ホウ酸アンモニウム水溶液に浸漬され、電圧が印加された。陽極体には、最終印加電圧が360Vに達するまで電圧印加された。 The anode bodies of Examples 9 to 11 and Comparative Examples 7 to 9 were immersed in an aqueous solution of ammonium borate during chemical conversion treatment, and a voltage was applied to them. A voltage was applied to the anode bodies until the final voltage reached 360 V.
また、参考例1乃至5は、全て同一の溶質濃度であるが、水分率が異なる。参考例1乃至5の陽極体は、化成処理に際し、ホウ酸アンモニウム水溶液に浸漬され、電圧が印加された。陽極体には、最終印加電圧が160Vに達するまで電圧印加された。その他、参考例1乃至5は、実施例2及び6乃至8並びに比較例4乃至6の固体電解コンデンサの電解液と同一の組成、同一の構成、同一の製造方法及び同一の製造条件で作製された。 In addition, Reference Examples 1 to 5 all have the same solute concentration, but different moisture percentages. The anode bodies of Reference Examples 1 to 5 were immersed in an aqueous solution of ammonium borate during chemical conversion treatment, and voltage was applied. Voltage was applied to the anode bodies until the final voltage reached 160 V. In addition, Reference Examples 1 to 5 were produced with the same composition, configuration, manufacturing method, and manufacturing conditions as the electrolyte of the solid electrolytic capacitors of Examples 2 and 6 to 8 and Comparative Examples 4 to 6.
そして、実施例9乃至11、比較例7乃至9並びに参考例1乃至5の固体電解コンデンサの漏れ電流(LC)と初期のESRと電解液の比抵抗を測定した。漏れ電流及びESRの測定条件は、実施例1乃至5並びに比較例1乃至3と同一である。 Then, the leakage current (LC), initial ESR, and electrolytic solution resistivity of the solid electrolytic capacitors of Examples 9 to 11, Comparative Examples 7 to 9, and Reference Examples 1 to 5 were measured. The measurement conditions for leakage current and ESR were the same as those of Examples 1 to 5 and Comparative Examples 1 to 3.
実施例9乃至11、比較例7乃至9並びに参考例1乃至5の固体電解コンデンサの漏れ電流(LC)と初期のESRと比抵抗の測定結果を下表5及び下表6に示す。 The measurement results of the leakage current (LC), initial ESR, and resistivity of the solid electrolytic capacitors of Examples 9 to 11, Comparative Examples 7 to 9, and Reference Examples 1 to 5 are shown in Tables 5 and 6 below.
(表5)
(Table 5)
(表6)
Table 6
表5に示すように、耐電圧が360Vの誘電体皮膜を有するハイブリッドタイプの固体電解コンデンサは、表4に示した耐電圧が650Vの場合と同じく、水分率が低い場合と高い場合は、漏れ電流(LC)が高くなった。しかし、電解液中の水分率が1wt%以上10wt%以下であると、低漏れ電流(LC)となることが確認できる。 As shown in Table 5, the hybrid-type solid electrolytic capacitor with a dielectric film with a withstand voltage of 360 V had high leakage current (LC) when the moisture content was low and high, just as in the case of a withstand voltage of 650 V shown in Table 4. However, it can be confirmed that a low leakage current (LC) was achieved when the moisture content in the electrolyte was between 1 wt% and 10 wt%.
一方、表6に示すように、耐電圧が300Vを下回る160Vの誘電体皮膜を有するハイブリッドタイプの固体電解コンデンサの場合、水分率が変わっても漏れ電流(LC)とESRに変化はない。 On the other hand, as shown in Table 6, in the case of a hybrid-type solid electrolytic capacitor with a dielectric film having a withstand voltage of 160 V, which is lower than 300 V, there is no change in leakage current (LC) and ESR even if the moisture content changes.
以上より、耐電圧が300V以上の誘電体皮膜を有するハイブリッドタイプの固体電解コンデンサの場合には、電解液は、0.08mol/kg以上0.34mol/kg以下の溶質と、当該電解液全量に対して1wt%以上10wt%以下の水分とを含むことで、低漏れ電流(LC)と低ESRとが両立する。 From the above, in the case of a hybrid-type solid electrolytic capacitor having a dielectric film with a withstand voltage of 300V or more, the electrolyte contains a solute of 0.08 mol/kg or more and 0.34 mol/kg or less, and a water content of 1 wt% or more and 10 wt% or less of the total amount of the electrolyte, thereby achieving both low leakage current (LC) and low ESR.
(実施例12-17)
次に、実施例12乃至17の固体電解コンデンサを作製した。実施例12乃至17の固体電解コンデンサにおいては、電解液中の溶媒は、耐圧向上剤である分子量1000のポリエチレングリコールとエチレングリコールで組成させている。その他、実施例12乃至17は、実施例2の固体電解コンデンサの電解液と同一の組成、同一の構成、同一の製造方法及び同一の製造条件で作製されている。
(Examples 12 to 17)
Next, the solid electrolytic capacitors of Examples 12 to 17 were produced. In the solid electrolytic capacitors of Examples 12 to 17, the solvent in the electrolytic solution was composed of polyethylene glycol and ethylene glycol having a molecular weight of 1000, which are pressure resistance improvers. Otherwise, the solid electrolytic capacitors of Examples 12 to 17 were produced with the same composition, configuration, manufacturing method, and manufacturing conditions as the electrolytic solution of the solid electrolytic capacitor of Example 2.
この実施例12乃至17並びに実施例2の固体電解コンデンサの耐電圧を測定した。耐電圧の測定方法は次の通りである。即ち、105℃において固体電解コンデンサに電圧を印加した。開始電圧は200Vであり、印加電圧を10秒ごとに1Vずつ昇圧していった。そして、固体電解コンデンサに流れた電流が1mAに到達したときの電圧を耐電圧とした。 The breakdown voltage of the solid electrolytic capacitors of Examples 12 to 17 and Example 2 was measured. The breakdown voltage was measured as follows. That is, a voltage was applied to the solid electrolytic capacitor at 105°C. The starting voltage was 200V, and the applied voltage was increased by 1V every 10 seconds. The voltage when the current flowing through the solid electrolytic capacitor reached 1mA was taken as the breakdown voltage.
(耐電圧測定試験)
実施例12乃至17並びに実施例2の固体電解コンデンサの電解液溶媒中に占めるポリエチレングリコールの割合、及び耐電圧の測定結果は、下表7の通りである。また、下表7に基づき、耐圧向上剤と耐電圧との関係を図3に示す。
(表7)
(Voltage resistance measurement test)
The ratio of polyethylene glycol in the electrolyte solvent and the measurement results of the withstand voltage of the solid electrolytic capacitors of Examples 12 to 17 and Example 2 are shown in Table 7 below. Based on Table 7 below, the relationship between the withstand voltage improver and the withstand voltage is shown in FIG.
(Table 7)
表7及び図3に示すように、電解コンデンサに高分子の耐圧向上剤を添加すると、固体電解コンデンサの耐電圧が向上していることが確認できる。特に、電解液の溶媒中の15wt%以上を占めるように耐圧向上剤を添加すると、耐電圧向上効果が高くなっている。 As shown in Table 7 and Figure 3, it can be confirmed that the voltage resistance of solid electrolytic capacitors is improved when a polymeric voltage resistance improver is added to an electrolytic capacitor. In particular, the effect of improving voltage resistance is enhanced when the voltage resistance improver is added so that it occupies 15 wt % or more of the electrolyte solvent.
(実施例18-21)
次に、実施例18乃至21の固体電解コンデンサを作製した。実施例18乃至21は、実施例2と比べて電解液中に含まれる耐圧向上剤の種類が異なる。その他、実施例18乃至21は、実施例2の固体電解コンデンサの電解液と同一の組成、同一の構成、同一の製造方法及び製造条件で作製されている。
(Examples 18 to 21)
Next, solid electrolytic capacitors of Examples 18 to 21 were produced. The types of voltage resistance improvers contained in the electrolytic solution of Examples 18 to 21 were different from those of Example 2. Other than that, Examples 18 to 21 were produced with the same composition, the same configuration, and the same manufacturing method and manufacturing conditions as the electrolytic solution of the solid electrolytic capacitor of Example 2.
実施例18乃至20の電解液中の溶媒は、耐圧向上剤であるポリエチレングリコールであるが、実施例2と比べてポリエチレングリコールの分子量が異なる。また、実施例21の電解液中の溶媒は、耐圧向上剤であるアルキレンオキサイド付加グリセリン誘導体が添加されている。アルキレンオキサイド付加グリセリン誘導体の分子量は3000である。 The solvent in the electrolyte of Examples 18 to 20 is polyethylene glycol, which is a pressure resistance improver, but the molecular weight of the polyethylene glycol is different from that of Example 2. Also, the solvent in the electrolyte of Example 21 is an alkylene oxide-added glycerin derivative, which is a pressure resistance improver. The molecular weight of the alkylene oxide-added glycerin derivative is 3000.
この実施例18乃至21並びに実施例2の固体電解コンデンサの耐電圧を測定した。耐電圧の測定方法は次の通りである。即ち、105℃において固体電解コンデンサに電圧を印加した。開始電圧は200Vであり、印加電圧を10秒ごとに1Vずつ昇圧していった。そして、固体電解コンデンサに流れた電流が1mAに到達したときの電圧を耐電圧とした。 The breakdown voltage of the solid electrolytic capacitors of Examples 18 to 21 and Example 2 was measured. The breakdown voltage was measured as follows. That is, a voltage was applied to the solid electrolytic capacitor at 105°C. The starting voltage was 200V, and the applied voltage was increased by 1V every 10 seconds. The voltage when the current flowing through the solid electrolytic capacitor reached 1mA was taken as the breakdown voltage.
(耐電圧測定試験)
実施例18乃至21並びに実施例2の固体電解コンデンサの電解液溶媒中に占める耐圧向上剤の種類及び耐電圧の測定結果は、下表8の通りである。
(表8)
(Voltage resistance measurement test)
The types of the voltage resistance improvers contained in the electrolyte solvents of the solid electrolytic capacitors of Examples 18 to 21 and Example 2 and the measurement results of the voltage resistance are shown in Table 8 below.
Table 8
表8に示すように、耐圧向上剤となる高分子は分子量が600以上のアルキレンオキサイド付加ポリオール又はその誘導体であると、特に耐電圧向上効果が高くなっていることが確認された。 As shown in Table 8, it was confirmed that the voltage resistance improving effect was particularly high when the polymer acting as the voltage resistance improving agent was an alkylene oxide-added polyol or its derivative with a molecular weight of 600 or more.
(実施例22-25)
次に、実施例22乃至25の固体電解コンデンサを作製した。実施例22乃至25は、実施例2と同じく、固体電解質を形成する際の導電性高分子液の溶媒がエチレングリコールと水で組成されている。但し、実施例22乃至25は、エチレングリコールの量が実施例2と比べて異なる。その他、実施例22乃至25は、実施例2の固体電解コンデンサの電解液と同一の組成、同一の構成、同一の製造方法及び製造条件で作製されている。
(Examples 22 to 25)
Next, solid electrolytic capacitors of Examples 22 to 25 were produced. In Examples 22 to 25, as in Example 2, the solvent of the conductive polymer liquid used to form the solid electrolyte was composed of ethylene glycol and water. However, the amount of ethylene glycol in Examples 22 to 25 is different from that in Example 2. Other than that, Examples 22 to 25 were produced with the same composition, configuration, manufacturing method, and manufacturing conditions as the electrolytic solution of the solid electrolytic capacitor of Example 2.
この実施例22乃至25並びに実施例2の固体電解コンデンサの耐電圧を測定した。耐電圧の測定方法は次の通りである。即ち、105℃において固体電解コンデンサに電圧を印加した。開始電圧は200Vであり、印加電圧を10秒ごとに1Vずつ昇圧していった。そして、固体電解コンデンサに流れた電流が1mAに到達したときの電圧を耐電圧とした。 The breakdown voltage of the solid electrolytic capacitors of Examples 22 to 25 and Example 2 was measured. The breakdown voltage was measured as follows. That is, a voltage was applied to the solid electrolytic capacitor at 105°C. The starting voltage was 200V, and the applied voltage was increased by 1V every 10 seconds. The voltage when the current flowing through the solid electrolytic capacitor reached 1mA was taken as the breakdown voltage.
(耐電圧測定試験)
実施例22乃至25並びに実施例2の導電性高分子液の溶媒中に占めるエチレングリコールの割合及び耐電圧の測定結果は、下表9の通りである。
(表9)
(Voltage resistance measurement test)
The ratio of ethylene glycol in the solvent of the conductive polymer solution of Examples 22 to 25 and Example 2 and the measurement results of the withstand voltage are shown in Table 9 below.
Table 9
表9に示すように、導電性高分子液にエチレングリコールが含まれていると、固体電解コンデンサの耐電圧が向上することが確認された。ヒドロキシ基を有し、沸点が150℃以上の化合物は、電解質層中に残り易く、特にエチレングリコールは固体電解コンデンサの耐電圧の向上に寄与しているものである。 As shown in Table 9, it was confirmed that the voltage resistance of solid electrolytic capacitors improves when ethylene glycol is included in the conductive polymer liquid. Compounds that have a hydroxyl group and a boiling point of 150°C or higher tend to remain in the electrolyte layer, and ethylene glycol in particular contributes to improving the voltage resistance of solid electrolytic capacitors.
(実施例26-28)
次に、実施例26乃至28の固体電解コンデンサを作製した。実施例26乃至28は、固体電解質を形成する際の導電性高分子液の溶媒が実施例2と異なる。実施例2は導電性高分子液の溶媒が水とエチレングリコールで組成されているのに対し、実施例26はジエチレングリコールと水、実施例27はグリセリンと水、実施例28はスルホランと水で組成されている。もっとも、ジエチレングリコール及びグリセリンは、エチレングリコールと同様に、ヒドロキシ基を有し、沸点が150℃以上の化合物である。スルホランはヒドロキシ基を有さず、沸点が150℃以上の化合物である。
(Examples 26 to 28)
Next, solid electrolytic capacitors of Examples 26 to 28 were produced. Examples 26 to 28 differ from Example 2 in the solvent of the conductive polymer liquid when forming the solid electrolyte. While the solvent of the conductive polymer liquid in Example 2 is composed of water and ethylene glycol, Example 26 is composed of diethylene glycol and water, Example 27 is composed of glycerin and water, and Example 28 is composed of sulfolane and water. However, diethylene glycol and glycerin are compounds that have a hydroxyl group and a boiling point of 150°C or higher, just like ethylene glycol. Sulfolane is a compound that does not have a hydroxyl group and has a boiling point of 150°C or higher.
ジエチレングリコール、グリセリン又はスルホランと水との組成比は、実施例2のエチレングリコ-ルと水の組成比と同じである。その他、実施例26乃至28は、実施例2の固体電解コンデンサの電解液と同一の組成、同一の構成、同一の製造方法及び製造条件で作製されている。 The composition ratio of diethylene glycol, glycerin or sulfolane to water is the same as the composition ratio of ethylene glycol to water in Example 2. In addition, Examples 26 to 28 are produced with the same composition, structure, manufacturing method and manufacturing conditions as the electrolyte of the solid electrolytic capacitor in Example 2.
この実施例26乃至28並びに実施例2の固体電解コンデンサの耐電圧を測定した。耐電圧の測定方法は次の通りである。即ち、105℃において固体電解コンデンサに電圧を印加した。開始電圧は200Vであり、印加電圧を10秒ごとに1Vずつ昇圧していった。そして、固体電解コンデンサに流れた電流が1mAに到達したときの電圧を耐電圧とした。 The breakdown voltage of the solid electrolytic capacitors of Examples 26 to 28 and Example 2 was measured. The breakdown voltage was measured as follows. That is, a voltage was applied to the solid electrolytic capacitor at 105°C. The starting voltage was 200V, and the applied voltage was increased by 1V every 10 seconds. The voltage when the current flowing through the solid electrolytic capacitor reached 1mA was taken as the breakdown voltage.
(耐電圧測定試験)
実施例26乃至28並びに実施例2の導電性高分子液の溶媒中に占めるエチレングリコールの割合及び耐電圧の測定結果は、下表10の通りである。
(表10)
(Voltage resistance measurement test)
The ratio of ethylene glycol in the solvent of the conductive polymer solution of Examples 26 to 28 and Example 2 and the measurement results of the withstand voltage are shown in Table 10 below.
(Table 10)
表10に示すように、導電性高分子液にジエチレングリコール又はグリセリンが含まれていると、エチレングリコールが含まれているのと同様に、固体電解コンデンサの耐電圧が向上することが確認された。表9及び表10と総合すると、ヒドロキシ基を有し、沸点が150℃以上の化合物は、電解質層中に残り易く、固体電解コンデンサの耐電圧の向上に寄与していることが確認できる。 As shown in Table 10, it was confirmed that when diethylene glycol or glycerin is contained in the conductive polymer liquid, the voltage resistance of the solid electrolytic capacitor is improved, just as when ethylene glycol is contained. Taking Tables 9 and 10 together, it can be confirmed that compounds that have a hydroxyl group and a boiling point of 150°C or higher tend to remain in the electrolyte layer, contributing to improving the voltage resistance of the solid electrolytic capacitor.
(実施例29-33)
実施例29乃至33の固体電解コンデンサを作製した。実施例2、実施例29乃至33の固体電解コンデンサは、疑似ベーマイト層を有する陽極体を備えている。即ち、実施例2、実施例29乃至33では、エッチング処理によりトンネル状のエッチングピットにより成る拡面層が形成された後、化成前処理工程に移った。
(Examples 29 to 33)
The solid electrolytic capacitors of Examples 29 to 33 were produced. The solid electrolytic capacitors of Examples 2 and 29 to 33 were provided with an anode body having a pseudo-boehmite layer. That is, in Examples 2 and 29 to 33, a surface-enlarging layer made of tunnel-shaped etching pits was formed by etching, and then the chemical pretreatment step was performed.
化成前処理工程では、煮沸した純水にアルミニウム箔を浸漬し、アルミニウム箔の表面に疑似ベーマイト層を形成した。煮沸した純水への浸漬時間の平方根に比例して疑似ベーマイトの量が増加する傾向を利用し、煮沸した純水へのアルミニウム箔の浸漬時間を調整することで疑似ベーマイトの量を調整した。次に、実施例2と同じ化成処理に移り、疑似ベーマイト層の最表層を残して誘電体皮膜に変質させた。 In the chemical pretreatment process, the aluminum foil was immersed in boiled pure water to form a pseudo-boehmite layer on the surface of the aluminum foil. Taking advantage of the tendency for the amount of pseudo-boehmite to increase in proportion to the square root of the immersion time in boiled pure water, the amount of pseudo-boehmite was adjusted by adjusting the immersion time of the aluminum foil in boiled pure water. Next, the same chemical treatment as in Example 2 was performed, and the pseudo-boehmite layer was transformed into a dielectric film, leaving only the outermost layer.
(耐電圧及びESR試験)
実施例2、実施例29乃至33は、疑似ベーマイトの量が異なっている。疑似ベーマイトの量が異なる実施例2、実施例29乃至33の固体電解コンデンサのESRと耐電圧を測定した。初期のESRの測定条件は、周囲温度が20℃、LCRメーター(Agilent Technologies社製、E4980A)を用い、交流電流レベルを1.0Vrms、測定周波数を100kHzとした。耐電圧の測定においては、105℃において固体電解コンデンサに電圧を印加した。開始電圧は200Vであり、印加電圧を10秒ごとに1Vずつ昇圧していった。そして、固体電解コンデンサに流れた電流が1mAに到達したときの電圧を耐電圧とした。
(Voltage resistance and ESR test)
The amount of pseudo-boehmite is different in Example 2 and Examples 29 to 33. The ESR and withstand voltage of the solid electrolytic capacitors of Example 2 and Examples 29 to 33 with different amounts of pseudo-boehmite were measured. The initial ESR measurement conditions were an ambient temperature of 20°C, an LCR meter (Agilent Technologies, E4980A), an AC current level of 1.0 Vrms, and a measurement frequency of 100 kHz. In measuring the withstand voltage, a voltage was applied to the solid electrolytic capacitor at 105°C. The starting voltage was 200V, and the applied voltage was increased by 1V every 10 seconds. The voltage when the current flowing through the solid electrolytic capacitor reached 1 mA was taken as the withstand voltage.
実施例2、実施例29乃至33の固体電解コンデンサの初期のESRと耐電圧の測定結果を下表11に示す。
(表11)
The measurement results of the initial ESR and the withstand voltage of the solid electrolytic capacitors of Examples 2 and 29 to 33 are shown in Table 11 below.
Table 11
表11に示すように、実施例2、実施例29乃至33の固体電解コンデンサにおいて、疑似ベーマイト層の量は、0.1mg/cm2以上1.97mg/cm2以下に調整された。この結果、実施例2、実施例26乃至30の固体電解コンデンサは、耐電圧が高くESRが低い。特に、疑似ベーマイト層の量が1.73mg/cm2以下の実施例2,実施例29乃至32では、ESRが実施例33と比べて少なくとも半分以下になっており、ESRが特に低くなっている。 As shown in Table 11, in the solid electrolytic capacitors of Examples 2 and 29 to 33, the amount of the pseudo-boehmite layer was adjusted to 0.1 mg/ cm2 or more and 1.97 mg/ cm2 or less. As a result, the solid electrolytic capacitors of Examples 2 and 26 to 30 have high withstand voltage and low ESR. In particular, in Examples 2 and 29 to 32, in which the amount of the pseudo-boehmite layer is 1.73 mg/ cm2 or less, the ESR is at least half or less compared to Example 33, and the ESR is particularly low.
Claims (7)
前記コンデンサ素子は、
弁作用金属を含む陽極体と、
前記陽極体と対向する陰極体と、
前記陽極体と前記陰極体との間に介在し、電解液と固体電解質とを含む電解質層と、
を備え、
前記陽極体は、表面に300V以上の耐電圧を有する誘電体皮膜を有し、
前記電解液は、0.08mol/kg以上0.34mol/kg以下の溶質と、前記コンデンサ素子に含まれている当該電解液全量に対して1wt%以上10wt%以下の水分とを含むこと、
を特徴とする固体電解コンデンサ。 A solid electrolytic capacitor including a capacitor element,
The capacitor element is
an anode body including a valve metal;
A cathode body facing the anode body;
an electrolyte layer interposed between the anode body and the cathode body and including an electrolytic solution and a solid electrolyte;
Equipped with
The anode body has a dielectric coating on a surface thereof, the dielectric coating having a withstand voltage of 300 V or more,
the electrolyte contains a solute of 0.08 mol/kg or more and 0.34 mol/kg or less, and a moisture content of 1 wt % or more and 10 wt % or less with respect to the total amount of the electrolyte contained in the capacitor element;
A solid electrolytic capacitor characterized by:
を特徴とする請求項1記載の固体電解コンデンサ。 The electrolytic solution contains a pressure resistance improver of 15 wt % or more based on the total amount of the electrolytic solution;
2. The solid electrolytic capacitor according to claim 1 .
を特徴とする請求項2記載の固体電解コンデンサ。 The pressure resistance improver is an alkylene oxide-added polyol or a derivative thereof having a molecular weight of 600 or more;
3. The solid electrolytic capacitor according to claim 2 .
を特徴とする請求項1又は2記載の固体電解コンデンサ。 the electrolyte layer further contains a compound having a hydroxy group and a boiling point of 150° C. or higher;
3. The solid electrolytic capacitor according to claim 1 or 2.
を特徴とする請求項4記載の固体電解コンデンサ。 the compound is ethylene glycol, diethylene glycol, glycerin, or two or more of these;
5. The solid electrolytic capacitor according to claim 4,
前記疑似ベーマイト層の量は、0.1mg/cm2以上1.97mg/cm2以下であること、
を特徴とする請求項1又は2記載の固体電解コンデンサ。 the anode body has a pseudo-boehmite layer on the dielectric coating,
The amount of the pseudo-boehmite layer is 0.1 mg/ cm2 or more and 1.97 mg/ cm2 or less;
3. The solid electrolytic capacitor according to claim 1 or 2.
表面に300V以上の耐電圧を有する誘電体皮膜を前記陽極体に形成する化成工程と、
前記陽極体と前記陰極体の間又は前記コンデンサ素子に導電性高分子液を付着及び乾燥させる第1の電解質層形成工程と、
前記コンデンサ素子に電解液を含浸させる第2の電解質層形成工程と、
を含み、
前記電解液には、0.08mol/kg以上0.34mol/kg以下の溶質を含ませ、
前記コンデンサ素子に含まれる前記電解液全量に対する水分量を1wt%以上10wt%以下に調整すること、
を特徴とする固体電解コンデンサの製造方法。 A method for manufacturing a solid electrolytic capacitor having a capacitor element including an anode body, a cathode body, and an electrolyte layer, comprising the steps of:
a chemical conversion step of forming a dielectric film having a withstand voltage of 300 V or more on the surface of the anode body;
a first electrolyte layer forming step of applying and drying a conductive polymer liquid between the anode body and the cathode body or on the capacitor element;
a second electrolyte layer forming step of impregnating the capacitor element with an electrolyte;
Including,
The electrolyte contains a solute in an amount of 0.08 mol/kg or more and 0.34 mol/kg or less,
adjusting the amount of water relative to the total amount of the electrolyte contained in the capacitor element to 1 wt % or more and 10 wt % or less;
A method for producing a solid electrolytic capacitor comprising the steps of:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-032001 | 2023-03-02 | ||
JP2023032001 | 2023-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024181509A1 true WO2024181509A1 (en) | 2024-09-06 |
Family
ID=92589941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/007355 WO2024181509A1 (en) | 2023-03-02 | 2024-02-28 | Solid electrolytic capacitor and manufacturing method |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202437288A (en) |
WO (1) | WO2024181509A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013524480A (en) * | 2010-03-31 | 2013-06-17 | 日本ケミコン株式会社 | Solid electrolytic capacitor |
WO2019088059A1 (en) * | 2017-10-31 | 2019-05-09 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor |
JP2022040698A (en) * | 2020-08-31 | 2022-03-11 | ルビコン株式会社 | Solid electrolytic capacitor and method for manufacturing the same |
WO2022065434A1 (en) * | 2020-09-25 | 2022-03-31 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor |
-
2024
- 2024-02-28 WO PCT/JP2024/007355 patent/WO2024181509A1/en active Application Filing
- 2024-02-29 TW TW113107305A patent/TW202437288A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013524480A (en) * | 2010-03-31 | 2013-06-17 | 日本ケミコン株式会社 | Solid electrolytic capacitor |
WO2019088059A1 (en) * | 2017-10-31 | 2019-05-09 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor |
JP2022040698A (en) * | 2020-08-31 | 2022-03-11 | ルビコン株式会社 | Solid electrolytic capacitor and method for manufacturing the same |
WO2022065434A1 (en) * | 2020-09-25 | 2022-03-31 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor |
Also Published As
Publication number | Publication date |
---|---|
TW202437288A (en) | 2024-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7196919B2 (en) | solid electrolytic capacitor | |
CN112424892B (en) | Solid Electrolytic Capacitors | |
WO2023054502A1 (en) | Solid electrolytic capacitor | |
US20250149255A1 (en) | Solid electrolyte capacitor and method for manufacturing same | |
JP7509337B1 (en) | Solid electrolytic capacitor and manufacturing method | |
WO2024181509A1 (en) | Solid electrolytic capacitor and manufacturing method | |
EP4583132A1 (en) | Solid electrolytic capacitor | |
JP7666723B2 (en) | Solid electrolytic capacitors, smoothing circuits and filter circuits | |
WO2024143420A1 (en) | Solid electrolytic capacitor and manufacturing method | |
JP7697312B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP2024093013A (en) | Solid electrolytic capacitor | |
WO2024070288A1 (en) | Solid electrolytic capacitor and manufacturing method | |
JP2024050386A (en) | Solid electrolytic capacitor and manufacturing method | |
JP7615800B2 (en) | Conductive polymer dispersion, solid electrolytic capacitor, and method for producing the solid electrolytic capacitor | |
WO2025033381A1 (en) | Solid electrolytic capacitor and production method | |
WO2025063070A1 (en) | Solid electrolytic capacitor and manufacturing method | |
WO2024070604A1 (en) | Solid electrolytic capacitor, and manufacturing method | |
JP2025056931A (en) | Solid electrolytic capacitor and manufacturing method | |
WO2024070603A1 (en) | Solid electrolytic capacitor and method for producing same | |
WO2025047740A1 (en) | Positive electrode body of solid electrolytic capacitor, solid electrolytic capacitor, method for manufacturing positive electrode body of solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor | |
JP2025050430A (en) | Solid electrolytic capacitor and manufacturing method | |
WO2023171618A1 (en) | Electrolytic solution for solid electrolytic capacitor and solid electrolytic capacitor | |
KR20250073165A (en) | Solid electrolytic capacitor and manufacturing method | |
JP2023112558A (en) | Solid electrolytic capacitor and manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24763987 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2025503976 Country of ref document: JP |