[go: up one dir, main page]

WO2024181346A1 - Terminal, wireless communication method, and base station - Google Patents

Terminal, wireless communication method, and base station Download PDF

Info

Publication number
WO2024181346A1
WO2024181346A1 PCT/JP2024/006752 JP2024006752W WO2024181346A1 WO 2024181346 A1 WO2024181346 A1 WO 2024181346A1 JP 2024006752 W JP2024006752 W JP 2024006752W WO 2024181346 A1 WO2024181346 A1 WO 2024181346A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
tci state
dci
indicated
signal
Prior art date
Application number
PCT/JP2024/006752
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2024181346A1 publication Critical patent/WO2024181346A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • Non-Patent Document 1 LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
  • LTE 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • NR future wireless communication systems
  • user terminals terminals, user terminals, User Equipment (UE)
  • QCL quasi-co-location
  • TCI Transmission Configuration Indication
  • one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately applies the TCI state.
  • a terminal has a control unit that controls the buffer of the downlink signal using one or more command transmission configuration indication (TCI) states based on at least one of a report of capability information regarding the number of buffers for the downlink signal and a setting regarding the number of buffers when an offset between the reception of downlink control information that schedules a downlink signal and the reception of the downlink signal is smaller than a specific threshold value, and a receiving unit that performs reception processing of the downlink signal using the one or more command TCI states.
  • TCI command transmission configuration indication
  • the TCI state can be appropriately applied.
  • 1A and 1B show an example of a unified/common TCI framework.
  • 2A and 2B show an example of DCI-based TCI status indication.
  • FIG. 3 shows an example of application times for the Unified TCI Status Indication.
  • 4A to 4D are diagrams showing an example of a multi-TRP.
  • 5A-5C are diagrams illustrating an example of application of an indicated TCI state.
  • 6A-6C are diagrams illustrating another example of application of an indicated TCI state.
  • 7A to 7D are diagrams showing an example of application of an indicated TCI state according to embodiment 1-1.
  • 8A to 8D are diagrams showing an example of application of an indicated TCI state according to embodiment 1-2.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 10 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
  • FIG. 11 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • FIG. 12 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
  • FIG. 13 is a diagram illustrating an example of a vehicle according to an embodiment.
  • TCI transmission configuration indication state
  • the TCI state may represent that which applies to the downlink signal/channel.
  • the equivalent of the TCI state which applies to the uplink signal/channel may be expressed as a spatial relation.
  • TCI state is information about the Quasi-Co-Location (QCL) of signals/channels and may also be called spatial reception parameters, spatial relation information, etc. TCI state may be set in the UE on a per channel or per signal basis.
  • QCL Quasi-Co-Location
  • QCL is an index that indicates the statistical properties of a signal/channel. For example, if a signal/channel has a QCL relationship with another signal/channel, it may mean that it can be assumed that at least one of the Doppler shift, Doppler spread, average delay, delay spread, and spatial parameters (e.g., spatial Rx parameters) is identical between these different signals/channels (i.e., it is QCL with respect to at least one of these).
  • spatial parameters e.g., spatial Rx parameters
  • the spatial reception parameters may correspond to a reception beam (e.g., a reception analog beam) of the UE, and the beam may be identified based on a spatial QCL.
  • the QCL (or at least one element of the QCL) in this disclosure may be interpreted as sQCL (spatial QCL).
  • QCL types Multiple types of QCLs (QCL types) may be defined. For example, four QCL types A-D may be provided, each of which has different parameters (or parameter sets) that can be assumed to be the same.
  • the UE's assumption that a Control Resource Set (CORESET), channel or reference signal is in a particular QCL (e.g., QCL type D) relationship with another CORESET, channel or reference signal may be referred to as a QCL assumption.
  • CORESET Control Resource Set
  • QCL QCL type D
  • the UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for a signal/channel based on the TCI condition or QCL assumption of the signal/channel.
  • Tx beam transmit beam
  • Rx beam receive beam
  • the TCI state may be, for example, information regarding the QCL between the target channel (in other words, the Reference Signal (RS) for that channel) and another signal (e.g., another RS).
  • the TCI state may be set (indicated) by higher layer signaling, physical layer signaling, or a combination of these.
  • the physical layer signaling may be, for example, Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the channel for which the TCI state or spatial relationship is set (specified) may be, for example, at least one of the downlink shared channel (Physical Downlink Shared Channel (PDSCH)), the downlink control channel (Physical Downlink Control Channel (PDCCH)), the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), and the uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the RS that has a QCL relationship with the channel may be, for example, at least one of a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a sounding reference signal (SRS), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • TRS tracking CSI-RS
  • QRS QCL detection reference signal
  • An SSB is a signal block that includes at least one of a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • An SSB may also be referred to as an SS/PBCH block.
  • An RS of QCL type X in a TCI state may refer to an RS that has a QCL type X relationship with a certain channel/signal (DMRS), and this RS may be called a QCL source of QCL type X in that TCI state.
  • DMRS channel/signal
  • a UE can configure a list of up to M TCI-State settings in the higher layer parameter PDSCH-Config for decoding of PDSCH according to a detected PDCCH with DCI intended for the UE and a given serving cell, where M depends on the UE capability maxNumberConfiguredTCIstatesPerCC.
  • Each TCI-State includes parameters for setting the QCL relationship between one or two downlink reference signals and the DMRS port of the PDSCH, the DMRS port of the PDCCH, or the CSI-RS port of the CSI-RS resource.
  • the QCL relationship is set by the higher layer parameters qcl-Type1 for the first DL RS and qcl-Type2 for the second DL RS (if configured).
  • the QCL type corresponding to each DL RS is given by the higher layer parameter qcl-Type in QCL-Info and can take one of the following values: - 'typeA': ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇ - 'typeB': ⁇ Doppler shift, Doppler spread ⁇ - 'typeC': ⁇ Doppler shift, average delay ⁇ - 'typeD': ⁇ Spatial Rx parameter ⁇
  • a TCI-State associates one or two DL Reference Signals (RS) with a corresponding QCL type. If an additional physical cell identifier (PCI) is configured for that RS, it is set to the same value for both DL RSs.
  • PCI physical cell identifier
  • the PDSCH may be scheduled in a DCI having a TCI field.
  • the TCI state for the PDSCH is indicated by the TCI field.
  • the TCI field of DCI format 1_1 is 3 bits, and the TCI field of DCI format 1_2 is up to 3 bits.
  • the UE In RRC connected mode, if the TCI information element in the first DCI (higher layer parameter tci-PresentInDCI) is set to "enabled" for a CORESET that schedules a PDSCH, the UE assumes that the TCI field is present in DCI format 1_1 of the PDCCH transmitted in that CORESET.
  • the TCI information element in the first DCI higher layer parameter tci-PresentInDCI
  • the UE assumes that a TCI field with the DCI field size indicated in the TCI information element in the second DCI is present in DCI format 1_2 of the PDSCH transmitted in that CORESET.
  • PDSCH may be scheduled with a DCI without a TCI field.
  • the DCI format of the DCI may be DCI format 1_0 or DCI format 1_1/1_2 in case the TCI information element in the DCI (higher layer parameters tci-PresentInDCI or tci-PresentInDCI-1-2) is not set (enabled).
  • PDSCH is scheduled with a DCI without a TCI field
  • timeDurationForQCL a threshold
  • the UE assumes that the TCI state or QCL assumption for PDSCH is the same as the TCI state or QCL assumption of CORESET (e.g., scheduling DCI) (default TCI state).
  • the TCI state of the PDSCH (default TCI state) may be the TCI state of the lowest CORESET ID in the latest slot in the active DL BWP of that CC (of a particular UL signal). Otherwise, the TCI state of the PDSCH (default TCI state) may be the TCI state of the lowest TCI state ID of the PDSCH in the active DL BWP of the scheduled CC.
  • At least one of the MAC CE for activation/deactivation of the PUCCH spatial relationship and the MAC CE for activation/deactivation of the SRS spatial relationship may not be used.
  • the default assumptions of the spatial relationship and the PL-RS for the PUCCH are applied. If neither the spatial relationship nor the PL-RS for the SRS (SRS resource for the SRS, or SRS resource corresponding to the SRI in DCI format 0_1 that schedules the PUSCH) is configured in FR2 (applicable condition, second condition), the default assumptions of the spatial relationship and the PL-RS for the PUSCH and the SRS scheduled by DCI format 0_1 (default spatial relationship and default PL-RS) are applied.
  • the default spatial relationship and default PL-RS may be the TCI state or QCL assumption of the CORESET with the lowest CORESET ID in that active DL BWP. If a CORESET is not configured in the active DL BWP on that CC, the default spatial relationship and default PL-RS may be the active TCI state with the lowest ID of the PDSCH in that active DL BWP.
  • the spatial relationship of PUCCH scheduled by DCI format 0_0 follows the spatial relationship of the PUCCH resource with the lowest PUCCH resource ID among the active spatial relationships of PUCCH on the same CC.
  • the network needs to update the PUCCH spatial relationship on all SCells even if no PUCCH is transmitted on the SCell.
  • PUCCH configuration is not required for a PUSCH scheduled by DCI format 0_0. If there is no active PUCCH spatial relationship or no PUCCH resources on the active UL BWP in a CC for a PUSCH scheduled by DCI format 0_0 (applicable condition, second condition), the default spatial relationship and default PL-RS are applied to the PUSCH.
  • the conditions for applying the default spatial relationship/default PL-RS for SRS may include setting the default beam path loss enable information element for SRS (upper layer parameter enableDefaultBeamPlForSRS) to be enabled.
  • the conditions for applying the default spatial relationship/default PL-RS for PUCCH may include setting the default beam path loss enable information element for PUCCH (upper layer parameter enableDefaultBeamPlForPUCCH) to be enabled.
  • the conditions for applying the default spatial relationship/default PL-RS for PUSCH scheduled by DCI format 0_0 may include setting the default beam path loss enable information element for PUSCH scheduled by DCI format 0_0 (upper layer parameter enableDefaultBeamPlForPUSCH0_0) to be enabled.
  • the UE applies the default spatial relationship/PL-RS.
  • the above threshold may be referred to as time duration for QCL, “timeDurationForQCL”, “Threshold”, “Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI”, “Threshold-Sched-Offset”, “beamSwitchTiming”, schedule offset threshold, scheduling offset threshold, etc.
  • the above threshold may be reported by the UE as UE capability (per subcarrier interval).
  • the UE assumes that the DMRS port of the PDSCH or PDSCH transmission occasion of the serving cell is QCL-co-located (quasi co-located) with the RS for QCL parameters associated with the two TCI states corresponding to the lowest code point among the TCI code points containing two different TCI states (two default QCL assumption decision rule).
  • the 2 default TCI enable information element indicates that Rel. 16 operation of the 2 default TCI states for the PDSCH is enabled when at least one TCI codepoint is mapped to the 2 T
  • the default TCI state for PDSCH in Rel. 15/16 is specified as a default TCI state for a single TRP, a default TCI state for multiple TRPs based on multiple DCIs, and a default TCI state for multiple TRPs based on a single DCI.
  • the default TCI state for aperiodic CSI-RS (A (aperiodic)-CSI-RS) is specified as follows: default TCI state for single TRP, default TCI state for multi-TRP based on multi-DCI, and default TCI state for multi-TRP based on single DCI.
  • the unified TCI framework does not specify the TCI state or spatial relationship for each channel as in Rel. 15, but instead specifies a common beam (common TCI state) and may apply it to all UL and DL channels, or a common beam for UL may apply to all UL channels and a common beam for DL may apply to all DL channels.
  • a common beam common TCI state
  • One common beam for both DL and UL, or one common beam for DL and one common beam for UL (total of two common beams) are being considered.
  • the UE may assume the same TCI state for UL and DL (joint TCI state, joint TCI pool, joint common TCI pool, joint TCI state set).
  • the UE may assume different TCI states for UL and DL respectively (separate TCI state, separate TCI pool, UL separate TCI pool and DL separate TCI pool, separate common TCI pool, UL common TCI pool and DL common TCI pool).
  • the UL and DL default beams may be aligned via MAC CE based beam management (MAC CE level beam instructions).
  • the PDSCH default TCI state may be updated to match the default UL beam (spatial relationship).
  • DCI based beam management may indicate a common beam/unified TCI state from the same TCI pool (joint common TCI pool, joint TCI pool, set) for both UL and DL.
  • X (>1) TCI states may be activated by the MAC CE.
  • the UL/DL DCI may select one out of the X active TCI states.
  • the selected TCI state may be applied to both UL and DL channels/RS.
  • the TCI pool (set) may be multiple TCI states set by RRC parameters, or multiple TCI states (active TCI states, active TCI pool, set) activated by the MAC CE among multiple TCI states set by RRC parameters.
  • Each TCI state may be a QCL type A/D RS.
  • SSB, CSI-RS, or SRS may be set as the QCL type A/D RS.
  • the number of TCI states corresponding to each of one or more TRPs may be specified.
  • the number N ( ⁇ 1) of TCI states (UL TCI states) applied to UL channels/RS and the number M ( ⁇ 1) of TCI states (DL TCI states) applied to DL channels/RS may be specified.
  • At least one of N and M may be notified/configured/instructed to the UE via higher layer signaling/physical layer signaling.
  • this may mean that one UL TCI state and one DL TCI state for a single TRP are notified/configured/instructed separately to the UE (separate TCI states for a single TRP).
  • this may mean that multiple (two) UL TCI states and multiple (two) DL TCI states for multiple (two) TRPs are notified/configured/instructed to the UE (separate TCI states for multiple TRPs).
  • N and M are 1 or 2, but the values of N and M may be 3 or more, and N and M may be different.
  • the RRC parameters configure multiple TCI states for both DL and UL.
  • the MAC CE may activate multiple TCI states from the configured multiple TCI states.
  • the DCI may indicate one of the activated multiple TCI states.
  • the DCI may be a UL/DL DCI.
  • the indicated TCI state may apply to at least one (or all) of the UL/DL channels/RS.
  • One DCI may indicate both UL TCI and DL TCI.
  • a point may be one TCI state that applies to both UL and DL, or it may be two TCI states that apply to UL and DL, respectively.
  • At least one of the multiple TCI states configured by the RRC parameters and the multiple TCI states activated by the MAC CE may be referred to as a TCI pool (common TCI pool, joint TCI pool, TCI state pool).
  • the multiple TCI states activated by the MAC CE may be referred to as an active TCI pool (active common TCI pool).
  • the higher layer parameters (RRC parameters) that set multiple TCI states may be referred to as configuration information that sets multiple TCI states, or simply as “configuration information.” Also, in this disclosure, being instructed to set one of multiple TCI states using DCI may mean receiving indication information that indicates one of the multiple TCI states included in DCI, or may simply mean receiving "instruction information.”
  • the RRC parameters configure multiple TCI states for both DL and UL (joint common TCI pool).
  • the MAC CE may activate multiple TCI states (active TCI pools) among the configured multiple TCI states. Separate active TCI pools for each of UL and DL may be configured/activated.
  • the DL DCI or new DCI format may select (indicate) one or more (e.g., one) TCI states.
  • the selected TCI state may apply to one or more (or all) DL channels/RS.
  • the DL channels may be PDCCH/PDSCH/CSI-RS.
  • the UE may determine the TCI state of each DL channel/RS using the TCI state behavior (TCI framework) of Rel. 16.
  • the UL DCI or new DCI format may select (indicate) one or more (e.g., one) TCI states.
  • the selected TCI state may apply to one or more (or all) UL channels/RS.
  • the UL channels may be PUSCH/SRS/PUCCH. Thus, different DCIs may indicate UL TCI and DL DCI separately.
  • the MAC CE/DCI will support beam activation/indication to a TCI state associated with a different physical cell identifier (PCI). Also, in Rel. 18 NR and later, it is assumed that the MAC CE/DCI will support indicative serving cell change to a cell with a different PCI.
  • PCI physical cell identifier
  • the UE can configure a list of up to 128 DLorJointTCIState configurations in PDSCH-Config.
  • the UE may apply the DLorJointTCIState or UL-TCIState setting from the reference BWP of the reference CC. If the UE has DLorJointTCIState or UL-TCIState set in any CC in the same band, it does not assume that TCI-State, SpatialRelationInfo (spatial relation information), or PUCCH-SpatialRelationInfo (PUCCH spatial relation information) in that band are set, except for SpatialRelationInfoPos (spatial relation information for position).
  • SpatialRelationInfo spatial relation information
  • PUCCH-SpatialRelationInfo PUCCH spatial relation information
  • the UE assumes that if the UE has TCI-State in any CC in the CC list configured by simultaneousTCI-UpdateList1-r16, simultaneousTCI-UpdateList2-r16, simultaneousSpatial-UpdatedList1-r16, or simultaneousSpatial-UpdatedList2-r16, the UE does not configure DLorJointTCIState or UL-TCIState in any CC in the CC list.
  • the UE receives an activation command that is used to map up to eight TCI states and/or TCI state pairs, with one TCI state for DL channels/signals and one TCI state for UL channels/signals, to code points of the DCI field 'Transmission Configuration Indication' (TCI) for one of the CC/DL BWPs or for a set of CC/DL BWPs, if available.
  • TCI Transmission Configuration Indication
  • a set of TCI state IDs is activated for a set of CC/DL BWPs and, if available, for one of the CC/DL BWPs, the same set of TCI state IDs applies to all DL and/or UL BWPs in the indicated CC, where the applicable list of CCs is determined by the CCs indicated in the activation command.
  • the UE applies the indicated DLorJointTCIState and/or UL-TCIState to one or a set of CC/DL BWPs, and if the indicated mapping to a single TCI code point applies, the UE applies the indicated DLorJointTCIState and/or UL-TCIState to one or a set of CC/DL BWPs.
  • the UE shall assume that the QCL type A/D source RS is set in the CC/DL BWP to which the TCI state applies.
  • Unified TCI Framework supports the following modes 1 to 3: [Mode 1] MAC CE based TCI state indication [Mode 2] DCI based TCI state indication by DCI format 1_1/1_2 with DL assignment [Mode 3] DCI based TCI state indication by DCI format 1_1/1_2 without DL assignment
  • TCI State ID receives DCI format 1_1/1_2 providing indicated TCI state with Rel.
  • DCI format 1_1/1_2 may or may not be accompanied by DL assignment if one is available.
  • DCI format 1_1/1_2 does not carry a DL assignment
  • the UE can assume (verify) the following for that DCI: -
  • the CS-RNTI is used to scramble the CRC for the DCI.
  • the values of the following DCI fields are set as follows: -
  • the redundancy version (RV) field is all '1's.
  • the modulation and coding scheme (MCS) field is all '1's.
  • NDI new data indicator
  • the frequency domain resource assignment (FDRA) field is all '0's for FDRA type 0 or all '1's for FDRA type 1 or all '0's for Dynamic Switch (similar to PDCCH validation for release of DL semi-persistent scheduling (SPS) or UL grant type 2 scheduling).
  • DCI in the above Mode 2/Mode 3 may be called beam instruction DCI.
  • Rel. 15/16 if the UE does not support active BWP change via DCI, the UE will ignore the BWP indicator field.
  • a similar behavior is considered for the relationship between Rel. 17 TCI state support and the interpretation of the TCI field. If the UE is configured with Rel. 17 TCI state, the TCI field will always be present in DCI format 1_1/1_2, and if the UE does not support TCI update via DCI, the UE will ignore the TCI field.
  • the presence or absence of a TCI field (TCI presence information in DCI, tci-PresentInDCI) is set for each CORESET.
  • the TCI field in DCI format 1_1 is 0 bits if the higher layer parameter tci-PresentInDCI is not enabled, and 3 bits otherwise. If the BWP indicator field indicates a BWP other than the active BWP, the UE shall follow the following actions: [Operation] If the higher layer parameter tci-PresentInDCI is not enabled for the CORESET used for the PDCCH carrying that DCI format 1_1, the UE shall assume that tci-PresentInDCI is not enabled for all CORESETs in the indicated BWP, otherwise the UE shall assume that tci-PresentInDCI is enabled for all CORESETs in the indicated BWP.
  • the TCI field in DCI format 1_2 is 0 bit if the higher layer parameter tci-PresentInDCI-1-2 is not set, otherwise it is 1, 2 or 3 bits determined by the higher layer parameter tci-PresentInDCI-1-2. If the BWP indicator field indicates a BWP other than the active BWP, the UE shall follow the following actions.
  • the UE shall assume that tci-PresentInDCI is not enabled for all CORESETs in the indicated BWP, otherwise the UE shall assume that tci-PresentInDCI-1-2 for all CORESETs in the indicated BWP is set with the same value as tci-PresentInDCI-1-2 set for the CORESET used for the PDCCH carrying that DCI format 1_2.
  • Figure 2A shows an example of a DCI-based joint DL/UL TCI status indication.
  • a TCI status ID indicating the joint DL/UL TCI status is associated with the value of the TCI field for the joint DL/UL TCI status indication.
  • FIG. 2B shows an example of a DCI-based separate DL/UL TCI status indication.
  • At least one TCI status ID is associated with the value of the TCI field for the separate DL/UL TCI status indication: a TCI status ID indicating a DL-only TCI status and a TCI status ID indicating a UL-only TCI status.
  • TCI field values 000 to 001 are associated with only one TCI status ID for DL
  • TCI field values 010 to 011 are associated with only one TCI status ID for UL
  • TCI field values 100 to 111 are associated with both one TCI status ID for DL and one TCI status ID for UL.
  • the unified/common TCI state may mean the Rel. 17 TCI state indicated using (Rel. 17) DCI/MAC CE/RRC (indicated Rel. 17 TCI state).
  • TCI state indicates whether or not TCI is mapped to multiple types of signals (channels/RS).
  • unified/common TCI state TCI state applicable to multiple types of signals (channels/RS)
  • TCI state for multiple types of signals channels/RS
  • the indicated Rel. 17 TCI state may be shared with at least one of the UE-specific reception on PDSCH/PDCC (updated using Rel. 17 DCI/MAC CE/RRC), PUSCH of dynamic grant (DCI)/configured grant, and multiple (e.g., all) dedicated PUCCH resources.
  • the TCI state indicated by the DCI/MAC CE/RRC may be referred to as the indicated TCI state, the unified TCI state.
  • a TCI state other than the unified TCI state may refer to a Rel. 17 TCI state configured using the (Rel. 17) MAC CE/RRC (configured Rel. 17 TCI state).
  • the configured Rel. 17 TCI state, the configured TCI state, a TCI state other than the unified TCI state, and a TCI state applied to a specific type of signal (channel/RS) may be read as interchangeable.
  • the configured Rel. 17 TCI state may not be shared with at least one of the UE-specific reception in the PDSCH/PDCC (updated using Rel. 17 DCI/MAC CE/RRC), the PUSCH of the dynamic grant (DCI)/configured grant, and multiple (e.g., all) dedicated PUCCH resources.
  • the configured Rel. 17 TCI state may be configured by the RRC/MAC CE for each CORESET/resource/resource set, and may not be updated even if the indicated Rel. 17 TCI state (common TCI state) described above is updated.
  • the indicated Rel. 17 TCI state will be applied to UE-specific channels/signals (RS). It is also being considered that the UE will be notified using higher layer signaling (RRC signaling) as to whether the indicated Rel. 17 TCI state or the configured Rel. 17 TCI state will be applied to non-UE-specific channels/signals.
  • RS UE-specific channels/signals
  • RRC signaling higher layer signaling
  • the RRC parameters for the configured Rel. 17 TCI state (TCI state ID) will have the same configuration as the RRC parameters for the TCI state in Rel. 15/16. It is being considered that the configured Rel. 17 TCI state will be configured/instructed for each CORESET/resource/resource set using RRC/MAC CE. It is also being considered that the UE will make decisions regarding the configuration/instruction based on specific parameters.
  • the UE will update the indicated TCI state and the configured TCI state separately. For example, if the unified TCI state for the indicated TCI state is updated for the UE, the configured TCI state may not need to be updated. It is also being considered that the UE will make a decision about the update based on a specific parameter.
  • RRC/MAC CE higher layer signaling
  • TCI state indication for intra-cell beam indication (TCI state indication), it is being considered to support Rel. 17 TCI state indication for UE-specific CORESET and PDSCH associated with that CORESET, and non-UE-specific CORESET and PDSCH associated with that CORESET.
  • TCI states for UE-specific CORESETs and their associated PDSCHs is under consideration.
  • the legacy MAC CE/RACH signaling mechanism may be used.
  • the CSI-RS related to the Rel. 17 TCI state applied to CORESET#0 may be QCL'd with the SSB related to the serving cell PCI (physical cell ID) (similar to Rel. 15).
  • CORESETs with a common search space (CSS), and CORESETs with a CSS and a UE-specific search space (USS), whether to follow the indicated Rel. 17 TCI state may be configured for each CORESET by an RRC parameter. If the indicated Rel. 17 TCI state is not configured for that CORESET, the configured Rel. 17 TCI state may be applied to that CORESET.
  • CCS common search space
  • USS UE-specific search space
  • RRC parameters may be configured for each channel/resource/resource set to follow or not follow the indicated Rel. 17 TCI state. If the indicated Rel. 17 TCI state is not configured for that channel/resource/resource set, the configured Rel. 17 TCI state may be applied to that channel/resource/resource set.
  • the indicated TCI state by the MAC CE/DCI may apply to the following channels/RS:
  • CORESET0 If followUnifiedTCIState is set for CORESET0, the indicated TCI state is applied. Otherwise, the Rel. 15 specifications are applied for that CORESET. That is, CORESET0 follows the TCI state activated by the MAC CE or is QCLed with SSB. For a CORESET with index other than 0 with USS/CSS type 3, the indicated TCI state always applies. - For a CORESET with index other than 0, with at least a CSS other than CSS type 3, configured to follow the uniform TCI state, the indicated TCI state applies. Otherwise, the configured TCI state for that CORESET applies to that CORESET.
  • [PDSCH] - The indicated TCI state always applies for all UE-dedicated PDSCHs.
  • a non-UE-dedicated PDSCH PDSCH scheduled by a DCI in the CSS
  • followUnifiedTCIState is set (for the CORESET of the PDCCH that schedules the PDSCH)
  • the indicated TCI state may apply. Otherwise, the configured TCI state for the PDSCH applies to the PDSCH.
  • followUnifiedTCIState is not set for a PDSCH, whether a non-UE-dedicated PDSCH follows the indicated TCI state may depend on whether followUnifiedTCIState is set for the CORESET used to schedule the PDSCH.
  • CSI-RS For an A-CSI-RS for CSI acquisition or beam management, if followUnifiedTCIState is set (for the CORESET of the PDCCH that triggers that A-CSI-RS), the indicated TCI state applies. For other CSI-RSs, the configured TCI state for that CSI-RS applies.
  • Beam application time (BAT) Regarding the DCI-based beam indication in Rel. 17, the following studies 1 and 2 are being considered regarding the application time of the indication of the beam/unified TCI state (beam application time (BAT) conditions). .
  • the first slot to apply the indicated TCI is at least Y symbols after the last symbol of the acknowledgement (ACK) for the joint or separate DL/UL beam indication. It is contemplated that the first slot to apply the indicated TCI is at least Y symbols after the last symbol of the ACK/negative acknowledgement (NACK) for the joint or separate DL/UL beam indication.
  • Y symbols may be set by the base station based on the UE capabilities reported by the UE. The UE capabilities may be reported on a symbol-by-symbol basis.
  • the ACK may be an ACK for a PDSCH scheduled by the beam instruction DCI.
  • the PDSCH may not be transmitted.
  • the ACK may be an ACK for the beam instruction DCI.
  • the value of the Y symbol will also be different, so the application time may differ between multiple CCs.
  • the application timing/BAT of the beam instruction may follow any of the following options 1 to 3.
  • [Option 1] Both the first slot and the Y symbol are determined on the carrier with the smallest SCS among the one or more carriers to which the beam direction applies.
  • [Option 2] Both the first slot and the Y symbol are determined on the carrier with the smallest SCS among the one or more carriers to which the beam direction applies and the UL carrier carrying the ACK.
  • [Option 3] Both the first slot and the Y symbol are determined on the UL carrier that carries the ACK.
  • the application time (Y symbols) of beam direction for CA may be determined on the carrier with the smallest SCS among the carriers to which beam direction applies.
  • Rel. 17 MAC CE based beam direction (when only a single TCI codepoint is activated) may follow the Rel. 16 application timeline for MAC CE activation.
  • the indicated TCI state with Rel. 17 TCI state may start to apply from the first slot that is at least Y symbols after the last symbol of the PUCCH, where Y may be a higher layer parameter (e.g., BeamAppTime_r17[symbols]). Both the first slot and Y symbols may be determined on the carrier with the smallest SCS among the carriers for which the beam indication applies.
  • the UE may assume one indicated TCI state with Rel17 TCI state for DL and UL, or one indicated TCI state with Rel17 TCI state for UL (separate from DL) at a given time.
  • X [ms] may be used instead of Y [symbol].
  • the UE reports at least one of the following UE capabilities 1 and 2.
  • UE Capability 1 Minimum application time per SCS (minimum of Y symbols between the last symbol of the PUCCH carrying ACK and the first slot in which the beam is applied).
  • UE Capability 2 Minimum time gap between the last symbol of the beam instruction PDCCH (DCI) and the first slot where the beam is applied. The gap between the last symbol of the beam instruction PDCCH (DCI) and the first slot where the beam is applied may meet the UE capability (minimum time gap).
  • UE capability 2 may be an existing UE capability (e.g., timeDurationForQCL).
  • the relationship between the beam instruction and the channel/RS to which the beam is applied may satisfy at least one of UE capabilities 1 and 2.
  • the parameters set by the base station regarding the application time may be optional fields.
  • Multi-TRP In NR, one or more transmission/reception points (TRPs) (multi-TRPs) are considered to perform DL transmission to a UE using one or more panels (multi-panels). It is also considered that a UE performs UL transmission to one or more TRPs.
  • TRPs transmission/reception points
  • multiple TRPs may correspond to the same cell identifier (cell identifier (ID)) or different cell IDs.
  • the cell ID may be a physical cell ID (e.g., PCI) or a virtual cell ID.
  • FIGS 4A-4D show examples of multi-TRP scenarios. In these examples, we assume that each TRP is capable of transmitting four different beams, but this is not limited to this example.
  • FIG. 4A shows an example of a case where only one TRP (TRP1 in this example) of the multi-TRP transmits to the UE (which may be called single mode, single TRP, etc.).
  • TRP1 transmits both a control signal (PDCCH) and a data signal (PDSCH) to the UE.
  • PDCCH control signal
  • PDSCH data signal
  • single TRP mode may refer to the mode when multi-TRP (mode) is not set.
  • FIG 4B shows an example of a case where only one TRP (TRP1 in this example) of the multi-TRP transmits a control signal to the UE, and the multi-TRP transmits a data signal (which may be called a single master mode).
  • the UE receives each PDSCH transmitted from the multi-TRP based on one downlink control information (Downlink Control Information (DCI)).
  • DCI Downlink Control Information
  • FIG. 4C shows an example of a case where each of the multi-TRPs transmits a part of a control signal to the UE, and the multi-TRP transmits a data signal (which may be called a master-slave mode).
  • TRP1 may transmit part 1 of the control signal (DCI)
  • TRP2 may transmit part 2 of the control signal (DCI).
  • Part 2 of the control signal may depend on part 1.
  • the UE receives each PDSCH transmitted from the multi-TRP based on these parts of DCI.
  • FIG. 4D shows an example of a case where each of the multi-TRPs transmits a separate control signal to the UE, and the multi-TRP transmits a data signal (which may be called a multi-master mode).
  • a first control signal (DCI) may be transmitted from TRP1
  • a second control signal (DCI) may be transmitted from TRP2.
  • the UE receives each PDSCH transmitted from the multi-TRP based on these DCIs.
  • the DCI may be called a single DCI (S-DCI, single PDCCH). Also, when multiple PDSCHs from a multi-TRP such as that shown in FIG. 4D are scheduled using multiple DCIs, these multiple DCIs may be called multiple DCIs (M-DCI, multiple PDCCHs).
  • Each TRP in a multi-TRP may transmit a different Transport Block (TB)/Code Word (CW)/different layer.
  • TB Transport Block
  • CW Code Word
  • each TRP in a multi-TRP may transmit the same TB/CW/layer.
  • Non-Coherent Joint Transmission is being considered as one form of multi-TRP transmission.
  • TRP1 modulates and maps a first codeword, and transmits a first PDSCH using a first number of layers (e.g., two layers) and a first precoding by layer mapping.
  • TRP2 modulates and maps a second codeword, and transmits a second PDSCH using a second number of layers (e.g., two layers) and a second precoding by layer mapping.
  • multiple PDSCHs (multi-PDSCHs) that are NCJTed may be defined as partially or completely overlapping with respect to at least one of the time and frequency domains.
  • the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap with each other in at least one of the time and frequency resources.
  • the first PDSCH and the second PDSCH may be assumed to be not quasi-co-located (QCL). Reception of multiple PDSCHs may be interpreted as simultaneous reception of PDSCHs that are not of a certain QCL type (e.g., QCL type D).
  • QCL type D e.g., QCL type D
  • PDSCH transport block (TB) or codeword (CW) repetition across multi-TRP is supported. It is considered that repetition methods (URLLC schemes, e.g., schemes 1, 2a, 2b, 3, 4) across multi-TRP in the frequency domain, layer (spatial) domain, or time domain are supported.
  • URLLC schemes e.g., schemes 1, 2a, 2b, 3, 4
  • multi-PDSCH from multi-TRP is space division multiplexed (SDM).
  • SDM space division multiplexed
  • FDM frequency division multiplexed
  • RV redundancy version
  • the RV may be the same or different for multi-TRP.
  • multiple PDSCHs from multiple TRPs are time division multiplexed (TDM).
  • TDM time division multiplexed
  • multiple PDSCHs from multiple TRPs are transmitted in one slot.
  • multiple PDSCHs from multiple TRPs are transmitted in different slots.
  • Such a multi-TRP scenario allows for more flexible transmission control using channels with better quality.
  • NCJT using multiple TRPs/panels may use high rank.
  • both single DCI single PDCCH, e.g., FIG. 4B
  • multiple DCI multiple PDCCH, e.g., FIG. 4D
  • the maximum number of TRPs may be 2.
  • TCI extension For single PDCCH design (mainly for ideal backhaul), TCI extension is being considered.
  • Each TCI code point in the DCI may correspond to TCI state 1 or 2.
  • the TCI field size may be the same as that of Rel. 15.
  • one TCI state without CORESETPoolIndex (also called TRP Info) is set for one CORESET.
  • a CORESET pool index is set for each CORESET.
  • the DCI (which may be called a scheduling DCI) that schedules a channel (e.g., PDSCH) controls the number of TCI states that apply to that scheduled channel.
  • the UE determines to use a single TRP, and if the DCI indicates two TCI states, the UE determines to use a multi-TRP. In this way, the UE switches between single TRP and multi-TRP based on the number of TCI states indicated by the DCI.
  • TCI states are indicated to the UE by the RRC/MAC CE/DCI, and then one or more (e.g., two) TCIs are selected/determined from the X TCI states by the scheduling DCI.
  • FIGS 5A-5C are diagrams showing an example of application of indicated TCI states. As shown in the example of Figure 5A, four indicated TCI states (TCI#1 as the first TCI state, TCI#2 as the second TCI state, TCI#3 as the third TCI state, and TCI#4 as the fourth TCI state) are indicated to the UE by the RRC/MAC CE/DCI.
  • TCI#1 as the first TCI state
  • TCI#2 as the second TCI state
  • TCI#3 as the third TCI state
  • TCI#4 as the fourth TCI state
  • switching between single-TRP and multi-TRP is performed by a specific field (existing field (e.g., which may be a TCI field)/new field) included in the scheduling DCI (DCI format 1_1/1_2).
  • existing field e.g., which may be a TCI field
  • new field included in the scheduling DCI (DCI format 1_1/1_2).
  • "00" is indicated as the code point of the field, indicating that the first TCI state is applied (i.e., single-TRP operation is indicated).
  • Figure 5C shows an example of a UE receiving a scheduling DCI and a scheduled PDSCH, and transmitting a PUCCH corresponding to the PDSCH.
  • the DCI indicates that the first TCI state should be applied, as shown in Figure 5B.
  • the UE determines that the first TCI state (indicated TCI state, joint/DL TCI state) should be applied to the PDSCH.
  • the application of the TCI state as shown in Figures 5A-5C is possible if the PDSCH is received after the decoding of the scheduling DCI is completed. If this is not the case (e.g., if the scheduling offset is smaller than a certain threshold), the UE cannot determine the indicated TCI state to apply to the channel/signal (in this case, the PDSCH).
  • the TCI state cannot be applied appropriately, which may result in deterioration of communication quality, decrease in throughput, etc.
  • the inventors therefore came up with a method for appropriately performing operations related to the unified TCI state.
  • A/B and “at least one of A and B” may be interpreted as interchangeable. Also, in this disclosure, “A/B/C” may mean “at least one of A, B, and C.”
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages higher layer parameters, fields, information elements (IEs), settings, etc.
  • IEs information elements
  • CE Medium Access Control
  • update commands activation/deactivation commands, etc.
  • the higher layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, other messages (e.g., messages from the core network such as positioning protocols (e.g., NR Positioning Protocol A (NRPPa)/LTE Positioning Protocol (LPP)) messages), or a combination of these.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • LPP LTE Positioning Protocol
  • the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc.
  • the broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • multi (multiple) TRP, multi TRP system, multi TRP transmission, and multi PDSCH may be interpreted as interchangeable.
  • a single DCI, a single PDCCH, multiple TRP based on a single DCI, activating two TCI states on at least one TCI code point, mapping at least one code point of a TCI field to two TCI states, and setting a specific index (e.g., a TRP index, a CORESET pool index, or an index corresponding to a TRP) for a specific channel/CORESET may be interpreted as interchangeable.
  • a single TRP, a channel/signal using a single TRP, a channel using one TCI state/spatial relationship, multi-TRP not being enabled by RRC/DCI, multiple TCI states/spatial relationships not being enabled by RRC/DCI, a CORESETPoolIndex value of 1 not being set for any CORESET, and no code point in the TCI field being mapped to two TCI states may be read as interchangeable.
  • TRP#2 (second TRP)
  • single DCI sDCI
  • single PDCCH multi-TRP system based on single DCI
  • sDCI-based MTRP multi-TRP system based on single DCI
  • activation of two TCI states on at least one TCI codepoint may be read as interchangeable.
  • beam instruction DCI, beam instruction MAC CE, and beam instruction DCI/MAC CE may be interpreted as interchangeable.
  • an instruction regarding the instruction TCI state to the UE may be given using at least one of DCI and MAC CE.
  • channel, signal, and channel/signal may be read as interchangeable.
  • DL channel, DL signal, DL signal/channel, transmission/reception of DL signal/channel, DL reception, and DL transmission may be read as interchangeable.
  • UL channel, UL signal, UL signal/channel, transmission/reception of UL signal/channel, UL reception, and UL transmission may be read as interchangeable.
  • applying TCI state/QCL assumptions to each channel/signal/resource may mean applying TCI state/QCL assumptions to transmission and reception of each channel/signal/resource.
  • the first TRP may correspond to the first TCI state (the first TCI state indicated).
  • the second TRP may correspond to the second TCI state (the second TCI state indicated).
  • the nth TRP may correspond to the nth TCI state (the nth TCI state indicated).
  • the first CORESET pool index value (e.g., 0), the first TRP index value (e.g., 1), and the first TCI state (first DL/UL (joint/separate) TCI state) may correspond to each other.
  • the second CORESET pool index value (e.g., 1), the second TRP index value (e.g., 2), and the second TCI state (second DL/UL (joint/separate) TCI state) may correspond to each other.
  • the application of multiple TCI states in transmission and reception using multiple TRPs will be mainly described in terms of a method targeting two TRPs (i.e., when at least one of N and M is 2), but the number of TRPs may be three or more (multiple), and each embodiment may be applied to correspond to the number of TRPs. In other words, at least one of N and M may be a number greater than 2.
  • schedule, trigger, and activate may be interpreted as interchangeable.
  • the PDSCH may be a PDSCH dynamically scheduled by DCI or a semi-persistently scheduled PDSCH (SPS PDSCH).
  • SPS PDSCH semi-persistently scheduled PDSCH
  • the following embodiments of the present disclosure may be applied, for example, to a unified TCI state for single DCI-based multi-TRP.
  • a DCI format for scheduling/activating DL channels/signals may include specific fields (new DCI fields).
  • the particular field may be a field indicating that one or more (e.g., both/two) indicated TCI states (joint/DL TCI states) are to be applied to the DL channel/signal being scheduled/activated.
  • the particular field may be a field indicating the number/order of the indicated TCI states to be applied.
  • the particular field may be represented by a particular number of bits (e.g., 2 bits).
  • this particular field may be referred to as a TCI selection field, but the name is not limited to this.
  • the offset (hereinafter, this may be read as a scheduling offset, a triggering offset, etc.) between the reception of the DL DCI and the reception of the corresponding DL channel/signal may be smaller than a certain threshold.
  • the UE may buffer the received signal using the indicated TCI state (joint/DL TCI state).
  • a DL channel/signal is scheduled by a first DCI format (e.g., DCI format 1_0)
  • a single frequency network (SFN) scheme e.g., SFN scheme for PDSCH (RRC parameter sfnSchemePdsch)
  • multiple (e.g., both/two) indicated TCI states may be applied to the DL channel/signal.
  • one (e.g., first) indicated TCI state may be applied to the DL channel/signal.
  • a DL channel/signal is scheduled by a second DCI format (e.g., DCI format 1_1/1_2) that does not include a specific field
  • a second DCI format e.g., DCI format 1_1/1_2
  • multiple (e.g., both/two) indicated TCI states may be applied to the DL channel/signal.
  • FIGS. 6A and 6B are diagrams showing other examples of application of indicated TCI states.
  • two indicated TCI states TCI state #1 as the first TCI state and TCI state #2 as the second TCI state
  • TCI state #1 as the first TCI state
  • TCI state #2 as the second TCI state
  • the DL DCI includes a field (TCI selection field) indicating the number/order of the indicated TCI states to be applied.
  • a code point of "00" in this field indicates that the first indicated TCI state is applied.
  • a code point of "01” in this field indicates that the second indicated TCI state is applied.
  • a code point of "10” in this field indicates that the first indicated TCI state and the second indicated TCI state are applied in the order of the first indicated TCI state and the second indicated TCI state.
  • a code point of "11” in this field indicates that the first indicated TCI state and the second indicated TCI state are applied in the order of the second indicated TCI state and the first indicated TCI state.
  • FIGB shows an example where PDSCH is scheduled by DL DCI.
  • the DCI includes a TCI selection field indicating codepoint "00". Therefore, the UE applies TCI state #1 to receive PDSCH (see Figure 6C).
  • a certain DCI field (e.g., TCI selection field) may indicate the channel/signal to which the indicated TCI state is applied.
  • the operation in this case may be at least one of the following operation 1 and operation 2.
  • the particular threshold may be, for example, at least one of the existing thresholds (defined up to Rel. 15/16) and values based on RRC parameters/UE capability information defined in Rel. 17/18 and later.
  • the existing threshold may be, for example, a value based on UE capability information defined in Rel. 15 in a second frequency range (e.g., FR2).
  • the particular DCI field may always be included in the DCI.
  • the UE may apply a particular indication TCI state (e.g., a first indication (joint/DL) TCI state) to multiple (e.g., all) DL channels/signals (e.g., PDSCH DMRS ports of multiple (all) PDSCH transmission opportunities) scheduled by the DCI.
  • a particular indication TCI state e.g., a first indication (joint/DL) TCI state
  • multiple DL channels/signals e.g., PDSCH DMRS ports of multiple (all) PDSCH transmission opportunities
  • the UE may apply a particular indication TCI state (e.g., a second indication (joint/DL) TCI state) to multiple (e.g., all) DL channels/signals (e.g., PDSCH DMRS ports of multiple (all) PDSCH transmission opportunities) scheduled by the DCI.
  • a particular indication TCI state e.g., a second indication (joint/DL) TCI state
  • multiple DL channels/signals e.g., PDSCH DMRS ports of multiple (all) PDSCH transmission opportunities
  • the UE may apply multiple indication TCI states (e.g., both the first indication (joint/DL) TCI state and the second indication (joint/DL) TCI state) to reception of a DL channel/signal scheduled by the DCI.
  • multiple indication TCI states e.g., both the first indication (joint/DL) TCI state and the second indication (joint/DL) TCI state
  • the multiple indicated TCI states may be applied in a first order (e.g., the first indicated TCI state, then the second indicated TCI state).
  • the UE may use a specific method to determine the application of the indicated TCI state.
  • a specific field included in the DL DCI e.g., DCI format 1_1/1_2
  • a fourth value e.g., "11”
  • the UE may apply multiple indication TCI states (e.g., both the first indication (joint/DL) TCI state and the second indication (joint/DL) TCI state) to reception of a DL channel/signal scheduled by the DCI.
  • multiple indication TCI states e.g., both the first indication (joint/DL) TCI state and the second indication (joint/DL) TCI state
  • the multiple indicated TCI states may be applied in a second order (e.g., the second indicated TCI state, then the first indicated TCI state).
  • the above operation 1 may be applied under a certain condition.
  • the certain condition may be applied, for example, if (if applicable) the offset between at least the reception of the scheduling DL DCI and the reception of the scheduled DL channel/signal is equal to or greater than a certain threshold.
  • a DL channel/signal may be scheduled by a DL DCI that does not include a specific field (e.g., a TCI selection field).
  • the UE may apply one or more specific indication TCI states to the DL channel/signal.
  • the UE may be configured using higher layer signaling (RRC/MAC CE) to apply one or more indicated TCI states (options 0-1).
  • RRC/MAC CE higher layer signaling
  • the UE may be configured using specific RRC parameters to apply either a first indicated TCI state, a second indicated TCI state, or both to receive DL channels/signals.
  • the UE may also decide to apply the first (or second) indicated TCI state to the reception of the DL channel/signal (options 0-2).
  • the UE may also decide to apply multiple indicated TCI states (e.g., both the first indicated TCI state and the second indicated TCI state) to reception of the DL channel/signal (options 0-3).
  • multiple indicated TCI states e.g., both the first indicated TCI state and the second indicated TCI state
  • the UE may also decide to apply to the DL channel/signal the same indicated TCI state as the indicated TCI state of the PDCCH corresponding to the DL DCI that scheduled the DL channel/signal (options 0-4).
  • the UE may also apply the indicated TCI state for one or more TRPs. This may be determined using existing TCI fields (options 0-5).
  • the above operation 2 may be applied under a certain condition.
  • the certain condition may be applied, for example, if (if applicable) at least the offset between the reception of the Scheduling DL DCI and the reception of the scheduled DL channel/signal is greater than or equal to a certain threshold (e.g., "timeDurationForQCL").
  • the first embodiment relates to the application of an indicated TCI state when the scheduling offset is less than a certain threshold.
  • the UE may determine the application of one or more indicated TCI states to the DL signal based on at least one of the UE capability information regarding the number of buffers for the DL signal and the setting regarding the number of buffers.
  • applying an indicated TCI state to a DL signal may mean applying/utilizing the indicated TCI state to perform reception processing (e.g., reception/demodulation/decoding) of the DL signal.
  • the scheduling offset is less than a certain threshold, it may be reported (if applicable) whether the UE can buffer (e.g. always buffer) the received signal using multiple (e.g. two) indicated (joint/DL) TCI states.
  • the report may be made, for example, using UE capability information (e.g., UE capability information regarding the number of buffers for the DL signal).
  • UE capability information e.g., UE capability information regarding the number of buffers for the DL signal.
  • the first embodiment is broadly divided into embodiments 1-1 and 1-2.
  • the UE/network (NW, for example, a base station) may follow either embodiment 1-1 or 1-2, or may follow a method that combines embodiments 1-1 and 1-2.
  • the following embodiments 1-1/1-2 may be applied when the scheduling offset is smaller than a certain threshold.
  • the embodiment 1-1 may be applied to a case where a specific UE capability is supported.
  • the specific UE capability may be, for example, a UE capability regarding whether the above-mentioned UE can buffer a received signal (for example, always buffer) using multiple (for example, two) indication (joint/DL) TCI states.
  • Embodiment 1-1 may be applied when specific higher layer signaling (e.g., RRC parameters/MAC CE (e.g., settings related to the number of buffers for DL signals)) is configured/notified to the UE.
  • specific higher layer signaling e.g., RRC parameters/MAC CE (e.g., settings related to the number of buffers for DL signals)
  • the UE may buffer the received signal using multiple (e.g., two) indicated TCI states.
  • DL channels/signals may be scheduled using DL DCI that includes a specific field (e.g., TCI selection field).
  • a specific field e.g., TCI selection field
  • the particular field may be included in the DL DCI when a particular RRC parameter is set.
  • the UE may apply a particular indication TCI state (e.g., a first indication (joint/DL) TCI state) to multiple (e.g., all) DL channels/signals (e.g., PDSCH DMRS ports of multiple (all) PDSCH transmission opportunities) scheduled by the DCI.
  • a particular indication TCI state e.g., a first indication (joint/DL) TCI state
  • multiple DL channels/signals e.g., PDSCH DMRS ports of multiple (all) PDSCH transmission opportunities
  • the UE may apply a particular indication TCI state (e.g., a second indication (joint/DL) TCI state) to multiple (e.g., all) DL channels/signals (e.g., PDSCH DMRS ports of multiple (all) PDSCH transmission opportunities) scheduled by the DCI.
  • a particular indication TCI state e.g., a second indication (joint/DL) TCI state
  • multiple DL channels/signals e.g., PDSCH DMRS ports of multiple (all) PDSCH transmission opportunities
  • the UE may apply multiple indication TCI states (e.g., both the first indication (joint/DL) TCI state and the second indication (joint/DL) TCI state) to reception of a DL channel/signal scheduled by the DCI.
  • multiple indication TCI states e.g., both the first indication (joint/DL) TCI state and the second indication (joint/DL) TCI state
  • the multiple indicated TCI states may be applied in a first order (e.g., the first indicated TCI state, then the second indicated TCI state).
  • the UE may use a specific method to determine the application of the indicated TCI state.
  • a specific field included in the DL DCI e.g., DCI format 1_1/1_2
  • a fourth value e.g., "11”
  • the UE may apply multiple indication TCI states (e.g., both the first indication (joint/DL) TCI state and the second indication (joint/DL) TCI state) to reception of a DL channel/signal scheduled by the DCI.
  • multiple indication TCI states e.g., both the first indication (joint/DL) TCI state and the second indication (joint/DL) TCI state
  • the multiple indicated TCI states may be applied in a second order (e.g., the second indicated TCI state, then the first indicated TCI state).
  • a DL channel/signal may be scheduled using a DL DCI that does not include a specific field (e.g., a TCI selection field).
  • the UE may apply one or more specific indication TCI states to the DL channel/signal.
  • the UE may be configured to apply one or more indicated TCI states using higher layer signaling (RRC/MAC CE) (option 1-1-1).
  • RRC/MAC CE higher layer signaling
  • the UE may be configured using specific RRC parameters to apply either a first indicated TCI state, a second indicated TCI state, or both to receive DL channels/signals.
  • the UE may also decide to apply the first (or second) indicated TCI state to receiving the DL channel/signal (option 1-1-2).
  • the UE may also decide to apply multiple indicated TCI states (e.g., both the first indicated TCI state and the second indicated TCI state) to reception of the DL channel/signal (option 1-1-3).
  • multiple indicated TCI states e.g., both the first indicated TCI state and the second indicated TCI state
  • the UE may also decide to apply to the DL channel/signal the same indicated TCI state as the indicated TCI state of the PDCCH corresponding to the DL DCI that scheduled the DL channel/signal (option 1-1-4).
  • the UE may also apply the indicated TCI state for one or more TRPs.
  • This application may be determined using an existing TCI field (option 1-1-5).
  • a DL channel/signal is scheduled by a specific DL DCI (e.g., DCI format 1_0)
  • an SFN scheme e.g., SFN scheme for PDSCH (e.g., RRC parameter sfnSchemePdsch)
  • multiple (e.g., both/two) indicated TCI states may apply to the DL channel/signal. Otherwise, one (e.g., first) indicated TCI state (joint/DL TCI state) may apply to the DL channel/signal.
  • one (e.g., the first) indicated TCI state may be applied to the DL channel/signal, regardless of whether an SFN scheme (e.g., an SFN scheme for PDSCH (e.g., RRC parameter sfnSchemePdsch)) is configured or not.
  • an SFN scheme e.g., an SFN scheme for PDSCH (e.g., RRC parameter sfnSchemePdsch)
  • FIGS 7A to 7D are diagrams showing an example of application of the indicated TCI state in embodiment 1-1.
  • TCI state #1 as the first TCI state
  • TCI state #2 as the second TCI state
  • the DL DCI includes a field (TCI selection field) indicating the number/order of the indicated TCI states to be applied.
  • a code point of "00" in this field indicates that the first indicated TCI state is applied.
  • a code point of "01” in this field indicates that the second indicated TCI state is applied.
  • a code point of "10” in this field indicates that the first indicated TCI state and the second indicated TCI state are applied in the order of the first indicated TCI state and the second indicated TCI state.
  • a code point of "11” in this field indicates that the first indicated TCI state and the second indicated TCI state are applied in the order of the second indicated TCI state and the first indicated TCI state.
  • FIG. 7B shows an example where a PDSCH is scheduled by a DL DCI.
  • the DCI includes a TCI selection field that indicates codepoint "10".
  • Figure 7C shows an example of a UE receiving a scheduling DCI and a scheduled PDSCH, and transmitting a PUCCH corresponding to the PDSCH.
  • the DCI indicates that a first indicated TCI state and a second indicated TCI state are to be applied, as shown in Figure 7B.
  • the scheduling offset of the PDSCH scheduled by the DCI is greater than a certain threshold.
  • the UE may apply the indicated TCI state according to the above-mentioned operation 1 or operation 2. For example, the UE may determine to apply the first indicated TCI state and the second indicated TCI state to the PDSCH.
  • the first command TCI state (TCI state #1) and the second command TCI state (TCI state #2) are applied to the reception of the PDSCH, but either the first command TCI state or the second TCI state may be applied to the reception of the PDSCH.
  • Figure 7D shows an example of a UE receiving a scheduling DCI and a scheduled PDSCH, and transmitting a PUCCH corresponding to the PDSCH.
  • the DCI indicates that a first indicated TCI state and a second indicated TCI state are to be applied.
  • the scheduling offset of the PDSCH scheduled by the DCI is smaller than a specific threshold. In this case, the UE can buffer the received signal using multiple indicated TCI states, so that multiple indicated TCI states can be applied even if the scheduling offset is small.
  • the UE may apply the indicated TCI state according to at least one of the methods described in embodiment 1-1 above. For example, the UE may determine to apply the first indicated TCI state and the second TCI state to the PDSCH.
  • the first command TCI state (TCI state #1) and the second command TCI state (TCI state #2) are applied to the reception of the PDSCH, but either the first command TCI state or the second TCI state may be applied to the reception of the PDSCH.
  • the UE can always buffer the received signal using multiple indicated TCI states, and after decoding the DCI, it becomes possible to receive DL channels/signals using one or multiple TCI states depending on the DCI.
  • the first and second embodiments may be applied to a case where a specific UE capability is not supported.
  • the specific UE capability may be, for example, a UE capability regarding whether the above-mentioned UE can buffer (for example, always buffer) a received signal using multiple (for example, two) indication (joint/DL) TCI states.
  • Embodiments 1-2 may be applied when certain higher layer signaling (e.g., RRC parameters/MAC CE) is not configured/notified to the UE.
  • certain higher layer signaling e.g., RRC parameters/MAC CE
  • the UE may buffer the received signal using only one indicated TCI state.
  • the one indicated TCI state may be a specific indicated TCI state (e.g., an indicated TCI state having the lowest (or highest) index).
  • a DL channel/signal may be scheduled using a DL DCI that includes a specific field (e.g., a TCI selection field).
  • a DL channel/signal may be scheduled using a DL DCI that does not include a specific field (e.g., a TCI selection field).
  • the UE may be configured to apply one or more indicated TCI states using higher layer signaling (RRC/MAC CE) (option 1-2-0).
  • RRC/MAC CE higher layer signaling
  • the UE may be configured using specific RRC parameters/settings to apply either a first indicated TCI state or a second indicated TCI state to reception of DL channels/signals.
  • the UE may be configured to apply one or more indicated TCI states using higher layer signaling (RRC/MAC CE) (option 1-2-1).
  • RRC/MAC CE higher layer signaling
  • the UE may be configured using specific RRC parameters/settings to apply either a first indicated TCI state, a second indicated TCI state, or both to receive DL channels/signals.
  • the UE may also determine to apply the first (or second) indicated TCI state to the reception of the DL channel/signal (option 1-2-2). In this case, the UE may also determine to apply the indicated TCI state corresponding to a specific DCI field code point (e.g., the lowest (or highest) TCI selection field code point) to the reception of the DL channel/signal (option 1-2-2').
  • a specific DCI field code point e.g., the lowest (or highest) TCI selection field code point
  • the UE may also decide to apply multiple indicated TCI states (e.g., both the first indicated TCI state and the second indicated TCI state) to reception of the DL channel/signal (option 1-2-3).
  • multiple indicated TCI states e.g., both the first indicated TCI state and the second indicated TCI state
  • the UE may also decide to apply to the DL channel/signal the same indicated TCI state as the indicated TCI state of the PDCCH corresponding to the DL DCI that scheduled the DL channel/signal (option 1-2-4).
  • the UE may also apply the indicated TCI state for one or more TRPs.
  • This application may be determined using an existing TCI field (option 1-2-5).
  • Figures 8A to 8D are diagrams showing an example of application of the indicated TCI state in embodiments 1 and 2.
  • Figure 8C shows an example of a UE receiving a scheduling DCI and a scheduled PDSCH, and transmitting a PUCCH corresponding to the PDSCH.
  • the DCI indicates that a first indicated TCI state and a second indicated TCI state are to be applied, as shown in Figure 8B.
  • the scheduling offset of the PDSCH scheduled by the DCI is greater than a certain threshold.
  • the UE may apply the indicated TCI state according to the above-mentioned operation 1 or operation 2. For example, the UE may determine to apply the first indicated TCI state and the second indicated TCI state to the PDSCH.
  • the first indicated TCI state (TCI state #1) and the second indicated TCI state (TCI state #2) are applied to the reception of the PDSCH, but either the first indicated TCI state or the second TCI state may be applied to the reception of the PDSCH.
  • Figure 8D shows an example of a UE receiving a scheduling DCI and a scheduled PDSCH, and transmitting a PUCCH corresponding to the PDSCH.
  • the DCI indicates that a first indicated TCI state and a second indicated TCI state are to be applied.
  • the scheduling offset of the PDSCH scheduled by the DCI is smaller than a specific threshold.
  • the UE can buffer the received signal using only one indicated TCI state, so that when the scheduling offset is smaller than the threshold, only one indicated TCI state can be applied.
  • the UE may apply the indicated TCI state according to at least one of the options described in the above embodiment 1-2. For example, the UE may determine to apply only the first indicated TCI state (or the second TCI state) to the PDSCH. In other words, the UE ignores the instruction regarding the application of the indicated TCI state 1 and the second indicated TCI state included in the DCI.
  • embodiments 1-2 may be applied to any type of DCI format, regardless of whether or not specific fields are present.
  • the TCI state of the received signal buffered in the UE is one, so the UE operation can be made common regardless of the type of DCI format and the presence or absence of specific fields, making it possible to simplify the implementation of the UE.
  • the above embodiments 1-1 and 1-2 may be switched and applied based on UE capabilities (information)/RRC settings.
  • Either of the above embodiments 1-1 and 1-2 may be specified in the specifications. For example, multiple (e.g., all) UEs may operate according to embodiment 1-1 (or embodiment 1-2).
  • any of the operations in the above embodiments 1-1 and 1-2 may be configured/notified using higher layer signaling (RRC/MAC CE).
  • RRC/MAC CE higher layer signaling
  • the UE may report to the NW that it supports the UE capability.
  • the NW may then configure/notify the operation of any of the embodiments 1-1 and 1-2 using RRC signaling/MAC CE.
  • the UE may be configured/notified of the operation according to embodiment 1-2.
  • the first embodiment may be applied in a specific frequency range (e.g., at least one of FR1, FR2, FR3, FR4, FR5, FR2-1, and FR2-2).
  • a specific frequency range e.g., at least one of FR1, FR2, FR3, FR4, FR5, FR2-1, and FR2-2.
  • the above first embodiment describes the indicated TCI state applied to the PDSCH, but it can also be applied to the reception of the A-CSI-RS in the same way.
  • the UE buffers DL signals using multiple (e.g., two) indicated (joint/DL) TCI states, and one of the indicated TCI states may be applied to the A-CSI-RS.
  • the command TCI state to be applied to the A-CSI-RS may be switched using a specific field (TCI selection field) included in the triggering DCI, or the command TCI state may be selected based on a specific rule (for example, the first (or second) command TCI state may always be selected).
  • TCI selection field included in the triggering DCI
  • the command TCI state may be selected based on a specific rule (for example, the first (or second) command TCI state may always be selected).
  • the UE buffers the DL signal using one indicated TCI state, and the one indicated TCI state may be applied to receiving the A-CSI-RS.
  • the rules for selecting one TCI state for the A-CSI-RS may be the same as the rules for the PDSCH.
  • any information may be notified to the UE (from a network (NW) (e.g., a base station (BS))) (in other words, any information is received by the UE from the BS) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
  • NW network
  • BS base station
  • the MAC CE may be identified by including a new Logical Channel ID (LCID) in the MAC subheader that is not specified in existing standards.
  • LCID Logical Channel ID
  • the notification When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
  • RNTI Radio Network Temporary Identifier
  • CRC Cyclic Redundancy Check
  • notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
  • notification of any information from the UE (to the NW) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, PRACH, reference signal), or a combination thereof.
  • physical layer signaling e.g., UCI
  • higher layer signaling e.g., RRC signaling, MAC CE
  • a specific signal/channel e.g., PUCCH, PUSCH, PRACH, reference signal
  • the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
  • the notification may be transmitted using PUCCH or PUSCH.
  • notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
  • At least one of the above-mentioned embodiments may be applied when a specific condition is satisfied, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
  • At least one of the above-described embodiments may be applied only to UEs that have reported or support a particular UE capability.
  • the specific UE capabilities may indicate at least one of the following: Supporting specific processing/operations/control/information for at least one of the above embodiments (eg, buffering received signals using multiple indicated TCI states). Number of bufferable receive signal indication TCI states supported.
  • the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
  • FR1 Frequency Range 1
  • FR2 FR2, FR3, FR4, FR5, FR2-1, FR2-2
  • SCS subcarrier Spacing
  • FS Feature Set
  • FSPC Feature Set Per Component-carrier
  • the specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the above-mentioned embodiments may be applied when the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling.
  • the specific information may be information indicating enabling a buffer of a received signal using multiple indicated TCI states, any RRC parameter for a specific release (e.g., Rel. 18/19), etc.
  • the UE may, for example, apply Rel. 15/16 operations.
  • a control unit that controls a buffer of the downlink signal using one or more command transmission configuration indication (TCI) states based on at least one of a report of capability information regarding the number of buffers of the downlink signal and a setting regarding the number of buffers, when an offset between reception of downlink control information for scheduling a downlink signal and reception of the downlink signal is smaller than a specific threshold value;
  • TCI command transmission configuration indication
  • Wired communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these.
  • FIG. 9 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
  • LTE Long Term Evolution
  • 3GPP Third Generation Partnership Project
  • 5G NR 5th generation mobile communication system New Radio
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E-UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 may support dual connectivity between multiple base stations within the same RAT (e.g., dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
  • dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
  • gNBs NR base stations
  • N-DC Dual Connectivity
  • the wireless communication system 1 may include a base station 11 that forms a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) that are arranged within the macrocell C1 and form a small cell C2 that is narrower than the macrocell C1.
  • a user terminal 20 may be located within at least one of the cells. The arrangement and number of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when there is no need to distinguish between the base stations 11 and 12, they will be collectively referred to as base station 10.
  • the user terminal 20 may be connected to at least one of the multiple base stations 10.
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using multiple component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • Macro cell C1 may be included in FR1
  • small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the multiple base stations 10 may be connected by wire (e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (e.g., NR communication).
  • wire e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication e.g., NR communication
  • base station 11 which corresponds to the upper station
  • IAB Integrated Access Backhaul
  • base station 12 which corresponds to a relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10.
  • the core network 30 may include at least one of, for example, an Evolved Packet Core (EPC), a 5G Core Network (5GCN), a Next Generation Core (NGC), etc.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the core network 30 may include network functions (Network Functions (NF)) such as, for example, a User Plane Function (UPF), an Access and Mobility management Function (AMF), a Session Management Function (SMF), a Unified Data Management (UDM), an Application Function (AF), a Data Network (DN), a Location Management Function (LMF), and Operation, Administration and Maintenance (Management) (OAM).
  • NF Network Functions
  • UPF User Plane Function
  • AMF Access and Mobility management Function
  • SMF Session Management Function
  • UDM Unified Data Management
  • AF Application Function
  • DN Data Network
  • LMF Location Management Function
  • OAM Operation, Administration and Maintenance
  • the user terminal 20 may be a terminal that supports at least one of the communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the radio access method may also be called a waveform.
  • other radio access methods e.g., other single-carrier transmission methods, other multi-carrier transmission methods
  • a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), etc. may be used as the downlink channel.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) shared by each user terminal 20, an uplink control channel (Physical Uplink Control Channel (PUCCH)), a random access channel (Physical Random Access Channel (PRACH)), etc. may be used as an uplink channel.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • SIB System Information Block
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc.
  • SIB System Information Block
  • PUSCH User data, upper layer control information, etc.
  • MIB Master Information Block
  • PBCH Physical Broadcast Channel
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
  • DCI Downlink Control Information
  • the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI
  • the DCI for scheduling the PUSCH may be called a UL grant or UL DCI.
  • the PDSCH may be interpreted as DL data
  • the PUSCH may be interpreted as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
  • the CORESET corresponds to the resources to search for DCI.
  • the search space corresponds to the search region and search method of PDCCH candidates.
  • One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
  • a search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that the terms “search space,” “search space set,” “search space setting,” “search space set setting,” “CORESET,” “CORESET setting,” etc. in this disclosure may be read as interchangeable.
  • the PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR).
  • UCI uplink control information
  • CSI channel state information
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • ACK/NACK ACK/NACK
  • SR scheduling request
  • the PRACH may transmit a random access preamble for establishing a connection with a cell.
  • downlink, uplink, etc. may be expressed without adding "link.”
  • various channels may be expressed without adding "Physical” to the beginning.
  • a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted.
  • a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • a signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc.
  • SS, SSB, etc. may also be called reference signals.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS uplink reference signal
  • DMRS may also be called a user equipment-specific reference signal (UE-specific Reference Signal).
  • the base station 10 is a diagram showing an example of a configuration of a base station according to an embodiment.
  • the base station 10 includes a control unit 110, a transceiver unit 120, a transceiver antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transceiver unit 120, the transceiver antenna 130, and the transmission line interface 140 may be provided.
  • this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the base station 10 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
  • the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), etc.
  • the control unit 110 may control transmission and reception using the transceiver unit 120, the transceiver antenna 130, and the transmission path interface 140, measurement, etc.
  • the control unit 110 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 120.
  • the control unit 110 may perform call processing of communication channels (setting, release, etc.), status management of the base station 10, management of radio resources, etc.
  • the transceiver unit 120 may include a baseband unit 121, a radio frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transceiver unit 120 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
  • the transceiver unit 120 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the reception unit may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
  • the transmitting/receiving antenna 130 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
  • the transceiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, etc.
  • the transceiver 120 may form at least one of the transmit beam and the receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transceiver 120 may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc. on data and control information obtained from the control unit 110 to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transceiver unit 120 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • channel coding which may include error correction coding
  • DFT Discrete Fourier Transform
  • IFFT Inverse Fast Fourier Transform
  • the transceiver unit 120 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 130.
  • the transceiver unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 130.
  • the transceiver 120 may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
  • reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
  • FFT Fast Fourier Transform
  • IDFT Inverse Discrete Fourier Transform
  • filtering demapping
  • demodulation which may include error correction decoding
  • MAC layer processing which may include error correction decoding
  • the transceiver 120 may perform measurements on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurements, Channel State Information (CSI) measurements, etc. based on the received signal.
  • the measurement unit 123 may measure received power (e.g., Reference Signal Received Power (RSRP)), received quality (e.g., Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)), signal strength (e.g., Received Signal Strength Indicator (RSSI)), propagation path information (e.g., CSI), etc.
  • RSRP Reference Signal Received Power
  • RSSI Received Signal Strength Indicator
  • the measurement results may be output to the control unit 110.
  • the transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF), other base stations 10, etc., and may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
  • devices included in the core network 30 e.g., network nodes providing NF
  • other base stations 10, etc. may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
  • the transmitter and receiver of the base station 10 in this disclosure may be configured with at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
  • the control unit 110 may instruct the buffering of the downlink signal using one or more instruction transmission configuration indication (TCI) states by using at least one of a report of capability information regarding the number of buffers for the downlink signal and a setting regarding the number of buffers.
  • TCI transmission configuration indication
  • the transceiver unit 120 may transmit the downlink signal using the one or more instruction TCI states.
  • the user terminal 11 is a diagram showing an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control unit 210, a transceiver unit 220, and a transceiver antenna 230. Note that the control unit 210, the transceiver unit 220, and the transceiver antenna 230 may each include one or more.
  • this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the user terminal 20 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
  • the control unit 210 may control signal generation, mapping, etc.
  • the control unit 210 may control transmission and reception using the transceiver unit 220 and the transceiver antenna 230, measurement, etc.
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 220.
  • the transceiver unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transceiver unit 220 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
  • the transceiver unit 220 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the reception unit may be composed of a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
  • the transmitting/receiving antenna 230 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
  • the transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
  • the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
  • the transceiver 220 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
  • digital beamforming e.g., precoding
  • analog beamforming e.g., phase rotation
  • the transceiver 220 may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the controller 210, and generate a bit string to be transmitted.
  • RLC layer processing e.g., RLC retransmission control
  • MAC layer processing e.g., HARQ retransmission control
  • the transceiver 220 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
  • Whether or not to apply DFT processing may be based on the settings of transform precoding.
  • the transceiver unit 220 transmission processing unit 2211
  • the transceiver unit 220 may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
  • the transceiver unit 220 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 230.
  • the transceiver unit 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 230.
  • the transceiver 220 may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
  • reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
  • the transceiver 220 may perform measurements on the received signal. For example, the measurement unit 223 may perform RRM measurements, CSI measurements, etc. based on the received signal.
  • the measurement unit 223 may measure received power (e.g., RSRP), received quality (e.g., RSRQ, SINR, SNR), signal strength (e.g., RSSI), propagation path information (e.g., CSI), etc.
  • the measurement results may be output to the control unit 210.
  • the measurement unit 223 may derive channel measurements for CSI calculation based on channel measurement resources.
  • the channel measurement resources may be, for example, non-zero power (NZP) CSI-RS resources.
  • the measurement unit 223 may derive interference measurements for CSI calculation based on interference measurement resources.
  • the interference measurement resources may be at least one of NZP CSI-RS resources for interference measurement, CSI-Interference Measurement (IM) resources, etc.
  • CSI-IM may be called CSI-Interference Management (IM) or may be interchangeably read as Zero Power (ZP) CSI-RS.
  • CSI-RS, NZP CSI-RS, ZP CSI-RS, CSI-IM, CSI-SSB, etc. may be read as interchangeable.
  • the transmitting unit and receiving unit of the user terminal 20 in this disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
  • the control unit 210 may control the buffering of the downlink signal using one or more command transmission configuration indication (TCI) states based on at least one of a report of capability information regarding the number of buffers for the downlink signal and a setting regarding the number of buffers.
  • TCI command transmission configuration indication
  • the transceiver unit 220 may perform reception processing of the downlink signal using the one or more command TCI states.
  • control unit 210 may apply the multiple indicated TCI states to the downlink signal based on a specific field included in the downlink control information.
  • control unit 210 may apply the one indicated TCI state to the downlink signal based on the configuration of higher layer signaling.
  • control unit 210 may always apply the one indicated TCI state to the downlink signal.
  • each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.).
  • the functional blocks may be realized by combining the one device or the multiple devices with software.
  • the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
  • a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
  • a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 12 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment.
  • the above-mentioned base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
  • the terms apparatus, circuit, device, section, unit, etc. may be interpreted as interchangeable.
  • the hardware configurations of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figures, or may be configured to exclude some of the devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the base station 10 and the user terminal 20 are realized, for example, by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
  • the processor 1001 for example, runs an operating system to control the entire computer.
  • the processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • etc. may be realized by the processor 1001.
  • the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • the programs used are those that cause a computer to execute at least some of the operations described in the above embodiments.
  • the control unit 110 (210) may be realized by a control program stored in the memory 1002 and running on the processor 1001, and similar implementations may be made for other functional blocks.
  • Memory 1002 is a computer-readable recording medium and may be composed of at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically EPROM
  • RAM Random Access Memory
  • Memory 1002 may also be called a register, cache, main memory, etc.
  • Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
  • Storage 1003 is a computer-readable recording medium and may be composed of at least one of a flexible disk, a floppy disk, a magneto-optical disk (e.g., a compact disk (Compact Disc ROM (CD-ROM)), a digital versatile disk, a Blu-ray disk), a removable disk, a hard disk drive, a smart card, a flash memory device (e.g., a card, a stick, a key drive), a magnetic stripe, a database, a server, or other suitable storage medium.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc.
  • the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of, for example, Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the above-mentioned transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004.
  • the transmitting/receiving unit 120 (220) may be implemented as a transmitting unit 120a (220a) and a receiving unit 120b (220b) that are physically or logically separated.
  • the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (e.g., a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
  • each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
  • the base station 10 and the user terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized using the hardware.
  • the processor 1001 may be implemented using at least one of these pieces of hardware.
  • a channel, a symbol, and a signal may be read as mutually interchangeable.
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel.
  • the numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS SubCarrier Spacing
  • TTI Transmission Time Interval
  • radio frame configuration a specific filtering process performed by the transceiver in the frequency domain
  • a specific windowing process performed by the transceiver in the time domain etc.
  • a slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a time unit based on numerology.
  • a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
  • a radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting a signal.
  • a different name may be used for radio frame, subframe, slot, minislot, and symbol. Note that the time units such as frame, subframe, slot, minislot, and symbol in this disclosure may be read as interchangeable.
  • one subframe may be called a TTI
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
  • the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
  • radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
  • the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
  • the time interval e.g., the number of symbols
  • the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • a TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
  • a short TTI e.g., a shortened TTI, etc.
  • TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs may be referred to as a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, an RB pair, etc.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, etc.
  • a resource block may be composed of one or more resource elements (REs).
  • REs resource elements
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within the BWP.
  • the BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, and symbols are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information.
  • a radio resource may be indicated by a predetermined index.
  • the names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure.
  • the various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input/output via multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
  • a specific location e.g., memory
  • Input/output information, signals, etc. may be overwritten, updated, or added to.
  • Output information, signals, etc. may be deleted.
  • Input information, signals, etc. may be transmitted to another device.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
  • the RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • the MAC signaling may be notified, for example, using a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of specified information is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
  • the determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
  • wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
  • wireless technologies such as infrared, microwave, etc.
  • Network may refer to the devices included in the network (e.g., base stations).
  • the antenna port may be interchangeably read as an antenna port for any signal/channel (e.g., a demodulation reference signal (DMRS) port).
  • the resource may be interchangeably read as a resource for any signal/channel (e.g., a reference signal resource, an SRS resource, etc.).
  • the resource may include time/frequency/code/space/power resources.
  • the spatial domain transmission filter may include at least one of a spatial domain transmission filter and a spatial domain reception filter.
  • the above groups may include, for example, at least one of a spatial relationship group, a Code Division Multiplexing (CDM) group, a Reference Signal (RS) group, a Control Resource Set (CORESET) group, a PUCCH group, an antenna port group (e.g., a DMRS port group), a layer group, a resource group, a beam group, an antenna group, a panel group, etc.
  • CDM Code Division Multiplexing
  • RS Reference Signal
  • CORESET Control Resource Set
  • beam SRS Resource Indicator (SRI), CORESET, CORESET pool, PDSCH, PUSCH, codeword (CW), transport block (TB), RS, etc. may be interpreted as interchangeable.
  • TCI state downlink TCI state
  • DL TCI state downlink TCI state
  • UL TCI state uplink TCI state
  • unified TCI state common TCI state
  • joint TCI state etc.
  • QCL QCL
  • QCL assumptions QCL relationship
  • QCL type information QCL property/properties
  • specific QCL type e.g., Type A, Type D
  • specific QCL type e.g., Type A, Type D
  • index identifier
  • indicator indication, resource ID, etc.
  • sequence list, set, group, cluster, subset, etc.
  • TCI state ID may be interchangeable.
  • TCI state ID may be interchangeable as “set of spatial relationship information (TCI state)", “one or more pieces of spatial relationship information”, etc.
  • TCI state and TCI may be interchangeable.
  • Spatial relationship information and spatial relationship may be interchangeable.
  • Base Station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
  • a base station can accommodate one or more (e.g., three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))).
  • RRH Remote Radio Head
  • the term "cell” or “sector” refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
  • a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
  • at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
  • the moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary.
  • the moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these.
  • the moving body in question may also be a moving body that moves autonomously based on an operating command.
  • the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
  • a vehicle e.g., a car, an airplane, etc.
  • an unmanned moving object e.g., a drone, an autonomous vehicle, etc.
  • a robot manned or unmanned
  • at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 13 is a diagram showing an example of a vehicle according to an embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (including a current sensor 50, an RPM sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service unit 59, and a communication module 60.
  • various sensors including a current sensor 50, an RPM sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
  • an information service unit 59 including a communication module 60.
  • the drive unit 41 is composed of at least one of an engine, a motor, and a hybrid of an engine and a motor, for example.
  • the steering unit 42 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 is composed of a microprocessor 61, memory (ROM, RAM) 62, and a communication port (e.g., an Input/Output (IO) port) 63. Signals are input to the electronic control unit 49 from various sensors 50-58 provided in the vehicle.
  • the electronic control unit 49 may also be called an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • Signals from the various sensors 50-58 include a current signal from a current sensor 50 that senses the motor current, a rotation speed signal of the front wheels 46/rear wheels 47 acquired by a rotation speed sensor 51, an air pressure signal of the front wheels 46/rear wheels 47 acquired by an air pressure sensor 52, a vehicle speed signal acquired by a vehicle speed sensor 53, an acceleration signal acquired by an acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by an accelerator pedal sensor 55, a depression amount signal of the brake pedal 44 acquired by a brake pedal sensor 56, an operation signal of the shift lever 45 acquired by a shift lever sensor 57, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 58.
  • the information service unit 59 is composed of various devices, such as a car navigation system, audio system, speakers, displays, televisions, and radios, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices.
  • the information service unit 59 uses information acquired from external devices via the communication module 60, etc., to provide various information/services (e.g., multimedia information/multimedia services) to the occupants of the vehicle 40.
  • various information/services e.g., multimedia information/multimedia services
  • the information service unit 59 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
  • input devices e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • output devices e.g., a display, a speaker, an LED lamp, a touch panel, etc.
  • the driving assistance system unit 64 is composed of various devices that provide functions for preventing accidents and reducing the driver's driving load, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., a Global Navigation Satellite System (GNSS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), a gyro system (e.g., an Inertial Measurement Unit (IMU), an Inertial Navigation System (INS), etc.), an Artificial Intelligence (AI) chip, and an AI processor, and one or more ECUs that control these devices.
  • the driving assistance system unit 64 also transmits and receives various information via the communication module 60 to realize a driving assistance function or an autonomous driving function.
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
  • the communication module 60 transmits and receives data (information) via the communication port 63 between the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and the various sensors 50-58 that are provided on the vehicle 40.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
  • the communication module 60 may be located either inside or outside the electronic control unit 49.
  • the external device may be, for example, the above-mentioned base station 10 or user terminal 20.
  • the communication module 60 may also be, for example, at least one of the above-mentioned base station 10 and user terminal 20 (it may function as at least one of the base station 10 and user terminal 20).
  • the communication module 60 may transmit at least one of the signals from the various sensors 50-58 described above input to the electronic control unit 49, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 59 to an external device via wireless communication.
  • the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be referred to as input units that accept input.
  • the PUSCH transmitted by the communication module 60 may include information based on the above input.
  • the communication module 60 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on an information service unit 59 provided in the vehicle.
  • the information service unit 59 may also be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60).
  • the communication module 60 also stores various information received from external devices in memory 62 that can be used by the microprocessor 61. Based on the information stored in memory 62, the microprocessor 61 may control the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, various sensors 50-58, and the like provided on the vehicle 40.
  • the base station in the present disclosure may be read as a user terminal.
  • each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • the user terminal 20 may be configured to have the functions of the base station 10 described above.
  • terms such as "uplink” and "downlink” may be read as terms corresponding to terminal-to-terminal communication (for example, "sidelink").
  • the uplink channel, downlink channel, etc. may be read as the sidelink channel.
  • the user terminal in this disclosure may be interpreted as a base station.
  • the base station 10 may be configured to have the functions of the user terminal 20 described above.
  • operations that are described as being performed by a base station may in some cases also be performed by its upper node.
  • a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation.
  • the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency.
  • the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4th generation mobile communication system 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is, for example, an integer or decimal
  • Future Radio Access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified,
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determining” may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
  • Determining may also be considered to mean “determining” receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
  • judgment (decision) may be considered to mean “judging (deciding)” resolving, selecting, choosing, establishing, comparing, etc.
  • judgment (decision) may be considered to mean “judging (deciding)” some kind of action.
  • judgment (decision) may be interpreted interchangeably with the actions described above.
  • expect may be read as “be expected”.
  • "expect(s)" ("" may be expressed, for example, as a that clause, a to infinitive, etc.) may be read as “be expected".
  • "does not expect" may be read as "be not expected".
  • "An apparatus A is not expected" may be read as "An apparatus B other than apparatus A does not expect" (for example, if apparatus A is a UE, apparatus B may be a base station).
  • the "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, the nominal UE maximum transmit power, or the rated UE maximum transmit power.
  • connection and “coupled,” or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, "connected” may be read as "accessed.”
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean “A and B are each different from C.”
  • Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
  • timing, time, duration, time instance, any time unit e.g., slot, subslot, symbol, subframe
  • period occasion, resource, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to one embodiment of the present disclosure comprises: a control unit that, when the offset between the reception of downlink control information for scheduling a downlink signal and the reception of the downlink signal is less than a specified threshold, controls buffers of the downlink signal using one or more indicated transmission configuration indication (TCI) states, on the basis of a report of capability information relating to the number of buffers of the downlink signal and/or a configuration relating to the number of buffers; and a reception unit that performs processing for receiving the downlink signal by using the one or more indicated TCI states. According to the one embodiment of the present disclosure, TCI states can be appropriately applied.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 Long Term Evolution (LTE) was specified for Universal Mobile Telecommunications System (UMTS) networks with the aim of achieving higher data rates and lower latency (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 Successor systems to LTE (e.g., 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later, etc.) are also under consideration.
 将来の無線通信システム(例えば、NR)において、ユーザ端末(端末、user terminal、User Equipment(UE))は、疑似コロケーション(Quasi-Co-Location(QCL))に関する情報(QCL想定/Transmission Configuration Indication(TCI)状態/空間関係)に基づいて、送受信処理を制御することが検討されている。 In future wireless communication systems (e.g., NR), it is being considered that user terminals (terminals, user terminals, User Equipment (UE)) will control transmission and reception processing based on information about quasi-co-location (QCL) (QCL assumptions/Transmission Configuration Indication (TCI) state/spatial relationship).
 設定/アクティベート/指示されたTCI状態を複数種類の信号(チャネル/RS)に適用することが検討されている。しかしながら、TCI状態の指示方法が明らかでないケースがある。TCI状態の指示方法が明らかでなければ、通信品質の低下、スループットの低下など、を招くおそれがある。  Applying the set/activated/indicated TCI state to multiple types of signals (channels/RS) is being considered. However, there are cases where the method for indicating the TCI state is not clear. If the method for indicating the TCI state is not clear, this may lead to a deterioration in communication quality, a decrease in throughput, etc.
 そこで、本開示は、TCI状態の適用を適切に行う端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately applies the TCI state.
 本開示の一態様に係る端末は、下りリンク信号をスケジュールする下りリンク制御情報の受信と、前記下りリンク信号の受信と、のオフセットが特定の閾値より小さい場合、前記下りリンク信号のバッファ数に関する能力情報の報告及び前記バッファ数に関する設定の少なくとも1つに基づいて、1つ又は複数の指示送信設定指示(TCI)状態を利用した前記下りリンク信号のバッファを制御する制御部と、前記1つ又は複数の指示TCI状態を利用して前記下りリンク信号の受信処理を行う受信部と、を有する。 A terminal according to one aspect of the present disclosure has a control unit that controls the buffer of the downlink signal using one or more command transmission configuration indication (TCI) states based on at least one of a report of capability information regarding the number of buffers for the downlink signal and a setting regarding the number of buffers when an offset between the reception of downlink control information that schedules a downlink signal and the reception of the downlink signal is smaller than a specific threshold value, and a receiving unit that performs reception processing of the downlink signal using the one or more command TCI states.
 本開示の一態様によれば、TCI状態の適用を適切に行うことができる。 According to one aspect of the present disclosure, the TCI state can be appropriately applied.
図1A及び図1Bは、統一/共通TCIフレームワークの一例を示す。1A and 1B show an example of a unified/common TCI framework. 図2A及び図2Bは、DCIベースTCI状態指示の一例を示す。2A and 2B show an example of DCI-based TCI status indication. 図3は、統一TCI状態指示の適用時間の一例を示す。FIG. 3 shows an example of application times for the Unified TCI Status Indication. 図4A-図4Dは、マルチTRPの一例を示す図である。4A to 4D are diagrams showing an example of a multi-TRP. 図5A-図5Cは、指示TCI状態の適用の一例を示す図である。5A-5C are diagrams illustrating an example of application of an indicated TCI state. 図6A-図6Cは、指示TCI状態の適用の他の例を示す図である。6A-6C are diagrams illustrating another example of application of an indicated TCI state. 図7A-図7Dは、実施形態1-1に係る指示TCI状態の適用の一例を示す図である。7A to 7D are diagrams showing an example of application of an indicated TCI state according to embodiment 1-1. 図8A-図8Dは、実施形態1-2に係る指示TCI状態の適用の一例を示す図である。8A to 8D are diagrams showing an example of application of an indicated TCI state according to embodiment 1-2. 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment. 図10は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of the configuration of a base station according to an embodiment. 図11は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment. 図12は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment. 図13は、一実施形態に係る車両の一例を示す図である。FIG. 13 is a diagram illustrating an example of a vehicle according to an embodiment.
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
(TCI, spatial relations, QCL)
In NR, it is considered to control the reception processing (e.g., at least one of reception, demapping, demodulation, and decoding) and transmission processing (e.g., at least one of transmission, mapping, precoding, modulation, and encoding) in a UE of at least one of a signal and a channel (referred to as a signal/channel) based on a transmission configuration indication state (TCI state).
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。 The TCI state may represent that which applies to the downlink signal/channel. The equivalent of the TCI state which applies to the uplink signal/channel may be expressed as a spatial relation.
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。 TCI state is information about the Quasi-Co-Location (QCL) of signals/channels and may also be called spatial reception parameters, spatial relation information, etc. TCI state may be set in the UE on a per channel or per signal basis.
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。 QCL is an index that indicates the statistical properties of a signal/channel. For example, if a signal/channel has a QCL relationship with another signal/channel, it may mean that it can be assumed that at least one of the Doppler shift, Doppler spread, average delay, delay spread, and spatial parameters (e.g., spatial Rx parameters) is identical between these different signals/channels (i.e., it is QCL with respect to at least one of these).
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。 The spatial reception parameters may correspond to a reception beam (e.g., a reception analog beam) of the UE, and the beam may be identified based on a spatial QCL. The QCL (or at least one element of the QCL) in this disclosure may be interpreted as sQCL (spatial QCL).
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよい。 Multiple types of QCLs (QCL types) may be defined. For example, four QCL types A-D may be provided, each of which has different parameters (or parameter sets) that can be assumed to be the same.
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。 The UE's assumption that a Control Resource Set (CORESET), channel or reference signal is in a particular QCL (e.g., QCL type D) relationship with another CORESET, channel or reference signal may be referred to as a QCL assumption.
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。 The UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for a signal/channel based on the TCI condition or QCL assumption of the signal/channel.
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。 The TCI state may be, for example, information regarding the QCL between the target channel (in other words, the Reference Signal (RS) for that channel) and another signal (e.g., another RS). The TCI state may be set (indicated) by higher layer signaling, physical layer signaling, or a combination of these.
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。 The physical layer signaling may be, for example, Downlink Control Information (DCI).
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。 The channel for which the TCI state or spatial relationship is set (specified) may be, for example, at least one of the downlink shared channel (Physical Downlink Shared Channel (PDSCH)), the downlink control channel (Physical Downlink Control Channel (PDCCH)), the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), and the uplink control channel (Physical Uplink Control Channel (PUCCH)).
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。 The RS that has a QCL relationship with the channel may be, for example, at least one of a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a sounding reference signal (SRS), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。 An SSB is a signal block that includes at least one of a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH). An SSB may also be referred to as an SS/PBCH block.
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。 An RS of QCL type X in a TCI state may refer to an RS that has a QCL type X relationship with a certain channel/signal (DMRS), and this RS may be called a QCL source of QCL type X in that TCI state.
〔データ用物理レイヤ手順/アンテナポートQCL〕
 UEは、そのUEと、与えられたサービングセルと、を目的するDCIを伴う検出されたPDCCHに従って、PDSCHの復号のための上位レイヤパラメータPDSCH-Config内のM個までのTCI-State(TCI状態)設定のリストを設定されることができる。ここで、Mは、UE能力maxNumberConfiguredTCIstatesPerCCに依存する。
[Physical Layer Procedures for Data/Antenna Port QCL]
A UE can configure a list of up to M TCI-State settings in the higher layer parameter PDSCH-Config for decoding of PDSCH according to a detected PDCCH with DCI intended for the UE and a given serving cell, where M depends on the UE capability maxNumberConfiguredTCIstatesPerCC.
 各TCI-Stateは、1つ又は2つの下りリンク参照信号と、PDSCHのDMRSポート、PDCCHのDMRSポート、又はCSI-RSリソースのCSI-RSポートと、の間のQCL関係の設定のためのパラメータを含む。そのQCL関係は、第1DL RSに対する上位レイヤパラメータqcl-Type1と、(もし設定されれば)第2DL RSに対する上位レイヤパラメータqcl-Type2と、によって設定される。 Each TCI-State includes parameters for setting the QCL relationship between one or two downlink reference signals and the DMRS port of the PDSCH, the DMRS port of the PDCCH, or the CSI-RS port of the CSI-RS resource. The QCL relationship is set by the higher layer parameters qcl-Type1 for the first DL RS and qcl-Type2 for the second DL RS (if configured).
 2つのDL RSのケースにおいて、参照が同じDL RSへの参照であるか異なるDL RSへの参照であるかに関わらず、複数QCLタイプは同じでない。各DL RSに対応するQCLタイプは、QCL-Info内の上位レイヤパラメータqcl-Typeによって与えられ、以下の値の1つを取る。
- 'typeA':{Doppler shift,Doppler spread,average delay,delay spread}
- 'typeB':{Doppler shift,Doppler spread}
- 'typeC':{Doppler shift,average delay}
- 'typeD':{Spatial Rx parameter}
In the case of two DL RSs, the multiple QCL types are not the same, regardless of whether the references are to the same DL RS or to different DL RSs. The QCL type corresponding to each DL RS is given by the higher layer parameter qcl-Type in QCL-Info and can take one of the following values:
- 'typeA': {Doppler shift, Doppler spread, average delay, delay spread}
- 'typeB': {Doppler shift, Doppler spread}
- 'typeC': {Doppler shift, average delay}
- 'typeD': {Spatial Rx parameter}
〔RRCプロトコル仕様/RRC IE/TCI状態〕
 TCI-State(TCI状態)は、1つ又は2つのDL参照信号(RS)を、対応するQCLタイプに関連付ける。もしそのRSに対して追加physical cell identifier(PCI)が設定される場合、両方のDL RSに対して同じ値が設定される。
[RRC Protocol Specifications/RRC IE/TCI States]
A TCI-State associates one or two DL Reference Signals (RS) with a corresponding QCL type. If an additional physical cell identifier (PCI) is configured for that RS, it is set to the same value for both DL RSs.
(デフォルトTCI状態/デフォルト空間関係/デフォルトPL-RS)
 Rel.16において、PDSCHは、TCIフィールドを有するDCIでスケジュールされてもよい。PDSCHのためのTCI状態は、TCIフィールドによって指示される。DCIフォーマット1_1のTCIフィールドは3ビットであり、DCIフォーマット1_2のTCIフィールドは最大3ビットである。
(Default TCI State/Default Spatial Relationship/Default PL-RS)
In Rel. 16, the PDSCH may be scheduled in a DCI having a TCI field. The TCI state for the PDSCH is indicated by the TCI field. The TCI field of DCI format 1_1 is 3 bits, and the TCI field of DCI format 1_2 is up to 3 bits.
 RRC接続モードにおいて、もしPDSCHをスケジュールするCORESETに対して、第1のDCI内TCI情報要素(上位レイヤパラメータtci-PresentInDCI)が「有効(enabled)」とセットされる場合、UEは、当該CORESETにおいて送信されるPDCCHのDCIフォーマット1_1内に、TCIフィールドが存在すると想定する。 In RRC connected mode, if the TCI information element in the first DCI (higher layer parameter tci-PresentInDCI) is set to "enabled" for a CORESET that schedules a PDSCH, the UE assumes that the TCI field is present in DCI format 1_1 of the PDCCH transmitted in that CORESET.
 また、もしPDSCHをスケジュールするCORESETに対する第2のDCI内TCI情報要素(上位レイヤパラメータtci-PresentInDCI-1-2)がUEに設定される場合、UEは、当該CORESETにおいて送信されるPDSCHのDCIフォーマット1_2内に、第2のDCI内TCI情報要素で指示されるDCIフィールドサイズをもつTCIフィールドが存在すると想定する。 Also, if the TCI information element in the second DCI (higher layer parameter tci-PresentInDCI-1-2) for the CORESET scheduling the PDSCH is configured in the UE, the UE assumes that a TCI field with the DCI field size indicated in the TCI information element in the second DCI is present in DCI format 1_2 of the PDSCH transmitted in that CORESET.
 また、Rel.16において、PDSCHは、TCIフィールドを有さないDCIでスケジュールされてもよい。当該DCIのDCIフォーマットは、DCIフォーマット1_0、又は、DCI内TCI情報要素(上位レイヤパラメータtci-PresentInDCI又はtci-PresentInDCI-1-2)が設定(有効に)されないケースにおけるDCIフォーマット1_1/1_2であってもよい。PDSCHがTCIフィールドを有さないDCIでスケジュールされ、もしDL DCI(PDSCHをスケジュールするDCI(スケジューリングDCI))の受信と、対応するPDSCH(当該DCIによってスケジュールされるPDSCH)と、の間の時間オフセットが、閾値(timeDurationForQCL)以上である場合、UEは、PDSCHのためのTCI状態又はQCL想定が、CORESET(例えば、スケジューリングDCI)のTCI状態又はQCL想定(デフォルトTCI状態)と同じであると想定する。 Also, in Rel. 16, PDSCH may be scheduled with a DCI without a TCI field. The DCI format of the DCI may be DCI format 1_0 or DCI format 1_1/1_2 in case the TCI information element in the DCI (higher layer parameters tci-PresentInDCI or tci-PresentInDCI-1-2) is not set (enabled). If PDSCH is scheduled with a DCI without a TCI field, if the time offset between the reception of DL DCI (DCI that schedules PDSCH (scheduling DCI)) and the corresponding PDSCH (PDSCH scheduled by the DCI) is equal to or greater than a threshold (timeDurationForQCL), the UE assumes that the TCI state or QCL assumption for PDSCH is the same as the TCI state or QCL assumption of CORESET (e.g., scheduling DCI) (default TCI state).
 RRC接続モードにおいて、DCI内TCI情報要素(上位レイヤパラメータtci-PresentInDCI及びtci-PresentInDCI-1-2)が「有効(enabled)」とセットされる場合と、DCI内TCI情報要素が設定されない場合と、の両方において、DL DCI(PDSCHをスケジュールするDCI)の受信と、対応するPDSCH(当該DCIによってスケジュールされるPDSCH)と、の間の時間オフセットが、閾値(timeDurationForQCL)より小さい場合(適用条件、第1条件)、もし非クロスキャリアスケジューリングの場合、PDSCHのTCI状態(デフォルトTCI状態)は、その(特定UL信号の)CCのアクティブDL BWP内の最新のスロット内の最低のCORESET IDのTCI状態であってもよい。そうでない場合、PDSCHのTCI状態(デフォルトTCI状態)は、スケジュールされるCCのアクティブDL BWP内のPDSCHの最低のTCI状態IDのTCI状態であってもよい。 In RRC connected mode, both when the TCI information elements in DCI (upper layer parameters tci-PresentInDCI and tci-PresentInDCI-1-2) are set to "enabled" and when the TCI information elements in DCI are not set, if the time offset between the reception of a DL DCI (DCI scheduling a PDSCH) and the corresponding PDSCH (PDSCH scheduled by that DCI) is less than a threshold (timeDurationForQCL) (applicability condition, first condition), in the case of non-cross-carrier scheduling, the TCI state of the PDSCH (default TCI state) may be the TCI state of the lowest CORESET ID in the latest slot in the active DL BWP of that CC (of a particular UL signal). Otherwise, the TCI state of the PDSCH (default TCI state) may be the TCI state of the lowest TCI state ID of the PDSCH in the active DL BWP of the scheduled CC.
 Rel.15においては、PUCCH空間関係のアクティベーション/ディアクティベーション用のMAC CEと、SRS空間関係のアクティベーション/ディアクティベーション用のMAC CEと、の個々のMAC CEが必要である。PUSCH空間関係は、SRS空間関係に従う。 In Rel. 15, separate MAC CEs are required for activation/deactivation of the PUCCH spatial relationship and for activation/deactivation of the SRS spatial relationship. The PUSCH spatial relationship follows the SRS spatial relationship.
 Rel.16においては、PUCCH空間関係のアクティベーション/ディアクティベーション用のMAC CEと、SRS空間関係のアクティベーション/ディアクティベーション用のMAC CEと、の少なくとも1つが用いられなくてもよい。 In Rel. 16, at least one of the MAC CE for activation/deactivation of the PUCCH spatial relationship and the MAC CE for activation/deactivation of the SRS spatial relationship may not be used.
 もしFR2において、PUCCHに対する空間関係とPL-RSの両方が設定されない場合(適用条件、第2条件)、PUCCHに対して空間関係及びPL-RSのデフォルト想定(デフォルト空間関係及びデフォルトPL-RS)が適用される。もしFR2において、SRS(SRSに対するSRSリソース、又はPUSCHをスケジュールするDCIフォーマット0_1内のSRIに対応するSRSリソース)に対する空間関係とPL-RSの両方が設定されない場合(適用条件、第2条件)、DCIフォーマット0_1によってスケジュールされるPUSCHとSRSとに対して空間関係及びPL-RSのデフォルト想定(デフォルト空間関係及びデフォルトPL-RS)が適用される。 If neither the spatial relationship nor the PL-RS for the PUCCH is configured in FR2 (applicable condition, second condition), the default assumptions of the spatial relationship and the PL-RS for the PUCCH (default spatial relationship and default PL-RS) are applied. If neither the spatial relationship nor the PL-RS for the SRS (SRS resource for the SRS, or SRS resource corresponding to the SRI in DCI format 0_1 that schedules the PUSCH) is configured in FR2 (applicable condition, second condition), the default assumptions of the spatial relationship and the PL-RS for the PUSCH and the SRS scheduled by DCI format 0_1 (default spatial relationship and default PL-RS) are applied.
 もしそのCC上のアクティブDL BWP内にCORESETが設定される場合(適用条件)、デフォルト空間関係及びデフォルトPL-RSは、当該アクティブDL BWP内の最低CORESET IDを有するCORESETのTCI状態又はQCL想定であってもよい。もしそのCC上のアクティブDL BWP内にCORESETが設定されない場合、デフォルト空間関係及びデフォルトPL-RSは、当該アクティブDL BWP内のPDSCHの最低IDを有するアクティブTCI状態であってもよい。 If a CORESET is configured in the active DL BWP on that CC (applicable condition), the default spatial relationship and default PL-RS may be the TCI state or QCL assumption of the CORESET with the lowest CORESET ID in that active DL BWP. If a CORESET is not configured in the active DL BWP on that CC, the default spatial relationship and default PL-RS may be the active TCI state with the lowest ID of the PDSCH in that active DL BWP.
 Rel.15において、DCIフォーマット0_0によってスケジュールされるPUSCHの空間関係は、同じCC上のPUCCHのアクティブ空間関係のうち、最低PUCCHリソースIDを有するPUCCHリソースの空間関係に従う。ネットワークは、SCell上でPUCCHが送信されない場合であっても、全てのSCell上のPUCCH空間関係を更新する必要がある。 In Rel. 15, the spatial relationship of PUCCH scheduled by DCI format 0_0 follows the spatial relationship of the PUCCH resource with the lowest PUCCH resource ID among the active spatial relationships of PUCCH on the same CC. The network needs to update the PUCCH spatial relationship on all SCells even if no PUCCH is transmitted on the SCell.
 Rel.16においては、DCIフォーマット0_0によってスケジュールされるPUSCHのためのPUCCH設定は必要とされない。DCIフォーマット0_0によってスケジュールされるPUSCHに対し、そのCC内のアクティブUL BWP上に、アクティブPUCCH空間関係がない、又はPUCCHリソースがない場合(適用条件、第2条件)、当該PUSCHにデフォルト空間関係及びデフォルトPL-RSが適用される。 In Rel. 16, PUCCH configuration is not required for a PUSCH scheduled by DCI format 0_0. If there is no active PUCCH spatial relationship or no PUCCH resources on the active UL BWP in a CC for a PUSCH scheduled by DCI format 0_0 (applicable condition, second condition), the default spatial relationship and default PL-RS are applied to the PUSCH.
 SRS用デフォルト空間関係/デフォルトPL-RSの適用条件は、SRS用デフォルトビームパスロス有効化情報要素(上位レイヤパラメータenableDefaultBeamPlForSRS)が有効にセットされることを含んでもよい。PUCCH用デフォルト空間関係/デフォルトPL-RSの適用条件は、PUCCH用デフォルトビームパスロス有効化情報要素(上位レイヤパラメータenableDefaultBeamPlForPUCCH)が有効にセットされることを含んでもよい。DCIフォーマット0_0によってスケジュールされるPUSCH用デフォルト空間関係/デフォルトPL-RSの適用条件は、DCIフォーマット0_0によってスケジュールされるPUSCH用デフォルトビームパスロス有効化情報要素(上位レイヤパラメータenableDefaultBeamPlForPUSCH0_0)が有効にセットされることを含んでもよい。 The conditions for applying the default spatial relationship/default PL-RS for SRS may include setting the default beam path loss enable information element for SRS (upper layer parameter enableDefaultBeamPlForSRS) to be enabled. The conditions for applying the default spatial relationship/default PL-RS for PUCCH may include setting the default beam path loss enable information element for PUCCH (upper layer parameter enableDefaultBeamPlForPUCCH) to be enabled. The conditions for applying the default spatial relationship/default PL-RS for PUSCH scheduled by DCI format 0_0 may include setting the default beam path loss enable information element for PUSCH scheduled by DCI format 0_0 (upper layer parameter enableDefaultBeamPlForPUSCH0_0) to be enabled.
 Rel.16において、UEに対し、RRCパラメータ(PUCCHのためのデフォルトビームPLを有効化するパラメータ(enableDefaultBeamPL-ForPUCCH)、PUSCHのためのデフォルトビームPLを有効化するパラメータ(enableDefaultBeamPL-ForPUSCH0_0)、又は、SRSのためのデフォルトビームPLを有効化するパラメータ(enableDefaultBeamPL-ForSRS))が設定され、空間関係又はPL-RSが設定されない場合、UEは、デフォルト空間関係/PL-RSを適用する。 In Rel. 16, if the RRC parameters (parameter to enable the default beam PL for PUCCH (enableDefaultBeamPL-ForPUCCH), parameter to enable the default beam PL for PUSCH (enableDefaultBeamPL-ForPUSCH0_0), or parameter to enable the default beam PL for SRS (enableDefaultBeamPL-ForSRS)) are configured for the UE and the spatial relationship or PL-RS is not configured, the UE applies the default spatial relationship/PL-RS.
 上記閾値は、QCL用時間長(time duration)、「timeDurationForQCL」、「Threshold」、「Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI」、「Threshold-Sched-Offset」、「beamSwitchTiming」、スケジュールオフセット閾値、スケジューリングオフセット閾値、などと呼ばれてもよい。上記閾値は、(サブキャリア間隔毎の)UE能力として、UEによって報告されてもよい。 The above threshold may be referred to as time duration for QCL, "timeDurationForQCL", "Threshold", "Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI", "Threshold-Sched-Offset", "beamSwitchTiming", schedule offset threshold, scheduling offset threshold, etc. The above threshold may be reported by the UE as UE capability (per subcarrier interval).
 DL DCIの受信と、それに対応するPDSCHと、の間のオフセット(スケジューリングオフセット)が閾値timeDurationForQCLより小さく、且つスケジュールされたPDSCHのサービングセルに対して設定された少なくとも1つのTCI状態が「QCLタイプD」を含み、且つUEが2デフォルトTCI有効化情報要素(enableTwoDefaultTCIStates-r16)を設定され、且つ少なくとも1つのTCIコードポイント(DL DCI内のTCIフィールドのコードポイント)が2つのTCI状態を示す場合、UEは、サービングセルのPDSCH又はPDSCH送信オケージョンのDMRSポートが、2つの異なるTCI状態を含むTCIコードポイントのうちの最低コードポイントに対応する2つのTCI状態に関連付けられたQCLパラメータに関するRSとQCLされる(quasi co-located)と想定する(2デフォルトQCL想定決定ルール)。2デフォルトTCI有効化情報要素は、少なくとも1つのTCIコードポイントが2つのTCI状態にマップされる場合のPDSCH用の2つのデフォルトTCI状態のRel.16動作が有効化されることを示す。 If the offset (scheduling offset) between the reception of a DL DCI and the corresponding PDSCH is smaller than a threshold timeDurationForQCL, and at least one TCI state configured for the serving cell of the scheduled PDSCH includes "QCL type D", and the UE has configured a two default TCI enable information element (enableTwoDefaultTCIStates-r16), and at least one TCI code point (code point of the TCI field in the DL DCI) indicates two TCI states, the UE assumes that the DMRS port of the PDSCH or PDSCH transmission occasion of the serving cell is QCL-co-located (quasi co-located) with the RS for QCL parameters associated with the two TCI states corresponding to the lowest code point among the TCI code points containing two different TCI states (two default QCL assumption decision rule). The 2 default TCI enable information element indicates that Rel. 16 operation of the 2 default TCI states for the PDSCH is enabled when at least one TCI codepoint is mapped to the 2 TCI states.
 Rel.15/16におけるPDSCHのデフォルトTCI状態として、シングルTRP向けのデフォルトTCI状態、マルチDCIに基づくマルチTRP向けのデフォルトTCI状態、シングルDCIに基づくマルチTRP向けのデフォルトTCI状態、が仕様化されている。 The default TCI state for PDSCH in Rel. 15/16 is specified as a default TCI state for a single TRP, a default TCI state for multiple TRPs based on multiple DCIs, and a default TCI state for multiple TRPs based on a single DCI.
 Rel.15/16における非周期的CSI-RS(A(aperiodic)-CSI-RS)のデフォルトTCI状態として、シングルTRP向けのデフォルトTCI状態、マルチDCIに基づくマルチTRP向けのデフォルトTCI状態、シングルDCIに基づくマルチTRP向けのデフォルトTCI状態、が仕様化されている。 In Rel. 15/16, the default TCI state for aperiodic CSI-RS (A (aperiodic)-CSI-RS) is specified as follows: default TCI state for single TRP, default TCI state for multi-TRP based on multi-DCI, and default TCI state for multi-TRP based on single DCI.
 Rel.15/16において、PUSCH/PUCCH/SRSのそれぞれについての、デフォルト空間関係及びデフォルトPL-RSが仕様化されている。 In Rel. 15/16, the default spatial relationship and default PL-RS for each of PUSCH/PUCCH/SRS are specified.
(統一(unified)/共通(common)TCIフレームワーク)
 統一TCIフレームワークによれば、複数種類(UL/DL)のチャネル/RSを共通のフレームワークによって制御できる。統一TCIフレームワークは、Rel.15のようにTCI状態又は空間関係をチャネルごとに規定するのではなく、共通ビーム(共通TCI状態)を指示し、それをUL及びDLの全てのチャネルへ適用してもよいし、UL用の共通ビームをULの全てのチャネルに適用し、DL用の共通ビームをDLの全てのチャネルに適用してもよい。
(Unified/Common TCI Framework)
According to the unified TCI framework, multiple types of (UL/DL) channels/RSs can be controlled by a common framework. The unified TCI framework does not specify the TCI state or spatial relationship for each channel as in Rel. 15, but instead specifies a common beam (common TCI state) and may apply it to all UL and DL channels, or a common beam for UL may apply to all UL channels and a common beam for DL may apply to all DL channels.
 DL及びULの両方のための1つの共通ビーム、又は、DL用の共通ビームとUL用の共通ビーム(全体で2つの共通ビーム)が検討されている。 One common beam for both DL and UL, or one common beam for DL and one common beam for UL (total of two common beams) are being considered.
 UEは、UL及びDLに対して同じTCI状態(ジョイントTCI状態、ジョイントTCIプール、ジョイント共通TCIプール、ジョイントTCI状態セット)を想定してもよい。UEは、UL及びDLのそれぞれに対して異なるTCI状態(セパレートTCI状態、セパレートTCIプール、ULセパレートTCIプール及びDLセパレートTCIプール、セパレート共通TCIプール、UL共通TCIプール及びDL共通TCIプール)を想定してもよい。 The UE may assume the same TCI state for UL and DL (joint TCI state, joint TCI pool, joint common TCI pool, joint TCI state set). The UE may assume different TCI states for UL and DL respectively (separate TCI state, separate TCI pool, UL separate TCI pool and DL separate TCI pool, separate common TCI pool, UL common TCI pool and DL common TCI pool).
 MAC CEに基づくビーム管理(MAC CEレベルビーム指示)によって、UL及びDLのデフォルトビームを揃えてもよい。PDSCHのデフォルトTCI状態を更新し、デフォルトULビーム(空間関係)に合わせてもよい。 The UL and DL default beams may be aligned via MAC CE based beam management (MAC CE level beam instructions). The PDSCH default TCI state may be updated to match the default UL beam (spatial relationship).
 DCIに基づくビーム管理(DCIレベルビーム指示)によって、UL及びDLの両方用の同じTCIプール(ジョイント共通TCIプール、ジョイントTCIプール、セット)から共通ビーム/統一TCI状態が指示されてもよい。X(>1)個のTCI状態がMAC CEによってアクティベートされてもよい。UL/DL DCIは、X個のアクティブTCI状態から1つを選択してもよい。選択されたTCI状態は、UL及びDLの両方のチャネル/RSに適用されてもよい。 DCI based beam management (DCI level beam indication) may indicate a common beam/unified TCI state from the same TCI pool (joint common TCI pool, joint TCI pool, set) for both UL and DL. X (>1) TCI states may be activated by the MAC CE. The UL/DL DCI may select one out of the X active TCI states. The selected TCI state may be applied to both UL and DL channels/RS.
 TCIプール(セット)は、RRCパラメータによって設定された複数のTCI状態であってもよいし、RRCパラメータによって設定された複数のTCI状態のうち、MAC CEによってアクティベートされた複数のTCI状態(アクティブTCI状態、アクティブTCIプール、セット)であってもよい。各TCI状態は、QCLタイプA/D RSであってもよい。QCLタイプA/D RSとしてSSB、CSI-RS、又はSRSが設定されてもよい。 The TCI pool (set) may be multiple TCI states set by RRC parameters, or multiple TCI states (active TCI states, active TCI pool, set) activated by the MAC CE among multiple TCI states set by RRC parameters. Each TCI state may be a QCL type A/D RS. SSB, CSI-RS, or SRS may be set as the QCL type A/D RS.
 1以上のTRPのそれぞれに対応するTCI状態の個数が規定されてもよい。例えば、ULのチャネル/RSに適用されるTCI状態(UL TCI状態)の個数N(≧1)と、DLのチャネル/RSに適用されるTCI状態(DL TCI状態)の個数M(≧1)と、が規定されてもよい。N及びMの少なくとも一方は、上位レイヤシグナリング/物理レイヤシグナリングを介して、UEに通知/設定/指示されてもよい。 The number of TCI states corresponding to each of one or more TRPs may be specified. For example, the number N (≧1) of TCI states (UL TCI states) applied to UL channels/RS and the number M (≧1) of TCI states (DL TCI states) applied to DL channels/RS may be specified. At least one of N and M may be notified/configured/instructed to the UE via higher layer signaling/physical layer signaling.
 本開示において、N=M=X(Xは任意の整数)と記載される場合は、UEに対して、X個の(X個のTRPに対応する)UL及びDLに共通のTCI状態(ジョイントTCI状態)が通知/設定/指示されることを意味してもよい。また、N=X(Xは任意の整数)、M=Y(Yは任意の整数、Y=Xであってもよい)と記載される場合は、UEに対して、X個の(X個のTRPに対応する)UL TCI状態及びY個の(Y個のTRPに対応する)DL TCI状態(すなわち、セパレートTCI状態)がそれぞれ通知/設定/指示されることを意味してもよい。 In the present disclosure, when N=M=X (X is any integer), it may mean that X TCI states (joint TCI states) common to UL and DL (corresponding to X TRPs) are notified/configured/instructed to the UE. Also, when N=X (X is any integer) and M=Y (Y may be any integer, Y=X), it may mean that X UL TCI states (corresponding to X TRPs) and Y DL TCI states (i.e., separate TCI states) (corresponding to Y TRPs) are notified/configured/instructed to the UE.
 例えば、N=M=1と記載される場合は、UEに対し、単一のTRPに対する、1つのUL及びDLに共通のTCI状態が通知/設定/指示されることを意味してもよい(単一TRPのためのジョイントTCI状態)。 For example, when N=M=1 is written, this may mean that the UE is notified/configured/indicated a TCI state common to one UL and DL for a single TRP (joint TCI state for a single TRP).
 また、例えば、N=1、M=1と記載される場合は、UEに対し、単一のTRPに対する、1つのUL TCI状態と、1つのDL TCI状態と、が別々に通知/設定/指示されることを意味してもよい(単一TRPのためのセパレートTCI状態)。 Also, for example, when N=1 and M=1 are written, this may mean that one UL TCI state and one DL TCI state for a single TRP are notified/configured/instructed separately to the UE (separate TCI states for a single TRP).
 また、例えば、N=M=2と記載される場合は、UEに対し、複数の(2つの)TRPに対する、複数の(2つの)のUL及びDLに共通のTCI状態が通知/設定/指示されることを意味してもよい(複数TRPのためのジョイントTCI状態)。 Also, for example, when N=M=2 is written, this may mean that the UE is notified/configured/instructed to have a TCI state common to multiple (two) ULs and DLs for multiple (two) TRPs (joint TCI state for multiple TRPs).
 また、例えば、N=2、M=2と記載される場合は、UEに対し、複数(2つ)のTRPに対する、複数の(2つの)UL TCI状態と、複数の(2つの)DL TCI状態と、が通知/設定/指示されることを意味してもよい(複数TRPのためのセパレートTCI状態)。 Also, for example, when N=2 and M=2 are written, this may mean that multiple (two) UL TCI states and multiple (two) DL TCI states for multiple (two) TRPs are notified/configured/instructed to the UE (separate TCI states for multiple TRPs).
 なお、上記例においては、N及びMの値が1又は2のケースを説明したが、N及びMの値は3以上であってもよいし、N及びMは異なってもよい。 In the above example, the values of N and M are 1 or 2, but the values of N and M may be 3 or more, and N and M may be different.
 Rel.17においてN=M=1がサポートされることが検討されている。Rel.18以降において他のケースがサポートされることが検討されている。 It is being considered that N=M=1 will be supported in Rel. 17. It is being considered that other cases will be supported in Rel. 18 and later.
 図1Aの例において、RRCパラメータ(情報要素)は、DL及びULの両方用の複数のTCI状態を設定する。MAC CEは、設定された複数のTCI状態のうちの複数のTCI状態をアクティベートしてもよい。DCIは、アクティベートされた複数のTCI状態の1つを指示してもよい。DCIは、UL/DL DCIであってもよい。指示されたTCI状態は、UL/DLのチャネル/RSの少なくとも1つ(又は全て)に適用されてもよい。1つのDCIがUL TCI及びDL TCIの両方を指示してもよい。 In the example of FIG. 1A, the RRC parameters (information elements) configure multiple TCI states for both DL and UL. The MAC CE may activate multiple TCI states from the configured multiple TCI states. The DCI may indicate one of the activated multiple TCI states. The DCI may be a UL/DL DCI. The indicated TCI state may apply to at least one (or all) of the UL/DL channels/RS. One DCI may indicate both UL TCI and DL TCI.
 この図の例において、1つの点は、UL及びDLの両方に適用される1つのTCI状態であってもよいし、UL及びDLにそれぞれ適用される2つのTCI状態であってもよい。 In the example of this figure, a point may be one TCI state that applies to both UL and DL, or it may be two TCI states that apply to UL and DL, respectively.
 RRCパラメータによって設定された複数のTCI状態と、MAC CEによってアクティベートされた複数のTCI状態と、の少なくとも1つは、TCIプール(共通TCIプール、ジョイントTCIプール、TCI状態プール)と呼ばれてもよい。MAC CEによってアクティベートされた複数のTCI状態は、アクティブTCIプール(アクティブ共通TCIプール)と呼ばれてもよい。 At least one of the multiple TCI states configured by the RRC parameters and the multiple TCI states activated by the MAC CE may be referred to as a TCI pool (common TCI pool, joint TCI pool, TCI state pool). The multiple TCI states activated by the MAC CE may be referred to as an active TCI pool (active common TCI pool).
 なお、本開示において、複数のTCI状態を設定する上位レイヤパラメータ(RRCパラメータ)は、複数のTCI状態を設定する設定情報、単に「設定情報」と呼ばれてもよい。また、本開示において、DCIを用いて複数のTCI状態の1つを指示されることは、DCIに含まれる複数のTCI状態の1つを指示する指示情報を受信することであってもよいし、単に「指示情報」を受信することであってもよい。 In addition, in this disclosure, the higher layer parameters (RRC parameters) that set multiple TCI states may be referred to as configuration information that sets multiple TCI states, or simply as "configuration information." Also, in this disclosure, being instructed to set one of multiple TCI states using DCI may mean receiving indication information that indicates one of the multiple TCI states included in DCI, or may simply mean receiving "instruction information."
 図1Bの例において、RRCパラメータは、DL及びULの両方用の複数のTCI状態(ジョイント共通TCIプール)を設定する。MAC CEは、設定された複数のTCI状態のうちの複数のTCI状態(アクティブTCIプール)をアクティベートしてもよい。UL及びDLのそれぞれに対する(別々の、separate)アクティブTCIプールが、設定/アクティベートされてもよい。 In the example of FIG. 1B, the RRC parameters configure multiple TCI states for both DL and UL (joint common TCI pool). The MAC CE may activate multiple TCI states (active TCI pools) among the configured multiple TCI states. Separate active TCI pools for each of UL and DL may be configured/activated.
 DL DCI、又は新規DCIフォーマットが、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。その選択されたTCI状態は、1以上(又は全て)のDLのチャネル/RSに適用されてもよい。DLチャネルは、PDCCH/PDSCH/CSI-RSであってもよい。UEは、Rel.16のTCI状態の動作(TCIフレームワーク)を用いて、DLの各チャネル/RSのTCI状態を決定してもよい。UL DCI、又は新規DCIフォーマットが、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。その選択されたTCI状態は、1以上(又は全て)のULチャネル/RSに適用されてもよい。ULチャネルは、PUSCH/SRS/PUCCHであってもよい。このように、異なるDCIが、UL TCI及びDL DCIを別々に指示してもよい。 The DL DCI or new DCI format may select (indicate) one or more (e.g., one) TCI states. The selected TCI state may apply to one or more (or all) DL channels/RS. The DL channels may be PDCCH/PDSCH/CSI-RS. The UE may determine the TCI state of each DL channel/RS using the TCI state behavior (TCI framework) of Rel. 16. The UL DCI or new DCI format may select (indicate) one or more (e.g., one) TCI states. The selected TCI state may apply to one or more (or all) UL channels/RS. The UL channels may be PUSCH/SRS/PUCCH. Thus, different DCIs may indicate UL TCI and DL DCI separately.
 Rel.17 NR以降では、MAC CE/DCIにより、異なるphysical cell identifier(PCI)に関連付けられたTCI状態へのビームのアクティベーション/指示がサポートされることが想定される。また、Rel.18 NR以降では、MAC CE/DCIにより、異なるPCIを有するセルへのサービングセルの変更が指示されることがサポートされることが想定される。 In Rel. 17 NR and later, it is assumed that the MAC CE/DCI will support beam activation/indication to a TCI state associated with a different physical cell identifier (PCI). Also, in Rel. 18 NR and later, it is assumed that the MAC CE/DCI will support indicative serving cell change to a cell with a different PCI.
〔データ用物理レイヤ手順/アンテナポートQCL〕
 あるCC内のPDSCHのDMRS及びPDCCHのDMRSと、CSI-RSと、のための参照信号を提供するために、さらに、もし、あるCC内の動的グラント及び設定グラントベースのPUSCH及びPUCCHリソースと、SRSと、のためのUL TX(送信)空間フィルタが利用可能である場合、そのUL TCIフィルタの決定のための参照を提供するために、PDSCH-Config(PDSCH設定)内において、UEは、128個までのDLorJointTCIState(DL又はジョイントのTCI状態)設定のリストを設定されることができる。
[Physical Layer Procedures for Data/Antenna Port QCL]
In order to provide a reference signal for PDSCH DMRS and PDCCH DMRS, CSI-RS in a CC, and further to provide a reference for UL TX (transmission) spatial filter determination for dynamic grant and configuration grant based PUSCH and PUCCH resources, SRS in a CC, if such a filter is available, the UE can configure a list of up to 128 DLorJointTCIState configurations in PDSCH-Config.
 もしそのCC内のBWP内に、DLorJointTCIState又はUL-TCIState(UL TCI状態)の設定がない場合、そのUEは、参照CCの参照BWPからのDLorJointTCIState又はUL-TCIStateの設定を適用できる。もしそのUEが同じバンド内のいずれかのCC内においてDLorJointTCIState又はUL-TCIStateを設定された場合、そのバンド内のSpatialRelationInfoPos(位置用空間関係情報)を除く、TCI-State、SpatialRelationInfo(空間関係情報)、PUCCH-SpatialRelationInfo(PUCCH空間関係情報)を設定されると想定しない。そのUEは、そのUEがsimultaneousTCI-UpdateList1-r16(同時TCI更新リスト1)、simultaneousTCI-UpdateList2-r16(同時TCI更新リスト2)、simultaneousSpatial-UpdatedList1-r16(同時空間更新リスト1)、又はsimultaneousSpatial-UpdatedList2-r16(同時空間更新リスト2)によってCCリスト内の任意のCC内のTCI-Stateを設定される場合に、そのUEが、そのCC内の任意のCC内のDLorJointTCIState又はUL-TCIStateを設定されない、と想定する。 If there is no DLorJointTCIState or UL-TCIState setting in the BWP in that CC, the UE may apply the DLorJointTCIState or UL-TCIState setting from the reference BWP of the reference CC. If the UE has DLorJointTCIState or UL-TCIState set in any CC in the same band, it does not assume that TCI-State, SpatialRelationInfo (spatial relation information), or PUCCH-SpatialRelationInfo (PUCCH spatial relation information) in that band are set, except for SpatialRelationInfoPos (spatial relation information for position). The UE assumes that if the UE has TCI-State in any CC in the CC list configured by simultaneousTCI-UpdateList1-r16, simultaneousTCI-UpdateList2-r16, simultaneousSpatial-UpdatedList1-r16, or simultaneousSpatial-UpdatedList2-r16, the UE does not configure DLorJointTCIState or UL-TCIState in any CC in the CC list.
 そのUEは、もし利用可能であれば、CC/DL BWPの1つ、又は、CC/DL BWPのセットに対する、DCIフィールド'Transmission Configuration Indication'(TCI)のコードポイントへ、DLのチャネル/信号に対する1つのTCI状態と、ULのチャネル/信号に対する1つのTCI状態と、を伴う、8個までの、TCI状態及び/又はTCI状態のペアをマップすることに用いられるアクティベーションコマンドを受信する。CC/DL BWPのセットに対して、さらに、もし利用可能であればCC/DL BWPの1つに対して、TCI状態IDのセットがアクティベートされる場合、指示されたCC内の全てのDL及び/又はULのBWPに対して、TCI状態IDの同じセットが適用される。ここで、CCの適用可能リストは、そのアクティベーションコマンド内において指示されたCCによって決定される。もしそのアクティベーションコマンドが、DLorJointTCIState及び/又はUL-TCIStateを、1つのみのTCIコードポイントへマップする場合、そのUEは、その指示されたDLorJointTCIState及び/又はUL-TCIStateを、CC/DL BWPの1つ又はCC/DL BWPのセットへ適用し、もし1つの単一TCIコードポイントに対する指示されたマッピングが適用されると、その指示されたDLorJointTCIState及び/又はUL-TCIStateを、CC/DL BWPの1つ又はCC/DL BWPのセットへ適用する。 The UE receives an activation command that is used to map up to eight TCI states and/or TCI state pairs, with one TCI state for DL channels/signals and one TCI state for UL channels/signals, to code points of the DCI field 'Transmission Configuration Indication' (TCI) for one of the CC/DL BWPs or for a set of CC/DL BWPs, if available. If a set of TCI state IDs is activated for a set of CC/DL BWPs and, if available, for one of the CC/DL BWPs, the same set of TCI state IDs applies to all DL and/or UL BWPs in the indicated CC, where the applicable list of CCs is determined by the CCs indicated in the activation command. If the activation command maps DLorJointTCIState and/or UL-TCIState to only one TCI code point, the UE applies the indicated DLorJointTCIState and/or UL-TCIState to one or a set of CC/DL BWPs, and if the indicated mapping to a single TCI code point applies, the UE applies the indicated DLorJointTCIState and/or UL-TCIState to one or a set of CC/DL BWPs.
 DLorJointTCIStateを設定されたTCI状態のQCL-Info内のQCLタイプA/DソースRSに対するbwp-id又はcellが設定されない場合、そのUEは、TCI状態が適用されるCC/DL BWP内に、そのQCLタイプA/DソースRSが設定される、と想定する。 If the bwp-id or cell for a QCL type A/D source RS in the QCL-Info of a TCI state with DLorJointTCIState set is not set, the UE shall assume that the QCL type A/D source RS is set in the CC/DL BWP to which the TCI state applies.
(TCI状態の指示)
 Rel.17統一TCIフレームワークは、以下のモード1から3をサポートする。
[モード1]MAC CEベースTCI状態指示(MAC CE based TCI state indication)
[モード2]DLアサインメントを伴うDCIベースTCI状態指示(DCI based TCI state indication by DCI format 1_1/1_2 with DL assignment)
[モード3]DLアサインメントを伴わないDCIベースTCI状態指示(DCI based TCI state indication by DCI format 1_1/1_2 without DL assignment)
(TCI Status Indication)
The Rel. 17 Unified TCI Framework supports the following modes 1 to 3:
[Mode 1] MAC CE based TCI state indication
[Mode 2] DCI based TCI state indication by DCI format 1_1/1_2 with DL assignment
[Mode 3] DCI based TCI state indication by DCI format 1_1/1_2 without DL assignment
 Rel.17 TCI状態ID(例えば、tci-StateId_r17)を伴って設定されアクティベートされたTCI状態を伴うUEは、1つのCCに対し、Rel.17 TCI状態IDを伴う指示TCI状態(indicated TCI state)を提供するDCIフォーマット1_1/1_2を受信する、又は、同時TCI更新リスト1又は同時TCI更新リスト2(例えば、simultaneousTCI-UpdateList1 or simultaneousTCI-UpdateList2)によって設定されたCCリストと同じCCリスト内の全てのCCに対し、Rel.17 TCI状態IDを伴う指示TCI状態を提供するDCIフォーマット1_1/1_2を受信する。DCIフォーマット1_1/1_2は、もしDLアサインメントが利用可能であればそれを伴ってもよいし、伴わなくてもよい。 UE with TCI state configured and activated with Rel. 17 TCI State ID (e.g. tci-StateId_r17) receives DCI format 1_1/1_2 providing indicated TCI state with Rel. 17 TCI State ID for one CC or DCI format 1_1/1_2 providing indicated TCI state with Rel. 17 TCI State ID for all CCs in the same CC list as configured by simultaneous TCI update list 1 or simultaneous TCI update list 2 (e.g. simultaneousTCI-UpdateList1 or simultaneousTCI-UpdateList2). DCI format 1_1/1_2 may or may not be accompanied by DL assignment if one is available.
 もしDCIフォーマット1_1/1_2がDLアサインメントを伴わない場合、UEは、そのDCIに対して、以下を想定(検証)できる。
- CS-RNTIがDCIのためのCRCのスクランブルに用いられる。
- 以下のDCIフィールド(特別フィールド)の値が以下のようにセットされる:
  - redundancy version(RV)フィールドがall '1's。
  - modulation and coding scheme(MCS)フィールドがall '1's。
  - new data indicator(NDI)フィールドが0。
  - frequency domain resource assignment(FDRA)フィールドが、FDRAタイプ0に対してall '0's、又は、FDRAタイプ1に対してall '1's、又は、ダイナミックスイッチ(DynamicSwitch)に対してall '0's(DL semi-persistent scheduling(SPS)又はULグラントタイプ2スケジューリングのリリースのPDCCHの検証(validation)と同様)。
If DCI format 1_1/1_2 does not carry a DL assignment, the UE can assume (verify) the following for that DCI:
- The CS-RNTI is used to scramble the CRC for the DCI.
- The values of the following DCI fields (special fields) are set as follows:
- The redundancy version (RV) field is all '1's.
- The modulation and coding scheme (MCS) field is all '1's.
- The new data indicator (NDI) field is 0.
- The frequency domain resource assignment (FDRA) field is all '0's for FDRA type 0 or all '1's for FDRA type 1 or all '0's for Dynamic Switch (similar to PDCCH validation for release of DL semi-persistent scheduling (SPS) or UL grant type 2 scheduling).
 なお、上記モード2/モード3におけるDCIは、ビーム指示DCIと呼ばれてもよい。 Note that the DCI in the above Mode 2/Mode 3 may be called beam instruction DCI.
 Rel.15/16において、もしUEがDCIを介するアクティブBWP変更をサポートしない場合、UEは、BWPインディケータフィールドを無視する。Rel.17 TCI状態のサポートと、TCIフィールドの解釈と、の関係についても、同様の動作が検討されている。もしUEがRel.17 TCI状態を伴って設定された場合、DCIフォーマット1_1/1_2内にTCIフィールドが常に存在すること、もしUEがDCIを介するTCI更新をサポートしない場合、UEは、TCIフィールドを無視すること、が検討されている。 In Rel. 15/16, if the UE does not support active BWP change via DCI, the UE will ignore the BWP indicator field. A similar behavior is considered for the relationship between Rel. 17 TCI state support and the interpretation of the TCI field. If the UE is configured with Rel. 17 TCI state, the TCI field will always be present in DCI format 1_1/1_2, and if the UE does not support TCI update via DCI, the UE will ignore the TCI field.
 Rel.15/16において、TCIフィールドが存在するか否か(DCI内TCI存在情報、tci-PresentInDCI)は、CORESETごとに設定される。 In Rel. 15/16, the presence or absence of a TCI field (TCI presence information in DCI, tci-PresentInDCI) is set for each CORESET.
 DCIフォーマット1_1におけるTCIフィールドは、上位レイヤパラメータtci-PresentInDCIが有効にされない場合に0ビットであり、そうでない場合に3ビットである。もしBWPインディケータフィールドが、アクティブBWP以外のBWPを指示する場合、UEは、以下の動作に従う。
[動作]もしそのDCIフォーマット1_1を伝達するPDCCHに用いられるCORESETに対して上位レイヤパラメータtci-PresentInDCIが有効にされない場合、UEは、指示されたBWP内の全てのCORESETに対してtci-PresentInDCIが有効にされないと想定し、そうでない場合、UEは、指示されたBWP内の全てのCORESETに対してtci-PresentInDCIが有効にされると想定する。
The TCI field in DCI format 1_1 is 0 bits if the higher layer parameter tci-PresentInDCI is not enabled, and 3 bits otherwise. If the BWP indicator field indicates a BWP other than the active BWP, the UE shall follow the following actions:
[Operation] If the higher layer parameter tci-PresentInDCI is not enabled for the CORESET used for the PDCCH carrying that DCI format 1_1, the UE shall assume that tci-PresentInDCI is not enabled for all CORESETs in the indicated BWP, otherwise the UE shall assume that tci-PresentInDCI is enabled for all CORESETs in the indicated BWP.
 DCIフォーマット1_2におけるTCIフィールドは、上位レイヤパラメータtci-PresentInDCI-1-2が設定されない場合に0ビットであり、そうでない場合に上位レイヤパラメータtci-PresentInDCI-1-2によって決定される1又は2又は3ビットである。もしBWPインディケータフィールドが、アクティブBWP以外のBWPを指示する場合、UEは、以下の動作に従う。
[動作]もしそのDCIフォーマット1_2を伝達するPDCCHに用いられるCORESETに対して上位レイヤパラメータtci-PresentInDCI-1-2が設定されない場合、UEは、指示されたBWP内の全てのCORESETに対してtci-PresentInDCIが有効にされないと想定し、そうでない場合、UEは、指示されたBWP内の全てのCORESETに対してtci-PresentInDCI-1-2が、そのDCIフォーマット1_2を伝達するPDCCHに用いられるCORESETに対して設定されたtci-PresentInDCI-1-2と同じ値を伴って設定されると想定する。
The TCI field in DCI format 1_2 is 0 bit if the higher layer parameter tci-PresentInDCI-1-2 is not set, otherwise it is 1, 2 or 3 bits determined by the higher layer parameter tci-PresentInDCI-1-2. If the BWP indicator field indicates a BWP other than the active BWP, the UE shall follow the following actions.
[Operation] If the higher layer parameter tci-PresentInDCI-1-2 is not set for the CORESET used for the PDCCH carrying that DCI format 1_2, the UE shall assume that tci-PresentInDCI is not enabled for all CORESETs in the indicated BWP, otherwise the UE shall assume that tci-PresentInDCI-1-2 for all CORESETs in the indicated BWP is set with the same value as tci-PresentInDCI-1-2 set for the CORESET used for the PDCCH carrying that DCI format 1_2.
 図2Aは、DCIベースのジョイントDL/UL TCI状態指示の一例を示す。ジョイントDL/UL TCI状態指示用のTCIフィールドの値に対し、ジョイントDL/UL TCI状態を示すTCI状態IDが関連付けられている。 Figure 2A shows an example of a DCI-based joint DL/UL TCI status indication. A TCI status ID indicating the joint DL/UL TCI status is associated with the value of the TCI field for the joint DL/UL TCI status indication.
 図2Bは、DCIベースのセパレートDL/UL TCI状態指示の一例を示す。セパレートDL/UL TCI状態指示用のTCIフィールドの値に対し、DLのみのTCI状態を示すTCI状態IDと、ULのみのTCI状態を示すTCI状態IDと、の少なくとも1つのTCI状態IDが関連付けられている。この例において、TCIフィールドの値000から001は、DL用の1つのTCI状態IDのみに関連付けられ、TCIフィールドの値010から011は、UL用の1つのTCI状態IDのみに関連付けられ、TCIフィールドの値100から111は、DL用の1つのTCI状態IDと、UL用の1つのTCI状態IDとの両方に関連付けられている。 Figure 2B shows an example of a DCI-based separate DL/UL TCI status indication. At least one TCI status ID is associated with the value of the TCI field for the separate DL/UL TCI status indication: a TCI status ID indicating a DL-only TCI status and a TCI status ID indicating a UL-only TCI status. In this example, TCI field values 000 to 001 are associated with only one TCI status ID for DL, TCI field values 010 to 011 are associated with only one TCI status ID for UL, and TCI field values 100 to 111 are associated with both one TCI status ID for DL and one TCI status ID for UL.
(指示TCI状態/設定TCI状態)
 Rel.17TCI状態について、統一/共通TCI状態は、(Rel.17の)DCI/MAC CE/RRCを用いて指示されるRel.17TCI状態(指示Rel.17TCI状態(indicated Rel.17 TCI state))を意味してもよい。
(Indicated TCI Status/Set TCI Status)
For Rel. 17 TCI states, the unified/common TCI state may mean the Rel. 17 TCI state indicated using (Rel. 17) DCI/MAC CE/RRC (indicated Rel. 17 TCI state).
 本開示において、指示Rel.17TCI状態、指示TCI状態(indicated TCI state)、統一/共通TCI状態、複数種類の信号(チャネル/RS)に適用されるTCI状態、複数種類の信号(チャネル/RS)のためのTCI状態、は互いに読み替えられてもよい。 In this disclosure, the terms indicated Rel. 17 TCI state, indicated TCI state, unified/common TCI state, TCI state applicable to multiple types of signals (channels/RS), and TCI state for multiple types of signals (channels/RS) may be interpreted interchangeably.
 指示Rel.17TCI状態は、(Rel.17のDCI/MAC CE/RRCを用いて更新された、)PDSCH/PDCCにおけるUE固有の受信、動的グラント(DCI)/設定(configured)グラントのPUSCH、及び、複数の(例えば、全ての)固有(dedicated)PUCCHリソース、の少なくとも1つと共有されてもよい。DCI/MAC CE/RRCにより指示されるTCI状態は、指示TCI状態、統一TCI状態と呼ばれてもよい。 The indicated Rel. 17 TCI state may be shared with at least one of the UE-specific reception on PDSCH/PDCC (updated using Rel. 17 DCI/MAC CE/RRC), PUSCH of dynamic grant (DCI)/configured grant, and multiple (e.g., all) dedicated PUCCH resources. The TCI state indicated by the DCI/MAC CE/RRC may be referred to as the indicated TCI state, the unified TCI state.
 Rel.17TCI状態について、統一TCI状態以外のTCI状態は、(Rel.17の)MAC CE/RRCを用いて設定されるRel.17TCI状態(設定Rel.17TCI状態(configured Rel.17 TCI state))を意味してもよい。本開示において、設定Rel.17TCI状態、設定TCI状態(configured TCI state)、統一TCI状態以外のTCI状態、特定種類の信号(チャネル/RS)に適用されるTCI状態、は互いに読み替えられてもよい。 With respect to the Rel. 17 TCI state, a TCI state other than the unified TCI state may refer to a Rel. 17 TCI state configured using the (Rel. 17) MAC CE/RRC (configured Rel. 17 TCI state). In this disclosure, the configured Rel. 17 TCI state, the configured TCI state, a TCI state other than the unified TCI state, and a TCI state applied to a specific type of signal (channel/RS) may be read as interchangeable.
 設定Rel.17TCI状態は、(Rel.17のDCI/MAC CE/RRCを用いて更新された、)PDSCH/PDCCにおけるUE固有の受信、動的グラント(DCI)/設定(configured)グラントのPUSCH、及び、複数の(例えば、全ての)固有(dedicated)PUCCHリソース、の少なくとも1つと共有されなくてもよい。設定Rel.17TCI状態は、CORESETごと/リソースごと/リソースセットごとにRRC/MAC CEで設定され、上述した指示Rel.17TCI状態(コモンTCI状態)が更新されても、設定Rel.17TCI状態は更新されない構成であってもよい。 The configured Rel. 17 TCI state may not be shared with at least one of the UE-specific reception in the PDSCH/PDCC (updated using Rel. 17 DCI/MAC CE/RRC), the PUSCH of the dynamic grant (DCI)/configured grant, and multiple (e.g., all) dedicated PUCCH resources. The configured Rel. 17 TCI state may be configured by the RRC/MAC CE for each CORESET/resource/resource set, and may not be updated even if the indicated Rel. 17 TCI state (common TCI state) described above is updated.
 UE固有のチャネル/信号(RS)に対して、指示Rel.17TCI状態が適用されることが検討されている。また、非UE固有のチャネル/信号に対して、指示Rel.17TCI状態及び設定Rel.17TCI状態のいずれかを適用するかについて上位レイヤシグナリング(RRCシグナリング)を用いてUEに通知することが検討されている。 It is being considered that the indicated Rel. 17 TCI state will be applied to UE-specific channels/signals (RS). It is also being considered that the UE will be notified using higher layer signaling (RRC signaling) as to whether the indicated Rel. 17 TCI state or the configured Rel. 17 TCI state will be applied to non-UE-specific channels/signals.
 設定Rel.17TCI状態(TCI状態ID)に関するRRCパラメータは、Rel.15/16におけるTCI状態のRRCパラメータと同じ構成とすることが検討されている。設定Rel.17TCI状態は、RRC/MAC CEを用いて、CORESETごと/リソースごと/リソースセットごとに設定/指示されることが検討されている。また、当該設定/指示について、UEは、特定のパラメータに基づいて判断することが検討されている。 It is being considered that the RRC parameters for the configured Rel. 17 TCI state (TCI state ID) will have the same configuration as the RRC parameters for the TCI state in Rel. 15/16. It is being considered that the configured Rel. 17 TCI state will be configured/instructed for each CORESET/resource/resource set using RRC/MAC CE. It is also being considered that the UE will make decisions regarding the configuration/instruction based on specific parameters.
 UEに対し、指示TCI状態の更新と、設定TCI状態の更新と、が別々に行われることが検討されている。例えば、UEに対し、指示TCI状態についての統一TCI状態が更新された場合、設定TCI状態の更新が行われなくてもよい。また、当該更新について、UEは、特定のパラメータに基づいて判断することが検討されている。 It is being considered that the UE will update the indicated TCI state and the configured TCI state separately. For example, if the unified TCI state for the indicated TCI state is updated for the UE, the configured TCI state may not need to be updated. It is also being considered that the UE will make a decision about the update based on a specific parameter.
 また、PDCCH/PDSCHについて、指示Rel.17TCI状態が適用されるか、指示Rel.17TCI状態が適用されない(設定Rel.17TCI状態が適用される、指示Rel.17TCI状態とは別に設定されたTCI状態が適用される)か、について、上位レイヤシグナリング(RRC/MAC CE)を用いて切り替えることが検討されている。 In addition, it is being considered to use higher layer signaling (RRC/MAC CE) to switch between whether the indicated Rel. 17 TCI state is applied to the PDCCH/PDSCH or not (the configured Rel. 17 TCI state is applied, or a TCI state configured separately from the indicated Rel. 17 TCI state is applied).
 また、セル内(intra-cell)のビーム指示(TCI状態の指示)について、UE固有のCORESET及び当該CORESETに関連するPDSCHと、非UE固有のCORESET及び当該CORESETに関連するPDSCHと、に対して指示Rel.17TCI状態がサポートされることが検討されている。 In addition, for intra-cell beam indication (TCI state indication), it is being considered to support Rel. 17 TCI state indication for UE-specific CORESET and PDSCH associated with that CORESET, and non-UE-specific CORESET and PDSCH associated with that CORESET.
 また、セル間(inter-cell)のビーム指示(例えば、L1/L2インターセルモビリティ)について、UE固有のCORESET及び当該CORESETに関連するPDSCHに対して、指示Rel.17TCI状態がサポートされることが検討されている。 In addition, for inter-cell beam indication (e.g., L1/L2 inter-cell mobility), support for indication Rel. 17 TCI states for UE-specific CORESETs and their associated PDSCHs is under consideration.
 Rel.15において、CORESET#0に対しTCI状態を指示するかどうかは基地局の実装次第であった。Rel.15では、TCI状態を指示されたCORESET#0について、当該指示されたTCI状態が適用される。TCI状態が指示されないCORESET#0に対して、最新(最近)のPRACH送信時に選択したSSBとQCLが適用される。 In Rel. 15, whether to indicate the TCI state for CORESET#0 was up to the base station implementation. In Rel. 15, for CORESET#0 for which a TCI state is indicated, the indicated TCI state is applied. For CORESET#0 for which a TCI state is not indicated, the SSB and QCL selected at the time of the latest (most recent) PRACH transmission are applied.
 Rel.17以降の統一TCI状態フレームワークにおいて、CORESET#0に関するTCI状態について検討がされている。 In the unified TCI state framework for Rel. 17 and later, the TCI state for CORESET#0 is being considered.
 例えば、Rel.17以降の統一TCI状態のフレームワークでは、CORESET#0のRel.17 TCI状態指示について、サービングセルに関連づけられた指示Rel.17TCI状態(indicated Rel-17 TCI state associated with the serving cell)を適用するかどうかは、RRCによりCORESETごとに設定され、適用しない場合には、既存のMAC CE/RACHシグナリングメカニズム(legacy MAC CE/RACH signalling mechanism)が利用されてもよい。 For example, in the unified TCI state framework for Rel. 17 and later, for the Rel. 17 TCI state indication of CORESET #0, whether or not to apply the indicated Rel-17 TCI state associated with the serving cell is set by RRC for each CORESET, and if not applied, the legacy MAC CE/RACH signaling mechanism may be used.
 なお、CORESET#0に適用されるRel.17TCI状態に関連するCSI-RSは、サービングセルPCI(物理セルID)に関連するSSBとQCLされてもよい(Rel.15と同様)。 Note that the CSI-RS related to the Rel. 17 TCI state applied to CORESET#0 may be QCL'd with the SSB related to the serving cell PCI (physical cell ID) (similar to Rel. 15).
 CORESET#0、共通サーチスペース(common search space(CSS))を伴うCORESET、CSSとUE固有サーチスペース(UE-specific search space(USS))を伴うCORESET、に対し、CORESETごとに、指示Rel.17TCI状態に従うか否かがRRCパラメータによって設定されてもよい。そのCORESETに対し、指示Rel.17TCI状態に従うことを設定されない場合、設定Rel.17TCI状態が、そのCORESETに適用されてもよい。 For CORESET#0, CORESETs with a common search space (CSS), and CORESETs with a CSS and a UE-specific search space (USS), whether to follow the indicated Rel. 17 TCI state may be configured for each CORESET by an RRC parameter. If the indicated Rel. 17 TCI state is not configured for that CORESET, the configured Rel. 17 TCI state may be applied to that CORESET.
 (CORESETを除く)非UE個別(non-UE-dedicated)のチャネル/RSに対し、チャネル/リソース/リソースセットごとに、指示Rel.17TCI状態に従うか否かがRRCパラメータによって設定されてもよい。そのチャネル/リソース/リソースセットに対し、指示Rel.17TCI状態に従うことを設定されない場合、設定Rel.17TCI状態が、そのチャネル/リソース/リソースセットに適用されてもよい。 For non-UE-dedicated channels/RS (excluding CORESET), RRC parameters may be configured for each channel/resource/resource set to follow or not follow the indicated Rel. 17 TCI state. If the indicated Rel. 17 TCI state is not configured for that channel/resource/resource set, the configured Rel. 17 TCI state may be applied to that channel/resource/resource set.
(指示TCI状態が適用されるチャネル/RS)
 MAC CE/DCIによる指示TCI状態("indicated TCI state")は、以下のチャネル/RSに適用されてもよい。
(Channel/RS to which the indicated TCI state applies)
The indicated TCI state by the MAC CE/DCI may apply to the following channels/RS:
[PDCCH]
・CORESET0に対し、followUnifiedTCIState(統一TCI状態に従うこと)が設定された場合、指示TCI状態が適用される。そうでない場合、そのCORESETに対し、Rel.15仕様が適用される。すなわち、CORESET0は、MAC CEによってアクティベートされたTCI状態に従う、又は、SSBとQCLされる。
・USS/CSSタイプ3を伴う、インデックス0以外のCORESETに対し、常に指示TCI状態が適用される。
・少なくともCSSタイプ3以外のCSSを伴う、インデックス0以外のCORESETに対し、統一TCI状態に従うことが設定された場合、指示TCI状態が適用される。そうでない場合、そのCORESETに対する設定TCI状態("configured TCI state")が、そのCORESETに適用される。
[PDCCH]
If followUnifiedTCIState is set for CORESET0, the indicated TCI state is applied. Otherwise, the Rel. 15 specifications are applied for that CORESET. That is, CORESET0 follows the TCI state activated by the MAC CE or is QCLed with SSB.
For a CORESET with index other than 0 with USS/CSS type 3, the indicated TCI state always applies.
- For a CORESET with index other than 0, with at least a CSS other than CSS type 3, configured to follow the uniform TCI state, the indicated TCI state applies. Otherwise, the configured TCI state for that CORESET applies to that CORESET.
[PDSCH]
・全てのUE個別(UE-dedicated)PDSCHに対し、常に指示TCI状態が適用される。
・非UE個別(non-UE-dedicated)PDSCH(CSS内のDCIによってスケジュールされたPDSCH)に対し、(そのPDSCHをスケジュールするPDCCHのCORESETに対して)followUnifiedTCIStateが設定された場合、指示TCI状態が適用されてもよい。そうでない場合、そのPDSCHに対する設定TCI状態が、そのPDSCHに適用される。PDSCHに対し、followUnifiedTCIStateが設定されない場合、非UE個別PDSCHが指示TCI状態に従うかどうかが、そのPDSCHのスケジューリングに用いられたCORESETに対し、followUnifiedTCIStateが設定されたか否かに応じて決定されてもよい。
[PDSCH]
- The indicated TCI state always applies for all UE-dedicated PDSCHs.
For a non-UE-dedicated PDSCH (PDSCH scheduled by a DCI in the CSS), if followUnifiedTCIState is set (for the CORESET of the PDCCH that schedules the PDSCH), the indicated TCI state may apply. Otherwise, the configured TCI state for the PDSCH applies to the PDSCH. If followUnifiedTCIState is not set for a PDSCH, whether a non-UE-dedicated PDSCH follows the indicated TCI state may depend on whether followUnifiedTCIState is set for the CORESET used to schedule the PDSCH.
[CSI-RS]
・CSI取得(acquisition)又はビーム管理(management)のためのA-CSI-RSに対し、(そのA-CSI-RSをトリガするPDCCHのCORESETに対して)followUnifiedTCIStateが設定された場合、指示TCI状態が適用される。その他のCSI-RSに対し、そのCSI-RSに対する設定TCI状態("configured TCI state")が適用される。
[CSI-RS]
For an A-CSI-RS for CSI acquisition or beam management, if followUnifiedTCIState is set (for the CORESET of the PDCCH that triggers that A-CSI-RS), the indicated TCI state applies. For other CSI-RSs, the configured TCI state for that CSI-RS applies.
[PUCCH]
・全ての個別(dedicated)PUCCHリソースに対し、常に指示TCI状態が適用される。
[PUCCH]
- For all dedicated PUCCH resources, the indicated TCI state always applies.
[PUSCH]
・動的(dynamic)/設定(configured)グラントPUSCHに対し、常に指示TCI状態が適用される。
[PUSH]
For dynamic/configured grant PUSCH, the indicated TCI state is always applied.
[SRS]
・ビーム管理の用途のA-SRSと、コードブック(CB)/ノンコードブック(NCB)/アンテナスイッチングの用途のA/SP/P-SRSのための、SRSリソースセットに対し、統一TCI状態に従うことが設定された場合、指示TCI状態が適用される。その他のSRSに対し、そのSRSリソースセット内の設定TCI状態が適用される。
[SRS]
If the SRS resource set for the A-SRS for beam management and the A/SP/P-SRS for codebook (CB)/non-codebook (NCB)/antenna switching is configured to follow the unified TCI state, the indicated TCI state is applied. For other SRS, the configured TCI state in the SRS resource set is applied.
(beam application time(BAT))
 Rel.17におけるDCIベースビーム指示(DCI-based beam indication)において、ビーム/統一TCI状態の指示の適用時間(ビーム適用時間(BAT)の条件)に関し、以下の検討1及び2が検討されている。
(beam application time (BAT))
Regarding the DCI-based beam indication in Rel. 17, the following studies 1 and 2 are being considered regarding the application time of the indication of the beam/unified TCI state (beam application time (BAT) conditions). .
[検討1]
 指示されたTCIを適用する最初のスロットは、ジョイント又はセパレートDL/ULビーム指示に対する肯定応答(acknowledgement(ACK))の最後のシンボルの少なくともYシンボル後であることが検討されている。指示されたTCIを適用する最初のスロットは、ジョイント又はセパレートDL/ULビーム指示に対するACK/否定応答(negative acknowledgement(NACK))の最後のシンボルの少なくともYシンボル後であることが検討されている。Yシンボルは、UEによって報告されたUE能力に基づき、基地局によって設定されてもよい。そのUE能力は、シンボルの単位で報告されてもよい。
[Study 1]
It is contemplated that the first slot to apply the indicated TCI is at least Y symbols after the last symbol of the acknowledgement (ACK) for the joint or separate DL/UL beam indication. It is contemplated that the first slot to apply the indicated TCI is at least Y symbols after the last symbol of the ACK/negative acknowledgement (NACK) for the joint or separate DL/UL beam indication. Y symbols may be set by the base station based on the UE capabilities reported by the UE. The UE capabilities may be reported on a symbol-by-symbol basis.
 図3の例においてACKは、ビーム指示DCIによってスケジュールされたPDSCHに対するACKであってもよい。この例においてPDSCHが送信されなくてもよい。この場合のACKは、ビーム指示DCIに対するACKであってもよい。 In the example of FIG. 3, the ACK may be an ACK for a PDSCH scheduled by the beam instruction DCI. In this example, the PDSCH may not be transmitted. In this case, the ACK may be an ACK for the beam instruction DCI.
 Rel.17のDCIベースビーム指示に対し、BWP/CCごとに少なくとも1つのYシンボルがUEに設定されることが検討されている。 For DCI-based beam direction in Rel. 17, it is considered that at least one Y symbol per BWP/CC will be configured in the UE.
 複数CCの間においてSCSが異なる場合、Yシンボルの値も異なるため、複数CCの間において、適用時間が異なる可能性がある。 If the SCS is different between multiple CCs, the value of the Y symbol will also be different, so the application time may differ between multiple CCs.
[検討2]
 CAのケースに対し、そのビーム指示の適用タイミング/BATは、以下の選択肢1から3のいずれかに従ってもよい。
[選択肢1]その最初のスロット及びYシンボルの両方は、そのビーム指示を適用する1つ以上のキャリアの内、最小SCSを伴うキャリア上において決定される。
[選択肢2]その最初のスロット及びYシンボルの両方は、そのビーム指示を適用する1つ以上のキャリアと、そのACKを運ぶULキャリアと、の内、最小SCSを伴うキャリア上において決定される。
[選択肢3]その最初のスロット及びYシンボルの両方は、そのACKを運ぶULキャリア上において決定される。
[Study 2]
For the CA case, the application timing/BAT of the beam instruction may follow any of the following options 1 to 3.
[Option 1] Both the first slot and the Y symbol are determined on the carrier with the smallest SCS among the one or more carriers to which the beam direction applies.
[Option 2] Both the first slot and the Y symbol are determined on the carrier with the smallest SCS among the one or more carriers to which the beam direction applies and the UL carrier carrying the ACK.
[Option 3] Both the first slot and the Y symbol are determined on the UL carrier that carries the ACK.
 Rel.17のCC同時ビーム更新機能として、CAにおいて複数CC間においてビームを共通化することが検討されている。検討2によれば、複数CCの間において適用時間が共通になる。 As part of the CC simultaneous beam update function in Rel. 17, it is being considered to standardize beams between multiple CCs in CA. According to Study 2, the application time will be the same between multiple CCs.
 CAに対するビーム指示の適用時間(Yシンボル)は、ビーム指示が適用されるキャリアの内、最小SCSを伴うキャリア上において決定されてもよい。Rel.17のMAC CEベースビーム指示(単一のTCIコードポイントのみがアクティベートされた場合)は、MAC CEアクティベーションのRel.16適用タイムラインに従ってもよい。 The application time (Y symbols) of beam direction for CA may be determined on the carrier with the smallest SCS among the carriers to which beam direction applies. Rel. 17 MAC CE based beam direction (when only a single TCI codepoint is activated) may follow the Rel. 16 application timeline for MAC CE activation.
 これらの検討に基づき、以下の動作が仕様に規定されることが検討されている。
[動作]
 UEが、TCI状態指示を伝えるDCIに対応するHARQ-ACK情報を伴うPUCCHの最後のシンボルを送信する場合、Rel.17TCI状態を伴う指示されたTCI状態は、そのPUCCHの最後のシンボルから少なくともYシンボル後である最初のスロットから適用を開始されてもよい。Yは、上位レイヤパラメータ(例えば、BeamAppTime_r17[シンボル])であってもよい。その最初のスロットとYシンボルとの両方は、ビーム指示が適用されるキャリアの内、最小SCSを伴うキャリア上において決定されてもよい。UEは、ある時点において、DL及びUL用のRel17TCI状態を伴う指示された1つのTCI状態を想定してもよいし、UL用のRel17TCI状態を伴う(DLとは別に)指示された1つのTCI状態を想定してもよい。
Based on these considerations, the following behavior is being considered for inclusion in the specifications:
[Action]
When the UE transmits the last symbol of the PUCCH with HARQ-ACK information corresponding to the DCI carrying the TCI state indication, the indicated TCI state with Rel. 17 TCI state may start to apply from the first slot that is at least Y symbols after the last symbol of the PUCCH, where Y may be a higher layer parameter (e.g., BeamAppTime_r17[symbols]). Both the first slot and Y symbols may be determined on the carrier with the smallest SCS among the carriers for which the beam indication applies. The UE may assume one indicated TCI state with Rel17 TCI state for DL and UL, or one indicated TCI state with Rel17 TCI state for UL (separate from DL) at a given time.
 Y[シンボル]の代わりにX[ms]が用いられてもよい。 X [ms] may be used instead of Y [symbol].
 適用時間に関し、UEが以下のUE能力1及び2の少なくとも1つを報告することが検討されている。
[UE能力1]
 SCSごとの最小適用時間(ACKを運ぶPUCCHの最後のシンボルと、ビームが適用される最初のスロットと、の間のYシンボルの最小値)。
[UE能力2]
 ビーム指示PDCCH(DCI)の最後のシンボルと、ビームが適用される最初のスロットと、の間の最小時間ギャップ。ビーム指示PDCCH(DCI)の最後のシンボルと、ビームが適用される最初のスロットと、の間のギャップが、UE能力(最小時間ギャップ)を満たしてもよい。
Regarding application time, it is considered that the UE reports at least one of the following UE capabilities 1 and 2.
[UE Capability 1]
Minimum application time per SCS (minimum of Y symbols between the last symbol of the PUCCH carrying ACK and the first slot in which the beam is applied).
UE Capability 2
Minimum time gap between the last symbol of the beam instruction PDCCH (DCI) and the first slot where the beam is applied. The gap between the last symbol of the beam instruction PDCCH (DCI) and the first slot where the beam is applied may meet the UE capability (minimum time gap).
 UE能力2は、既存のUE能力(例えば、timeDurationForQCL)であってもよい。 UE capability 2 may be an existing UE capability (e.g., timeDurationForQCL).
 ビームの指示と、そのビームが適用されるチャネル/RSとの関係は、UE能力1及び2の少なくとも1つを満たしてもよい。 The relationship between the beam instruction and the channel/RS to which the beam is applied may satisfy at least one of UE capabilities 1 and 2.
 適用時間に関し、基地局によって設定されるパラメータ(例えば、BeamAppTime_r17)は、オプショナルフィールドになることが考えられる。 The parameters set by the base station regarding the application time (e.g., BeamAppTime_r17) may be optional fields.
(マルチTRP)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP)が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対してUL送信を行うことが検討されている。
(Multi-TRP)
In NR, one or more transmission/reception points (TRPs) (multi-TRPs) are considered to perform DL transmission to a UE using one or more panels (multi-panels). It is also considered that a UE performs UL transmission to one or more TRPs.
 なお、複数のTRPは、同じセル識別子(セルIdentifier(ID))に対応してもよいし、異なるセルIDに対応してもよい。当該セルIDは、物理セルID(例えば、PCI)でもよいし、仮想セルIDでもよい。 Note that multiple TRPs may correspond to the same cell identifier (cell identifier (ID)) or different cell IDs. The cell ID may be a physical cell ID (e.g., PCI) or a virtual cell ID.
 図4A-図4Dは、マルチTRPシナリオの一例を示す図である。これらの例において、各TRPは4つの異なるビームを送信可能であると想定するが、これに限られない。 Figures 4A-4D show examples of multi-TRP scenarios. In these examples, we assume that each TRP is capable of transmitting four different beams, but this is not limited to this example.
 図4Aは、マルチTRPのうち1つのTRP(本例ではTRP1)のみがUEに対して送信を行うケース(シングルモード、シングルTRPなどと呼ばれてもよい)の一例を示す。この場合、TRP1は、UEに制御信号(PDCCH)及びデータ信号(PDSCH)の両方を送信する。 Figure 4A shows an example of a case where only one TRP (TRP1 in this example) of the multi-TRP transmits to the UE (which may be called single mode, single TRP, etc.). In this case, TRP1 transmits both a control signal (PDCCH) and a data signal (PDSCH) to the UE.
 本開示において、シングルTRPモードは、マルチTRP(モード)が設定されない場合のモードを意味してもよい。 In this disclosure, single TRP mode may refer to the mode when multi-TRP (mode) is not set.
 図4Bは、マルチTRPのうち1つのTRP(本例ではTRP1)のみがUEに対して制御信号を送信し、当該マルチTRPがデータ信号を送信するケース(シングルマスタモードと呼ばれてもよい)の一例を示す。UEは、1つの下り制御情報(Downlink Control Information(DCI))に基づいて、当該マルチTRPから送信される各PDSCHを受信する。 Figure 4B shows an example of a case where only one TRP (TRP1 in this example) of the multi-TRP transmits a control signal to the UE, and the multi-TRP transmits a data signal (which may be called a single master mode). The UE receives each PDSCH transmitted from the multi-TRP based on one downlink control information (Downlink Control Information (DCI)).
 図4Cは、マルチTRPのそれぞれがUEに対して制御信号の一部を送信し、当該マルチTRPがデータ信号を送信するケース(マスタスレーブモードと呼ばれてもよい)の一例を示す。TRP1では制御信号(DCI)のパート1が送信され、TRP2では制御信号(DCI)のパート2が送信されてもよい。制御信号のパート2はパート1に依存してもよい。UEは、これらのDCIのパートに基づいて、当該マルチTRPから送信される各PDSCHを受信する。 Figure 4C shows an example of a case where each of the multi-TRPs transmits a part of a control signal to the UE, and the multi-TRP transmits a data signal (which may be called a master-slave mode). TRP1 may transmit part 1 of the control signal (DCI), and TRP2 may transmit part 2 of the control signal (DCI). Part 2 of the control signal may depend on part 1. The UE receives each PDSCH transmitted from the multi-TRP based on these parts of DCI.
 図4Dは、マルチTRPのそれぞれがUEに対して別々の制御信号を送信し、当該マルチTRPがデータ信号を送信するケース(マルチマスタモードと呼ばれてもよい)の一例を示す。TRP1では第1の制御信号(DCI)が送信され、TRP2では第2の制御信号(DCI)が送信されてもよい。UEは、これらのDCIに基づいて、当該マルチTRPから送信される各PDSCHを受信する。 Figure 4D shows an example of a case where each of the multi-TRPs transmits a separate control signal to the UE, and the multi-TRP transmits a data signal (which may be called a multi-master mode). A first control signal (DCI) may be transmitted from TRP1, and a second control signal (DCI) may be transmitted from TRP2. The UE receives each PDSCH transmitted from the multi-TRP based on these DCIs.
 図4BのようなマルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)を、1つのDCIを用いてスケジュールする場合、当該DCIは、シングルDCI(S-DCI、シングルPDCCH)と呼ばれてもよい。また、図4DのようなマルチTRPからの複数のPDSCHを、複数のDCIを用いてそれぞれスケジュールする場合、これらの複数のDCIは、マルチDCI(M-DCI、マルチPDCCH(multiple PDCCH))と呼ばれてもよい。 When multiple PDSCHs from a multi-TRP such as that shown in FIG. 4B (which may also be called multiple PDSCHs) are scheduled using one DCI, the DCI may be called a single DCI (S-DCI, single PDCCH). Also, when multiple PDSCHs from a multi-TRP such as that shown in FIG. 4D are scheduled using multiple DCIs, these multiple DCIs may be called multiple DCIs (M-DCI, multiple PDCCHs).
 マルチTRPの各TRPからは、それぞれ異なるトランスポートブロック(Transport Block(TB))/コードワード(Code Word(CW))/異なるレイヤが送信されてもよい。あるいは、マルチTRPの各TRPからは、同一のTB/CW/レイヤが送信されてもよい。 Each TRP in a multi-TRP may transmit a different Transport Block (TB)/Code Word (CW)/different layer. Alternatively, each TRP in a multi-TRP may transmit the same TB/CW/layer.
 マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が検討されている。NCJTにおいて、例えば、TRP1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1のPDSCHを送信する。また、TRP2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2のPDSCHを送信する。 Non-Coherent Joint Transmission (NCJT) is being considered as one form of multi-TRP transmission. In NCJT, for example, TRP1 modulates and maps a first codeword, and transmits a first PDSCH using a first number of layers (e.g., two layers) and a first precoding by layer mapping. TRP2 modulates and maps a second codeword, and transmits a second PDSCH using a second number of layers (e.g., two layers) and a second precoding by layer mapping.
 なお、NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、第1のTRPからの第1のPDSCHと、第2のTRPからの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。 Note that multiple PDSCHs (multi-PDSCHs) that are NCJTed may be defined as partially or completely overlapping with respect to at least one of the time and frequency domains. In other words, the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap with each other in at least one of the time and frequency resources.
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。 The first PDSCH and the second PDSCH may be assumed to be not quasi-co-located (QCL). Reception of multiple PDSCHs may be interpreted as simultaneous reception of PDSCHs that are not of a certain QCL type (e.g., QCL type D).
 マルチTRPに対するURLLCにおいて、マルチTRPにまたがるPDSCH(トランスポートブロック(TB)又はコードワード(CW))繰り返し(repetition)がサポートされることが検討されている。周波数ドメイン又はレイヤ(空間)ドメイン又は時間ドメイン上でマルチTRPにまたがる繰り返し方式(URLLCスキーム、例えば、スキーム1、2a、2b、3、4)がサポートされることが検討されている。スキーム1において、マルチTRPからのマルチPDSCHは、空間分割多重(space division multiplexing(SDM))される。スキーム2a、2bにおいて、マルチTRPからのPDSCHは、周波数分割多重(frequency division multiplexing(FDM))される。スキーム2aにおいては、マルチTRPに対して冗長バージョン(redundancy version(RV))は同じである。スキーム2bにおいては、マルチTRPに対してRVは同じであってもよいし、異なってもよい。スキーム3、4において、マルチTRPからのマルチPDSCHは、時間分割多重(time division multiplexing(TDM))される。スキーム3において、マルチTRPからのマルチPDSCHは、1つのスロット内で送信される。スキーム4において、マルチTRPからのマルチPDSCHは、異なるスロット内で送信される。 In URLLC for multi-TRP, it is considered that PDSCH (transport block (TB) or codeword (CW)) repetition across multi-TRP is supported. It is considered that repetition methods (URLLC schemes, e.g., schemes 1, 2a, 2b, 3, 4) across multi-TRP in the frequency domain, layer (spatial) domain, or time domain are supported. In scheme 1, multi-PDSCH from multi-TRP is space division multiplexed (SDM). In schemes 2a and 2b, PDSCH from multi-TRP is frequency division multiplexed (FDM). In scheme 2a, the redundancy version (RV) is the same for multi-TRP. In scheme 2b, the RV may be the same or different for multi-TRP. In schemes 3 and 4, multiple PDSCHs from multiple TRPs are time division multiplexed (TDM). In scheme 3, multiple PDSCHs from multiple TRPs are transmitted in one slot. In scheme 4, multiple PDSCHs from multiple TRPs are transmitted in different slots.
 このようなマルチTRPシナリオによれば、品質の良いチャネルを用いたより柔軟な送信制御が可能である。 Such a multi-TRP scenario allows for more flexible transmission control using channels with better quality.
 マルチTRP/パネルを用いるNCJTは、高ランクを用いる可能性がある。複数TRPの間の理想的(ideal)及び非理想的(non-ideal)のバックホール(backhaul)をサポートするために、シングルDCI(シングルPDCCH、例えば、図4B)及びマルチDCI(マルチPDCCH、例えば、図4D)の両方がサポートされてもよい。シングルDCI及びマルチDCIの両方に対し、TRPの最大数が2であってもよい。 NCJT using multiple TRPs/panels may use high rank. To support ideal and non-ideal backhaul between multiple TRPs, both single DCI (single PDCCH, e.g., FIG. 4B) and multiple DCI (multiple PDCCH, e.g., FIG. 4D) may be supported. For both single DCI and multiple DCI, the maximum number of TRPs may be 2.
 シングルPDCCH設計(主に理想バックホール用)に対し、TCIの拡張が検討されている。DCI内の各TCIコードポイントは1又は2のTCI状態に対応してもよい。TCIフィールドサイズはRel.15のものと同じであってもよい。 For single PDCCH design (mainly for ideal backhaul), TCI extension is being considered. Each TCI code point in the DCI may correspond to TCI state 1 or 2. The TCI field size may be the same as that of Rel. 15.
 Rel.15で規定されるPDCCH/CORESETについて、CORESETプールインデックス(CORESETPoolIndex)(TRP情報(TRP Info)と呼ばれてもよい)なしの1つのTCI状態が、1つのCORESETに設定される。 For PDCCH/CORESET as specified in Rel. 15, one TCI state without CORESETPoolIndex (also called TRP Info) is set for one CORESET.
 Rel.16で規定されるPDCCH/CORESETのエンハンスメントについて、マルチDCIに基づくマルチTRPでは、各CORESETに対して、CORESETプールインデックスが設定される。 With regard to the enhancement of PDCCH/CORESET defined in Rel. 16, in the case of multi-TRP based on multi-DCI, a CORESET pool index is set for each CORESET.
(分析)
 ところで、Rel.18以降では、マルチTRPが設定され、かつ、統一TCI状態を適用するケースが導入されることが検討されている。
(analysis)
Incidentally, in Rel. 18 and later, the introduction of a case in which multiple TRPs are set and a unified TCI state is applied is being considered.
 既存の仕様(Rel.16まで)のマルチTRP動作においては、チャネル(例えば、PDSCH)をスケジュールするDCI(スケジューリングDCIと呼ばれてもよい)によって、当該スケジュールされるチャネルに適用されるTCI状態の数が制御される。 In multi-TRP operation under existing specifications (up to Rel. 16), the DCI (which may be called a scheduling DCI) that schedules a channel (e.g., PDSCH) controls the number of TCI states that apply to that scheduled channel.
 具体的には、DCIで指示されるTCI状態が1つである場合、UEはシングルTRPを用いると判断し、DCIで指示されるTCI状態が2つである場合、UEはマルチTRPを用いると判断する。このように、UEは、DCIで指示されるTCI状態の数に基づき、シングルTRP及びマルチTRPの切り替えを行う。 Specifically, if the DCI indicates one TCI state, the UE determines to use a single TRP, and if the DCI indicates two TCI states, the UE determines to use a multi-TRP. In this way, the UE switches between single TRP and multi-TRP based on the number of TCI states indicated by the DCI.
 一方、Rel.18以降のマルチTRPが設定され、かつ、統一TCI状態を適用するケースでは、ビーム指示DCIで指示されるTCI状態は、当該DCIに関連する当該HARQ-ACKの送信後からBATの経過後から適用が開始されることが検討されている。 On the other hand, in cases where a multi-TRP is configured in Rel. 18 or later and a unified TCI state is applied, it is being considered that the TCI state indicated by the beam indication DCI will be applied starting after the BAT has elapsed since the transmission of the HARQ-ACK related to that DCI.
 このため、指示されるTCI状態(指示TCI状態)の数に基づいてシングルTRP及びマルチTRPの切り替えを行うと、既存の仕様のようなスケジューリングDCIによる切り替えができないと考えられる。 For this reason, if switching between single TRP and multi-TRP is performed based on the number of TCI states indicated (indicated TCI states), it is considered that switching by scheduling DCI as in the existing specifications would not be possible.
 具体的には、UEに対し、RRC/MAC CE/DCIによって最大でX個(Xは2以上の整数(例えば、2又は4))のTCI状態(指示TCI状態/統一TCI状態)が指示され、次いで、スケジューリングDCIによって当該X個のTCI状態から1つ又は複数(例えば、2つ)のTCIが選択/決定される。 Specifically, up to X TCI states (indicated TCI states/unified TCI states) (X is an integer equal to or greater than 2 (e.g., 2 or 4)) are indicated to the UE by the RRC/MAC CE/DCI, and then one or more (e.g., two) TCIs are selected/determined from the X TCI states by the scheduling DCI.
 このようケースが考えられるRel.18以降において、DCIの復号(decoding)が完了するまでは、UEは、いくつのTCI状態が指示されたかを認識することができない。 In Rel. 18 and later, where such cases are possible, the UE cannot know how many TCI states have been indicated until the DCI decoding is complete.
 図5A-図5Cは、指示TCI状態の適用の一例を示す図である。図5Aに示す例のように、UEに対し、4つの指示TCI状態(第1のTCI状態としてTCI#1、第2のTCI状態としてTCI#2、第3のTCI状態としてTCI#3、第4のTCI状態としてTCI#4)がRRC/MAC CE/DCIによって指示される。 Figures 5A-5C are diagrams showing an example of application of indicated TCI states. As shown in the example of Figure 5A, four indicated TCI states (TCI#1 as the first TCI state, TCI#2 as the second TCI state, TCI#3 as the third TCI state, and TCI#4 as the fourth TCI state) are indicated to the UE by the RRC/MAC CE/DCI.
 図5Bに示す例のように、スケジューリングDCI(DCIフォーマット1_1/1_2)に含まれる特定のフィールド(既存フィールド(例えば、TCIフィールドであってもよい)/新規フィールド)によって、シングルTRP及びマルチTRPの切り替えが行われる。図5Bに示す例では、当該フィールドのコードポイントとして「00」が示され、第1のTCI状態を適用することが指示される(つまり、シングルTRP動作が指示される)。 As shown in the example of FIG. 5B, switching between single-TRP and multi-TRP is performed by a specific field (existing field (e.g., which may be a TCI field)/new field) included in the scheduling DCI (DCI format 1_1/1_2). In the example shown in FIG. 5B, "00" is indicated as the code point of the field, indicating that the first TCI state is applied (i.e., single-TRP operation is indicated).
 図5Cには、UEが、スケジューリングDCI及びスケジュールされるPDSCHの受信と、当該PDSCHに対応するPUCCHの送信の一例が示される。当該DCIは、図5Bに示すように、第1のTCI状態を適用することを指示する。このとき、UEは、第1のTCI状態(指示TCI状態、ジョイント/DL TCI状態)をPDSCHに適用することを判断する。 Figure 5C shows an example of a UE receiving a scheduling DCI and a scheduled PDSCH, and transmitting a PUCCH corresponding to the PDSCH. The DCI indicates that the first TCI state should be applied, as shown in Figure 5B. At this time, the UE determines that the first TCI state (indicated TCI state, joint/DL TCI state) should be applied to the PDSCH.
 図5A-図5Cに示すようなTCI状態の適用は、スケジューリングDCIの復号が完了した後にPDSCHを受信する場合に可能である。そうでない場合(例えば、スケジューリングオフセットが特定の閾値より小さい場合)、UEは、チャネル/信号(この場合は、PDSCH)に適用する指示TCI状態を判断できない。 The application of the TCI state as shown in Figures 5A-5C is possible if the PDSCH is received after the decoding of the scheduling DCI is completed. If this is not the case (e.g., if the scheduling offset is smaller than a certain threshold), the UE cannot determine the indicated TCI state to apply to the channel/signal (in this case, the PDSCH).
 また、Rel.18以降では、UEにおいて、1つ又は複数の指示TCI状態を利用したDL信号のバッファを行うことが検討されている。この場合、UEにおいて、いくつの/どの指示TCI状態を用いるバッファを行うかについて検討が十分でない。 In addition, in Rel. 18 and later, it is being considered that the UE will buffer DL signals using one or more indicated TCI states. In this case, there has been insufficient consideration given to how many/which indicated TCI states the UE should use for buffering.
 このように、UEが適用するTCI状態について判断できないケースについて検討が十分でなければ、適切にTCI状態を適用することができず、通信品質の低下、スループットの低下など、を招くおそれがある。 As such, if sufficient consideration is not given to cases in which the UE cannot determine the TCI state to apply, the TCI state cannot be applied appropriately, which may result in deterioration of communication quality, decrease in throughput, etc.
 そこで、本発明者らは、統一TCI状態に関する動作を適切に行う方法を着想した。 The inventors therefore came up with a method for appropriately performing operations related to the unified TCI state.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Below, embodiments of the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to the embodiments may be applied independently or in combination.
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In this disclosure, "A/B" and "at least one of A and B" may be interpreted as interchangeable. Also, in this disclosure, "A/B/C" may mean "at least one of A, B, and C."
 本開示において、通知、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。 In this disclosure, terms such as notify, activate, deactivate, indicate, select, configure, update, and determine may be read as interchangeable. In this disclosure, terms such as support, control, capable of control, operate, and capable of operating may be read as interchangeable.
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、フィールド、情報要素(Information Element(IE))、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。 In this disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, higher layer parameters, fields, information elements (IEs), settings, etc. may be interchangeable. In this disclosure, Medium Access Control (MAC Control Element (CE)), update commands, activation/deactivation commands, etc. may be interchangeable.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報、その他のメッセージ(例えば、測位用プロトコル(例えば、NR Positioning Protocol A(NRPPa)/LTE Positioning Protocol(LPP))メッセージなどの、コアネットワークからのメッセージ)などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, the higher layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, other messages (e.g., messages from the core network such as positioning protocols (e.g., NR Positioning Protocol A (NRPPa)/LTE Positioning Protocol (LPP)) messages), or a combination of these.
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 In the present disclosure, the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc. The broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。 In the present disclosure, the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
 本開示において、マルチ(複数)TRP、マルチTRPシステム、マルチTRP送信、マルチPDSCH、は互いに読み替えられてもよい。 In this disclosure, multi (multiple) TRP, multi TRP system, multi TRP transmission, and multi PDSCH may be interpreted as interchangeable.
 本開示において、シングルDCI、シングルPDCCH、シングルDCIに基づくマルチTRP、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、TCIフィールドの少なくとも1つのコードポイントが2つのTCI状態にマップされること、特定のチャネル/CORESETに対して特定のインデックス(例えば、TRPインデックス、CORESETプールインデックス、又は、TRPに対応するインデックス)が設定されること、は互いに読み替えられてもよい。 In the present disclosure, a single DCI, a single PDCCH, multiple TRP based on a single DCI, activating two TCI states on at least one TCI code point, mapping at least one code point of a TCI field to two TCI states, and setting a specific index (e.g., a TRP index, a CORESET pool index, or an index corresponding to a TRP) for a specific channel/CORESET may be interpreted as interchangeable.
 本開示において、シングルTRP、シングルTRPを用いるチャネル/信号、1つのTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されないこと、複数のTCI状態/空間関係がRRC/DCIによって有効化されないこと、いずれのCORESETに対しても1のCORESETプールインデックス(CORESETPoolIndex)値が設定されず、且つ、TCIフィールドのいずれのコードポイントも2つのTCI状態にマップされないこと、は互いに読み替えられてもよい。 In this disclosure, a single TRP, a channel/signal using a single TRP, a channel using one TCI state/spatial relationship, multi-TRP not being enabled by RRC/DCI, multiple TCI states/spatial relationships not being enabled by RRC/DCI, a CORESETPoolIndex value of 1 not being set for any CORESET, and no code point in the TCI field being mapped to two TCI states may be read as interchangeable.
 本開示において、TRP#1(第1TRP)は、CORESETプールインデックス=0に対応してもよいし、TCIフィールドの1つのコードポイントに対応する2つのTCI状態のうちの1番目のTCI状態に対応してもよい。TRP#2(第2TRP)TRP#1(第1TRP)は、CORESETプールインデックス=1に対応してもよいし、TCIフィールドの1つのコードポイントに対応する2つのTCI状態のうちの2番目のTCI状態に対応してもよい。 In the present disclosure, TRP#1 (first TRP) may correspond to CORESET pool index = 0 or may correspond to the first of two TCI states corresponding to one code point in the TCI field. TRP#2 (second TRP) TRP#1 (first TRP) may correspond to CORESET pool index = 1 or may correspond to the second of two TCI states corresponding to one code point in the TCI field.
 本開示において、シングルDCI(sDCI)、シングルPDCCH、シングルDCIに基づくマルチTRPシステム、sDCIベースMTRP、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、は互いに読み替えられてもよい。 In this disclosure, single DCI (sDCI), single PDCCH, multi-TRP system based on single DCI, sDCI-based MTRP, and activation of two TCI states on at least one TCI codepoint may be read as interchangeable.
 本開示において、ビーム指示DCI、ビーム指示MAC CE、ビーム指示DCI/MAC CEは互いに読み替えられてもよい。言い換えれば、UEに対する指示TCI状態に関する指示は、DCI及びMAC CEの少なくとも1つを用いて行われてもよい。 In the present disclosure, beam instruction DCI, beam instruction MAC CE, and beam instruction DCI/MAC CE may be interpreted as interchangeable. In other words, an instruction regarding the instruction TCI state to the UE may be given using at least one of DCI and MAC CE.
 本開示において、チャネル、信号、チャネル/信号、は互いに読み替えられてもよい。本開示おいて、DLチャネル、DL信号、DL信号/チャネル、DL信号/チャネルの送信/受信、DL受信、DL送信、は互いに読み替えられてもよい。本開示おいて、ULチャネル、UL信号、UL信号/チャネル、UL信号/チャネルの送信/受信、UL受信、UL送信、は互いに読み替えられてもよい。 In the present disclosure, channel, signal, and channel/signal may be read as interchangeable. In the present disclosure, DL channel, DL signal, DL signal/channel, transmission/reception of DL signal/channel, DL reception, and DL transmission may be read as interchangeable. In the present disclosure, UL channel, UL signal, UL signal/channel, transmission/reception of UL signal/channel, UL reception, and UL transmission may be read as interchangeable.
 本開示において、各チャネル/信号/リソースにTCI状態/QCL想定を適用することは、各チャネル/信号/リソースの送受信にTCI状態/QCL想定を適用することを意味してもよい。 In this disclosure, applying TCI state/QCL assumptions to each channel/signal/resource may mean applying TCI state/QCL assumptions to transmission and reception of each channel/signal/resource.
 本開示において、第1のTRPに第1のTCI状態(1番目に指示されるTCI状態)が対応してもよい。本開示において、第2のTRPに第2のTCI状態(2番目に指示されるTCI状態)が対応してもよい。本開示において、第nのTRPに第nのTCI状態(n番目に指示されるTCI状態)が対応してもよい。 In the present disclosure, the first TRP may correspond to the first TCI state (the first TCI state indicated). In the present disclosure, the second TRP may correspond to the second TCI state (the second TCI state indicated). In the present disclosure, the nth TRP may correspond to the nth TCI state (the nth TCI state indicated).
 本開示において、第1のCORESETプールインデックスの値(例えば、0)、第1のTRPインデックスの値(例えば、1)、及び、第1のTCI状態(第1のDL/UL(ジョイント/セパレート)TCI状態)は互いに対応してもよい。本開示において、第2のCORESETプールインデックスの値(例えば、1)、第2のTRPインデックスの値(例えば、2)、及び、第2のTCI状態(第2のDL/UL(ジョイント/セパレート)TCI状態)は互いに対応してもよい。 In the present disclosure, the first CORESET pool index value (e.g., 0), the first TRP index value (e.g., 1), and the first TCI state (first DL/UL (joint/separate) TCI state) may correspond to each other. In the present disclosure, the second CORESET pool index value (e.g., 1), the second TRP index value (e.g., 2), and the second TCI state (second DL/UL (joint/separate) TCI state) may correspond to each other.
 なお、下記本開示の各実施形態においては、複数TRPを利用する送受信における複数のTCI状態の適用について、2つのTRPを対象とする方法(すなわち、N及びMの少なくとも一方が2である場合)について主に説明するが、TRPの数は3以上(複数)であってもよく、TRPの数に対応するよう各実施形態が適用されてもよい。言い換えれば、N及びMの少なくとも一方は、2より大きい数であってもよい。 Note that in each embodiment of the present disclosure below, the application of multiple TCI states in transmission and reception using multiple TRPs will be mainly described in terms of a method targeting two TRPs (i.e., when at least one of N and M is 2), but the number of TRPs may be three or more (multiple), and each embodiment may be applied to correspond to the number of TRPs. In other words, at least one of N and M may be a number greater than 2.
 本開示において、スケジュール、トリガ、アクティベート、は互いに読み替えられてもよい。 In this disclosure, schedule, trigger, and activate may be interpreted as interchangeable.
(無線通信方法)
 以下本開示の各実施形態は、任意のDLチャネル/信号(例えば、PDSCH/A-CSI-RS)の受信に適用されてもよい。本開示において、PDSCHは、DCIによって動的にスケジュールされるPDSCHであってもよいし、セミパーシステントにスケジュールされるPDSCH(SPS PDSCH)であってもよい。
(Wireless communication method)
Each embodiment of the present disclosure may be applied to reception of any DL channel/signal (e.g., PDSCH/A-CSI-RS). In the present disclosure, the PDSCH may be a PDSCH dynamically scheduled by DCI or a semi-persistently scheduled PDSCH (SPS PDSCH).
 以下本開示の各実施形態は、例えば、シングルDCIベースのマルチTRP用の統一TCI状態に適用されてもよい。 The following embodiments of the present disclosure may be applied, for example, to a unified TCI state for single DCI-based multi-TRP.
 DLチャネル/信号のスケジュール/アクティベート用のDCIフォーマット(例えば、DCIフォーマット1_1/1-2(DL DCIと呼ばれてもよい))に、特定のフィールド(新規DCIフィールド)が含まれてもよい。 A DCI format for scheduling/activating DL channels/signals (e.g., DCI format 1_1/1-2 (which may be referred to as DL DCI)) may include specific fields (new DCI fields).
 当該特定のフィールドは、スケジュール/アクティベートされるDLチャネル/信号に、1つ又は複数(例えば、両方/2つ)の指示(indicated)TCI状態(ジョイント/DL TCI状態)を適用することを指示するフィールドであってもよい。言い換えれば、当該特定のフィールドは、適用する指示TCI状態の数/順番を示すフィールドであってもよい。 The particular field may be a field indicating that one or more (e.g., both/two) indicated TCI states (joint/DL TCI states) are to be applied to the DL channel/signal being scheduled/activated. In other words, the particular field may be a field indicating the number/order of the indicated TCI states to be applied.
 当該特定のフィールドは、特定のビット数(例えば、2ビット)で表されてもよい。 The particular field may be represented by a particular number of bits (e.g., 2 bits).
 本開示において、当該特定のフィールドは、TCI選択フィールドと呼ばれてもよいが、名称はこれに限られない。 In this disclosure, this particular field may be referred to as a TCI selection field, but the name is not limited to this.
 DL DCIの受信と、対応するDLチャネル/信号の受信と、の間のオフセット(以下では、スケジューリングオフセット、トリガリングオフセットなどと読み替えられてもよい)が特定の閾値より小さくてもよい。このとき、UEは、指示TCI状態(ジョイント/DL TCI状態)を利用する受信信号をバッファしてもよい。 The offset (hereinafter, this may be read as a scheduling offset, a triggering offset, etc.) between the reception of the DL DCI and the reception of the corresponding DL channel/signal may be smaller than a certain threshold. In this case, the UE may buffer the received signal using the indicated TCI state (joint/DL TCI state).
 第1のDCIフォーマット(例えば、DCIフォーマット1_0)によってDLチャネル/信号がスケジュールされる場合、もしsingle frequency network(SFN)スキーム(例えば、PDSCH用SFNスキーム(RRCパラメータsfnSchemePdsch))が設定される場合には、DLチャネル/信号に複数(例えば、両方/2つ)の指示TCI状態(ジョイント/DL TCI状態)が適用されてもよい。そうでない場合には、DLチャネル/信号に1つ(例えば、第1)の指示TCI状態(ジョイント/DL TCI状態)が適用されてもよい。 When a DL channel/signal is scheduled by a first DCI format (e.g., DCI format 1_0), if a single frequency network (SFN) scheme (e.g., SFN scheme for PDSCH (RRC parameter sfnSchemePdsch)) is configured, multiple (e.g., both/two) indicated TCI states (joint/DL TCI state) may be applied to the DL channel/signal. Otherwise, one (e.g., first) indicated TCI state (joint/DL TCI state) may be applied to the DL channel/signal.
 特定のフィールドが含まれない第2のDCIフォーマット(例えば、DCIフォーマット1_1/1_2)によってDLチャネル/信号がスケジュールされる場合、DLチャネル/信号に複数(例えば、両方/2つ)の指示TCI状態(ジョイント/DL TCI状態)が適用されてもよい。 If a DL channel/signal is scheduled by a second DCI format (e.g., DCI format 1_1/1_2) that does not include a specific field, multiple (e.g., both/two) indicated TCI states (joint/DL TCI states) may be applied to the DL channel/signal.
 図6A及び図6Bは、指示TCI状態の適用の他の例を示す図である。図6Aに示す例では、UEに対し、2つの指示TCI状態(第1のTCI状態としてTCI状態#1、第2のTCI状態としてTCI状態#2)が指示される。 FIGS. 6A and 6B are diagrams showing other examples of application of indicated TCI states. In the example shown in FIG. 6A, two indicated TCI states (TCI state #1 as the first TCI state and TCI state #2 as the second TCI state) are indicated to the UE.
 図6Aに示す例では、DL DCIに、適用する指示TCI状態の数/順番を示すフィールド(TCI選択フィールド)が含まれる。当該フィールドのコードポイント「00」は、第1の指示TCI状態を適用することを示す。当該フィールドのコードポイント「01」は、第2の指示TCI状態を適用することを示す。当該フィールドのコードポイント「10」は、第1の指示TCI状態及び第2の指示TCI状態を、第1の指示TCI状態、第2の指示TCI状態の順に適用することを示す。当該フィールドのコードポイント「11」は、第1の指示TCI状態及び第2の指示TCI状態を、第2の指示TCI状態、第1の指示TCI状態の順に適用することを示す。 In the example shown in FIG. 6A, the DL DCI includes a field (TCI selection field) indicating the number/order of the indicated TCI states to be applied. A code point of "00" in this field indicates that the first indicated TCI state is applied. A code point of "01" in this field indicates that the second indicated TCI state is applied. A code point of "10" in this field indicates that the first indicated TCI state and the second indicated TCI state are applied in the order of the first indicated TCI state and the second indicated TCI state. A code point of "11" in this field indicates that the first indicated TCI state and the second indicated TCI state are applied in the order of the second indicated TCI state and the first indicated TCI state.
 図6Bは、DL DCIによってPDSCHがスケジュールされる例を示している。当該DCIには、コードポイント「00」を示すTCI選択フィールドが含まれる。このため、UEは、PDSCHの受信に、TCI状態#1を適用する(図6C参照)。 Figure 6B shows an example where PDSCH is scheduled by DL DCI. The DCI includes a TCI selection field indicating codepoint "00". Therefore, the UE applies TCI state #1 to receive PDSCH (see Figure 6C).
 スケジューリングDL DCIの受信と、スケジュールされるDLチャネル/信号の受信と、の間のオフセットが、特定の閾値より大きい(又は、以上)である場合、特定のDCIフィールド(例えば、TCI選択フィールド)が、指示TCI状態を適用されるチャネル/信号を示してもよい。この場合の動作については、以下の動作1及び動作2の少なくとも一方であってもよい。 If the offset between the reception of the Scheduling DL DCI and the reception of the scheduled DL channel/signal is greater than (or equal to) a certain threshold, a certain DCI field (e.g., TCI selection field) may indicate the channel/signal to which the indicated TCI state is applied. The operation in this case may be at least one of the following operation 1 and operation 2.
 当該特定の閾値は、例えば、既存の(Rel.15/16までに規定される)閾値、Rel.17/18以降に規定されるRRCパラメータ/UE能力情報に基づく値、の少なくとも一方であってもよい。 The particular threshold may be, for example, at least one of the existing thresholds (defined up to Rel. 15/16) and values based on RRC parameters/UE capability information defined in Rel. 17/18 and later.
 当該既存の閾値は、例えば、第2の周波数レンジ(例えば、FR2)における、Rel.15で規定されるUE能力情報に基づく値であってもよい。 The existing threshold may be, for example, a value based on UE capability information defined in Rel. 15 in a second frequency range (e.g., FR2).
 第1の周波数レンジ(例えば、FR1)においては、当該特定のDCIフィールドは常にDCIに含まれてもよい。 In a first frequency range (e.g., FR1), the particular DCI field may always be included in the DCI.
《動作1》
 特定のフィールド(例えば、TCI選択フィールド)は、特定のRRCパラメータが設定された場合に、DL DCIに含まれてもよい。
<<Action 1>>
Certain fields (eg, the TCI selection field) may be included in the DL DCI if certain RRC parameters are configured.
 DL DCI(例えば、DCIフォーマット1_1/1_2)に含まれる特定のフィールドのコードポイントが第1の値(例えば、「00」)を指示するとき、UEは、当該DCIによってスケジュールされる、複数(例えば、全て)のDLチャネル/信号(例えば、複数(全ての)PDSCH送信機会のPDSCH DMRSポート)に、特定の指示TCI状態(例えば、第1の指示(ジョイント/DL)TCI状態)を適用してもよい。 When the code point of a particular field included in a DL DCI (e.g., DCI format 1_1/1_2) indicates a first value (e.g., "00"), the UE may apply a particular indication TCI state (e.g., a first indication (joint/DL) TCI state) to multiple (e.g., all) DL channels/signals (e.g., PDSCH DMRS ports of multiple (all) PDSCH transmission opportunities) scheduled by the DCI.
 DL DCI(例えば、DCIフォーマット1_1/1_2)に含まれる特定のフィールドのコードポイントが第2の値(例えば、「01」)を指示するとき、UEは、当該DCIによってスケジュールされる、複数(例えば、全て)のDLチャネル/信号(例えば、複数(全ての)PDSCH送信機会のPDSCH DMRSポート)に、特定の指示TCI状態(例えば、第2の指示(ジョイント/DL)TCI状態)を適用してもよい。 When the code point of a particular field included in a DL DCI (e.g., DCI format 1_1/1_2) indicates a second value (e.g., "01"), the UE may apply a particular indication TCI state (e.g., a second indication (joint/DL) TCI state) to multiple (e.g., all) DL channels/signals (e.g., PDSCH DMRS ports of multiple (all) PDSCH transmission opportunities) scheduled by the DCI.
 DL DCI(例えば、DCIフォーマット1_1/1_2)に含まれる特定のフィールドのコードポイントが第3の値(例えば、「10」)を指示するとき、UEは、当該DCIによってスケジュールされるDLチャネル/信号の受信に、複数の指示TCI状態(例えば、第1の指示(ジョイント/DL)TCI状態及び第2の指示(ジョイント/DL)TCI状態の両方)を適用してもよい。 When the code point of a specific field included in a DL DCI (e.g., DCI format 1_1/1_2) indicates a third value (e.g., "10"), the UE may apply multiple indication TCI states (e.g., both the first indication (joint/DL) TCI state and the second indication (joint/DL) TCI state) to reception of a DL channel/signal scheduled by the DCI.
 例えば、DL DCI(例えば、DCIフォーマット1_1/1_2)に含まれる特定のフィールドのコードポイントが第3の値(例えば、「10」)を指示するとき、複数の指示TCI状態は、第1の順番(例えば、第1の指示TCI状態、第2の指示TCI状態の順)で適用されてもよい。 For example, when a code point of a particular field included in a DL DCI (e.g., DCI format 1_1/1_2) indicates a third value (e.g., "10"), the multiple indicated TCI states may be applied in a first order (e.g., the first indicated TCI state, then the second indicated TCI state).
 DL DCI(例えば、DCIフォーマット1_1/1_2)に含まれる特定のフィールドのコードポイントが第4の値(例えば、「11」)を指示するとき、UEは、特定の方法を用いて、指示TCI状態の適用を判断してもよい。 When the code point of a specific field included in the DL DCI (e.g., DCI format 1_1/1_2) indicates a fourth value (e.g., "11"), the UE may use a specific method to determine the application of the indicated TCI state.
 例えば、DL DCI(例えば、DCIフォーマット1_1/1_2)に含まれる特定のフィールドのコードポイントが第4の値(例えば、「11」)を指示するとき、UEは、当該DCIによってスケジュールされるDLチャネル/信号の受信に、複数の指示TCI状態(例えば、第1の指示(ジョイント/DL)TCI状態及び第2の指示(ジョイント/DL)TCI状態の両方)を適用してもよい。 For example, when the code point of a specific field included in a DL DCI (e.g., DCI format 1_1/1_2) indicates a fourth value (e.g., "11"), the UE may apply multiple indication TCI states (e.g., both the first indication (joint/DL) TCI state and the second indication (joint/DL) TCI state) to reception of a DL channel/signal scheduled by the DCI.
 例えば、DL DCI(例えば、DCIフォーマット1_1/1_2)に含まれる特定のフィールドのコードポイントが第4の値(例えば、「11」)を指示するとき、複数の指示TCI状態は、第2の順番(例えば、第2の指示TCI状態、第1の指示TCI状態の順)で適用されてもよい。 For example, when the code point of a particular field included in a DL DCI (e.g., DCI format 1_1/1_2) indicates a fourth value (e.g., "11"), the multiple indicated TCI states may be applied in a second order (e.g., the second indicated TCI state, then the first indicated TCI state).
 上記動作1は、特定の条件において適用されてもよい。特定の条件は、例えば、(もし適用可能であれば(if applicable))少なくともスケジューリングDL DCIの受信と、スケジュールされるDLチャネル/信号の受信と、の間のオフセットが、特定の閾値以上である場合に適用されてもよい。 The above operation 1 may be applied under a certain condition. The certain condition may be applied, for example, if (if applicable) the offset between at least the reception of the scheduling DL DCI and the reception of the scheduled DL channel/signal is equal to or greater than a certain threshold.
《動作2》
 特定のフィールド(例えば、TCI選択フィールド)が含まれないDL DCIによって、DLチャネル/信号がスケジュールされてもよい。UEは、1つ又は複数の特定の指示TCI状態をDLチャネル/信号に適用してもよい。
<<Action 2>>
A DL channel/signal may be scheduled by a DL DCI that does not include a specific field (e.g., a TCI selection field). The UE may apply one or more specific indication TCI states to the DL channel/signal.
 この場合、UEに対し、上位レイヤシグナリング(RRC/MAC CE)を用いて、1つ又は複数の指示TCI状態を適用することが設定されてもよい(選択肢0-1)。例えば、UEは、特定のRRCパラメータを用いて、第1の指示TCI状態、第2の指示TCI状態、及び、その両方、のいずれかを、DLチャネル/信号の受信に適用するかを設定されてもよい。 In this case, the UE may be configured using higher layer signaling (RRC/MAC CE) to apply one or more indicated TCI states (options 0-1). For example, the UE may be configured using specific RRC parameters to apply either a first indicated TCI state, a second indicated TCI state, or both to receive DL channels/signals.
 また、この場合、UEは、DLチャネル/信号の受信に第1(又は、第2)の指示TCI状態を適用すると判断してもよい(選択肢0-2)。 In this case, the UE may also decide to apply the first (or second) indicated TCI state to the reception of the DL channel/signal (options 0-2).
 また、この場合、UEは、DLチャネル/信号の受信に複数の指示TCI状態(例えば、第1の指示TCI状態及び第2の指示TCI状態の両方)を適用すると判断してもよい(選択肢0-3)。 In this case, the UE may also decide to apply multiple indicated TCI states (e.g., both the first indicated TCI state and the second indicated TCI state) to reception of the DL channel/signal (options 0-3).
 また、この場合、UEは、DLチャネル/信号をスケジュールしたDL DCIに対応するPDCCHの指示TCI状態と同じ指示TCI状態を、当該DLチャネル/信号に適用すると判断してもよい(選択肢0-4)。 In this case, the UE may also decide to apply to the DL channel/signal the same indicated TCI state as the indicated TCI state of the PDCCH corresponding to the DL DCI that scheduled the DL channel/signal (options 0-4).
 また、この場合、UEは、1つ又は複数のTRP用に指示TCI状態を適用してもよい。当該適用は、既存のTCIフィールドを用いて決定されてもよい(選択肢0-5)。 In this case, the UE may also apply the indicated TCI state for one or more TRPs. This may be determined using existing TCI fields (options 0-5).
 上記動作2は、特定の条件において適用されてもよい。特定の条件は、例えば、(もし適用可能であれば(if applicable))少なくともスケジューリングDL DCIの受信と、スケジュールされるDLチャネル/信号の受信と、の間のオフセットが、特定の閾値(例えば、「timeDurationForQCL」)以上である場合に適用されてもよい。 The above operation 2 may be applied under a certain condition. The certain condition may be applied, for example, if (if applicable) at least the offset between the reception of the Scheduling DL DCI and the reception of the scheduled DL channel/signal is greater than or equal to a certain threshold (e.g., "timeDurationForQCL").
<第1の実施形態>
 第1の実施形態は、スケジューリングオフセットが特定の閾値より小さい場合の指示TCI状態の適用に関する。
First Embodiment
The first embodiment relates to the application of an indicated TCI state when the scheduling offset is less than a certain threshold.
 UEは、DL信号のバッファ数に関するUE能力情報、及び、当該バッファ数に関する設定の少なくとも1つに基づいて、当該DL信号に適用する1つ又は複数の指示TCI状態の適用を判断してもよい。本開示において、DL信号に指示TCI状態を適用することは、指示TCI状態を適用/利用して、DL信号の受信処理(例えば、受信/復調/復号)を行うことを意味してもよい。 The UE may determine the application of one or more indicated TCI states to the DL signal based on at least one of the UE capability information regarding the number of buffers for the DL signal and the setting regarding the number of buffers. In the present disclosure, applying an indicated TCI state to a DL signal may mean applying/utilizing the indicated TCI state to perform reception processing (e.g., reception/demodulation/decoding) of the DL signal.
 例えば、スケジューリングオフセットが特定の閾値より小さい場合について、(もし適用可能であれば(if applicable)、)UEが複数(例えば、2つ)の指示(ジョイント/DL)TCI状態を利用して受信信号をバッファできるか(例えば、常にバッファできるか)が報告されてもよい。 For example, if the scheduling offset is less than a certain threshold, it may be reported (if applicable) whether the UE can buffer (e.g. always buffer) the received signal using multiple (e.g. two) indicated (joint/DL) TCI states.
 当該報告は、例えば、UE能力情報(例えば、上記DL信号のバッファ数に関するUE能力情報)を利用して行われてもよい。 The report may be made, for example, using UE capability information (e.g., UE capability information regarding the number of buffers for the DL signal).
 第1の実施形態は、実施形態1-1と1-2に大別される。UE/ネットワーク(NW、例えば、基地局)は、実施形態1-1又は1-2に従ってもよいし、実施形態1-1及び1-2を組み合わせた方法に従ってもよい。 The first embodiment is broadly divided into embodiments 1-1 and 1-2. The UE/network (NW, for example, a base station) may follow either embodiment 1-1 or 1-2, or may follow a method that combines embodiments 1-1 and 1-2.
 下記実施形態1-1/1-2は、スケジューリングオフセットが特定の閾値より小さい場合に適用されてもよい。 The following embodiments 1-1/1-2 may be applied when the scheduling offset is smaller than a certain threshold.
《実施形態1-1》
 実施形態1-1は、特定のUE能力をサポートする場合に適用されてもよい。当該特定のUE能力は、例えば、上述したUEが複数(例えば、2つ)の指示(ジョイント/DL)TCI状態を利用して受信信号をバッファできるか(例えば、常にバッファできるか)についてのUE能力であってもよい。
<<Embodiment 1-1>>
The embodiment 1-1 may be applied to a case where a specific UE capability is supported. The specific UE capability may be, for example, a UE capability regarding whether the above-mentioned UE can buffer a received signal (for example, always buffer) using multiple (for example, two) indication (joint/DL) TCI states.
 実施形態1-1は、特定の上位レイヤシグナリング(例えば、RRCパラメータ/MAC CE(例えば、DL信号のバッファ数に関する設定))がUEに対して設定/通知された場合に適用されてもよい。 Embodiment 1-1 may be applied when specific higher layer signaling (e.g., RRC parameters/MAC CE (e.g., settings related to the number of buffers for DL signals)) is configured/notified to the UE.
 実施形態1-1において、UEは、複数(例えば、2つ)の指示TCI状態を利用して受信信号をバッファしてもよい。 In embodiment 1-1, the UE may buffer the received signal using multiple (e.g., two) indicated TCI states.
 特定のフィールド(例えば、TCI選択フィールド)が含まれるDL DCIを用いてDLチャネル/信号がスケジュールされてもよい。 DL channels/signals may be scheduled using DL DCI that includes a specific field (e.g., TCI selection field).
 当該特定のフィールドは、特定のRRCパラメータが設定された場合に、DL DCIに含まれてもよい。 The particular field may be included in the DL DCI when a particular RRC parameter is set.
 DL DCI(例えば、DCIフォーマット1_1/1_2)に含まれる特定のフィールドのコードポイントが第1の値(例えば、「00」)を指示するとき、UEは、当該DCIによってスケジュールされる、複数(例えば、全て)のDLチャネル/信号(例えば、複数(全ての)PDSCH送信機会のPDSCH DMRSポート)に、特定の指示TCI状態(例えば、第1の指示(ジョイント/DL)TCI状態)を適用してもよい。 When the code point of a particular field included in a DL DCI (e.g., DCI format 1_1/1_2) indicates a first value (e.g., "00"), the UE may apply a particular indication TCI state (e.g., a first indication (joint/DL) TCI state) to multiple (e.g., all) DL channels/signals (e.g., PDSCH DMRS ports of multiple (all) PDSCH transmission opportunities) scheduled by the DCI.
 DL DCI(例えば、DCIフォーマット1_1/1_2)に含まれる特定のフィールドのコードポイントが第2の値(例えば、「01」)を指示するとき、UEは、当該DCIによってスケジュールされる、複数(例えば、全て)のDLチャネル/信号(例えば、複数(全ての)PDSCH送信機会のPDSCH DMRSポート)に、特定の指示TCI状態(例えば、第2の指示(ジョイント/DL)TCI状態)を適用してもよい。 When the code point of a particular field included in a DL DCI (e.g., DCI format 1_1/1_2) indicates a second value (e.g., "01"), the UE may apply a particular indication TCI state (e.g., a second indication (joint/DL) TCI state) to multiple (e.g., all) DL channels/signals (e.g., PDSCH DMRS ports of multiple (all) PDSCH transmission opportunities) scheduled by the DCI.
 DL DCI(例えば、DCIフォーマット1_1/1_2)に含まれる特定のフィールドのコードポイントが第3の値(例えば、「10」)を指示するとき、UEは、当該DCIによってスケジュールされるDLチャネル/信号の受信に、複数の指示TCI状態(例えば、第1の指示(ジョイント/DL)TCI状態及び第2の指示(ジョイント/DL)TCI状態の両方)を適用してもよい。 When the code point of a specific field included in a DL DCI (e.g., DCI format 1_1/1_2) indicates a third value (e.g., "10"), the UE may apply multiple indication TCI states (e.g., both the first indication (joint/DL) TCI state and the second indication (joint/DL) TCI state) to reception of a DL channel/signal scheduled by the DCI.
 例えば、DL DCI(例えば、DCIフォーマット1_1/1_2)に含まれる特定のフィールドのコードポイントが第3の値(例えば、「10」)を指示するとき、複数の指示TCI状態は、第1の順番(例えば、第1の指示TCI状態、第2の指示TCI状態の順)で適用されてもよい。 For example, when a code point of a particular field included in a DL DCI (e.g., DCI format 1_1/1_2) indicates a third value (e.g., "10"), the multiple indicated TCI states may be applied in a first order (e.g., the first indicated TCI state, then the second indicated TCI state).
 DL DCI(例えば、DCIフォーマット1_1/1_2)に含まれる特定のフィールドのコードポイントが第4の値(例えば、「11」)を指示するとき、UEは、特定の方法を用いて、指示TCI状態の適用を判断してもよい。 When the code point of a specific field included in the DL DCI (e.g., DCI format 1_1/1_2) indicates a fourth value (e.g., "11"), the UE may use a specific method to determine the application of the indicated TCI state.
 例えば、DL DCI(例えば、DCIフォーマット1_1/1_2)に含まれる特定のフィールドのコードポイントが第4の値(例えば、「11」)を指示するとき、UEは、当該DCIによってスケジュールされるDLチャネル/信号の受信に、複数の指示TCI状態(例えば、第1の指示(ジョイント/DL)TCI状態及び第2の指示(ジョイント/DL)TCI状態の両方)を適用してもよい。 For example, when the code point of a specific field included in a DL DCI (e.g., DCI format 1_1/1_2) indicates a fourth value (e.g., "11"), the UE may apply multiple indication TCI states (e.g., both the first indication (joint/DL) TCI state and the second indication (joint/DL) TCI state) to reception of a DL channel/signal scheduled by the DCI.
 例えば、DL DCI(例えば、DCIフォーマット1_1/1_2)に含まれる特定のフィールドのコードポイントが第4の値(例えば、「11」)を指示するとき、複数の指示TCI状態は、第2の順番(例えば、第2の指示TCI状態、第1の指示TCI状態の順)で適用されてもよい。 For example, when the code point of a particular field included in a DL DCI (e.g., DCI format 1_1/1_2) indicates a fourth value (e.g., "11"), the multiple indicated TCI states may be applied in a second order (e.g., the second indicated TCI state, then the first indicated TCI state).
 また、特定のフィールド(例えば、TCI選択フィールド)が含まれないDL DCIを用いてDLチャネル/信号がスケジュールされてもよい。UEは、1つ又は複数の特定の指示TCI状態をDLチャネル/信号に適用してもよい。 Also, a DL channel/signal may be scheduled using a DL DCI that does not include a specific field (e.g., a TCI selection field). The UE may apply one or more specific indication TCI states to the DL channel/signal.
 この場合、UEに対し、上位レイヤシグナリング(RRC/MAC CE)を用いて、1つ又は複数の指示TCI状態を適用することが設定されてもよい(選択肢1-1-1)。例えば、UEは、特定のRRCパラメータを用いて、第1の指示TCI状態、第2の指示TCI状態、及び、その両方、のいずれかを、DLチャネル/信号の受信に適用するかを設定されてもよい。 In this case, the UE may be configured to apply one or more indicated TCI states using higher layer signaling (RRC/MAC CE) (option 1-1-1). For example, the UE may be configured using specific RRC parameters to apply either a first indicated TCI state, a second indicated TCI state, or both to receive DL channels/signals.
 また、この場合、UEは、DLチャネル/信号の受信に第1(又は、第2)の指示TCI状態を適用すると判断してもよい(選択肢1-1-2)。 In this case, the UE may also decide to apply the first (or second) indicated TCI state to receiving the DL channel/signal (option 1-1-2).
 また、この場合、UEは、DLチャネル/信号の受信に複数の指示TCI状態(例えば、第1の指示TCI状態及び第2の指示TCI状態の両方)を適用すると判断してもよい(選択肢1-1-3)。 In this case, the UE may also decide to apply multiple indicated TCI states (e.g., both the first indicated TCI state and the second indicated TCI state) to reception of the DL channel/signal (option 1-1-3).
 また、この場合、UEは、DLチャネル/信号をスケジュールしたDL DCIに対応するPDCCHの指示TCI状態と同じ指示TCI状態を、当該DLチャネル/信号に適用すると判断してもよい(選択肢1-1-4)。 In this case, the UE may also decide to apply to the DL channel/signal the same indicated TCI state as the indicated TCI state of the PDCCH corresponding to the DL DCI that scheduled the DL channel/signal (option 1-1-4).
 また、この場合、UEは、1つ又は複数のTRP用に指示TCI状態を適用してもよい。当該適用は、既存のTCIフィールドを用いて決定されてもよい(選択肢1-1-5)。 In this case, the UE may also apply the indicated TCI state for one or more TRPs. This application may be determined using an existing TCI field (option 1-1-5).
 DLチャネル/信号が、特定のDL DCI(例えば、DCIフォーマット1_0)によってスケジュールされる場合、もしSFNスキーム(例えば、PDSCH用SFNスキーム(例えば、RRCパラメータsfnSchemePdsch))が設定される場合には、当該DLチャネル/信号に複数(例えば、両方/2つ)の指示TCI状態(ジョイント/DL TCI状態)が適用されてもよい。そうでない場合には、DLチャネル/信号に1つ(例えば、第1)の指示TCI状態(ジョイント/DL TCI状態)が適用されてもよい。 When a DL channel/signal is scheduled by a specific DL DCI (e.g., DCI format 1_0), if an SFN scheme (e.g., SFN scheme for PDSCH (e.g., RRC parameter sfnSchemePdsch)) is configured, multiple (e.g., both/two) indicated TCI states (joint/DL TCI states) may apply to the DL channel/signal. Otherwise, one (e.g., first) indicated TCI state (joint/DL TCI state) may apply to the DL channel/signal.
 DLチャネル/信号が、特定のDL DCI(例えば、DCIフォーマット1_0)によってスケジュールされる場合、SFNスキーム(例えば、PDSCH用SFNスキーム(例えば、RRCパラメータsfnSchemePdsch))の設定の有無に関わらず、DLチャネル/信号に1つ(例えば、第1)の指示TCI状態(ジョイント/DL TCI状態)が適用されてもよい。 When a DL channel/signal is scheduled by a specific DL DCI (e.g., DCI format 1_0), one (e.g., the first) indicated TCI state (joint/DL TCI state) may be applied to the DL channel/signal, regardless of whether an SFN scheme (e.g., an SFN scheme for PDSCH (e.g., RRC parameter sfnSchemePdsch)) is configured or not.
 図7A-図7Dは、実施形態1-1に係る指示TCI状態の適用の一例を示す図である。 Figures 7A to 7D are diagrams showing an example of application of the indicated TCI state in embodiment 1-1.
 図7Aに示す例では、UEに対し、2つの指示TCI状態(第1のTCI状態としてTCI状態#1、第2のTCI状態としてTCI状態#2)が指示される。 In the example shown in FIG. 7A, two indicated TCI states (TCI state #1 as the first TCI state and TCI state #2 as the second TCI state) are indicated to the UE.
 図7Aに示す例では、DL DCIに、適用する指示TCI状態の数/順番を示すフィールド(TCI選択フィールド)が含まれる。当該フィールドのコードポイント「00」は、第1の指示TCI状態を適用することを示す。当該フィールドのコードポイント「01」は、第2の指示TCI状態を適用することを示す。当該フィールドのコードポイント「10」は、第1の指示TCI状態及び第2の指示TCI状態を、第1の指示TCI状態、第2の指示TCI状態の順に適用することを示す。当該フィールドのコードポイント「11」は、第1の指示TCI状態及び第2の指示TCI状態を、第2の指示TCI状態、第1の指示TCI状態の順に適用することを示す。 In the example shown in FIG. 7A, the DL DCI includes a field (TCI selection field) indicating the number/order of the indicated TCI states to be applied. A code point of "00" in this field indicates that the first indicated TCI state is applied. A code point of "01" in this field indicates that the second indicated TCI state is applied. A code point of "10" in this field indicates that the first indicated TCI state and the second indicated TCI state are applied in the order of the first indicated TCI state and the second indicated TCI state. A code point of "11" in this field indicates that the first indicated TCI state and the second indicated TCI state are applied in the order of the second indicated TCI state and the first indicated TCI state.
 図7Bは、DL DCIによってPDSCHがスケジュールされる例を示している。当該DCIには、コードポイント「10」を示すTCI選択フィールドが含まれる。 Figure 7B shows an example where a PDSCH is scheduled by a DL DCI. The DCI includes a TCI selection field that indicates codepoint "10".
 図7Cには、UEが、スケジューリングDCI及びスケジュールされるPDSCHの受信と、当該PDSCHに対応するPUCCHの送信の一例が示される。当該DCIは、図7Bに示すように、第1の指示TCI状態及び第2の指示TCI状態を適用することを指示する。また、当該DCIによってスケジュールされるPDSCHのスケジューリングオフセットは、特定の閾値より大きい。 Figure 7C shows an example of a UE receiving a scheduling DCI and a scheduled PDSCH, and transmitting a PUCCH corresponding to the PDSCH. The DCI indicates that a first indicated TCI state and a second indicated TCI state are to be applied, as shown in Figure 7B. Also, the scheduling offset of the PDSCH scheduled by the DCI is greater than a certain threshold.
 このとき、UEは、上記動作1又は動作2に従って指示TCI状態の適用を行ってもよい。例えば、UEは、第1の指示TCI状態及び第2の指示TCI状態を、PDSCHに適用することを判断してもよい。 At this time, the UE may apply the indicated TCI state according to the above-mentioned operation 1 or operation 2. For example, the UE may determine to apply the first indicated TCI state and the second indicated TCI state to the PDSCH.
 なお、図7Cに示した例では、PDSCHの受信に第1の指示TCI状態(TCI状態#1)及び第2の指示TCI状態(TCI状態#2)を適用する例を示したが、PDSCHの受信に第1の指示TCI状態及び第2のTCI状態のいずれかが適用されてもよい。 Note that in the example shown in FIG. 7C, the first command TCI state (TCI state #1) and the second command TCI state (TCI state #2) are applied to the reception of the PDSCH, but either the first command TCI state or the second TCI state may be applied to the reception of the PDSCH.
 図7Dには、UEが、スケジューリングDCI及びスケジュールされるPDSCHの受信と、当該PDSCHに対応するPUCCHの送信の一例が示される。当該DCIは、図7Bに示すように、第1の指示TCI状態及び第2の指示TCI状態を適用することを指示する。また、当該DCIによってスケジュールされるPDSCHのスケジューリングオフセットは、特定の閾値より小さい。このとき、UEは、複数の指示TCI状態を利用して受信信号をバッファできるため、スケジューリングオフセットが小さい場合でも、複数の指示TCI状態の適用ができる。 Figure 7D shows an example of a UE receiving a scheduling DCI and a scheduled PDSCH, and transmitting a PUCCH corresponding to the PDSCH. The DCI, as shown in Figure 7B, indicates that a first indicated TCI state and a second indicated TCI state are to be applied. Furthermore, the scheduling offset of the PDSCH scheduled by the DCI is smaller than a specific threshold. In this case, the UE can buffer the received signal using multiple indicated TCI states, so that multiple indicated TCI states can be applied even if the scheduling offset is small.
 このとき、UEは、上記実施形態1-1に記載される少なくとも1つの方法に従って指示TCI状態の適用を行ってもよい。例えば、UEは、第1の指示TCI状態及び第2のTCI状態を、PDSCHに適用することを判断してもよい。 At this time, the UE may apply the indicated TCI state according to at least one of the methods described in embodiment 1-1 above. For example, the UE may determine to apply the first indicated TCI state and the second TCI state to the PDSCH.
 なお、図7Dに示した例では、PDSCHの受信に第1の指示TCI状態(TCI状態#1)及び第2の指示TCI状態(TCI状態#2)を適用する例を示したが、PDSCHの受信に第1の指示TCI状態及び第2のTCI状態のいずれかが適用されてもよい。 Note that in the example shown in FIG. 7D, an example is shown in which the first command TCI state (TCI state #1) and the second command TCI state (TCI state #2) are applied to the reception of the PDSCH, but either the first command TCI state or the second TCI state may be applied to the reception of the PDSCH.
 実施形態1-1によれば、UEによって常に複数の指示TCI状態を利用して受信信号をバッファすることができ、DCIの復号後に、DCIに応じて1つ又は複数のTCI状態を利用したDLチャネル/信号の受信が可能となる。 According to embodiment 1-1, the UE can always buffer the received signal using multiple indicated TCI states, and after decoding the DCI, it becomes possible to receive DL channels/signals using one or multiple TCI states depending on the DCI.
《実施形態1-2》
 実施形態1-2は、特定のUE能力をサポートしない場合に適用されてもよい。当該特定のUE能力は、例えば、上述したUEが複数(例えば、2つ)の指示(ジョイント/DL)TCI状態を利用して受信信号をバッファできるか(例えば、常にバッファできるか)についてのUE能力であってもよい。
<<Embodiment 1-2>>
The first and second embodiments may be applied to a case where a specific UE capability is not supported. The specific UE capability may be, for example, a UE capability regarding whether the above-mentioned UE can buffer (for example, always buffer) a received signal using multiple (for example, two) indication (joint/DL) TCI states.
 実施形態1-2は、特定の上位レイヤシグナリング(例えば、RRCパラメータ/MAC CE)がUEに対して設定/通知されない場合に適用されてもよい。 Embodiments 1-2 may be applied when certain higher layer signaling (e.g., RRC parameters/MAC CE) is not configured/notified to the UE.
 実施形態1-2において、UEは、1つの指示TCI状態のみを利用して受信信号をバッファしてもよい。当該1つの指示TCI状態は、特定の指示TCI状態(例えば、最低(又は、最高)のインデックスを有する指示TCI状態)であってもよい。 In embodiment 1-2, the UE may buffer the received signal using only one indicated TCI state. The one indicated TCI state may be a specific indicated TCI state (e.g., an indicated TCI state having the lowest (or highest) index).
 特定のフィールド(例えば、TCI選択フィールド)が含まれるDL DCIを用いてDLチャネル/信号がスケジュールされてもよい。特定のフィールド(例えば、TCI選択フィールド)が含まれないDL DCIを用いてDLチャネル/信号がスケジュールされてもよい。 A DL channel/signal may be scheduled using a DL DCI that includes a specific field (e.g., a TCI selection field). A DL channel/signal may be scheduled using a DL DCI that does not include a specific field (e.g., a TCI selection field).
 UEに対し、上位レイヤシグナリング(RRC/MAC CE)を用いて、1つ又は複数の指示TCI状態を適用することが設定されてもよい(選択肢1-2-0)。例えば、UEは、特定のRRCパラメータ/設定を用いて、第1の指示TCI状態及び第2の指示TCI状態のいずれかを、DLチャネル/信号の受信に適用するかを設定されてもよい。 The UE may be configured to apply one or more indicated TCI states using higher layer signaling (RRC/MAC CE) (option 1-2-0). For example, the UE may be configured using specific RRC parameters/settings to apply either a first indicated TCI state or a second indicated TCI state to reception of DL channels/signals.
 UEに対し、上位レイヤシグナリング(RRC/MAC CE)を用いて、1つ又は複数の指示TCI状態を適用することが設定されてもよい(選択肢1-2-1)。例えば、UEは、特定のRRCパラメータ/設定を用いて、第1の指示TCI状態、第2の指示TCI状態、及び、その両方、のいずれかを、DLチャネル/信号の受信に適用するかを設定されてもよい。 The UE may be configured to apply one or more indicated TCI states using higher layer signaling (RRC/MAC CE) (option 1-2-1). For example, the UE may be configured using specific RRC parameters/settings to apply either a first indicated TCI state, a second indicated TCI state, or both to receive DL channels/signals.
 また、この場合、UEは、DLチャネル/信号の受信に第1(又は、第2)の指示TCI状態を適用すると判断してもよい(選択肢1-2-2)。また、この場合、UEは、DLチャネル/信号の受信に特定のDCIフィールドのコードポイント(例えば、最低(又は、最高)のTCI選択フィールドのコードポイント)に対応する指示TCI状態を適用すると判断してもよい(選択肢1-2-2’)。 In this case, the UE may also determine to apply the first (or second) indicated TCI state to the reception of the DL channel/signal (option 1-2-2). In this case, the UE may also determine to apply the indicated TCI state corresponding to a specific DCI field code point (e.g., the lowest (or highest) TCI selection field code point) to the reception of the DL channel/signal (option 1-2-2').
 また、この場合、UEは、DLチャネル/信号の受信に複数の指示TCI状態(例えば、第1の指示TCI状態及び第2の指示TCI状態の両方)を適用すると判断してもよい(選択肢1-2-3)。 In this case, the UE may also decide to apply multiple indicated TCI states (e.g., both the first indicated TCI state and the second indicated TCI state) to reception of the DL channel/signal (option 1-2-3).
 また、この場合、UEは、DLチャネル/信号をスケジュールしたDL DCIに対応するPDCCHの指示TCI状態と同じ指示TCI状態を、当該DLチャネル/信号に適用すると判断してもよい(選択肢1-2-4)。 In this case, the UE may also decide to apply to the DL channel/signal the same indicated TCI state as the indicated TCI state of the PDCCH corresponding to the DL DCI that scheduled the DL channel/signal (option 1-2-4).
 また、この場合、UEは、1つ又は複数のTRP用に指示TCI状態を適用してもよい。当該適用は、既存のTCIフィールドを用いて決定されてもよい(選択肢1-2-5)。 In this case, the UE may also apply the indicated TCI state for one or more TRPs. This application may be determined using an existing TCI field (option 1-2-5).
 図8A-図8Dは、実施形態1-2に係る指示TCI状態の適用の一例を示す図である。 Figures 8A to 8D are diagrams showing an example of application of the indicated TCI state in embodiments 1 and 2.
 図8A及び図8Bに示す例は、上述の図7A及び図7Bと同様であるため、説明は割愛する。 The examples shown in Figures 8A and 8B are similar to those in Figures 7A and 7B described above, so a detailed explanation will be omitted.
 図8Cには、UEが、スケジューリングDCI及びスケジュールされるPDSCHの受信と、当該PDSCHに対応するPUCCHの送信の一例が示される。当該DCIは、図8Bに示すように、第1の指示TCI状態及び第2の指示TCI状態を適用することを指示する。また、当該DCIによってスケジュールされるPDSCHのスケジューリングオフセットは、特定の閾値より大きい。 Figure 8C shows an example of a UE receiving a scheduling DCI and a scheduled PDSCH, and transmitting a PUCCH corresponding to the PDSCH. The DCI indicates that a first indicated TCI state and a second indicated TCI state are to be applied, as shown in Figure 8B. Also, the scheduling offset of the PDSCH scheduled by the DCI is greater than a certain threshold.
 このとき、UEは、上記動作1又は動作2に従って指示TCI状態の適用を行ってもよい。例えば、UEは、第1の指示TCI状態及び第2の指示TCI状態を、PDSCHに適用することを判断してもよい。 At this time, the UE may apply the indicated TCI state according to the above-mentioned operation 1 or operation 2. For example, the UE may determine to apply the first indicated TCI state and the second indicated TCI state to the PDSCH.
 なお、図8Cに示した例では、PDSCHの受信に第1の指示TCI状態(TCI状態#1)及び第2の指示TCI状態(TCI状態#2)を適用する例を示したが、PDSCHの受信に第1の指示TCI状態及び第2のTCI状態のいずれかが適用されてもよい。 Note that in the example shown in FIG. 8C, an example is shown in which the first indicated TCI state (TCI state #1) and the second indicated TCI state (TCI state #2) are applied to the reception of the PDSCH, but either the first indicated TCI state or the second TCI state may be applied to the reception of the PDSCH.
 図8Dには、UEが、スケジューリングDCI及びスケジュールされるPDSCHの受信と、当該PDSCHに対応するPUCCHの送信の一例が示される。当該DCIは、図8Bに示すように、第1の指示TCI状態及び第2の指示TCI状態を適用することを指示する。また、当該DCIによってスケジュールされるPDSCHのスケジューリングオフセットは、特定の閾値より小さい。このとき、UEは、1つの指示TCI状態のみを利用して受信信号をバッファできるため、スケジューリングオフセットが閾値より小さい場合には、1つの指示TCI状態のみの適用ができる。 Figure 8D shows an example of a UE receiving a scheduling DCI and a scheduled PDSCH, and transmitting a PUCCH corresponding to the PDSCH. The DCI, as shown in Figure 8B, indicates that a first indicated TCI state and a second indicated TCI state are to be applied. Furthermore, the scheduling offset of the PDSCH scheduled by the DCI is smaller than a specific threshold. In this case, the UE can buffer the received signal using only one indicated TCI state, so that when the scheduling offset is smaller than the threshold, only one indicated TCI state can be applied.
 このとき、UEは、上記実施形態1-2に記載される少なくとも1つの選択肢に従って指示TCI状態の適用を行ってもよい。例えば、UEは、第1の指示TCI状態(又は、第2のTCI状態)のみを、PDSCHに適用することを判断してもよい。言い換えれば、UEは、DCIに含まれる1の指示TCI状態及び第2の指示TCI状態の適用についての指示を無視する。 At this time, the UE may apply the indicated TCI state according to at least one of the options described in the above embodiment 1-2. For example, the UE may determine to apply only the first indicated TCI state (or the second TCI state) to the PDSCH. In other words, the UE ignores the instruction regarding the application of the indicated TCI state 1 and the second indicated TCI state included in the DCI.
 なお、実施形態1-2は、任意のDCIフォーマットの種類、特定のフィールドの有無に関わらず適用されてもよい。 Note that embodiments 1-2 may be applied to any type of DCI format, regardless of whether or not specific fields are present.
 実施形態1-2によれば、UEにおいてバッファする受信信号のTCI状態が1つとなるため、DCIフォーマットの種類及び特定のフィールドの有無に関わらず、UE動作を共通とすることができ、UEの実装を簡易にすることができる。 According to embodiment 1-2, the TCI state of the received signal buffered in the UE is one, so the UE operation can be made common regardless of the type of DCI format and the presence or absence of specific fields, making it possible to simplify the implementation of the UE.
<第1の実施形態の変形例>
 上記実施形態1-1及び1-2は、UE能力(情報)/RRC設定に基づいて切り替えて適用されてもよい。
<Modification of the first embodiment>
The above embodiments 1-1 and 1-2 may be switched and applied based on UE capabilities (information)/RRC settings.
 上記実施形態1-1及び1-2のいずれかが、仕様で規定されてもよい。例えば、複数(例えば、全て)のUEが、実施形態1-1(又は、実施形態1-2)に従って動作してもよい。 Either of the above embodiments 1-1 and 1-2 may be specified in the specifications. For example, multiple (e.g., all) UEs may operate according to embodiment 1-1 (or embodiment 1-2).
 また、当該UE能力をサポートするUEに対して、上記実施形態1-1及び1-2のいずれかの動作が、上位レイヤシグナリング(RRC/MAC CE)を用いて設定/通知されてもよい。 Furthermore, for a UE that supports the UE capability, any of the operations in the above embodiments 1-1 and 1-2 may be configured/notified using higher layer signaling (RRC/MAC CE).
 例えば、UEは、当該UE能力をサポートすることをNWに報告してもよい。次いで、NWは、実施形態1-1及び1-2のいずれかの動作を、RRCシグナリング/MAC CEを用いて設定/通知してもよい。 For example, the UE may report to the NW that it supports the UE capability. The NW may then configure/notify the operation of any of the embodiments 1-1 and 1-2 using RRC signaling/MAC CE.
 例えば、当該UE能力をサポートすることが報告された場合であっても、UEに対し、実施形態1-2に係る動作が設定/通知されてもよい。 For example, even if it is reported that the UE capability is supported, the UE may be configured/notified of the operation according to embodiment 1-2.
 上記第1の実施形態は、特定の周波数レンジ(例えば、例えば、FR1、FR2、FR3、FR4、FR5、FR2-1、FR2-2の少なくとも1つ)において適用されてもよい。 The first embodiment may be applied in a specific frequency range (e.g., at least one of FR1, FR2, FR3, FR4, FR5, FR2-1, and FR2-2).
 上記第1の実施形態は、PDSCHに適用する指示TCI状態について説明したが、A-CSI-RSの受信に対しても同様に適用可能である。 The above first embodiment describes the indicated TCI state applied to the PDSCH, but it can also be applied to the reception of the A-CSI-RS in the same way.
 例えば、実施形態1-1について、UEは複数(例えば、2つ)の指示(ジョイント/DL)TCI状態を用いてDL信号をバッファするため、そのうちの1つの指示TCI状態がA-CSI-RSに適用されてもよい。 For example, in embodiment 1-1, the UE buffers DL signals using multiple (e.g., two) indicated (joint/DL) TCI states, and one of the indicated TCI states may be applied to the A-CSI-RS.
 このとき、トリガリングDCIに含まれる特定のフィールド(TCI選択フィールド)を用いて、A-CSI-RSに適用する指示TCI状態が切り替えられてもよいし、特定のルールに基づいて指示TCI状態が選択されてもよい(例えば、常に第1(又は、第2)の指示TCI状態が選択されてもよい)。 At this time, the command TCI state to be applied to the A-CSI-RS may be switched using a specific field (TCI selection field) included in the triggering DCI, or the command TCI state may be selected based on a specific rule (for example, the first (or second) command TCI state may always be selected).
 例えば、実施形態1-2について、UEは1つの指示TCI状態を用いてDL信号をバッファするため、当該1つの指示TCI状態がA-CSI-RSの受信に適用されてもよい。 For example, in embodiment 1-2, the UE buffers the DL signal using one indicated TCI state, and the one indicated TCI state may be applied to receiving the A-CSI-RS.
 A-CSI-RSについての1つのTCI状態の選択のルールは、PDSCHに対するルールと同じであってもよい。 The rules for selecting one TCI state for the A-CSI-RS may be the same as the rules for the PDSCH.
<補足>
[UEへの情報の通知]
 上述の実施形態における(ネットワーク(Network(NW))(例えば、基地局(Base Station(BS)))から)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
<Additional Information>
[Notification of information to UE]
In the above-described embodiments, any information may be notified to the UE (from a network (NW) (e.g., a base station (BS))) (in other words, any information is received by the UE from the BS) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。 When the above notification is performed by a MAC CE, the MAC CE may be identified by including a new Logical Channel ID (LCID) in the MAC subheader that is not specified in existing standards.
 上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。 When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
 また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。 Furthermore, notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
[UEからの情報の通知]
 上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PUCCH、PUSCH、PRACH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。
[Information notification from UE]
In the above-described embodiments, notification of any information from the UE (to the NW) (in other words, transmission/report of any information from the UE to the BS) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, PRACH, reference signal), or a combination thereof.
 上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。 If the notification is made by a MAC CE, the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
 上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。 If the notification is made by UCI, the notification may be transmitted using PUCCH or PUSCH.
 また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。 Furthermore, in the above-mentioned embodiments, notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
[各実施形態の適用について]
 上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。
[Application of each embodiment]
At least one of the above-mentioned embodiments may be applied when a specific condition is satisfied, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。 At least one of the above-described embodiments may be applied only to UEs that have reported or support a particular UE capability.
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・上記実施形態の少なくとも1つについての特定の処理/動作/制御/情報(例えば、複数の指示TCI状態を利用して受信信号のバッファを行うこと)をサポートすること。
 ・サポートするバッファ可能な受信信号の指示TCI状態の数。
The specific UE capabilities may indicate at least one of the following:
Supporting specific processing/operations/control/information for at least one of the above embodiments (eg, buffering received signals using multiple indicated TCI states).
Number of bufferable receive signal indication TCI states supported.
 また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。 Furthermore, the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
 また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。 The specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、複数の指示TCI状態を利用する受信信号のバッファを有効化することを示す情報、特定のリリース(例えば、Rel.18/19)向けの任意のRRCパラメータなどであってもよい。 Furthermore, at least one of the above-mentioned embodiments may be applied when the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling. For example, the specific information may be information indicating enabling a buffer of a received signal using multiple indicated TCI states, any RRC parameter for a specific release (e.g., Rel. 18/19), etc.
 UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。 If the UE does not support at least one of the above specific UE capabilities or the above specific information is not configured, the UE may, for example, apply Rel. 15/16 operations.
(付記)
 本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
 下りリンク信号をスケジュールする下りリンク制御情報の受信と、前記下りリンク信号の受信と、のオフセットが特定の閾値より小さい場合、前記下りリンク信号のバッファ数に関する能力情報の報告及び前記バッファ数に関する設定の少なくとも1つに基づいて、1つ又は複数の指示送信設定指示(TCI)状態を利用した前記下りリンク信号のバッファを制御する制御部と、
 前記1つ又は複数の指示TCI状態を利用して前記下りリンク信号の受信処理を行う受信部と、を有する端末。
[付記2]
 前記制御部は、前記能力情報を報告した場合、前記下りリンク制御情報に含まれる特定のフィールドに基づいて、前記複数の指示TCI状態を前記下りリンク信号に適用する、付記1に記載の端末。
[付記3]
 前記制御部は、前記能力情報を報告しない場合、上位レイヤシグナリングの設定に基づいて、前記1つの指示TCI状態を前記下りリンク信号に適用する、付記1又は付記2に記載の端末。
[付記4]
 前記制御部は、前記能力情報を報告しない場合、常に前記1つの指示TCI状態を前記下りリンク信号に適用する、付記1から付記3のいずれかに記載の端末。
(Additional Note)
With respect to one embodiment of the present disclosure, the following invention is noted.
[Appendix 1]
a control unit that controls a buffer of the downlink signal using one or more command transmission configuration indication (TCI) states based on at least one of a report of capability information regarding the number of buffers of the downlink signal and a setting regarding the number of buffers, when an offset between reception of downlink control information for scheduling a downlink signal and reception of the downlink signal is smaller than a specific threshold value;
A terminal having a receiving unit that performs receiving processing of the downlink signal by using the one or more indicated TCI states.
[Appendix 2]
The terminal according to claim 1, wherein, when the control unit reports the capability information, the control unit applies the plurality of designated TCI states to the downlink signal based on a specific field included in the downlink control information.
[Appendix 3]
The terminal according to Supplementary Note 1 or Supplementary Note 2, wherein the control unit applies the one indication TCI state to the downlink signal based on a configuration of higher layer signaling when the capability information is not reported.
[Appendix 4]
The terminal according to any one of Supplementary Note 1 to Supplementary Note 3, wherein the control unit always applies the one designated TCI state to the downlink signal when the capability information is not reported.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these.
 図9は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 9 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 The wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 may support dual connectivity between multiple base stations within the same RAT (e.g., dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 may include a base station 11 that forms a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) that are arranged within the macrocell C1 and form a small cell C2 that is narrower than the macrocell C1. A user terminal 20 may be located within at least one of the cells. The arrangement and number of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when there is no need to distinguish between the base stations 11 and 12, they will be collectively referred to as base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the multiple base stations 10. The user terminal 20 may utilize at least one of carrier aggregation (CA) using multiple component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). Macro cell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 In addition, the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The multiple base stations 10 may be connected by wire (e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (e.g., NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which corresponds to the upper station, may be called an Integrated Access Backhaul (IAB) donor, and base station 12, which corresponds to a relay station, may be called an IAB node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 directly or via another base station 10. The core network 30 may include at least one of, for example, an Evolved Packet Core (EPC), a 5G Core Network (5GCN), a Next Generation Core (NGC), etc.
 コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、Application Function(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。 The core network 30 may include network functions (Network Functions (NF)) such as, for example, a User Plane Function (UPF), an Access and Mobility management Function (AMF), a Session Management Function (SMF), a Unified Data Management (UDM), an Application Function (AF), a Data Network (DN), a Location Management Function (LMF), and Operation, Administration and Maintenance (Management) (OAM). Note that multiple functions may be provided by one network node. In addition, communication with an external network (e.g., the Internet) may be performed via the DN.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal that supports at least one of the communication methods such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, a wireless access method based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, in at least one of the downlink (DL) and uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The radio access method may also be called a waveform. In the wireless communication system 1, other radio access methods (e.g., other single-carrier transmission methods, other multi-carrier transmission methods) may be used for the UL and DL radio access methods.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), etc. may be used as the downlink channel.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In addition, in the wireless communication system 1, an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) shared by each user terminal 20, an uplink control channel (Physical Uplink Control Channel (PUCCH)), a random access channel (Physical Random Access Channel (PRACH)), etc. may be used as an uplink channel.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted via PDSCH. User data, upper layer control information, etc. may also be transmitted via PUSCH. Furthermore, Master Information Block (MIB) may also be transmitted via PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by the PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 Note that the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI, and the DCI for scheduling the PUSCH may be called a UL grant or UL DCI. Note that the PDSCH may be interpreted as DL data, and the PUSCH may be interpreted as UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH. The CORESET corresponds to the resources to search for DCI. The search space corresponds to the search region and search method of PDCCH candidates. One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a certain search space based on the search space configuration.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 A search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that the terms "search space," "search space set," "search space setting," "search space set setting," "CORESET," "CORESET setting," etc. in this disclosure may be read as interchangeable.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 The PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR). The PRACH may transmit a random access preamble for establishing a connection with a cell.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 Note that in this disclosure, downlink, uplink, etc. may be expressed without adding "link." Also, various channels may be expressed without adding "Physical" to the beginning.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted. In the wireless communication system 1, as the DL-RS, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS). A signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc. In addition, SS, SSB, etc. may also be called reference signals.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 In addition, in the wireless communication system 1, a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), etc. may be transmitted as an uplink reference signal (UL-RS). Note that the DMRS may also be called a user equipment-specific reference signal (UE-specific Reference Signal).
(基地局)
 図10は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(Base station)
10 is a diagram showing an example of a configuration of a base station according to an embodiment. The base station 10 includes a control unit 110, a transceiver unit 120, a transceiver antenna 130, and a transmission line interface 140. Note that one or more of each of the control unit 110, the transceiver unit 120, the transceiver antenna 130, and the transmission line interface 140 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the base station 10 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), etc. The control unit 110 may control transmission and reception using the transceiver unit 120, the transceiver antenna 130, and the transmission path interface 140, measurement, etc. The control unit 110 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 120. The control unit 110 may perform call processing of communication channels (setting, release, etc.), status management of the base station 10, management of radio resources, etc.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transceiver unit 120 may include a baseband unit 121, a radio frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transceiver unit 120 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transceiver unit 120 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The reception unit may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transceiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, etc.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transceiver 120 may form at least one of the transmit beam and the receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transceiver 120 (transmission processing unit 1211) may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc. on data and control information obtained from the control unit 110 to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transceiver unit 120 (transmission processing unit 1211) may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transceiver unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 130.
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transceiver unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transceiver 120 (reception processing unit 1212) may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transceiver 120 (measurement unit 123) may perform measurements on the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurements, Channel State Information (CSI) measurements, etc. based on the received signal. The measurement unit 123 may measure received power (e.g., Reference Signal Received Power (RSRP)), received quality (e.g., Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)), signal strength (e.g., Received Signal Strength Indicator (RSSI)), propagation path information (e.g., CSI), etc. The measurement results may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF), other base stations 10, etc., and may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 Note that the transmitter and receiver of the base station 10 in this disclosure may be configured with at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
 制御部110は、下りリンク信号をスケジュールする下りリンク制御情報の受信と、前記下りリンク信号の受信と、のオフセットが特定の閾値より小さい場合、前記下りリンク信号のバッファ数に関する能力情報の報告及び前記バッファ数に関する設定の少なくとも1つを利用して、1つ又は複数の指示送信設定指示(TCI)状態を利用した前記下りリンク信号のバッファを指示してもよい。送受信部120は、前記1つ又は複数の指示TCI状態を利用して前記下りリンク信号を送信してもよい。 When the offset between the reception of downlink control information that schedules a downlink signal and the reception of the downlink signal is less than a certain threshold, the control unit 110 may instruct the buffering of the downlink signal using one or more instruction transmission configuration indication (TCI) states by using at least one of a report of capability information regarding the number of buffers for the downlink signal and a setting regarding the number of buffers. The transceiver unit 120 may transmit the downlink signal using the one or more instruction TCI states.
(ユーザ端末)
 図11は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
11 is a diagram showing an example of the configuration of a user terminal according to an embodiment. The user terminal 20 includes a control unit 210, a transceiver unit 220, and a transceiver antenna 230. Note that the control unit 210, the transceiver unit 220, and the transceiver antenna 230 may each include one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the user terminal 20 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, etc. The control unit 210 may control transmission and reception using the transceiver unit 220 and the transceiver antenna 230, measurement, etc. The control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transceiver unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transceiver unit 220 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transceiver unit 220 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The reception unit may be composed of a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transceiver 220 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transceiver 220 (transmission processor 2211) may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the controller 210, and generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transceiver 220 (transmission processor 2211) may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply DFT processing may be based on the settings of transform precoding. When transform precoding is enabled for a certain channel (e.g., PUSCH), the transceiver unit 220 (transmission processing unit 2211) may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transceiver unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 230.
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transceiver unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transceiver 220 (reception processor 2212) may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transceiver 220 (measurement unit 223) may perform measurements on the received signal. For example, the measurement unit 223 may perform RRM measurements, CSI measurements, etc. based on the received signal. The measurement unit 223 may measure received power (e.g., RSRP), received quality (e.g., RSRQ, SINR, SNR), signal strength (e.g., RSSI), propagation path information (e.g., CSI), etc. The measurement results may be output to the control unit 210.
 なお、測定部223は、チャネル測定用リソースに基づいて、CSI算出のためのチャネル測定を導出してもよい。チャネル測定用リソースは、例えば、ノンゼロパワー(Non Zero Power(NZP))CSI-RSリソースであってもよい。また、測定部223は、干渉測定用リソースに基づいて、CSI算出のための干渉測定を導出してもよい。干渉測定用リソースは、干渉測定用のNZP CSI-RSリソース、CSI-干渉測定(Interference Measurement(IM))リソースなどの少なくとも1つであってもよい。なお、CSI-IMは、CSI-干渉管理(Interference Management(IM))と呼ばれてもよいし、ゼロパワー(Zero Power(ZP))CSI-RSと互いに読み替えられてもよい。なお、本開示において、CSI-RS、NZP CSI-RS、ZP CSI-RS、CSI-IM、CSI-SSBなどは、互いに読み替えられてもよい。 The measurement unit 223 may derive channel measurements for CSI calculation based on channel measurement resources. The channel measurement resources may be, for example, non-zero power (NZP) CSI-RS resources. The measurement unit 223 may derive interference measurements for CSI calculation based on interference measurement resources. The interference measurement resources may be at least one of NZP CSI-RS resources for interference measurement, CSI-Interference Measurement (IM) resources, etc. CSI-IM may be called CSI-Interference Management (IM) or may be interchangeably read as Zero Power (ZP) CSI-RS. In this disclosure, CSI-RS, NZP CSI-RS, ZP CSI-RS, CSI-IM, CSI-SSB, etc. may be read as interchangeable.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 In addition, the transmitting unit and receiving unit of the user terminal 20 in this disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
 制御部210は、下りリンク信号をスケジュールする下りリンク制御情報の受信と、前記下りリンク信号の受信と、のオフセットが特定の閾値より小さい場合、前記下りリンク信号のバッファ数に関する能力情報の報告及び前記バッファ数に関する設定の少なくとも1つに基づいて、1つ又は複数の指示送信設定指示(TCI)状態を利用した前記下りリンク信号のバッファを制御してもよい。送受信部220は、前記1つ又は複数の指示TCI状態を利用して前記下りリンク信号の受信処理を行ってもよい。 When the offset between the reception of downlink control information for scheduling a downlink signal and the reception of the downlink signal is less than a specific threshold, the control unit 210 may control the buffering of the downlink signal using one or more command transmission configuration indication (TCI) states based on at least one of a report of capability information regarding the number of buffers for the downlink signal and a setting regarding the number of buffers. The transceiver unit 220 may perform reception processing of the downlink signal using the one or more command TCI states.
 制御部210は、前記能力情報を報告した場合、前記下りリンク制御情報に含まれる特定のフィールドに基づいて、前記複数の指示TCI状態を前記下りリンク信号に適用してもよい。 When the control unit 210 reports the capability information, the control unit 210 may apply the multiple indicated TCI states to the downlink signal based on a specific field included in the downlink control information.
 制御部210は、前記能力情報を報告しない場合、上位レイヤシグナリングの設定に基づいて、前記1つの指示TCI状態を前記下りリンク信号に適用してもよい。 If the control unit 210 does not report the capability information, the control unit 210 may apply the one indicated TCI state to the downlink signal based on the configuration of higher layer signaling.
 制御部210は、前記能力情報を報告しない場合、常に前記1つの指示TCI状態を前記下りリンク信号に適用してもよい。 If the control unit 210 does not report the capability information, it may always apply the one indicated TCI state to the downlink signal.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams used in the description of the above embodiments show functional blocks. These functional blocks (components) are realized by any combination of at least one of hardware and software. The method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.). The functional blocks may be realized by combining the one device or the multiple devices with software.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment. For example, a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 12 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment. The above-mentioned base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In addition, in this disclosure, the terms apparatus, circuit, device, section, unit, etc. may be interpreted as interchangeable. The hardware configurations of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figures, or may be configured to exclude some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be multiple processors. Furthermore, processing may be performed by one processor, or processing may be performed by two or more processors simultaneously, sequentially, or using other techniques. Furthermore, the processor 1001 may be implemented by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 The functions of the base station 10 and the user terminal 20 are realized, for example, by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, runs an operating system to control the entire computer. The processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc. For example, at least a portion of the above-mentioned control unit 110 (210), transmission/reception unit 120 (220), etc. may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 The processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. The programs used are those that cause a computer to execute at least some of the operations described in the above embodiments. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and running on the processor 1001, and similar implementations may be made for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 Memory 1002 is a computer-readable recording medium and may be composed of at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 Storage 1003 is a computer-readable recording medium and may be composed of at least one of a flexible disk, a floppy disk, a magneto-optical disk (e.g., a compact disk (Compact Disc ROM (CD-ROM)), a digital versatile disk, a Blu-ray disk), a removable disk, a hard disk drive, a smart card, a flash memory device (e.g., a card, a stick, a key drive), a magnetic stripe, a database, a server, or other suitable storage medium. Storage 1003 may also be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, etc. The communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of, for example, Frequency Division Duplex (FDD) and Time Division Duplex (TDD). For example, the above-mentioned transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004. The transmitting/receiving unit 120 (220) may be implemented as a transmitting unit 120a (220a) and a receiving unit 120b (220b) that are physically or logically separated.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (e.g., a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Furthermore, each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the base station 10 and the user terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
In addition, the terms described in this disclosure and the terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, a channel, a symbol, and a signal (signal or signaling) may be read as mutually interchangeable. A signal may also be a message. A reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard. A component carrier (CC) may also be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting a radio frame may be called a subframe. Furthermore, a subframe may be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel. The numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.). A slot may also be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 A radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting a signal. A different name may be used for radio frame, subframe, slot, minislot, and symbol. Note that the time units such as frame, subframe, slot, minislot, and symbol in this disclosure may be read as interchangeable.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, multiple consecutive subframes may be called a TTI, or one slot or one minislot may be called a TTI. In other words, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms. Note that the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the smallest time unit for scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc. When a TTI is given, the time interval (e.g., the number of symbols) in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms, and a short TTI (e.g., a shortened TTI, etc.) may be interpreted as a TTI having a TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers included in an RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Furthermore, an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs may be referred to as a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, an RB pair, etc.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Furthermore, a resource block may be composed of one or more resource elements (REs). For example, one RE may be a radio resource area of one subcarrier and one symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP), which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier. PRBs may be defined in a BWP and numbered within the BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL). One or more BWPs may be configured for a UE within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell," "carrier," etc. in this disclosure may be read as "BWP."
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures of radio frames, subframes, slots, minislots, and symbols are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. The various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer. Information, signals, etc. may be input/output via multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 The physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc. The RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc. The MAC signaling may be notified, for example, using a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 Furthermore, notification of specified information (e.g., notification that "X is the case") is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Software, instructions, information, etc. may also be transmitted and received via a transmission medium. For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 As used in this disclosure, the terms "system" and "network" may be used interchangeably. "Network" may refer to the devices included in the network (e.g., base stations).
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」、「UEパネル」、「送信エンティティ」、「受信エンティティ」、などの用語は、互換的に使用され得る。 In this disclosure, terms such as "precoding", "precoder", "weight (precoding weight)", "Quasi-Co-Location (QCL)", "Transmission Configuration Indication state (TCI state)", "spatial relation", "spatial domain filter", "transmit power", "phase rotation", "antenna port", "layer", "number of layers", "rank", "resource", "resource set", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel", "UE panel", "transmitting entity", "receiving entity", etc. may be used interchangeably.
 なお、本開示において、アンテナポートは、任意の信号/チャネルのためのアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)と互いに読み替えられてもよい。本開示において、リソースは、任意の信号/チャネルのためのリソース(例えば、参照信号リソース、SRSリソースなど)と互いに読み替えられてもよい。なお、リソースは、時間/周波数/符号/空間/電力リソースを含んでもよい。また、空間ドメイン送信フィルタは、空間ドメイン送信フィルタ(spatial domain transmission filter)及び空間ドメイン受信フィルタ(spatial domain reception filter)の少なくとも一方を含んでもよい。 In the present disclosure, the antenna port may be interchangeably read as an antenna port for any signal/channel (e.g., a demodulation reference signal (DMRS) port). In the present disclosure, the resource may be interchangeably read as a resource for any signal/channel (e.g., a reference signal resource, an SRS resource, etc.). The resource may include time/frequency/code/space/power resources. The spatial domain transmission filter may include at least one of a spatial domain transmission filter and a spatial domain reception filter.
 上記グループは、例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号(Reference Signal(RS))グループ、制御リソースセット(COntrol REsource SET(CORESET))グループ、PUCCHグループ、アンテナポートグループ(例えば、DMRSポートグループ)、レイヤグループ、リソースグループ、ビームグループ、アンテナグループ、パネルグループなどの少なくとも1つを含んでもよい。 The above groups may include, for example, at least one of a spatial relationship group, a Code Division Multiplexing (CDM) group, a Reference Signal (RS) group, a Control Resource Set (CORESET) group, a PUCCH group, an antenna port group (e.g., a DMRS port group), a layer group, a resource group, a beam group, an antenna group, a panel group, etc.
 また、本開示において、ビーム、SRSリソースインディケーター(SRS Resource Indicator(SRI))、CORESET、CORESETプール、PDSCH、PUSCH、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、RSなどは、互いに読み替えられてもよい。 Furthermore, in this disclosure, beam, SRS Resource Indicator (SRI), CORESET, CORESET pool, PDSCH, PUSCH, codeword (CW), transport block (TB), RS, etc. may be interpreted as interchangeable.
 また、本開示において、TCI状態、下りリンクTCI状態(DL TCI状態)、上りリンクTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、ジョイントTCI状態などは、互いに読み替えられてもよい。 Furthermore, in this disclosure, the terms TCI state, downlink TCI state (DL TCI state), uplink TCI state (UL TCI state), unified TCI state, common TCI state, joint TCI state, etc. may be interpreted as interchangeable.
 また、本開示において、「QCL」、「QCL想定」、「QCL関係」、「QCLタイプ情報」、「QCL特性(QCL property/properties)」、「特定のQCLタイプ(例えば、タイプA、タイプD)特性」、「特定のQCLタイプ(例えば、タイプA、タイプD)」などは、互いに読み替えられてもよい。 Furthermore, in this disclosure, "QCL", "QCL assumptions", "QCL relationship", "QCL type information", "QCL property/properties", "specific QCL type (e.g., Type A, Type D) characteristics", "specific QCL type (e.g., Type A, Type D)", etc. may be read as interchangeable.
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター(indicator)、インディケーション(indication)、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In this disclosure, the terms index, identifier (ID), indicator, indication, resource ID, etc. may be interchangeable. In this disclosure, the terms sequence, list, set, group, cluster, subset, etc. may be interchangeable.
 また、空間関係情報Identifier(ID)(TCI状態ID)と空間関係情報(TCI状態)は、互いに読み替えられてもよい。「空間関係情報(TCI状態)」は、「空間関係情報(TCI状態)のセット」、「1つ又は複数の空間関係情報」などと互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。空間関係情報及び空間関係は、互いに読み替えられてもよい。 Furthermore, the spatial relationship information identifier (ID) (TCI state ID) and the spatial relationship information (TCI state) may be interchangeable. "Spatial relationship information (TCI state)" may be interchangeable as "set of spatial relationship information (TCI state)", "one or more pieces of spatial relationship information", etc. TCI state and TCI may be interchangeable. Spatial relationship information and spatial relationship may be interchangeable.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, terms such as "Base Station (BS)", "Radio base station", "Fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel", "Cell", "Sector", "Cell group", "Carrier", "Component carrier", etc. may be used interchangeably. Base stations may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (e.g., three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))). The term "cell" or "sector" refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。 In this disclosure, a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", and "terminal" may be used interchangeably.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc. In addition, at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary. The moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these. The moving body in question may also be a moving body that moves autonomously based on an operating command.
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned). Note that at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 図13は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。 FIG. 13 is a diagram showing an example of a vehicle according to an embodiment. The vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (including a current sensor 50, an RPM sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service unit 59, and a communication module 60.
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。 The drive unit 41 is composed of at least one of an engine, a motor, and a hybrid of an engine and a motor, for example. The steering unit 42 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。 The electronic control unit 49 is composed of a microprocessor 61, memory (ROM, RAM) 62, and a communication port (e.g., an Input/Output (IO) port) 63. Signals are input to the electronic control unit 49 from various sensors 50-58 provided in the vehicle. The electronic control unit 49 may also be called an Electronic Control Unit (ECU).
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 Signals from the various sensors 50-58 include a current signal from a current sensor 50 that senses the motor current, a rotation speed signal of the front wheels 46/rear wheels 47 acquired by a rotation speed sensor 51, an air pressure signal of the front wheels 46/rear wheels 47 acquired by an air pressure sensor 52, a vehicle speed signal acquired by a vehicle speed sensor 53, an acceleration signal acquired by an acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by an accelerator pedal sensor 55, a depression amount signal of the brake pedal 44 acquired by a brake pedal sensor 56, an operation signal of the shift lever 45 acquired by a shift lever sensor 57, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 58.
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。 The information service unit 59 is composed of various devices, such as a car navigation system, audio system, speakers, displays, televisions, and radios, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices. The information service unit 59 uses information acquired from external devices via the communication module 60, etc., to provide various information/services (e.g., multimedia information/multimedia services) to the occupants of the vehicle 40.
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 59 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving assistance system unit 64 is composed of various devices that provide functions for preventing accidents and reducing the driver's driving load, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., a Global Navigation Satellite System (GNSS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), a gyro system (e.g., an Inertial Measurement Unit (IMU), an Inertial Navigation System (INS), etc.), an Artificial Intelligence (AI) chip, and an AI processor, and one or more ECUs that control these devices. The driving assistance system unit 64 also transmits and receives various information via the communication module 60 to realize a driving assistance function or an autonomous driving function.
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。 The communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63. For example, the communication module 60 transmits and receives data (information) via the communication port 63 between the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and the various sensors 50-58 that are provided on the vehicle 40.
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。 The communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication. The communication module 60 may be located either inside or outside the electronic control unit 49. The external device may be, for example, the above-mentioned base station 10 or user terminal 20. The communication module 60 may also be, for example, at least one of the above-mentioned base station 10 and user terminal 20 (it may function as at least one of the base station 10 and user terminal 20).
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 60 may transmit at least one of the signals from the various sensors 50-58 described above input to the electronic control unit 49, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 59 to an external device via wireless communication. The electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be referred to as input units that accept input. For example, the PUSCH transmitted by the communication module 60 may include information based on the above input.
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 60 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on an information service unit 59 provided in the vehicle. The information service unit 59 may also be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60).
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。 The communication module 60 also stores various information received from external devices in memory 62 that can be used by the microprocessor 61. Based on the information stored in memory 62, the microprocessor 61 may control the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, various sensors 50-58, and the like provided on the vehicle 40.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。 Furthermore, the base station in the present disclosure may be read as a user terminal. For example, each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). In this case, the user terminal 20 may be configured to have the functions of the base station 10 described above. Furthermore, terms such as "uplink" and "downlink" may be read as terms corresponding to terminal-to-terminal communication (for example, "sidelink"). For example, the uplink channel, downlink channel, etc. may be read as the sidelink channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in this disclosure may be interpreted as a base station. In this case, the base station 10 may be configured to have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this disclosure, operations that are described as being performed by a base station may in some cases also be performed by its upper node. In a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation. In addition, the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency. For example, the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is, for example, an integer or decimal)), Future Radio Access (FRA), New-Radio The present invention may be applied to systems that use Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified, created, or defined based on these. In addition, multiple systems may be combined (for example, a combination of LTE or LTE-A and 5G, etc.).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using a designation such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "determining" may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 "Determining" may also be considered to mean "determining" receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。本開示において、「判断(決定)」は、上述した動作と互いに読み替えられてもよい。 Furthermore, "judgment (decision)" may be considered to mean "judging (deciding)" resolving, selecting, choosing, establishing, comparing, etc. In other words, "judgment (decision)" may be considered to mean "judging (deciding)" some kind of action. In this disclosure, "judgment (decision)" may be interpreted interchangeably with the actions described above.
 また、本開示において、「判断(決定)(determine/determining)」は、「想定する(assume/assuming)」、「期待する(expect/expecting)」、「みなす(consider/considering)」などと互いに読み替えられてもよい。なお、本開示において、「...することを想定しない」は、「...しないことを想定する」と互いに読み替えられてもよい。 Furthermore, in this disclosure, "determine/determining" may be interpreted interchangeably as "assume/assuming," "expect/expecting," "consider/considering," etc. Furthermore, in this disclosure, "does not expect to do..." may be interpreted interchangeably as "assumes not to do...."
 本開示において、「期待する(expect)」は、「期待される(be expected)」と互いに読み替えられてもよい。例えば、「...を期待する(expect(s) ...)」(”...”は、例えばthat節、to不定詞などで表現されてもよい)は、「...を期待される(be expected ...)」と互いに読み替えられてもよい。「...を期待しない(does not expect ...)」は、「...を期待されない(be not expected ...)」と互いに読み替えられてもよい。また、「装置Aは...を期待されない(An apparatus A is not expected ...)」は、「装置A以外の装置Bが、当該装置Aについて...を期待しない」と互いに読み替えられてもよい(例えば、装置AがUEである場合、装置Bは基地局であってもよい)。 In the present disclosure, "expect" may be read as "be expected". For example, "expect(s)..." ("..." may be expressed, for example, as a that clause, a to infinitive, etc.) may be read as "be expected...". "does not expect..." may be read as "be not expected...". Also, "An apparatus A is not expected..." may be read as "An apparatus B other than apparatus A does not expect..." (for example, if apparatus A is a UE, apparatus B may be a base station).
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, the nominal UE maximum transmit power, or the rated UE maximum transmit power.
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 As used in this disclosure, the terms "connected" and "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, "connected" may be read as "accessed."
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, they may be considered to be "connected" or "coupled" to one another using one or more wires, cables, printed electrical connections, and the like, as well as using electromagnetic energy having wavelengths in the radio frequency range, microwave range, light (both visible and invisible) range, and the like, as some non-limiting and non-exhaustive examples.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Additionally, the term "or," as used in this disclosure, is not intended to be an exclusive or.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, where articles have been added through translation, such as a, an, and the in English, this disclosure may include that the nouns following these articles are plural.
 本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。 In this disclosure, terms such as "less than", "less than", "greater than", "more than", "equal to", etc. may be read as interchangeable. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative, as expressions with "ith" (i is any integer) (for example, "best" may be read as "ith best").
 本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。 In this disclosure, the terms "of," "for," "regarding," "related to," "associated with," etc. may be read interchangeably.
 本開示において、「Aのとき(場合)、B(when A, B)」、「(もし)Aならば、B(if A, (then) B)」、「Aの際にB(B upon A)」、「Aに応じてB(B in response to A)」、「Aに基づいてB(B based on A)」、「Aの間B(B during/while A)」、「Aの前にB(B before A)」、「Aにおいて(Aと同時に)B(B at( the same time as)/on A)」、「Aの後にB(B after A)」、「A以来B(B since A)」、「AまでB(B until A)」などは、互いに読み替えられてもよい。なお、ここでのA、Bなどは、文脈に応じて、名詞、動名詞、通常の文章など適宜適当な表現に置き換えられてもよい。なお、AとBの時間差は、ほぼ0(直後又は直前)であってもよい。また、Aが生じる時間には、時間オフセットが適用されてもよい。例えば、「A」は「Aが生じる時間オフセット前/後」と互いに読み替えられてもよい。当該時間オフセット(例えば、1つ以上のシンボル/スロット)は、予め規定されてもよいし、通知される情報に基づいてUEによって特定されてもよい。 In the present disclosure, "when A, B", "if A, (then) B", "B upon A", "B in response to A", "B based on A", "B during/while A", "B before A", "B at (the same time as)/on A", "B after A", "B since A", "B until A" and the like may be read as interchangeable. Note that A, B, etc. here may be replaced with appropriate expressions such as nouns, gerunds, and normal sentences depending on the context. Note that the time difference between A and B may be almost 0 (immediately after or immediately before). Also, a time offset may be applied to the time when A occurs. For example, "A" may be read interchangeably as "before/after the time offset at which A occurs." The time offset (e.g., one or more symbols/slots) may be predefined or may be identified by the UE based on signaled information.
 本開示において、タイミング、時刻、時間、時間インスタンス、任意の時間単位(例えば、スロット、サブスロット、シンボル、サブフレーム)、期間(period)、機会(occasion)、リソースなどは、互いに読み替えられてもよい。 In this disclosure, timing, time, duration, time instance, any time unit (e.g., slot, subslot, symbol, subframe), period, occasion, resource, etc. may be interpreted as interchangeable.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 The invention disclosed herein has been described in detail above, but it is clear to those skilled in the art that the invention disclosed herein is not limited to the embodiments described herein. The description of the present disclosure is intended for illustrative purposes only and does not imply any limitation on the invention disclosed herein.
 本出願は、2023年2月28日出願の特願2023-29564に基づく。この内容は、すべてここに含めておく。 This application is based on Patent Application No. 2023-29564, filed February 28, 2023, the contents of which are incorporated herein in their entirety.

Claims (6)

  1.  下りリンク信号をスケジュールする下りリンク制御情報の受信と、前記下りリンク信号の受信と、のオフセットが特定の閾値より小さい場合、前記下りリンク信号のバッファ数に関する能力情報の報告及び前記バッファ数に関する設定の少なくとも1つに基づいて、1つ又は複数の指示送信設定指示(TCI)状態を利用した前記下りリンク信号のバッファを制御する制御部と、
     前記1つ又は複数の指示TCI状態を利用して前記下りリンク信号の受信処理を行う受信部と、を有する端末。
    a control unit that controls a buffer of the downlink signal using one or more command transmission configuration indication (TCI) states based on at least one of a report of capability information regarding the number of buffers of the downlink signal and a setting regarding the number of buffers, when an offset between reception of downlink control information for scheduling a downlink signal and reception of the downlink signal is smaller than a specific threshold value;
    A terminal having a receiving unit that performs receiving processing of the downlink signal by using the one or more indicated TCI states.
  2.  前記制御部は、前記能力情報を報告した場合、前記下りリンク制御情報に含まれる特定のフィールドに基づいて、前記複数の指示TCI状態を前記下りリンク信号に適用する、請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit, when reporting the capability information, applies the plurality of indicated TCI states to the downlink signal based on a specific field included in the downlink control information.
  3.  前記制御部は、前記能力情報を報告しない場合、上位レイヤシグナリングの設定に基づいて、前記1つの指示TCI状態を前記下りリンク信号に適用する、請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit applies the one indicated TCI state to the downlink signal based on a setting of higher layer signaling when the capability information is not reported.
  4.  前記制御部は、前記能力情報を報告しない場合、常に前記1つの指示TCI状態を前記下りリンク信号に適用する、請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit always applies the one indicated TCI state to the downlink signal when the capability information is not reported.
  5.  下りリンク信号をスケジュールする下りリンク制御情報の受信と、前記下りリンク信号の受信と、のオフセットが特定の閾値より小さい場合、前記下りリンク信号のバッファ数に関する能力情報の報告及び前記バッファ数に関する設定の少なくとも1つに基づいて、1つ又は複数の指示送信設定指示(TCI)状態を利用した前記下りリンク信号のバッファを制御するステップと、
     前記1つ又は複数の指示TCI状態を利用して前記下りリンク信号の受信処理を行うステップと、を有する端末の無線通信方法。
    When an offset between reception of downlink control information for scheduling a downlink signal and reception of the downlink signal is less than a certain threshold, controlling a buffer of the downlink signal using one or more command transmission configuration indication (TCI) states based on at least one of a report of capability information regarding the number of buffers of the downlink signal and a configuration regarding the number of buffers;
    and performing reception processing of the downlink signal using the one or more indicated TCI states.
  6.  下りリンク信号をスケジュールする下りリンク制御情報の受信と、前記下りリンク信号の受信と、のオフセットが特定の閾値より小さい場合、前記下りリンク信号のバッファ数に関する能力情報の報告及び前記バッファ数に関する設定の少なくとも1つを利用して、1つ又は複数の指示送信設定指示(TCI)状態を利用した前記下りリンク信号のバッファを指示する制御部と、
     前記1つ又は複数の指示TCI状態を利用して前記下りリンク信号を送信する送信部と、を有する基地局。
    a control unit that, when an offset between reception of downlink control information for scheduling a downlink signal and reception of the downlink signal is smaller than a specific threshold, instructs buffering of the downlink signal using one or more command transmission configuration indication (TCI) states by using at least one of a report of capability information regarding the number of buffers of the downlink signal and a setting regarding the number of buffers;
    A base station comprising: a transmitter that transmits the downlink signal using the one or more indicated TCI states.
PCT/JP2024/006752 2023-02-28 2024-02-26 Terminal, wireless communication method, and base station WO2024181346A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023029564 2023-02-28
JP2023-029564 2023-02-28

Publications (1)

Publication Number Publication Date
WO2024181346A1 true WO2024181346A1 (en) 2024-09-06

Family

ID=92590575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/006752 WO2024181346A1 (en) 2023-02-28 2024-02-26 Terminal, wireless communication method, and base station

Country Status (1)

Country Link
WO (1) WO2024181346A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019176472A (en) * 2018-03-26 2019-10-10 華碩電腦股▲ふん▼有限公司 Method and apparatus for downlink data buffering considering cross carrier scheduling in wireless communication system
US20210136802A1 (en) * 2019-11-05 2021-05-06 Comcast Cable Communications, Llc Wireless communications for scheduling transmissions
US20210219336A1 (en) * 2019-09-30 2021-07-15 Huawei Technologies Co., Ltd. Data Transmission Method And Apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019176472A (en) * 2018-03-26 2019-10-10 華碩電腦股▲ふん▼有限公司 Method and apparatus for downlink data buffering considering cross carrier scheduling in wireless communication system
US20210219336A1 (en) * 2019-09-30 2021-07-15 Huawei Technologies Co., Ltd. Data Transmission Method And Apparatus
US20210136802A1 (en) * 2019-11-05 2021-05-06 Comcast Cable Communications, Llc Wireless communications for scheduling transmissions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHINYA KUMAGAI, NTT DOCOMO, INC.: "Discussion on unified TCI framework extension for multi-TRP", 3GPP DRAFT; R1-2301477; TYPE DISCUSSION; NR_MIMO_EVO_DL_UL-CORE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. 3GPP RAN 1, no. Athens, GR; 20230227 - 20230303, 17 February 2023 (2023-02-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052248609 *

Similar Documents

Publication Publication Date Title
WO2024095415A1 (en) Terminal, wireless communication method, and base station
WO2024181346A1 (en) Terminal, wireless communication method, and base station
WO2024185636A1 (en) Terminal, wireless communication method, and base station
WO2024171373A1 (en) Terminal, wireless communication method, and base station
WO2024171374A1 (en) Terminal, wireless communication method, and base station
WO2024095478A1 (en) Terminal, wireless communication method, and base station
WO2024095477A1 (en) Terminal, wireless communication method, and base station
WO2024100733A1 (en) Terminal, wireless communication method, and base station
WO2024095416A1 (en) Terminal, wireless communication method, and base station
WO2024095417A1 (en) Terminal, wireless communication method, and base station
WO2024095414A1 (en) Terminal, wireless communication method, and base station
WO2024106244A1 (en) Terminal, wireless communication method, and base station
WO2024189884A1 (en) Terminal, wireless communication method, and base station
WO2024176429A1 (en) Terminal, wireless communication method, and base station
WO2024181395A1 (en) Terminal, wireless communication method, and base station
WO2024069809A1 (en) Terminal, wireless communication method, and base station
WO2024176428A1 (en) Terminal, wireless communication method, and base station
WO2024080025A1 (en) Terminal, wireless communication method, and base station
WO2024134882A1 (en) Terminal, wireless communication method, and base station
WO2024219414A1 (en) Terminal, wireless communication method, and base station
WO2024261990A1 (en) Terminal, wireless communication method, and base station
WO2024261989A1 (en) Terminal, wireless communication method, and base station
WO2024236709A1 (en) Terminal, wireless communication method, and base station
WO2025032760A1 (en) Terminal, wireless communication method, and base station
WO2024219455A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24763826

Country of ref document: EP

Kind code of ref document: A1