WO2024181265A1 - Resin particles for creating pores in polyimide porous membrane, and method for producing same - Google Patents
Resin particles for creating pores in polyimide porous membrane, and method for producing same Download PDFInfo
- Publication number
- WO2024181265A1 WO2024181265A1 PCT/JP2024/006211 JP2024006211W WO2024181265A1 WO 2024181265 A1 WO2024181265 A1 WO 2024181265A1 JP 2024006211 W JP2024006211 W JP 2024006211W WO 2024181265 A1 WO2024181265 A1 WO 2024181265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin particles
- meth
- cationic
- mass
- resin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/22—Emulsion polymerisation
- C08F2/24—Emulsion polymerisation with the aid of emulsifying agents
- C08F2/28—Emulsion polymerisation with the aid of emulsifying agents cationic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/10—Esters
Definitions
- the present invention relates to resin particles for forming pores in polyimide porous membranes and a method for producing the same.
- Polyimide porous membranes have higher heat resistance and porosity than polyolefin porous membranes, and are therefore used, for example, as separators for lithium-ion batteries.
- a polyimide porous film can be obtained by coating a slurry made by mixing a polyamic acid solution with resin particles to form a coated sheet, drying the resulting coated sheet to form a dry sheet 5, and baking the dry sheet (see, for example, Patent Document 1).
- the baking imidizes the polyamic acid to form a polyimide film, and the burning of the resin particles forms numerous pores in the polyimide film, making the polyimide film porous.
- the viscosity of the slurry becomes higher than the viscosity of the polyamic acid solution due to the effect of the resin particles. If the viscosity of the slurry becomes too high, the uniformity of the coating thickness tends to deteriorate, so a technology that suppresses the increase in viscosity of the slurry is desired.
- the present invention was made in consideration of these circumstances, and provides resin particles for forming pores in polyimide porous membranes that can suppress an increase in the slurry viscosity.
- Resin particles for forming pores in a polyimide porous membrane the resin particles being composed of a (meth)acrylic resin, a ratio of (meth)acrylic monomer units in the (meth)acrylic resin being 60 to 100 mass %, and the polarity of the surface of the resin particles being cationic.
- the resin particles according to [1] or [2], wherein the polymer constituting the resin particles has a cationic group.
- a method for producing resin particles for forming pores in a polyimide porous membrane the resin particles being composed of a (meth)acrylic resin, a ratio of (meth)acrylic monomer units in the (meth)acrylic resin being 60 to 100% by mass, the method including a polymerization step in which a monomer is polymerized in an aqueous medium to form the resin particles, and the polymerization is carried out under cationization conditions such that the polarity of the surfaces of the resin particles becomes cationic.
- the method according to [6] wherein the polymerization is carried out in the presence of a cationic emulsifier.
- FIG. 1A shows a dry sheet 5 formed by dispersing resin particles 1 in a polyamic acid film 5a
- FIG. 1B shows a state in which the polyamic acid constituting the polyamic acid film 5a is imidized to form a polyimide film 2a
- FIG. 1C shows a state in which the resin particles 1 in the polyimide film 2a are burned away to form a large number of holes 2b in the polyimide film 2a, thereby forming a polyimide porous film 2.
- FIG. 2 is a cross-sectional view showing the configuration of a resin particle 1.
- (meth)acrylic is used to collectively refer to acrylic and methacrylic.
- (meth)acrylate is used to collectively refer to acrylate and methacrylate.
- the resin particle 1 according to one embodiment of the present invention is used for forming holes in a polyimide porous film 2.
- the polyimide porous film 2 can be obtained by mixing a polyamic acid solution in which polyamic acid is dissolved in a solvent with resin particles 1, coating the resulting slurry to form a coated sheet, drying the resulting coated sheet to form a dry sheet 5, and baking the dry sheet 5.
- the dry sheet 5 is formed by dispersing the resin particles 1 in a polyamic acid film 5a.
- the baking preferably includes baking at an imidization temperature and baking at a particle burnout temperature.
- the imidization temperature is the temperature at which the polyamic acid is imidized, and is, for example, 200 to 300°C. By baking at this temperature, as shown in FIG. 1B, the polyamic acid constituting the polyamic acid film 5a is imidized, and the polyamic acid film 5a becomes a polyimide film 2a. At this point, it is preferable that the resin particles 1 are not burned out.
- the imidization temperature is, for example, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, or 300°C, and may be within a range between any two of the values exemplified here.
- the particle burnout temperature is the temperature at which the resin particles 1 are burned out, and is, for example, 310 to 400°C. By baking at this temperature, as shown in FIG. 1C, the resin particles 1 in the polyimide film 2a are burned out, and a large number of holes 2b are formed in the polyimide film 2a, forming a polyimide porous film 2.
- Specific examples of the particle burnout temperature are 310, 320, 330, 340, 350, 360, 370, 380, 390, and 400°C, and may be within a range between any two of the values exemplified here.
- the resin particle 1 is composed of a (meth)acrylic resin.
- the (meth)acrylic resin is a polymer of monomers including a (meth)acrylic monomer, and contains a (meth)acrylic monomer unit. This monomer may contain only a (meth)acrylic monomer, or may contain other monomers other than a (meth)acrylic monomer. Examples of other monomers include monofunctional other monomers such as styrene monomers (styrene, methylstyrene, etc.) and polyfunctional other monomers such as divinylbenzene.
- the ratio of the (meth)acrylic monomer units in the (meth)acrylic resin is, for example, 60 to 100% by mass, and specifically, for example, 60, 65, 70, 75, 80, 85, 90, 95, 95, 96, 97, 98, 99, and 100% by mass, and may be within a range between any two of the numerical values exemplified here.
- the ratio of the other monomer units is obtained by subtracting the (meth)acrylic monomer units from 100% by mass.
- (Meth)acrylic monomers include monofunctional (meth)acrylates and polyfunctional (meth)acrylates.
- Polyfunctional (meth)acrylates include difunctional, trifunctional, or tetrafunctional or higher (meth)acrylates.
- the monofunctional (meth)acrylate is preferably a (meth)acrylic acid alkyl ester, and the (meth)acrylic acid alkyl ester preferably has an alkyl group having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms.
- Examples of (meth)acrylic acid alkyl esters include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, and dodecyl (meth)acrylate.
- bifunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyoxyethylene di(meth)acrylate, polypropylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, etc.
- Trifunctional (meth)acrylates include trimethylolpropane tri(meth)acrylate, trimethylolethane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate, propoxylated trimethylolpropane tri(meth)acrylate, tris(2-(meth)acryloxyethyl isocyanurate), etc.
- tetrafunctional or higher (meth)acrylates include tetra(meth)acrylate compounds such as pentaerythritol tetra(meth)acrylate, ethoxylated pentaerythritol tetra(meth)acrylate, propoxylated pentaerythritol tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, ethoxylated dipentaerythritol tetra(meth)acrylate, propoxylated dipentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, ethoxylated ditrimethylolpropane tetra(meth)acrylate, and ethoxylated ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol penta(meth)acryl
- the content of the polyfunctional monomer in the monomers constituting the (meth)acrylic resin is preferably 40% by mass or less. If it is more than this, the degree of cross-linking of the (meth)acrylic resin becomes too high.
- This content is, for example, 0 to 40% by mass, and specifically, for example, 0, 5, 10, 15, 20, 25, 30, 35, or 40% by mass, and may be in the range between any two of the numerical values exemplified here.
- the content (mass %) of the monofunctional monomer contained in the monomers constituting the (meth)acrylic resin can be calculated by 100% by mass - (content (mass %) of the polyfunctional monomer).
- the resin particle 1 preferably comprises a base particle 3 and a coating portion 4 that covers at least a portion of the surface of the base particle 3.
- the coating portion 4 is illustrated in FIG. 2 as covering the entire base particle 3, it may cover only a portion of the base particle 3.
- the proportion of the area of the surface area of the base particle 3 that is covered by the coating portion 4 is, for example, 20 to 100%, and more specifically, for example, 20, 30, 40, 50, 60, 70, 80, 90, or 100%, and may be in a range between any two of the numerical values exemplified here.
- the base particle 3 is composed of a polymer of a first monomer, and the first monomer has a polyfunctional monomer content of 10 mass% or less.
- the coating portion 4 is composed of a polymer of a second monomer, and the second monomer has a polyfunctional monomer content of 65 mass% or more.
- the degree of crosslinking of the base particles 3 remains low, so that the dimensional change of the polyimide porous film 2 is suppressed. In this way, according to the present invention, it is possible to achieve both suppression of an increase in the viscosity of the slurry and suppression of a dimensional change of the polyimide porous film 2.
- the content of the polyfunctional monomer in the first monomer is, for example, 0 to 10% by mass, specifically, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10% by mass, and may be in the range between any two of the numerical values exemplified here.
- the content (mass %) of the monofunctional monomer contained in the first monomer can be calculated by 100% by mass - (content (mass %) of the polyfunctional monomer + content (mass %) of the other monomers).
- the content of the polyfunctional monomer in the second monomer is, for example, 65 to 100% by mass, specifically, for example, 65, 70, 75, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% by mass, and may be in the range between any two of the numerical values exemplified here.
- the content of the polyfunctional (meth)acrylate in the second monomer is preferably 80% by mass or more, and more preferably 90% by mass or more.
- the content (mass%) of the monofunctional (meth)acrylate contained in the second monomer can be calculated by 100% by mass - (content (mass%) of the polyfunctional (meth)acrylate + content (mass%) of other monomers).
- Examples of the monofunctional monomer in the first or second monomer include the above-mentioned monofunctional (meth)acrylate and styrene-based monomer.
- the monofunctional monomer preferably contains a monofunctional (meth)acrylate.
- the monofunctional (meth)acrylate in the first or second monomer preferably contains methyl methacrylate.
- the content of the monofunctional (meth)acrylate in the first monomer is, for example, 60 to 100% by mass, specifically, for example, 60, 65, 70, 75, 80, 85, 90, 95, or 100% by mass, and may be within a range between any two of the numerical values exemplified here.
- the polyfunctional monomer in the first monomer or the second monomer may be the above-mentioned polyfunctional (meth)acrylate or divinylbenzene.
- the polyfunctional monomer preferably contains a polyfunctional (meth)acrylate.
- the content of the polyfunctional (meth)acrylate in the polyfunctional monomer is, for example, 80 to 100% by mass, specifically, for example, 80, 85, 90, 95, or 100% by mass, and may be within a range between any two of the numerical values exemplified here.
- the surface polarity of the resin particles 1 is cationic; in other words, the equivalent number of cationic groups present on the surface of the resin particles 1 is greater than the equivalent number of anionic groups. As shown in the examples described later, when the surface polarity of the resin particles 1 is cationic, the increase in viscosity of the slurry containing the resin particles 1 is suppressed compared to when the surface polarity is anionic.
- the polarity of the surface of the resin particle 1 varies depending on the type of emulsifier, polymerization initiator, and monomer used in the polymerization of the resin particle 1.
- the polarity of the surface of the resin particle 1 can be made cationic by using at least one of a cationic emulsifier, a cationic polymerization initiator, and a monomer containing a cationic group in the polymerization process of the resin particle 1.
- the cationic emulsifier adheres to the surface of the resin particle 1 and makes the polarity of the surface of the resin particle 1 cationic.
- cationic emulsifiers include quaternary ammonium salts such as lauryl trimethyl ammonium chloride, stearyl trimethyl ammonium chloride, cetyl trimethyl ammonium chloride, alkyl benzyl dimethyl ammonium chloride, dodecyl ammonium chloride, and dodecyl ammonium bromide; and alkyl amine salts such as lauryl amine acetate, coconut amine acetate, and stearyl amine acetate.
- the cationic polymerization initiator and the cationic group-containing monomer introduce cationic groups into the polymer that constitutes the resin particle, thereby making the polarity of the surface of the resin particle 1 cationic.
- the polymerization of the resin particle 1 is carried out in an aqueous medium, and since cationic groups are highly hydrophilic, the polymerization proceeds while the cationic groups derived from the cationic polymerization initiator and the cationic groups derived from the cationic group-containing monomer are located at the site in contact with the aqueous medium.
- the cationic groups derived from the cationic polymerization initiator and the cationic groups derived from the cationic group-containing monomer are located on the surface of the resin particle 1 even after the polymerization is completed, making the polarity of the surface of the resin particle 1 cationic.
- a cationic polymerization initiator is a polymerization initiator that generates cations.
- cationic polymerization initiators include water-soluble azo polymerization initiators having an amidine group, such as 2,2'-azobis(2-methylpropionamidine) dihydrochloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., "V-50"), 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., "V-044"), Examples include 2,2'-azobis[2-(imidazolin-2-yl)propane]disulfate dihydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., "V-046B”), 2,2-azobis[N-(2-carboxyethyl)-2-methylpropionamidine]hydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., "VA
- the cationic group-containing monomer is a monomer containing a cationic group, and is preferably a (meth)acrylic monomer having an ammonium group.
- the (meth)acrylic monomer having an ammonium group is preferably a quaternized product of a (meth)acrylic acid ester of an amino alcohol.
- Specific examples include quaternized products such as N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, N,N-dimethylaminopropyl (meth)acrylate, N,N-diethylaminopropyl (meth)acrylate, N,N-dimethylaminobutyl (meth)acrylate, N,N-diethylaminobutyl (meth)acrylate, and N,N-dihydroxyethylaminoethyl (meth)acrylate, and a quaternized product of N,N-dimethylaminoethyl (meth)acrylate is particularly preferably used.
- cationic group-containing monomers include quaternized amino group-containing monomers such as vinylpyridine, methylvinylpyridine, N,N-dimethylaminostyrene, N,N-diethylaminostyrene, and N,N-dibutylaminostyrene.
- the average particle diameter of the resin particles 1 is, for example, 0.01 to 10.0 ⁇ m, preferably 0.05 to 1.0 ⁇ m, and more preferably 0.1 to 0.5 ⁇ m. Specific examples of the average particle diameter are 0.01, 0.05, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1.0, 5.0, and 10.0 ⁇ m, and may be in a range between any two of the numerical values exemplified here. The average particle diameter can be measured by the method shown in the examples.
- the average particle diameter of the base particles 3 is, for example, 0.01 to 10.0 ⁇ m, preferably 0.05 to 1.0 ⁇ m, and more preferably 0.1 to 0.5 ⁇ m. Specific examples of the average particle diameter are 0.01, 0.05, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1.0, 5.0, and 10.0 ⁇ m, and may be in a range between any two of the numerical values exemplified here. The average particle diameter can be measured by the method shown in the examples.
- the particle size ratio defined by [average particle size of resin particles 1/average particle size of base particles 3] is, for example, 1.00 to 1.50, preferably 1.00 to 1.30, and even more preferably 1.001 to 1.30 from the viewpoint of suppressing dimensional changes.
- the particle size ratio is greater than 1, but may be 1.00 due to calculation errors caused by rounding.
- Specific examples of this particle size ratio are 1.00, 1.001, 1.005, 1.01, 1.02, 1.03, 1.04, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, and 1.50, and may be in the range between any two of the numerical values exemplified here.
- the coefficient of variation (CV value) of the average particle size of the resin particles 1 is preferably 10% or less, and more preferably 5% or less.
- the average particle size and particle size distribution can be measured by the method shown in the Examples. If they are within the range, when a polyimide porous film is formed using the resin particles of the present invention, the mechanical strength of the porous polyimide film is further improved.
- the method for producing resin particles 1 according to one embodiment of the present invention includes a polymerization step.
- the monomer is polymerized in an aqueous medium to form resin particles 1.
- This polymerization is performed under cationization conditions in which the polarity of the surface of the resin particles 1 becomes cationic.
- the resin particles 1 can be dried and crushed to make them into a powder state.
- the drying conditions are appropriately adjusted according to the capacity and capacity of the dryer used. General-purpose hot air drying, reduced pressure drying, vacuum drying, etc. can be appropriately selected.
- Crushing is preferably performed at 10 to 40°C, and the crushing pressure is preferably 0.1 to 0.5 MPa.
- the resin particles 1 may be classified as necessary to make the particle diameter, coefficient of variation, etc. within a predetermined range.
- wet classification for classification, the polymerization liquid after polymerization can be passed through a metal mesh, and for dry classification, the particles after polymerization, further drying, and crushing can be classified using an appropriate classification device.
- the polymerization step preferably includes a base particle formation step and a second monomer polymerization step.
- a first monomer is polymerized in an aqueous medium to form base particles 3
- a second monomer is polymerized in an aqueous medium in the presence of base particles 3 to form resin particles 1.
- the first and second monomers are as described above.
- Polymerization in an aqueous medium includes, for example, soap-free emulsion polymerization, emulsion polymerization, suspension polymerization, seed polymerization, etc.
- Aqueous media that can be used in the above polymerization include water and mixtures of water and hydrophilic organic solvents.
- water include purified water (e.g., ion-exchanged water, distilled water), groundwater, and tap water.
- hydrophilic organic solvents include lower alcohols such as methanol, ethanol, and isopropanol; polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, diethylene glycol, and triethylene glycol; cellosolves such as methyl cellosolve and ethyl cellosolve; ketones such as acetone; ethers such as tetrahydrofuran; and esters such as methyl formate.
- the hydrophilic organic solvents may be used alone or in combination of two or more. The amount of hydrophilic organic solvent added is usually 10 parts by mass or less per 100 parts by mass of water.
- the polymerization temperature is usually 40 to 100°C, preferably 55 to 85°C, and the polymerization time is usually 1 to 24 hours, preferably 1 to 10 hours.
- the polymerization is preferably carried out in the presence of a polymerization initiator and/or an emulsifier.
- the amount of the polymerization initiator used is preferably 0.1 to 10 parts by mass per 100 parts by mass of the monomer components.
- the amount of the emulsifier used is preferably 0.01 to 20 parts by mass per 100 parts by mass of the monomer components.
- the above-mentioned cationization conditions can be achieved by using at least one of a cationic emulsifier, a cationic polymerization initiator, and a cationic group-containing monomer in the polymerization process of the resin particles 1.
- the above-mentioned cationization conditions can be achieved by performing polymerization in the presence of a cationic emulsifier and/or a cationic polymerization initiator, and/or by performing polymerization using a monomer that includes a cationic group-containing monomer.
- the cationic emulsifier, cationic polymerization initiator, and cationic group-containing monomer are as explained in "1. Structure of resin particle 1", and by using these, the number of equivalents of cationic groups present on the surface of resin particle 1 can be increased, making the polarity of the surface of resin particle 1 cationic.
- the above polymerization preferably does not use an anionic emulsifier, does not use an anionic polymerization initiator, and/or does not use an anionic group-containing monomer. This inhibits an increase in the number of equivalents of anionic groups present on the surface of the resin particle 1, making it easier for the polarity of the surface of the resin particle 1 to become cationic.
- an anionic emulsifier, an anionic polymerization initiator, and/or an anionic group-containing monomer it is preferable that the total number of equivalents is smaller than the total number of equivalents of the cationic emulsifier, cationic polymerization initiator, and cationic group-containing monomer. This makes it easier for the polarity of the surface of the resin particle 1 to become cationic.
- MMA methyl methacrylate
- EGDMA ethylene glycol dimethacrylate
- MAA methacrylic acid
- HEMA hydroxyethyl methacrylate
- DQ-100 dimethylaminoethyl methacrylate quaternary product (manufactured by Kyoeisha Chemical Co., Ltd., "Light Ester DQ-100")
- n-OM Chain transfer agent, n-octyl mercaptan
- Emulsifier A Cationic emulsifier, lauryl trimethyl ammonium chloride
- Emulsifier B Anionic emulsifier, sodium alkylbenzene sulfonate
- Emulsifier C Anionic emulsifier, polyoxyethylene distyrenated methylphenyl ether sulfate
- V-50 cationic polymerization initiator, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., product name "V-50", water-soluble azo polymerization initiator, 2,2'-azobis(2-methylpropionamidine) dihydrochloride APS: anionic polymerization initiator, ammonium persulfate Bw: polymerization initiator, benzoyl peroxide, manufactured by NOF Corporation, product name "Niper BW” KPS: Anionic polymerization initiator, potassium persulfate
- Example 1-1 Production of Resin Particles
- the resin particles of Example 1 and Comparative Example 1 were produced by a method including a base particle formation step and a second monomer polymerization step.
- compositions of the compounds used in the base particle formation process and the second monomer polymerization process are summarized in Table 1.
- the units of composition are parts by mass.
- Example 1 First, 90 parts by mass of MMA, 10 parts by mass of EGDMA, 213 parts by mass of ion-exchanged water, and 0.01 parts by mass of emulsifier A were charged into a reaction apparatus equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen inlet tube, and the temperature was raised to 68°C while introducing nitrogen gas. Next, 0.25 parts by mass of V-50 was added to start the polymerization reaction. After that, the mixture was kept at 68°C for 120 minutes, and then heated to 90°C for 60 minutes to obtain resin particles. Since the resin particles contain cationic functional groups derived from emulsifier A and V-50, the polarity of the surface of the resin particles is cationic.
- Resin particles were produced in the same manner as in Example 1, except for the following points.
- emulsifier 0.3 parts by mass of emulsifier B was used in place of 0.01 parts by mass of emulsifier A.
- a polymerization initiator 0.3 parts by mass of APS was added in place of 0.25 parts by mass of V-50.
- the resin particles contain anionic functional groups derived from emulsifier B and APS, and the polarity of the surfaces of the resin particles is anionic.
- Example 2 Base particle formation process First, 92.1 parts by mass of MMA, 2.9 parts by mass of EGDMA, 213 parts by mass of ion-exchanged water, and 0.01 parts by mass of emulsifier A were charged into a reaction apparatus equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen inlet tube, and the temperature was raised to 68°C while introducing nitrogen gas. Next, 0.25 parts by mass of V-50 was added to start the polymerization reaction. After that, the mixture was kept at 68°C for 120 minutes to obtain base particles.
- Second monomer polymerization step After that, an emulsion of 5 parts by mass of EGDMA, 10 parts by mass of ion-exchanged water, and 0.05 parts by mass of emulsifier A was added dropwise for 10 minutes, and then the mixture was held for 30 minutes, and then heated to 90°C and held for 60 minutes to polymerize particles. After cooling the reaction liquid, the mixture was filtered through a 400 mesh filter, dried using a spray dryer, and crushed using a jet mill to obtain resin particles. Since the resin particles contain cationic functional groups derived from emulsifier A and V-50, the polarity of the surface of the resin particles is cationic.
- the resin particles contain anionic functional groups derived from emulsifier B and APS, making the surface of the resin particles anionic in polarity.
- Table 2 shows the compositions of the compounds used in the seed polymerization process in Example 3 and Comparative Examples 3 to 5.
- the units of composition are parts by mass.
- the ratio of the components derived from the seed particles in the final resin particles is 3.7% by mass, so the composition of the resin particles is the composition shown in Table 2 plus 3.7% by mass of the seed particle composition.
- Example 3 Seed particle formation step First, 20 parts by mass of MMA, 394 parts by mass of ion-exchanged water, and 0.05 parts by mass of emulsifier A were charged into a reaction apparatus equipped with a stirrer, a reflux condenser, and a thermometer, and the temperature was raised to 70°C. Next, 1.0 part by mass of V-50 was added to start the polymerization reaction. Then, 5 minutes after the start of the reaction, 80 parts by mass of MMA and 2 parts by mass of n-OM were dropped over 30 minutes to form a seed emulsion containing seed particles.
- the mixture was filtered through a 400 mesh filter, dried with a spray dryer, and crushed with a jet mill to obtain resin particles. Since cationic functional groups derived from DQ-100 and emulsifier A are present on the surface of the resin particles, the polarity of the surface of the resin particles is cationic.
- Comparative Example 3 resin particles were obtained by the same method as in Example 2, except that in the seed particle formation step, 0.01 parts by mass of ammonium lauryl sulfate was added instead of emulsifier A, 0.5 parts by mass of APS was added instead of V-50, 1 part by mass of MAA was added instead of DQ-100, and 0.99 parts by mass of emulsifier C was added instead of emulsifier A in the seed polymerization step. Since anionic functional groups derived from MAA and emulsifier C are present on the surface of the resin particles, the polarity of the surface of the resin particles is anionic.
- Comparative Example 4 resin particles were obtained in the same manner as in Comparative Example 3, except that 1 part by mass of HEMA was added instead of MAA in the seed polymerization step. Since anionic functional groups derived from emulsifier C are present on the surfaces of the resin particles, the polarity of the surfaces of the resin particles is anionic.
- Comparative Example 5 resin particles were obtained in the same manner as in Comparative Example 3, except that MAA was not added in the seed polymerization step and 0.5 parts by mass of KPS was additionally added as a polymerization initiator. Since anionic functional groups derived from KPS and emulsifier C are present on the surface of the resin particles, the polarity of the surface of the resin particles is anionic.
- Example 3 When comparing Example 3 and Comparative Examples 3 to 5, in which the particle size is almost the same, Example 3, in which the polarity of the surface of the resin particles is cationic, had a lower slurry viscosity than Comparative Examples 3 to 5, in which the polarity of the surface of the resin particles is anionic.
- Examples 1 to 3 in which the polarity of the resin particle surface is cationic, had a lower slurry viscosity than Comparative Examples 1 to 5, in which the polarity of the resin particle surface is anionic.
- the slurry viscosity was measured according to the following measurement method 1.
- a Thinky Mixer ARE-310 manufactured by THINKY Corporation was used.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
本発明は、ポリイミド多孔質膜造孔用の樹脂粒子及びその製造方法に関する。 The present invention relates to resin particles for forming pores in polyimide porous membranes and a method for producing the same.
ポリイミド多孔質膜は、ポリオレフィン多孔質膜に比べて、耐熱性が高いことと、空孔率が高いために、例えば、リチウムイオン電池のセパレータなどの用途で使用されている。 Polyimide porous membranes have higher heat resistance and porosity than polyolefin porous membranes, and are therefore used, for example, as separators for lithium-ion batteries.
ポリイミド多孔質膜は、一例では、ポリアミック酸溶液と樹脂粒子を混合して作成したスラリーを塗工して塗工シートを形成し、得られた塗工シートを乾燥させて乾燥シート5を形成し、乾燥シートを焼成することによって得ることができる(例えば、特許文献1)。焼成によってポリアミック酸がイミド化されてポリイミド膜が形成されると共に、樹脂粒子の焼失によってポリイミド膜内に多数の孔が形成されてポリイミド膜が多孔質化される。 In one example, a polyimide porous film can be obtained by coating a slurry made by mixing a polyamic acid solution with resin particles to form a coated sheet, drying the resulting coated sheet to form a dry sheet 5, and baking the dry sheet (see, for example, Patent Document 1). The baking imidizes the polyamic acid to form a polyimide film, and the burning of the resin particles forms numerous pores in the polyimide film, making the polyimide film porous.
一般に、ポリアミック酸溶液に樹脂粒子を添加すると、樹脂粒子の影響によって、スラリーの粘度は、ポリアミック酸溶液の粘度よりも高くなる。スラリーの粘度が高くなりすぎると、塗布膜の膜厚均一性が悪くなりやすくなるので、スラリーの粘度上昇を抑制する技術が望まれる。 Generally, when resin particles are added to a polyamic acid solution, the viscosity of the slurry becomes higher than the viscosity of the polyamic acid solution due to the effect of the resin particles. If the viscosity of the slurry becomes too high, the uniformity of the coating thickness tends to deteriorate, so a technology that suppresses the increase in viscosity of the slurry is desired.
本発明はこのような事情に鑑みてなされたものであり、スラリー粘度の上昇を抑制可能な、ポリイミド多孔質膜造孔用の樹脂粒子を提供するものである。 The present invention was made in consideration of these circumstances, and provides resin particles for forming pores in polyimide porous membranes that can suppress an increase in the slurry viscosity.
本発明によれば、以下の発明が提供される。
[1]ポリイミド多孔質膜造孔用の樹脂粒子であって、前記樹脂粒子は、(メタ)アクリル系樹脂で構成され、前記(メタ)アクリル系樹脂中の(メタ)アクリル系モノマー単位の割合は、60~100質量%であり、前記樹脂粒子の表面の極性がカチオン性である、樹脂粒子。
[2][1]に記載の樹脂粒子であって、前記樹脂粒子の表面に付着している乳化剤が、カチオン性乳化剤である、樹脂粒子。
[3][1]又は[2]に記載の樹脂粒子であって、前記樹脂粒子を構成する重合体が、カチオン基を有する、樹脂粒子。
[4][3]に記載の樹脂粒子であって、前記重合体の前記カチオン基は、カチオン性重合開始剤由来のカチオン基を含む、樹脂粒子。
[5][3]又は[4]に記載の樹脂粒子であって、前記重合体の前記カチオン基は、カチオン基含有モノマー由来のカチオン基を含む、樹脂粒子。
[6]ポリイミド多孔質膜造孔用の樹脂粒子の製造方法であって、前記樹脂粒子は、(メタ)アクリル系樹脂で構成され、前記(メタ)アクリル系樹脂中の(メタ)アクリル系モノマー単位の割合は、60~100質量%であり、前記方法は、重合工程を備え、前記重合工程で、モノマーを水性媒体中で重合させて前記樹脂粒子を形成し、前記重合は、前記樹脂粒子の表面の極性がカチオン性になるカチオン化条件で行われる、方法。
[7][6]に記載の方法であって、前記重合は、カチオン性乳化剤の存在下で行われる、方法。
[8][6]又は[7]に記載の方法であって、前記重合は、カチオン性重合開始剤の存在下で行われる、方法。
[9][6]~[8]の何れか1つに記載の方法であって、前記モノマーが、カチオン基含有モノマーを含む、方法。
According to the present invention, the following inventions are provided.
[1] Resin particles for forming pores in a polyimide porous membrane, the resin particles being composed of a (meth)acrylic resin, a ratio of (meth)acrylic monomer units in the (meth)acrylic resin being 60 to 100 mass %, and the polarity of the surface of the resin particles being cationic.
[2] The resin particles according to [1], wherein the emulsifier attached to the surface of the resin particles is a cationic emulsifier.
[3] The resin particles according to [1] or [2], wherein the polymer constituting the resin particles has a cationic group.
[4] The resin particle according to [3], wherein the cationic group of the polymer includes a cationic group derived from a cationic polymerization initiator.
[5] The resin particle according to [3] or [4], wherein the cationic group of the polymer includes a cationic group derived from a cationic group-containing monomer.
[6] A method for producing resin particles for forming pores in a polyimide porous membrane, the resin particles being composed of a (meth)acrylic resin, a ratio of (meth)acrylic monomer units in the (meth)acrylic resin being 60 to 100% by mass, the method including a polymerization step in which a monomer is polymerized in an aqueous medium to form the resin particles, and the polymerization is carried out under cationization conditions such that the polarity of the surfaces of the resin particles becomes cationic.
[7] The method according to [6], wherein the polymerization is carried out in the presence of a cationic emulsifier.
[8] The method according to [6] or [7], wherein the polymerization is carried out in the presence of a cationic polymerization initiator.
[9] The method according to any one of [6] to [8], wherein the monomer comprises a cationic group-containing monomer.
本発明者が鋭意検討を行ったところ、樹脂粒子の表面の極性がカチオン性である場合には、スラリーの粘度の上昇が抑制されることが分かり、本発明の完成に到った。 After extensive research, the inventors discovered that when the polarity of the resin particle surfaces is cationic, the increase in the viscosity of the slurry is suppressed, which led to the completion of the present invention.
以下、本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。また、各特徴について独立して発明が成立する。本発明において、「(メタ)アクリル」とは、アクリルおよびメタクリルを総称する意味で用いる。また、「(メタ)アクリレート」とは、アクリレートおよびメタクリレートを総称する意味で用いる。 Below, an embodiment of the present invention will be described. The various features shown in the following embodiment can be combined with each other. Furthermore, each feature can be an independent invention. In this invention, "(meth)acrylic" is used to collectively refer to acrylic and methacrylic. Furthermore, "(meth)acrylate" is used to collectively refer to acrylate and methacrylate.
1.樹脂粒子1の構成
図1を用いて、本発明の一実施形態の樹脂粒子1について説明する。本実施形態の樹脂粒子1は、ポリイミド多孔質膜2の造孔用途に用いられる。ポリイミド多孔質膜2は、一例では、図1Aに示すように、ポリアミック酸が溶剤に溶解したポリアミック酸溶液と樹脂粒子1を混合して作成したスラリーを塗工して塗工シートを形成し、得られた塗工シートを乾燥させて乾燥シート5を形成し、乾燥シート5を焼成することによって得ることができる。乾燥シート5は、ポリアミック酸膜5a内に樹脂粒子1が分散されて構成される。
1. Structure of Resin Particle 1 A resin particle 1 according to one embodiment of the present invention will be described with reference to FIG. 1. The resin particle 1 according to this embodiment is used for forming holes in a polyimide porous film 2. As an example, as shown in FIG. 1A, the polyimide porous film 2 can be obtained by mixing a polyamic acid solution in which polyamic acid is dissolved in a solvent with resin particles 1, coating the resulting slurry to form a coated sheet, drying the resulting coated sheet to form a dry sheet 5, and baking the dry sheet 5. The dry sheet 5 is formed by dispersing the resin particles 1 in a polyamic acid film 5a.
焼成は、イミド化温度での焼成と、粒子焼失温度での焼成を含むことが好ましい。イミド化温度は、ポリアミック酸がイミド化する温度であり、例えば、200~300℃である。この温度での焼成によって、図1Bに示すように、ポリアミック酸膜5aを構成するポリアミック酸がイミド化することによって、ポリアミック酸膜5aがポリイミド膜2aとなる。この時点では、樹脂粒子1は焼失しないことが好ましい。イミド化温度は、具体的には例えば、200、210、220、230、240、250、260、270、280、290、300℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The baking preferably includes baking at an imidization temperature and baking at a particle burnout temperature. The imidization temperature is the temperature at which the polyamic acid is imidized, and is, for example, 200 to 300°C. By baking at this temperature, as shown in FIG. 1B, the polyamic acid constituting the polyamic acid film 5a is imidized, and the polyamic acid film 5a becomes a polyimide film 2a. At this point, it is preferable that the resin particles 1 are not burned out. The imidization temperature is, for example, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, or 300°C, and may be within a range between any two of the values exemplified here.
粒子焼失温度は、樹脂粒子1が焼失する温度であり、例えば、310~400℃である。この温度での焼成によって、図1Cに示すように、ポリイミド膜2a内の樹脂粒子1が焼失して、ポリイミド膜2a内に多数の孔2bが形成されてポリイミド多孔質膜2が形成される。粒子焼失温度は、具体的には例えば、310、320、330、340、350、360、370、380、390、400℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The particle burnout temperature is the temperature at which the resin particles 1 are burned out, and is, for example, 310 to 400°C. By baking at this temperature, as shown in FIG. 1C, the resin particles 1 in the polyimide film 2a are burned out, and a large number of holes 2b are formed in the polyimide film 2a, forming a polyimide porous film 2. Specific examples of the particle burnout temperature are 310, 320, 330, 340, 350, 360, 370, 380, 390, and 400°C, and may be within a range between any two of the values exemplified here.
樹脂粒子1は、(メタ)アクリル系樹脂で構成される。(メタ)アクリル系樹脂は、(メタ)アクリル系モノマーを含むモノマーの重合体であり、(メタ)アクリル系モノマー単位を含む。このモノマーは、(メタ)アクリル系モノマーのみを含んでもよく、(メタ)アクリル系モノマー以外のその他モノマーを含んでいてもよい。その他モノマーとしては、スチレン系モノマー(スチレン、メチルスチレンなど)のような単官能その他モノマーや、ジビニルベンゼンなどの多官能その他モノマーが挙げられる。(メタ)アクリル系樹脂中の(メタ)アクリル系モノマー単位の割合は、例えば、60~100質量%であり、具体的には例えば、60、65、70、75、80、85、90、95、95、96、97、98、99、100質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。100質量%から(メタ)アクリル系モノマー単位を引くと、その他モノマー単位の割合が得られる。 The resin particle 1 is composed of a (meth)acrylic resin. The (meth)acrylic resin is a polymer of monomers including a (meth)acrylic monomer, and contains a (meth)acrylic monomer unit. This monomer may contain only a (meth)acrylic monomer, or may contain other monomers other than a (meth)acrylic monomer. Examples of other monomers include monofunctional other monomers such as styrene monomers (styrene, methylstyrene, etc.) and polyfunctional other monomers such as divinylbenzene. The ratio of the (meth)acrylic monomer units in the (meth)acrylic resin is, for example, 60 to 100% by mass, and specifically, for example, 60, 65, 70, 75, 80, 85, 90, 95, 95, 96, 97, 98, 99, and 100% by mass, and may be within a range between any two of the numerical values exemplified here. The ratio of the other monomer units is obtained by subtracting the (meth)acrylic monomer units from 100% by mass.
(メタ)アクリル系モノマーとしては、単官能(メタ)アクリレートと、多官能(メタ)アクリレートが挙げられる。多官能(メタ)アクリレートとしては、二官能、三官能、又は四官能以上の(メタ)アクリレートが挙げられる。 (Meth)acrylic monomers include monofunctional (meth)acrylates and polyfunctional (meth)acrylates. Polyfunctional (meth)acrylates include difunctional, trifunctional, or tetrafunctional or higher (meth)acrylates.
単官能(メタ)アクリレートは、(メタ)アクリル酸アルキルエステルが好ましく、(メタ)アクリル酸アルキルエステルは、アルキルエステルを構成するアルキル基の炭素数が1~12であることが好ましく、1~8であることがより好ましい。 The monofunctional (meth)acrylate is preferably a (meth)acrylic acid alkyl ester, and the (meth)acrylic acid alkyl ester preferably has an alkyl group having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms.
(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ドデシル等が挙げられる。 Examples of (meth)acrylic acid alkyl esters include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, and dodecyl (meth)acrylate.
二官能(メタ)アクリレートとしては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリオキシエチレンジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート等が挙げられる。 Examples of bifunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyoxyethylene di(meth)acrylate, polypropylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, etc.
三官能(メタ)アクリレートとしては、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、トリス(2-(メタ)アクリロキシエチルイソシアヌレート)等が挙げられる。 Trifunctional (meth)acrylates include trimethylolpropane tri(meth)acrylate, trimethylolethane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate, propoxylated trimethylolpropane tri(meth)acrylate, tris(2-(meth)acryloxyethyl isocyanurate), etc.
四官能以上の(メタ)アクリレートとしては、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ジペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ジペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、エトキシ化ジトリメチロールプロパンテトラ(メタ)アクリレートおよびエトキシ化ジトリメチロールプロパンテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Examples of tetrafunctional or higher (meth)acrylates include tetra(meth)acrylate compounds such as pentaerythritol tetra(meth)acrylate, ethoxylated pentaerythritol tetra(meth)acrylate, propoxylated pentaerythritol tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, ethoxylated dipentaerythritol tetra(meth)acrylate, propoxylated dipentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, ethoxylated ditrimethylolpropane tetra(meth)acrylate, and ethoxylated ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, etc.
(メタ)アクリル系樹脂を構成するモノマー中の多官能モノマーの含有量は、40質量%以下が好ましい。これよりも多いと、(メタ)アクリル系樹脂の架橋度が高くなりすぎるためである。この含有量は、例えば0~40質量%であり、具体的には例えば、0、5、10、15、20、25、30、35、40質量%であり、ここで例示した数値の何れか2つの間の範囲であってもよい。(メタ)アクリル系樹脂を構成するモノマーに含まれる単官能モノマーの含有量(質量%)は、100質量%-(多官能モノマーの含有量(質量%))によって算出することができる。 The content of the polyfunctional monomer in the monomers constituting the (meth)acrylic resin is preferably 40% by mass or less. If it is more than this, the degree of cross-linking of the (meth)acrylic resin becomes too high. This content is, for example, 0 to 40% by mass, and specifically, for example, 0, 5, 10, 15, 20, 25, 30, 35, or 40% by mass, and may be in the range between any two of the numerical values exemplified here. The content (mass %) of the monofunctional monomer contained in the monomers constituting the (meth)acrylic resin can be calculated by 100% by mass - (content (mass %) of the polyfunctional monomer).
樹脂粒子1は、好ましくは、図2に示すように、ベース粒子3と、ベース粒子3の表面の少なくとも一部を被覆する被覆部4を備える。被覆部4は、図2では、ベース粒子3の全体を覆うように図示しているが、ベース粒子3の一部のみを覆っていてもよい。ベース粒子3の表面積のうち被覆部4が覆っている領域の割合は、例えば、20~100%であり、具体的には例えば、20、30、40、50、60、70、80、90、100%であり、ここで例示した数値の何れか2つの間の範囲であってもよい。 As shown in FIG. 2, the resin particle 1 preferably comprises a base particle 3 and a coating portion 4 that covers at least a portion of the surface of the base particle 3. Although the coating portion 4 is illustrated in FIG. 2 as covering the entire base particle 3, it may cover only a portion of the base particle 3. The proportion of the area of the surface area of the base particle 3 that is covered by the coating portion 4 is, for example, 20 to 100%, and more specifically, for example, 20, 30, 40, 50, 60, 70, 80, 90, or 100%, and may be in a range between any two of the numerical values exemplified here.
ベース粒子3は、第1モノマーの重合体で構成され、第1モノマーは、多官能モノマーの含有量が10質量%以下である。被覆部4は、第2モノマーの重合体で構成され、第2モノマーは、多官能モノマーの含有量が65質量%以上である。このような構成によれば、ベース粒子3の架橋度が低くなり、被覆部4の架橋度が高くなる。言い換えると、架橋度が低いベース粒子3の表面の少なくとも一部が、架橋度が高い被覆部4で被覆される。 The base particle 3 is composed of a polymer of a first monomer, and the first monomer has a polyfunctional monomer content of 10 mass% or less. The coating portion 4 is composed of a polymer of a second monomer, and the second monomer has a polyfunctional monomer content of 65 mass% or more. With this configuration, the degree of cross-linking of the base particle 3 is low and the degree of cross-linking of the coating portion 4 is high. In other words, at least a portion of the surface of the base particle 3, which has a low degree of cross-linking, is coated with the coating portion 4, which has a high degree of cross-linking.
一般に、樹脂粒子1の架橋度が低いほど、樹脂粒子1を含むスラリーの粘度が高くなりやすい。本実施形態では、ベース粒子3の表面の少なくとも一部を被覆部4で覆うことによって、ベース粒子3の架橋度を低いままにしつつ、スラリーの粘度上昇を抑制することができる。また、一般に、樹脂粒子1の架橋度が高いほど、ポリイミド多孔質膜2を形成する際の、焼成工程でのポリイミド多孔質膜2の寸法変化が大きくなりやすいが、本実施形態では、ベース粒子3の架橋度が低いままになっているので、ポリイミド多孔質膜2の寸法変化が抑制される。このように、本発明によれば、スラリーの粘度上昇の抑制と、ポリイミド多孔質膜2の寸法変化の抑制を両立させることが可能になる。 In general, the lower the degree of crosslinking of the resin particles 1, the higher the viscosity of the slurry containing the resin particles 1. In this embodiment, by covering at least a portion of the surface of the base particles 3 with the coating portion 4, it is possible to suppress an increase in the viscosity of the slurry while keeping the degree of crosslinking of the base particles 3 low. In general, the higher the degree of crosslinking of the resin particles 1, the greater the dimensional change of the polyimide porous film 2 during the baking process when forming the polyimide porous film 2. However, in this embodiment, the degree of crosslinking of the base particles 3 remains low, so that the dimensional change of the polyimide porous film 2 is suppressed. In this way, according to the present invention, it is possible to achieve both suppression of an increase in the viscosity of the slurry and suppression of a dimensional change of the polyimide porous film 2.
第1モノマー中の多官能モノマーの含有量は、例えば、0~10質量%であり、具体的には例えば、0、1、2、3、4、5、6、7、8、9、10質量%であり、ここで例示した数値の何れか2つの間の範囲であってもよい。第1モノマーに含まれる単官能モノマーの含有量(質量%)は、100質量%-(多官能モノマーの含有量(質量%)+その他モノマーの含有量(質量%))によって算出することができる。 The content of the polyfunctional monomer in the first monomer is, for example, 0 to 10% by mass, specifically, for example, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10% by mass, and may be in the range between any two of the numerical values exemplified here. The content (mass %) of the monofunctional monomer contained in the first monomer can be calculated by 100% by mass - (content (mass %) of the polyfunctional monomer + content (mass %) of the other monomers).
第2モノマー中の多官能モノマーの含有量は、例えば、65~100質量%であり、具体的には例えば、65、70、75、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100質量%であり、ここで例示した数値の何れか2つの間の範囲であってもよい。スラリー粘度上昇抑制の観点より、第2モノマー中の多官能(メタ)アクリレートの含有量は80質量%以上が好ましく、90質量%以上がより好ましい。第2モノマーに含まれる単官能(メタ)アクリレートの含有量(質量%)は、100質量%-(多官能(メタ)アクリレートの含有量(質量%)+その他モノマーの含有量(質量%))によって算出することができる。 The content of the polyfunctional monomer in the second monomer is, for example, 65 to 100% by mass, specifically, for example, 65, 70, 75, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100% by mass, and may be in the range between any two of the numerical values exemplified here. From the viewpoint of suppressing an increase in the slurry viscosity, the content of the polyfunctional (meth)acrylate in the second monomer is preferably 80% by mass or more, and more preferably 90% by mass or more. The content (mass%) of the monofunctional (meth)acrylate contained in the second monomer can be calculated by 100% by mass - (content (mass%) of the polyfunctional (meth)acrylate + content (mass%) of other monomers).
第1モノマー又は第2モノマー中の単官能モノマーとしては、上述した単官能(メタ)アクリレートや、スチレン系モノマーなどが挙げられる。単官能モノマーは、単官能(メタ)アクリレートを含むことが好ましい。第1モノマー又は第2モノマー中の単官能(メタ)アクリレートは、粒子の形成が容易である観点で、メタクリル酸メチルを含むことが好ましい。第1モノマーの単官能(メタ)アクリレートの含有量は、例えば、60~100質量%であり、具体的には例えば、60、65、70、75、80、85、90、95、100質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 Examples of the monofunctional monomer in the first or second monomer include the above-mentioned monofunctional (meth)acrylate and styrene-based monomer. The monofunctional monomer preferably contains a monofunctional (meth)acrylate. From the viewpoint of easy particle formation, the monofunctional (meth)acrylate in the first or second monomer preferably contains methyl methacrylate. The content of the monofunctional (meth)acrylate in the first monomer is, for example, 60 to 100% by mass, specifically, for example, 60, 65, 70, 75, 80, 85, 90, 95, or 100% by mass, and may be within a range between any two of the numerical values exemplified here.
第1モノマー又は第2モノマー中の多官能モノマーとしては、上述した多官能(メタ)アクリレートや、ジビニルベンゼンなどが挙げられる。多官能モノマーは、多官能(メタ)アクリレートを含むことが好ましい。多官能モノマー中の多官能(メタ)アクリレートの含有量は、例えば、80~100質量%であり、具体的には例えば、80、85、90、95、100質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The polyfunctional monomer in the first monomer or the second monomer may be the above-mentioned polyfunctional (meth)acrylate or divinylbenzene. The polyfunctional monomer preferably contains a polyfunctional (meth)acrylate. The content of the polyfunctional (meth)acrylate in the polyfunctional monomer is, for example, 80 to 100% by mass, specifically, for example, 80, 85, 90, 95, or 100% by mass, and may be within a range between any two of the numerical values exemplified here.
樹脂粒子1は、表面の極性がカチオン性であり、言い換えると、樹脂粒子1の表面に存在するカチオン基の当量数がアニオン基の当量数よりも多い。後述する実施例で示すように、樹脂粒子1の表面の極性がカチオン性である場合には、表面の極性がアニオン性である場合に比べて、樹脂粒子1を含むスラリーの粘度の上昇が抑制される。 The surface polarity of the resin particles 1 is cationic; in other words, the equivalent number of cationic groups present on the surface of the resin particles 1 is greater than the equivalent number of anionic groups. As shown in the examples described later, when the surface polarity of the resin particles 1 is cationic, the increase in viscosity of the slurry containing the resin particles 1 is suppressed compared to when the surface polarity is anionic.
樹脂粒子1の表面の極性は、樹脂粒子1の重合に用いる乳化剤、重合開始剤、及びモノマーの種類によって変化する。一例では、樹脂粒子1の重合工程において、カチオン性乳化剤、カチオン性重合開始剤、カチオン基含有モノマーの少なくとも1つを用いることによって、樹脂粒子1の表面の極性をカチオン性にすることができる。 The polarity of the surface of the resin particle 1 varies depending on the type of emulsifier, polymerization initiator, and monomer used in the polymerization of the resin particle 1. In one example, the polarity of the surface of the resin particle 1 can be made cationic by using at least one of a cationic emulsifier, a cationic polymerization initiator, and a monomer containing a cationic group in the polymerization process of the resin particle 1.
カチオン性乳化剤は、樹脂粒子1の表面に付着して、樹脂粒子1の表面の極性をカチオン性にする。カチオン性乳化剤としては、ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、アルキルベンジルジメチルアンモニウムクロライド、ドデシルアンモニウムクロライド、ドデシルアンモニウムブロマイドなどの第四級アンモニウム塩;ラウリルアミンアセテート、ココナットアミンアセテート、ステアリルアミンアセテートなどのアルキルアミン塩などが挙げられる。 The cationic emulsifier adheres to the surface of the resin particle 1 and makes the polarity of the surface of the resin particle 1 cationic. Examples of cationic emulsifiers include quaternary ammonium salts such as lauryl trimethyl ammonium chloride, stearyl trimethyl ammonium chloride, cetyl trimethyl ammonium chloride, alkyl benzyl dimethyl ammonium chloride, dodecyl ammonium chloride, and dodecyl ammonium bromide; and alkyl amine salts such as lauryl amine acetate, coconut amine acetate, and stearyl amine acetate.
カチオン性重合開始剤及びカチオン基含有モノマーは、樹脂粒子を構成する重合体にカチオン基を導入することによって、樹脂粒子1の表面の極性をカチオン性にする。樹脂粒子1の重合は、水性媒体中で行われるところ、カチオン基は親水性が高いので、カチオン性重合開始剤由来のカチオン基やカチオン基含有モノマー由来のカチオン基が水性媒体に接する部位に位置しながら重合が進行する。このため、カチオン性重合開始剤由来のカチオン基やカチオン基含有モノマー由来のカチオン基は、重合完了後も、樹脂粒子1の表面に配置され、樹脂粒子1の表面の極性をカチオン性とする。 The cationic polymerization initiator and the cationic group-containing monomer introduce cationic groups into the polymer that constitutes the resin particle, thereby making the polarity of the surface of the resin particle 1 cationic. The polymerization of the resin particle 1 is carried out in an aqueous medium, and since cationic groups are highly hydrophilic, the polymerization proceeds while the cationic groups derived from the cationic polymerization initiator and the cationic groups derived from the cationic group-containing monomer are located at the site in contact with the aqueous medium. Therefore, the cationic groups derived from the cationic polymerization initiator and the cationic groups derived from the cationic group-containing monomer are located on the surface of the resin particle 1 even after the polymerization is completed, making the polarity of the surface of the resin particle 1 cationic.
カチオン性重合開始剤は、カチオンを発生させる重合開始剤であり、カチオン性重合開始剤としては、例えば、アミジン基を有する水溶性アゾ重合開始剤が挙げられ、具合的には、2,2'-アゾビス(2-メチルプロピオンアミジン)二塩酸塩(富士フイルム和光純薬工業社製、「V-50」)、2,2'-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩(富士フイルム和光純薬工業社製、「V-044」)、2,2'-アゾビス[2-(-イミダゾリン-2-イル)プロパン]二硫酸塩二水和物(富士フイルム和光純薬工業社製、「V-046B」)、2,2-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]水和物(富士フイルム和光純薬工業社製、「VA-57」)、2,2-アゾビス[2-(2-イミダゾリン-2-イル)プロパン](富士フイルム和光純薬工業社製、「VA-061」)等が挙げられる。 A cationic polymerization initiator is a polymerization initiator that generates cations. Examples of cationic polymerization initiators include water-soluble azo polymerization initiators having an amidine group, such as 2,2'-azobis(2-methylpropionamidine) dihydrochloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., "V-50"), 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., "V-044"), Examples include 2,2'-azobis[2-(imidazolin-2-yl)propane]disulfate dihydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., "V-046B"), 2,2-azobis[N-(2-carboxyethyl)-2-methylpropionamidine]hydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., "VA-57"), and 2,2-azobis[2-(2-imidazolin-2-yl)propane] (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., "VA-061"), etc.
カチオン基含有モノマーは、カチオン基を含有するモノマーであり、アンモニウム基を有する(メタ)アクリル系モノマーであることが好ましい。アンモニウム基を有する(メタ)アクリル系モノマーは、アミノアルコールの(メタ)アクリル酸エステルの四級化物であることが好ましい。具体的には、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノブチル(メタ)アクリレート、N,N-ジエチルアミノブチル(メタ)アクリレート、N,N-ジヒドロキシエチルアミノエチル(メタ)アクリレート等の四級化物が挙げられ、特にN,N-ジメチルアミノエチル(メタ)アクリレートの四級化物が好適に使用される。その他のカチオン基含有モノマーとしては、ビニルピリジン、メチルビニルピリジン、N,N-ジメチルアミノスチレン、N,N-ジエチルアミノスチレン、N,N-ジブチルアミノスチレンなどのアミノ基含有モノマーの四級化物が挙げられる。 The cationic group-containing monomer is a monomer containing a cationic group, and is preferably a (meth)acrylic monomer having an ammonium group. The (meth)acrylic monomer having an ammonium group is preferably a quaternized product of a (meth)acrylic acid ester of an amino alcohol. Specific examples include quaternized products such as N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, N,N-dimethylaminopropyl (meth)acrylate, N,N-diethylaminopropyl (meth)acrylate, N,N-dimethylaminobutyl (meth)acrylate, N,N-diethylaminobutyl (meth)acrylate, and N,N-dihydroxyethylaminoethyl (meth)acrylate, and a quaternized product of N,N-dimethylaminoethyl (meth)acrylate is particularly preferably used. Other cationic group-containing monomers include quaternized amino group-containing monomers such as vinylpyridine, methylvinylpyridine, N,N-dimethylaminostyrene, N,N-diethylaminostyrene, and N,N-dibutylaminostyrene.
樹脂粒子1の平均粒子径は、例えば0.01~10.0μmであり、0.05~1.0μmが好ましく、0.1~0.5μmがさらに好ましい。この平均粒子径は、具体的には例えば、0.01、0.05、0.1、0.2、0.25、0.3、0.35、0.4、0.45、0.5、1.0、5.0、10.0μmであり、ここで例示した数値の何れか2つの間の範囲であってもよい。平均粒子径は、実施例で示した方法で測定することができる。 The average particle diameter of the resin particles 1 is, for example, 0.01 to 10.0 μm, preferably 0.05 to 1.0 μm, and more preferably 0.1 to 0.5 μm. Specific examples of the average particle diameter are 0.01, 0.05, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1.0, 5.0, and 10.0 μm, and may be in a range between any two of the numerical values exemplified here. The average particle diameter can be measured by the method shown in the examples.
ベース粒子3の平均粒子径は、例えば0.01~10.0μmであり、0.05~1.0μmが好ましく、0.1~0.5μmがさらに好ましい。この平均粒子径は、具体的には例えば、0.01、0.05、0.1、0.2、0.25、0.3、0.35、0.4、0.45、0.5、1.0、5.0、10.0μmであり、ここで例示した数値の何れか2つの間の範囲であってもよい。平均粒子径は、実施例で示した方法で測定することができる。 The average particle diameter of the base particles 3 is, for example, 0.01 to 10.0 μm, preferably 0.05 to 1.0 μm, and more preferably 0.1 to 0.5 μm. Specific examples of the average particle diameter are 0.01, 0.05, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1.0, 5.0, and 10.0 μm, and may be in a range between any two of the numerical values exemplified here. The average particle diameter can be measured by the method shown in the examples.
[樹脂粒子1の平均粒子径/ベース粒子3の平均粒子径]で規定される粒子径比率は、例えば、1.00~1.50であり、1.00~1.30が好ましく、1.001~1.30が寸法変化を抑制する観点よりさらに好ましい。粒子径比率は、理論上、1超となるが、四捨五入による計算誤差によって、1.00となってもよい。この粒子径比率は、具体的には例えば、1.00、1.001、1.005、1.01、1.02、1.03、1.04、1.05、1.10、1.15、1.20、1.25、1.30、1.35、1.40、1.45、1.50であり、ここで例示した数値の何れか2つの間の範囲であってもよい。 The particle size ratio defined by [average particle size of resin particles 1/average particle size of base particles 3] is, for example, 1.00 to 1.50, preferably 1.00 to 1.30, and even more preferably 1.001 to 1.30 from the viewpoint of suppressing dimensional changes. Theoretically, the particle size ratio is greater than 1, but may be 1.00 due to calculation errors caused by rounding. Specific examples of this particle size ratio are 1.00, 1.001, 1.005, 1.01, 1.02, 1.03, 1.04, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, and 1.50, and may be in the range between any two of the numerical values exemplified here.
樹脂粒子1は、平均粒子径の変動係数(CV値)が10%以下が好ましく、5%以下がさらに好ましい。変動係数(CV値)は以下の式で求められる。
変動係数(CV値)=(樹脂粒子の粒度分布の標準偏差÷樹脂粒子の平均粒子径)×100
The coefficient of variation (CV value) of the average particle size of the resin particles 1 is preferably 10% or less, and more preferably 5% or less. The coefficient of variation (CV value) is calculated by the following formula.
Coefficient of variation (CV value) = (standard deviation of particle size distribution of resin particles ÷ average particle size of resin particles) × 100
平均粒子径、粒度分布は、実施例で示した方法で測定することができる。当該範囲内であれば、本発明の樹脂粒子を使用してポリイミド多孔質膜を形成した場合、多孔化されたポリイミド多孔質膜の機械的強度がより一層向上する。 The average particle size and particle size distribution can be measured by the method shown in the Examples. If they are within the range, when a polyimide porous film is formed using the resin particles of the present invention, the mechanical strength of the porous polyimide film is further improved.
2.樹脂粒子1の製造方法
本発明の一実施形態の樹脂粒子1の製造方法は、重合工程を備える。
2. Method for Producing Resin Particles 1 The method for producing resin particles 1 according to one embodiment of the present invention includes a polymerization step.
重合工程では、モノマーを水性媒体中で重合させて樹脂粒子1を形成する。この重合は、樹脂粒子1の表面の極性がカチオン性になるカチオン化条件で行われる。重合工程後に、樹脂粒子1の乾燥及び解砕を行うことによって、樹脂粒子1を粉末状態にすることができる。乾燥条件としては、使用する乾燥機の容量・能力等に応じて適宜調整される。汎用の熱風乾燥、減圧乾燥、真空乾燥等を適宜選択できる。解砕は、10~40℃で行うことが好ましく、粉砕圧は0.1~0.5MPaであることが好ましい。樹脂粒子1は粒子径、変動係数などを所定の範囲にするため、必要に応じて分級をしてもよい。分級としては、湿式分級、乾式分級のどちらでも使用できる。湿式分級については例えば、重合後の重合液を金属製のメッシュを通すことなどにより可能であり、乾式分級は、重合後、さらに乾燥、粉砕した後の粒子を、適切な分級装置を使用して行うことができる。 In the polymerization process, the monomer is polymerized in an aqueous medium to form resin particles 1. This polymerization is performed under cationization conditions in which the polarity of the surface of the resin particles 1 becomes cationic. After the polymerization process, the resin particles 1 can be dried and crushed to make them into a powder state. The drying conditions are appropriately adjusted according to the capacity and capacity of the dryer used. General-purpose hot air drying, reduced pressure drying, vacuum drying, etc. can be appropriately selected. Crushing is preferably performed at 10 to 40°C, and the crushing pressure is preferably 0.1 to 0.5 MPa. The resin particles 1 may be classified as necessary to make the particle diameter, coefficient of variation, etc. within a predetermined range. For classification, either wet classification or dry classification can be used. For wet classification, for example, the polymerization liquid after polymerization can be passed through a metal mesh, and for dry classification, the particles after polymerization, further drying, and crushing can be classified using an appropriate classification device.
前記重合工程は、ベース粒子形成工程と、第2モノマー重合工程を備えることが好ましい。ベース粒子形成工程では、第1モノマーを水性媒体中で重合させてベース粒子3を形成し、第2モノマー重合工程では、ベース粒子3の存在下で第2モノマーを水性媒体中で重合させて樹脂粒子1を形成する。第1及び第2モノマーの説明は、上述した通りである。 The polymerization step preferably includes a base particle formation step and a second monomer polymerization step. In the base particle formation step, a first monomer is polymerized in an aqueous medium to form base particles 3, and in the second monomer polymerization step, a second monomer is polymerized in an aqueous medium in the presence of base particles 3 to form resin particles 1. The first and second monomers are as described above.
水性媒体中での重合としては、例えば、ソープフリー乳化重合、乳化重合、懸濁重合、シード重合等が挙げられる。 Polymerization in an aqueous medium includes, for example, soap-free emulsion polymerization, emulsion polymerization, suspension polymerization, seed polymerization, etc.
上記重合に用いることのできる水性媒体としては、水、水と親水性有機溶媒との混合物が挙げられる。水としては、例えば、精製水(例:イオン交換水、蒸留水)、地下水、水道水が挙げられる。親水性有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール等の低級アルコール;エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、トリエチレングリコール等の多価アルコール;メチルセロソルブ、エチルセロソルブ等のセロソルブ類:アセトン等のケトン類;テトラヒドロフラン等のエーテル類;ギ酸メチル等のエステル類が挙げられる。親水性有機溶媒は単独で用いてもよく、2種以上を併用してもよい。親水性有機溶媒の添加量は、水100質量部に対し、通常10質量部以下である。 Aqueous media that can be used in the above polymerization include water and mixtures of water and hydrophilic organic solvents. Examples of water include purified water (e.g., ion-exchanged water, distilled water), groundwater, and tap water. Examples of hydrophilic organic solvents include lower alcohols such as methanol, ethanol, and isopropanol; polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, diethylene glycol, and triethylene glycol; cellosolves such as methyl cellosolve and ethyl cellosolve; ketones such as acetone; ethers such as tetrahydrofuran; and esters such as methyl formate. The hydrophilic organic solvents may be used alone or in combination of two or more. The amount of hydrophilic organic solvent added is usually 10 parts by mass or less per 100 parts by mass of water.
上述の重合方法において、重合温度は、通常40~100℃、好ましくは55~85℃であり、重合時間は、通常1~24時間、好ましくは1~10時間である。 In the above polymerization method, the polymerization temperature is usually 40 to 100°C, preferably 55 to 85°C, and the polymerization time is usually 1 to 24 hours, preferably 1 to 10 hours.
上記重合は、重合開始剤及び/又は乳化剤の存在下で行うことが好ましい。重合開始剤の使用量は、モノマー成分100質量部に対して、0.1~10質量部が好ましい。乳化剤の使用量は、モノマー成分100質量部に対して、0.01~20質量部が好ましい。 The polymerization is preferably carried out in the presence of a polymerization initiator and/or an emulsifier. The amount of the polymerization initiator used is preferably 0.1 to 10 parts by mass per 100 parts by mass of the monomer components. The amount of the emulsifier used is preferably 0.01 to 20 parts by mass per 100 parts by mass of the monomer components.
上述のカチオン化条件は、一例では、樹脂粒子1の重合工程において、カチオン性乳化剤、カチオン性重合開始剤、カチオン基含有モノマーの少なくとも1つを用いることによって達成できる。つまり、カチオン性乳化剤及び/又はカチオン性重合開始剤の存在下で重合を行うか、及び/又はカチオン基含有モノマーを含むモノマーを用いて重合を行うことによって、上述のカチオン化条件を達成することができる。 In one example, the above-mentioned cationization conditions can be achieved by using at least one of a cationic emulsifier, a cationic polymerization initiator, and a cationic group-containing monomer in the polymerization process of the resin particles 1. In other words, the above-mentioned cationization conditions can be achieved by performing polymerization in the presence of a cationic emulsifier and/or a cationic polymerization initiator, and/or by performing polymerization using a monomer that includes a cationic group-containing monomer.
カチオン性乳化剤、カチオン性重合開始剤、カチオン基含有モノマーは、「1.樹脂粒子1の構成」で説明した通りであり、これらを使用することで、樹脂粒子1の表面に存在するカチオン基の当量数を増やして、樹脂粒子1の表面の極性をカチオン性にすることができる。 The cationic emulsifier, cationic polymerization initiator, and cationic group-containing monomer are as explained in "1. Structure of resin particle 1", and by using these, the number of equivalents of cationic groups present on the surface of resin particle 1 can be increased, making the polarity of the surface of resin particle 1 cationic.
上記重合は、アニオン性乳化剤を使用しないこと、アニオン性重合開始剤を使用しないこと、及び/又はアニオン基含有モノマーを使用しないことが好ましい。これによって、樹脂粒子1の表面に存在するアニオン基の当量数の増大が抑制されて、樹脂粒子1の表面の極性がカチオン性になりやすくなる。アニオン性乳化剤、アニオン性重合開始剤、及び/又はアニオン基含有モノマーを使用する場合には、その当量数の合計が、カチオン性乳化剤、カチオン性重合開始剤、及びカチオン基含有モノマーの当量数の合計よりも小さいことが好ましい。これによって、樹脂粒子1の表面の極性がカチオン性になりやすくなる。 The above polymerization preferably does not use an anionic emulsifier, does not use an anionic polymerization initiator, and/or does not use an anionic group-containing monomer. This inhibits an increase in the number of equivalents of anionic groups present on the surface of the resin particle 1, making it easier for the polarity of the surface of the resin particle 1 to become cationic. When an anionic emulsifier, an anionic polymerization initiator, and/or an anionic group-containing monomer are used, it is preferable that the total number of equivalents is smaller than the total number of equivalents of the cationic emulsifier, cationic polymerization initiator, and cationic group-containing monomer. This makes it easier for the polarity of the surface of the resin particle 1 to become cationic.
1.樹脂粒子の製造
以下の方法に従って、実施例・比較例の樹脂粒子を製造した。以下の説明中の略号の意味及び製品の詳細は、以下の通りである。
1. Production of Resin Particles Resin particles of the Examples and Comparative Examples were produced according to the following methods. The meanings of the abbreviations and product details in the following explanation are as follows.
<モノマー>
MMA:メタクリル酸メチル
EGDMA:エチレングリコールジメタクリレート
MAA:メタクリル酸
HEMA:ヒドロキシエチルメタクリレート
DQ-100:ジメチルアミノエチルメタクリレート 四級化物(共栄社化学社製、「ライトエステルDQ-100」)
<Monomer>
MMA: methyl methacrylate EGDMA: ethylene glycol dimethacrylate MAA: methacrylic acid HEMA: hydroxyethyl methacrylate DQ-100: dimethylaminoethyl methacrylate quaternary product (manufactured by Kyoeisha Chemical Co., Ltd., "Light Ester DQ-100")
<連鎖移動剤>
n-OM:連鎖移動剤、n-オクチルメルカプタン
<Chain Transfer Agent>
n-OM: Chain transfer agent, n-octyl mercaptan
<乳化剤>
乳化剤A:カチオン性乳化剤、ラウリルトリメチルアンモニウムクロライド
乳化剤B:アニオン性乳化剤、アルキルベンゼンスルホン酸ナトリウム
乳化剤C:アニオン性乳化剤、ポリオキシエチレンジスチレン化メチルフェニルエーテル硫酸エステル塩
<Emulsifier>
Emulsifier A: Cationic emulsifier, lauryl trimethyl ammonium chloride Emulsifier B: Anionic emulsifier, sodium alkylbenzene sulfonate Emulsifier C: Anionic emulsifier, polyoxyethylene distyrenated methylphenyl ether sulfate
<重合開始剤>
V-50:カチオン性重合開始剤、富士フイルム和光純薬株式会社製、商品名「V-50」、水溶性アゾ重合開始剤、2,2'-アゾビス(2-メチルプロピオンアミジン)二塩酸塩
APS:アニオン性重合開始剤、過硫酸アンモニウム
Bw:重合開始剤、ベンゾイルパーオキシド、日油株式会社製、商品名「ナイパーBW」)
KPS:アニオン性重合開始剤、過硫酸カリウム
<Polymerization initiator>
V-50: cationic polymerization initiator, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., product name "V-50", water-soluble azo polymerization initiator, 2,2'-azobis(2-methylpropionamidine) dihydrochloride APS: anionic polymerization initiator, ammonium persulfate Bw: polymerization initiator, benzoyl peroxide, manufactured by NOF Corporation, product name "Niper BW"
KPS: Anionic polymerization initiator, potassium persulfate
1-1.樹脂粒子の製造
ベース粒子形成工程と第2モノマー重合工程を含む方法によって、実施例1及び比較例1の樹脂粒子を製造した。
1-1. Production of Resin Particles The resin particles of Example 1 and Comparative Example 1 were produced by a method including a base particle formation step and a second monomer polymerization step.
ベース粒子形成工程と第2モノマー重合工程で用いた化合物の組成をまとめたものを表1に示す。組成の単位は、質量部である。 The compositions of the compounds used in the base particle formation process and the second monomer polymerization process are summarized in Table 1. The units of composition are parts by mass.
<実施例1>
まず、撹拌機、還流冷却器、温度計および窒素道入管を備えた反応装置にMMA90質量部、EGDMA10質量部、イオン交換水213質量部、乳化剤A:0.01質量部を仕込み、窒素ガスを導入しながら68℃に昇温した。次いでV-50:0.25質量部を加え重合反応を開始した。その後68℃120分間、90℃に昇温後60分間保持し、樹脂粒子を得た。樹脂粒子には、乳化剤A及びV-50に由来するカチオン性の官能基が存在しているので、樹脂粒子の表面の極性がカチオン性になっている。
Example 1
First, 90 parts by mass of MMA, 10 parts by mass of EGDMA, 213 parts by mass of ion-exchanged water, and 0.01 parts by mass of emulsifier A were charged into a reaction apparatus equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen inlet tube, and the temperature was raised to 68°C while introducing nitrogen gas. Next, 0.25 parts by mass of V-50 was added to start the polymerization reaction. After that, the mixture was kept at 68°C for 120 minutes, and then heated to 90°C for 60 minutes to obtain resin particles. Since the resin particles contain cationic functional groups derived from emulsifier A and V-50, the polarity of the surface of the resin particles is cationic.
<比較例1>
以下の点を除いて、実施例1と同様の方法で、樹脂粒子を製造した。
・乳化剤として、乳化剤A:0.01質量部の代わりに乳化剤B:0.3質量部を用いた。
・重合開始剤としてV-50:0.25質量部の代わりにAPS:0.3質量部を加えた。
樹脂粒子には、乳化剤B及びAPSに由来するアニオン性の官能基が存在しており、樹脂粒子の表面の極性がアニオン性になっている。
<Comparative Example 1>
Resin particles were produced in the same manner as in Example 1, except for the following points.
As an emulsifier, 0.3 parts by mass of emulsifier B was used in place of 0.01 parts by mass of emulsifier A.
As a polymerization initiator, 0.3 parts by mass of APS was added in place of 0.25 parts by mass of V-50.
The resin particles contain anionic functional groups derived from emulsifier B and APS, and the polarity of the surfaces of the resin particles is anionic.
<実施例2>
・ベース粒子形成工程
まず、撹拌機、還流冷却器、温度計および窒素道入管を備えた反応装置にMMA92.1質量部、EGDMA2.9質量部、イオン交換水213質量部、乳化剤A:0.01質量部を仕込み、窒素ガスを導入しながら68℃に昇温した。次いでV-50:0.25質量部を加え重合反応を開始した。その後68℃で120分間保持し、ベース粒子とした。
Example 2
Base particle formation process First, 92.1 parts by mass of MMA, 2.9 parts by mass of EGDMA, 213 parts by mass of ion-exchanged water, and 0.01 parts by mass of emulsifier A were charged into a reaction apparatus equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen inlet tube, and the temperature was raised to 68°C while introducing nitrogen gas. Next, 0.25 parts by mass of V-50 was added to start the polymerization reaction. After that, the mixture was kept at 68°C for 120 minutes to obtain base particles.
・第2モノマー重合工程
その後、EGDMA5質量部、イオン交換水10質量部、乳化剤A:0.05質量部の乳化液を10分間滴下し後添加し30分間保持したのち90℃へ昇温し60分間保持し粒子を重合した。反応液を冷却した後、400メッシュろ過、噴霧乾燥機による乾燥、ジェットミルによる解砕を行って、樹脂粒子を得た。樹脂粒子には、乳化剤A及びV-50に由来するカチオン性の官能基が存在しているので、樹脂粒子の表面の極性がカチオン性になっている。
Second monomer polymerization step: After that, an emulsion of 5 parts by mass of EGDMA, 10 parts by mass of ion-exchanged water, and 0.05 parts by mass of emulsifier A was added dropwise for 10 minutes, and then the mixture was held for 30 minutes, and then heated to 90°C and held for 60 minutes to polymerize particles. After cooling the reaction liquid, the mixture was filtered through a 400 mesh filter, dried using a spray dryer, and crushed using a jet mill to obtain resin particles. Since the resin particles contain cationic functional groups derived from emulsifier A and V-50, the polarity of the surface of the resin particles is cationic.
<比較例2>
以下の点を除いて、実施例2と同様の方法で、樹脂粒子を製造した。
・乳化剤として、乳化剤Aの代わりに乳化剤Bを用いた。
・ベース粒子形成工程において、重合開始剤としてV-50:0.25質量部の代わりにAPS:0.3質量部を加えた。
<Comparative Example 2>
Resin particles were produced in the same manner as in Example 2, except for the following points.
As an emulsifier, emulsifier B was used instead of emulsifier A.
In the base particle forming step, 0.3 parts by mass of APS was added as a polymerization initiator instead of 0.25 parts by mass of V-50.
樹脂粒子には、乳化剤B及びAPSに由来するアニオン性の官能基が存在しており、樹脂粒子の表面の極性がアニオン性になっている。 The resin particles contain anionic functional groups derived from emulsifier B and APS, making the surface of the resin particles anionic in polarity.
1-2.シード重合法による樹脂粒子の製造
シード重合法によって、実施例3及び比較例3~5の樹脂粒子を製造した。シード重合法では、シード粒子形成工程とシード重合工程によって、樹脂粒子を製造した。シード粒子形成工程は、全ての実施例・比較例において同じ条件で行い、シード重合工程で用いる化合物を変えることによって、得られる樹脂粒子の表面に露出した官能基の種類が異なる種々の樹脂粒子を作製した。
1-2. Production of resin particles by seed polymerization method Resin particles of Example 3 and Comparative Examples 3 to 5 were produced by seed polymerization method. In the seed polymerization method, resin particles were produced by a seed particle formation step and a seed polymerization step. The seed particle formation step was carried out under the same conditions in all Examples and Comparative Examples, and various resin particles having different types of functional groups exposed on the surface of the resulting resin particles were produced by changing the compound used in the seed polymerization step.
実施例3及び比較例3~5でのシード重合工程で用いた化合物の組成をまとめたものを表2に示す。組成の単位は、質量部である。なお、最終の樹脂粒子中のシード粒子に由来する成分の割合は、3.7質量%であるので、樹脂粒子の組成は、表2に記載の組成に3.7質量%分のシード粒子の組成を足したものとなる。 Table 2 shows the compositions of the compounds used in the seed polymerization process in Example 3 and Comparative Examples 3 to 5. The units of composition are parts by mass. The ratio of the components derived from the seed particles in the final resin particles is 3.7% by mass, so the composition of the resin particles is the composition shown in Table 2 plus 3.7% by mass of the seed particle composition.
<実施例3>
・シード粒子形成工程
まず、撹拌機、還流冷却器、温度計を備えた反応装置にMMA20質量部、イオン交換水394質量部乳化剤A:0.05質量部を仕込み、70℃に昇温した。次いでV-50:1.0質量部を加えて重合反応を開始した。その後、反応開始から5分後に、MMA80質量部、n-OM:2質量部を30分間かけて滴下して、シード粒子を含むシードエマルジョンを形成した。
Example 3
- Seed particle formation step First, 20 parts by mass of MMA, 394 parts by mass of ion-exchanged water, and 0.05 parts by mass of emulsifier A were charged into a reaction apparatus equipped with a stirrer, a reflux condenser, and a thermometer, and the temperature was raised to 70°C. Next, 1.0 part by mass of V-50 was added to start the polymerization reaction. Then, 5 minutes after the start of the reaction, 80 parts by mass of MMA and 2 parts by mass of n-OM were dropped over 30 minutes to form a seed emulsion containing seed particles.
・シード重合工程
次に、撹拌機、還流冷却器、温度計を備えた反応装置にシードエマルジョン20.6質量部および、乳化液(MMA66.1質量部、EGDMA30質量部、Bw1.05質量部、水道水200質量部、乳化剤A:1質量部、亜硝酸ナトリウム0.05質量部を乳化)を仕込み50℃に昇温し30分間膨潤した。その後、DQ-100:0.2質量部添加し、70℃に昇温し重合反応を行った。反応液を冷却した後、400メッシュろ過、噴霧乾燥機による乾燥、ジェットミルによる解砕を行い、樹脂粒子を得た。樹脂粒子の表面には、DQ-100及び乳化剤Aに由来するカチオン性の官能基が存在しているので、樹脂粒子の表面の極性がカチオン性になっている。
- Seed polymerization step Next, 20.6 parts by mass of seed emulsion and an emulsified liquid (66.1 parts by mass of MMA, 30 parts by mass of EGDMA, 1.05 parts by mass of Bw, 200 parts by mass of tap water, 1 part by mass of emulsifier A, and 0.05 parts by mass of sodium nitrite) were charged into a reactor equipped with a stirrer, a reflux condenser, and a thermometer, and the temperature was raised to 50 ° C. and the mixture was allowed to swell for 30 minutes. Thereafter, 0.2 parts by mass of DQ-100 was added, and the mixture was heated to 70 ° C. to carry out a polymerization reaction. After cooling the reaction liquid, the mixture was filtered through a 400 mesh filter, dried with a spray dryer, and crushed with a jet mill to obtain resin particles. Since cationic functional groups derived from DQ-100 and emulsifier A are present on the surface of the resin particles, the polarity of the surface of the resin particles is cationic.
<比較例3>
比較例2は、シード粒子形成工程において、乳化剤Aの代わりにラウリル硫酸アンモニウム0.01質量部点添加した点と、V-50の代わりにAPS0.5質量部を添加した点と、シード重合工程において、DQ-100の代わりにMAAを1質量部添加した点と、乳化剤Aの代わりに、乳化剤Cを0.99質量部添加した点を除いて、実施例2と同様の方法で実施して樹脂粒子を得た。樹脂粒子の表面には、MAA及び乳化剤Cに由来するアニオン性の官能基が存在しているので、樹脂粒子の表面の極性がアニオン性になっている。
<Comparative Example 3>
In Comparative Example 2, resin particles were obtained by the same method as in Example 2, except that in the seed particle formation step, 0.01 parts by mass of ammonium lauryl sulfate was added instead of emulsifier A, 0.5 parts by mass of APS was added instead of V-50, 1 part by mass of MAA was added instead of DQ-100, and 0.99 parts by mass of emulsifier C was added instead of emulsifier A in the seed polymerization step. Since anionic functional groups derived from MAA and emulsifier C are present on the surface of the resin particles, the polarity of the surface of the resin particles is anionic.
<比較例4>
比較例4は、シード重合工程において、MAAの代わりにHEMAを1質量部添加した点を除いて、比較例3と同様の方法で実施して樹脂粒子を得た。樹脂粒子の表面には、乳化剤Cに由来するアニオン性の官能基が存在しているので、樹脂粒子の表面の極性がアニオン性になっている。
<Comparative Example 4>
In Comparative Example 4, resin particles were obtained in the same manner as in Comparative Example 3, except that 1 part by mass of HEMA was added instead of MAA in the seed polymerization step. Since anionic functional groups derived from emulsifier C are present on the surfaces of the resin particles, the polarity of the surfaces of the resin particles is anionic.
<比較例5>
比較例5は、シード重合工程において、MAAを添加しなかった点と、重合開始剤としてKPS0.5質量部を追加で加えた点を除いて、比較例3と同様の方法で実施して樹脂粒子を得た。樹脂粒子の表面には、KPS及び乳化剤Cに由来するアニオン性の官能基が存在しているので、樹脂粒子の表面の極性がアニオン性になっている
<Comparative Example 5>
In Comparative Example 5, resin particles were obtained in the same manner as in Comparative Example 3, except that MAA was not added in the seed polymerization step and 0.5 parts by mass of KPS was additionally added as a polymerization initiator. Since anionic functional groups derived from KPS and emulsifier C are present on the surface of the resin particles, the polarity of the surface of the resin particles is anionic.
2.粒子径及びスラリー粘度の測定
表1~表2に示す樹脂粒子について、粒子径及びスラリー粘度の測定を行い、平均粒子径、粒子径比率、及びCV値を算出した。その結果を表3に示す。粒子径がほぼ等しく、重合工程が同じ実施例1と比較例1、実施例2と比較例2をそれぞれ比較すると、樹脂粒子の表面の極性がカチオン性である実施例1~2は、樹脂粒子の表面の極性がアニオン性である比較例1~2に比べてスラリー粘度が低かった。粒子径がほぼ等しい実施例3と比較例3~5を比較すると、樹脂粒子の表面の極性がカチオン性である実施例3は、樹脂粒子の表面の極性がアニオン性である比較例3~5に比べてスラリー粘度が低かった。
2. Measurement of particle size and slurry viscosity The particle size and slurry viscosity of the resin particles shown in Tables 1 and 2 were measured, and the average particle size, particle size ratio, and CV value were calculated. The results are shown in Table 3. When comparing Example 1 and Comparative Example 1, and Example 2 and Comparative Example 2, which have almost the same particle size and the same polymerization process, Examples 1 and 2, in which the polarity of the surface of the resin particles is cationic, had a lower slurry viscosity than Comparative Examples 1 and 2, in which the polarity of the surface of the resin particles is anionic. When comparing Example 3 and Comparative Examples 3 to 5, in which the particle size is almost the same, Example 3, in which the polarity of the surface of the resin particles is cationic, had a lower slurry viscosity than Comparative Examples 3 to 5, in which the polarity of the surface of the resin particles is anionic.
表1~表3に示すように、樹脂粒子の表面の極性がカチオン性である実施例1~3は、樹脂粒子の表面の極性がアニオン性である比較例1~5に比べて、スラリー粘度が低かった。 As shown in Tables 1 to 3, Examples 1 to 3, in which the polarity of the resin particle surface is cationic, had a lower slurry viscosity than Comparative Examples 1 to 5, in which the polarity of the resin particle surface is anionic.
・粒子径の測定
粉末状態のベース粒子又は樹脂粒子を、走査型電子顕微鏡を用いて20000倍に拡大して撮影した画像から、平均的なサイズの粒子を200個選択し、それぞれの粒子の直径を測定して粒度分布を得た。粒子の直径の平均値を平均粒子径とし、樹脂粒子の平均粒子径をベース粒子の平均粒子径で除することによって、粒子径比率を算出した。また、樹脂粒子の粒度分布の標準偏差を樹脂粒子の平均粒子径で除することによってCV値を算出した。
Measurement of particle size From the image of the powdered base particles or resin particles taken by a scanning electron microscope at 20,000 times magnification, 200 particles of average size were selected, and the diameter of each particle was measured to obtain the particle size distribution. The average value of the particle diameter was taken as the average particle size, and the average particle size of the resin particles was divided by the average particle size of the base particles to calculate the particle size ratio. In addition, the CV value was calculated by dividing the standard deviation of the particle size distribution of the resin particles by the average particle size of the resin particles.
・スラリー粘度の測定
以下に示す測定方法1に従って、スラリー粘度を測定した。自転・公転式ミキサーとしては、あわとり練太郎 ARE-310(THINKY社製)を用いた。
Measurement of Slurry Viscosity The slurry viscosity was measured according to the following measurement method 1. As the rotation/revolution type mixer, a Thinky Mixer ARE-310 (manufactured by THINKY Corporation) was used.
(測定方法1)
まず、ポリアミック酸1.2g、ジメチルアセトアミド(DMAc)14g、前記樹脂粒子:4.8gを量り取り、自転・公転式ミキサーを使用し、2000rpm×5minの条件での混合と、2200rpm×30secの条件での脱泡を3回繰り返すことによって混合してスラリーを得る。次に、得られたスラリーについて、スラリーの作成から25℃条件、2日間経過後に、E型粘度計にて5rpm、液温25℃の条件でスラリー粘度を測定する。
(Measurement Method 1)
First, 1.2 g of polyamic acid, 14 g of dimethylacetamide (DMAc), and 4.8 g of the resin particles are weighed out, and a rotation/revolution mixer is used to mix the mixture at 2000 rpm for 5 min and defoaming at 2200 rpm for 30 sec three times to obtain a slurry. Next, the slurry viscosity of the obtained slurry is measured with an E-type viscometer at 5 rpm and at a liquid temperature of 25° C. after 2 days have passed since the preparation of the slurry at 25° C.
1:樹脂粒子、2:ポリイミド多孔質膜、2a:ポリイミド膜、2b:孔、3:ベース粒子、4:被覆部、5:乾燥シート、5a:ポリアミック酸膜 1: Resin particles, 2: Polyimide porous film, 2a: Polyimide film, 2b: Holes, 3: Base particles, 4: Coating, 5: Drying sheet, 5a: Polyamic acid film
Claims (9)
前記樹脂粒子は、(メタ)アクリル系樹脂で構成され、
前記(メタ)アクリル系樹脂中の(メタ)アクリル系モノマー単位の割合は、60~100質量%であり、
前記樹脂粒子の表面の極性がカチオン性である、樹脂粒子。 A resin particle for forming pores in a polyimide porous membrane, comprising:
The resin particles are composed of a (meth)acrylic resin,
The proportion of the (meth)acrylic monomer unit in the (meth)acrylic resin is 60 to 100% by mass,
The resin particles have a surface having cationic polarity.
前記樹脂粒子の表面に付着している乳化剤が、カチオン性乳化剤である、樹脂粒子。 The resin particle according to claim 1 ,
The emulsifier attached to the surface of the resin particles is a cationic emulsifier.
前記樹脂粒子を構成する重合体が、カチオン基を有する、樹脂粒子。 The resin particle according to claim 1 ,
The resin particles, wherein the polymer constituting the resin particles has a cationic group.
前記重合体の前記カチオン基は、カチオン性重合開始剤由来のカチオン基を含む、樹脂粒子。 The resin particles according to claim 3,
The cationic group of the polymer includes a cationic group derived from a cationic polymerization initiator.
前記重合体の前記カチオン基は、カチオン基含有モノマー由来のカチオン基を含む、樹脂粒子。 The resin particles according to claim 3 or 4,
The cationic group of the polymer includes a cationic group derived from a cationic group-containing monomer.
前記樹脂粒子は、(メタ)アクリル系樹脂で構成され、
前記(メタ)アクリル系樹脂中の(メタ)アクリル系モノマー単位の割合は、60~100質量%であり、
前記方法は、重合工程を備え、
前記重合工程で、モノマーを水性媒体中で重合させて前記樹脂粒子を形成し、
前記重合は、前記樹脂粒子の表面の極性がカチオン性になるカチオン化条件で行われる、方法。 A method for producing resin particles for forming pores in a polyimide porous membrane, comprising the steps of:
The resin particles are composed of a (meth)acrylic resin,
The proportion of the (meth)acrylic monomer unit in the (meth)acrylic resin is 60 to 100% by mass,
The method comprises a polymerization step,
In the polymerization step, a monomer is polymerized in an aqueous medium to form the resin particles;
The polymerization is carried out under cationization conditions such that the polarity of the surface of the resin particles becomes cationic.
前記重合は、カチオン性乳化剤の存在下で行われる、方法。 7. The method of claim 6,
The process wherein the polymerization is carried out in the presence of a cationic emulsifier.
前記重合は、カチオン性重合開始剤の存在下で行われる、方法。 7. The method of claim 6,
The process wherein the polymerization is carried out in the presence of a cationic polymerization initiator.
前記モノマーが、カチオン基含有モノマーを含む、方法。 The method according to any one of claims 6 to 8,
The method wherein the monomer comprises a cationic group-containing monomer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-028952 | 2023-02-27 | ||
JP2023028952 | 2023-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024181265A1 true WO2024181265A1 (en) | 2024-09-06 |
Family
ID=92590593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/006211 WO2024181265A1 (en) | 2023-02-27 | 2024-02-21 | Resin particles for creating pores in polyimide porous membrane, and method for producing same |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202444766A (en) |
WO (1) | WO2024181265A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018138645A (en) * | 2017-02-24 | 2018-09-06 | 富士ゼロックス株式会社 | Method for producing polyimide precursor solution, polyimide precursor solution, and method for producing porous polyimide film |
JP2018141110A (en) * | 2017-02-28 | 2018-09-13 | 富士ゼロックス株式会社 | Porous polyimide film, polyimide precursor solution, and method for producing porous polyimide film |
-
2024
- 2024-02-20 TW TW113105982A patent/TW202444766A/en unknown
- 2024-02-21 WO PCT/JP2024/006211 patent/WO2024181265A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018138645A (en) * | 2017-02-24 | 2018-09-06 | 富士ゼロックス株式会社 | Method for producing polyimide precursor solution, polyimide precursor solution, and method for producing porous polyimide film |
JP2018141110A (en) * | 2017-02-28 | 2018-09-13 | 富士ゼロックス株式会社 | Porous polyimide film, polyimide precursor solution, and method for producing porous polyimide film |
Also Published As
Publication number | Publication date |
---|---|
TW202444766A (en) | 2024-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101148842B (en) | Paper surface sizing agent and preparation method thereof | |
Cui et al. | Synthesis and characterization of emulsifier-free core–shell fluorine-containing polyacrylate latex | |
WO2008015870A1 (en) | Process for producing fine polymer particle | |
CN109415471B (en) | Aqueous polymer dispersion and process for producing the same | |
WO2019031461A1 (en) | Dispersion stabilizer for suspension polymerization and method for producing vinyl polymer using same | |
TWI519339B (en) | Filtering membrane | |
TWI289686B (en) | Composition for light-reflecting film and light-reflecting film using the same | |
CN108997879A (en) | Fluorine-containing superhydrophilic self-cleaning coating | |
WO2024181265A1 (en) | Resin particles for creating pores in polyimide porous membrane, and method for producing same | |
CN104558453B (en) | Method for preparing cationic fluorine-containing amphiphilic block copolymer micelles | |
WO2024181264A1 (en) | Resin particles for pore formation of polyimide porous films, and method for producing same | |
JP5626716B2 (en) | Method for producing porous hollow polymer particles and porous hollow polymer particles | |
CN113248712B (en) | Fluorosilicone monomer, fluorosilicone acrylate emulsion and preparation method of emulsion | |
Fan et al. | Regulating the size and molecular weight of polymeric particles by 1, 1-diphenylethene controlled soap-free emulsion polymerization | |
JPS6019793B2 (en) | Oil repellent with excellent film forming properties | |
JP7261378B2 (en) | slurry composition | |
JPWO2017022423A1 (en) | (Meth) acrylic crosslinked particles and production method thereof | |
KR20210064752A (en) | Method for preparing emulsion, and emulsion thereof | |
CN112534021A (en) | Resin composition for vibration damping material | |
JP7672242B2 (en) | Hydroxyl-containing polymer and method for producing the same | |
JP5453027B2 (en) | Metal composite organic resin particles and method for producing metal composite organic resin particles | |
JP2006137951A (en) | Polymer particle and method of producing the same | |
JP2020050779A (en) | Aqueous emulsion | |
JP2005240220A (en) | Surface sizing agent for paper | |
CN118786569A (en) | Raw material for coating material for secondary battery separator, coating material for secondary battery separator, secondary battery separator and secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24763746 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2025503822 Country of ref document: JP |