WO2024181192A1 - Flake, printed matter, article provided with printed matter, and identification medium - Google Patents
Flake, printed matter, article provided with printed matter, and identification medium Download PDFInfo
- Publication number
- WO2024181192A1 WO2024181192A1 PCT/JP2024/005671 JP2024005671W WO2024181192A1 WO 2024181192 A1 WO2024181192 A1 WO 2024181192A1 JP 2024005671 W JP2024005671 W JP 2024005671W WO 2024181192 A1 WO2024181192 A1 WO 2024181192A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- liquid crystal
- retardation
- flakes
- flake
- Prior art date
Links
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 269
- 230000003098 cholesteric effect Effects 0.000 claims abstract description 16
- 239000010410 layer Substances 0.000 claims description 625
- 150000001875 compounds Chemical class 0.000 claims description 67
- 239000000203 mixture Substances 0.000 claims description 67
- 239000002245 particle Substances 0.000 claims description 36
- 239000012790 adhesive layer Substances 0.000 claims description 9
- 230000001788 irregular Effects 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 description 215
- 239000010408 film Substances 0.000 description 180
- 239000000976 ink Substances 0.000 description 97
- 239000004986 Cholesteric liquid crystals (ChLC) Substances 0.000 description 94
- 230000010287 polarization Effects 0.000 description 28
- 238000000034 method Methods 0.000 description 26
- 239000000758 substrate Substances 0.000 description 23
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 22
- 238000011282 treatment Methods 0.000 description 21
- 230000003287 optical effect Effects 0.000 description 17
- 125000004432 carbon atom Chemical group C* 0.000 description 16
- 235000019646 color tone Nutrition 0.000 description 15
- UWCWUCKPEYNDNV-LBPRGKRZSA-N 2,6-dimethyl-n-[[(2s)-pyrrolidin-2-yl]methyl]aniline Chemical compound CC1=CC=CC(C)=C1NC[C@H]1NCCC1 UWCWUCKPEYNDNV-LBPRGKRZSA-N 0.000 description 14
- 239000000853 adhesive Substances 0.000 description 14
- 230000001070 adhesive effect Effects 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 125000000217 alkyl group Chemical group 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 238000007639 printing Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- 125000003277 amino group Chemical group 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 238000001723 curing Methods 0.000 description 7
- 125000005843 halogen group Chemical group 0.000 description 7
- 238000000691 measurement method Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- 125000004093 cyano group Chemical group *C#N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 125000003700 epoxy group Chemical group 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 238000007650 screen-printing Methods 0.000 description 6
- 125000001424 substituent group Chemical group 0.000 description 6
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 125000003396 thiol group Chemical group [H]S* 0.000 description 5
- 125000002947 alkylene group Chemical group 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- -1 cinnamoyl group Chemical group 0.000 description 4
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 3
- 125000004959 2,6-naphthylene group Chemical group [H]C1=C([H])C2=C([H])C([*:1])=C([H])C([H])=C2C([H])=C1[*:2] 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000005268 rod-like liquid crystal Substances 0.000 description 3
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- 125000004955 1,4-cyclohexylene group Chemical group [H]C1([H])C([H])([H])C([H])([*:1])C([H])([H])C([H])([H])C1([H])[*:2] 0.000 description 2
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 2
- 125000005828 4,4′-bicyclohexylene group Chemical group [H]C1([H])C([H])([H])C([H])(C([H])([H])C([H])([H])C1([H])[*:1])C1([H])C([H])([H])C([H])([H])C([H])([*:2])C([H])([H])C1([H])[H] 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- 125000005083 alkoxyalkoxy group Chemical group 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 2
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 2
- AUXIEQKHXAYAHG-UHFFFAOYSA-N 1-phenylcyclohexane-1-carbonitrile Chemical class C=1C=CC=CC=1C1(C#N)CCCCC1 AUXIEQKHXAYAHG-UHFFFAOYSA-N 0.000 description 1
- 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 description 1
- WLNDDIWESXCXHM-UHFFFAOYSA-N 2-phenyl-1,4-dioxane Chemical class C1OCCOC1C1=CC=CC=C1 WLNDDIWESXCXHM-UHFFFAOYSA-N 0.000 description 1
- OXPDQFOKSZYEMJ-UHFFFAOYSA-N 2-phenylpyrimidine Chemical class C1=CC=CC=C1C1=NC=CC=N1 OXPDQFOKSZYEMJ-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical group OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000005194 alkoxycarbonyloxy group Chemical group 0.000 description 1
- 125000005370 alkoxysilyl group Chemical group 0.000 description 1
- 125000005196 alkyl carbonyloxy group Chemical group 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004069 aziridinyl group Chemical group 0.000 description 1
- 125000005337 azoxy group Chemical group [N+]([O-])(=N*)* 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229920003174 cellulose-based polymer Polymers 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- WQJONRMBVKFKOB-UHFFFAOYSA-N cyanatosulfanyl cyanate Chemical group N#COSOC#N WQJONRMBVKFKOB-UHFFFAOYSA-N 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- ZBKFYXZXZJPWNQ-UHFFFAOYSA-N isothiocyanate group Chemical group [N-]=C=S ZBKFYXZXZJPWNQ-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000003566 oxetanyl group Chemical group 0.000 description 1
- OPYYWWIJPHKUDZ-UHFFFAOYSA-N phenyl cyclohexanecarboxylate Chemical class C1CCCCC1C(=O)OC1=CC=CC=C1 OPYYWWIJPHKUDZ-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 150000001911 terphenyls Chemical class 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 125000002053 thietanyl group Chemical group 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000005068 thioepoxy group Chemical group S(O*)* 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B42—BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
- B42D—BOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
- B42D25/00—Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
- B42D25/30—Identification or security features, e.g. for preventing forgery
- B42D25/36—Identification or security features, e.g. for preventing forgery comprising special materials
- B42D25/364—Liquid crystals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
Definitions
- the present invention relates to flakes, printed matter and articles comprising the same, and identification media.
- the identification medium is required to have anti-counterfeiting properties and an identification function.
- the anti-counterfeiting properties of the identification medium here refer to the performance of the identification medium being such that it cannot be easily replicated using common printing or other techniques.
- the identification function of the identification medium refers to the ability, by some means, to distinguish with a high degree of reliability a genuine identification medium from a counterfeit identification medium that has been forged using common techniques.
- Identification media often have a special structure that produces optical effects not seen in ordinary materials.
- they may have optical properties that, depending on the observation method, produce special changes in the display state that cannot be obtained with display media manufactured by general manufacturing techniques.
- optical properties can also be used as properties that are aesthetically pleasing and produce design effects.
- optical display media having the same structure as identification media may be used both as identification media and as decorative media, or optical display media having the same structure as identification media may be used simply as decorative media without being used as identification media.
- an identification medium a configuration including a light reflective layer that reflects circularly polarized light and a patterned retardation layer is known (see, for example, Patent Document 1). Furthermore, as a pigment for decorating an article, a platelet-shaped pigment containing molecules fixed while maintaining cholesteric regularity is known (see, for example, Patent Document 2). A method is known in which a thin film of a cholesteric resin is formed on a base film, and then the thin resin film is peeled off from the base film to form a peeled piece of the thin resin film (see Patent Documents 3 and 4, etc.).
- the identification medium prefferably has a portion having the identification function concealed, that is, the presence of the portion having the identification function cannot be detected by normal observation.
- the presence of the portion having the identification function cannot be detected by normal observation, counterfeiters will not recognize the identification medium as an identification medium, but only as a normal display medium, and in that case, counterfeiters will not even think of imitating the identification function of the identification medium. Therefore, an identification medium in which the portion having the identification function is concealed is less likely to be counterfeited by imitating the identification function.
- two types of liquid crystal layers having opposite twist structures and cholesteric regularity may be used in the discrimination medium.
- Such two types of liquid crystal layers can selectively reflect circularly polarized light having opposite rotation directions.
- Such two kinds of liquid crystal cured layers can be manufactured by using a composition containing a common liquid crystal compound and suitable chiral agents different from each other as a liquid crystal composition for forming the liquid crystal cured layers.
- a common liquid crystal compound By using a common liquid crystal compound, the reflected light of the two kinds of liquid crystal cured layers can be made to approach the same color tone when observed with the naked eye, and these reflected lights can be distinguished from each other when observed with a suitable viewer.
- the identification medium could be produced by printing, it would be advantageous from the standpoint of productivity.
- the present inventors have found that the above-mentioned problems can be solved by flakes of a laminate (C) including a liquid crystal cured layer (A) having cholesteric regularity and a retardation layer (B) that imparts a retardation to incident light, and have completed the present invention. That is, the present invention provides the following.
- the laminate (C) is a laminate in which the retardation layer (B) is laminated in a thickness direction on the entire surface of the cured liquid crystal layer (A).
- the ratio (D50/d) of the volume-based average particle diameter D50 of the flakes to the thickness d of the flakes is 4 or more.
- ⁇ 4> The flake according to any one of ⁇ 1> to ⁇ 3>, wherein the thickness d(B) of the retardation layer (B) is 3 ⁇ m or less.
- ⁇ 5> The flake according to any one of ⁇ 1> to ⁇ 4>, wherein the retardation layer (B) is a cured layer of a liquid crystal composition containing a liquid crystalline compound having a birefringence ⁇ n of 0.2 or more.
- ⁇ 6> The flake according to any one of ⁇ 1> to ⁇ 5>, wherein a retardation ReB(0) in a front direction of the retardation layer (B) at a wavelength of 550 nm is 250 nm or more and 350 nm or less.
- ⁇ 7> The flake according to any one of ⁇ 1> to ⁇ 5>, wherein the retardation layer (B) has a retardation in a front direction, ReB(0), at a wavelength of 550 nm is 10 nm or less.
- the retardation layer (B) in a polar angle direction of 45° at a wavelength of 550 nm, ReB(45), is 50 nm or more and 100 nm or less, or 250 nm or more and 350 nm or less.
- ⁇ 9> The flake according to any one of ⁇ 1> to ⁇ 8>, wherein the selective reflection band in the front direction of the liquid crystal cured layer (A) includes a wavelength range of 420 nm to 650 nm, and the width of the selective reflection band in the front direction is 200 nm or more.
- the selective reflection band in the front direction of the liquid crystal cured layer (A) is in the range of 380 nm to 780 nm, and the width of the selective reflection band is 50 nm to 150 nm.
- ⁇ 11> The flake according to any one of ⁇ 1> to ⁇ 10>, wherein the thickness of the cured liquid crystal layer (A) is 6 ⁇ m or less.
- ⁇ 12> The flakes according to any one of ⁇ 1> to ⁇ 11>, having a volume-based average particle diameter D50 of 50 ⁇ m or less.
- ⁇ 13> The flakes according to any one of ⁇ 1> to ⁇ 12>, wherein each flake has an irregular shape when viewed in the thickness direction.
- ⁇ 14> The flakes according to any one of ⁇ 1> to ⁇ 13>, wherein each flake has a rectangular shape when viewed in the thickness direction.
- ⁇ 15> The flake according to any one of ⁇ 1> to ⁇ 14>, further comprising an adhesive layer between the liquid crystal cured layer (A) and the retardation layer (B).
- ⁇ 16> The flake according to any one of ⁇ 1> to ⁇ 15>, wherein a thickness ratio (d(B)/d(A)) of a thickness d(B) of the retardation layer (B) to a thickness d(A) of the liquid crystal cured layer (A) is 0.8 or less.
- ⁇ 17> A printed matter comprising a layer of ink containing the flakes according to any one of ⁇ 1> to ⁇ 16>.
- ⁇ 18> An article comprising the printed matter according to ⁇ 17>.
- An identification medium having a display surface, A first ink layer provided in a region R1 occupying a part of the display surface; a second ink layer provided in a region R2 occupying a part of the display surface and occupying a part or all of the region other than the region R1 ;
- the first ink layer contains a first flake according to any one of ⁇ 1> to ⁇ 16>, wherein the retardation layer (B) is a retardation layer (B1) that gives a retardation ReB1( ⁇ ) to incident light having a wavelength of 550 nm from a predetermined polar angle ⁇ ;
- the second ink layer contains second flakes, which are flakes of the cured liquid crystal layer (A) or flakes of a laminate (C2) including the cured liquid crystal layer (A) and a retardation layer (B2) that imparts a retardation ReB2( ⁇ ) to incident light having a wavelength of 550 nm from a predetermined polar angle ⁇ ;
- An identification medium
- the present invention can provide novel flakes that can impart identification functionality to printed matter; printed matter using the flakes; articles equipped with printed matter; and identification media using the novel flakes.
- FIG. 1 is a cross-sectional view showing a schematic diagram of one flake according to embodiment F1 of the present invention.
- FIG. 2 is a cross-sectional view showing a schematic diagram of one flake according to embodiment F2 of the present invention.
- FIG. 3 is a cross-sectional view that illustrates a printed matter according to an embodiment of the present invention.
- FIG. 4 is a top view that illustrates a printed matter according to an embodiment of the present invention.
- the front direction of a certain layer means the normal direction of the principal surface of the layer, specifically the direction of the polar angle of 0° and the azimuth angle of 0° of the principal surface.
- the oblique direction of a certain layer means a direction that is neither parallel nor perpendicular to the principal surface of the layer, and more specifically, refers to a direction in which the polar angle of the principal surface is in the range greater than 0° and less than 90°.
- (meth)acrylic includes “acrylic", “methacrylic”, and combinations thereof.
- (thio)epoxy group includes “epoxy group”, “thioepoxy group”, and combinations thereof
- iso(thio)cyanate group includes “isocyanate group”, “isothiocyanate group”, and combinations thereof.
- nx represents the refractive index in the direction perpendicular to the thickness direction of the layer (in-plane direction) that gives the maximum refractive index.
- ny represents the refractive index in the in-plane direction of the layer that is perpendicular to the direction of nx.
- nz represents the refractive index in the thickness direction of the layer.
- d represents the thickness of the layer.
- the measurement wavelength is 550 nm, unless otherwise specified.
- the phase difference in the oblique direction is also described.
- the in-plane retardation Re is usually measured by optically observing the layer from a direction of a polar angle of 0°, while the retardation in the oblique direction corresponds to the apparent in-plane retardation value when the observation direction is changed to an oblique direction of a polar angle of more than 0° and the surface perpendicular to the observation direction is considered to be the surface of the layer.
- the retardation in the oblique direction observed from a certain polar angle may be indicated by adding the numerical value of the polar angle.
- the oblique retardation of the retardation layer (B) observed from a polar angle of 45° may be indicated as ReB(45).
- the in-plane retardation of the retardation layer (B) observed from a polar angle of 0°, i.e., from the front direction may be indicated as ReB(0) to clearly indicate that.
- in-plane retardation it means the retardation observed from the front direction (retardation in the front direction).
- nx' is calculated by the following formula (e1).
- the direction of the slow axis of a layer refers to the direction of the slow axis in the in-plane direction unless otherwise specified.
- the definition is as described above.
- the directions of elements as “parallel,” “vertical,” and “orthogonal” may include an error within a range that does not impair the effect of the present invention, for example, within the range of ⁇ 3°, ⁇ 2°, or ⁇ 1°.
- the adhesive refers not only to adhesives in the narrow sense (adhesives having a shear storage modulus of 1 MPa to 500 MPa at 23°C after irradiation with energy rays or after heat treatment) but also to pressure-sensitive adhesives having a shear storage modulus of less than 1 MPa at 23°C. Therefore, the term "adhesive layer" encompasses not only a layer of an adhesive in the narrow sense, but also a layer of a pressure-sensitive adhesive.
- polarizer and “plate” are not limited to rigid members, but also include flexible members such as resin films.
- right-handed circularly polarized light and “left-handed circularly polarized light” are defined based on the direction of rotation of circularly polarized light when observing the destination of the light from the source of the light.
- polarized light whose polarization direction rotates clockwise as the light travels is called right-handed circularly polarized light
- polarized light whose direction rotates in the opposite direction is called left-handed circularly polarized light.
- the flakes of this embodiment are flakes of a laminate (C) including a liquid crystal cured layer (A) having cholesteric regularity and a retardation layer (B) that imparts a retardation to incident light.
- the laminate (C) is usually a laminate in which the retardation layer (B) is superimposed in the thickness direction on the entire surface of the cured liquid crystal layer (A). Therefore, in the flakes of the laminate (C), the retardation layer (B) is usually superimposed in the thickness direction on the entire surface of the cured liquid crystal layer (A).
- the flakes of this embodiment are flakes of a laminate (C) including a cured liquid crystal layer (A) and a retardation layer (B), and therefore include the cured liquid crystal layer (A) and the retardation layer (B).
- the flakes of the laminate (C) including the cured liquid crystal layer (A) and the retardation layer (B) are also referred to as flakes (AB).
- the flakes of the cured liquid crystal layer (A) are also referred to as flakes (A).
- the flakes (AB) may be flakes of a laminate (C) including a liquid crystal cured layer (A) and a plurality of retardation layers (B).
- the total thickness d tot (B) of the retardation layer (B) in the thickness ratio (d tot (B)/d(A)) described later is the sum of the thicknesses d(B) of the plurality of retardation layers (B).
- the flake (AB) may be a flake of a laminate (C) including a first retardation layer (Ba) as the retardation layer (B), a liquid crystal cured layer (A), and a second retardation layer (Bb) as the retardation layer (B) in this order.
- the total thickness d tot (B) of the retardation layer (B) in the thickness ratio (d tot (B)/ d (A)) described later is the sum (d(Ba)+d(Bb)) of the thickness d(Ba) of the first retardation layer (Ba) and the thickness d(Bb) of the second retardation layer (Bb).
- the reflected light by the liquid crystal cured layer (A) included in the flake is not affected by the retardation layer (B), but there are usually flakes having the retardation layer (B) facing the observation side, and the reflected light by the liquid crystal cured layer (A) included in this flake is affected by the retardation layer (B), so that the reflected light by the entire flake (AB) includes light having a different polarization state from the reflected light by the flake (A).
- the flake (AB) may be a flake (AB) having only one retardation layer (B), or may be a flake (AB) having two retardation layers (B), that is, a retardation layer (B), a liquid crystal cured layer (A), and a retardation layer (B) in this order.
- the flake (AB1) described later may be a flake (AB1) having only one retardation layer (B1), or may be a flake (AB1) having two retardation layers (B1), that is, a retardation layer (B1), a liquid crystal cured layer (A), and a retardation layer (B1) in this order.
- the flake (AB2) described later may be a flake (AB2) having only one retardation layer (B2), or may be a flake (AB2) having two retardation layers (B2), i.e., a retardation layer (B2), a liquid crystal cured layer (A), and a retardation layer (B2) in this order.
- a method of changing the chiral agent contained in the liquid crystal composition which is the material of the liquid crystal cured layer (A)
- the chiral agent contained in the liquid crystal composition which is the material of the liquid crystal cured layer (A)
- the color tone may be different between the flakes of the liquid crystal cured layer and the flakes of the liquid crystal cured layer (A).
- the color tones of the two are almost the same or the same when observed with the naked eye, and therefore, adjustment of the material of the liquid crystal cured layer to make the color tones the same is not usually required.
- the laminate (C1) and the laminate (C2) have the same liquid crystal cured layer (A).
- the retardation layer (B1) and the retardation layer (B2) give different phase differences to the incident light.
- the retardation layer (B1) gives a phase difference ReB1( ⁇ ) to the incident light having a wavelength of 550 nm from a predetermined polar angle ⁇
- the retardation layer (B2) gives a phase difference ReB2( ⁇ ) to the incident light having a wavelength of 550 nm from a predetermined polar angle ⁇ , where
- the polar angle ⁇ is 0° or is greater than 0° and less than 90°.
- the flakes of the laminate (C1) are also called flakes (AB1)
- the flakes of the laminate (C2) are also called flakes (AB2).
- the reflected light from the liquid crystal cured layer (A) is incident on the retardation layer (B1) at a predetermined polar angle ⁇
- the reflected light from the liquid crystal cured layer (A) is incident on the retardation layer (B2) at a predetermined polar angle ⁇ .
- the light emitted from the retardation layer (B1) is given a phase difference ReB1( ⁇ ) and has a different polarization state from the reflected light from the liquid crystal cured layer (A).
- the light emitted from the retardation layer (B2) is also given a phase difference ReB2( ⁇ ) and has a different polarization state from the reflected light from the liquid crystal cured layer (A), and further, since
- differences in polarization states cannot be distinguished with the naked eye, so when flake (AB1) and flake (AB2) are placed on a surface and the reflected light is observed with the naked eye, both flakes have approximately the same or the same color tone.
- the color tones of a flake (AB1) and a flake (AB2) arranged on a certain surface can be distinguished.
- the laminate (C) By forming the laminate (C) in the form of flakes, the following effects are achieved.
- the laminate (C) is used as it is, such as by attaching it to the underlayer without making it into flakes, the in-plane slow axis of the retardation layer (B) of the laminate (C) is in a fixed direction with respect to the underlayer. Therefore, when the laminate (C) is observed from the front direction (polar angle 0 ° direction) using a viewer such as a linear polarizing plate, the amount of light transmitted through the viewer changes depending on the angle between the direction parallel to the in-plane slow axis of the retardation layer (B) and the transmission axis of the viewer.
- the laminate (C) is crushed or the like and arranged on the underlayer as flakes (AB)
- the retardation layer (B) of each flake (AB) has an in-plane slow axis
- the entirety of the multiple flakes (AB) does not have an in-plane slow axis in a specific direction relative to the underlayer. Therefore, when observed from the front direction (polar angle 0°), the amount of light transmitted by the viewer is usually constant regardless of the orientation of the transmission axis of the viewer.
- the flakes (AB) further have the following effect.
- the retardation ReB(0) in the front direction of the retardation layer (B) is ⁇ /2 or close to ⁇ /2
- the left-handed circularly polarized light or the right-handed circularly polarized light reflected in the front direction from the liquid crystal cured layer (A) is changed in polarization state to the circularly polarized light with the opposite rotation direction by the action of the retardation layer (B).
- the circularly polarized light cannot have a principal axis direction
- the amount of transmitted light of the circular polarizer does not change depending on the rotation angle even if the circular polarizer is rotated around the axis of the front direction.
- the entire flake (AB) does not have an in-plane slow axis in a specific direction, there is usually no effect on the observation using the circular polarizer.
- the flakes (AB) further have the following effect.
- the retardation layer (B) (usually a C plate) having a retardation ReB(0) of 0 nm or close to 0 nm in the front direction usually gives a retardation greater than 0 nm to the transmitted light in the oblique direction.
- the retardation ReB(0) in the front direction is 0 nm or close to 0 nm
- the direction in which the refractive index of the retardation layer (B) is maximum or minimum in the plane perpendicular to the traveling direction of the observed light is perpendicular to the traveling direction of the light and parallel to the plane of the retardation layer (B).
- the slow axis or fast axis of the retardation layer (B) in a plane perpendicular to the traveling direction of the observed light is in the same direction with respect to the traveling direction of the observed light and is parallel to the plane of the retardation layer (B).
- the amount of transmitted light of the linear polarizing plate is usually constant regardless of the azimuth angle from which the observation is made.
- the reflected light of the flakes (AB) is observed from a certain polar angle direction using a linear polarizer
- the transmission axis of the linear polarizer and a plane that includes the traveling direction of the observed light and is perpendicular to the surface of the retardation layer (B) form an angle of 45° or 135°
- the amount of transmitted light of the linear polarizer becomes the largest or smallest regardless of the azimuth angle from which the observation is made. Therefore, the difference in the amount of transmitted light between the flakes (AB) and the flakes (A) can be increased.
- the flakes (AB) have a thickness ratio (d tot (B)/d(A)) of the total thickness d tot (B) of the retardation layer (B) to the thickness d(A) of the liquid crystal cured layer (A) of preferably 0.8 or less, more preferably 0.4 or less, and usually greater than 0.
- a thickness ratio (d tot (B)/d(A)) is 0.8 or less, it becomes easier to produce the flakes (AB) by crushing the laminate (C).
- the proportion of the flakes (AB) in which the main surface of either the liquid crystal cured layer (A) or the retardation layer (B) faces the observation side becomes higher than the proportion of the flakes (AB) in which the side faces the observation side. Therefore, the retardation layer (B) provided in the flakes (AB) can effectively exert the above-mentioned effect.
- the total thickness d tot (B) is equal to the thickness d(B) of one retardation layer (B) that the flake (AB) has.
- the thickness of the flakes (AB) is preferably 25 ⁇ m or less, more preferably 12 ⁇ m or less, and is usually greater than 0 ⁇ m, preferably 7 ⁇ m or more.
- the thickness of the flake (AB) be equal to or greater than the lower limit, the desired optical effects such as high reflectance can be satisfactorily exhibited.
- the thickness be equal to or less than the upper limit, when the flake (AB) is placed on a surface, the proportion of the flake (AB) in which either the main surface of the liquid crystal cured layer (A) or the retardation layer (B) faces the observation side is greater than the proportion of the flake (AB) in which the side faces the observation side. Therefore, the retardation layer (B) provided in the flake (AB) can effectively exert the above-mentioned action.
- the flakes (AB) have a volume-based average particle diameter D50 of preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and usually more than 0 ⁇ m.
- the ink containing the flakes (AB) can be more suitable for various printing methods such as screen printing.
- the average particle diameter D50 of the flakes (AB) the value of the median diameter D50 at which the cumulative volume is 50% in the particle diameter distribution measured using a laser diffraction/scattering type particle size distribution measuring device (for example, Horiba, Ltd., product name "LA-960" can be used.
- the thickness d of the flake (AB) may be the thickness d(C).
- the aspect ratio of the flake (AB) may be the ratio (D50/d) of the volume-based average particle diameter D50 of the flake to the thickness d of the flake.
- the ratio value (D50/d(C)) obtained by dividing the volume-based average particle diameter D50 of the flake (AB) by the thickness d(C) of the laminate (C) may be used as the ratio (D50/d) of the volume-based average particle diameter D50 of the flake to the thickness d of the flake.
- the value of the ratio is preferably 4 or more, more preferably 5 or more, particularly preferably 7 or more, and preferably 20 or less, more preferably 15 or less, particularly preferably 10 or less.
- the ratio (D50/d) is equal to or greater than the lower limit, when the flakes (AB) are arranged on a surface, the ratio of the flakes (AB) whose main surface of either the liquid crystal cured layer (A) or the retardation layer (B) faces the observation side is greater than the ratio of the flakes (AB) whose side faces the observation side. Therefore, the retardation layer (B) of the flakes (AB) can effectively exert the above-mentioned function.
- the flakes (AB) have an irregular shape when viewed from the thickness direction of each of the flakes (AB).
- a mill such as a cutter mill
- flakes (AB) having various and irregular shapes can be obtained.
- the flakes (AB) have a regular shape when viewed from the thickness direction.
- Examples of the shape of each of the flakes (AB) include a triangle, a rectangle, a hexagon, and a cross, and a rectangle is preferable.
- the flakes (AB) may have a single, or two or more, regular shapes when viewed from the thickness direction.
- By cutting the laminate (C) into a regular shape flakes (AB) having a regular shape when viewed from the thickness direction can be obtained.
- the flakes (AB) of this embodiment are observed under magnification according to the particle size of the flakes, it can be confirmed that each flake (AB) has a regular shape, and therefore the authenticity of the ink layer containing the flakes (AB) can be easily confirmed.
- Liquid crystal hardened layer (A)> The liquid crystal cured layer (A) has cholesteric regularity.
- cholesteric regularity refers to a state in which the molecular axes are aligned in a certain direction on a certain plane inside the material, but on the next plane that overlaps it, the direction of the molecular axes is shifted at a slight angle, and on the next plane The angle of the molecular axis in the plane is shifted (twisted) as the light passes through the overlapping planes.
- the internal molecules have cholesteric regularity, the molecules are aligned on a first plane inside the layer such that the molecular axes are in a certain direction.
- the direction of the molecular axis is slightly offset from the direction of the molecular axis in the first plane.
- the direction of the molecular axis in the first plane is further displaced from the direction of the molecular axis in the second plane at an angle. In this way, the angles of the molecular axes in the planes are sequentially displaced (twisted) in the overlapping planes. go.
- a structure in which the molecular axis direction is twisted in this way is usually a helical structure, which is an optically chiral structure.
- the liquid crystal cured layer (A) which has an optically chiral structure, has a circularly polarized light selective reflection function that selectively reflects normal circularly polarized light.
- the liquid crystal cured layer (A) "selectively reflects" light in a specific wavelength range, it means that it reflects one circularly polarized component of unpolarized light (i.e., natural light) in a specific wavelength range and transmits the other circularly polarized component.
- the term "selective reflection band” refers to a wavelength range of circularly polarized light that is selectively reflected. Specifically, the selective reflection band is a wavelength range in which the reflectance of unpolarized light incident on the liquid crystal cured layer (A) by the liquid crystal cured layer (A) is 30% or more and 50% or less. In the selective reflection band, the reflectance of the cured liquid crystal layer (A) for unpolarized light incident on the cured liquid crystal layer (A) is at most 50%.
- the "width of the selective reflection band” means the half-width of the selective reflection band.
- the half-width ⁇ of the selective reflection band is the difference between the maximum wavelength and the minimum wavelength in the wavelength region showing a reflectance of 50% or more of the peak reflectance in the selective reflection band. For example, when the peak reflectance is 40%, the half-width ⁇ is the difference between the maximum wavelength and the minimum wavelength in the wavelength region showing a reflectance of 20% or more.
- the selective reflection central wavelength ⁇ c is the average value of the maximum wavelength and the minimum wavelength (i.e., the sum of these divided by 2). The units of ⁇ and ⁇ c can usually be expressed in nm.
- the liquid crystal cured layer (A) provided in the flake (AB) preferably has a selective reflection band in the front direction that includes a wavelength range of 420 nm or more and 650 nm or less, and the width of the selective reflection band in the front direction is 200 nm or more, more preferably 250 nm or more, and even more preferably 300 nm or more.
- the upper limit is not particularly limited, but is, for example, 400 nm or less.
- the liquid crystal cured layer (A) of the flake (AB) preferably has a selective reflection band in the front direction within the range of 380 nm or more and 780 nm or less, and the width of the selective reflection band is preferably 10 nm or more, more preferably 15 nm or more, even more preferably 20 nm or more, particularly preferably 50 nm or more, and preferably 150 nm or less, more preferably 130 nm or less, even more preferably 120 nm or less, and even more preferably 90 nm or less.
- the flake (AB) having the liquid crystal cured layer (A) can exhibit a color tone according to the central wavelength ⁇ c of the selective reflection band. For example, when ⁇ c is in the blue wavelength region, the flake (AB) having the liquid crystal cured layer (A) can exhibit a blue color.
- the selective reflection band in the front direction refers to the selective reflection band when the liquid crystal cured layer (A) is observed from the front direction.
- the central wavelength ⁇ c of the selective reflection band can be adjusted by the type of material constituting the liquid crystal cured layer (A) and the ratio of those components, as well as the manufacturing conditions of the liquid crystal cured layer (A).
- the pitch of the cholesteric regular helix can be adjusted by the type of liquid crystal compound and the chiral agent, as well as the content ratio of the chiral agent, and in particular, slight adjustments to the pitch can be easily achieved by changing the content ratio of the chiral agent.
- the central wavelength ⁇ c of the selective reflection band can be easily adjusted to the desired value.
- the selective reflection band of the liquid crystal cured layer (A) in the flakes (AB) usually coincides with the selective reflection band of the liquid crystal cured layer (A) before crushing, so the value of the selective reflection band of the liquid crystal cured layer (A) before crushing can be used as it is as the value of the selective reflection band of the liquid crystal cured layer (A) in the flakes (AB).
- the reflectance of the liquid crystal cured layer (A) can be the integrated reflectance measured using unpolarized light as the incident light.
- the integrated reflectance can be measured using an ultraviolet-visible spectrophotometer equipped with an integrating sphere (e.g., the UV-Vis 550 manufactured by JASCO Corporation).
- the liquid crystal cured layer (A) having cholesteric regularity is a layer obtained by curing a curable liquid crystal compound exhibiting a cholesteric liquid crystal phase.
- the liquid crystal cured layer (A) having cholesteric regularity is also referred to as a cholesteric liquid crystal cured layer (A).
- the cholesteric liquid crystal cured layer (A) can be obtained, for example, by polymerizing a polymerizable liquid crystal compound in a state in which the compound exhibits a cholesteric liquid crystal phase. More specifically, the cholesteric liquid crystal cured layer (A) can be obtained by forming a layer of a liquid crystal composition containing a polymerizable liquid crystal compound, for example by applying the liquid crystal composition to a suitable substrate, orienting the layer in a cholesteric liquid crystal phase, and curing the layer.
- a photopolymerizable liquid crystal compound As the polymerizable liquid crystal compound, a photopolymerizable liquid crystal compound is preferred.
- a photopolymerizable liquid crystal compound a photopolymerizable liquid crystal compound that can be polymerized by irradiation with active energy rays can be used.
- active energy ray an energy ray that can promote the polymerization reaction of the photopolymerizable liquid crystal compound can be adopted from a wide range of energy rays such as visible light, ultraviolet light, and infrared light, and ionizing radiation such as ultraviolet light is particularly preferred.
- a rod-shaped liquid crystal compound having two or more reactive groups in one molecule is preferred, and a compound represented by formula (1) is particularly preferred.
- R3 and R4 are reactive groups, each independently representing a group selected from the group consisting of a (meth)acrylic group, a (thio)epoxy group, an oxetane group, a thietanyl group, an aziridinyl group, a pyrrole group, a vinyl group, an allyl group, a fumarate group, a cinnamoyl group, an oxazoline group, a mercapto group, an iso(thio)cyanate group, an amino group, a hydroxyl group, a carboxyl group, and an alkoxysilyl group.
- D3 and D4 each independently represent a group selected from the group consisting of a single bond, a linear or branched alkyl group having 1 to 20 carbon atoms, and a linear or branched alkylene oxide group having 1 to 20 carbon atoms.
- M represents a mesogenic group.
- M represents a group in which 2 to 4 skeletons, which may be unsubstituted or substituted, and which are the same or different from one another and are selected from the group consisting of azomethines, azoxys, phenyls, biphenyls, terphenyls, naphthalenes, anthracenes, benzoates, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, phenyldioxanes, tolanes, and alkenylcyclohexylbenzonitriles, are bonded by a bonding group such as -O-, -S-, -S-S-, -CO-, -CS-, -OCO-,
- R 5 and R 7 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
- R 5 and R 7 are alkyl groups
- R 6 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
- Examples of the substituent in the "alkyl group having 1 to 10 carbon atoms which may have a substituent” include halogen atoms, hydroxyl groups, carboxyl groups, cyano groups, amino groups, alkoxy groups having 1 to 6 carbon atoms, alkoxyalkoxy groups having 2 to 8 carbon atoms, alkoxyalkoxy groups having 3 to 15 carbon atoms, alkoxycarbonyl groups having 2 to 7 carbon atoms, alkylcarbonyloxy groups having 2 to 7 carbon atoms, and alkoxycarbonyloxy groups having 2 to 7 carbon atoms.
- the rod-shaped liquid crystal compound preferably has an asymmetric structure.
- the asymmetric structure refers to a structure in which R 3 -C 3 -D 3 -C 5 -M- and -M-C 6 -D 4 -C 4 -R 4 are different from each other with the mesogenic group M at the center in formula (1).
- rod-shaped liquid crystal compounds include the following compounds (B1) to (B12).
- rod-shaped liquid crystal compounds are not limited to the following compounds.
- the liquid crystal composition preferably contains a compound represented by formula (2) as an alignment assistant in combination with the rod-like liquid crystal compound.
- R 1 and R 2 are each independently a group selected from the group consisting of a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkylene oxide group having 1 to 20 carbon atoms, a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a (meth)acrylic group which may have an arbitrary bonding group interposed therebetween, an epoxy group, a mercapto group, an isocyanate group, an amino group, and a cyano group.
- the alkyl group and alkylene oxide group may be unsubstituted or may be substituted with one or more halogen atoms.
- the halogen atom, hydroxyl group, carboxyl group, (meth)acrylic group, epoxy group, mercapto group, isocyanate group, amino group, and cyano group may be bonded to an alkyl group having 1 to 2 carbon atoms and an alkylene oxide group.
- R 1 and R 2 include a halogen atom, a hydroxyl group, a carboxyl group, a (meth)acrylic group, an epoxy group, a mercapto group, an isocyanate group, an amino group, and a cyano group.
- At least one of R1 and R2 is preferably a reactive group.
- the compound represented by the formula (2) is fixed in the liquid crystal composition cured layer during curing, and a stronger layer can be formed.
- the reactive group include a carboxyl group, a (meth)acrylic group, an epoxy group, a mercapto group, an isocyanate group, and an amino group.
- a 1 and A 2 each independently represent a group selected from the group consisting of 1,4-phenylene, 1,4-cyclohexylene, cyclohexen-1,4-ylene, 4,4'-biphenylene, 4,4'-bicyclohexylene, and 2,6-naphthylene.
- the 1,4-phenylene, 1,4-cyclohexylene, cyclohexen-1,4-ylene, 4,4'-biphenylene, 4,4'-bicyclohexylene, and 2,6-naphthylene groups may be unsubstituted or substituted with one or more substituents such as a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, and a halogenated alkyl group.
- substituents such as a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, and a halogenated alkyl group.
- substituents such as a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, an alkyl
- a 1 and A 2 include groups selected from the group consisting of a 1,4-phenylene group, a 4,4'-biphenylene group, and a 2,6-naphthylene group. These aromatic ring skeletons are relatively rigid compared to alicyclic skeletons, and have high affinity with the mesogens of rod-like liquid crystal compounds, resulting in higher alignment uniformity.
- B is selected from the group consisting of a single bond, -O-, -S-, -S-S-, -CO-, -CS-, -OCO-, -CH 2 -, -OCH 2 -, -CH ⁇ N-N ⁇ CH-, -NHCO-, -O-(C ⁇ O)-O-, -CH 2 -(C ⁇ O)-O-, and -CH 2 O-(C ⁇ O)-.
- Particularly preferred values for B include a single bond, --O--(C.dbd.O)-- and --CH.dbd.N--N.dbd.CH--.
- Particular preferred compounds represented by formula (2) include the following compounds (A1) to (A10). These may be used alone or in combination of two or more in any ratio.
- the weight ratio represented by (total weight of compounds represented by formula (2))/(total weight of rod-shaped liquid crystal compounds) is preferably 0.001 or more, more preferably 0.01 or more, even more preferably 0.05 or more, and preferably 1 or less, more preferably 0.65 or less.
- the refractive index anisotropy (birefringence ⁇ n) of the liquid crystal composition can be increased, for example, a liquid crystal cured layer having desired optical performance such as selective reflection performance of circularly polarized light can be stably obtained.
- the total weight of the compounds represented by formula (2) refers to the weight when only one type of compound represented by formula (2) is used, and refers to the total weight when two or more types are used.
- the total weight of the rod-shaped liquid crystal compounds refers to the weight when only one type of rod-shaped liquid crystal compound is used, and refers to the total weight when two or more types are used.
- the molecular weight of the compound represented by formula (2) is less than 600, and the molecular weight of the rod-shaped liquid crystal compound is preferably 600 or more. This allows the compound represented by formula (2) to enter the gaps of the rod-shaped liquid crystal compound with a larger molecular weight, thereby improving the alignment uniformity.
- the liquid crystal composition for forming the cholesteric liquid crystal cured layer (A) may further contain optional components constituting the cholesteric liquid crystal cured layer (A) and a solvent for facilitating handling of the liquid crystal composition.
- optional components include a chiral agent, a polymerization initiator, and a surfactant.
- Specific examples of optional components and solvents include those described in JP 2019-188740 A, and in particular, examples of surfactants include F-563 from DIC, KZ-GDP02 from AGC Seimi Chemical, and KZ-GDP05 from AGC Seimi Chemical.
- surfactants with a fluoroalkyl group chain length of less than 6 F-563 from DIC, and KZ-GDP02 and KZ-GDP05 from AGC Seimi Chemical are preferred.
- a liquid crystal composition is applied to the surface of a support having an orientation restricting force to form a layer of the liquid crystal composition, and the layer is oriented in a cholesteric liquid crystal phase and cured to obtain a film that can be used as the liquid crystal cured layer (A).
- a support having an orientation restricting force a film having a rubbing treatment on the surface, a film having an orientation restricting force on the surface by stretching, etc. can be used.
- the liquid crystal composition may be oriented in a cholesteric liquid crystal phase immediately after application, but alignment can be achieved by applying a treatment such as heating as necessary to conditions that exhibit a cholesteric liquid crystal phase.
- a method for curing the liquid crystal composition As a curing method for curing the liquid crystal composition, a method according to the components contained in the cholesteric liquid crystal composition can be selected.
- a layer of the cholesteric liquid crystal composition is usually cured by polymerizing a polymerization component such as a polymerizable liquid crystal compound contained in the cholesteric liquid crystal composition.
- the polymerization method include a method of irradiating active energy rays and a thermal polymerization method. Among them, the method of irradiating active energy rays is preferable because the polymerization reaction can proceed at room temperature.
- the active energy rays to be irradiated may include any energy rays such as visible light, ultraviolet light, and infrared light, as well as electron beams.
- the preferred intensity of the active energy rays to be irradiated varies depending on the liquid crystal composition used, but can be, for example, 50 mJ/cm 2 to 10,000 mJ/cm 2 .
- the layer of the cholesteric liquid crystal composition may be subjected to a band-widening treatment before the layer of the cholesteric liquid crystal composition is cured.
- a band-widening treatment can be performed, for example, by a combination of one or more irradiation treatments with active energy rays and a heating treatment.
- the energy of the light irradiated varies depending on the liquid crystal composition used, but may be, for example, 0.01 mJ/cm 2 to 50 mJ/cm 2.
- the heat treatment can be performed, for example, by heating to a temperature of preferably 40° C. or higher, more preferably 50° C. or higher, preferably 200° C. or lower, more preferably 140° C. or lower.
- the thickness of the liquid crystal cured layer (A) of the flake (AB) is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, and is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, and even more preferably 6 ⁇ m or less.
- the thickness of the above lower limit or more the desired optical effects such as high reflectance can be satisfactorily exhibited.
- the occurrence of poor alignment can be effectively suppressed.
- the flake (AB) having a desired high aspect ratio can be easily obtained.
- the retardation layer (B) is a layer that gives a phase difference to incident light.
- the light emitted from the retardation layer (B) has a polarization state changed from that of the incident light.
- the retardation layer (B) is a ⁇ /2 plate
- the retardation layer (B) functions as a ⁇ /2 plate that imparts a phase difference of ⁇ /2 to light incident in a frontal direction
- a phase difference of ⁇ /2 is imparted to the circularly polarized light having a rotation direction opposite to that of the incident light, and the circularly polarized light is emitted from the retardation layer (B).
- the flakes (A) when flakes (A) are disposed on a certain surface, the flakes (A) do not have a retardation layer (B), so that the reflected light of the flakes (A) is circularly polarized light having a certain rotation direction. Therefore, when the retardation layer (B) is a layer that functions as a ⁇ /2 plate, the reflected light of the flake (AB) and the reflected light of the flake (A) can be distinguished by observation using a viewer that can distinguish between left and right circularly polarized light.
- a circular polarizing plate can be used as a viewer that can distinguish between left and right circularly polarized light.
- the amount of reflected light of either the flake (AB) or the flake (A) is significantly reduced, so that the reflected light of the flake (AB) of this embodiment can be distinguished from the reflected light of the flake (A).
- the retardation layer (B) is a ⁇ /4 plate
- the retardation layer (B) is a layer that functions as a ⁇ /4 plate that gives a phase difference of ⁇ /4 to the incident light in the front direction
- the circularly polarized light having a certain rotation direction is given a phase difference of ⁇ /4
- the polarization state is changed to linearly polarized light and is emitted from the retardation layer (B).
- the slow axis of the retardation layer (B) that each of the flakes (AB) has is arranged randomly, so that the orientation of the slow axis of the retardation layer (B) that functions as a ⁇ /4 plate is usually not biased. Therefore, the reflected light of the flakes (AB) is observed as linearly polarized light that vibrates in all directions from the front direction.
- the retardation layer (B) functions as a ⁇ /4 plate
- the reflected light of the flake (AB) and the reflected light of the flake (A) can be distinguished by observing with a viewer that can distinguish between linearly polarized light that vibrates in any direction and circularly polarized light with a certain rotation direction.
- a linear polarizing plate can be used as a viewer that can distinguish between linearly polarized light and circularly polarized light with a certain rotation direction.
- the reflected light of flake (AB) is linearly polarized light that vibrates in all directions, so when transmitted through a linear polarizer, the light amount becomes much smaller than 1/2 of the original reflected light amount. In this way, the reflected light of flake (AB) and the reflected light of flake (A) can be distinguished due to the significant difference in light amount.
- the retardation layer (B) is a C plate
- the retardation in the oblique direction in the retardation layer (B) is usually larger than the in-plane retardation.
- the liquid crystal cured layer (A) reflects light in a certain oblique direction when non-polarized light is incident, and the reflected light is elliptically polarized light having a certain rotation direction or linearly polarized light having a certain vibration direction.
- the elliptically polarized light or linearly polarized light emitted obliquely by the liquid crystal cured layer (A) has its polarization state changed by the retardation layer (B) and is emitted obliquely from the retardation layer (B).
- the retardation value in the oblique direction of the flake (AB) comprising the liquid crystal cured layer (A) and the retardation layer (B) is considered to be a composite value of the retardation in the oblique direction of the liquid crystal cured layer (A) and the retardation in the oblique direction of the retardation layer (B).
- Elliptically polarized light having a certain rotation direction or linearly polarized light having a certain vibration direction emitted obliquely from the liquid crystal cured layer (A) can be distinguished from the polarized light emitted obliquely from the retardation layer (B), which has a different polarization state, by using a viewer that can distinguish polarization states.
- the light emitted obliquely by flake (A) is linearly polarized, and the retardation layer (B) imparts a phase difference of ⁇ /2 to the light incident from the oblique direction
- the light emitted obliquely from flake (AB) will be linearly polarized light whose vibration direction is perpendicular to that of the linearly polarized light emitted obliquely from flake (A).
- the amount of transmitted light differs significantly. Therefore, the reflected light from flake (A) can be distinguished from the reflected light from flake (AB).
- the light emitted in an oblique direction by flake (A) is elliptically polarized light
- the retardation layer (B) imparts a phase difference of ⁇ /2 to the light incident from the oblique direction
- the light emitted in a more oblique direction from flake (AB) will be elliptically polarized light that has the opposite rotation direction to the light reflected in the oblique direction from flake (A) and has a principal axis orientation that is orthogonal.
- the amount of transmitted light is significantly different. Therefore, the reflected light from flake (AB) and the reflected light from flake (A) can be distinguished.
- the C plate is a positive C plate or a negative C plate.
- the retardation layer (B) may be a C plate.
- the ReB(0) of the retardation layer (B) that is a C plate is preferably 10 nm or less, more preferably 5 nm or less, and usually 0 nm or more, but may be 0 nm.
- the retardation layer (B) is preferably a layer that functions as a negative C plate, since it can impart a larger phase difference to light in an oblique direction.
- the retardation layer (B) can be formed of any material depending on the desired retardation.
- the retardation layer (B) may be formed from a cured liquid crystal composition containing a liquid crystal compound.
- a liquid crystal compound By appropriately adjusting factors such as the type of liquid crystal compound, the alignment state of the liquid crystal compound, and the thickness, the desired retardation can be obtained.
- the birefringence ⁇ n of the liquid crystal compound is preferably 0.1 or more, more preferably 0.2 or more, and the larger the better. However, it may be, for example, 0.7 or less.
- the birefringence ⁇ n of a liquid crystal compound can be determined by measuring the in-plane retardation Re and the thickness d of a sample of a liquid crystal cured layer obtained by curing a liquid crystal composition containing a liquid crystal compound, and dividing the in-plane retardation Re by the thickness d (Re/d).
- a sample of the liquid crystal cured layer can be prepared by homogeneously aligning a liquid crystal compound and curing a layer of a liquid crystal composition containing the liquid crystal compound while maintaining the alignment.
- "Homogeneously aligning a liquid crystal compound” means forming a layer containing the liquid crystal compound and aligning the direction of the maximum refractive index in the refractive index ellipsoid of the molecules of the liquid crystal compound in the layer in a certain direction parallel to the surface of the layer.
- the retardation layer (B) functions as a ⁇ /2 plate or ⁇ /4 plate that imparts a predetermined phase difference to light incident from the front direction, it is preferable to align the liquid crystal compound homogeneously.
- the retardation layer (B) when the retardation layer (B) is made to function as a negative C plate, the retardation layer (B) may be obtained by forming a layer of a material having cholesteric regularity using a liquid crystal compound that can also be used as the material of the liquid crystal cured layer (A), and having a selective reflection band that is partly or entirely outside the visible range.
- the retardation layer (B) may be obtained by a film forming method such as a solution casting method using a solution containing a polymer.
- a retardation layer (B) that can function as a positive C plate may be obtained by using a solution containing a cellulose-based polymer.
- the retardation layer (B) has a value such that either or both of the front retardation and the oblique retardation can function as a ⁇ /2 plate, specifically, it is preferably 250 nm or more, more preferably 260 nm or more, and preferably 350 nm or less, more preferably 300 nm or less.
- the front retardation and/or the oblique retardation of the retardation layer (B) are values capable of functioning as a ⁇ /2 plate
- the reflected light of the flake (AB) and the reflected light of the flake (A) are observed from the front or oblique direction using a linear polarizing plate or a circular polarizing plate
- the difference in the light amount between the two reflected lights becomes larger, so that the two reflected lights can be more easily distinguished.
- the retardation ReB(0) in the front direction of the retardation layer (B) is ⁇ /2 or close to ⁇ /2, preferably 250 nm or more, more preferably 260 nm or more, even more preferably 270 nm or more, and preferably 350 nm or less, more preferably 330 nm or less, even more preferably 310 nm or less.
- the retardation ReB(45) of the retardation layer (B) in the polar angle 45° direction is ⁇ /2 or close to ⁇ /2, and is preferably 250 nm or more, more preferably 260 nm or more, even more preferably 270 nm or more, and is preferably 350 nm or less, more preferably 330 nm or less, even more preferably 310 nm or less.
- the retardation ReB(0) in the front direction of the retardation layer (B) is preferably 10 nm or less, more preferably 5 nm or less, and is usually 0 nm or more, but may be 0 nm.
- the retardation ReB(45) of the retardation layer (B) in the polar angle 45° direction is preferably 50 nm or more, more preferably 60 nm or more, and is preferably 100 nm or less, more preferably 90 nm or less.
- the retardation layer (B) preferably has a retardation ReB(0) in the front direction of the retardation layer (B) and a retardation ReB(45) in the polar angle 45° direction of the retardation layer (B) within the following ranges.
- the retardation layer (B) having a retardation within such a range can be said to be a C plate.
- ReB(0) is preferably 10 nm or less, more preferably 5 nm or less, and is usually 0 nm or more, but may be 0 nm; and
- ReB(45) is preferably 50 nm or more, more preferably 60 nm or more, and is preferably 100 nm or less, more preferably 90 nm or less.
- ReB(0) is preferably 10 nm or less, more preferably 5 nm or less, and is usually 0 nm or more, but may be 0 nm; and ReB(45) is preferably 250 nm or more, more preferably 270 nm or more, and is preferably 350 nm or less, more preferably 330 nm or less.
- the thickness d(B) of the retardation layer (B) is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, and may be 0.5 ⁇ m or more.
- each of the plurality of retardation layers (B) is preferably within the thickness range.
- the thickness d(B) is equal to or less than the upper limit, it is easier to crush the laminate (C) to produce flakes.
- the retardation of the retardation layer (B) can be easily set to a desired range.
- the flake (AB) may include an optional layer in addition to the liquid crystal cured layer (A) and the retardation layer (B).
- the optional layer may have optical anisotropy or optical isotropy.
- the optional layer has optical isotropy.
- the retardation Re(0) in the in-plane direction of any layer is preferably 10 nm or less, more preferably 5 nm or less, and is usually 0 nm or more, but may be 0 nm.
- the absolute value of retardation Rth in the thickness direction of any layer is preferably 20 nm or less, more preferably 10 nm or less, and is usually 0 nm or more, but may be 0 nm.
- An example of an optional layer is an adhesive layer, which is a layer of adhesive.
- an adhesive layer is, but is not limited to, a layer of an ultraviolet-curable adhesive.
- the flake (AB) is a flake of the laminate (C) including the liquid crystal cured layer (A) and the retardation layer (B), and each flake (AB) is a small piece of the laminate (C). Therefore, each flake (AB) has the same layer structure as the laminate (C) and includes the liquid crystal cured layer (A) and the retardation layer (B).
- each flake (AB) will be described with reference to the drawings.
- FIG. 1 is a cross-sectional view showing a schematic diagram of one flake according to embodiment F1 of the present invention.
- the flake 100 includes a first retardation layer 111 as the retardation layer (B), a cured liquid crystal layer 120 as the cured liquid crystal layer (A), and a second retardation layer 112 as the retardation layer (B) in this order in the thickness direction.
- the first phase difference layer 111 is provided directly on one surface of the liquid crystal cured layer 120
- the second phase difference layer 112 is provided directly on the other surface of the liquid crystal cured layer 120. That is, no layer is interposed between the liquid crystal cured layer 120 and the first phase difference layer 111, and between the liquid crystal cured layer 120 and the second phase difference layer 112.
- an arbitrary layer such as an adhesive layer may be interposed between the liquid crystal cured layer 120 and the first phase difference layer 111 and/or between the liquid crystal cured layer 120 and the second phase difference layer 112.
- the first retardation layer 111 or the second retardation layer 112 faces the observation side. That is, the reflected light of the liquid crystal cured layer 120 is given a phase difference by the first retardation layer 111 or the second retardation layer 112 as the retardation layer (B), and the polarization state is changed. Therefore, by observing the light with such a changed polarization state using an appropriate viewer, the reflected light by the collection of flakes 100 can be distinguished from the reflected light from the flakes of the liquid crystal cured layer (A).
- FIG. 2 is a cross-sectional view showing a schematic diagram of one flake according to embodiment F2 of the present invention.
- the flake 200 includes a first retardation layer 111 as the retardation layer (B) and a liquid crystal cured layer 120 as the liquid crystal cured layer (A).
- the first retardation layer 111 is provided directly on one surface of the liquid crystal cured layer 120. That is, no layer is interposed between the liquid crystal cured layer 120 and the first retardation layer 111.
- an arbitrary layer such as an adhesive layer may be interposed between the liquid crystal cured layer 120 and the first retardation layer 111.
- the liquid crystal cured layer 120 or the first retardation layer 111 faces the observation side. That is, the reflected light of the liquid crystal cured layer 120 is observed as it is without being affected by the first retardation layer 111 as the retardation layer (B), or is observed after being given a phase difference by the first retardation layer 111 as the retardation layer (B).
- the reflected light by the collection of flakes 200 contains light whose polarization state has been changed from that of the reflected light of the liquid crystal cured layer 120 by being given a phase difference by the first retardation layer 111. Therefore, the reflected light by the collection of flakes 200, which contains such light whose polarization state has been changed, can be distinguished from the reflected light from the flakes of the liquid crystal cured layer (A) by observing it using an appropriate viewer.
- the flakes of this embodiment can be produced by any method, for example, a method in which a laminate (C) is produced and then crushed; a method in which a laminate (C) is produced on a supporting substrate, incisions are formed in the laminate (C) using a cutting tool such as a roll cutter, and then a high-pressure fluid is sprayed onto the laminate (C) that has become a fixed-sized piece to peel it off from the supporting substrate, thereby obtaining a fixed-sized flake; and the like.
- the laminate (C) may be produced by forming a liquid crystal cured layer (A) and then forming a retardation layer (B) on the liquid crystal cured layer (A), or by producing the liquid crystal cured layer (A) and the retardation layer (B) separately and laminating the liquid crystal cured layer (A) and the retardation layer (B).
- a suitable adhesive such as an ultraviolet-curable adhesive may be used for lamination.
- the adhesive strength of the retardation layer (B) to the liquid crystal cured layer (A) may be improved by performing a surface treatment such as a corona treatment on the liquid crystal cured layer (A).
- the flakes of this embodiment can be suitably used as an identification medium for distinguishing genuine products from counterfeit products, or as a highly designed display medium that displays a different pattern when viewed with the naked eye and when viewed using a viewer.
- an ink containing the flakes of this embodiment to a surface to form an ink layer, a printed matter useful as an identification medium or display medium can be obtained.
- the components in the ink other than the flakes are not particularly limited, and commercially available ink media, diluents, and other substances can be used.
- the ink containing the flakes can be applied to a desired surface by any printing method and cured to obtain a printed matter containing a layer of the ink containing the flakes.
- the printing method screen printing and inkjet printing are preferred because they allow efficient printing.
- By utilizing the action of the flakes it is possible to obtain a printed matter having a special optical effect, in which a pattern such as letters is not observed with the naked eye, but a pattern such as letters is observed when observed using an appropriate viewer that can distinguish between polarization states.
- a printed matter having such an optical effect is useful as an identification medium that can distinguish genuine items from counterfeits, or as a display medium with a special design.
- the printed matter can be an identification medium.
- the ink layer containing the flakes (AB) is also called the ink layer (AB)
- the ink layer containing the flakes (A) of the liquid crystal cured layer (A) is also called the ink layer (A).
- the ink layer containing the flakes (AB1) is also called the ink layer (AB1)
- the ink layer containing the flakes (AB2) is also called the ink layer (AB2).
- the retardation layer (B1) of the flakes (AB1) and the retardation layer (B2) of the flakes (AB2) give different phase differences to the incident light.
- the printed matter according to embodiment P1 is A printed matter having a display surface, A first ink layer provided in a region R1 occupying a part of the display surface; a second ink layer provided in a region R2 occupying a part of the display surface and occupying a part or all of the region other than the region R1 ;
- the first ink layer contains a first flake of a laminate (C) including a liquid crystal cured layer (A) and a retardation layer (B), the retardation layer (B) being a retardation layer (B1) that gives a retardation ReB1( ⁇ ) to incident light having a wavelength of 550 nm from a predetermined polar angle ⁇ ;
- the second ink layer contains second flakes which are flakes of the cured liquid crystal layer (A).
- the printed matter can be an identification medium.
- Fig. 3 is a cross-sectional view that shows a schematic diagram of a printed matter according to an embodiment of the present invention.
- Fig. 4 is a top view that shows a schematic diagram of a printed matter according to an embodiment of the present invention.
- the printed matter 1 includes a print base layer 30, a first ink layer 10 (in this embodiment, ink layer (AB)), and a second ink layer 20 (in this embodiment, ink layer (A)).
- the first ink layer 10 and the second ink layer 20 are provided in contact with the upper surface 30U of the print base layer 30.
- the first ink layer 10 (ink layer (AB)) and the second ink layer 20 (ink layer (A)) are arranged so that their side surfaces are in contact with each other at the boundary 12.
- the first ink layer 10 is arranged so that the side surface of the edge of all or a part of the first ink layer 10 is in contact with the side surface of the edge of the second ink layer 20 from the viewpoint of enhancing the concealment of the identification function of the printed matter 1.
- the first ink layer 10 and the second ink layer 20 may be separated from each other, but from the viewpoint of enhancing the concealment of the identification function, it is preferable that the distance when they are separated is small.
- the distance is usually 200 ⁇ m or less, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, even more preferably 20 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
- the first ink layer 10 and the second ink layer 20 can be obtained by a method called tweezers printing or seamless printing.
- the print base layer 30 is preferably an absorbing layer that absorbs light.
- the region R 1 occupied by the first ink layer 10 (ink layer (AB) in this embodiment) and the region R 2 occupied by the second ink layer 20 (ink layer (A) in this embodiment) are provided on the printed matter 1, and these form a latent image.
- a latent image is an image that cannot be observed by the naked eye with normal unpolarized light, and is observed only in a specific observation of the printed matter. In the printed matter of the example of FIG. 3 to FIG. 4, the letter "T" can function as a latent image.
- the ink layers (AB) and (A) appear to the naked eye to be approximately the same or have the same color tone, and the edges of the ink layers (AB) and (A) are in contact or are at a short distance from each other, so the boundary between the ink layers (AB) and (A) cannot be distinguished by the naked eye. Also, as mentioned above, the reflected light of the flakes (AB) contained in the ink layer (AB) and the reflected light of the flakes (A) contained in the ink layer (A) have different polarization states, so when the ink layers (AB) and (A) are observed using an appropriate viewer that can distinguish between polarization states, the boundary between the ink layers (AB) and (A) can be distinguished.
- the retardation layer (B1) of the first flake (AB) may be a layer that functions as a ⁇ /2 plate that imparts a retardation of ⁇ /2 to incident light in the front direction, and specifically, the retardation ReB1(0) when ⁇ is 0° may be ⁇ /2 or close to ⁇ /2, specifically 250 nm or more and 350 nm or less.
- the boundary between the ink layer (AB) and the ink layer (A) can be distinguished by observing from the front direction of the display surface using a circular polarizing plate as a viewer.
- the retardation layer (B1) may be a layer that functions as a so-called C plate, and for example, the retardation ReB1 (45) when ⁇ is 45° may be 50 nm or more and 100 nm or less, or 300 nm or more and 350 nm or less.
- the boundary between the ink layer (AB) and the ink layer (A) can be distinguished by using a linear polarizing plate as a viewer and observing from an oblique direction of the display surface.
- the printed matter according to embodiment P2 is A printed matter having a display surface, A first ink layer provided in a region R1 occupying a part of the display surface; a second ink layer provided in a region R2 occupying a part of the display surface and occupying a part or all of the region other than the region R1 ;
- the first ink layer contains a first flake of a laminate (C) including a liquid crystal cured layer (A) and a retardation layer (B), the retardation layer (B) being a retardation layer (B1) that gives a retardation ReB1( ⁇ ) to incident light having a wavelength of 550 nm from a predetermined polar angle ⁇ ;
- the second ink layer contains a second flake, which is a flake of a laminate (C2) including the liquid crystal cured layer (A) and a retardation layer (B2) that gives a retardation ReB2( ⁇ ) to incident light having a wavelength of 550 nm
- the printed matter of this embodiment has the same configuration as the printed matter of embodiment P1, except that the first ink layer 10 in Figures 3 and 4 is the ink layer (AB1) and the second ink layer 20 is the ink layer (AB2).
- a region R1 occupied by a first ink layer 10 (in this embodiment, ink layer (AB1)) and a region R2 occupied by a second ink layer 20 (in this embodiment, ink layer (AB2)) are provided on the printed matter 1 , and these form a latent image.
- the ink layers (AB1) and (AB2) appear to the naked eye to be approximately the same or have the same color tone, and the edges of the ink layers (AB1) and (AB2) are in contact or are at a short distance from each other, so the boundary between the ink layers (AB1) and (AB2) cannot be distinguished by the naked eye. Also, as mentioned above, the reflected light from the flakes (AB1) contained in the ink layer (AB1) and the reflected light from the flakes (AB2) contained in the ink layer (AB2) have different polarization states, so when the ink layers (AB1) and (AB2) are observed using an appropriate viewer that can distinguish between polarization states, the boundary between the ink layers (AB1) and (AB2) can be distinguished.
- the retardation layer (B1) is a layer that functions as a ⁇ /2 plate that imparts a retardation of ⁇ /2 to incident light in the front direction, specifically, the retardation ReB1(0) when ⁇ is 0° is ⁇ /2 or close to ⁇ /2, specifically, 250 nm to 350 nm
- the retardation layer (B2) is a layer that functions as a so-called C plate, specifically, ReB2(0) when ⁇ is 0° is 10 nm or less.
- the boundary between the ink layer (AB1) and the ink layer (AB2) can be distinguished by using a circular polarizing plate as a viewer and observing from the front direction of the display surface.
- the retardation layer (B1) is a layer that functions as a so-called C plate
- the retardation layer (B2) is a layer that functions as a so-called C plate, and for example, when ⁇ is 45°, the absolute value of the difference between ReB1(45) and ReB2(45),
- the boundary between the ink layer (AB1) and the ink layer (AB2) can be distinguished by using a linear polarizing plate as a viewer and observing from an oblique direction of the display surface.
- the printed matter can be attached to another component to form an article having an identification function, or the printed matter itself can be used as an article having an identification function.
- articles include various articles such as clothing, shoes, hats, accessories, jewelry, and daily necessities.
- the article can have an identification function by being provided with the printed matter of the present invention. By having such an identification function, the article can be identified as being genuine and not a counterfeit.
- the printed matter can impart a design effect to the article.
- the printed matter can be provided on the article as an ornament, part, or accessory of the article, such as a tag, charm, patch, or sticker.
- the article of the present invention may further include a viewer in addition to the printed matter of the present invention.
- viewers include a linear polarizing plate and a circular polarizing plate.
- the viewer can be, for example, in the shape of a tag, and can be attached to the main body of the item via a string or the like. In this way, by providing a viewer in addition to the printed matter, general item users can easily identify the printed matter.
- the in-plane retardation was measured at a measurement wavelength of 550 nm using a phase difference meter (Axoscan manufactured by Axometrics).
- cholesteric liquid crystal layer a cholesteric liquid crystal cured layer (hereinafter also referred to as a cholesteric liquid crystal layer).
- the integrated reflectance of this cholesteric liquid crystal layer when non-polarized light (wavelength 400 nm to 800 nm) was incident thereon was measured using an ultraviolet-visible spectrophotometer equipped with an integrating sphere ("UV-Vis 550" manufactured by JASCO Corporation).
- ⁇ Average particle size D50 of flakes> The volumetric particle size distribution of the flakes was measured using a laser diffraction/scattering particle size distribution measuring device (manufactured by Horiba, Ltd., product name "LA-960"). The average particle size was determined by using the median diameter D50, which is the cumulative volume of 50% in the particle size distribution measured using the particle size distribution measuring device.
- a liquid crystal composition was prepared by mixing 100 parts of a photopolymerizable liquid crystal compound represented by the following formula (X1) (the above formula (B5)), 25 parts of a photopolymerizable non-liquid crystal compound represented by the following formula (X2) (the above formula (A10)), 7.5 parts of a chiral agent ("LC756" manufactured by BASF), 5 parts of a photopolymerization initiator ("Irgacure 907" manufactured by Ciba Japan), 0.2 parts of a surfactant ("S-420” manufactured by AGC Seimi Chemical Co., Ltd.), and 120 parts of cyclopentanone and 200 parts of 1,3-dioxolane as solvents.
- X1 the above formula (B5)
- LC756 chiral agent
- Irgacure 907 manufactured by Ciba Japan
- surfactant S-420 manufactured by AGC Seimi Chemical
- a long polyethylene terephthalate film (Toyobo Co., Ltd. "A4300"; thickness 100 ⁇ m) was prepared as the supporting substrate film. This substrate film was attached to the unwinding section of the film transport device, and the following operations were carried out while transporting the substrate film in the longitudinal direction.
- the surface of the support substrate film was subjected to rubbing treatment in the longitudinal direction parallel to the transport direction.
- a liquid crystal composition was applied to the surface of the support substrate film that had been subjected to rubbing treatment using a die coater to form a layer of the liquid crystal composition.
- the layer of the liquid crystal composition was subjected to an alignment treatment of heating at 120°C for 5 minutes. Thereafter, the layer of the liquid crystal composition was subjected to a band-widening treatment. In this band-widening treatment, weak ultraviolet irradiation at 5 to 30 mJ/ cm2 and heating treatment at 100 to 120°C were alternately repeated multiple times to control the bandwidth to the desired bandwidth.
- 900 mJ/ cm2 ultraviolet light was irradiated onto the layer of the liquid crystal composition to harden the layer of the liquid crystal composition.
- the reflectance of the cholesteric liquid crystal layer of this multilayer film was measured by the above-mentioned measurement method.
- the cholesteric liquid crystal layer had a wavelength range in which the reflectance for unpolarized light was 40% or more over almost the entire wavelength range from 450 nm to 700 nm, and the half-width of the selective reflection band was 250 nm or more.
- the film thickness of the cholesteric liquid crystal layer was adjusted to 5.3 ⁇ m.
- ⁇ Production Example A2 Production of a red-reflecting cholesteric liquid crystal layer (CLC_R) capable of reflecting right-handed circularly polarized light>
- the chiral agent BASF's "LC756”
- BASF's "LC756” was changed to 6.8 parts, and the layer of the liquid crystal composition was irradiated with 900 mJ/ cm2 ultraviolet light without performing the broadband treatment to harden the layer of the liquid crystal composition.
- a multilayer film was produced in the same manner as Manufacturing Example A1 except for this. The reflectance of the cholesteric liquid crystal layer of this multilayer film was measured by the same measurement method as Manufacturing Example A1.
- the cholesteric liquid crystal layer had a central wavelength near 650 nm, a half-width of about 100 nm, and a wavelength range that was visually recognized as red with a reflectance of 40% or more for unpolarized light.
- the film thickness of the cholesteric liquid crystal layer was adjusted to 3.6 ⁇ m.
- ⁇ Production Example A3 Production of a green-reflecting cholesteric liquid crystal layer (CLC_G) capable of reflecting right-handed circularly polarized light>
- the layer of the liquid crystal composition was irradiated with 900 mJ/ cm2 ultraviolet light without performing the broadband treatment, and the layer of the liquid crystal composition was cured. Except for this, a multilayer film was produced in the same manner as in manufacturing example A1. The reflectance of the cholesteric liquid crystal layer of this multilayer film was measured using the same measurement method as in manufacturing example A1.
- the cholesteric liquid crystal layer had a central wavelength near 550 nm, a half-width of about 85 nm, and a wavelength range that was visually recognized as green with a reflectance of 40% or more for unpolarized light.
- the film thickness of the cholesteric liquid crystal layer was adjusted to 3.6 ⁇ m.
- ⁇ Production Example A4 Production of a blue-reflecting cholesteric liquid crystal layer (CLC_B) capable of reflecting right-handed circularly polarized light>
- the chiral agent BASF's "LC756”
- the layer of the liquid crystal composition was irradiated with 900 mJ/ cm2 ultraviolet light without performing the broadband treatment to harden the layer of the liquid crystal composition.
- a multilayer film was produced in the same manner as Manufacturing Example A1.
- the reflectance of the cholesteric liquid crystal layer of this multilayer film was measured by the same measurement method as Manufacturing Example A1.
- the cholesteric liquid crystal layer had a central wavelength near 450 nm, a half-width of about 75 nm, and a wavelength range that was visually recognized as blue with a reflectance of 40% or more for unpolarized light.
- the film thickness of the cholesteric liquid crystal layer was adjusted to 3.6 ⁇ m.
- ⁇ Production Example A5 Production of ⁇ /2 Retardation Film Layer (H1)>
- a liquid crystal composition was prepared by mixing 100 parts of the photopolymerizable liquid crystal compound represented by (X1) used in Production Example A1, 4 parts of a photopolymerization initiator ("Irgacure 907" manufactured by Ciba Japan), 0.15 parts of a surfactant ("Megafac F-562" manufactured by DIC Corporation), 120 parts of cyclopentanone as a solvent, and 200 parts of 1,3-dioxolane.
- a long polyethylene terephthalate film (Toyobo Co., Ltd. "A4300"; thickness 100 ⁇ m) was prepared as the supporting substrate film. This substrate film was attached to the unwinding section of the film transport device, and the following operations were carried out while the substrate film was transported in the longitudinal direction.
- the surface of the support substrate film was subjected to rubbing treatment in the longitudinal direction parallel to the transport direction.
- a liquid crystal composition was applied to the surface of the support substrate film that had been subjected to rubbing treatment using a die coater to form a layer of the liquid crystal composition.
- the layer of the liquid crystal composition was subjected to an orientation treatment of heating at 120 ° C. for 4 minutes.
- the layer of the liquid crystal composition was irradiated with ultraviolet light of 900 mJ / cm 2 to harden the layer of the liquid crystal composition. This resulted in a multilayer film comprising a support substrate film and a liquid crystal cured layer (retardation film layer).
- the in-plane retardation of this multilayer film was measured by the above-mentioned measurement method to obtain the in-plane retardation value of the liquid crystal cured layer.
- the in-plane retardation of the liquid crystal cured layer was 280 nm at a wavelength of 550 nm, and the direction of the slow axis relative to the support substrate film was parallel to the longitudinal direction of the film and was approximately 0 °.
- the film thickness of the liquid crystal cured layer was adjusted to 1.1 ⁇ m.
- the birefringence ⁇ n of the liquid crystal compound represented by the formula (X1) was calculated by dividing the in-plane retardation of the obtained cured liquid crystal layer by the film thickness of the cured liquid crystal layer, and was found to be 0.25.
- the surfactant and photopolymerization initiator used in the preparation of the liquid crystal composition do not have birefringence, and the amount thereof is small. Furthermore, the solvent used in the preparation of the liquid crystal composition evaporates before the formation of the liquid crystal cured layer. Therefore, the effect of the surfactant, photopolymerization initiator, and solvent contained in the liquid crystal composition on the birefringence ⁇ n of the liquid crystal cured layer is negligibly small. Therefore, the birefringence ⁇ n of the liquid crystal compound can be obtained using the in-plane retardation and thickness values of the above-mentioned liquid crystal cured layer. The same applies to the birefringence ⁇ n of the following liquid crystal compounds.
- ⁇ Production Example A6 Production of ⁇ /2 Retardation Film Layer (H2)>
- the liquid crystal compound of Production Example A5 was replaced by LC242 manufactured by BASF in an equal weight ratio, and the film thickness was adjusted so that the in-plane retardation was approximately ⁇ /2, similar to Production Example A5.
- a multilayer film having a retardation film layer was produced in the same manner as Production Example A5 except for this.
- the retardation of the liquid crystal cured layer (retardation film layer) was 275 nm at a wavelength of 550 nm.
- the direction of the slow axis of the retardation film layer relative to the support substrate film was parallel to the longitudinal direction of the support substrate film and was approximately 0°.
- the film thickness of the liquid crystal cured layer was adjusted to 2.4 ⁇ m.
- the birefringence ⁇ n of the liquid crystal compound LC242 was calculated by dividing the in-plane retardation of the cured liquid crystal layer by the film thickness of the cured liquid crystal layer, and was found to be 0.11.
- ⁇ Production Example A7 Production of ⁇ /2+ ⁇ Retardation Film Layer (H3)> A retardation film layer was produced in the same manner as in Production Example A5 except that the thickness of the cured liquid crystal layer was adjusted to 1.5 ⁇ m.
- the in-plane retardation was measured by the above-mentioned method, the in-plane retardation of the retardation film layer was 350 nm at a wavelength of 550 nm.
- the retardation was measured when tilted at an angle of 30° from both sides with the slow axis as the rotation axis, it was 260 nm.
- the direction of the slow axis of the retardation film layer relative to the support substrate film was parallel to the longitudinal direction of the support substrate film and was approximately 0°.
- ⁇ Production Example A8 Production of Cholesteric Liquid Crystal C Plate (C1)>
- the chiral agent (“LC756" manufactured by BASF) was changed to 27.3 parts, and the layer of the liquid crystal composition was irradiated with ultraviolet light of 900 mJ/ cm2 without performing the broadband treatment to harden the layer of the liquid crystal composition.
- a multilayer film was produced in the same manner as Manufacturing Example A1 except for this.
- the reflectance of the cholesteric liquid crystal layer of this multilayer film was measured by the same measurement method as Manufacturing Example A1.
- the cholesteric liquid crystal layer had a central wavelength near 160 nm, and formed a transparent layer in which reflected light could not be recognized by the naked eye.
- the in-plane retardation of the cholesteric liquid crystal layer was approximately 0 nm at a wavelength of 550 nm.
- the retardation was measured when tilted at 45° from both sides with the longitudinal direction of the cholesteric liquid crystal layer as the rotation axis, it was 75 nm.
- the film thickness of the cholesteric liquid crystal layer was adjusted to 1.9 ⁇ m.
- ⁇ Production Example A9 Production of Cholesteric Liquid Crystal C Plate (C2)>
- the chiral agent (“LC756" manufactured by BASF) was changed to 27.5 parts, and the layer of the liquid crystal composition was irradiated with ultraviolet light of 900 mJ/ cm2 without performing the broadband treatment, and the layer of the liquid crystal composition was cured.
- a multilayer film was produced in the same manner as Manufacturing Example A1 except for this.
- the reflectance of the cholesteric liquid crystal layer of this multilayer film was measured by the same measurement method as Manufacturing Example A1.
- the cholesteric liquid crystal layer had a central wavelength near 160 nm, and formed a transparent layer in which reflected light could not be recognized visually.
- the in-plane retardation of the cholesteric liquid crystal layer was approximately 0 nm at a wavelength of 550 nm.
- the retardation was measured when tilted at 45° from both sides with the longitudinal direction of the cholesteric liquid crystal layer as the rotation axis, it was 335 nm.
- the film thickness of the cholesteric liquid crystal layer was adjusted to 8.8 ⁇ m.
- ⁇ Production Example A10 Production of multilayer film (WH1)> A UV adhesive (Aronix) manufactured by Toa Gosei Co., Ltd. was applied to the cholesteric liquid crystal layer side of the CLC_W film of Production Example A1 with a bar coater while conveying the film to a thickness of 0.5 ⁇ m, and then the liquid crystal cured layer side of the H1 film of Production Example A5 was laminated by roll-to-roll. After that, 800 mJ/cm 2 of ultraviolet light was irradiated from the H1 film side to cure the layer of the ultraviolet (UV) curable adhesive, and the support base film on the CLC_W film side was peeled off and wound up to produce a multilayer film WH1.
- a UV adhesive Aronix manufactured by Toa Gosei Co., Ltd. was applied to the cholesteric liquid crystal layer side of the CLC_W film of Production Example A1 with a bar coater while conveying the film to a thickness of 0.5 ⁇ m, and then the liquid
- Production of multilayer film (WH2)> The H1 film used in Production Example A10 was replaced with the H2 film used in Production Example A6. Otherwise, a multilayer film WH2 was produced in the same manner as in Production Example A10.
- ⁇ Production Example A12 Production of multilayer film (WH3)>
- the H1 film used in Production Example A10 was replaced with the H3 film used in Production Example A7. Otherwise, a multilayer film WH3 was produced in the same manner as in Production Example A10.
- Production of multilayer film (WC1)> The H1 film used in Production Example A10 was replaced with the C1 film used in Production Example A8. Otherwise, a multilayer film WC1 was produced in the same manner as in Production Example A10.
- ⁇ Production Example A14 Production of multilayer film (WC2)> A multilayer film WC2 was produced in the same manner as in Production Example 9, except that the H1 film used in Production Example A10 was replaced with the C2 film used in Production Example A9.
- ⁇ Production Example A16 Production of multilayer film (GH1)>
- the CLC_W film used in Production Example A10 was replaced with the CLC_G film used in Production Example A3. Otherwise, a multilayer film GH1 was produced in the same manner as in Production Example A10.
- ⁇ Production Example A17 Production of multilayer film (BH1)>
- the CLC_W film used in Production Example A10 was replaced with the CLC_B film used in Production Example A4. Otherwise, a multilayer film BH1 was produced in the same manner as in Production Example A10.
- ⁇ Production Example A18 Production of multilayer film (WH1D)>
- the liquid crystal composition solution used in Production Example A5 was applied to the cholesteric liquid crystal layer side of the CLC_W film of Production Example A1 with a die coater while conveying the film to a thickness of 1.1 ⁇ m. After that, the liquid crystal composition layer was irradiated with ultraviolet light of 900 mJ/ cm2 to harden the liquid crystal composition layer. Thus, a multilayer film WH1D was produced.
- ⁇ Production Example A19 Production of multilayer film (H1WH1)>
- the H1 film of Production Example A5 was bonded to the exposed CLC_W film side of the WH1 film produced in Production Example A10 in the same manner as in Production Example A10, and the supporting substrate on one of the H1 film sides was peeled off while rolling up to produce a multilayer film H1WH1.
- ⁇ Production Example A20 Production of multilayer film (H2WH2)>
- the H1 film produced in Production Example A5 used in Production Example A19 was replaced with the H2 film produced in Production Example A6. Otherwise, a multilayer film H2WH2 was produced in the same manner as in Production Example A19.
- ⁇ Production Example A22 Production of multilayer film (C1WC1)>
- the WH1 film used in Production Example A19 was replaced with the WC1 film produced in Production Example A13, and the H1 film was replaced with the C1 film produced in Production Example A8. Otherwise, a multilayer film C1WC1 was produced in the same manner as in Production Example A19.
- ⁇ Production Example A23 Production of multilayer film (C2WC2)>
- the WH1 film used in Production Example A19 was replaced with the WC2 film produced in Production Example A14, and the H1 film was replaced with the C2 film produced in Production Example A9. Otherwise, a multilayer film C2WC2 was produced in the same manner as in Production Example A19.
- ⁇ Production Example A24 Production of multilayer film (H1RH1)>
- the WH1 film used in Production Example A19 was replaced with the RH1 film produced in Production Example A15. Otherwise, a multilayer film H1RH1 was produced in the same manner as in Production Example A19.
- ⁇ Production Example A25 Production of multilayer film (H1GH1)
- the WH1 film used in Production Example A19 was replaced with the GH1 film produced in Production Example A16. Otherwise, a multilayer film H1GH1 was produced in the same manner as in Production Example A19.
- ⁇ Production Example A26 Production of multilayer film (H1BH1)
- the WH1 film used in Production Example A19 was replaced with the BH1 film produced in Production Example A17. Otherwise, a multilayer film H1BH1 was produced in the same manner as in Production Example A19.
- ⁇ Production Example B1 Production of cholesteric liquid crystal flakes (F_CLC_W)>
- the CLC_W film produced in Production Example A1 was peeled off from the supporting substrate by jetting high-pressure air, and then pulverized in a jet mill to produce cholesteric liquid crystal flakes F_CLC_W having an average particle size (D50) of about 50 ⁇ m.
- D50 average particle size
- ⁇ Production Example B2 Production of cholesteric liquid crystal flakes (F_CLC_R)> Cholesteric liquid crystal flakes F_CLC_R having an average particle size (D50) of about 50 ⁇ m were produced in the same manner as in Production Example B1, except that the CLC_R film produced in Production Example A2 was used.
- D50 average particle size
- ⁇ Production Example B3 Production of cholesteric liquid crystal flakes (F_CLC_G)> Cholesteric liquid crystal flakes F_CLC_G having an average particle size (D50) of about 50 ⁇ m were produced in the same manner as in Production Example B1, except that the CLC_G film produced in Production Example A3 was used.
- ⁇ Production Example B4 Production of cholesteric liquid crystal flakes (F_CLC_B)> Cholesteric liquid crystal flakes F_CLC_B having an average particle size (D50) of about 50 ⁇ m were produced in the same manner as in Production Example B1, except that the CLC_B film produced in Production Example A4 was used.
- D50 average particle size
- ⁇ Production Example B5 Production of cholesteric liquid crystal flakes (F_WH1)> Cholesteric liquid crystal flakes F_WH1 having an average particle size (D50) of about 50 ⁇ m were produced in the same manner as in Production Example B1, except that the WH1 film produced in Production Example A10 was used.
- D50 average particle size
- ⁇ Production Example B6 Production of cholesteric liquid crystal flakes (F_WH3)> Cholesteric liquid crystal flakes F_WH3 having an average particle size (D50) of about 50 ⁇ m were produced in the same manner as in Production Example B1, except that the WH3 film produced in Production Example A12 was used.
- D50 average particle size
- ⁇ Production Example B7 Production of cholesteric liquid crystal flakes (F_H1WH1)> Cholesteric liquid crystal flakes F_H1WH1 having an average particle size (D50) of about 50 ⁇ m were produced in the same manner as in Production Example B1, except that the H1WH1 film produced in Production Example A19 was used.
- D50 average particle size
- ⁇ Production Example B8 Production of cholesteric liquid crystal flakes (F_H2WH2)> Cholesteric liquid crystal flakes F_H2WH2 having an average particle size (D50) of about 50 ⁇ m were produced in the same manner as in Production Example B1, except that the H2WH2 film produced in Production Example A20 was used.
- D50 average particle size
- ⁇ Production Example B9 Production of cholesteric liquid crystal flakes (F_H3WH3)> Cholesteric liquid crystal flakes F_H3WH3 having an average particle size (D50) of about 50 ⁇ m were produced in the same manner as in Production Example B1, except that the H3WH3 film produced in Production Example A21 was used.
- D50 average particle size
- ⁇ Production Example B10 Production of cholesteric liquid crystal flakes (F_C1WC1)> Cholesteric liquid crystal flakes F_C1WC1 having an average particle size (D50) of about 100 ⁇ m were produced in the same manner as in Production Example B1, except that the C1WC1 film produced in Production Example A22 was used.
- D50 average particle size
- ⁇ Production Example B11 Production of cholesteric liquid crystal flakes (F_C2WC2)> Cholesteric liquid crystal flakes F_C2WC2 having an average particle size (D50) of about 100 ⁇ m were produced in the same manner as in Production Example B1, except that the C2WC2 film produced in Production Example A23 was used.
- ⁇ Production Example B12 Production of cholesteric liquid crystal flakes (F_H1RH1)> Cholesteric liquid crystal flakes F_H1RH1 having an average particle size (D50) of about 50 ⁇ m were produced in the same manner as in Production Example B1, except that the H1RH1 film produced in Production Example A24 was used.
- D50 average particle size
- ⁇ Production Example B13 Production of cholesteric liquid crystal flakes (F_H1GH1)> Cholesteric liquid crystal flakes F_H1GH1 having an average particle size (D50) of about 50 ⁇ m were produced in the same manner as in Production Example B1, except that the H1GH1 film produced in Production Example A25 was used.
- D50 average particle size
- ⁇ Production Example B14 Production of cholesteric liquid crystal flakes (F_H1BH1)> Cholesteric liquid crystal flakes F_H1BH1 having an average particle size (D50) of about 50 ⁇ m were produced in the same manner as in Production Example B1, except that the H1BH1 film produced in Production Example A26 was used.
- D50 average particle size
- FT_H1WH1 Fixed-Type Cholesteric Liquid Crystal Flakes
- a cutter roll 1 equipped with line cutters spaced 50 ⁇ m apart and a rubber roll
- a cut was made on the surface of the multilayer film.
- the cutter roll 1 was processed so that the line cutter was oriented at 45° to the rotation axis of the roll.
- the film was wound up once, and while conveying the film again, a cut was made on the surface of the multilayer film using a cutter roll 2 instead of the cutter roll 1.
- the cutter roll 2 was processed so that the line cutter was oriented at 45°, which is the opposite direction to the cutter roll described above.
- the laminated film flakes were peeled off with high-pressure air to produce cholesteric liquid crystal flakes FT_H1WH1 having a rectangular flake shape and a constant average particle diameter (D50) of 50 ⁇ m.
- D50 constant average particle diameter
- ⁇ Production Example B17 Production of cholesteric liquid crystal flakes (F_H1WH1D)> Cholesteric liquid crystal flakes F_H1WH1D having an average particle size (D50) of about 50 ⁇ m were produced in the same manner as in Production Example B1, except that the H1WH1D film produced in Production Example B16 was used.
- Tables 1 and 2 list the properties of each layer that makes up the flakes.
- Table 3 lists the obtained cholesteric liquid crystal flakes.
- the abbreviations in the flake layer configuration section of Table 3 have the following meanings.
- R Red-reflecting cholesteric liquid crystal layer (CLC_R) obtained in Production Example A2
- G Green-reflecting cholesteric liquid crystal layer (CLC_G) obtained in Production Example A3
- B Blue-reflecting cholesteric liquid crystal layer (CLC_B) obtained in Production Example A4
- A Adhesive layer (cured layer of UV adhesive (Aronix) manufactured by Toa Gosei Co., Ltd.)
- H1 ⁇ /2 retardation film layer (H1) obtained in Production Example A5
- H2 ⁇ /2 retardation film layer (H2) obtained in Production Example A6
- H3 ⁇ /2 + ⁇ retardation film layer (H3) obtained in Production Example A7
- C1 Cholesteric liquid crystal
- Ink Nos. C201 to C204 and 205 to 216 were prepared by mixing 5 parts of any of the cholesteric liquid crystal cured layer flakes (flake Nos. 101 to 116 in Table 3) prepared in the above-mentioned manufacturing examples, 85 parts of screen ink ("No. 2500 Medium” manufactured by Jujo Chemical Co., Ltd.), and 5 parts of a dedicated diluent for the screen ink (Tetoron standard solvent).
- the list of the prepared inks is summarized in Table 4.
- Examples 1 to 11 and Comparative Examples 1 to 4> Screen printing samples were prepared by varying the combinations of the various inks listed in Table 4.
- a so-called tweezers printing (seamless printing) pattern was adopted, which represents the letter "T" as shown in Fig. 4 and is composed of a first ink layer 10 (letter portion) and a second ink layer 20 (background portion).
- the ink combinations used for the letter portion and the background portion are shown in Table 5.
- Example 13 when an ink containing flakes including a C plate as a retardation layer (B) is used for the character part and the background part, the character part and the background part cannot be distinguished even when observed from the front using a circularly polarized viewer. However, when observed from a specific oblique direction through polarized sunglasses, the character part and the background part can be distinguished, and the characters can be recognized. These special effects can provide a sense of surprise to the viewer.
- a printed matter can be realized in which flakes having a regular shape can be recognized when observed under magnification with a magnifying glass, by including a liquid crystal cured layer (A) and a retardation layer (B) and using flakes having a regular shape.
- the flakes have a fixed shape and cannot be visually recognized, so they can be included in printed matter without being noticed by observers, and therefore can be used as an excellent security material.
- REFERENCE SIGNS LIST 1 Printed matter 10 First ink layer 12 Boundary 20 Second ink layer 30 Printing base layer 30U surface 100 Flake 200 Flake 111 First retardation layer (retardation layer (B)) 120 Liquid crystal hardened layer (liquid crystal hardened layer (A)) 112 Second retardation layer (retardation layer (B))
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
Abstract
Description
本発明は、フレーク、印刷物及びそれを備える物品、並びに識別媒体に関する。 The present invention relates to flakes, printed matter and articles comprising the same, and identification media.
物品が真正品であるか否かの判定を容易にするために、物品に識別媒体を設けることが一般的に行われている。識別媒体は、偽造防止性能を有し、且つ識別機能を有することが求められる。ここでいう識別媒体の偽造防止性能とは、識別媒体が一般的な印刷等の技術では容易に複製できないものである性能である。識別媒体の識別機能とは、真正な識別媒体が、一般的な技術で偽造した偽造識別媒体と、何らかの手段で、高い信頼度をもって識別しうる機能である。 In order to make it easier to determine whether an item is genuine or not, it is common for items to be provided with an identification medium. The identification medium is required to have anti-counterfeiting properties and an identification function. The anti-counterfeiting properties of the identification medium here refer to the performance of the identification medium being such that it cannot be easily replicated using common printing or other techniques. The identification function of the identification medium refers to the ability, by some means, to distinguish with a high degree of reliability a genuine identification medium from a counterfeit identification medium that has been forged using common techniques.
識別媒体は、多くの場合、通常の部材には見られない光学的効果を奏する特殊な構成を有する。特に、観察の態様の違いにより、一般的な製造技術で製造された表示媒体では得られない特殊な表示状態の変化が観察されるという光学的特性を有しうる。かかる光学的特性は、識別媒体としての機能とは別に、美観に優れ意匠的効果を発現する特性としても利用しうる。そのため、識別媒体と同様の構成を有する光学表示媒体を、識別媒体として用い且つ加飾媒体としても利用する場合があり、又は識別媒体と同様の構成を有する光学表示媒体を、識別媒体の用途に用いず単に加飾媒体として用いる場合もある。 Identification media often have a special structure that produces optical effects not seen in ordinary materials. In particular, they may have optical properties that, depending on the observation method, produce special changes in the display state that cannot be obtained with display media manufactured by general manufacturing techniques. Apart from their function as identification media, such optical properties can also be used as properties that are aesthetically pleasing and produce design effects. For this reason, optical display media having the same structure as identification media may be used both as identification media and as decorative media, or optical display media having the same structure as identification media may be used simply as decorative media without being used as identification media.
このような識別媒体として、円偏光を反射する光反射層と、パターン状の位相差層とを備える構成が知られている(特許文献1など参照)。
また、物品を加飾するための顔料として、コレステリック規則性を保持したまま固定された分子を含む小板状の顔料が知られている(特許文献2など参照)。
基材フィルムにコレステリック樹脂の薄膜を形成したあと、樹脂薄膜を基材フィルムから剥離して、樹脂薄膜の剥離片を形成する方法が知られている(特許文献3、4など参照)。
As such an identification medium, a configuration including a light reflective layer that reflects circularly polarized light and a patterned retardation layer is known (see, for example, Patent Document 1).
Furthermore, as a pigment for decorating an article, a platelet-shaped pigment containing molecules fixed while maintaining cholesteric regularity is known (see, for example, Patent Document 2).
A method is known in which a thin film of a cholesteric resin is formed on a base film, and then the thin resin film is peeled off from the base film to form a peeled piece of the thin resin film (see Patent Documents 3 and 4, etc.).
識別媒体は、その識別機能を有する箇所が秘匿されていること、即ち識別機能を有する箇所がそこに存在することを通常の観察では感知されないものであることが望まれる。つまり、通常の観察では識別機能を有する箇所の存在が感知されないものであれば、偽造者は、識別媒体を識別媒体として認識せず、通常の表示媒体としか認識しないので、その場合偽造者は識別媒体の識別機能を模倣すること自体に想到しない。そのため識別機能を有する箇所が秘匿された識別媒体は、識別機能を模倣した偽造品が製造される可能性が低くなる。
このような識別機能を付与することを意図して、識別媒体に、互いに逆のねじれ構造を有し、コレステリック規則性を有する二種の液晶硬化層を用いる場合がある。これらの二種の液晶硬化層は、互いに逆の回転方向を有する円偏光を選択的に反射しうる。
このような二種の液晶硬化層は、液晶硬化層を形成するための液晶組成物として、共通する液晶性化合物と、互いに異なる適切なカイラル剤とを含む組成物を用いることにより、製造されうる。共通する液晶性化合物を用いることにより、二種の液晶硬化層の反射光を、肉眼による観察において同一の色調に近づけることができ、適切なビュワーを用いた観察では、これらの反射光を互いに区別しうる。
It is desirable for the identification medium to have a portion having the identification function concealed, that is, the presence of the portion having the identification function cannot be detected by normal observation. In other words, if the presence of the portion having the identification function cannot be detected by normal observation, counterfeiters will not recognize the identification medium as an identification medium, but only as a normal display medium, and in that case, counterfeiters will not even think of imitating the identification function of the identification medium. Therefore, an identification medium in which the portion having the identification function is concealed is less likely to be counterfeited by imitating the identification function.
In order to provide such a discrimination function, two types of liquid crystal layers having opposite twist structures and cholesteric regularity may be used in the discrimination medium. These two types of liquid crystal layers can selectively reflect circularly polarized light having opposite rotation directions.
Such two kinds of liquid crystal cured layers can be manufactured by using a composition containing a common liquid crystal compound and suitable chiral agents different from each other as a liquid crystal composition for forming the liquid crystal cured layers. By using a common liquid crystal compound, the reflected light of the two kinds of liquid crystal cured layers can be made to approach the same color tone when observed with the naked eye, and these reflected lights can be distinguished from each other when observed with a suitable viewer.
しかし、実際には、適切なカイラル剤を見出すことが難しい場合、または見出すことができても、適切なカイラル剤を工業的に製造することが難しい場合がある。また互いに異なるカイラル剤を含む液晶硬化層フレークの反射光を肉眼により観察した際の色調を揃えるために、液晶組成物の配合を調整する必要がある場合もある。一般に、このような配合の調整は煩雑である。 However, in practice, it may be difficult to find a suitable chiral agent, or even if it can be found, it may be difficult to produce it industrially. Also, in order to align the color tone when the reflected light of liquid crystal cured layer flakes containing different chiral agents is observed with the naked eye, it may be necessary to adjust the composition of the liquid crystal composition. In general, adjusting the composition in this way is complicated.
一方、識別媒体を、印刷により作製することができれば、生産性の観点から有利である。 On the other hand, if the identification medium could be produced by printing, it would be advantageous from the standpoint of productivity.
よって、印刷物に識別機能を付与しうる、新規なフレーク;それを用いた印刷物;印刷物を備える物品;新規なフレークを用いた識別媒体;が求められる。 Therefore, there is a demand for novel flakes that can impart identification functionality to printed matter; printed matter using such flakes; articles that include printed matter; and identification media that use the novel flakes.
本発明者は、前記課題を解決するべく、鋭意検討した結果、コレステリック規則性を有する液晶硬化層(A)と、入射光に位相差を与える位相差層(B)とを含む積層体(C)のフレークにより、前記課題を解決しうることを見出し、本発明を完成させた。
すなわち、本発明は、以下を提供する。
As a result of intensive research to solve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be solved by flakes of a laminate (C) including a liquid crystal cured layer (A) having cholesteric regularity and a retardation layer (B) that imparts a retardation to incident light, and have completed the present invention.
That is, the present invention provides the following.
<1> コレステリック規則性を有する液晶硬化層(A)と、入射光に位相差を与える位相差層(B)とを含む積層体(C)のフレーク。
<2> 前記積層体(C)は、前記液晶硬化層(A)の全面に前記位相差層(B)が厚み方向に重なっている積層体である、<1>に記載のフレーク。
<3> 前記フレークの体積基準平均粒子径D50の、前記フレークの厚みdに対する比(D50/d)が、4以上である、<1>又は<2>に記載のフレーク。
<4> 前記位相差層(B)の厚みd(B)が、3μm以下である、<1>~<3>のいずれか一項に記載のフレーク。
<5> 前記位相差層(B)が、複屈折Δnが0.2以上である液晶性化合物を含む液晶組成物の、硬化層である、<1>~<4>のいずれか一項に記載のフレーク。
<6> 波長550nmにおける前記位相差層(B)の正面方向のレターデーションReB(0)が、250nm以上350nm以下である、<1>~<5>のいずれか一項に記載のフレーク。
<7> 波長550nmにおける前記位相差層(B)の正面方向のレターデーションReB(0)が、10nm以下である、<1>~<5>のいずれか一項に記載のフレーク。
<8> 波長550nmにおける前記位相差層(B)の極角45°方向のレターデーションReB(45)が、50nm以上100nm以下、又は250nm以上350nm以下である、<1>~<7>のいずれか一項に記載のフレーク。
<9> 前記液晶硬化層(A)の正面方向における選択反射帯域が、420nm以上650nm以下の波長領域を含み、かつ正面方向における選択反射帯域の幅が、200nm以上である、<1>~<8>のいずれか一項に記載のフレーク。
<10> 前記液晶硬化層(A)の正面方向における選択反射帯域が、380nm以上780nm以下の範囲内にあり、かつ選択反射帯域の幅が、50nm以上150nm以下である、<1>~<8>のいずれか一項に記載のフレーク。
<11> 前記液晶硬化層(A)の厚みが、6μm以下である、<1>~<10>のいずれか一項に記載のフレーク。
<12> 体積基準平均粒子径D50が、50μm以下である、<1>~<11>のいずれか一項に記載のフレーク。
<13> フレークの各々を厚み方向から見た形状が不規則である、<1>~<12>のいずれか一項に記載のフレーク。
<14> フレークの各々を厚み方向から見た形状が矩形である、<1>~<13>のいずれか一項に記載のフレーク。
<15> 前記液晶硬化層(A)と前記位相差層(B)との間に、接着層を備える、<1>~<14>のいずれか一項に記載のフレーク。
<16> 前記位相差層(B)の厚みd(B)の前記液晶硬化層(A)の厚みd(A)に対する厚み比(d(B)/d(A))が、0.8以下である、<1>~<15>のいずれか一項に記載のフレーク。
<17> <1>~<16>のいずれか一項に記載のフレークを含有するインキの層を含む、印刷物。
<18> <17>に記載の印刷物を備える、物品。
<19> 表示面を有する識別媒体であって、
前記表示面の一部を占める領域R1に設けられる第一インキ層と、
前記表示面の一部を占める領域であって、前記領域R1以外の領域の一部又は全部を占める領域R2に設けられる第二インキ層とを備え、
前記第一インキ層は、<1>~<16>のいずれか一項に記載のフレークであって、前記位相差層(B)が、所定の極角φからの波長550nmである入射光に位相差ReB1(φ)を与える位相差層(B1)である、第一フレークを含有し、
前記第二インキ層は、前記液晶硬化層(A)のフレークであるか、または、前記液晶硬化層(A)と、所定の極角φからの波長550nmである入射光に位相差ReB2(φ)を与える位相差層(B2)とを含む積層体(C2)のフレークである、第二フレークを含有し、
|ReB2(φ)-ReB1(φ)|>0nmである、識別媒体。
<1> A flake of a laminate (C) including a liquid crystal cured layer (A) having cholesteric regularity and a retardation layer (B) that imparts a retardation to incident light.
<2> The flake according to <1>, wherein the laminate (C) is a laminate in which the retardation layer (B) is laminated in a thickness direction on the entire surface of the cured liquid crystal layer (A).
<3> The flakes according to <1> or <2>, wherein the ratio (D50/d) of the volume-based average particle diameter D50 of the flakes to the thickness d of the flakes is 4 or more.
<4> The flake according to any one of <1> to <3>, wherein the thickness d(B) of the retardation layer (B) is 3 μm or less.
<5> The flake according to any one of <1> to <4>, wherein the retardation layer (B) is a cured layer of a liquid crystal composition containing a liquid crystalline compound having a birefringence Δn of 0.2 or more.
<6> The flake according to any one of <1> to <5>, wherein a retardation ReB(0) in a front direction of the retardation layer (B) at a wavelength of 550 nm is 250 nm or more and 350 nm or less.
<7> The flake according to any one of <1> to <5>, wherein the retardation layer (B) has a retardation in a front direction, ReB(0), at a wavelength of 550 nm is 10 nm or less.
<8> The flake according to any one of <1> to <7>, wherein the retardation layer (B) in a polar angle direction of 45° at a wavelength of 550 nm, ReB(45), is 50 nm or more and 100 nm or less, or 250 nm or more and 350 nm or less.
<9> The flake according to any one of <1> to <8>, wherein the selective reflection band in the front direction of the liquid crystal cured layer (A) includes a wavelength range of 420 nm to 650 nm, and the width of the selective reflection band in the front direction is 200 nm or more.
<10> The flake according to any one of <1> to <8>, wherein the selective reflection band in the front direction of the liquid crystal cured layer (A) is in the range of 380 nm to 780 nm, and the width of the selective reflection band is 50 nm to 150 nm.
<11> The flake according to any one of <1> to <10>, wherein the thickness of the cured liquid crystal layer (A) is 6 μm or less.
<12> The flakes according to any one of <1> to <11>, having a volume-based average particle diameter D50 of 50 μm or less.
<13> The flakes according to any one of <1> to <12>, wherein each flake has an irregular shape when viewed in the thickness direction.
<14> The flakes according to any one of <1> to <13>, wherein each flake has a rectangular shape when viewed in the thickness direction.
<15> The flake according to any one of <1> to <14>, further comprising an adhesive layer between the liquid crystal cured layer (A) and the retardation layer (B).
<16> The flake according to any one of <1> to <15>, wherein a thickness ratio (d(B)/d(A)) of a thickness d(B) of the retardation layer (B) to a thickness d(A) of the liquid crystal cured layer (A) is 0.8 or less.
<17> A printed matter comprising a layer of ink containing the flakes according to any one of <1> to <16>.
<18> An article comprising the printed matter according to <17>.
<19> An identification medium having a display surface,
A first ink layer provided in a region R1 occupying a part of the display surface;
a second ink layer provided in a region R2 occupying a part of the display surface and occupying a part or all of the region other than the region R1 ;
The first ink layer contains a first flake according to any one of <1> to <16>, wherein the retardation layer (B) is a retardation layer (B1) that gives a retardation ReB1(φ) to incident light having a wavelength of 550 nm from a predetermined polar angle φ;
The second ink layer contains second flakes, which are flakes of the cured liquid crystal layer (A) or flakes of a laminate (C2) including the cured liquid crystal layer (A) and a retardation layer (B2) that imparts a retardation ReB2(φ) to incident light having a wavelength of 550 nm from a predetermined polar angle φ;
An identification medium, wherein |ReB2(φ)-ReB1(φ)|>0 nm.
本発明によれば、印刷物に識別機能を付与しうる、新規なフレーク;それを用いた印刷物;印刷物を備える物品;新規なフレークを用いた識別媒体;を提供できる。 The present invention can provide novel flakes that can impart identification functionality to printed matter; printed matter using the flakes; articles equipped with printed matter; and identification media using the novel flakes.
以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。以下に示す実施形態の構成要素は、適宜組み合わせうる。また、図において、同一の構成要素には同一の符号を付し、その説明を省略する場合がある。 The present invention will be described in detail below with reference to embodiments and examples. However, the present invention is not limited to the embodiments and examples shown below, and may be modified and implemented as desired without departing from the scope of the claims of the present invention and their equivalents. The components of the embodiments shown below may be combined as appropriate. In addition, in the figures, the same components are given the same reference numerals, and their description may be omitted.
以下の説明において、ある層の正面方向とは、別に断らない限り、当該層の主面の法線方向を意味し、具体的には前記主面の極角0°且つ方位角0°の方向を指す。 In the following description, unless otherwise specified, the front direction of a certain layer means the normal direction of the principal surface of the layer, specifically the direction of the polar angle of 0° and the azimuth angle of 0° of the principal surface.
以下の説明において、ある層の斜め方向とは、別に断らない限り、当該層の主面に平行でも垂直でもない方向を意味し、具体的には前記主面の極角が0°より大きく90°より小さい範囲の方向を指す。 In the following description, unless otherwise specified, the oblique direction of a certain layer means a direction that is neither parallel nor perpendicular to the principal surface of the layer, and more specifically, refers to a direction in which the polar angle of the principal surface is in the range greater than 0° and less than 90°.
以下の説明において、「(メタ)アクリル」の文言は、「アクリル」、「メタクリル」及びこれらの組み合わせを包含する。同様に「(チオ)エポキシ基」の文言は、「エポキシ基」、「チオエポキシ基」及びこれらの組み合わせを包含し、「イソ(チオ)シアネート基」の文言は、「イソシアネート基」、「イソチオシアネート基」及びこれらの組み合わせを包含する。 In the following description, the term "(meth)acrylic" includes "acrylic", "methacrylic", and combinations thereof. Similarly, the term "(thio)epoxy group" includes "epoxy group", "thioepoxy group", and combinations thereof, and the term "iso(thio)cyanate group" includes "isocyanate group", "isothiocyanate group", and combinations thereof.
以下の説明において、層の面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。また、層の厚み方向のレターデーションRthは、別に断らない限り、Rth=[{(nx+ny)/2}-nz]×dで表される値である。ここで、nxは、層の厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、層の前記面内方向であってnxの方向に直交する方向の屈折率を表す。nzは層の厚み方向の屈折率を表す。dは、層の厚みを表す。測定波長は、別に断らない限り、550nmである。これらの値は、位相差計(Axometrics社製「AxoScan」)を用いて測定しうる。 In the following description, the in-plane retardation Re of a layer is a value expressed by Re = (nx - ny) x d, unless otherwise specified. Furthermore, the retardation Rth in the thickness direction of a layer is a value expressed by Rth = [{(nx + ny)/2} - nz] x d, unless otherwise specified. Here, nx represents the refractive index in the direction perpendicular to the thickness direction of the layer (in-plane direction) that gives the maximum refractive index. ny represents the refractive index in the in-plane direction of the layer that is perpendicular to the direction of nx. nz represents the refractive index in the thickness direction of the layer. d represents the thickness of the layer. The measurement wavelength is 550 nm, unless otherwise specified. These values can be measured using a phase difference meter (Axometrics' "AxoScan").
本願では、斜め方向の位相差についても述べる。面内レターデーションReは通常、層の極角0°の方向から光学的な観察を行い測定する一方、斜め方向のレターデーションは、かかる観察方向を極角0°超の斜め方向に変更して観察し、かかる観察方向に直交する面が層の面であると見做した場合における、見掛け上の面内レターデーションの値に相当する。本願では、ある極角から観察した斜め方向のレターデーションを、当該極角の数値を付して示す場合がある。例えば、極角45°の方向から観察した位相差層(B)の斜め方向のレターデーションを、例えばReB(45)と示すことがある。また、これと対比して、極角0°、すなわち正面方向から観察した位相差層(B)の面内レターデーションを、そのことを明示するため例えばReB(0)と示すことがある。単に「面内レターデーション」という場合は、正面方向から観察したレターデーション(正面方向のレターデーション)を意味する。 In this application, the phase difference in the oblique direction is also described. The in-plane retardation Re is usually measured by optically observing the layer from a direction of a polar angle of 0°, while the retardation in the oblique direction corresponds to the apparent in-plane retardation value when the observation direction is changed to an oblique direction of a polar angle of more than 0° and the surface perpendicular to the observation direction is considered to be the surface of the layer. In this application, the retardation in the oblique direction observed from a certain polar angle may be indicated by adding the numerical value of the polar angle. For example, the oblique retardation of the retardation layer (B) observed from a polar angle of 45° may be indicated as ReB(45). In contrast to this, the in-plane retardation of the retardation layer (B) observed from a polar angle of 0°, i.e., from the front direction, may be indicated as ReB(0) to clearly indicate that. When simply referring to "in-plane retardation," it means the retardation observed from the front direction (retardation in the front direction).
具体的には、極角φにおける斜め方向のレターデーションReφは、式Reφ=|ny-nx’|・dφにより求められる。
ここでdφは斜め方向の層内の光路長であり、式dφ=d/cosφにより求められる。
nx’は、下記式(e1)により求められる。
Specifically, the retardation Reφ in an oblique direction at a polar angle φ can be calculated by the formula Reφ=|ny−nx′|·dφ.
Here, dφ is the optical path length in the layer in the oblique direction, and is calculated by the formula dφ=d/cosφ.
nx' is calculated by the following formula (e1).
以下の説明において、ある層の遅相軸の方向とは、別に断らない限り、面内方向の遅相軸の方向をいう。但し、斜め方向のレターデーションについて述べる場合、その定義は上に述べた通りである。 In the following description, the direction of the slow axis of a layer refers to the direction of the slow axis in the in-plane direction unless otherwise specified. However, when retardation in an oblique direction is mentioned, the definition is as described above.
以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±3°、±2°又は±1°の範囲内での誤差を含んでいてもよい。 In the following description, unless otherwise specified, the directions of elements as "parallel," "vertical," and "orthogonal" may include an error within a range that does not impair the effect of the present invention, for example, within the range of ±3°, ±2°, or ±1°.
以下の説明において、接着剤とは、別に断らない限り、狭義の接着剤(エネルギー線照射後、あるいは加熱処理後、23℃における剪断貯蔵弾性率が1MPa~500MPaである接着剤)のみならず、23℃における剪断貯蔵弾性率が1MPa未満である粘着剤をも包含する。
したがって、「接着層」は、狭義の接着剤の層の他、粘着剤の層をも包含する。
In the following description, unless otherwise specified, the adhesive refers not only to adhesives in the narrow sense (adhesives having a shear storage modulus of 1 MPa to 500 MPa at 23°C after irradiation with energy rays or after heat treatment) but also to pressure-sensitive adhesives having a shear storage modulus of less than 1 MPa at 23°C.
Therefore, the term "adhesive layer" encompasses not only a layer of an adhesive in the narrow sense, but also a layer of a pressure-sensitive adhesive.
以下の説明において、「偏光板」及び「プレート」はそれぞれ、別に断らない限り、剛直な部材に限らず、樹脂製のフィルムなどの可撓性を有する部材も包含する。 In the following description, unless otherwise specified, the terms "polarizer" and "plate" are not limited to rigid members, but also include flexible members such as resin films.
以下の説明において、説明の便宜上、「右円偏光」及び「左円偏光」は、光の出射元から光の出射先を観察した場合における円偏光の回転方向に基づき定義する。即ち、光の出射元から光の出射先を観察した場合において、光の進行に従って偏光方向が時計回りに回転する偏光を右円偏光とし、その反対の方向に回転する偏光を左円偏光とする。 For the sake of convenience, in the following explanation, "right-handed circularly polarized light" and "left-handed circularly polarized light" are defined based on the direction of rotation of circularly polarized light when observing the destination of the light from the source of the light. In other words, when observing the destination of the light from the source of the light, polarized light whose polarization direction rotates clockwise as the light travels is called right-handed circularly polarized light, and polarized light whose direction rotates in the opposite direction is called left-handed circularly polarized light.
<1.フレーク>
<1.1.フレークの概要>
(フレークの構成)
本実施形態のフレークは、コレステリック規則性を有する液晶硬化層(A)と、入射光に位相差を与える位相差層(B)とを含む積層体(C)のフレークである。
<1. Flakes>
<1.1. Overview of flakes>
(Flake Composition)
The flakes of this embodiment are flakes of a laminate (C) including a liquid crystal cured layer (A) having cholesteric regularity and a retardation layer (B) that imparts a retardation to incident light.
ここで、積層体(C)は、通常、液晶硬化層(A)の全面に位相差層(B)が厚み方向に重なっている積層体である。したがって、積層体(C)のフレークにおいても、通常、液晶硬化層(A)の全面に位相差層(B)が厚み方向に重なっている。 Here, the laminate (C) is usually a laminate in which the retardation layer (B) is superimposed in the thickness direction on the entire surface of the cured liquid crystal layer (A). Therefore, in the flakes of the laminate (C), the retardation layer (B) is usually superimposed in the thickness direction on the entire surface of the cured liquid crystal layer (A).
本実施形態のフレークは、液晶硬化層(A)と位相差層(B)とを含む積層体(C)のフレークであるので、液晶硬化層(A)と位相差層(B)とを含む。
以下、液晶硬化層(A)と位相差層(B)とを含む積層体(C)のフレークを、フレーク(AB)ともいう。
また、液晶硬化層(A)のフレークを、フレーク(A)ともいう。
The flakes of this embodiment are flakes of a laminate (C) including a cured liquid crystal layer (A) and a retardation layer (B), and therefore include the cured liquid crystal layer (A) and the retardation layer (B).
Hereinafter, the flakes of the laminate (C) including the cured liquid crystal layer (A) and the retardation layer (B) are also referred to as flakes (AB).
The flakes of the cured liquid crystal layer (A) are also referred to as flakes (A).
ここで、フレーク(AB)は、液晶硬化層(A)と複数の位相差層(B)とを備える積層体(C)のフレークであってもよい。この場合、後述する厚み比(dtot(B)/d(A))における、位相差層(B)の総厚みdtot(B)は、複数の位相差層(B)のそれぞれの厚みd(B)の合計である。
例えば、フレーク(AB)は、位相差層(B)としての第一の位相差層(Ba)、液晶硬化層(A)、及び位相差層(B)としての第二の位相差層(Bb)をこの順に備える積層体(C)のフレークであってもよい。この場合、後述する厚み比(dtot(B)/d(A))における、位相差層(B)の総厚みdtot(B)は、第一の位相差層(Ba)の厚みd(Ba)と第二の位相差層(Bb)の厚みd(Bb)との合計(d(Ba)+d(Bb))である。
Here, the flakes (AB) may be flakes of a laminate (C) including a liquid crystal cured layer (A) and a plurality of retardation layers (B). In this case, the total thickness d tot (B) of the retardation layer (B) in the thickness ratio (d tot (B)/d(A)) described later is the sum of the thicknesses d(B) of the plurality of retardation layers (B).
For example, the flake (AB) may be a flake of a laminate (C) including a first retardation layer (Ba) as the retardation layer (B), a liquid crystal cured layer (A), and a second retardation layer (Bb) as the retardation layer (B) in this order. In this case, the total thickness d tot (B) of the retardation layer (B) in the thickness ratio (d tot (B)/ d (A)) described later is the sum (d(Ba)+d(Bb)) of the thickness d(Ba) of the first retardation layer (Ba) and the thickness d(Bb) of the second retardation layer (Bb).
(フレークの作用)
フレーク(AB)とフレーク(A)とに非偏光を照射してその反射光を観察する場合の作用について説明する。
フレーク(AB)において、液晶硬化層(A)による反射光は、位相差層(B)に入射する。位相差層(B)への入射光は、位相差層(B)の層内を進むことにより位相差が与えられて、位相差層(B)から出射する光は、液晶硬化層(A)による反射光とは偏光状態が異なっている。
一方、位相差層(B)を含まない、フレーク(A)による反射光は、位相差層(B)によるこのような作用を受けない。位相差層(B)を含む積層体(C)のフレーク(AB)であっても、位相差層(B)を一層のみ備え液晶硬化層(A)を観察側に向けているフレークの場合は、フレークが備える液晶硬化層(A)による反射光は、位相差層(B)による作用を受けないが、位相差層(B)を観察側に向けているフレークも通常存在し、このフレークが備える液晶硬化層(A)による反射光は、位相差層(B)による作用を受けるため、フレーク(AB)全体による反射光は、フレーク(A)による反射光とは偏光状態が異なる光を含む。
したがって、以下の説明において、フレーク(AB)は、位相差層(B)を一層のみ備えるフレーク(AB)であってもよく、位相差層(B)を二層備え、位相差層(B)、液晶硬化層(A)、及び位相差層(B)をこの順で備えるフレーク(AB)であってもよい。
また、後述するフレーク(AB1)も同様に、位相差層(B1)を一層のみ備えるフレーク(AB1)であってもよく、位相差層(B1)を二層備え、位相差層(B1)、液晶硬化層(A)、及び位相差層(B1)をこの順で備えるフレーク(AB1)であってもよい。
さらに後述するフレーク(AB2)も同様に、位相差層(B2)を一層のみ備えるフレーク(AB2)であってもよく、位相差層(B2)を二層備え、位相差層(B2)、液晶硬化層(A)、及び位相差層(B2)をこの順で備えるフレーク(AB2)であってもよい。
(Flake Action)
The operation when unpolarized light is irradiated onto the flakes (AB) and (A) and the reflected light is observed will be described.
In the flake (AB), the reflected light from the liquid crystal cured layer (A) enters the retardation layer (B). The incident light to the retardation layer (B) is given a phase difference by traveling through the retardation layer (B), and the light exiting the retardation layer (B) has a polarization state different from that of the reflected light from the liquid crystal cured layer (A).
On the other hand, the reflected light by the flake (A) not including the retardation layer (B) is not affected by such an action of the retardation layer (B). Even in the case of the flake (AB) of the laminate (C) including the retardation layer (B), in the case of a flake having only one retardation layer (B) and having the liquid crystal cured layer (A) facing the observation side, the reflected light by the liquid crystal cured layer (A) included in the flake is not affected by the retardation layer (B), but there are usually flakes having the retardation layer (B) facing the observation side, and the reflected light by the liquid crystal cured layer (A) included in this flake is affected by the retardation layer (B), so that the reflected light by the entire flake (AB) includes light having a different polarization state from the reflected light by the flake (A).
Therefore, in the following description, the flake (AB) may be a flake (AB) having only one retardation layer (B), or may be a flake (AB) having two retardation layers (B), that is, a retardation layer (B), a liquid crystal cured layer (A), and a retardation layer (B) in this order.
Similarly, the flake (AB1) described later may be a flake (AB1) having only one retardation layer (B1), or may be a flake (AB1) having two retardation layers (B1), that is, a retardation layer (B1), a liquid crystal cured layer (A), and a retardation layer (B1) in this order.
Furthermore, the flake (AB2) described later may be a flake (AB2) having only one retardation layer (B2), or may be a flake (AB2) having two retardation layers (B2), i.e., a retardation layer (B2), a liquid crystal cured layer (A), and a retardation layer (B2) in this order.
通常、偏光状態の相違を肉眼では区別できないので、位相差層(B)を含む積層体(C)のフレーク(AB)と、位相差層(B)を含まない、液晶硬化層(A)のフレーク(A)とを、ある面上に配置してその反射光を肉眼で観察すると、いずれのフレークも略同一又は同一の色調を呈する。
しかし、直線偏光板(市販の偏光サングラスなど)又は円偏光板を介した観察のように、偏光状態を区別しうる適切なビュワーを用いた観察では、ある面上に配置されたフレーク(AB)とフレーク(A)との色調を、区別しうる。
Normally, differences in polarization states cannot be distinguished with the naked eye. Therefore, when flakes (AB) of the laminate (C) including the retardation layer (B) and flakes (A) of the liquid crystal cured layer (A) not including the retardation layer (B) are placed on a certain surface and the reflected light is observed with the naked eye, all the flakes have approximately the same or the same color tone.
However, when observed using an appropriate viewer that can distinguish polarization states, such as through a linear polarizing plate (such as commercially available polarized sunglasses) or a circular polarizing plate, the color tones of flakes (AB) and flakes (A) arranged on a certain surface can be distinguished.
フレーク(A)による反射光と異なる偏光状態を得るために、液晶硬化層(A)の材料である液晶組成物に含まれるカイラル剤を変更する方法を採用しうる。しかし、適切なカイラル剤を見いだせない場合や、適切なカイラル剤を見いだせたとしても、見出したカイラル剤を工業的に製造することが容易ではない場合がある。さらに、液晶硬化層(A)の材料を変更して得られる液晶硬化層のフレークを肉眼で観察した場合に、かかる液晶硬化層のフレークと液晶硬化層(A)のフレークとで、色調が異なる場合もある。
フレーク(AB)とフレーク(A)とは、共通する液晶硬化層(A)を備えているので、肉眼で観察した場合に両者の色調が略同一又は同一である。そのため、色調を同一にするための液晶硬化層の材料の調整が、通常必要とされない。
In order to obtain a polarization state different from that of the reflected light by the flakes (A), a method of changing the chiral agent contained in the liquid crystal composition, which is the material of the liquid crystal cured layer (A), may be adopted. However, there are cases where a suitable chiral agent cannot be found, and even if a suitable chiral agent is found, it is not easy to industrially manufacture the found chiral agent. Furthermore, when the flakes of the liquid crystal cured layer obtained by changing the material of the liquid crystal cured layer (A) are observed with the naked eye, the color tone may be different between the flakes of the liquid crystal cured layer and the flakes of the liquid crystal cured layer (A).
Since the flakes (AB) and (A) have a common liquid crystal cured layer (A), the color tones of the two are almost the same or the same when observed with the naked eye, and therefore, adjustment of the material of the liquid crystal cured layer to make the color tones the same is not usually required.
また、液晶硬化層(A)と位相差層(B1)との積層体(C1)のフレークと、液晶硬化層(A)と位相差層(B2)との積層体(C2)のフレークとに非偏光を入射してその反射光を観察する場合の作用について説明する。
ここで、積層体(C1)及び積層体(C2)は、同じ液晶硬化層(A)を備える。位相差層(B1)と位相差層(B2)とは、入射光に、互いに異なる位相差を与える。具体的には、位相差層(B1)は、所定の極角φからの波長550nmである入射光に位相差ReB1(φ)を与え、位相差層(B2)は、所定の極角φからの波長550nmである入射光に位相差ReB2(φ)を与え、|ReB2(φ)-ReB1(φ)|>0nmである。極角φは、0°であるか、又は0°より大きく90°未満である。
積層体(C1)のフレークを、フレーク(AB1)ともいい、積層体(C2)のフレークを、フレーク(AB2)ともいう。
In addition, the effect of incident non-polarized light on a flake of a laminate (C1) of the cured liquid crystal layer (A) and the retardation layer (B1) and a flake of a laminate (C2) of the cured liquid crystal layer (A) and the retardation layer (B2) and observing the reflected light will be described.
Here, the laminate (C1) and the laminate (C2) have the same liquid crystal cured layer (A). The retardation layer (B1) and the retardation layer (B2) give different phase differences to the incident light. Specifically, the retardation layer (B1) gives a phase difference ReB1(φ) to the incident light having a wavelength of 550 nm from a predetermined polar angle φ, and the retardation layer (B2) gives a phase difference ReB2(φ) to the incident light having a wavelength of 550 nm from a predetermined polar angle φ, where |ReB2(φ)-ReB1(φ)|>0 nm. The polar angle φ is 0° or is greater than 0° and less than 90°.
The flakes of the laminate (C1) are also called flakes (AB1), and the flakes of the laminate (C2) are also called flakes (AB2).
フレーク(AB1)において、液晶硬化層(A)による反射光は所定の極角φから位相差層(B1)に入射し、フレーク(AB2)においても、液晶硬化層(A)による反射光は所定の極角φから位相差層(B2)に入射する。位相差層(B1)から出射する光は、位相差ReB1(φ)が与えられて、液晶硬化層(A)による反射光とは偏光状態が異なっている。また、位相差層(B2)から出射する光も、位相差ReB2(φ)が与えられて、液晶硬化層(A)による反射光とは偏光状態が異なり、さらに、|ReB2(φ)-ReB1(φ)|>0nmであるので、位相差層(B2)から出射する光とも偏光状態が異なる。
前記のとおり、偏光状態の相違を肉眼では区別できないので、フレーク(AB1)とフレーク(AB2)とを、ある面上に配置してその反射光を肉眼で観察すると、いずれのフレークも略同一又は同一の色調を有する。
しかし、偏光状態を区別しうる適切なビュワーを用いた観察では、ある面上に配置されたフレーク(AB1)とフレーク(AB2)との色調を区別しうる。
In the flake (AB1), the reflected light from the liquid crystal cured layer (A) is incident on the retardation layer (B1) at a predetermined polar angle φ, and in the flake (AB2), the reflected light from the liquid crystal cured layer (A) is incident on the retardation layer (B2) at a predetermined polar angle φ. The light emitted from the retardation layer (B1) is given a phase difference ReB1(φ) and has a different polarization state from the reflected light from the liquid crystal cured layer (A). In addition, the light emitted from the retardation layer (B2) is also given a phase difference ReB2(φ) and has a different polarization state from the reflected light from the liquid crystal cured layer (A), and further, since |ReB2(φ)-ReB1(φ)|>0 nm, the polarization state is also different from that of the light emitted from the retardation layer (B2).
As described above, differences in polarization states cannot be distinguished with the naked eye, so when flake (AB1) and flake (AB2) are placed on a surface and the reflected light is observed with the naked eye, both flakes have approximately the same or the same color tone.
However, when observed using an appropriate viewer capable of distinguishing polarization states, the color tones of a flake (AB1) and a flake (AB2) arranged on a certain surface can be distinguished.
フレーク(AB1)とフレーク(AB2)とは、肉眼で観察した場合に両者の色調が略同一又は同一である。そのため、色調を同一にするための液晶硬化層の材料の調整が、通常必要とされない。 When observed with the naked eye, the color tones of flake (AB1) and flake (AB2) are almost the same or the same. Therefore, adjustment of the material of the liquid crystal cured layer to make the color tones the same is not usually required.
積層体(C)をフレークとすることで、以下の作用を奏する。
積層体(C)をフレークとすることなく、下地層に貼付するなどしてそのまま用いる場合、積層体(C)が備える位相差層(B)の面内における遅相軸は、下地層に対して一定の方向である。そのため、積層体(C)を正面方向(極角0°の方向)から直線偏光板などのビュワーを用いて観察する場合、位相差層(B)の面内遅相軸と平行な方向とビュワーの透過軸とがなす角度に応じて、ビュワーの透過光量が変化する。したがって、例えば液晶硬化層(A)の正面反射光をビュワーを用いて観察した場合の透過光量と、積層体(C)の正面反射光をビュワーを用いて観察した場合の透過光量とに差がない場合もありうる。その結果、肉眼による観察によっても、ビュワーを用いた観察によっても、積層体(C)が配置された領域と液晶硬化層(A)が配置された領域とを区別できないことがありうる。
一方、積層体(C)を粉砕するなどしてフレーク(AB)として下地層に配置すると、個々のフレーク(AB)が備える位相差層(B)は面内遅相軸を有していても、多数のフレーク(AB)全体としては、下地層に対して特定の方向の面内遅相軸を持たない。したがって、正面方向(極角0°)からの観察であれば、ビュワーの透過軸の方位がいずれの方位であっても、ビュワーの透過光量は通常一定である。
By forming the laminate (C) in the form of flakes, the following effects are achieved.
When the laminate (C) is used as it is, such as by attaching it to the underlayer without making it into flakes, the in-plane slow axis of the retardation layer (B) of the laminate (C) is in a fixed direction with respect to the underlayer. Therefore, when the laminate (C) is observed from the front direction (polar angle 0 ° direction) using a viewer such as a linear polarizing plate, the amount of light transmitted through the viewer changes depending on the angle between the direction parallel to the in-plane slow axis of the retardation layer (B) and the transmission axis of the viewer. Therefore, for example, there may be no difference between the amount of light transmitted when the front reflected light of the liquid crystal cured layer (A) is observed using a viewer and the amount of light transmitted when the front reflected light of the laminate (C) is observed using a viewer. As a result, it may be impossible to distinguish the area where the laminate (C) is arranged from the area where the liquid crystal cured layer (A) is arranged, whether by naked eye observation or by observation using a viewer.
On the other hand, when the laminate (C) is crushed or the like and arranged on the underlayer as flakes (AB), even if the retardation layer (B) of each flake (AB) has an in-plane slow axis, the entirety of the multiple flakes (AB) does not have an in-plane slow axis in a specific direction relative to the underlayer. Therefore, when observed from the front direction (polar angle 0°), the amount of light transmitted by the viewer is usually constant regardless of the orientation of the transmission axis of the viewer.
位相差層(B)の正面方向のレターデーションReB(0)が、λ/2又はλ/2に近い場合、フレーク(AB)は、さらに以下の作用を有する。
位相差層(B)の正面方向のレターデーションReB(0)が、λ/2又はλ/2に近い場合、液晶硬化層(A)から正面方向に反射された、左円偏光及び右円偏光のいずれかの円偏光は、位相差層(B)の作用により、回転方向が逆である円偏光へと偏光状態が変化する。円偏光には主軸方位が観念できないので、円偏光を円偏光板を用いて観察する場合、円偏光板を正面方向を軸として回転させても回転角度によって円偏光板の透過光量は変化しない。言い換えると、フレーク(AB)全体が特定の方向の面内遅相軸を有していなくても、円偏光板による観察に通常影響はない。
When the retardation ReB(0) in the front direction of the retardation layer (B) is λ/2 or close to λ/2, the flakes (AB) further have the following effect.
When the retardation ReB(0) in the front direction of the retardation layer (B) is λ/2 or close to λ/2, the left-handed circularly polarized light or the right-handed circularly polarized light reflected in the front direction from the liquid crystal cured layer (A) is changed in polarization state to the circularly polarized light with the opposite rotation direction by the action of the retardation layer (B). Since the circularly polarized light cannot have a principal axis direction, when the circularly polarized light is observed using a circular polarizer, the amount of transmitted light of the circular polarizer does not change depending on the rotation angle even if the circular polarizer is rotated around the axis of the front direction. In other words, even if the entire flake (AB) does not have an in-plane slow axis in a specific direction, there is usually no effect on the observation using the circular polarizer.
位相差層(B)の正面方向のレターデーションReB(0)が、0nmであるか又は0nmに近く、10nm以下である場合、フレーク(AB)はさらに以下の作用を有する。
正面方向のレターデーションReB(0)が0nm又は0nmに近い位相差層(B)(通常、Cプレートである。)は、斜め方向への透過光に、通常0nmより大きい位相差を与える。正面方向のレターデーションReB(0)が0nm又は0nmに近いので、位相差層(B)から出射する光を、位相差層(B)に対してある極角方向であって任意の方位角の方向から観察する場合、観察する光の進行方向に垂直な面内において位相差層(B)の屈折率が最大又は最小となる方向は、光の進行方向に垂直でありかつ位相差層(B)の面と平行な方向である。
すなわち、ある極角方向であって、いずれの方位角の方向から位相差層(B)の出射光を観察しても、観察する光の進行方向に垂直な面内における位相差層(B)の遅相軸又は進相軸は、観察する光の進行方向に対して同じ方向であり、位相差層(B)の面と平行となる。
したがって、フレーク(AB)の反射光をある極角方向から直線偏光板を用いて観察する場合、直線偏光板の透過軸と、観察する光の進行方向を含みかつ位相差層(B)の面に垂直である平面との、角度関係が同一である場合には、いずれの方位角から観察しても、直線偏光板の透過光量は、通常一定である。
また、フレーク(AB)の反射光をある極角方向から直線偏光板を用いて観察する場合、直線偏光板の透過軸と観察する光の進行方向を含みかつ位相差層(B)の面に垂直である平面とが、45°又は135°をなす場合に、いずれの方位角から観察しても、直線偏光板の透過光量は最も多く又は最も少なくなる。そのため、フレーク(AB)とフレーク(A)との透過光量の差を大きくしうる。
When the retardation ReB(0) in the front direction of the retardation layer (B) is 0 nm or close to 0 nm and is 10 nm or less, the flakes (AB) further have the following effect.
The retardation layer (B) (usually a C plate) having a retardation ReB(0) of 0 nm or close to 0 nm in the front direction usually gives a retardation greater than 0 nm to the transmitted light in the oblique direction. Since the retardation ReB(0) in the front direction is 0 nm or close to 0 nm, when the light emitted from the retardation layer (B) is observed from a direction of a certain polar angle and an arbitrary azimuth angle with respect to the retardation layer (B), the direction in which the refractive index of the retardation layer (B) is maximum or minimum in the plane perpendicular to the traveling direction of the observed light is perpendicular to the traveling direction of the light and parallel to the plane of the retardation layer (B).
That is, in a certain polar angle direction, regardless of the azimuth angle direction from which the emitted light of the retardation layer (B) is observed, the slow axis or fast axis of the retardation layer (B) in a plane perpendicular to the traveling direction of the observed light is in the same direction with respect to the traveling direction of the observed light and is parallel to the plane of the retardation layer (B).
Therefore, when the reflected light of the flake (AB) is observed from a certain polar angle direction using a linear polarizing plate, if the angular relationship between the transmission axis of the linear polarizing plate and a plane that includes the traveling direction of the observed light and is perpendicular to the surface of the retardation layer (B) is the same, the amount of transmitted light of the linear polarizing plate is usually constant regardless of the azimuth angle from which the observation is made.
In addition, when the reflected light of the flakes (AB) is observed from a certain polar angle direction using a linear polarizer, if the transmission axis of the linear polarizer and a plane that includes the traveling direction of the observed light and is perpendicular to the surface of the retardation layer (B) form an angle of 45° or 135°, the amount of transmitted light of the linear polarizer becomes the largest or smallest regardless of the azimuth angle from which the observation is made. Therefore, the difference in the amount of transmitted light between the flakes (AB) and the flakes (A) can be increased.
(厚み比(dtot(B)/d(A))
フレーク(AB)は、位相差層(B)の総厚みdtot(B)の前記液晶硬化層(A)の厚みd(A)に対する厚み比(dtot(B)/d(A))が、好ましくは0.8以下、より好ましくは0.4以下であり、通常0より大きい。
厚み比(dtot(B)/d(A))が0.8以下である場合、積層体(C)を破砕するなどしてフレーク(AB)を製造することがより容易となる。また、後述するフレークのアスペクト比が高くなり、フレーク(AB)をある面上に配置した場合に、液晶硬化層(A)及び位相差層(B)のいずれかの主面が観察側に向いているフレーク(AB)の割合が、側面が観察側に向いているフレーク(AB)の割合よりも、多くなる。そのため、フレーク(AB)が備える位相差層(B)が、前記の作用を効果的に奏しうる。
ここで、フレーク(AB)が、位相差層(B)を一層のみ備える場合は、総厚みdtot(B)は、フレーク(AB)が備える位相差層(B)一層の厚みd(B)に等しい。
(Thickness ratio (d tot (B)/d (A))
The flakes (AB) have a thickness ratio (d tot (B)/d(A)) of the total thickness d tot (B) of the retardation layer (B) to the thickness d(A) of the liquid crystal cured layer (A) of preferably 0.8 or less, more preferably 0.4 or less, and usually greater than 0.
When the thickness ratio (d tot (B)/d(A)) is 0.8 or less, it becomes easier to produce the flakes (AB) by crushing the laminate (C). In addition, when the aspect ratio of the flakes described later becomes high and the flakes (AB) are arranged on a certain surface, the proportion of the flakes (AB) in which the main surface of either the liquid crystal cured layer (A) or the retardation layer (B) faces the observation side becomes higher than the proportion of the flakes (AB) in which the side faces the observation side. Therefore, the retardation layer (B) provided in the flakes (AB) can effectively exert the above-mentioned effect.
Here, when the flake (AB) has only one retardation layer (B), the total thickness d tot (B) is equal to the thickness d(B) of one retardation layer (B) that the flake (AB) has.
(フレークの厚み)
フレーク(AB)の厚みは、好ましくは25μm以下、より好ましくは12μm以下であり、通常0μmより大きく、好ましくは7μm以上である。
フレーク(AB)の厚みが前記下限以上であることにより、高い反射率等の所望の光学的効果を良好に発現しうる。一方厚みが前記上限以下であることにより、フレーク(AB)をある面上に配置した場合に、液晶硬化層(A)及び位相差層(B)のいずれかの主面が観察側に向いているフレーク(AB)の割合が、側面が観察側に向いているフレーク(AB)の割合よりも、多くなる。そのため、フレーク(AB)が備える位相差層(B)が、前記の作用を効果的に奏しうる。
(Flake thickness)
The thickness of the flakes (AB) is preferably 25 μm or less, more preferably 12 μm or less, and is usually greater than 0 μm, preferably 7 μm or more.
By having the thickness of the flake (AB) be equal to or greater than the lower limit, the desired optical effects such as high reflectance can be satisfactorily exhibited. On the other hand, by having the thickness be equal to or less than the upper limit, when the flake (AB) is placed on a surface, the proportion of the flake (AB) in which either the main surface of the liquid crystal cured layer (A) or the retardation layer (B) faces the observation side is greater than the proportion of the flake (AB) in which the side faces the observation side. Therefore, the retardation layer (B) provided in the flake (AB) can effectively exert the above-mentioned action.
(フレークの粒子径)
フレーク(AB)は、体積基準平均粒子径D50が、好ましくは100μm以下であり、より好ましくは50μm以下であり、通常0μmより大きい。フレーク(AB)の平均粒子径D50が前記範囲内である場合、フレーク(AB)を含有するインキを、スクリーン印刷法などの多様な印刷法に、より適したものとしうる。
フレーク(AB)の平均粒子径D50としては、レーザー回折・散乱式粒子径分布測定装置(例えば堀場製作所製、製品名「LA-960」)を用いて測定された粒子径分布において、累積体積が50%となるメジアン径D50の値を用いうる。
(Flake particle size)
The flakes (AB) have a volume-based average particle diameter D50 of preferably 100 μm or less, more preferably 50 μm or less, and usually more than 0 μm. When the average particle diameter D50 of the flakes (AB) is within the above range, the ink containing the flakes (AB) can be more suitable for various printing methods such as screen printing.
As the average particle diameter D50 of the flakes (AB), the value of the median diameter D50 at which the cumulative volume is 50% in the particle diameter distribution measured using a laser diffraction/scattering type particle size distribution measuring device (for example, Horiba, Ltd., product name "LA-960") can be used.
(フレークのアスペクト比)
フレーク(AB)の厚みdは、通常粉砕前の積層体(C)の厚みd(C)に依存するので、フレーク(AB)の厚みdを厚みd(C)としてよい。フレーク(AB)のアスペクト比については、フレークの体積基準平均粒子径D50の、前記フレークの厚みdに対する比(D50/d)の値としうる。更に、フレーク(AB)の体積基準平均粒子径D50を、積層体(C)の厚みd(C)で割って得られる比の値(D50/d(C))を、フレークの体積基準平均粒子径D50の、前記フレークの厚みdに対する比(D50/d)の値として用いうる。当該比の値は、好ましくは4以上、より好ましくは5以上、特に好ましくは7以上であり、好ましくは20以下、より好ましくは15以下、特に好ましくは10以下である。
比の値(D50/d)が、前記下限以上であると、フレーク(AB)をある面上に配置した場合に、液晶硬化層(A)及び位相差層(B)のいずれかの主面が観察側に向いているフレーク(AB)の割合が、側面が観察側に向いているフレーク(AB)の割合よりも、多くなる。そのため、フレーク(AB)が備える位相差層(B)が、前記の作用を効果的に奏しうる。
(Flake aspect ratio)
Since the thickness d of the flake (AB) usually depends on the thickness d(C) of the laminate (C) before pulverization, the thickness d of the flake (AB) may be the thickness d(C). The aspect ratio of the flake (AB) may be the ratio (D50/d) of the volume-based average particle diameter D50 of the flake to the thickness d of the flake. Furthermore, the ratio value (D50/d(C)) obtained by dividing the volume-based average particle diameter D50 of the flake (AB) by the thickness d(C) of the laminate (C) may be used as the ratio (D50/d) of the volume-based average particle diameter D50 of the flake to the thickness d of the flake. The value of the ratio is preferably 4 or more, more preferably 5 or more, particularly preferably 7 or more, and preferably 20 or less, more preferably 15 or less, particularly preferably 10 or less.
When the ratio (D50/d) is equal to or greater than the lower limit, when the flakes (AB) are arranged on a surface, the ratio of the flakes (AB) whose main surface of either the liquid crystal cured layer (A) or the retardation layer (B) faces the observation side is greater than the ratio of the flakes (AB) whose side faces the observation side. Therefore, the retardation layer (B) of the flakes (AB) can effectively exert the above-mentioned function.
(フレーク各々の形状)
一実施形態において、フレーク(AB)は、フレーク(AB)の各々を厚み方向から見た形状が不規則である。通常、積層体(C)をカッターミルなどのミルにより粉砕すると、形状が様々であって、不規則であるフレーク(AB)を得ることができる。
(shape of each flake)
In one embodiment, the flakes (AB) have an irregular shape when viewed from the thickness direction of each of the flakes (AB). Usually, when the laminate (C) is pulverized by a mill such as a cutter mill, flakes (AB) having various and irregular shapes can be obtained.
また別の実施形態において、フレーク(AB)は、フレーク(AB)の各々を厚み方向から見た形状が定型である。フレーク(AB)の各々の形状の例としては、三角形、矩形、六角形、十字型が挙げられ、好ましくは矩形である。フレーク(AB)は、厚み方向から見た形状が所定の一種の形状であってもよく、所定の二種以上の形状であってもよい。積層体(C)を、所定の形状に裁断することにより、厚み方向から見た形状が定型であるフレーク(AB)を得ることができる。この実施形態のフレーク(AB)を、フレークの粒径に応じた倍率で拡大して観察した場合に、各々のフレーク(AB)が所定の形状を有していることを確認できるため、フレーク(AB)を含有するインキの層の真正性を容易に確認できる。 In another embodiment, the flakes (AB) have a regular shape when viewed from the thickness direction. Examples of the shape of each of the flakes (AB) include a triangle, a rectangle, a hexagon, and a cross, and a rectangle is preferable. The flakes (AB) may have a single, or two or more, regular shapes when viewed from the thickness direction. By cutting the laminate (C) into a regular shape, flakes (AB) having a regular shape when viewed from the thickness direction can be obtained. When the flakes (AB) of this embodiment are observed under magnification according to the particle size of the flakes, it can be confirmed that each flake (AB) has a regular shape, and therefore the authenticity of the ink layer containing the flakes (AB) can be easily confirmed.
<1.2.液晶硬化層(A)>
液晶硬化層(A)は、コレステリック規則性を有する。
ここで、コレステリック規則性とは、材料内部のある平面上では分子軸が一定の方向に並んでいるが、それに重なる次の平面では分子軸の方向が少し角度をなしてずれ、さらに次の平面ではさらに角度がずれるというように、重なって配列している平面を順次透過して進むに従って当該平面中の分子軸の角度がずれて(ねじれて)いく構造である。即ち、ある材料の層の内部の分子がコレステリック規則性を有する場合、分子は、層の内部のある第一の平面上では分子軸が一定の方向になるように並ぶ。層の内部の、当該第一の平面に重なる次の第二の平面では、分子軸の方向が、第一の平面における分子軸の方向と、少し角度をなしてずれる。当該第二の平面にさらに重なる次の第三の平面では、分子軸の方向が、第二の平面における分子軸の方向から、さらに角度をなしてずれる。このように、重なって配列している平面において、当該平面中の分子軸の角度が順次ずれて(ねじれて)いく。このように分子軸の方向がねじれてゆく構造は、通常はらせん構造であり、光学的にカイラルな構造である。
<1.2. Liquid crystal hardened layer (A)>
The liquid crystal cured layer (A) has cholesteric regularity.
Here, cholesteric regularity refers to a state in which the molecular axes are aligned in a certain direction on a certain plane inside the material, but on the next plane that overlaps it, the direction of the molecular axes is shifted at a slight angle, and on the next plane The angle of the molecular axis in the plane is shifted (twisted) as the light passes through the overlapping planes. When the internal molecules have cholesteric regularity, the molecules are aligned on a first plane inside the layer such that the molecular axes are in a certain direction. In the second plane, the direction of the molecular axis is slightly offset from the direction of the molecular axis in the first plane. In the third plane, which overlaps the second plane, the direction of the molecular axis is slightly offset from the direction of the molecular axis in the first plane. The direction of the molecular axis in the first plane is further displaced from the direction of the molecular axis in the second plane at an angle. In this way, the angles of the molecular axes in the planes are sequentially displaced (twisted) in the overlapping planes. go. A structure in which the molecular axis direction is twisted in this way is usually a helical structure, which is an optically chiral structure.
光学的にカイラルな構造を有する、液晶硬化層(A)は、通常円偏光を選択的に反射する、円偏光選択反射機能を有する。液晶硬化層(A)が、所定の波長範囲の光を「選択的に反射する」とは、所定の波長範囲の非偏光(即ち自然光)のうち一方の円偏光成分を反射し、他方の円偏光成分を透過することをいう。 The liquid crystal cured layer (A), which has an optically chiral structure, has a circularly polarized light selective reflection function that selectively reflects normal circularly polarized light. When the liquid crystal cured layer (A) "selectively reflects" light in a specific wavelength range, it means that it reflects one circularly polarized component of unpolarized light (i.e., natural light) in a specific wavelength range and transmits the other circularly polarized component.
本明細書において「選択反射帯域」とは、選択的に反射される円偏光の波長の範囲をいう。具体的には、選択反射帯域は、液晶硬化層(A)に入射した非偏光の、液晶硬化層(A)による反射率が、30%以上50%以下である波長域とする。
選択反射帯域において、液晶硬化層(A)に入射した非偏光の、液晶硬化層(A)による反射率は、最大でも50%である。
In this specification, the term "selective reflection band" refers to a wavelength range of circularly polarized light that is selectively reflected. Specifically, the selective reflection band is a wavelength range in which the reflectance of unpolarized light incident on the liquid crystal cured layer (A) by the liquid crystal cured layer (A) is 30% or more and 50% or less.
In the selective reflection band, the reflectance of the cured liquid crystal layer (A) for unpolarized light incident on the cured liquid crystal layer (A) is at most 50%.
本明細書において、「選択反射帯域の幅」とは、選択反射帯域の半値幅を意味する。
選択反射帯域の半値幅Δλは、選択反射帯域におけるピークの反射率の50%の値以上の反射率を示す波長領域のうちの最大の波長と最小の波長との差である。例えば、ピークの反射率が40%である場合、半値幅Δλは、反射率20%以上を示す波長領域のうちの最大の波長と最小の波長との差である。選択反射中心波長λcは、かかる最大の波長と最小の波長との平均の値(即ちこれらの合計を2で割った値)である。Δλ及びλcの単位は通常nmで表しうる。
In this specification, the "width of the selective reflection band" means the half-width of the selective reflection band.
The half-width Δλ of the selective reflection band is the difference between the maximum wavelength and the minimum wavelength in the wavelength region showing a reflectance of 50% or more of the peak reflectance in the selective reflection band. For example, when the peak reflectance is 40%, the half-width Δλ is the difference between the maximum wavelength and the minimum wavelength in the wavelength region showing a reflectance of 20% or more. The selective reflection central wavelength λc is the average value of the maximum wavelength and the minimum wavelength (i.e., the sum of these divided by 2). The units of Δλ and λc can usually be expressed in nm.
(液晶硬化層(A)の選択反射帯域)
一実施形態において、フレーク(AB)が備える液晶硬化層(A)は、好ましくは、正面方向における選択反射帯域が、420nm以上650nm以下の波長範囲を含み、かつ正面方向における選択反射帯域の幅が、200nm以上であり、より好ましくは250nm以上であり、更に好ましくは300nm以上であり、上限は特に限定されないが、例えば400nm以下である。
選択反射帯域の幅がこのように広いと、液晶硬化層(A)を備えるフレーク(AB)が銀色に近い色調を呈しうる。
(Selective reflection band of the cured liquid crystal layer (A))
In one embodiment, the liquid crystal cured layer (A) provided in the flake (AB) preferably has a selective reflection band in the front direction that includes a wavelength range of 420 nm or more and 650 nm or less, and the width of the selective reflection band in the front direction is 200 nm or more, more preferably 250 nm or more, and even more preferably 300 nm or more. The upper limit is not particularly limited, but is, for example, 400 nm or less.
When the width of the selective reflection band is so wide, the flake (AB) having the cured liquid crystal layer (A) can exhibit a color tone close to silver.
別の実施形態において、フレーク(AB)が備える液晶硬化層(A)は、好ましくは、正面方向における選択反射帯域が、380nm以上780nm以下の範囲内にあり、かつ選択反射帯域の幅が、好ましくは10nm以上、より好ましくは15nm以上、更に好ましくは20nm以上、特に好ましくは50nm以上であり、好ましくは150nm以下、より好ましくは130nm以下、更に好ましくは120nm以下、更に好ましくは90nm以下である。この場合、液晶硬化層(A)を備えるフレーク(AB)が、選択反射帯域の中心波長λcに応じた色調を呈しうる。例えば、λcが、青色の波長領域にある場合は、液晶硬化層(A)を備えるフレーク(AB)が青色を呈しうる。 In another embodiment, the liquid crystal cured layer (A) of the flake (AB) preferably has a selective reflection band in the front direction within the range of 380 nm or more and 780 nm or less, and the width of the selective reflection band is preferably 10 nm or more, more preferably 15 nm or more, even more preferably 20 nm or more, particularly preferably 50 nm or more, and preferably 150 nm or less, more preferably 130 nm or less, even more preferably 120 nm or less, and even more preferably 90 nm or less. In this case, the flake (AB) having the liquid crystal cured layer (A) can exhibit a color tone according to the central wavelength λc of the selective reflection band. For example, when λc is in the blue wavelength region, the flake (AB) having the liquid crystal cured layer (A) can exhibit a blue color.
正面方向における選択反射帯域とは、正面方向から液晶硬化層(A)を観察した際の選択反射帯域をいう。 The selective reflection band in the front direction refers to the selective reflection band when the liquid crystal cured layer (A) is observed from the front direction.
選択反射帯域の中心波長λcは、液晶硬化層(A)を構成する材料の種類及びその成分の割合、並びに液晶硬化層(A)の製造条件により調整しうる。特に、液晶性化合物及びカイラル剤の種類並びにカイラル剤の含有割合によりコレステリック規則性のらせんのピッチを調整することができ、特にカイラル剤の含有割合を変更することにより、僅かなピッチの調整を容易に達成することができる。そのような調整により、選択反射帯域の中心波長λcを容易に所望の値に調整可能である。 The central wavelength λc of the selective reflection band can be adjusted by the type of material constituting the liquid crystal cured layer (A) and the ratio of those components, as well as the manufacturing conditions of the liquid crystal cured layer (A). In particular, the pitch of the cholesteric regular helix can be adjusted by the type of liquid crystal compound and the chiral agent, as well as the content ratio of the chiral agent, and in particular, slight adjustments to the pitch can be easily achieved by changing the content ratio of the chiral agent. By such adjustments, the central wavelength λc of the selective reflection band can be easily adjusted to the desired value.
フレーク(AB)が備える液晶硬化層(A)の選択反射帯域は、粉砕する前の液晶硬化層(A)の選択反射帯域と通常一致するので、粉砕する前の液晶硬化層(A)の選択反射帯域の値をそのまま、フレーク(AB)が備える液晶硬化層(A)の選択反射帯域の値として採用しうる。 The selective reflection band of the liquid crystal cured layer (A) in the flakes (AB) usually coincides with the selective reflection band of the liquid crystal cured layer (A) before crushing, so the value of the selective reflection band of the liquid crystal cured layer (A) before crushing can be used as it is as the value of the selective reflection band of the liquid crystal cured layer (A) in the flakes (AB).
液晶硬化層(A)における反射率としては、非偏光を入射光として測定した積分反射率を採用しうる。積分反射率は、積分球を備えた紫外可視分光光度計(例えば日本分光社製「UV-Vis 550」)を用いて測定しうる。 The reflectance of the liquid crystal cured layer (A) can be the integrated reflectance measured using unpolarized light as the incident light. The integrated reflectance can be measured using an ultraviolet-visible spectrophotometer equipped with an integrating sphere (e.g., the UV-Vis 550 manufactured by JASCO Corporation).
(液晶硬化層(A)の材料、製造方法)
コレステリック規則性を有する液晶硬化層(A)とは、硬化性の液晶性化合物であってコレステリック液晶相を呈したものを硬化させることにより得られる層である。以下、コレステリック規則性を有する液晶硬化層(A)を、コレステリック液晶硬化層(A)ともいう。
(Material and manufacturing method of the liquid crystal cured layer (A))
The liquid crystal cured layer (A) having cholesteric regularity is a layer obtained by curing a curable liquid crystal compound exhibiting a cholesteric liquid crystal phase. Hereinafter, the liquid crystal cured layer (A) having cholesteric regularity is also referred to as a cholesteric liquid crystal cured layer (A).
コレステリック液晶硬化層(A)は、例えば、重合性の液晶性化合物を、コレステリック液晶相を呈した状態で重合させることにより得うる。より具体的には、重合性の液晶性化合物を含む液晶組成物を、適切な基材に塗布する等して層の状態とし、コレステリック液晶相に配向させ、硬化させることにより、コレステリック液晶硬化層(A)を得うる。 The cholesteric liquid crystal cured layer (A) can be obtained, for example, by polymerizing a polymerizable liquid crystal compound in a state in which the compound exhibits a cholesteric liquid crystal phase. More specifically, the cholesteric liquid crystal cured layer (A) can be obtained by forming a layer of a liquid crystal composition containing a polymerizable liquid crystal compound, for example by applying the liquid crystal composition to a suitable substrate, orienting the layer in a cholesteric liquid crystal phase, and curing the layer.
重合性の液晶性化合物としては、光重合性液晶性化合物が好ましい。光重合性液晶性化合物としては、活性エネルギー線を照射することによって重合しうる光重合性の液晶性化合物を用いうる。活性エネルギー線としては、可視光線、紫外線、及び赤外線等の広範なエネルギー線の中から、光重合性液晶性化合物の重合反応を進行させうるエネルギー線を採用しうるが、特に、紫外線等の電離放射線が好ましい。中でも、コレステリック液晶組成物に好適に用いられる光重合性液晶性化合物としては、1分子中に2つ以上の反応性基を有する棒状液晶性化合物が好ましく、式(1)で表される化合物が特に好ましい。
R3-C3-D3-C5-M-C6-D4-C4-R4 式(1)
As the polymerizable liquid crystal compound, a photopolymerizable liquid crystal compound is preferred. As the photopolymerizable liquid crystal compound, a photopolymerizable liquid crystal compound that can be polymerized by irradiation with active energy rays can be used. As the active energy ray, an energy ray that can promote the polymerization reaction of the photopolymerizable liquid crystal compound can be adopted from a wide range of energy rays such as visible light, ultraviolet light, and infrared light, and ionizing radiation such as ultraviolet light is particularly preferred. Among them, as the photopolymerizable liquid crystal compound that is suitably used in the cholesteric liquid crystal composition, a rod-shaped liquid crystal compound having two or more reactive groups in one molecule is preferred, and a compound represented by formula (1) is particularly preferred.
R 3 -C 3 -D 3 -C 5 -MC 6 -D 4 -C 4 -R 4 Formula (1)
式(1)において、R3及びR4は、反応性基であり、それぞれ独立して、(メタ)アクリル基、(チオ)エポキシ基、オキセタン基、チエタニル基、アジリジニル基、ピロール基、ビニル基、アリル基、フマレート基、シンナモイル基、オキサゾリン基、メルカプト基、イソ(チオ)シアネート基、アミノ基、ヒドロキシル基、カルボキシル基、及びアルコキシシリル基からなる群より選択される基を表す。これらの反応性基を有することにより、液晶組成物を硬化させた際に、機械的強度の高い液晶組成物硬化層を得ることができる。 In formula (1), R3 and R4 are reactive groups, each independently representing a group selected from the group consisting of a (meth)acrylic group, a (thio)epoxy group, an oxetane group, a thietanyl group, an aziridinyl group, a pyrrole group, a vinyl group, an allyl group, a fumarate group, a cinnamoyl group, an oxazoline group, a mercapto group, an iso(thio)cyanate group, an amino group, a hydroxyl group, a carboxyl group, and an alkoxysilyl group. By having these reactive groups, a liquid crystal composition cured layer having high mechanical strength can be obtained when the liquid crystal composition is cured.
式(1)において、D3及びD4は、それぞれ独立して、単結合、炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキル基、及び炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキレンオキサイド基からなる群より選択される基を表す。 In formula (1), D3 and D4 each independently represent a group selected from the group consisting of a single bond, a linear or branched alkyl group having 1 to 20 carbon atoms, and a linear or branched alkylene oxide group having 1 to 20 carbon atoms.
式(1)において、C3~C6は、それぞれ独立して、単結合、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-CH=N-N=CH-、-NHCO-、-O-(C=O)-O-、-CH2-(C=O)-O-、及び-CH2O-(C=O)-からなる群より選択される基を表す。 In formula (1), C 3 to C 6 each independently represent a group selected from the group consisting of a single bond, -O-, -S-, -S-S-, -CO-, -CS-, -OCO-, -CH 2 -, -OCH 2 - , -CH=N-N=CH-, -NHCO-, -O-(C=O)-O-, -CH 2 -(C=O)-O-, and -CH 2 O-(C=O)-.
式(1)において、Mは、メソゲン基を表す。具体的には、Mは、非置換又は置換基を有していてもよい、アゾメチン類、アゾキシ類、フェニル類、ビフェニル類、ターフェニル類、ナフタレン類、アントラセン類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、及びアルケニルシクロヘキシルベンゾニトリル類からなる群から選択された互いに同一又は異なる2個~4個の骨格が、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-CH=N-N=CH-、-NHCO-、-O-(C=O)-O-、-CH2-(C=O)-O-、及び-CH2O-(C=O)-等の結合基によって結合された基を表す。 In formula (1), M represents a mesogenic group. Specifically, M represents a group in which 2 to 4 skeletons, which may be unsubstituted or substituted, and which are the same or different from one another and are selected from the group consisting of azomethines, azoxys, phenyls, biphenyls, terphenyls, naphthalenes, anthracenes, benzoates, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, phenyldioxanes, tolanes, and alkenylcyclohexylbenzonitriles, are bonded by a bonding group such as -O-, -S-, -S-S-, -CO-, -CS-, -OCO-, -CH 2 -, -OCH 2 -, -CH═N-N═CH-, -NHCO-, -O-(C═O)-O-, -CH 2 -(C═O)-O-, and -CH 2 O-(C═O)-.
前記メソゲン基Mが有しうる置換基としては、例えば、ハロゲン原子、置換基を有してもよい炭素数1個~10個のアルキル基、シアノ基、ニトロ基、-O-R5、-O-C(=O)-R5、-C(=O)-O-R5、-O-C(=O)-O-R5、-NR5-C(=O)-R5、-C(=O)-NR5R7、または-O-C(=O)-NR5R7が挙げられる。ここで、R5及びR7は、水素原子又は炭素数1個~10個のアルキル基を表す。R5及びR7がアルキル基である場合、当該アルキル基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR6-C(=O)-、-C(=O)-NR6-、-NR6-、または-C(=O)-が介在していてもよい(ただし、-O-および-S-がそれぞれ2以上隣接して介在する場合を除く。)。ここで、R6は、水素原子または炭素数1個~6個のアルキル基を表す。 Examples of the substituent that the mesogenic group M may have include a halogen atom, an alkyl group having 1 to 10 carbon atoms which may have a substituent, a cyano group, a nitro group, -O-R 5 , -O-C(=O)-R 5 , -C(=O)-O-R 5 , -O-C(=O)-O-R 5 , -NR 5 -C(=O)-R 5 , -C(=O)-NR 5 R 7 , and -O-C(=O)-NR 5 R 7. Here, R 5 and R 7 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. When R 5 and R 7 are alkyl groups, the alkyl groups may be interrupted by -O-, -S-, -O-C(=O)-, -C(=O)-O-, -O-C(=O)-O-, -NR 6 -C(=O)-, -C(=O)-NR 6- , -NR 6- , or -C(=O)- (excluding the cases where two or more -O- and -S- are adjacent to each other).) Here, R 6 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
前記「置換基を有してもよい炭素数1個~10個のアルキル基」における置換基としては、例えば、ハロゲン原子、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、炭素原子数1個~6個のアルコキシ基、炭素原子数2個~8個のアルコキシアルコキシ基、炭素原子数3個~15個のアルコキシアルコキシアルコキシ基、炭素原子数2個~7個のアルコキシカルボニル基、炭素原子数2個~7個のアルキルカルボニルオキシ基、炭素原子数2~7個のアルコキシカルボニルオキシ基等が挙げられる。 Examples of the substituent in the "alkyl group having 1 to 10 carbon atoms which may have a substituent" include halogen atoms, hydroxyl groups, carboxyl groups, cyano groups, amino groups, alkoxy groups having 1 to 6 carbon atoms, alkoxyalkoxy groups having 2 to 8 carbon atoms, alkoxyalkoxy groups having 3 to 15 carbon atoms, alkoxycarbonyl groups having 2 to 7 carbon atoms, alkylcarbonyloxy groups having 2 to 7 carbon atoms, and alkoxycarbonyloxy groups having 2 to 7 carbon atoms.
また、前記の棒状液晶性化合物は、非対称構造であることが好ましい。ここで非対称構造とは、式(1)において、メソゲン基Mを中心として、R3-C3-D3-C5-M-と-M-C6-D4-C4-R4とを対比すると、これらが異なる構造のことをいう。棒状液晶性化合物として非対称構造のものを用いることにより、配向均一性をより高めることができる。 The rod-shaped liquid crystal compound preferably has an asymmetric structure. Here, the asymmetric structure refers to a structure in which R 3 -C 3 -D 3 -C 5 -M- and -M-C 6 -D 4 -C 4 -R 4 are different from each other with the mesogenic group M at the center in formula (1). By using a rod-shaped liquid crystal compound having an asymmetric structure, the alignment uniformity can be further improved.
棒状液晶性化合物の好ましい具体例としては、以下の化合物(B1)~(B12)が挙げられる。ただし、棒状液晶性化合物は、下記の化合物に限定されるものではない。 Specific examples of preferred rod-shaped liquid crystal compounds include the following compounds (B1) to (B12). However, rod-shaped liquid crystal compounds are not limited to the following compounds.
液晶組成物が上述した棒状液晶性化合物を含む場合、当該液晶組成物は、棒状液晶性化合物に組み合わせて、配向助剤として、式(2)で表される化合物を含むことが好ましい。
R1-A1-B-A2-R2 (2)
When the liquid crystal composition contains the above-mentioned rod-like liquid crystal compound, the liquid crystal composition preferably contains a compound represented by formula (2) as an alignment assistant in combination with the rod-like liquid crystal compound.
R 1 -A 1 -B-A 2 -R 2 (2)
式(2)において、R1及びR2は、それぞれ独立して、炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキル基、炭素原子数1個~20個の直鎖状又は分岐鎖状のアルキレンオキサイド基、水素原子、ハロゲン原子、ヒドロキシル基、カルボキシル基、任意の結合基が介在していてもよい(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基からなる群より選択される基である。 In formula (2), R 1 and R 2 are each independently a group selected from the group consisting of a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkylene oxide group having 1 to 20 carbon atoms, a hydrogen atom, a halogen atom, a hydroxyl group, a carboxyl group, a (meth)acrylic group which may have an arbitrary bonding group interposed therebetween, an epoxy group, a mercapto group, an isocyanate group, an amino group, and a cyano group.
前記アルキル基及びアルキレンオキサイド基は、置換されていないか、若しくはハロゲン原子で1つ以上置換されていてもよい。さらに、前記ハロゲン原子、ヒドロキシル基、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基は、炭素原子数1個~2個のアルキル基、及びアルキレンオキサイド基と結合していてもよい。 The alkyl group and alkylene oxide group may be unsubstituted or may be substituted with one or more halogen atoms. Furthermore, the halogen atom, hydroxyl group, carboxyl group, (meth)acrylic group, epoxy group, mercapto group, isocyanate group, amino group, and cyano group may be bonded to an alkyl group having 1 to 2 carbon atoms and an alkylene oxide group.
R1及びR2として好ましい例としては、ハロゲン原子、ヒドロキシル基、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、アミノ基、及びシアノ基が挙げられる。 Preferred examples of R 1 and R 2 include a halogen atom, a hydroxyl group, a carboxyl group, a (meth)acrylic group, an epoxy group, a mercapto group, an isocyanate group, an amino group, and a cyano group.
また、R1及びR2の少なくとも一方は、反応性基であることが好ましい。R1及びR2の少なくとも一方として反応性基を有することにより、前記式(2)で表される化合物が硬化時に液晶組成物硬化層中に固定され、より強固な層を形成することができる。ここで反応性基とは、例えば、カルボキシル基、(メタ)アクリル基、エポキシ基、メルカプト基、イソシアネート基、及びアミノ基を挙げることができる。 At least one of R1 and R2 is preferably a reactive group. By having a reactive group as at least one of R1 and R2 , the compound represented by the formula (2) is fixed in the liquid crystal composition cured layer during curing, and a stronger layer can be formed. Examples of the reactive group include a carboxyl group, a (meth)acrylic group, an epoxy group, a mercapto group, an isocyanate group, and an amino group.
式(2)において、A1及びA2はそれぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基、シクロヘキセン-1,4-イレン基、4,4’-ビフェニレン基、4,4’-ビシクロヘキシレン基、及び2,6-ナフチレン基からなる群より選択される基を表す。前記1,4-フェニレン基、1,4-シクロヘキシレン基、シクロヘキセン-1,4-イレン基、4,4’-ビフェニレン基、4,4’-ビシクロヘキシレン基、及び2,6-ナフチレン基は、置換されていないか、若しくはハロゲン原子、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、炭素原子数1個~10個のアルキル基、ハロゲン化アルキル基等の置換基で1つ以上置換されていてもよい。A1及びA2のそれぞれにおいて、2以上の置換基が存在する場合、それらは同一でも異なっていてもよい。 In formula (2), A 1 and A 2 each independently represent a group selected from the group consisting of 1,4-phenylene, 1,4-cyclohexylene, cyclohexen-1,4-ylene, 4,4'-biphenylene, 4,4'-bicyclohexylene, and 2,6-naphthylene. The 1,4-phenylene, 1,4-cyclohexylene, cyclohexen-1,4-ylene, 4,4'-biphenylene, 4,4'-bicyclohexylene, and 2,6-naphthylene groups may be unsubstituted or substituted with one or more substituents such as a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, an amino group, an alkyl group having 1 to 10 carbon atoms, and a halogenated alkyl group. When two or more substituents are present in each of A 1 and A 2 , they may be the same or different.
A1及びA2として特に好ましいものとしては、1,4-フェニレン基、4,4’-ビフェニレン基、及び2,6-ナフチレン基からなる群より選択される基が挙げられる。これらの芳香環骨格は脂環式骨格と比較して比較的剛直であり、棒状液晶性化合物のメソゲンとの親和性が高く、配向均一性がより高くなる。 Particularly preferred examples of A 1 and A 2 include groups selected from the group consisting of a 1,4-phenylene group, a 4,4'-biphenylene group, and a 2,6-naphthylene group. These aromatic ring skeletons are relatively rigid compared to alicyclic skeletons, and have high affinity with the mesogens of rod-like liquid crystal compounds, resulting in higher alignment uniformity.
式(2)において、Bは、単結合、-O-、-S-、-S-S-、-CO-、-CS-、-OCO-、-CH2-、-OCH2-、-CH=N-N=CH-、-NHCO-、-O-(C=O)-O-、-CH2-(C=O)-O-、及び-CH2O-(C=O)-からなる群より選択される。
Bとして特に好ましいものとしては、単結合、-O-(C=O)-及び-CH=N-N=CH-が挙げられる。
In formula (2), B is selected from the group consisting of a single bond, -O-, -S-, -S-S-, -CO-, -CS-, -OCO-, -CH 2 -, -OCH 2 -, -CH═N-N═CH-, -NHCO-, -O-(C═O)-O-, -CH 2 -(C═O)-O-, and -CH 2 O-(C═O)-.
Particularly preferred values for B include a single bond, --O--(C.dbd.O)-- and --CH.dbd.N--N.dbd.CH--.
式(2)で表される化合物として特に好ましい具体例としては、下記の化合物(A1)~(A10)が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Specific examples of particularly preferred compounds represented by formula (2) include the following compounds (A1) to (A10). These may be used alone or in combination of two or more in any ratio.
上記化合物(A3)において、「*」はキラル中心を表す。 In the above compound (A3), "*" represents a chiral center.
(式(2)で表される化合物の合計重量)/(棒状液晶性化合物の合計重量)で示される重量比は、好ましくは0.001以上、より好ましくは0.01以上、更に好ましくは0.05以上であり、好ましくは1以下、より好ましくは0.65以下である。前記の重量比を前記下限値以上にすることにより、液晶組成物の層において配向均一性を高めることができる。また、上限値以下にすることにより、配向均一性を高くできる。また、液晶組成物の液晶相の安定性を高くできる。さらに、液晶組成物の屈折率異方性(複屈折Δn)を高くできるので、例えば、円偏光の選択反射性能等の所望の光学的性能を有する液晶硬化層を安定して得ることができる。ここで、式(2)で表される化合物の合計重量とは、式(2)で表される化合物を1種類のみ用いた場合にはその重量を示し、2種類以上を用いた場合には合計の重量を示す。同様に、棒状液晶性化合物の合計重量とは、棒状液晶性化合物を1種類のみ用いた場合にはその重量を示し、2種類以上を用いた場合には合計の重量を示す。 The weight ratio represented by (total weight of compounds represented by formula (2))/(total weight of rod-shaped liquid crystal compounds) is preferably 0.001 or more, more preferably 0.01 or more, even more preferably 0.05 or more, and preferably 1 or less, more preferably 0.65 or less. By making the weight ratio equal to or greater than the lower limit, the alignment uniformity in the layer of the liquid crystal composition can be improved. Also, by making the weight ratio equal to or less than the upper limit, the alignment uniformity can be increased. Also, the stability of the liquid crystal phase of the liquid crystal composition can be increased. Furthermore, since the refractive index anisotropy (birefringence Δn) of the liquid crystal composition can be increased, for example, a liquid crystal cured layer having desired optical performance such as selective reflection performance of circularly polarized light can be stably obtained. Here, the total weight of the compounds represented by formula (2) refers to the weight when only one type of compound represented by formula (2) is used, and refers to the total weight when two or more types are used. Similarly, the total weight of the rod-shaped liquid crystal compounds refers to the weight when only one type of rod-shaped liquid crystal compound is used, and refers to the total weight when two or more types are used.
また、式(2)で表される化合物と棒状液晶性化合物とを組み合わせて用いる場合、式(2)で表される化合物の分子量が600未満であることが好ましく、棒状液晶性化合物の分子量が600以上であることが好ましい。これにより、式(2)で表される化合物が、それよりも分子量の大きい棒状液晶性化合物の隙間に入り込むことができるので、配向均一性を向上させることができる。 In addition, when the compound represented by formula (2) is used in combination with a rod-shaped liquid crystal compound, it is preferable that the molecular weight of the compound represented by formula (2) is less than 600, and the molecular weight of the rod-shaped liquid crystal compound is preferably 600 or more. This allows the compound represented by formula (2) to enter the gaps of the rod-shaped liquid crystal compound with a larger molecular weight, thereby improving the alignment uniformity.
コレステリック液晶硬化層(A)を形成するための液晶組成物は、さらに、コレステリック液晶硬化層(A)を構成する任意成分、及び液晶組成物の取り扱いを容易とするための溶媒を含みうる。任意成分の例としては、カイラル剤、重合開始剤、及び界面活性剤が挙げられる。任意成分及び溶媒の具体例としては、特開2019-188740号公報に記載されるものに加え、特に界面活性剤の例として、DIC社のF-563、AGCセイミケミカル社のKZ-GDP02、KZ-GDP05が挙げられ、フルオロアルキル基の鎖長が6未満の界面活性剤としてDIC社のF-563、AGCセイミケミカル社のKZ-GDP02、KZ-GDP05が好ましい。 The liquid crystal composition for forming the cholesteric liquid crystal cured layer (A) may further contain optional components constituting the cholesteric liquid crystal cured layer (A) and a solvent for facilitating handling of the liquid crystal composition. Examples of optional components include a chiral agent, a polymerization initiator, and a surfactant. Specific examples of optional components and solvents include those described in JP 2019-188740 A, and in particular, examples of surfactants include F-563 from DIC, KZ-GDP02 from AGC Seimi Chemical, and KZ-GDP05 from AGC Seimi Chemical. As surfactants with a fluoroalkyl group chain length of less than 6, F-563 from DIC, and KZ-GDP02 and KZ-GDP05 from AGC Seimi Chemical are preferred.
液晶組成物を、配向規制力を有する支持体の表面に塗布して液晶組成物の層とし、コレステリック液晶相に配向させ、硬化させることにより、液晶硬化層(A)として用いうるフィルムを得うる。配向規制力を有する支持体としては、表面がラビング処理されたフィルム、延伸により表面に配向規制力が付与されたフィルム等を用いうる。液晶組成物は、塗布後直ちにコレステリック液晶相に配向する場合もあるが、必要に応じて加温等の処理を施しコレステリック液晶相を呈する条件とすることにより配向を達成しうる。液晶組成物を硬化させる場合の硬化方法としては、コレステリック液晶組成物に含まれる成分に応じた方法を選択できる。通常コレステリック液晶組成物に含まれる重合性液晶性化合物等の重合成分を重合させることにより、コレステリック液晶組成物の層を硬化させる。重合方法としては、例えば、活性エネルギー線を照射する方法、及び、熱重合法が挙げられる。中でも、室温で重合反応を進行させられるので、活性エネルギー線を照射する方法が好ましい。ここで、照射される活性エネルギー線には、可視光線、紫外線、及び赤外線等の光、並びに電子線等の任意のエネルギー線が含まれうる。また、活性エネルギー線の照射によってコレステリック液晶組成物の層を硬化させる場合、照射される活性エネルギー線の好ましい強度は、用いる液晶組成物により異なるが、例えば、50mJ/cm2~10,000mJ/cm2でありうる。 A liquid crystal composition is applied to the surface of a support having an orientation restricting force to form a layer of the liquid crystal composition, and the layer is oriented in a cholesteric liquid crystal phase and cured to obtain a film that can be used as the liquid crystal cured layer (A). As the support having an orientation restricting force, a film having a rubbing treatment on the surface, a film having an orientation restricting force on the surface by stretching, etc. can be used. The liquid crystal composition may be oriented in a cholesteric liquid crystal phase immediately after application, but alignment can be achieved by applying a treatment such as heating as necessary to conditions that exhibit a cholesteric liquid crystal phase. As a curing method for curing the liquid crystal composition, a method according to the components contained in the cholesteric liquid crystal composition can be selected. A layer of the cholesteric liquid crystal composition is usually cured by polymerizing a polymerization component such as a polymerizable liquid crystal compound contained in the cholesteric liquid crystal composition. Examples of the polymerization method include a method of irradiating active energy rays and a thermal polymerization method. Among them, the method of irradiating active energy rays is preferable because the polymerization reaction can proceed at room temperature. Here, the active energy rays to be irradiated may include any energy rays such as visible light, ultraviolet light, and infrared light, as well as electron beams. When the layer of the cholesteric liquid crystal composition is cured by irradiation with active energy rays, the preferred intensity of the active energy rays to be irradiated varies depending on the liquid crystal composition used, but can be, for example, 50 mJ/cm 2 to 10,000 mJ/cm 2 .
また、液晶性化合物を配向させた後、コレステリック液晶組成物の層を硬化させる前に、コレステリック液晶組成物の層に広帯域化処理を施してもよい。このような広帯域化処理は、例えば、1回以上の活性エネルギー線の照射処理と加温処理との組み合わせにより行うことができる。この際、照射される光のエネルギーは、用いる液晶組成物により異なるが例えば、0.01mJ/cm2~50mJ/cm2としうる。また、加熱処理は、例えば、好ましくは40℃以上、より好ましくは50℃以上、好ましくは200℃以下、より好ましくは140℃以下の温度に加熱することにより行うことができる。このような広帯域化処理を行うことにより、らせん構造のピッチの大きさを連続的に大きく変化させて、広い反射波長帯域を得ることができる。 In addition, after the liquid crystal compound is aligned, the layer of the cholesteric liquid crystal composition may be subjected to a band-widening treatment before the layer of the cholesteric liquid crystal composition is cured. Such a band-widening treatment can be performed, for example, by a combination of one or more irradiation treatments with active energy rays and a heating treatment. In this case, the energy of the light irradiated varies depending on the liquid crystal composition used, but may be, for example, 0.01 mJ/cm 2 to 50 mJ/cm 2. In addition, the heat treatment can be performed, for example, by heating to a temperature of preferably 40° C. or higher, more preferably 50° C. or higher, preferably 200° C. or lower, more preferably 140° C. or lower. By performing such a band-widening treatment, the size of the pitch of the helical structure can be continuously and greatly changed to obtain a wide reflection wavelength band.
(液晶硬化層(A)の厚み)
フレーク(AB)が備える液晶硬化層(A)の厚みは、好ましくは2μm以上、より好ましくは3μm以上であり、一方好ましくは10μm以下、より好ましくは8μm以下、更に好ましくは6μm以下である。厚みが前記下限以上であることにより、高い反射率等の所望の光学的効果を良好に発現しうる。一方厚みが前記上限以下であることにより、配向不良の発生等を効果的に抑制しうる。また、所望の高いアスペクト比を有するフレーク(AB)を容易に得ることができる。
(Thickness of Cured Liquid Crystal Layer (A))
The thickness of the liquid crystal cured layer (A) of the flake (AB) is preferably 2 μm or more, more preferably 3 μm or more, and is preferably 10 μm or less, more preferably 8 μm or less, and even more preferably 6 μm or less. By having a thickness of the above lower limit or more, the desired optical effects such as high reflectance can be satisfactorily exhibited. On the other hand, by having a thickness of the above upper limit or less, the occurrence of poor alignment can be effectively suppressed. In addition, the flake (AB) having a desired high aspect ratio can be easily obtained.
<1.3.位相差層(B)>
位相差層(B)は、入射光に位相差を与える層である。位相差層(B)から出射される光は、入射光とは偏光状態が変化している。
<1.3. Retardation layer (B)>
The retardation layer (B) is a layer that gives a phase difference to incident light. The light emitted from the retardation layer (B) has a polarization state changed from that of the incident light.
(位相差層(B)がλ/2板である場合)
例えば、位相差層(B)が、正面方向の入射光にλ/2の位相差を与えるλ/2板として機能する層である場合、ある回転方向を有する円偏光は、位相差層(B)に入射すると、λ/2の位相差が与えられ、その回転方向とは逆の回転方向を有する円偏光へと偏光状態が変化して位相差層(B)から出射される。
(When the retardation layer (B) is a λ/2 plate)
For example, in the case where the retardation layer (B) functions as a λ/2 plate that imparts a phase difference of λ/2 to light incident in a frontal direction, when circularly polarized light having a certain rotation direction enters the retardation layer (B), a phase difference of λ/2 is imparted to the circularly polarized light having a rotation direction opposite to that of the incident light, and the circularly polarized light is emitted from the retardation layer (B).
一方、フレーク(A)をある面上に配置する場合、フレーク(A)は位相差層(B)を備えていないため、フレーク(A)の反射光は、ある回転方向を有する円偏光である。
したがって、位相差層(B)がλ/2板として機能する層である場合には、フレーク(AB)の反射光とフレーク(A)の反射光とは、左右円偏光を区別しうるビュワーを用いた観察により、区別しうる。左右円偏光を区別しうるビュワーとしては、円偏光板を用いうる。フレークの反射光を、円偏光板を透過させることで、フレーク(AB)及びフレーク(A)のいずれかの反射光の光量が著しく少なくなるため、本実施形態のフレーク(AB)の反射光とフレーク(A)の反射光とを区別しうる。
On the other hand, when flakes (A) are disposed on a certain surface, the flakes (A) do not have a retardation layer (B), so that the reflected light of the flakes (A) is circularly polarized light having a certain rotation direction.
Therefore, when the retardation layer (B) is a layer that functions as a λ/2 plate, the reflected light of the flake (AB) and the reflected light of the flake (A) can be distinguished by observation using a viewer that can distinguish between left and right circularly polarized light. A circular polarizing plate can be used as a viewer that can distinguish between left and right circularly polarized light. By transmitting the reflected light of the flake through a circular polarizing plate, the amount of reflected light of either the flake (AB) or the flake (A) is significantly reduced, so that the reflected light of the flake (AB) of this embodiment can be distinguished from the reflected light of the flake (A).
(位相差層(B)がλ/4板である場合)
また例えば、位相差層(B)が、正面方向の入射光にλ/4の位相差を与えるλ/4板として機能する層である場合、ある回転方向を有する円偏光は、λ/4の位相差が与えられ、直線偏光へと偏光状態が変化して位相差層(B)から出射される。この場合のフレーク(AB)をある面上に配置する場合、フレーク(AB)の各々が備える位相差層(B)の遅相軸はランダムに配置されるので、λ/4板として機能する位相差層(B)の遅相軸の方位に通常偏りがない。そのため、フレーク(AB)の反射光は、正面方向からは、あらゆる方向に振動する直線偏光として観察される。
したがって、位相差層(B)がλ/4板として機能する層である場合には、フレーク(AB)の反射光とフレーク(A)の反射光とは、あらゆる方向に振動する直線偏光とある回転方向の円偏光とを区別しうるビュワーを用いた観察により、区別しうる。直線偏光とある回転方向の円偏光とを区別しうるビュワーとしては、直線偏光板を用いうる。
フレーク(A)の反射光を直線偏光板を透過させると、この反射光は円偏光であるので、直線偏光板の透過光は、通常元の光量の1/2となる。一方、フレーク(AB)の反射光はあらゆる方向に振動する直線偏光であるので、直線偏光板を透過させると、光量は元の反射光の光量の1/2よりもはるかに小さい値となる。このように、光量の著しい差により、フレーク(AB)の反射光とフレーク(A)の反射光とを、区別しうる。
(When the retardation layer (B) is a λ/4 plate)
Also, for example, when the retardation layer (B) is a layer that functions as a λ/4 plate that gives a phase difference of λ/4 to the incident light in the front direction, the circularly polarized light having a certain rotation direction is given a phase difference of λ/4, and the polarization state is changed to linearly polarized light and is emitted from the retardation layer (B). In this case, when the flakes (AB) are arranged on a certain surface, the slow axis of the retardation layer (B) that each of the flakes (AB) has is arranged randomly, so that the orientation of the slow axis of the retardation layer (B) that functions as a λ/4 plate is usually not biased. Therefore, the reflected light of the flakes (AB) is observed as linearly polarized light that vibrates in all directions from the front direction.
Therefore, when the retardation layer (B) functions as a λ/4 plate, the reflected light of the flake (AB) and the reflected light of the flake (A) can be distinguished by observing with a viewer that can distinguish between linearly polarized light that vibrates in any direction and circularly polarized light with a certain rotation direction. A linear polarizing plate can be used as a viewer that can distinguish between linearly polarized light and circularly polarized light with a certain rotation direction.
When the reflected light of flake (A) is transmitted through a linear polarizer, the reflected light is circularly polarized, so the transmitted light of the linear polarizer is usually 1/2 of the original light amount. On the other hand, the reflected light of flake (AB) is linearly polarized light that vibrates in all directions, so when transmitted through a linear polarizer, the light amount becomes much smaller than 1/2 of the original reflected light amount. In this way, the reflected light of flake (AB) and the reflected light of flake (A) can be distinguished due to the significant difference in light amount.
(位相差層(B)がCプレートである場合)
また例えば、位相差層(B)が、いわゆるCプレートである場合、位相差層(B)における斜め方向のレターデーションは、通常面内レターデーションよりも大きな値となる。一方、詳細は明らかではないが、液晶硬化層(A)は、非偏光を入射させた際の、ある斜め方向における反射光が、ある回転方向を有する楕円偏光又はある振動方向を有する直線偏光である。これは、コレステリック規則性を有する液晶硬化層(A)が、層全体としては、通常、主屈折率nx、ny及びnzが、nx=nyであるか又はそれに近い関係である、Cプレートとして機能し、液晶硬化層(A)の斜め方向のレターデーションが、通常面内レターデーションよりも大きな値であるためと考えられる。
(When the retardation layer (B) is a C plate)
For example, when the retardation layer (B) is a so-called C plate, the retardation in the oblique direction in the retardation layer (B) is usually larger than the in-plane retardation. On the other hand, although the details are not clear, the liquid crystal cured layer (A) reflects light in a certain oblique direction when non-polarized light is incident, and the reflected light is elliptically polarized light having a certain rotation direction or linearly polarized light having a certain vibration direction. This is because the liquid crystal cured layer (A) having cholesteric regularity generally functions as a C plate in which the principal refractive indexes nx, ny and nz are nx=ny or are close to it as a whole layer, and the retardation in the oblique direction of the liquid crystal cured layer (A) is usually larger than the in-plane retardation.
液晶硬化層(A)により斜め方向に出射された楕円偏光又は直線偏光は、位相差層(B)によって偏光状態が変化して、位相差層(B)から斜め方向に出射される。液晶硬化層(A)と位相差層(B)とを備えるフレーク(AB)の、斜め方向のレターデーションの値は、液晶硬化層(A)の斜め方向におけるレターデーションと位相差層(B)の斜め方向におけるレターデーションとが合成された値であると考えられる。液晶硬化層(A)より斜め方向に出射されたある回転方向を有する楕円偏光又はある振動方向を有する直線偏光と、これとは偏光状態が異なる、位相差層(B)から斜め方向に出射される偏光とは、偏光状態を区別しうるビュワーを用いて区別しうる。 The elliptically polarized light or linearly polarized light emitted obliquely by the liquid crystal cured layer (A) has its polarization state changed by the retardation layer (B) and is emitted obliquely from the retardation layer (B). The retardation value in the oblique direction of the flake (AB) comprising the liquid crystal cured layer (A) and the retardation layer (B) is considered to be a composite value of the retardation in the oblique direction of the liquid crystal cured layer (A) and the retardation in the oblique direction of the retardation layer (B). Elliptically polarized light having a certain rotation direction or linearly polarized light having a certain vibration direction emitted obliquely from the liquid crystal cured layer (A) can be distinguished from the polarized light emitted obliquely from the retardation layer (B), which has a different polarization state, by using a viewer that can distinguish polarization states.
例えば、ビュワーとして直線偏光板を用いた場合を説明する。
直線偏光板を用いて、偏光状態の異なる斜め方向に出射された偏光を、斜め方向から直線偏光板を用いて観察すると、偏光状態の相違により、直線偏光板の透過光は、互いに異なる光量となる。
For example, a case where a linear polarizing plate is used as a viewer will be described.
When polarized light emitted in an oblique direction with different polarization states is observed using a linear polarizer from an oblique direction, the amount of light transmitted through the linear polarizer differs from one another due to the difference in polarization state.
例えば、フレーク(A)により斜め方向に出射された光が直線偏光であり、位相差層(B)が、斜め方向からの入射光に、λ/2の位相差を与えるとすると、フレーク(AB)より斜め方向に出射された光は、フレーク(A)の斜め方向に出射された直線偏光とは振動方向が直交する直線偏光となる。このような振動方向が直交する直線偏光を、直線偏光板を用いて観察すると、透過光量は、著しく異なる。したがって、フレーク(A)の反射光とフレーク(AB)の反射光とを区別しうる。 For example, if the light emitted obliquely by flake (A) is linearly polarized, and the retardation layer (B) imparts a phase difference of λ/2 to the light incident from the oblique direction, then the light emitted obliquely from flake (AB) will be linearly polarized light whose vibration direction is perpendicular to that of the linearly polarized light emitted obliquely from flake (A). When such linearly polarized light whose vibration direction is perpendicular is observed using a linear polarizing plate, the amount of transmitted light differs significantly. Therefore, the reflected light from flake (A) can be distinguished from the reflected light from flake (AB).
例えば、フレーク(A)により斜め方向に出射された光が楕円偏光であり、位相差層(B)が、斜め方向からの入射光に、λ/2の位相差を与えるとすると、フレーク(AB)のより斜め方向に出射された光は、フレーク(A)の斜め方向における反射光とは、逆方向の回転方向を有し、かつ主軸方位が直交する楕円偏光となる。このような主軸方位が直交する楕円偏光を、直線偏光板を用いて観察すると、透過光量は、著しく異なる。したがって、フレーク(AB)の反射光とフレーク(A)の反射光とを、区別しうる。 For example, if the light emitted in an oblique direction by flake (A) is elliptically polarized light, and the retardation layer (B) imparts a phase difference of λ/2 to the light incident from the oblique direction, then the light emitted in a more oblique direction from flake (AB) will be elliptically polarized light that has the opposite rotation direction to the light reflected in the oblique direction from flake (A) and has a principal axis orientation that is orthogonal. When such elliptically polarized light with orthogonal principal axis orientations is observed using a linear polarizing plate, the amount of transmitted light is significantly different. Therefore, the reflected light from flake (AB) and the reflected light from flake (A) can be distinguished.
ここで、Cプレートは、ポジティブCプレート又はネガティブCプレートである。ポジティブCプレートは、主屈折率nx、ny及びnzが、nx=nyであるか又はそれに近い関係であり、且つnx<nzである、板状の形状を有する光学部材である。ネガティブCプレートは、主屈折率nx、ny及びnzが、nx=nyであるか又はそれに近い関係であり、且つny>nzである、板状の形状を有する光学部材である。
層の面内レターデーションReは、Re=(nx-ny)×dで表される値であるので、nx=nyであるか又はそれに近い関係であることを、面内レターデーションの値を指標として判断することができる。
例えば、位相差層(B)が、斜め方向におけるレターデーションを有し、位相差層(B)の正面方向のレターデーションReB(0)が、0nmに近い場合に、位相差層(B)はCプレートであるとしてよい。具体的には、Cプレートである位相差層(B)のReB(0)は、好ましくは10nm以下、より好ましくは5nm以下であり、通常0nm以上であるが、0nmであってもよい。
Here, the C plate is a positive C plate or a negative C plate. The positive C plate is an optical member having a plate shape in which the principal refractive indices nx, ny, and nz are nx=ny or a relationship close thereto, and nx<nz. The negative C plate is an optical member having a plate shape in which the principal refractive indices nx, ny, and nz are nx=ny or a relationship close thereto, and ny>nz.
The in-plane retardation Re of a layer is a value expressed by Re=(nx-ny)×d, so that it is possible to determine whether nx=ny or a relationship close to this by using the in-plane retardation value as an index.
For example, when the retardation layer (B) has retardation in an oblique direction, and the retardation ReB(0) in the front direction of the retardation layer (B) is close to 0 nm, the retardation layer (B) may be a C plate. Specifically, the ReB(0) of the retardation layer (B) that is a C plate is preferably 10 nm or less, more preferably 5 nm or less, and usually 0 nm or more, but may be 0 nm.
斜め方向の光に、より大きな位相差を付与できるので、一実施形態において、位相差層(B)はネガティブCプレートとして機能する層であることが好ましい。 In one embodiment, the retardation layer (B) is preferably a layer that functions as a negative C plate, since it can impart a larger phase difference to light in an oblique direction.
(位相差層(B)の材料、製造方法)
位相差層(B)は、所望の位相差に応じて、任意の材料により形成されうる。
(Material and manufacturing method of retardation layer (B))
The retardation layer (B) can be formed of any material depending on the desired retardation.
例えば、位相差層(B)を、液晶性化合物を含む液晶組成物の硬化物で形成してもよい。液晶性化合物の種類、液晶性化合物の配向状態、厚み等の要素を適切に調整することで、所望のレターデーションを得ることができる。 For example, the retardation layer (B) may be formed from a cured liquid crystal composition containing a liquid crystal compound. By appropriately adjusting factors such as the type of liquid crystal compound, the alignment state of the liquid crystal compound, and the thickness, the desired retardation can be obtained.
位相差層(B)を液晶性化合物を含む液晶組成物の硬化物で形成する場合、液晶性化合物の複屈折Δnは、好ましくは0.1以上、より好ましくは0.2以上であり、大きい方が好ましいが、例えば0.7以下であってもよい。
ここで、液晶性化合物の複屈折Δnは、液晶性化合物を含む液晶組成物を硬化させて得られる液晶硬化層の試料について、面内レターデーションRe及び厚みdを測定して、面内レターデーションReを厚みdで除算した値(Re/d)として求めうる。
液晶硬化層の試料は、液晶性化合物をホモジニアス配向させ、その配向を維持したまま液晶性化合物を含む液晶組成物の層を硬化させて作製しうる。液晶性化合物をホモジニアス配向させる、とは、当該液晶性化合物を含む層を形成し、その層における液晶性化合物の分子の屈折率楕円体において最大の屈折率の方向を、前記層の面に平行なある一の方向に配向させることをいう。
In the case where the retardation layer (B) is formed of a cured product of a liquid crystal composition containing a liquid crystal compound, the birefringence Δn of the liquid crystal compound is preferably 0.1 or more, more preferably 0.2 or more, and the larger the better. However, it may be, for example, 0.7 or less.
Here, the birefringence Δn of a liquid crystal compound can be determined by measuring the in-plane retardation Re and the thickness d of a sample of a liquid crystal cured layer obtained by curing a liquid crystal composition containing a liquid crystal compound, and dividing the in-plane retardation Re by the thickness d (Re/d).
A sample of the liquid crystal cured layer can be prepared by homogeneously aligning a liquid crystal compound and curing a layer of a liquid crystal composition containing the liquid crystal compound while maintaining the alignment. "Homogeneously aligning a liquid crystal compound" means forming a layer containing the liquid crystal compound and aligning the direction of the maximum refractive index in the refractive index ellipsoid of the molecules of the liquid crystal compound in the layer in a certain direction parallel to the surface of the layer.
位相差層(B)を、正面方向からの入射光に所定の位相差を付与するλ/2板又はλ/4板として機能させる場合、液晶性化合物をホモジニアス配向させることが好ましい。 When the retardation layer (B) functions as a λ/2 plate or λ/4 plate that imparts a predetermined phase difference to light incident from the front direction, it is preferable to align the liquid crystal compound homogeneously.
例えば、位相差層(B)を、ネガティブCプレートとして機能させる場合、液晶硬化層(A)の材料としても使用しうる液晶性化合物を材料として、コレステリック規則性を有する材料の層であって、選択反射帯域の一部又は全部が可視領域外であるものを構成することにより、ネガティブCプレートとして機能しうる位相差層(B)を得てもよい。 For example, when the retardation layer (B) is made to function as a negative C plate, the retardation layer (B) may be obtained by forming a layer of a material having cholesteric regularity using a liquid crystal compound that can also be used as the material of the liquid crystal cured layer (A), and having a selective reflection band that is partly or entirely outside the visible range.
位相差層(B)を、重合体を含む溶液を用いた溶液キャスト法などのフィルム形成方法により得てもよい。例えば、セルロース系重合体を含む溶液を用いて、ポジティブCプレートとして機能しうる位相差層(B)を得てもよい。 The retardation layer (B) may be obtained by a film forming method such as a solution casting method using a solution containing a polymer. For example, a retardation layer (B) that can function as a positive C plate may be obtained by using a solution containing a cellulose-based polymer.
(位相差層(B)のレターデーション)
位相差層(B)は、正面方向のレターデーション及び斜め方向のレターデーションのいずれか又は両方が、好ましくはλ/2板として機能しうる値であり、具体的には、好ましくは250nm以上、より好ましくは260nm以上であり、好ましくは350nm以下、より好ましくは300nm以下である。位相差層(B)の正面方向のレターデーション及び/又は斜め方向のレターデーションが、λ/2板として機能しうる値であると、フレーク(AB)の反射光及びフレーク(A)の反射光を正面方向又は斜め方向から直線偏光板又は円偏光板を用いて観察した場合に、両反射光の光量の差がより大きくなるために、両反射光をより容易に区別しうる。
(Retardation of Retardation Layer (B))
The retardation layer (B) has a value such that either or both of the front retardation and the oblique retardation can function as a λ/2 plate, specifically, it is preferably 250 nm or more, more preferably 260 nm or more, and preferably 350 nm or less, more preferably 300 nm or less. When the front retardation and/or the oblique retardation of the retardation layer (B) are values capable of functioning as a λ/2 plate, when the reflected light of the flake (AB) and the reflected light of the flake (A) are observed from the front or oblique direction using a linear polarizing plate or a circular polarizing plate, the difference in the light amount between the two reflected lights becomes larger, so that the two reflected lights can be more easily distinguished.
一実施形態において、位相差層(B)の正面方向のレターデーションReB(0)は、λ/2又はλ/2に近く、好ましくは250nm以上、より好ましくは260nm以上、更に好ましくは270nm以上であり、好ましくは350nm以下、より好ましくは330nm以下、更に好ましくは310nm以下である。 In one embodiment, the retardation ReB(0) in the front direction of the retardation layer (B) is λ/2 or close to λ/2, preferably 250 nm or more, more preferably 260 nm or more, even more preferably 270 nm or more, and preferably 350 nm or less, more preferably 330 nm or less, even more preferably 310 nm or less.
一実施形態において、位相差層(B)の極角45°方向のレターデーションReB(45)は、λ/2又はλ/2に近く、好ましくは250nm以上、より好ましくは260nm以上、更に好ましくは270nm以上であり、好ましくは350nm以下、より好ましくは330nm以下、更に好ましくは310nm以下である。 In one embodiment, the retardation ReB(45) of the retardation layer (B) in the polar angle 45° direction is λ/2 or close to λ/2, and is preferably 250 nm or more, more preferably 260 nm or more, even more preferably 270 nm or more, and is preferably 350 nm or less, more preferably 330 nm or less, even more preferably 310 nm or less.
一実施形態において、位相差層(B)の正面方向のレターデーションReB(0)は、好ましくは10nm以下、より好ましくは5nm以下であり、通常0nm以上であるが、0nmであってもよい。 In one embodiment, the retardation ReB(0) in the front direction of the retardation layer (B) is preferably 10 nm or less, more preferably 5 nm or less, and is usually 0 nm or more, but may be 0 nm.
一実施形態において、位相差層(B)の極角45°方向のレターデーションReB(45)は、好ましくは50nm以上、より好ましくは60nm以上であり、好ましくは100nm以下、より好ましくは90nm以下である。 In one embodiment, the retardation ReB(45) of the retardation layer (B) in the polar angle 45° direction is preferably 50 nm or more, more preferably 60 nm or more, and is preferably 100 nm or less, more preferably 90 nm or less.
一実施形態において、位相差層(B)は、好ましくは、位相差層(B)の正面方向のレターデーションReB(0)及び位相差層(B)の極角45°方向のレターデーションReB(45)がそれぞれ、下記範囲内である。レターデーションがこのような範囲内である位相差層(B)は、Cプレートであるといえる。
ReB(0)が、好ましくは10nm以下、より好ましくは5nm以下であり、通常0nm以上であるが、0nmであってもよく、かつ、
ReB(45)が、好ましくは50nm以上、より好ましくは60nm以上であり、好ましくは100nm以下、より好ましくは90nm以下である。
もしくは、ReB(0)が、好ましくは10nm以下、より好ましくは5nm以下であり、通常0nm以上であるが、0nmであってもよく、かつ、
ReB(45)が、好ましくは250nm以上、より好ましくは270nm以上であり、好ましくは350nm以下、より好ましくは330nm以下である。
In one embodiment, the retardation layer (B) preferably has a retardation ReB(0) in the front direction of the retardation layer (B) and a retardation ReB(45) in the polar angle 45° direction of the retardation layer (B) within the following ranges. The retardation layer (B) having a retardation within such a range can be said to be a C plate.
ReB(0) is preferably 10 nm or less, more preferably 5 nm or less, and is usually 0 nm or more, but may be 0 nm; and
ReB(45) is preferably 50 nm or more, more preferably 60 nm or more, and is preferably 100 nm or less, more preferably 90 nm or less.
Alternatively, ReB(0) is preferably 10 nm or less, more preferably 5 nm or less, and is usually 0 nm or more, but may be 0 nm; and
ReB(45) is preferably 250 nm or more, more preferably 270 nm or more, and is preferably 350 nm or less, more preferably 330 nm or less.
(位相差層(B)の厚み)
位相差層(B)の厚みd(B)は、好ましくは3μm以下であり、より好ましくは2μm以下であり、0.5μm以上であってもよい。
ここで、フレーク(AB)が、位相差層(B)を複数備える場合、複数の位相差層(B)のそれぞれが、前記の厚み範囲内にあることが好ましい。厚みd(B)が、前記上限以下であると、積層体(C)を破砕してフレークを製造することがより容易となる。厚みd(B)は、前記下限以上であると、位相差層(B)のレターデーションを容易に所望の範囲としうる。
(Thickness of Retardation Layer (B))
The thickness d(B) of the retardation layer (B) is preferably 3 μm or less, more preferably 2 μm or less, and may be 0.5 μm or more.
Here, when the flake (AB) has a plurality of retardation layers (B), each of the plurality of retardation layers (B) is preferably within the thickness range. When the thickness d(B) is equal to or less than the upper limit, it is easier to crush the laminate (C) to produce flakes. When the thickness d(B) is equal to or more than the lower limit, the retardation of the retardation layer (B) can be easily set to a desired range.
<1.4.任意の層>
フレーク(AB)は、液晶硬化層(A)及び位相差層(B)に加えて、任意の層を含みうる。任意の層は、光学的異方性を有していてもよく、光学的等方性を有していてもよい。好ましくは、任意の層は、光学的等方性を有する。
具体的には、任意の層の正面方向のレターデーションRe(0)は、好ましくは、10nm以下、より好ましくは5nm以下であり、通常0nm以上であるが、0nmであってもよい。
また、任意の層の厚み方向のレターデーションRthの絶対値は、好ましくは、20nm以下、より好ましくは10nm以下であり、通常0nm以上であるが、0nmであってもよい。
1.4. Optional Layer
The flake (AB) may include an optional layer in addition to the liquid crystal cured layer (A) and the retardation layer (B). The optional layer may have optical anisotropy or optical isotropy. Preferably, the optional layer has optical isotropy.
Specifically, the retardation Re(0) in the in-plane direction of any layer is preferably 10 nm or less, more preferably 5 nm or less, and is usually 0 nm or more, but may be 0 nm.
The absolute value of retardation Rth in the thickness direction of any layer is preferably 20 nm or less, more preferably 10 nm or less, and is usually 0 nm or more, but may be 0 nm.
任意の層の例としては、接着剤の層である、接着層が挙げられる。例えば、液晶硬化層(A)と位相差層(B)との間に、接着層を設けることにより、液晶硬化層(A)から位相差層(B)が剥離することを抑制しうる。接着層の例としては、特に限定されないが、紫外線硬化型接着剤の層が挙げられる。 An example of an optional layer is an adhesive layer, which is a layer of adhesive. For example, by providing an adhesive layer between the liquid crystal cured layer (A) and the retardation layer (B), it is possible to prevent the retardation layer (B) from peeling off from the liquid crystal cured layer (A). An example of an adhesive layer is, but is not limited to, a layer of an ultraviolet-curable adhesive.
<1.5.フレークの実施形態>
フレーク(AB)は、液晶硬化層(A)と位相差層(B)とを含む積層体(C)のフレークであり、フレーク(AB)の一粒は、積層体(C)の小片である。したがって、フレーク(AB)の一粒は、積層体(C)と同様の層構成を有しており、液晶硬化層(A)と位相差層(B)とを含む。以下、フレーク(AB)の実施形態について図を用いて説明する。
1.5. Flake embodiments
The flake (AB) is a flake of the laminate (C) including the liquid crystal cured layer (A) and the retardation layer (B), and each flake (AB) is a small piece of the laminate (C). Therefore, each flake (AB) has the same layer structure as the laminate (C) and includes the liquid crystal cured layer (A) and the retardation layer (B). Hereinafter, an embodiment of the flake (AB) will be described with reference to the drawings.
(フレークの実施形態F1)
図1は、本発明の実施形態F1に係るフレークの一粒を、模式的に示した断面図である。
フレーク100は、位相差層(B)としての第一位相差層111、液晶硬化層(A)としての液晶硬化層120、及び位相差層(B)としての第二位相差層112を、厚み方向でこの順で含む。
液晶硬化層120の一方の面に直接して、第一位相差層111が設けられ、液晶硬化層120の他方の面に直接して、第二位相差層112が設けられている。すなわち、液晶硬化層120と第一位相差層111との間、及び、液晶硬化層120と第二位相差層112との間には、任意の層が介在していない。別の実施形態では、液晶硬化層120と第一位相差層111との間に、及び/又は、液晶硬化層120と第二位相差層112との間に、接着層などの、任意の層が介在していてもよい。
Flake embodiment F1
FIG. 1 is a cross-sectional view showing a schematic diagram of one flake according to embodiment F1 of the present invention.
The
The first
フレーク100は、ある面上に配置された場合に、第一位相差層111又は第二位相差層112を観察側に向ける。すなわち、液晶硬化層120の反射光は、位相差層(B)としての第一位相差層111又は第二位相差層112により位相差を与えられて、偏光状態が変化する。したがって、このような偏光状態が変化した光を、適切なビュワーを用いて観察することにより、フレーク100の集合による反射光を、液晶硬化層(A)のフレークからの反射光と区別することができる。
When the
(フレークの実施形態F2)
図2は、本発明の実施形態F2に係るフレークの一粒を、模式的に示した断面図である。
フレーク200は、位相差層(B)としての第一位相差層111及び液晶硬化層(A)としての液晶硬化層120を含む。
液晶硬化層120の一方の面に直接して、第一位相差層111が設けられている。すなわち、液晶硬化層120と第一位相差層111との間には、任意の層が介在していない。別の実施形態では、液晶硬化層120と第一位相差層111との間に、接着層などの、任意の層が介在していてもよい。
Flake embodiment F2
FIG. 2 is a cross-sectional view showing a schematic diagram of one flake according to embodiment F2 of the present invention.
The
The
フレーク200は、ある面上に配置された場合に、液晶硬化層120又は第一位相差層111を観察側に向ける。すなわち、液晶硬化層120の反射光は、位相差層(B)としての第一位相差層111による作用を受けずにそのまま観察されるか、または、位相差層(B)としての第一位相差層111により位相差を与えられて、観察される。
フレーク200の集合による反射光は、第一位相差層111により位相差を与えられて液晶硬化層120の反射光から偏光状態が変化した光を含む。したがって、このような偏光状態が変化した光を含む、フレーク200の集合による反射光を、適切なビュワーを用いて観察することにより、液晶硬化層(A)のフレークからの反射光と区別することができる。
When the
The reflected light by the collection of
<1.6.フレークの製造方法>
本実施形態のフレークは、任意の方法により製造することができ、例えば、積層体(C)を製造し、これを破砕する方法;支持基材上に積層体(C)を製造し、積層体(C)にロールカッターなどの切断器具により切り込みを形成してから、定型の切片となった積層体(C)に高圧流体を吹き付けて支持基材から剥離し、定型のフレークを得る方法;などが挙げられる。
<1.6. Flake manufacturing method>
The flakes of this embodiment can be produced by any method, for example, a method in which a laminate (C) is produced and then crushed; a method in which a laminate (C) is produced on a supporting substrate, incisions are formed in the laminate (C) using a cutting tool such as a roll cutter, and then a high-pressure fluid is sprayed onto the laminate (C) that has become a fixed-sized piece to peel it off from the supporting substrate, thereby obtaining a fixed-sized flake; and the like.
積層体(C)は、液晶硬化層(A)を形成し、次いで液晶硬化層(A)の上に位相差層(B)を形成することにより製造してもよく、液晶硬化層(A)と位相差層(B)とを別々に製造し、液晶硬化層(A)と位相差層(B)とを積層することにより製造してもよい。積層には、紫外線硬化型接着剤などの、適切な接着剤を用いうる。また、液晶硬化層(A)に、コロナ処理などの表面処理を行うことにより、液晶硬化層(A)に対する位相差層(B)の接着力を向上させてもよい。 The laminate (C) may be produced by forming a liquid crystal cured layer (A) and then forming a retardation layer (B) on the liquid crystal cured layer (A), or by producing the liquid crystal cured layer (A) and the retardation layer (B) separately and laminating the liquid crystal cured layer (A) and the retardation layer (B). A suitable adhesive such as an ultraviolet-curable adhesive may be used for lamination. In addition, the adhesive strength of the retardation layer (B) to the liquid crystal cured layer (A) may be improved by performing a surface treatment such as a corona treatment on the liquid crystal cured layer (A).
液晶硬化層(A)の製造方法の例及び位相差層(B)の製造方法の例としては、前記の例が挙げられる。 Examples of the manufacturing method for the liquid crystal cured layer (A) and the retardation layer (B) are the same as those mentioned above.
<1.7.フレークの用途>
本実施形態のフレークは、真正品と偽造品とを識別するための識別媒体、または、肉眼で見た場合とビュワーを用いて見た場合とで異なるパターンを表示する、意匠性の高い表示媒体に、好適に用いうる。本実施形態のフレークを含有するインキを面上に塗布してインキの層を形成することにより、識別媒体又は表示媒体として有用な印刷物を得ることができる。インキにおける、フレーク以外の成分は、特に限定されず、市販のインキ用のメジウム、希釈剤等の物質を使用しうる。
<1.7. Uses of flakes>
The flakes of this embodiment can be suitably used as an identification medium for distinguishing genuine products from counterfeit products, or as a highly designed display medium that displays a different pattern when viewed with the naked eye and when viewed using a viewer. By applying an ink containing the flakes of this embodiment to a surface to form an ink layer, a printed matter useful as an identification medium or display medium can be obtained. The components in the ink other than the flakes are not particularly limited, and commercially available ink media, diluents, and other substances can be used.
<2.印刷物>
フレークを含有するインキを、任意の印刷法により所望の面上に塗布して硬化させ、フレークを含有するインキの層を含む印刷物を得ることができる。印刷法としては、効率的な印刷ができるので、スクリーン印刷法及びインクジェット印刷法が好ましい。
前記のフレークの作用を利用することにより、肉眼では、文字などのパターンが観察されず一様であるが、偏光状態を区別しうる適切なビュワーを用いた観察では、文字などのパターンが観察される、特殊な光学的効果を有する印刷物を得うる。このような光学的効果を有する印刷物は、真正物を偽造物と区別しうる識別媒体として、または、特殊な意匠性を有する表示媒体として、有用である。
2. Printed materials
The ink containing the flakes can be applied to a desired surface by any printing method and cured to obtain a printed matter containing a layer of the ink containing the flakes. As the printing method, screen printing and inkjet printing are preferred because they allow efficient printing.
By utilizing the action of the flakes, it is possible to obtain a printed matter having a special optical effect, in which a pattern such as letters is not observed with the naked eye, but a pattern such as letters is observed when observed using an appropriate viewer that can distinguish between polarization states. A printed matter having such an optical effect is useful as an identification medium that can distinguish genuine items from counterfeits, or as a display medium with a special design.
以下に本発明の実施形態に係る印刷物について説明する。印刷物は、識別媒体でありうる。以下の説明において、前記のフレーク(AB)を含有するインキの層を、インキ層(AB)ともいい、前記の液晶硬化層(A)のフレーク(A)を含有するインキの層を、インキ層(A)ともいう。また、前記のフレーク(AB1)を含有するインキの層を、インキ層(AB1)ともいい、前記のフレーク(AB2)を含有するインキの層を、インキ層(AB2)ともいう。前記のとおり、フレーク(AB1)が備える位相差層(B1)とフレーク(AB2)が備える位相差層(B2)とは、互いに異なる位相差を入射光に与える。 The printed matter according to the embodiment of the present invention will be described below. The printed matter can be an identification medium. In the following description, the ink layer containing the flakes (AB) is also called the ink layer (AB), and the ink layer containing the flakes (A) of the liquid crystal cured layer (A) is also called the ink layer (A). The ink layer containing the flakes (AB1) is also called the ink layer (AB1), and the ink layer containing the flakes (AB2) is also called the ink layer (AB2). As described above, the retardation layer (B1) of the flakes (AB1) and the retardation layer (B2) of the flakes (AB2) give different phase differences to the incident light.
(印刷物の実施形態P1)
実施形態P1に係る印刷物は、
表示面を有する印刷物であって、
前記表示面の一部を占める領域R1に設けられる第一インキ層と、
前記表示面の一部を占める領域であって、前記領域R1以外の領域の一部又は全部を占める領域R2に設けられる第二インキ層とを備え、
前記第一インキ層は、液晶硬化層(A)と位相差層(B)とを含む積層体(C)のフレークであって、前記位相差層(B)が、所定の極角φからの波長550nmである入射光に位相差ReB1(φ)を与える位相差層(B1)である、第一フレークを含有し、
前記第二インキ層は、前記液晶硬化層(A)のフレークである、第二フレークを含有する。印刷物は、識別媒体でありうる。
(Printed matter embodiment P1)
The printed matter according to embodiment P1 is
A printed matter having a display surface,
A first ink layer provided in a region R1 occupying a part of the display surface;
a second ink layer provided in a region R2 occupying a part of the display surface and occupying a part or all of the region other than the region R1 ;
The first ink layer contains a first flake of a laminate (C) including a liquid crystal cured layer (A) and a retardation layer (B), the retardation layer (B) being a retardation layer (B1) that gives a retardation ReB1(φ) to incident light having a wavelength of 550 nm from a predetermined polar angle φ;
The second ink layer contains second flakes which are flakes of the cured liquid crystal layer (A). The printed matter can be an identification medium.
図3は、本発明の実施形態に係る印刷物を模式的に示す断面図である。図4は、本発明の実施形態に係る印刷物を模式的に示す上面図である。
印刷物1は、印刷下地層30と、第一インキ層10(本実施形態では、インキ層(AB))と、第二インキ層20(本実施形態では、インキ層(A))とを備える。第一インキ層10及び第二インキ層20は、印刷下地層30の上側の面30Uに接して設けられている。第一インキ層10(インキ層(AB))と第二インキ層20(インキ層(A))とは、境界12において、それらの側面が互いに接するように配置されている。このように、第一インキ層10は、その全部又は一部の縁の側面が、第二インキ層20の縁の側面と互いに接するよう配置されることが、印刷物1の識別機能の秘匿性を高める観点から好ましい。第一インキ層10と第二インキ層20とは離隔していてもよいが、識別機能の秘匿性を高める観点から、離隔している場合の距離は、小さいことが好ましい。かかる距離は、通常200μm以下、好ましくは100μm以下、より好ましくは50μm以下、更に好ましくは20μm以下、特に好ましくは10μm以下である。第一インキ層10及び第二インキ層20は、毛抜き印刷又はシームレス印刷と呼ばれる方法により得ることができる。印刷下地層30は、好ましくは光を吸収する吸収層である。印刷物1に、第一インキ層10(本実施形態ではインキ層(AB))に占められる領域R1と、第二インキ層20(本実施形態ではインキ層(A))に占められる領域R2とが設けられることにより、これらは潜像を形成する。潜像とは、通常の非偏光での肉眼による観察では観察されず、印刷物の特定の観察においてのみ観察される像である。図3~図4の例の印刷物では、文字「T」が、潜像として機能しうる。
Fig. 3 is a cross-sectional view that shows a schematic diagram of a printed matter according to an embodiment of the present invention. Fig. 4 is a top view that shows a schematic diagram of a printed matter according to an embodiment of the present invention.
The printed matter 1 includes a
インキ層(AB)とインキ層(A)とは肉眼では略同一又は同一の色調を呈し、かつインキ層(AB)の縁とインキ層(A)の縁とは、接しているか又は短い距離であるためにインキ層(AB)及びインキ層(A)の境界を肉眼では判別できない。また、前記のとおり、インキ層(AB)に含まれるフレーク(AB)の反射光とインキ層(A)に含まれるフレーク(A)の反射光とは、偏光状態が異なるので、偏光状態を区別しうる適切なビュワーを用いて前記のインキ層(AB)とインキ層(A)とを観察すると、インキ層(AB)とインキ層(A)との境界を判別できる。 The ink layers (AB) and (A) appear to the naked eye to be approximately the same or have the same color tone, and the edges of the ink layers (AB) and (A) are in contact or are at a short distance from each other, so the boundary between the ink layers (AB) and (A) cannot be distinguished by the naked eye. Also, as mentioned above, the reflected light of the flakes (AB) contained in the ink layer (AB) and the reflected light of the flakes (A) contained in the ink layer (A) have different polarization states, so when the ink layers (AB) and (A) are observed using an appropriate viewer that can distinguish between polarization states, the boundary between the ink layers (AB) and (A) can be distinguished.
第一フレークとしてのフレーク(AB)が備える、位相差層(B)である位相差層(B1)は、正面方向の入射光にλ/2の位相差を与える、λ/2板として機能する層であってもよく、具体的には、φが0°である場合の位相差ReB1(0)が、λ/2又はλ/2に近く、具体的には250nm以上350nm以下であってもよい。この場合、ビュワーとして、円偏光板を用い、表示面の正面方向から観察することによって、インキ層(AB)とインキ層(A)との境界を判別できる。
また別の実施形態では、位相差層(B1)は、いわゆるCプレートとして機能する層であってもよく、例えば、φが45°である場合の位相差ReB1(45)が、50nm以上100nm以下であってもよく、また300nm以上350nm以下であってもよい。この場合、ビュワーとして、直線偏光板を用い、表示面の斜め方向から観察することによって、インキ層(AB)とインキ層(A)との境界を判別できる。
The retardation layer (B1) of the first flake (AB) may be a layer that functions as a λ/2 plate that imparts a retardation of λ/2 to incident light in the front direction, and specifically, the retardation ReB1(0) when φ is 0° may be λ/2 or close to λ/2, specifically 250 nm or more and 350 nm or less. In this case, the boundary between the ink layer (AB) and the ink layer (A) can be distinguished by observing from the front direction of the display surface using a circular polarizing plate as a viewer.
In another embodiment, the retardation layer (B1) may be a layer that functions as a so-called C plate, and for example, the retardation ReB1 (45) when φ is 45° may be 50 nm or more and 100 nm or less, or 300 nm or more and 350 nm or less. In this case, the boundary between the ink layer (AB) and the ink layer (A) can be distinguished by using a linear polarizing plate as a viewer and observing from an oblique direction of the display surface.
(印刷物の実施形態P2)
実施形態P2に係る印刷物は、
表示面を有する印刷物であって、
前記表示面の一部を占める領域R1に設けられる第一インキ層と、
前記表示面の一部を占める領域であって、前記領域R1以外の領域の一部又は全部を占める領域R2に設けられる第二インキ層とを備え、
前記第一インキ層は、液晶硬化層(A)と位相差層(B)とを含む積層体(C)のフレークであって、前記位相差層(B)が、所定の極角φからの波長550nmである入射光に位相差ReB1(φ)を与える位相差層(B1)である、第一フレークを含有し、
前記第二インキ層は、前記液晶硬化層(A)と、所定の極角φからの波長550nmである入射光に位相差ReB2(φ)を与える位相差層(B2)とを含む積層体(C2)のフレークである、第二フレークを含有し、
|ReB2(φ)-ReB1(φ)|>0nmである。印刷物は、識別媒体でありうる。
(Embodiment P2 of printed matter)
The printed matter according to embodiment P2 is
A printed matter having a display surface,
A first ink layer provided in a region R1 occupying a part of the display surface;
a second ink layer provided in a region R2 occupying a part of the display surface and occupying a part or all of the region other than the region R1 ;
The first ink layer contains a first flake of a laminate (C) including a liquid crystal cured layer (A) and a retardation layer (B), the retardation layer (B) being a retardation layer (B1) that gives a retardation ReB1(φ) to incident light having a wavelength of 550 nm from a predetermined polar angle φ;
The second ink layer contains a second flake, which is a flake of a laminate (C2) including the liquid crystal cured layer (A) and a retardation layer (B2) that gives a retardation ReB2(φ) to incident light having a wavelength of 550 nm from a predetermined polar angle φ;
|ReB2(φ)-ReB1(φ)|>0 nm. The printed matter can be an identification medium.
本実施形態の印刷物は、図3~図4における、第一インキ層10をインキ層(AB1)とし、第二インキ層20をインキ層(AB2)とした以外は、実施形態P1に係る印刷物と同様の構成を備える。
The printed matter of this embodiment has the same configuration as the printed matter of embodiment P1, except that the
本実施形態においても、印刷物1に、第一インキ層10(本実施形態ではインキ層(AB1))に占められる領域R1と、第二インキ層20(本実施形態ではインキ層(AB2))に占められる領域R2とが設けられることにより、これらは潜像を形成する。 In this embodiment, too, a region R1 occupied by a first ink layer 10 (in this embodiment, ink layer (AB1)) and a region R2 occupied by a second ink layer 20 (in this embodiment, ink layer (AB2)) are provided on the printed matter 1 , and these form a latent image.
インキ層(AB1)とインキ層(AB2)とは肉眼では略同一又は同一の色調を呈し、かつインキ層(AB1)の縁とインキ層(AB2)の縁とは、接しているか又は短い距離であるためにインキ層(AB1)及びインキ層(AB2)の境界を肉眼では判別できない。また、前記のとおり、インキ層(AB1)に含まれるフレーク(AB1)の反射光とインキ層(AB2)に含まれるフレーク(AB2)の反射光とは、偏光状態が異なるので、偏光状態を区別しうる適切なビュワーを用いて前記のインキ層(AB1)とインキ層(AB2)とを観察すると、インキ層(AB1)とインキ層(AB2)との境界を判別できる。 The ink layers (AB1) and (AB2) appear to the naked eye to be approximately the same or have the same color tone, and the edges of the ink layers (AB1) and (AB2) are in contact or are at a short distance from each other, so the boundary between the ink layers (AB1) and (AB2) cannot be distinguished by the naked eye. Also, as mentioned above, the reflected light from the flakes (AB1) contained in the ink layer (AB1) and the reflected light from the flakes (AB2) contained in the ink layer (AB2) have different polarization states, so when the ink layers (AB1) and (AB2) are observed using an appropriate viewer that can distinguish between polarization states, the boundary between the ink layers (AB1) and (AB2) can be distinguished.
第一フレークとしてのフレーク(AB1)が備える位相差層(B1)と第二フレークとしてのフレーク(AB2)が備える位相差層(B2)の組み合わせの例としては、|ReB2(φ)-ReB1(φ)|>0nmを満たすことを条件として、下記の例が挙げられる。 The following are examples of combinations of the retardation layer (B1) of the flake (AB1) as the first flake and the retardation layer (B2) of the flake (AB2) as the second flake, provided that |ReB2(φ)-ReB1(φ)|>0 nm is satisfied.
・位相差層(B1)が、正面方向の入射光にλ/2の位相差を与える、λ/2板として機能する層であり、具体的には、φが0°である場合の位相差ReB1(0)が、λ/2又はλ/2に近く、具体的には250nm以上350nm以下であり、かつ、位相差層(B2)が、いわゆるCプレートとして機能する層であり、具体的には、φが0°である場合のReB2(0)が、10nm以下である。この場合、ビュワーとして円偏光板を用い、表示面の正面方向から観察することによって、インキ層(AB1)とインキ層(AB2)との境界を判別できる。
・位相差層(B1)が、いわゆるCプレートとして機能する層であり、かつ、位相差層(B2)が、いわゆるCプレートとして機能する層であり、例えば、φが45°である場合の、ReB1(45)とReB2(45)との差の絶対値|ReB2(45)-ReB1(45)|が、0nmより大きく、好ましくは、50nm以上100nm以下、又は300nm以上350nm以下である。この場合、ビュワーとして直線偏光板を用い、表示面の斜め方向から観察することによって、インキ層(AB1)とインキ層(AB2)との境界を判別できる。
The retardation layer (B1) is a layer that functions as a λ/2 plate that imparts a retardation of λ/2 to incident light in the front direction, specifically, the retardation ReB1(0) when φ is 0° is λ/2 or close to λ/2, specifically, 250 nm to 350 nm, and the retardation layer (B2) is a layer that functions as a so-called C plate, specifically, ReB2(0) when φ is 0° is 10 nm or less. In this case, the boundary between the ink layer (AB1) and the ink layer (AB2) can be distinguished by using a circular polarizing plate as a viewer and observing from the front direction of the display surface.
The retardation layer (B1) is a layer that functions as a so-called C plate, and the retardation layer (B2) is a layer that functions as a so-called C plate, and for example, when φ is 45°, the absolute value of the difference between ReB1(45) and ReB2(45), |ReB2(45)-ReB1(45)|, is greater than 0 nm, and preferably is 50 nm or more and 100 nm or less, or 300 nm or more and 350 nm or less. In this case, the boundary between the ink layer (AB1) and the ink layer (AB2) can be distinguished by using a linear polarizing plate as a viewer and observing from an oblique direction of the display surface.
<3.物品>
印刷物を、他の構成要素に備え付けることにより、識別機能を有する物品を構成しうる。又は印刷物そのものを、識別機能を有する物品として用いうる。
物品の例としては、衣類、靴、帽子、装身具、宝飾品、日用品等の様々な物品が挙げられる。物品は、本発明の印刷物を備えることにより、識別機能を有するものとしうる。かかる識別機能を有することにより、物品が、偽造品でない真正なものであることの識別を行いうる。加えて、印刷物が、物品に意匠的効果を付与することができる。印刷物は、タグ、チャーム、ワッペン、ステッカー等の、物品の装飾品、部品又は付属物として、物品に設けうる。
<3. Articles>
The printed matter can be attached to another component to form an article having an identification function, or the printed matter itself can be used as an article having an identification function.
Examples of articles include various articles such as clothing, shoes, hats, accessories, jewelry, and daily necessities. The article can have an identification function by being provided with the printed matter of the present invention. By having such an identification function, the article can be identified as being genuine and not a counterfeit. In addition, the printed matter can impart a design effect to the article. The printed matter can be provided on the article as an ornament, part, or accessory of the article, such as a tag, charm, patch, or sticker.
本発明の物品は、前記本発明の印刷物に加えて、ビュワーをさらに備えうる。ビュワーの例としては、直線偏光板及び円偏光板が挙げられる。 The article of the present invention may further include a viewer in addition to the printed matter of the present invention. Examples of viewers include a linear polarizing plate and a circular polarizing plate.
ビュワーは、例えばタグの形状とし、紐等を介して物品本体に備え付けられた態様としうる。このように、印刷物に加えてビュワーをさらに備えることにより、一般の物品使用者が、簡単に印刷物の識別を行うことができる。 The viewer can be, for example, in the shape of a tag, and can be attached to the main body of the item via a string or the like. In this way, by providing a viewer in addition to the printed matter, general item users can easily identify the printed matter.
以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the examples shown below, and can be modified as desired without departing from the scope of the claims of the present invention and the scope of equivalents thereto.
以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温(20℃±15℃)及び常圧(1atm)の条件において行った。市販の粘着剤としては、別に断らない限り、日東電工社製の透明延着テープ「LUCIACS CS9621T」(厚み25μm、可視光透過率90%以上、面内レターデーション3nm以下)を用いた。 In the following explanation, the amounts in "%" and "parts" are by weight unless otherwise specified. Furthermore, the operations described below were carried out at room temperature (20°C ± 15°C) and normal pressure (1 atm) unless otherwise specified. As the commercially available adhesive, Nitto Denko Corporation's transparent adhesive tape "LUCIACS CS9621T" (thickness 25 μm, visible light transmittance 90% or more, in-plane retardation 3 nm or less) was used unless otherwise specified.
<面内レターデーションの測定方法>
面内レターデーションは、測定波長550nmにおいて、位相差計(Axometrics社製「Axoscan」)を用いて測定した。
<Method of measuring in-plane retardation>
The in-plane retardation was measured at a measurement wavelength of 550 nm using a phase difference meter (Axoscan manufactured by Axometrics).
<コレステリック液晶層の反射率の測定方法>
複層フィルムから支持基材フィルムを剥離して、コレステリック液晶硬化層(以下、コレステリック液晶層ともいう。)を得た。このコレステリック液晶層に、非偏光(波長400nm~800nm)を入射したときの積分反射率を、積分球を備えた紫外可視分光光度計(日本分光社製「UV-Vis 550」)を用いて測定した。
<Method of measuring reflectance of cholesteric liquid crystal layer>
The support substrate film was peeled off from the multilayer film to obtain a cholesteric liquid crystal cured layer (hereinafter also referred to as a cholesteric liquid crystal layer). The integrated reflectance of this cholesteric liquid crystal layer when non-polarized light (wavelength 400 nm to 800 nm) was incident thereon was measured using an ultraviolet-visible spectrophotometer equipped with an integrating sphere ("UV-Vis 550" manufactured by JASCO Corporation).
<フレークの平均粒子径D50>
フレークの体積基準粒子径分布を、レーザー回折・散乱式粒子径分布測定装置(堀場製作所製、製品名「LA-960」)により測定した。平均粒子径としては、前記の粒子径分布測定装置を用いて測定された粒子径分布において、累積体積が50%となるメジアン径D50の値を用いた。
<Average particle size D50 of flakes>
The volumetric particle size distribution of the flakes was measured using a laser diffraction/scattering particle size distribution measuring device (manufactured by Horiba, Ltd., product name "LA-960"). The average particle size was determined by using the median diameter D50, which is the cumulative volume of 50% in the particle size distribution measured using the particle size distribution measuring device.
<製造例A1:右円偏光を反射できる広帯域反射コレステリック液晶層(CLC_W)の製造>
下記式(X1)(前記の式(B5))で表される光重合性の液晶性化合物100部と、下記式(X2)(前記の式(A10))で表される光重合性の非液晶性化合物25部と、カイラル剤(BASF社製「LC756」)7.5部と、光重合開始剤(チバ・ジャパン社製「イルガキュア907」)5部と、界面活性剤(AGCセイミケミカル社製「S-420」)0.2部と、溶媒としてのシクロペンタノン120部と1,3―ジオキソラン200部とを混合して、液晶組成物を調製した。
<Production Example A1: Production of a broadband reflective cholesteric liquid crystal layer (CLC_W) capable of reflecting right-handed circularly polarized light>
A liquid crystal composition was prepared by mixing 100 parts of a photopolymerizable liquid crystal compound represented by the following formula (X1) (the above formula (B5)), 25 parts of a photopolymerizable non-liquid crystal compound represented by the following formula (X2) (the above formula (A10)), 7.5 parts of a chiral agent ("LC756" manufactured by BASF), 5 parts of a photopolymerization initiator ("Irgacure 907" manufactured by Ciba Japan), 0.2 parts of a surfactant ("S-420" manufactured by AGC Seimi Chemical Co., Ltd.), and 120 parts of cyclopentanone and 200 parts of 1,3-dioxolane as solvents.
支持基材フィルムとして、長尺のポリエチレンテレフタレートフィルム(東洋紡社製「A4300」;厚み100μm)を用意した。この基材フィルムをフィルム搬送装置の繰り出し部に取り付け、当該基材フィルムを長尺方向に搬送しながら以下の操作を行った。
A long polyethylene terephthalate film (Toyobo Co., Ltd. "A4300";
該支持基材フィルムの表面に、搬送方向と平行な長尺方向へラビング処理を施した。次に、ラビング処理を施した該支持基材フィルムの面に、ダイコーターを用いて液晶組成物を塗工して、液晶組成物の層を形成した。この液晶組成物の層に、120℃で5分間加熱する配向処理を施した。その後、液晶組成物の層に、広帯域化処理を施した。この広帯域化処理では、5~30mJ/cm2の弱い紫外線照射と100~120℃の加温処理を交互に複数回繰り返すことで所望の帯域幅に制御した。その後、900mJ/cm2の紫外線を液晶組成物の層に照射して、液晶組成物の層を硬化させた。これにより、支持基材フィルム及びコレステリック液晶層を備える複層フィルムを得た。この複層フィルムのコレステリック液晶層の反射率を、上述した測定方法で測定した。測定の結果、コレステリック液晶層は、450nmから700nmまでの波長範囲概ね全域に、非偏光に対する反射率が40%以上となる波長範囲を有しており、選択反射帯域の半値幅は250nm以上であった。コレステリック液晶層の膜厚は5.3μmに調整した。 The surface of the support substrate film was subjected to rubbing treatment in the longitudinal direction parallel to the transport direction. Next, a liquid crystal composition was applied to the surface of the support substrate film that had been subjected to rubbing treatment using a die coater to form a layer of the liquid crystal composition. The layer of the liquid crystal composition was subjected to an alignment treatment of heating at 120°C for 5 minutes. Thereafter, the layer of the liquid crystal composition was subjected to a band-widening treatment. In this band-widening treatment, weak ultraviolet irradiation at 5 to 30 mJ/ cm2 and heating treatment at 100 to 120°C were alternately repeated multiple times to control the bandwidth to the desired bandwidth. Then, 900 mJ/ cm2 ultraviolet light was irradiated onto the layer of the liquid crystal composition to harden the layer of the liquid crystal composition. This resulted in a multilayer film comprising a support substrate film and a cholesteric liquid crystal layer. The reflectance of the cholesteric liquid crystal layer of this multilayer film was measured by the above-mentioned measurement method. As a result of the measurement, the cholesteric liquid crystal layer had a wavelength range in which the reflectance for unpolarized light was 40% or more over almost the entire wavelength range from 450 nm to 700 nm, and the half-width of the selective reflection band was 250 nm or more. The film thickness of the cholesteric liquid crystal layer was adjusted to 5.3 μm.
<製造例A2:右円偏光を反射できる赤反射コレステリック液晶層(CLC_R)の製造>
製造例A1においてカイラル剤(BASF社製「LC756」)6.8部と変更し、広帯域化処理を実施せずに900mJ/cm2の紫外線を液晶組成物の層に照射して、液晶組成物の層を硬化させた。これ以外は製造例A1と同様にして複層フィルムを作成した。この複層フィルムのコレステリック液晶層の反射率を、製造例A1と同様の測定方法で測定した。測定の結果、コレステリック液晶層は、650nm付近に中心波長を有し、半値幅が100nm程度の波長範囲に、非偏光に対する反射率が40%以上となる目視で赤と認識される波長範囲を有していた。コレステリック液晶層の膜厚は3.6μmに調整した。
<Production Example A2: Production of a red-reflecting cholesteric liquid crystal layer (CLC_R) capable of reflecting right-handed circularly polarized light>
In Manufacturing Example A1, the chiral agent (BASF's "LC756") was changed to 6.8 parts, and the layer of the liquid crystal composition was irradiated with 900 mJ/ cm2 ultraviolet light without performing the broadband treatment to harden the layer of the liquid crystal composition. A multilayer film was produced in the same manner as Manufacturing Example A1 except for this. The reflectance of the cholesteric liquid crystal layer of this multilayer film was measured by the same measurement method as Manufacturing Example A1. As a result of the measurement, the cholesteric liquid crystal layer had a central wavelength near 650 nm, a half-width of about 100 nm, and a wavelength range that was visually recognized as red with a reflectance of 40% or more for unpolarized light. The film thickness of the cholesteric liquid crystal layer was adjusted to 3.6 μm.
<製造例A3:右円偏光を反射できる緑反射コレステリック液晶層(CLC_G)の製造>
製造例A1において広帯域化処理を実施せずに900mJ/cm2の紫外線を液晶組成物の層に照射して、液晶組成物の層を硬化させた。これ以外は製造例A1と同様にして複層フィルムを作成した。この複層フィルムのコレステリック液晶層の反射率を、製造例A1と同様の測定方法で測定した。測定の結果、コレステリック液晶層は、550nm付近に中心波長を有し、半値幅が85nm程度の波長範囲に、非偏光に対する反射率が40%以上となる目視で緑と認識される波長範囲を有していた。コレステリック液晶層の膜厚は3.6μmに調整した。
<Production Example A3: Production of a green-reflecting cholesteric liquid crystal layer (CLC_G) capable of reflecting right-handed circularly polarized light>
In the manufacturing example A1, the layer of the liquid crystal composition was irradiated with 900 mJ/ cm2 ultraviolet light without performing the broadband treatment, and the layer of the liquid crystal composition was cured. Except for this, a multilayer film was produced in the same manner as in manufacturing example A1. The reflectance of the cholesteric liquid crystal layer of this multilayer film was measured using the same measurement method as in manufacturing example A1. As a result of the measurement, the cholesteric liquid crystal layer had a central wavelength near 550 nm, a half-width of about 85 nm, and a wavelength range that was visually recognized as green with a reflectance of 40% or more for unpolarized light. The film thickness of the cholesteric liquid crystal layer was adjusted to 3.6 μm.
<製造例A4:右円偏光を反射できる青反射コレステリック液晶層(CLC_B)の製造>
製造例A1においてカイラル剤(BASF社製「LC756」)を9.5部と変更し、広帯域化処理を実施せずに900mJ/cm2の紫外線を液晶組成物の層に照射して、液晶組成物の層を硬化させた。これ以外は製造例A1と同様にして複層フィルムを作成した。この複層フィルムのコレステリック液晶層の反射率を、製造例A1と同様の測定方法で測定した。測定の結果、コレステリック液晶層は、450nm付近に中心波長を有し、半値幅が75nm程度の波長範囲に、非偏光に対する反射率が40%以上となる目視で青と認識される波長範囲を有していた。コレステリック液晶層の膜厚は3.6μmに調整した。
<Production Example A4: Production of a blue-reflecting cholesteric liquid crystal layer (CLC_B) capable of reflecting right-handed circularly polarized light>
In Manufacturing Example A1, the chiral agent (BASF's "LC756") was changed to 9.5 parts, and the layer of the liquid crystal composition was irradiated with 900 mJ/ cm2 ultraviolet light without performing the broadband treatment to harden the layer of the liquid crystal composition. Other than this, a multilayer film was produced in the same manner as Manufacturing Example A1. The reflectance of the cholesteric liquid crystal layer of this multilayer film was measured by the same measurement method as Manufacturing Example A1. As a result of the measurement, the cholesteric liquid crystal layer had a central wavelength near 450 nm, a half-width of about 75 nm, and a wavelength range that was visually recognized as blue with a reflectance of 40% or more for unpolarized light. The film thickness of the cholesteric liquid crystal layer was adjusted to 3.6 μm.
<製造例A5:λ/2位相差フィルム層(H1)の製造>
製造例A1で用いた(X1)で表される光重合性の液晶性化合物100部と、光重合開始剤(チバ・ジャパン社製「イルガキュア907」)4部と、界面活性剤(DIC社製「メガファックF-562」)0.15部と、溶媒としてのシクロペンタノン120部と1,3―ジオキソラン200部とを混合して、液晶組成物を調製した。
<Production Example A5: Production of λ/2 Retardation Film Layer (H1)>
A liquid crystal composition was prepared by mixing 100 parts of the photopolymerizable liquid crystal compound represented by (X1) used in Production Example A1, 4 parts of a photopolymerization initiator ("Irgacure 907" manufactured by Ciba Japan), 0.15 parts of a surfactant ("Megafac F-562" manufactured by DIC Corporation), 120 parts of cyclopentanone as a solvent, and 200 parts of 1,3-dioxolane.
支持基材フィルムとして、長尺のポリエチレンテレフタレートフィルム(東洋紡社製「A4300」;厚み100μm)を用意した。この基材フィルムをフィルム搬送装置の繰り出し部に取り付け、当該基材フィルムを長尺方向に搬送しながら以下の操作を行った。
A long polyethylene terephthalate film (Toyobo Co., Ltd. "A4300";
該支持基材フィルムの表面に、搬送方向と平行な長尺方向へラビング処理を施した。次に、ラビング処理を施した該支持基材フィルムの面に、ダイコーターを用いて液晶組成物を塗工して、液晶組成物の層を形成した。この液晶組成物の層に、120℃で4分間加熱する配向処理を施した。その後、900mJ/cm2の紫外線を液晶組成物の層に照射して、液晶組成物の層を硬化させた。これにより、支持基材フィルム及び液晶硬化層(位相差フィルム層)を備える複層フィルムを得た。この複層フィルムの面内レターデーションを、上述した測定方法で測定し、液晶硬化層の面内レターデーション値を得た。測定の結果、波長550nmにおいて液晶硬化層の面内レターデーションは280nm、支持基材フィルムに対する遅相軸の向きはフィルムの長手方向に平行で略0°であった。液晶硬化層の膜厚は1.1μmに調整した。
また、前記式(X1)で表される液晶性化合物の複屈折Δnを、得られた液晶硬化層の面内レターデーションを液晶硬化層の膜厚で割り算することにより求めたところ、Δnは0.25であった。
The surface of the support substrate film was subjected to rubbing treatment in the longitudinal direction parallel to the transport direction. Next, a liquid crystal composition was applied to the surface of the support substrate film that had been subjected to rubbing treatment using a die coater to form a layer of the liquid crystal composition. The layer of the liquid crystal composition was subjected to an orientation treatment of heating at 120 ° C. for 4 minutes. Then, the layer of the liquid crystal composition was irradiated with ultraviolet light of 900 mJ / cm 2 to harden the layer of the liquid crystal composition. This resulted in a multilayer film comprising a support substrate film and a liquid crystal cured layer (retardation film layer). The in-plane retardation of this multilayer film was measured by the above-mentioned measurement method to obtain the in-plane retardation value of the liquid crystal cured layer. As a result of the measurement, the in-plane retardation of the liquid crystal cured layer was 280 nm at a wavelength of 550 nm, and the direction of the slow axis relative to the support substrate film was parallel to the longitudinal direction of the film and was approximately 0 °. The film thickness of the liquid crystal cured layer was adjusted to 1.1 μm.
Moreover, the birefringence Δn of the liquid crystal compound represented by the formula (X1) was calculated by dividing the in-plane retardation of the obtained cured liquid crystal layer by the film thickness of the cured liquid crystal layer, and was found to be 0.25.
液晶組成物の調製に用いられた界面活性剤及び光重合開始剤は、複屈折を有さず、また、その量が少量である。さらに、液晶組成物の調製に用いられた溶媒は、液晶硬化層の形成以前に揮発する。よって、液晶組成物に含まれていた界面活性剤、光重合開始剤及び溶媒による液晶硬化層の複屈折Δnへの影響は、無視できる程度に小さい。したがって、前記の液晶硬化層の面内レターデーション及び厚みの値を用いて、液晶性化合物の複屈折Δnが求められる。以下の液晶性化合物の複屈折Δnについても同様である。 The surfactant and photopolymerization initiator used in the preparation of the liquid crystal composition do not have birefringence, and the amount thereof is small. Furthermore, the solvent used in the preparation of the liquid crystal composition evaporates before the formation of the liquid crystal cured layer. Therefore, the effect of the surfactant, photopolymerization initiator, and solvent contained in the liquid crystal composition on the birefringence Δn of the liquid crystal cured layer is negligibly small. Therefore, the birefringence Δn of the liquid crystal compound can be obtained using the in-plane retardation and thickness values of the above-mentioned liquid crystal cured layer. The same applies to the birefringence Δn of the following liquid crystal compounds.
<製造例A6:λ/2位相差フィルム層(H2)の製造>
製造例A5の液晶性化合物をBASF社製のLC242に等重量で置き換え、面内レターデーションが製造例A5と同様に略λ/2となるように膜厚を調整した。これ以外は製造例A5と同様にして位相差フィルム層を備える複層フィルムを作成した。
上述した方法で面内レターデーションを測定したところ、波長550nmにおいて液晶硬化層(位相差フィルム層)のレターデーションは275nmであった。支持基材フィルムに対する位相差フィルム層の遅相軸の向きは支持基材フィルムの長手方向に平行で略0°であった。液晶硬化層の膜厚は2.4μmに調整した。
また、液晶性化合物LC242の複屈折Δnを、液晶硬化層の面内レターデーションを、液晶硬化層の膜厚で割り算することにより求めたところ、Δnは0.11であった。
<Production Example A6: Production of λ/2 Retardation Film Layer (H2)>
The liquid crystal compound of Production Example A5 was replaced by LC242 manufactured by BASF in an equal weight ratio, and the film thickness was adjusted so that the in-plane retardation was approximately λ/2, similar to Production Example A5. A multilayer film having a retardation film layer was produced in the same manner as Production Example A5 except for this.
When the in-plane retardation was measured by the above-mentioned method, the retardation of the liquid crystal cured layer (retardation film layer) was 275 nm at a wavelength of 550 nm. The direction of the slow axis of the retardation film layer relative to the support substrate film was parallel to the longitudinal direction of the support substrate film and was approximately 0°. The film thickness of the liquid crystal cured layer was adjusted to 2.4 μm.
Further, the birefringence Δn of the liquid crystal compound LC242 was calculated by dividing the in-plane retardation of the cured liquid crystal layer by the film thickness of the cured liquid crystal layer, and was found to be 0.11.
<製造例A7:λ/2+α位相差フィルム層(H3)の製造>
製造例A5において液晶硬化層の厚みを1.5μmに調整した。これ以外は製造例A5と同様にして位相差フィルム層を作成した。
上述した方法で面内レターデーションを測定したところ、波長550nmにおいて位相差フィルム層の面内レターデーションは350nmであった。また遅相軸を回転軸として両面から斜め30°に傾けた際のレターデーションを測定したところ、260nmであった。支持基材フィルムに対する位相差フィルム層の遅相軸の向きは支持基材フィルムの長手方向に平行で略0°であった。
<Production Example A7: Production of λ/2+α Retardation Film Layer (H3)>
A retardation film layer was produced in the same manner as in Production Example A5 except that the thickness of the cured liquid crystal layer was adjusted to 1.5 μm.
When the in-plane retardation was measured by the above-mentioned method, the in-plane retardation of the retardation film layer was 350 nm at a wavelength of 550 nm. When the retardation was measured when tilted at an angle of 30° from both sides with the slow axis as the rotation axis, it was 260 nm. The direction of the slow axis of the retardation film layer relative to the support substrate film was parallel to the longitudinal direction of the support substrate film and was approximately 0°.
<製造例A8:コレステリック液晶Cプレート(C1)の製造>
製造例A1においてカイラル剤(BASF社製「LC756」)を27.3部と変更し、広帯域化処理を実施せずに900mJ/cm2の紫外線を液晶組成物の層に照射して、液晶組成物の層を硬化させた。これ以外は製造例A1と同様にして複層フィルムを作成した。この複層フィルムのコレステリック液晶層の反射率を、製造例A1と同様の測定方法で測定した。測定の結果、コレステリック液晶層は、160nm付近に中心波長を有し、目視では反射光を認識することが出来ない透明な層を形成していた。上述した方法で面内レターデーションを測定したところ、波長550nmにおいてコレステリック液晶層の面内レターデーションは略0nmであった。またコレステリック液晶層の長手方向を回転軸として両面から斜め45°に傾けた際のレターデーションを測定したところ、75nmであった。コレステリック液晶層の膜厚は1.9μmに調整した。
<Production Example A8: Production of Cholesteric Liquid Crystal C Plate (C1)>
In Manufacturing Example A1, the chiral agent ("LC756" manufactured by BASF) was changed to 27.3 parts, and the layer of the liquid crystal composition was irradiated with ultraviolet light of 900 mJ/ cm2 without performing the broadband treatment to harden the layer of the liquid crystal composition. A multilayer film was produced in the same manner as Manufacturing Example A1 except for this. The reflectance of the cholesteric liquid crystal layer of this multilayer film was measured by the same measurement method as Manufacturing Example A1. As a result of the measurement, the cholesteric liquid crystal layer had a central wavelength near 160 nm, and formed a transparent layer in which reflected light could not be recognized by the naked eye. When the in-plane retardation was measured by the above-mentioned method, the in-plane retardation of the cholesteric liquid crystal layer was approximately 0 nm at a wavelength of 550 nm. In addition, when the retardation was measured when tilted at 45° from both sides with the longitudinal direction of the cholesteric liquid crystal layer as the rotation axis, it was 75 nm. The film thickness of the cholesteric liquid crystal layer was adjusted to 1.9 μm.
<製造例A9:コレステリック液晶Cプレート(C2)の製造>
製造例A1においてカイラル剤(BASF社製「LC756」)27.5部と変更し、広帯域化処理を実施せずに900mJ/cm2の紫外線を液晶組成物の層に照射して、液晶組成物の層を硬化させた。これ以外は製造例A1と同様にして複層フィルムを作成した。この複層フィルムのコレステリック液晶層の反射率を、製造例A1と同様の測定方法で測定した。測定の結果、コレステリック液晶層は、160nm付近に中心波長を有し、目視では反射光を認識することが出来ない透明な層を形成していた。上述した方法で面内レターデーションを測定したところ、波長550nmにおいてコレステリック液晶層の面内レターデーションは略0nmであった。またコレステリック液晶層の長手方向を回転軸として両面から斜め45°に傾けた際のレターデーションを測定したところ、335nmであった。コレステリック液晶層の膜厚は8.8μmに調整した。
<Production Example A9: Production of Cholesteric Liquid Crystal C Plate (C2)>
In Manufacturing Example A1, the chiral agent ("LC756" manufactured by BASF) was changed to 27.5 parts, and the layer of the liquid crystal composition was irradiated with ultraviolet light of 900 mJ/ cm2 without performing the broadband treatment, and the layer of the liquid crystal composition was cured. A multilayer film was produced in the same manner as Manufacturing Example A1 except for this. The reflectance of the cholesteric liquid crystal layer of this multilayer film was measured by the same measurement method as Manufacturing Example A1. As a result of the measurement, the cholesteric liquid crystal layer had a central wavelength near 160 nm, and formed a transparent layer in which reflected light could not be recognized visually. When the in-plane retardation was measured by the above-mentioned method, the in-plane retardation of the cholesteric liquid crystal layer was approximately 0 nm at a wavelength of 550 nm. In addition, when the retardation was measured when tilted at 45° from both sides with the longitudinal direction of the cholesteric liquid crystal layer as the rotation axis, it was 335 nm. The film thickness of the cholesteric liquid crystal layer was adjusted to 8.8 μm.
<製造例A10:複層フィルム(WH1)の製造>
製造例A1のCLC_Wフィルムのコレステリック液晶層側に東亜合成社製のUV接着剤(アロニックス)をフィルムを搬送しながらバーコーターで厚みが0.5μmとなるように塗布した後に、製造例A5のH1フィルムの液晶硬化層側をロール・トゥ・ロールで貼合した。その後、H1フィルム側から800mJ/cm2の紫外線を照射して、紫外線(UV)硬化型接着剤の層を硬化させた後に、CLC_Wフィルム側の支持基材フィルムを剥離しながら巻き取り、複層フィルムWH1を製造した。
<Production Example A10: Production of multilayer film (WH1)>
A UV adhesive (Aronix) manufactured by Toa Gosei Co., Ltd. was applied to the cholesteric liquid crystal layer side of the CLC_W film of Production Example A1 with a bar coater while conveying the film to a thickness of 0.5 μm, and then the liquid crystal cured layer side of the H1 film of Production Example A5 was laminated by roll-to-roll. After that, 800 mJ/cm 2 of ultraviolet light was irradiated from the H1 film side to cure the layer of the ultraviolet (UV) curable adhesive, and the support base film on the CLC_W film side was peeled off and wound up to produce a multilayer film WH1.
<製造例A11:複層フィルム(WH2)の製造>
製造例A10で用いたH1フィルムを製造例A6のH2フィルムに置き換えた。それ以外は製造例A10と同様にして複層フィルムWH2を製造した。
<Production Example A11: Production of multilayer film (WH2)>
The H1 film used in Production Example A10 was replaced with the H2 film used in Production Example A6. Otherwise, a multilayer film WH2 was produced in the same manner as in Production Example A10.
<製造例A12:複層フィルム(WH3)の製造>
製造例A10で用いたH1フィルムを製造例A7のH3フィルムに置き換えた。それ以外は製造例A10と同様にして複層フィルムWH3を製造した。
<Production Example A12: Production of multilayer film (WH3)>
The H1 film used in Production Example A10 was replaced with the H3 film used in Production Example A7. Otherwise, a multilayer film WH3 was produced in the same manner as in Production Example A10.
<製造例A13:複層フィルム(WC1)の製造>
製造例A10で用いたH1フィルムを製造例A8のC1フィルムに置き換えた。それ以外は製造例A10と同様にして複層フィルムWC1を製造した。
<Production Example A13: Production of multilayer film (WC1)>
The H1 film used in Production Example A10 was replaced with the C1 film used in Production Example A8. Otherwise, a multilayer film WC1 was produced in the same manner as in Production Example A10.
<製造例A14:複層フィルム(WC2)の製造>
製造例A10で用いたH1フィルムを製造例A9のC2フィルムに置き換えた。それ以外は製造例9と同様にして複層フィルムWC2を製造した。
<Production Example A14: Production of multilayer film (WC2)>
A multilayer film WC2 was produced in the same manner as in Production Example 9, except that the H1 film used in Production Example A10 was replaced with the C2 film used in Production Example A9.
<製造例A15:複層フィルム(RH1)の製造>
製造例A10で用いたCLC_Wフィルムを製造例A2のCLC_Rフィルムに置き換えた。それ以外は製造例A10と同様にして複層フィルムRH1を製造した。
<Production Example A15: Production of multilayer film (RH1)>
The CLC_W film used in Production Example A10 was replaced with the CLC_R film used in Production Example A2. Otherwise, a multilayer film RH1 was produced in the same manner as in Production Example A10.
<製造例A16:複層フィルム(GH1)の製造>
製造例A10で用いたCLC_Wフィルムを製造例A3のCLC_Gフィルムに置き換えた。それ以外は製造例A10と同様にして複層フィルムGH1を製造した。
<Production Example A16: Production of multilayer film (GH1)>
The CLC_W film used in Production Example A10 was replaced with the CLC_G film used in Production Example A3. Otherwise, a multilayer film GH1 was produced in the same manner as in Production Example A10.
<製造例A17:複層フィルム(BH1)の製造>
製造例A10で用いたCLC_Wフィルムを製造例A4のCLC_Bフィルムに置き換えた。それ以外は製造例A10と同様にして複層フィルムBH1を製造した。
<Production Example A17: Production of multilayer film (BH1)>
The CLC_W film used in Production Example A10 was replaced with the CLC_B film used in Production Example A4. Otherwise, a multilayer film BH1 was produced in the same manner as in Production Example A10.
<製造例A18:複層フィルム(WH1D)の製造>
製造例A1のCLC_Wフィルムのコレステリック液晶層側に製造例A5で用いた液晶組成物溶液をフィルムを搬送しながらダイコーターで厚みが1.1μmとなるように塗布した。その後に、900mJ/cm2の紫外線を液晶組成物の層に照射して、液晶組成物の層を硬化させた。これにより複層フィルムWH1Dを製造した。
<Production Example A18: Production of multilayer film (WH1D)>
The liquid crystal composition solution used in Production Example A5 was applied to the cholesteric liquid crystal layer side of the CLC_W film of Production Example A1 with a die coater while conveying the film to a thickness of 1.1 μm. After that, the liquid crystal composition layer was irradiated with ultraviolet light of 900 mJ/ cm2 to harden the liquid crystal composition layer. Thus, a multilayer film WH1D was produced.
<製造例A19:複層フィルム(H1WH1)の製造>
製造例A10で製造したWH1フィルムで露出しているCLC_Wフィルム側に製造例A5のH1フィルムを製造例A10と同様の方法で貼り合わせ、一方のH1フィルム側の支持基材を剥離しながら巻き取ることで複層フィルムH1WH1を製造した。
<Production Example A19: Production of multilayer film (H1WH1)>
The H1 film of Production Example A5 was bonded to the exposed CLC_W film side of the WH1 film produced in Production Example A10 in the same manner as in Production Example A10, and the supporting substrate on one of the H1 film sides was peeled off while rolling up to produce a multilayer film H1WH1.
<製造例A20:複層フィルム(H2WH2)の製造>
製造例A19で用いた製造例A5で製造したH1フィルムを製造例A6で製造したH2フィルムに置き換えた。それ以外は製造例A19と同様にして複層フィルムH2WH2を製造した。
<Production Example A20: Production of multilayer film (H2WH2)>
The H1 film produced in Production Example A5 used in Production Example A19 was replaced with the H2 film produced in Production Example A6. Otherwise, a multilayer film H2WH2 was produced in the same manner as in Production Example A19.
<製造例A21:複層フィルム(H3WH3)の製造>
製造例A19で用いた製造例A5で製造したH1フィルムを製造例A7で製造したH3フィルムに置き換えた。それ以外は製造例A19と同様にして複層フィルムH3WH3を製造した。
<Production Example A21: Production of multilayer film (H3WH3)>
The H1 film produced in Production Example A5 used in Production Example A19 was replaced with the H3 film produced in Production Example A7. Otherwise, a multilayer film H3WH3 was produced in the same manner as in Production Example A19.
<製造例A22:複層フィルム(C1WC1)の製造>
製造例A19で用いたWH1フィルムを製造例A13で製造したWC1フィルムに置き換え、H1フィルムを製造例A8で製造したC1フィルムに置き換えた。それ以外は製造例A19と同様にして複層フィルムC1WC1を製造した。
<Production Example A22: Production of multilayer film (C1WC1)>
The WH1 film used in Production Example A19 was replaced with the WC1 film produced in Production Example A13, and the H1 film was replaced with the C1 film produced in Production Example A8. Otherwise, a multilayer film C1WC1 was produced in the same manner as in Production Example A19.
<製造例A23:複層フィルム(C2WC2)の製造>
製造例A19で用いたWH1フィルムを製造例A14で製造したWC2フィルムに置き換え、H1フィルムを製造例A9で製造したC2フィルムに置き換えた。それ以外は製造例A19と同様にして複層フィルムC2WC2を製造した。
<Production Example A23: Production of multilayer film (C2WC2)>
The WH1 film used in Production Example A19 was replaced with the WC2 film produced in Production Example A14, and the H1 film was replaced with the C2 film produced in Production Example A9. Otherwise, a multilayer film C2WC2 was produced in the same manner as in Production Example A19.
<製造例A24:複層フィルム(H1RH1)の製造>
製造例A19で用いたWH1フィルムを製造例A15で製造したRH1フィルムに置き換えた。それ以外は製造例A19と同様にして複層フィルムH1RH1を製造した。
<Production Example A24: Production of multilayer film (H1RH1)>
The WH1 film used in Production Example A19 was replaced with the RH1 film produced in Production Example A15. Otherwise, a multilayer film H1RH1 was produced in the same manner as in Production Example A19.
<製造例A25:複層フィルム(H1GH1)の製造]
製造例A19で用いたWH1フィルムを製造例A16で製造したGH1フィルムに置き換えた。それ以外は製造例A19と同様にして複層フィルムH1GH1を製造した。
<Production Example A25: Production of multilayer film (H1GH1)
The WH1 film used in Production Example A19 was replaced with the GH1 film produced in Production Example A16. Otherwise, a multilayer film H1GH1 was produced in the same manner as in Production Example A19.
<製造例A26:複層フィルム(H1BH1)の製造]
製造例A19で用いたWH1フィルムを製造例A17で製造したBH1フィルムに置き換えた。それ以外は製造例A19と同様にして複層フィルムH1BH1を製造した。
<Production Example A26: Production of multilayer film (H1BH1)
The WH1 film used in Production Example A19 was replaced with the BH1 film produced in Production Example A17. Otherwise, a multilayer film H1BH1 was produced in the same manner as in Production Example A19.
<製造例A27:複層フィルム(H1WH1D)の製造>
製造例A19で用いたWH1フィルムを製造例A18で製造したWH1Dフィルムに置き換えた。それ以外は製造例A19と同様にして複層フィルムH1WH1Dを製造した。
<Production Example A27: Production of multilayer film (H1WH1D)>
The WH1 film used in Production Example A19 was replaced with the WH1D film produced in Production Example A18. Otherwise, a multilayer film H1WH1D was produced in the same manner as in Production Example A19.
<製造例B1:コレステリック液晶フレーク(F_CLC_W)の製造>
製造例A1で製造したCLC_Wフィルムを支持基材から高圧エアーを噴射して剥離後に、ジェットミルで粉砕することで、平均粒子径(D50)が約50μmのコレステリック液晶フレークF_CLC_Wを製造した。
<Production Example B1: Production of cholesteric liquid crystal flakes (F_CLC_W)>
The CLC_W film produced in Production Example A1 was peeled off from the supporting substrate by jetting high-pressure air, and then pulverized in a jet mill to produce cholesteric liquid crystal flakes F_CLC_W having an average particle size (D50) of about 50 μm.
<製造例B2:コレステリック液晶フレーク(F_CLC_R)の製造>
製造例A2で製造したCLC_Rフィルムを用いた以外は製造例B1と同様にして、平均粒子径(D50)が約50μmのコレステリック液晶フレークF_CLC_Rを製造した。
<Production Example B2: Production of cholesteric liquid crystal flakes (F_CLC_R)>
Cholesteric liquid crystal flakes F_CLC_R having an average particle size (D50) of about 50 μm were produced in the same manner as in Production Example B1, except that the CLC_R film produced in Production Example A2 was used.
<製造例B3:コレステリック液晶フレーク(F_CLC_G)の製造>
製造例A3で製造したCLC_Gフィルムを用いた以外は製造例B1と同様にして、平均粒子径(D50)が約50μmのコレステリック液晶フレークF_CLC_Gを製造した。
<Production Example B3: Production of cholesteric liquid crystal flakes (F_CLC_G)>
Cholesteric liquid crystal flakes F_CLC_G having an average particle size (D50) of about 50 μm were produced in the same manner as in Production Example B1, except that the CLC_G film produced in Production Example A3 was used.
<製造例B4:コレステリック液晶フレーク(F_CLC_B)の製造>
製造例A4で製造したCLC_Bフィルムを用いた以外は製造例B1と同様にして、平均粒子径(D50)が約50μmのコレステリック液晶フレークF_CLC_Bを製造した。
<Production Example B4: Production of cholesteric liquid crystal flakes (F_CLC_B)>
Cholesteric liquid crystal flakes F_CLC_B having an average particle size (D50) of about 50 μm were produced in the same manner as in Production Example B1, except that the CLC_B film produced in Production Example A4 was used.
<製造例B5:コレステリック液晶フレーク(F_WH1)の製造>
製造例A10で製造したWH1フィルムを用いた以外は製造例B1と同様にして、平均粒子径(D50)が約50μmのコレステリック液晶フレークF_WH1を製造した。
<Production Example B5: Production of cholesteric liquid crystal flakes (F_WH1)>
Cholesteric liquid crystal flakes F_WH1 having an average particle size (D50) of about 50 μm were produced in the same manner as in Production Example B1, except that the WH1 film produced in Production Example A10 was used.
<製造例B6:コレステリック液晶フレーク(F_WH3)の製造>
製造例A12で製造したWH3フィルムを用いた以外は製造例B1と同様にして、平均粒子径(D50)が約50μmのコレステリック液晶フレークF_WH3を製造した。
<Production Example B6: Production of cholesteric liquid crystal flakes (F_WH3)>
Cholesteric liquid crystal flakes F_WH3 having an average particle size (D50) of about 50 μm were produced in the same manner as in Production Example B1, except that the WH3 film produced in Production Example A12 was used.
<製造例B7:コレステリック液晶フレーク(F_H1WH1)の製造>
製造例A19で製造したH1WH1フィルムを用いた以外は製造例B1と同様にして、平均粒子径(D50)が約50μmのコレステリック液晶フレークF_H1WH1を製造した。
<Production Example B7: Production of cholesteric liquid crystal flakes (F_H1WH1)>
Cholesteric liquid crystal flakes F_H1WH1 having an average particle size (D50) of about 50 μm were produced in the same manner as in Production Example B1, except that the H1WH1 film produced in Production Example A19 was used.
<製造例B8:コレステリック液晶フレーク(F_H2WH2)の製造>
製造例A20で製造したH2WH2フィルムを用いた以外は製造例B1と同様にして、平均粒子径(D50)が約50μmのコレステリック液晶フレークF_H2WH2を製造した。
<Production Example B8: Production of cholesteric liquid crystal flakes (F_H2WH2)>
Cholesteric liquid crystal flakes F_H2WH2 having an average particle size (D50) of about 50 μm were produced in the same manner as in Production Example B1, except that the H2WH2 film produced in Production Example A20 was used.
<製造例B9:コレステリック液晶フレーク(F_H3WH3)の製造>
製造例A21で製造したH3WH3フィルムを用いた以外は製造例B1と同様にして、平均粒子径(D50)が約50μmのコレステリック液晶フレークF_H3WH3を製造した。
<Production Example B9: Production of cholesteric liquid crystal flakes (F_H3WH3)>
Cholesteric liquid crystal flakes F_H3WH3 having an average particle size (D50) of about 50 μm were produced in the same manner as in Production Example B1, except that the H3WH3 film produced in Production Example A21 was used.
<製造例B10:コレステリック液晶フレーク(F_C1WC1)の製造>
製造例A22で製造したC1WC1フィルムを用いた以外は製造例B1と同様にして、平均粒子径(D50)が約100μmのコレステリック液晶フレークF_C1WC1を製造した。
<Production Example B10: Production of cholesteric liquid crystal flakes (F_C1WC1)>
Cholesteric liquid crystal flakes F_C1WC1 having an average particle size (D50) of about 100 μm were produced in the same manner as in Production Example B1, except that the C1WC1 film produced in Production Example A22 was used.
<製造例B11:コレステリック液晶フレーク(F_C2WC2)の製造>
製造例A23で製造したC2WC2フィルムを用いた以外は製造例B1と同様にして、平均粒子径(D50)が約100μmのコレステリック液晶フレークF_C2WC2を製造した。
<Production Example B11: Production of cholesteric liquid crystal flakes (F_C2WC2)>
Cholesteric liquid crystal flakes F_C2WC2 having an average particle size (D50) of about 100 μm were produced in the same manner as in Production Example B1, except that the C2WC2 film produced in Production Example A23 was used.
<製造例B12:コレステリック液晶フレーク(F_H1RH1)の製造>
製造例A24で製造したH1RH1フィルムを用いた以外は製造例B1と同様にして、平均粒子径(D50)が約50μmのコレステリック液晶フレークF_H1RH1を製造した。
<Production Example B12: Production of cholesteric liquid crystal flakes (F_H1RH1)>
Cholesteric liquid crystal flakes F_H1RH1 having an average particle size (D50) of about 50 μm were produced in the same manner as in Production Example B1, except that the H1RH1 film produced in Production Example A24 was used.
<製造例B13:コレステリック液晶フレーク(F_H1GH1)の製造>
製造例A25で製造したH1GH1フィルムを用いた以外は製造例B1と同様にして、平均粒子径(D50)が約50μmのコレステリック液晶フレークF_H1GH1を製造した。
<Production Example B13: Production of cholesteric liquid crystal flakes (F_H1GH1)>
Cholesteric liquid crystal flakes F_H1GH1 having an average particle size (D50) of about 50 μm were produced in the same manner as in Production Example B1, except that the H1GH1 film produced in Production Example A25 was used.
<製造例B14:コレステリック液晶フレーク(F_H1BH1)の製造>
製造例A26で製造したH1BH1フィルムを用いた以外は製造例B1と同様にして、平均粒子径(D50)が約50μmのコレステリック液晶フレークF_H1BH1を製造した。
<Production Example B14: Production of cholesteric liquid crystal flakes (F_H1BH1)>
Cholesteric liquid crystal flakes F_H1BH1 having an average particle size (D50) of about 50 μm were produced in the same manner as in Production Example B1, except that the H1BH1 film produced in Production Example A26 was used.
<製造例B15:定型コレステリック液晶フレーク(FT_H1WH1)の製造>
製造例A19で製造したH1WH1フィルムを搬送しながら、50μm間隔のラインカッターを備えたカッターロール1とゴムロールとの間で挟み込み、複層フィルムの表面に切り込みを入れた。カッターロール1は、ラインカッターがロールの回転軸に対して45°方向となるように加工されていた。その後にフィルムを一度巻き取り、再びフィルムを搬送しながら、カッターロール1の代わりにカッターロール2を用いて複層フィルムの表面に切り込みを入れた。カッターロール2は、ラインカッターが上述したカッターロールとは逆の45°方向となるように加工されていた。その後に、高圧エアーで積層フィルムフレークを剥離することでフレーク形状が矩形であり、平均粒子径(D50)が50μmであって一定である、コレステリック液晶フレークFT_H1WH1を製造した。
<Production Example B15: Production of Fixed-Type Cholesteric Liquid Crystal Flakes (FT_H1WH1)>
While conveying the H1WH1 film produced in Production Example A19, it was sandwiched between a cutter roll 1 equipped with line cutters spaced 50 μm apart and a rubber roll, and a cut was made on the surface of the multilayer film. The cutter roll 1 was processed so that the line cutter was oriented at 45° to the rotation axis of the roll. After that, the film was wound up once, and while conveying the film again, a cut was made on the surface of the multilayer film using a cutter roll 2 instead of the cutter roll 1. The cutter roll 2 was processed so that the line cutter was oriented at 45°, which is the opposite direction to the cutter roll described above. Then, the laminated film flakes were peeled off with high-pressure air to produce cholesteric liquid crystal flakes FT_H1WH1 having a rectangular flake shape and a constant average particle diameter (D50) of 50 μm.
<製造例B16:複層フィルム(H1WH1D)の製造>
製造例A19で用いたWH1フィルムを製造例A18で製造したWH1Dフィルムに置き換えた。それ以外は製造例A19と同様にして複層フィルムH1WH1Dを製造した。
<Production Example B16: Production of multilayer film (H1WH1D)>
The WH1 film used in Production Example A19 was replaced with the WH1D film produced in Production Example A18. Otherwise, a multilayer film H1WH1D was produced in the same manner as in Production Example A19.
<製造例B17:コレステリック液晶フレーク(F_H1WH1D)の製造>
製造例B16で製造したH1WH1Dフィルムを用いた以外は製造例B1と同様にして、平均粒子径(D50)が約50μmのコレステリック液晶フレークF_H1WH1Dを製造した。
<Production Example B17: Production of cholesteric liquid crystal flakes (F_H1WH1D)>
Cholesteric liquid crystal flakes F_H1WH1D having an average particle size (D50) of about 50 μm were produced in the same manner as in Production Example B1, except that the H1WH1D film produced in Production Example B16 was used.
表1及び表2に、フレークを構成する各層の特性を一覧にまとめた。 Tables 1 and 2 list the properties of each layer that makes up the flakes.
表3に、得られたコレステリック液晶フレークを一覧にまとめた。
表3のフレーク層構成の項目における略号は、下記の意味を表す。
「W」:製造例A1で得られた広帯域反射コレステリック液晶層(CLC_W)
「R」:製造例A2で得られた赤反射コレステリック液晶層(CLC_R)
「G」:製造例A3で得られた緑反射コレステリック液晶層(CLC_G)
「B」:製造例A4で得られた青反射コレステリック液晶層(CLC_B)
「A」:接着層(東亜合成社製UV接着剤(アロニックス)の硬化層)
「H1」:製造例A5で得られたλ/2位相差フィルム層(H1)
「H2」:製造例A6で得られたλ/2位相差フィルム層(H2)
「H3」:製造例A7で得られたλ/2+α位相差フィルム層(H3)
「C1」:製造例A8で得られたコレステリック液晶Cプレート(C1)
「C2]:製造例A9で得られたコレステリック液晶Cプレート(C2)
「厚み」:積層体の厚みd(C)
「D50/厚み」:フレークのD50/積層体の厚みd(C)
「厚み比」:位相差層(B)の総厚みdtot(B)の液晶硬化層(A)の厚みd(A)に対する厚み比(dtot(B)/d(A))
Table 3 lists the obtained cholesteric liquid crystal flakes.
The abbreviations in the flake layer configuration section of Table 3 have the following meanings.
"W": broadband reflective cholesteric liquid crystal layer (CLC_W) obtained in Production Example A1
"R": Red-reflecting cholesteric liquid crystal layer (CLC_R) obtained in Production Example A2
"G": Green-reflecting cholesteric liquid crystal layer (CLC_G) obtained in Production Example A3
"B": Blue-reflecting cholesteric liquid crystal layer (CLC_B) obtained in Production Example A4
"A": Adhesive layer (cured layer of UV adhesive (Aronix) manufactured by Toa Gosei Co., Ltd.)
"H1": λ/2 retardation film layer (H1) obtained in Production Example A5
"H2": λ/2 retardation film layer (H2) obtained in Production Example A6
"H3": λ/2 + α retardation film layer (H3) obtained in Production Example A7
"C1": Cholesteric liquid crystal C plate (C1) obtained in Production Example A8
"C2]: Cholesteric liquid crystal C plate (C2) obtained in Production Example A9
"Thickness": Thickness d (C) of the laminate
"D50/thickness": D50 of flake/thickness of laminate d(C)
"Thickness ratio": the thickness ratio of the total thickness d tot (B) of the retardation layer (B) to the thickness d(A) of the liquid crystal cured layer (A) (d tot (B)/d(A))
<インキ比較調製例201~204、インキ調製例205~216>
上述した製造例で作製したコレステリック液晶硬化層フレーク(表3におけるフレークNo.101~116)のいずれかを5部、スクリーンインキ(十条ケミカル社製「No.2500メジウム」)85部、及び、当該スクリーンインキの専用希釈剤(テトロン標準溶剤)5部を混合して、インキNo.C201~C204、205~216を調製した。調製したインキの一覧を表4にまとめた。
<Comparative Ink Preparation Examples 201 to 204, Ink Preparation Examples 205 to 216>
Ink Nos. C201 to C204 and 205 to 216 were prepared by mixing 5 parts of any of the cholesteric liquid crystal cured layer flakes (flake Nos. 101 to 116 in Table 3) prepared in the above-mentioned manufacturing examples, 85 parts of screen ink ("No. 2500 Medium" manufactured by Jujo Chemical Co., Ltd.), and 5 parts of a dedicated diluent for the screen ink (Tetoron standard solvent). The list of the prepared inks is summarized in Table 4.
<実施例1~11、比較例1~4>
(スクリーン印刷サンプルの作製)
表4に列挙した各種インキの組み合わせを変化させて、スクリーン印刷サンプルを作製した。スクリーン印刷サンプルとして図4に示すような文字「T」を表す、第一インキ層10(文字部)と、第二インキ層20(背景部)とによって構成されるいわゆる毛抜き印刷(シームレス印刷)パターンを採用した。文字部と背景部とのそれぞれに用いたインキの組み合わせを表5に示した。
<Examples 1 to 11 and Comparative Examples 1 to 4>
(Preparation of Screen Printing Samples)
Screen printing samples were prepared by varying the combinations of the various inks listed in Table 4. As the screen printing sample, a so-called tweezers printing (seamless printing) pattern was adopted, which represents the letter "T" as shown in Fig. 4 and is composed of a first ink layer 10 (letter portion) and a second ink layer 20 (background portion). The ink combinations used for the letter portion and the background portion are shown in Table 5.
(スクリーン印刷サンプルの評価)
得られた各々のスクリーン印刷サンプルの評価を以下によって実施した。
(Evaluation of Screen Printed Samples)
The resulting screen print samples were each evaluated as follows.
(1)目視評価:通常の蛍光灯環境下において、裸眼目視で正面方向から印刷サンプルを観察した際に、文字「T」が明瞭に識別できるか否かを評価した。
A:均一な一面と認識され文字が明瞭に識別されない。
B:均一な一面とは認識できず、文字がやや識別される。
(1) Visual evaluation: When the print sample was observed from the front with the naked eye under normal fluorescent lighting conditions, it was evaluated whether the letter "T" was clearly identifiable.
A: It is recognized as a uniform surface and the letters are not clearly distinguishable.
B: It cannot be recognized as a uniform surface, and the letters are somewhat discernible.
(2)円偏光ビュアー観察:円偏光ビュアー越しに印刷サンプルを正面方向から観察した際に、文字「T」が明瞭に識別できるか否かを評価した。円偏光ビュワーとしては、製造例A1のCLC_Wフィルムのコレステリック液晶硬化層部分をガラスの上に粘着剤で転写したものを用いた。
A:文字が明瞭に認識される。
B:文字がやや不明瞭であるが認識される。
C:均一な一面と認識され文字が明瞭に識別されない。
(2) Observation with a circularly polarized viewer: When the print sample was observed from the front through a circularly polarized viewer, it was evaluated whether the letter "T" was clearly identifiable. The circularly polarized viewer used was a cholesteric liquid crystal cured layer portion of the CLC_W film of Production Example A1 transferred onto a glass plate with an adhesive.
A: Characters are clearly recognizable.
B: The characters are slightly unclear but can be recognized.
C: It is recognized as a uniform surface and the letters are not clearly distinguishable.
(3)偏光サングラス観察:観察者が直線偏光板を備える偏光サングラスをかけて印刷サンプルを正面方向から斜め方向(極角60°付近)まで連続的に角度を変えて観察した際に、文字「T」が明瞭に識別できる角度があるか否かを評価した。
A:斜め観察で特定の角度で文字が明瞭に認識できる。
B:斜め観察で文字が認識できる角度がある。
B2:極角45°の観察位置において、偏光サングラスを印刷サンプルに対する観察方向を回転軸として左回り又は右回りに回転させると文字が認識できる。
C:斜め観察でいかなる角度でも文字が認識できない。
(3) Observation with polarized sunglasses: An observer wore polarized sunglasses equipped with a linear polarizing plate and observed the printed sample at continuously changing angles from the front to an oblique angle (polar angle of approximately 60°). An evaluation was made as to whether there was an angle at which the letter "T" could be clearly identified.
A: When observed obliquely, the characters can be clearly recognized at a specific angle.
B: There is an angle at which the characters can be recognized when observed obliquely.
B2: At an observation position with a polar angle of 45°, the characters can be recognized by rotating the polarized sunglasses counterclockwise or clockwise around the observation direction of the print sample as the rotation axis.
C: The characters cannot be recognized at any angle when observed obliquely.
(4)ルーペ拡大観察:ルーペで印刷部を拡大観察した際に、フレーク形状がどう認識されるかを評価した。
A:形の揃ったフレークが認識できる。
B:ランダム形状のフレークしか認識できない。
(4) Magnified observation with a loupe: When the printed portion was magnified and observed with a loupe, how the flake shape was recognized was evaluated.
A: Flakes of uniform shape can be recognized.
B: Only randomly shaped flakes are recognizable.
(観察結果)
スクリーン印刷サンプルに対する評価結果を表5に示した。
(Observation results)
The evaluation results for the screen print samples are shown in Table 5.
表5の実施例1~11の評価結果から明らかなように、液晶硬化層(A)と位相差層(B)とを含むフレークを含むインキにより印刷された文字部と、液晶硬化層(A)のフレークを含むインキにより印刷された背景部とは、裸眼では識別できない一方、円偏光ビュアー越しに正面方向から観察する場合又は偏光サングラス越しに特定の斜め方向から観察する場合には、文字部と背景部とを識別でき、文字を認識できる。
また、表5の実施例12~13の評価結果から明らかなように、文字部に用いられたインキに含まれるフレークと背景部に用いられたインキに含まれるフレークとがそれぞれ、液晶硬化層(A)と位相差層(B)とを含み、含まれる位相差層(B)が互いに異なる位相差を有する場合も、裸眼では文字部と背景部とを識別できない一方、偏光サングラス越しに特定の斜め方向から観察する場合には、文字部と背景部とを識別でき、文字を認識できる。
さらに、実施例13の評価結果から明らかなように、文字部及び背景部に、位相差層(B)としてCプレートを含むフレークを含有するインキが用いられている場合、正面方向から円偏光ビュワーを用いた観察でも、文字部と背景部とを識別できないが、偏光サングラス越しに特定の斜め方向から観察する場合には、文字部と背景部とを識別でき、文字を認識できる。
これらの特殊な効果は、観察者に意外性を与えうる。
As is clear from the evaluation results of Examples 1 to 11 in Table 5, the character portion printed with the ink containing the flakes including the cured liquid crystal layer (A) and the retardation layer (B) and the background portion printed with the ink containing the flakes of the cured liquid crystal layer (A) cannot be distinguished with the naked eye. However, when observed from the front direction through a circularly polarized viewer or from a specific oblique direction through polarized sunglasses, the character portion and the background portion can be distinguished, and the characters can be recognized.
Furthermore, as is clear from the evaluation results of Examples 12 to 13 in Table 5, even when the flakes contained in the ink used in the character portion and the flakes contained in the ink used in the background portion each contain a liquid crystal cured layer (A) and a retardation layer (B), and the retardation layers (B) contained therein have different retardations from each other, the character portion and the background portion cannot be distinguished with the naked eye. However, when observed from a specific oblique direction through polarized sunglasses, the character portion and the background portion can be distinguished, and the characters can be recognized.
Furthermore, as is clear from the evaluation results of Example 13, when an ink containing flakes including a C plate as a retardation layer (B) is used for the character part and the background part, the character part and the background part cannot be distinguished even when observed from the front using a circularly polarized viewer. However, when observed from a specific oblique direction through polarized sunglasses, the character part and the background part can be distinguished, and the characters can be recognized.
These special effects can provide a sense of surprise to the viewer.
また、液晶硬化層(A)と位相差層(B)とを含むフレークにより、このような特殊な光学効果をスクリーン印刷で実現しうることがわかる。 It also shows that such special optical effects can be achieved by screen printing using flakes that contain a liquid crystal cured layer (A) and a retardation layer (B).
実施例7の評価結果から明らかなように、液晶硬化層(A)と位相差層(B)とを含み、形状が定型であるフレークにより、ルーペで拡大観察すると、定型形状のフレークを認識しうるという効果を奏する印刷物を実現しうる。
形状が定型であるフレークは、目視では形状を視認できず、そのため観察者に気づかれることなく印刷物に含ませることができる。したがって、当該フレークを、優れたセキュリティー用材料として利用しうる。
As is clear from the evaluation results of Example 7, a printed matter can be realized in which flakes having a regular shape can be recognized when observed under magnification with a magnifying glass, by including a liquid crystal cured layer (A) and a retardation layer (B) and using flakes having a regular shape.
The flakes have a fixed shape and cannot be visually recognized, so they can be included in printed matter without being noticed by observers, and therefore can be used as an excellent security material.
1 印刷物
10 第一インキ層
12 境界
20 第二インキ層
30 印刷下地層
30U 面
100 フレーク
200 フレーク
111 第一位相差層(位相差層(B))
120 液晶硬化層(液晶硬化層(A))
112 第二位相差層(位相差層(B))
REFERENCE SIGNS LIST 1 Printed
120 Liquid crystal hardened layer (liquid crystal hardened layer (A))
112 Second retardation layer (retardation layer (B))
Claims (19)
前記表示面の一部を占める領域R1に設けられる第一インキ層と、
前記表示面の一部を占める領域であって、前記領域R1以外の領域の一部又は全部を占める領域R2に設けられる第二インキ層とを備え、
前記第一インキ層は、請求項1~16のいずれか一項に記載のフレークであって、前記位相差層(B)が、所定の極角φからの波長550nmである入射光に位相差ReB1(φ)を与える位相差層(B1)である、第一フレークを含有し、
前記第二インキ層は、前記液晶硬化層(A)のフレークであるか、または、前記液晶硬化層(A)と、所定の極角φからの波長550nmである入射光に位相差ReB2(φ)を与える位相差層(B2)とを含む積層体(C2)のフレークである、第二フレークを含有し、
|ReB2(φ)-ReB1(φ)|>0nmである、識別媒体。 An identification medium having a display surface,
A first ink layer provided in a region R1 occupying a part of the display surface;
a second ink layer provided in a region R2 occupying a part of the display surface and occupying a part or all of the region other than the region R1 ;
The first ink layer contains a first flake according to any one of claims 1 to 16, wherein the retardation layer (B) is a retardation layer (B1) that gives a retardation ReB1(φ) to incident light having a wavelength of 550 nm from a predetermined polar angle φ;
The second ink layer contains second flakes, which are flakes of the cured liquid crystal layer (A) or flakes of a laminate (C2) including the cured liquid crystal layer (A) and a retardation layer (B2) that imparts a retardation ReB2(φ) to incident light having a wavelength of 550 nm from a predetermined polar angle φ;
An identification medium, wherein |ReB2(φ)-ReB1(φ)|>0 nm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023029111 | 2023-02-28 | ||
JP2023-029111 | 2023-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024181192A1 true WO2024181192A1 (en) | 2024-09-06 |
Family
ID=92589734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/005671 WO2024181192A1 (en) | 2023-02-28 | 2024-02-19 | Flake, printed matter, article provided with printed matter, and identification medium |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024181192A1 (en) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003509725A (en) * | 1999-09-16 | 2003-03-11 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング | Optical Compensator and Liquid Crystal Display I |
JP2003337337A (en) * | 2002-03-14 | 2003-11-28 | Nitto Denko Corp | Optical element, surface light source device using the same and liquid crystal display device |
WO2003107048A1 (en) * | 2002-06-17 | 2003-12-24 | 日本ゼオン株式会社 | Optical laminate, polarization light source device and liquid crystal display unit |
JP2007144896A (en) * | 2005-11-29 | 2007-06-14 | Dainippon Printing Co Ltd | Recording medium |
JP2009258217A (en) * | 2008-04-14 | 2009-11-05 | Konica Minolta Opto Inc | Brightness enhancing film, polarizing plate, and liquid crystal display device |
JP2014076583A (en) * | 2012-10-10 | 2014-05-01 | Toppan Printing Co Ltd | Forgery prevention medium, and forgery prevention sticker and forgery prevention article using the same |
JP6142714B2 (en) * | 2013-07-30 | 2017-06-07 | 日本ゼオン株式会社 | Method for producing peeled piece of resin thin film, method for producing resin thin film pigment, paint, anti-counterfeit article, security article and decorative article |
JP2017190017A (en) * | 2016-04-12 | 2017-10-19 | 林テレンプ株式会社 | Interior parts for vehicles |
JP2017227879A (en) * | 2016-06-21 | 2017-12-28 | 富士フイルム株式会社 | Half mirror and mirror having image display function |
JP2018200459A (en) * | 2017-05-29 | 2018-12-20 | 富士フイルム株式会社 | Member for real image display and display system |
WO2019230782A1 (en) * | 2018-05-31 | 2019-12-05 | 日本ゼオン株式会社 | Identification medium, and method for determining authenticity of identification medium |
WO2020004155A1 (en) * | 2018-06-29 | 2020-01-02 | 日本ゼオン株式会社 | Identification medium, authenticity determination method, and article |
WO2020075711A1 (en) * | 2018-10-12 | 2020-04-16 | 富士フイルム株式会社 | Optical laminate, light-guiding element, and ar display device |
WO2020075740A1 (en) * | 2018-10-12 | 2020-04-16 | 富士フイルム株式会社 | Optical laminate, light-guiding element, and ar display device |
-
2024
- 2024-02-19 WO PCT/JP2024/005671 patent/WO2024181192A1/en active Application Filing
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003509725A (en) * | 1999-09-16 | 2003-03-11 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング | Optical Compensator and Liquid Crystal Display I |
JP2003337337A (en) * | 2002-03-14 | 2003-11-28 | Nitto Denko Corp | Optical element, surface light source device using the same and liquid crystal display device |
WO2003107048A1 (en) * | 2002-06-17 | 2003-12-24 | 日本ゼオン株式会社 | Optical laminate, polarization light source device and liquid crystal display unit |
JP2007144896A (en) * | 2005-11-29 | 2007-06-14 | Dainippon Printing Co Ltd | Recording medium |
JP2009258217A (en) * | 2008-04-14 | 2009-11-05 | Konica Minolta Opto Inc | Brightness enhancing film, polarizing plate, and liquid crystal display device |
JP2014076583A (en) * | 2012-10-10 | 2014-05-01 | Toppan Printing Co Ltd | Forgery prevention medium, and forgery prevention sticker and forgery prevention article using the same |
JP6142714B2 (en) * | 2013-07-30 | 2017-06-07 | 日本ゼオン株式会社 | Method for producing peeled piece of resin thin film, method for producing resin thin film pigment, paint, anti-counterfeit article, security article and decorative article |
JP2017190017A (en) * | 2016-04-12 | 2017-10-19 | 林テレンプ株式会社 | Interior parts for vehicles |
JP2017227879A (en) * | 2016-06-21 | 2017-12-28 | 富士フイルム株式会社 | Half mirror and mirror having image display function |
JP2018200459A (en) * | 2017-05-29 | 2018-12-20 | 富士フイルム株式会社 | Member for real image display and display system |
WO2019230782A1 (en) * | 2018-05-31 | 2019-12-05 | 日本ゼオン株式会社 | Identification medium, and method for determining authenticity of identification medium |
WO2020004155A1 (en) * | 2018-06-29 | 2020-01-02 | 日本ゼオン株式会社 | Identification medium, authenticity determination method, and article |
WO2020075711A1 (en) * | 2018-10-12 | 2020-04-16 | 富士フイルム株式会社 | Optical laminate, light-guiding element, and ar display device |
WO2020075740A1 (en) * | 2018-10-12 | 2020-04-16 | 富士フイルム株式会社 | Optical laminate, light-guiding element, and ar display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI840375B (en) | Identification media, authenticity determination methods, and objects to be identified | |
CN107848274B (en) | Cholesteric resin laminate, method for producing same, and use thereof | |
WO2020121791A1 (en) | Authenticity determining viewer and manufacturing method for same, method for determining authenticity of authentication medium, and authenticity determining set | |
JP7556351B2 (en) | Display media, authenticity determination method, and articles including display media | |
WO2021065484A1 (en) | Display medium, display product, and display set | |
CN115066638B (en) | Display medium, method for manufacturing the same, and display article | |
JP7380554B2 (en) | Identification media and methods for identifying authenticity of identification media | |
WO2023282063A1 (en) | Optical display medium | |
JP7658272B2 (en) | Composite pigment, identification medium and authenticity determination method | |
JP7669926B2 (en) | Composite pigment, identification medium and authenticity determination method | |
WO2024181192A1 (en) | Flake, printed matter, article provided with printed matter, and identification medium | |
JP7639684B2 (en) | Display Set | |
WO2021079815A1 (en) | Liquid crystal cured layer transfer seal, liquid crystal cured layer transfer matter, and method for assessing authenticity of liquid crystal cured layer transfer seal | |
JP4286377B2 (en) | Method for producing cholesteric liquid crystal film | |
EP4502675A1 (en) | Identification medium and article | |
WO2024181214A1 (en) | Optical display medium and method of using same | |
WO2024203549A1 (en) | Laminated sheet for transfer and method for manufacturing same | |
JP7459745B2 (en) | Optical display media and articles | |
EP4290282A1 (en) | Optical layered product, method for determining authenticity thereof, and article | |
WO2021220708A1 (en) | Display medium and display article | |
EP4502680A1 (en) | Identification medium and article | |
US12164191B2 (en) | Optical laminate, method for determining authenticity thereof, and article | |
JP4286378B2 (en) | Method for producing polarization diffraction film | |
JP4286384B2 (en) | Method for manufacturing polarization diffraction element | |
WO2023190481A1 (en) | Identification medium and product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24763674 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2025503785 Country of ref document: JP |