WO2024181116A1 - Plant life prolongation method and plant life prolongation apparatus - Google Patents
Plant life prolongation method and plant life prolongation apparatus Download PDFInfo
- Publication number
- WO2024181116A1 WO2024181116A1 PCT/JP2024/004884 JP2024004884W WO2024181116A1 WO 2024181116 A1 WO2024181116 A1 WO 2024181116A1 JP 2024004884 W JP2024004884 W JP 2024004884W WO 2024181116 A1 WO2024181116 A1 WO 2024181116A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant
- light
- light source
- leaf blade
- treatment device
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 230000035777 life prolongation Effects 0.000 title abstract 6
- 241000196324 Embryophyta Species 0.000 claims description 166
- 230000001678 irradiating effect Effects 0.000 claims description 14
- 238000002834 transmittance Methods 0.000 claims description 7
- 230000002265 prevention Effects 0.000 claims description 6
- 241000218922 Magnoliophyta Species 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 5
- 230000001186 cumulative effect Effects 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 24
- 238000005259 measurement Methods 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 241000220317 Rosa Species 0.000 description 7
- 241000109329 Rosa xanthina Species 0.000 description 7
- 235000004789 Rosa xanthina Nutrition 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000002845 discoloration Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000012549 training Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000029553 photosynthesis Effects 0.000 description 2
- 238000010672 photosynthesis Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000005068 transpiration Effects 0.000 description 2
- 241000735332 Gerbera Species 0.000 description 1
- 206010042496 Sunburn Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G5/00—Floral handling
- A01G5/06—Devices for preserving flowers
Definitions
- This disclosure relates to a method for treating plants to extend their lifespan and an apparatus for treating plants to extend their lifespan.
- Plants produce the organic substances they need through photosynthesis, a process that converts light energy into chemical energy.
- Photosynthesis requires water, which is introduced through the plant's roots.
- a plant whose roots have been cut off will eventually die, but in order to maintain the condition of the plant for as long as possible, a method is known in which the stem is placed in a vase filled with water, etc.
- a method is also known in which water containing a life-extending agent is used (Patent Document 1).
- the plant longevity treatment method of the present disclosure aims to provide a plant longevity treatment method capable of easily maintaining the state of the plant for a long time. Also, the plant longevity treatment device of the present disclosure aims to provide a plant longevity treatment device capable of easily maintaining the state of the plant.
- the method for extending the lifespan of a plant irradiates the leaf blade of the plant with light having a wavelength in the range of 200 nm to 240 nm.
- a plant longevity treatment device includes a light source capable of emitting light with a wavelength in the range of 200 nm or more and 240 nm or less.
- the above-mentioned plant longevity treatment method and plant longevity treatment device according to the present disclosure do not list all of the features of the present disclosure. Also, subcombinations of these features may be inventions.
- the plant longevity treatment method and plant longevity treatment device disclosed herein make it possible to easily maintain the condition of the plant.
- FIG. 1 is a block diagram showing a first configuration example of a plant longevity treatment device according to an embodiment of the present invention
- FIG. 2 is a block diagram showing a second configuration example of the plant longevity treatment device of the present embodiment
- FIG. 11 is a block diagram showing a third configuration example of the plant longevity treatment device of the present embodiment.
- FIG. 11 is a block diagram showing a fourth configuration example of the plant longevity treatment device of the present embodiment.
- FIG. 1 is a block diagram showing the configuration of a plant longevity treatment device 100A, which is a first example of the plant longevity treatment device 100 of this embodiment.
- the plant longevity treatment device 100A includes a light source 110.
- Fig. 1 shows a leaf blade 300 of a plant to be irradiated with light from the plant longevity treatment device 100.
- the leaf blade 300 has a back surface 310 and a front surface 320.
- the light source 110 of the plant longevity treatment device 100A will be described in detail below.
- the light source 110 is a light source capable of emitting light having a wavelength in the range of 200 nm to 240 nm.
- the light having a wavelength in the range of 200 nm to 240 nm may be light including all wavelengths in the range, or may be light including a part of the wavelengths in the range. From the viewpoint of efficient processing, the light source 110 may emit light having a central wavelength of 190 nm to 230 nm.
- the light source 110 examples include a high-pressure mercury lamp, an excimer lamp, a deep ultraviolet LED (Light Emitting Diode), a deep ultraviolet LD (Laser Diode), etc. From the viewpoint of environmental impact, the light source 110 may preferably be an excimer lamp, a deep ultraviolet LED, a deep ultraviolet LD, etc.
- the excimer lamp examples include ArF, KrBr, and KrCl excimer lamps.
- An example of a deep ultraviolet LED is an element in which a light emitting layer is formed of Al x Ga 1-x N (0 ⁇ x ⁇ 1).
- the light source 110 does not include light with a wavelength of 250 nm or more and 300 nm or less.
- the light source 110 may be configured to have an optical element with a transmittance of 20% or less for light with a wavelength of 250 nm, for example.
- the transmittance of the optical element for light with a wavelength of 250 nm may preferably be 15% or less, and more preferably 10% or less.
- a "light source that does not include light with a wavelength of 250 nm or more and 300 nm or less” means that, when the intensity of the central wavelength of the light emitted by light source 110 is taken as 1, the relative intensity of light in the wavelength range of 250 nm or more and 300 nm or less is 0.1 or less. In other words, when the intensity of the central wavelength of the light emitted by light source 110 is taken as 1, light source 110 preferably emits light having a relative intensity of 0.1 or less in the wavelength range of 250 nm or more and 300 nm or less, more preferably 0.01 or less, and even more preferably 0.001 or less.
- the light source 110 may have a plurality of exit surfaces.
- the means for providing a plurality of exit surfaces there is no particular limitation on the means for providing a plurality of exit surfaces, but a plurality of light source units may be disposed, or one light source unit may have a plurality of independent exit surfaces.
- FIG. 2 is a block diagram showing the configuration of a plant longevity treatment device 100B, which is a second example of the plant longevity treatment device 100 of this embodiment.
- the plant longevity treatment device 100B includes a light source 110, a recognition unit 120, a distance measurement unit 130, and a light source control unit 140.
- a light source 110 for the light source 110.
- the light source 110 of the plant longevity treatment device 100B has the same configuration as the light source 110 described in the first example, and therefore a description thereof will be omitted.
- the recognition unit 120 is capable of recognizing the state of the recognition target in the irradiation area of the light emitted from the light source 110 (also referred to as the field of view of the light source 110).
- Specific examples of the recognition unit 120 include a leaf blade recognition unit capable of recognizing whether or not a leaf blade of a plant is present, a plant recognition unit capable of recognizing the type of plant, and a flower recognition unit that recognizes whether or not a flower part of a plant is present.
- the recognition unit 120 may include an imaging unit that captures an image in response to some kind of energy (heat, light, electromagnetic waves, etc.).
- the recognition unit 120 may control the operation of the light source 110 according to the recognition result in the recognition unit 120.
- the recognition unit 120 may control the start of the light emission operation of the light source 110 and the stop of the light emission operation of the light source 110.
- the control of the light source 110 may be realized by directly transmitting a control signal from the recognition unit 120 to the light source 110.
- a control unit (not shown) that receives information on the recognition result from the recognition unit 120 may control the light source 110.
- the recognition unit 120 of the plant longevity treatment device of this embodiment may include a leaf blade recognition unit capable of recognizing whether or not a leaf blade of a plant is present in an area irradiated with light from the light source 110.
- the recognition unit 120 may control the operation of the light source 110 according to the recognition result of the leaf blade recognition unit as to the presence/absence of a leaf blade of a plant.
- the leaf blade recognition unit may further be capable of recognizing the front and back surfaces of the leaf blade.
- the recognition unit 120 of the plant longevity treatment device of this embodiment may include a plant recognition unit that recognizes the type of plant.
- the recognition unit 120 may control the operation of the light source 110 according to the recognition result of the plant type by the plant recognition unit.
- the recognition unit 120 may control the intensity or time of the light to be irradiated according to the type of plant, or control the cumulative amount of light to be irradiated.
- the recognition unit 120 of the plant longevity treatment device of this embodiment may include a flower recognition unit capable of recognizing the flower part of the plant. From the viewpoint of reducing adverse effects on the plant, when the recognition unit 120 recognizes the flower part, the recognition unit 120 may control the light source 110 to stop emitting light or to reduce the driving power of the light source 110, or may control the irradiation position and irradiation angle of the light from the light source 110 to reduce the energy of the light irradiated to the flower or the entire plant. In the following, an example will be described in which the recognition unit 120 is the leaf blade recognition unit 121. Note that in FIG.
- the distance measuring unit 130 can measure the distance to the irradiation target of the light emitted from the light source 110.
- the distance measuring unit 130 may constantly measure the distance to the irradiation target of the light from the light source 110, or may measure the distance to the irradiation target depending on the presence/absence of a leaf blade of a plant recognized by the leaf blade recognition unit 121.
- the distance measuring unit 130 measures the distance to the irradiation target depending on the presence/absence of a leaf blade of a plant, it may be preferable because the distance to the leaf blade of the plant can be treated as information.
- the light source control unit 140 is capable of controlling the operation of the light source 110.
- the light source control unit 140 is capable of controlling the operation of the light source 110 by controlling the supply of power to the light source 110, etc.
- the light source control unit 140 may control the operation of the light source 110 in accordance with information from the leaf blade recognition unit 121.
- the light source control unit 140 may also control the operation of the light source 110 in accordance with the distance to the irradiation target measured by the distance measurement unit 130.
- the light source control unit 140 may control the irradiation time and illuminance in accordance with the distance to the irradiation target.
- the light source control unit 140 may control the light source 110 to be driven in response to the leaf blade recognition unit 121 recognizing that the light is being irradiated to the underside of a leaf blade of a plant.
- FIG. 3 is a block diagram showing the configuration of a plant longevity treatment device 100C which is a third example of the plant longevity treatment device 100 of this embodiment.
- the plant longevity treatment device 100C includes a light source 110, a recognition unit 120, a distance measurement unit 130, a light source control unit 140, a storage unit 150, and a calculation unit 160.
- a calculation unit 160 a calculation unit 160.
- each of the units other than the memory unit 150, the calculation unit 160, and the light source control unit 140 of the plant longevity treatment device 100B will be omitted because they have the same configuration as the light source 110 described in the first example and the recognition unit 120 and the distance measurement unit 130 described in the second example.
- the storage unit 150 stores operation information of the light source 110.
- the operation information of the light source 110 may include information on the operation time, the applied power during operation, and the power consumption of the plant longevity treatment device 100 as information equivalent to the applied power.
- the operation information may also include information on the energy of light emitted with respect to the applied power to the light source 110.
- the storage unit 150 may be capable of communicating with the distance measurement unit. This allows the storage unit 150 to store the distance to the measurement object. In addition, by combining this with information on the presence/absence of the leaf blade of the plant from the leaf blade recognition unit 121, the distance to the measurement object can be stored as the distance to the leaf blade of the plant.
- the means by which the memory unit 150 stores information on the light source 110, the distance to the measurement object, and the distance to the leaf blade of the plant is not particularly limited, but may be a configuration in which the distance measuring unit 130, which can communicate with the leaf blade recognition unit 121, and the memory unit 150 can communicate with each other.
- the memory unit 150 may be configured to be able to communicate with each of the leaf blade recognition unit 121 and the distance measuring unit 130, or the memory unit 150 may be configured to be able to communicate with the light source control unit 140, which can communicate with each of the leaf blade recognition unit 121 and the distance measuring unit 130, and the memory unit 150.
- the memory unit 150 may be provided as a physical part of the plant longevity treatment device 100 (e.g., a memory element), or may be provided as a device that is physically separated from the plant longevity treatment device 100 and can be connected to the plant longevity treatment device 100 via wireless communication or the like (e.g., a memory device of a server).
- the calculation unit 160 is capable of calculating the integrated amount of light irradiated onto the leaf blade of the plant by inputting the operation information of the light source 110 and the distance to the leaf blade of the plant.
- the operation information of the light source 110 may include the operation time of the light source 110, the power applied to the light source 110, and the like.
- the calculation unit 160 may be provided independently, or may be provided as a part of the light source control unit 140 .
- the calculation unit 160 may be provided as a physical part of the plant longevity treatment device 100 (e.g., an analog IC or digital IC), or it may be provided as a part that is physically separated from the plant longevity treatment device 100 and can be connected to the plant longevity treatment device 100 via wireless communication or the like (e.g., a calculation processing unit of a server).
- the light source control unit 140 is capable of controlling the operation of the light source 110 in accordance with the integrated amount of light irradiated onto the leaf blade of the plant calculated by the calculation unit 160 . It is preferable that the light source control unit 140 controls the operation of the light source 110 so that the light emitted by the light source 110 is irradiated with an integrated dose of (10 x central wavelength of ultraviolet light [nm] - 2190) mJ/cm 2 or more. In a plant irradiated with light from the light source 110 with such an integrated dose, the stomata are less likely to open even if the leaf blade is exposed to sunlight, and the plant has a longer lifespan.
- the light source control unit 140 controls the operation of the light source 110 so that the light emitted by the light source 110 is irradiated with an integrated dose of 1 mJ/cm 2 or more. It is more preferable that the light source control unit 140 controls the operation of the light source 110 so that the light emitted by the light source 110 is irradiated with 400 mJ/cm 2 or less. If the integrated dose is 400 mJ/cm 2 or less, it is possible to prolong the time until the plant withers without causing damage to the leaf blade due to the light irradiated to the leaf blade.
- FIG. 4 is a block diagram showing the configuration of a plant longevity treatment device 100D, which is a fourth example of the plant longevity treatment device 100 of this embodiment.
- the plant longevity treatment device 100D includes a light source 110, a recognition unit 120, a distance measurement unit 130, a light source control unit 140, a memory unit 150, a calculation unit 160, and an irradiation position control unit 170.
- the irradiation position control unit 170 of the plant longevity treatment device 100D will be described in detail below.
- the components other than the irradiation position control unit 170 of the plant longevity treatment device 100D have the same configuration as the light source 110 described in the first example, the recognition unit 120, the distance measurement unit 130, and the light source control unit 140 described in the second example, and the storage unit 150 and the calculation unit 160 described in the third example, and therefore the description thereof will be omitted.
- the irradiation position control unit 170 can control the relative positional relationship between the light source 110 and the irradiation target by changing the position and angle of the light source 110.
- the irradiation position control unit 170 may be a wheel that can move on an object, or a propeller that can float in space.
- the irradiation position control unit 170 may be a mechanism that changes the spatial irradiation angle of the light source 110.
- the irradiation position control unit 170 By providing the irradiation position control unit 170, even if it is not possible to irradiate the entire desired area with light from the light source 110 by irradiating the entire area with light only once, it is possible to irradiate the next part of the target by moving the light source 110 after irradiating one part of the target, or to irradiate the entire area of the target by continuously moving the light source 110.
- the irradiation position control section 170 may operate in accordance with the integrated irradiation amount of light calculated by the calculation section 160 .
- the plant longevity treatment device 100 (100A to 100D) of the present embodiment may further include a plant transport unit capable of transporting a plant to be irradiated.
- the plant transport unit is not particularly limited, but may be capable of changing the relative position of the plant with respect to the light source 110 while holding the plant.
- the plant longevity treatment device 100 (100A to 100D) of this embodiment may further include an irradiation prevention part that prevents irradiation of the flower part of the plant.
- the irradiation prevention part may have a low transmittance of light in the wavelength range of 200 nm or more and 240 nm or less.
- the transmittance of the irradiation prevention part is not particularly limited, but is preferably 10% or less, and more preferably 5% or less, for example.
- the irradiation prevention part may be physically connected to the plant longevity treatment device 100 or may be separated therefrom.
- the plant life extension treatment method of this embodiment will be described.
- the method for extending the lifespan of a plant according to the present embodiment includes an irradiation step of irradiating the leaf blade of the plant with light having a wavelength in the range of 200 nm to 240 nm.
- the mechanism by which the plant lifespan extension treatment method of the present embodiment extends the time until the plant withers is unclear, but the present inventors speculate that the light acts on the stomata in the leaf blade, suppressing excessive transpiration, thereby extending the time until the plant withers.
- the plant longevity treatment method of this embodiment can be realized by the plant longevity treatment device 100 (100A to 100D, etc.) of this embodiment described above.
- the central wavelength of the light may be 190 nm or more and 230 nm or less.
- the light irradiated to the plant does not include light with a wavelength of 250 nm or more and 300 nm or less.
- the cumulative dose of light irradiated to the leaf blade is preferably (10 x central wavelength of ultraviolet light [nm] - 2190) mJ/ cm2 or more.
- the cumulative dose of light irradiated to the leaf blade may be 1 mJ/ cm2 or more. If the cumulative dose is 1 mJ/ cm2 or more, it is possible to extend the time until the plant withers compared to when light is not irradiated to the leaf blade.
- the cumulative dose of light irradiated to the leaf blade is preferably 400 mJ/ cm2 or less. If the cumulative dose is 400 mJ/ cm2 or less, it is possible to extend the time until the plant withers without causing damage to the leaf blade due to the light irradiated to the leaf blade.
- the underside of the leaf blade When irradiating the leaf blade with light, the underside of the leaf blade may be irradiated with light. Since there was no significant difference in the effect of extending the time until withering when light was irradiated to the front and underside of the leaf blade compared to when light was irradiated only to the underside of the leaf blade, it is understood that irradiating light only to the underside is preferable.
- the leaf blade it is preferable for the leaf blade to have stomata. By irradiating the side of the leaf blade that has stomata with light, the plant's lifespan will be further extended. This is thought to be because transpiration through the stomata is suppressed when light is irradiated to the stomata.
- the plant to be irradiated with light may be a flowering plant.
- a flowering plant is a plant that blooms with flowers.
- Flowering plants are ornamental plants, and it is highly desirable to extend the time it takes for them to wither. For this reason, it is preferable to apply the life extension treatment method of the present embodiment to flowering plants.
- the plant to be irradiated with light may be a cut flower. For example, according to the "Training Text for Improving the Shelf Life of Cut Flowers, 2013 Innovative Agricultural Technology Training Course," 80% of consumers desire a viewing period of 7 days for gerberas, an example of flowers, but less than 20% actually have a shelf life of more than 7 days, and it is understood that conventional technology does not satisfy consumer needs.
- Example 1 Leaf blades excised from a rose (cultivar: Ilias) were prepared. Next, a light source was prepared that had a KrCl excimer lamp that emitted ultraviolet light with a central wavelength of 222 nm and an emission intensity of 1% or more of the emission intensity of the central wavelength in the wavelength range of 200 nm to 235 nm. The light source had an optical filter on the ultraviolet light emission surface that had a transmittance (incident angle 0 degrees) of 17% for light with a wavelength of 235 nm and a transmittance (incident angle 0 degrees) of 3% for light with a wavelength of 240 nm.
- a transmittance incident angle 0 degrees
- the emission intensity of the light source with a wavelength of 250 nm to 300 nm was 1% or less of the emission intensity of the central wavelength.
- the leaf blade was placed with the underside facing the light source at a distance of 5 cm from the light source's emission surface, and was irradiated with ultraviolet light at an irradiation dose of 2.5 mW/ cm2 until the cumulative irradiation dose reached 44.6 mJ/ cm2 , thereby obtaining the treated leaf blade of Example 1.
- Example 2 The treated leaf blade of Example 2 was obtained by irradiating with ultraviolet light in the same manner as in Example 1, except that the cumulative irradiation dose was 446 mJ/ cm2 .
- the leaf blades of Examples 1 and 2 and Reference Example 1 are shown in Fig. 5.
- the upper row is a photograph of the entire leaf blade, and the lower row is an enlarged photograph of the vicinity of the center of the leaf blade.
- the leaf blade of Example 1 was not significantly different from the leaf blade of Reference Example 1. Discoloration of the irradiated portion was observed in the leaf blade of Example 2 compared to the leaf blade of Reference Example 1. Specifically, discoloration of the leaf blade and the veins within the leaf blade was observed.
- Example 3 Leaf blades excised from a rose (cultivar: Ilias) were prepared. The same light source as in Example 1 was prepared, and a leaf blade was placed 5 cm away from the light source with the back side facing the light source, and irradiated with ultraviolet light at an irradiation dose of 2.5 mW/ cm2 until the cumulative irradiation dose reached 37.5 mJ/ cm2 . Next, the surface of the same leaf blade was also irradiated with ultraviolet light at an cumulative irradiation dose of 37.5 mJ/ cm2 (irradiation dose 2.5 mW/ cm2 ) to obtain the treated leaf blade of Example 3.
- Example 3 The treated leaf blade of Example 3 and the untreated leaf blade of Comparative Example 1 were placed in a room at a temperature of about 25° C., and the changes in the condition of the front and back of the leaf blade were observed every 6 hours from before the start of irradiation (0 hours) until 36 hours after irradiation, and the results are shown in Figure 6.
- Figure 7. 6 and 7 in the leaf blade of Comparative Example 1, which was not irradiated with ultraviolet light, discoloration of the leaf outline began after 24 hours, and in addition to discoloration of the outline, shrinkage of the entire leaf blade was observed after 36 hours.
- the leaf blade of Example 3 which was treated with ultraviolet light, neither discoloration of the outline nor shrinkage of the leaf blade was observed even after 36 hours.
- Example 4 Roses (variety name: All 4 Love) were prepared. The same light source as in Example 1 was prepared, and ultraviolet light was irradiated onto the front and back of the prepared rose leaf blade in the same manner as in Example 3 to obtain a treated leaf blade of Example 4.
- Example 5 The ultraviolet light irradiation treatment was carried out in the same manner as in Example 4, except that the ultraviolet light irradiation treatment was carried out only on the back surface of the leaf blade, to obtain the treated leaf blade of Example 5.
- Example 6 The ultraviolet light irradiation treatment was carried out in the same manner as in Example 5, except that a light source not equipped with an optical filter was used, to obtain the treated leaf blade of Example 6.
- Example 6 which was irradiated using a light source without a filter, experienced wilting of the petals on the seventh day, whereas the roses of Examples 4 and 5, which were irradiated using a light source with a filter, still did not wither or wilt.
- the roses of Examples 4 and 5 did not wither and remained in good condition even after 12 days had passed. This shows that the longevity of plants can be achieved by irradiating at least the backside of the leaf blade with light having a central wavelength of 190 nm or more and 230 nm or less.
- Example 7 Leaf blades excised from a rose (variety: All 4 Love) were prepared. Next, an ultraviolet LED light source with a central wavelength of 227 nm was prepared. The leaf blade was placed with the back side facing the light source as close as possible to the light source emission surface, and was irradiated with ultraviolet light at an irradiation dose of 0.91 mW/ cm2 until the cumulative irradiation dose reached 83 mJ/ cm2 , to obtain the treated leaf blade of Example 7. All of the above irradiations were performed in a dark place.
- Example 8 The ultraviolet light irradiation treatment was carried out in the same manner as in Example 7, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 100 mJ/ cm2 , to obtain the treated leaf blade of Example 8.
- Example 9 The ultraviolet light irradiation treatment was carried out in the same manner as in Example 7, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 300 mJ/ cm2 , to obtain the treated leaf blade of Example 8.
- Example 10 The ultraviolet light irradiation treatment was carried out in the same manner as in Example 7, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 500 mJ/ cm2 , to obtain the treated leaf blade of Example 8.
- Example 11 The ultraviolet light irradiation treatment was carried out in the same manner as in Example 7, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 1000 mJ/ cm2 , to obtain the treated leaf blade of Example 8.
- Example 12 The ultraviolet light irradiation treatment was performed in the same manner as in Example 7, except that the central wavelength of the ultraviolet LED was 238 nm, the ultraviolet light irradiation dose was 1.94 mW/ cm2 , and ultraviolet light was irradiated until the cumulative irradiation dose reached 200 mJ/ cm2 , thereby obtaining the treated leaf blade of Example 12.
- Example 13 The ultraviolet light irradiation treatment was carried out in the same manner as in Example 12, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 300 mJ/ cm2 , to obtain the treated leaf blade of Example 13.
- Example 14 The ultraviolet light irradiation treatment was carried out in the same manner as in Example 12, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 400 mJ/ cm2 , to obtain the treated leaf blade of Example 14.
- Example 15 The ultraviolet light irradiation treatment was carried out in the same manner as in Example 12, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 500 mJ/ cm2 , to obtain the treated leaf blade of Example 15.
- Example 16 The ultraviolet light irradiation treatment was carried out in the same manner as in Example 12, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 1000 mJ/ cm2 , to obtain the treated leaf blade of Example 16.
- FIG. 10 shows the relationship between the central wavelength of ultraviolet light and the cumulative dose of irradiation for each of the Examples and Comparative Examples (Examples 7 to 16 and Comparative Examples 4 to 7) other than Comparative Example 3, in which ultraviolet light irradiation was not performed.
- the straight line L in FIG. 10 indicates the cumulative dose of irradiation (10 ⁇ central wavelength of ultraviolet light [nm] ⁇ 2190) mJ/ cm2 .
- the stomata of the leaf blade can be closed by irradiating the leaf blade with ultraviolet light at an integrated dose of (10 x central wavelength of ultraviolet light [nm] - 2190) mJ/cm2 or more .
- the stomata of the leaf blade of Comparative Example 3 which was not irradiated with ultraviolet light, opened when exposed to sunlight. From this, it was confirmed that the integrated dose of ultraviolet light in the present disclosure is preferably (10 x central wavelength of ultraviolet light [nm] - 2190) mJ/ cm2 or more.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Cultivation Of Plants (AREA)
Abstract
Description
本開示は、植物の長寿命化処理方法および植物の長寿命化処理装置に関する。 This disclosure relates to a method for treating plants to extend their lifespan and an apparatus for treating plants to extend their lifespan.
植物は、光エネルギーを化学エネルギーに変換する光合成により、必要な有機物質を作り出している。光合成には、植物の根から導入される水分が必要となる。
根が切り離された植物は、いずれ枯れてしまうが、植物の状態を少しでも長く維持するために、水を張った花瓶等に茎を入れる方法が知られている。また、更に状態を維持するために、延命剤を添加した水を使用する方法などが知られている(特許文献1)。
Plants produce the organic substances they need through photosynthesis, a process that converts light energy into chemical energy. Photosynthesis requires water, which is introduced through the plant's roots.
A plant whose roots have been cut off will eventually die, but in order to maintain the condition of the plant for as long as possible, a method is known in which the stem is placed in a vase filled with water, etc. In order to maintain the condition of the plant even further, a method is also known in which water containing a life-extending agent is used (Patent Document 1).
植物が最終消費者に届くまでの流通経路を鑑みると、延命剤を添加した水を使用する方法では植物の状態を好ましい状態に維持することは煩雑で困難である。また、延命剤の適用は輸送時の困難性を伴う。
上述した課題を解決するために、本開示の植物の長寿命化処理方法は、簡便に植物の状態を長時間維持することが可能な植物の長寿命化処理方法を提供することを目的とする。また、本開示の植物の長寿命化処理装置は、簡便に植物の状態を維持することが可能な植物の長寿命化処理装置を提供することを目的とする。
Considering the distribution route of plants to the end consumer, it is complicated and difficult to maintain the condition of plants in a desirable state by using water containing a life-extending agent. In addition, the application of the life-extending agent is accompanied by difficulties during transportation.
In order to solve the above-mentioned problems, the plant longevity treatment method of the present disclosure aims to provide a plant longevity treatment method capable of easily maintaining the state of the plant for a long time. Also, the plant longevity treatment device of the present disclosure aims to provide a plant longevity treatment device capable of easily maintaining the state of the plant.
本開示の一態様に係る植物の長寿命化処理方法は、植物の葉身に波長200nm以上240nm以下の範囲内の光を照射する。 The method for extending the lifespan of a plant according to one embodiment of the present disclosure irradiates the leaf blade of the plant with light having a wavelength in the range of 200 nm to 240 nm.
また、本開示の他の態様に係る植物の長寿命化処理装置は、波長200nm以上240nm以下の範囲の光を出射可能な光源を備える。
なお、上述した本開示に係る植物の長寿命化処理方法及び植物の長寿命化処理装置は、本開示の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
A plant longevity treatment device according to another aspect of the present disclosure includes a light source capable of emitting light with a wavelength in the range of 200 nm or more and 240 nm or less.
The above-mentioned plant longevity treatment method and plant longevity treatment device according to the present disclosure do not list all of the features of the present disclosure. Also, subcombinations of these features may be inventions.
本開示の植物の長寿命化処理方法および植物の長寿命化処理装置によれば、簡便に植物の状態を維持することが可能になる。 The plant longevity treatment method and plant longevity treatment device disclosed herein make it possible to easily maintain the condition of the plant.
以下、発明の実施の形態を通じて本開示を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Below, the present disclosure will be explained through embodiments of the invention, but the following embodiments do not limit the invention as claimed. Furthermore, not all of the combinations of features described in the embodiments are necessarily essential to the solution of the invention.
1.第一実施形態
以下、本開示の第一実施形態に係る長寿命化処理装置100について、図1から図4を参照して説明する。
1. First Embodiment Hereinafter, a life extension treatment device 100 according to a first embodiment of the present disclosure will be described with reference to FIGS.
(1.1)長寿命化処理装置の構成:第一の例
図1は、本実施形態の植物の長寿命化処理装置100の第一の例である長寿命化処理装置100Aの構成を示すブロック図である。植物の長寿命化処理装置100Aは、光源110を備える。図1には、長寿命化処理装置100からの光の照射対象となる植物の葉身300を示している。葉身300は、裏面310及び表面320を有している。
以下、植物の長寿命化処理装置100Aの光源110について詳細に説明する。
(1.1) Configuration of plant longevity treatment device: First example Fig. 1 is a block diagram showing the configuration of a plant
The
<光源>
光源110は、波長200nm以上240nm以下の範囲内の光を出射可能な光源である。波長200nm以上240nm以下の範囲内の光は、当該範囲のすべての波長を含む光であっても良いし、当該範囲の一部の波長を含む光であっても良い。また、効率的な処理の観点から、光源110は、発光する光の中心波長が190nm以上230nm以下であってよい。
<Light source>
The
光源110の一例としては、高圧水銀ランプ、エキシマランプ、深紫外LED(Light Emitting Diode:発光ダイオード)、深紫外LD(Laser Diode:半導体レーザ)などが挙げられる。環境への影響の観点から、光源110は、エキシマランプ、深紫外LED、深紫外LDなどが好ましい場合がある。エキシマランプとしては例えば、ArF、KrBr、KrClのエキシマランプが挙げられる。
深紫外LEDとしては、発光層がAlxGa1-xN(0≦x≦1)で形成された素子が挙げられる。
Examples of the
An example of a deep ultraviolet LED is an element in which a light emitting layer is formed of Al x Ga 1-x N (0≦x≦1).
光源110は、波長250nm以上300nm以下の波長の光を含まないことが好ましい場合がある。波長250nm以上の光を出射しないようにするためには、光源110を、例えば波長250nmの光に対する透過率が20%以下の光学部材を有する構成としてもよい。光学部材の波長250nmの光に対する透過率は、好ましくは15%以下であってよく、より好ましくは10%以下であってよい。
It may be preferable that the
「波長250nm以上300nm以下の波長の光を含まない光源」とは、光源110が発する光の中心波長の強度を1としたときに、波長250nm以上300nm以下の範囲の光の相対強度が0.1以下であることを意味する。すなわち、光源110は、光源110が発する光の中心波長の強度を1としたときに、波長250nm以上300nm以下の範囲の光の相対強度が0.1以下である光を発することが好ましく、0.01以下である光を発することがより好ましく、0.001以下である光を発することがさらに好ましい。
照射効率の向上や照射の均一性向上の観点から、光源110は、出射面が複数であってもよい。出射面を複数とする手段は特に制限されないが、複数の光源ユニットを配置しても良いし、一つの光源ユニットが複数の独立した出射面を有する形態であっても良い。
A "light source that does not include light with a wavelength of 250 nm or more and 300 nm or less" means that, when the intensity of the central wavelength of the light emitted by
From the viewpoint of improving the irradiation efficiency and the uniformity of the irradiation, the
(1.2)長寿命化処理装置の構成:第二の例
図2は、本実施形態の植物の長寿命化処理装置100の第二の例である長寿命化処理装置100Bの構成を示すブロック図である。植物の長寿命化処理装置100Bは、光源110、認識部120、測距部130、光源制御部140を備える。
以下、植物の長寿命化処理装置100Bの光源110以外の各部について詳細に説明する。なお、長寿命化処理装置100Bの光源110は、第一の例で説明した光源110と同様の構成であるため説明を省略する。
2 is a block diagram showing the configuration of a plant
Hereinafter, a detailed description will be given of each component of the plant
<認識部>
認識部120は、光源110から出射された光の照射領域(光源110の視野とも称する)における認識対象の状態を認識することが可能である。具体例としては、認識部120は、例えば植物の葉身が存在するか否かを認識することが可能な葉身認識部、植物の種類を認識可能な植物認識部、植物の花部分が存在するか否かを認識する花認識部である。いずれも具体的な構成は特に制限されないが、認識部120は、何らかのエネルギー(熱、光、電磁波等)に応じて撮像を行う撮像部を備えている形態が挙げられる。
<Recognition section>
The
認識部120は、認識部120での認識結果に応じて、光源110の動作を制御しても良い。一例としては、光源110の発光動作の開始や、光源110の発光動作停止の制御が挙げられる。
また、光源110の制御は、認識部120から直接に光源110に制御信号を送信することで実現しても良い。また、認識部120からの認識結果の情報を受信した図示しない制御部が光源110の制御を行っても良い。
The
The control of the
(葉身認識部)
本実施形態の植物の長寿命化処理装置の認識部120は、光源110の光の照射領域に植物の葉身が存在するか否かを認識することが可能である葉身認識部を含んで良い。認識部120は、葉身認識部による植物の葉身の存在/不存在の認識結果に応じて光源110の動作を制御して良い。
葉身認識部は、葉身の表面/裏面を更に認識できるものであっても良い。
(Leaf blade recognition unit)
The
The leaf blade recognition unit may further be capable of recognizing the front and back surfaces of the leaf blade.
(植物認識部)
本実施形態の植物の長寿命化処理装置の認識部120は、植物の種類を認識する植物認識部を含んで良い。認識部120は、植物認識部による植物の種類の認識結果に応じて光源110の動作を制御しても良い。例えば、認識部120は、植物の種類に応じて照射する光の強度や時間を制御したり、照射する光の積算照射量を制御したりしても良い。
(Plant Recognition Division)
The
(花認識部)
本実施形態の植物の長寿命化処理装置の認識部120は、植物の花部分を認識可能な花認識部を含んでよい。植物への悪影響を低減する観点から、認識部120は、花部分を認識した際には光源110の発光動作停止の制御や、光源110の駆動電力の低減制御をしても良いし、光源110からの光の照射位置や照射角度を制御して花卉又は植物全体に照射される光のエネルギーを低減させても良い。
以下、認識部120が葉身認識部121である場合を例に説明することがある。なお、図2中、葉身認識部121は認識部120として記載している。
(Flower Recognition Department)
The
In the following, an example will be described in which the
<測距部>
測距部130は、光源110から出射した光の照射対象までの距離を測定することが可能である。測距部130は、光源110からの光の照射対象までの距離を常に測定しても良いし、葉身認識部121が認識する植物の葉身の存在/不存在に応じて照射対象までの距離を測定してもよい。測距部130は、植物の葉身の存在/不存在に応じて照射対象までの距離を測定する場合、植物の葉身までの距離を情報として扱えるため好ましい場合がある。
<Distance measuring section>
The
<光源制御部>
光源制御部140は、光源110の動作を制御することが可能である。一例として、光源制御部140は、光源110への電力の供給等を制御することで光源110の動作を制御することが可能である。
光源制御部140は、葉身認識部121からの情報に応じて光源110の動作を制御しても良い。また、光源制御部140は、測距部130が測定する照射対象までの距離に応じて光源110の動作を制御しても良い。一例として、光源制御部140は、照射対象までの距離に応じて照射時間、照度を制御しても良い。
別の例として、光源制御部140は、葉身認識部121にて光が照射されているのが植物の葉身の裏側であることを認識したことに応じて光源110を駆動するように制御しても良い。
<Light source control unit>
The light
The light
As another example, the light
(1.3)長寿命化処理装置の構成:第三の例
図3は、本実施形態の植物の長寿命化処理装置100の第三の例である長寿命化処理装置100Cの構成を示すブロック図である。植物の長寿命化処理装置100Cは、光源110、認識部120、測距部130、光源制御部140、記憶部150、演算部160を備える。
以下、植物の長寿命化処理装置100Bの記憶部150、演算部160、光源制御部140の各部について詳細に説明する。なお、長寿命化処理装置100Bの記憶部150、演算部160、光源制御部140以外の各部は、第一の例で説明した光源110並びに第二の例で説明した認識部120及び測距部130と同様の構成であるため説明を省略する。
3 is a block diagram showing the configuration of a plant
Hereinafter, a detailed description will be given of each of the
<記憶部>
記憶部150は、光源110の動作情報を記憶する。光源110の動作情報としては、動作時間や動作中の印加電力や該印加電力と同等の情報としての植物の長寿命化処理装置100の消費電力の情報を含んで良い。また、光源110に対する印加電力に対する出射する光のエネルギーに関する情報を含んでも良い。
<Memory Unit>
The
記憶部150は、測距部と通信可能であっても良い。これにより測定対象物までの距離を記憶可能となる。また、葉身認識部121による植物の葉身の存在/不存在の情報との組み合わせにより、測定対象物までの距離を植物の葉身までの距離として記憶することが可能になる。
記憶部150が光源110の情報や、測定対象物までの距離や、植物の葉身までの距離の情報を記憶することを実現するための手段は特に限定されないが、葉身認識部121と通信可能な測距部130と記憶部150とが通信可能な構成が挙げられる。また、葉身認識部121及び測距部130のそれぞれと記憶部150とが通信可能な構成であってもよく、葉身認識部121及び測距部130のそれぞれと通信可能な光源制御部140と、記憶部150とが通信可能な構成であっても良い。
The
The means by which the
記憶部150は、植物の長寿命化処理装置100の物理的一部の態様(例えば記憶素子)として設けられていても良いし、植物の長寿命化処理装置100とは物理的に離隔しており無線通信等により植物の長寿命化処理装置100と接続可能な態様(例えばサーバーの記憶装置)として設けられていても良い。
The
<演算部>
演算部160は、光源110の動作情報と植物の葉身までの距離とが入力され、植物の葉身に照射した光の積算照射量を演算することが可能である。光源110の動作情報としては、前述の通り、光源110の動作時間や光源110への印加電力などを用いることができる。
演算部160は、独立して設けられていて良いし、光源制御部140の一部として設けられていても良い。
演算部160は、植物の長寿命化処理装置100の物理的一部の態様(例えばアナログICやデジタルIC)として設けられていても良いし、植物の長寿命化処理装置100とは物理的に離隔しており無線通信等により植物の長寿命化処理装置100と接続可能な態様(例えばサーバーの演算処理装置)として設けられていても良い。
<Calculation section>
The
The
The
<光源制御部>
光源制御部140は、演算部160で演算された植物の葉身への光の積算照射量に応じて、光源110の動作を制御することが可能である。
光源制御部140は、光源110が発する光を、(10×紫外線の中心波長[nm]-2190)mJ/cm2以上の積算照射量で照射するように光源110の動作を制御することが好ましい。このような積算照射量で光源110からの光を照射された植物は、葉身が日光に曝されても気孔が開きにくくなり、長寿命化する。また、光源制御部140は、光源110が発する光を1mJ/cm2以上の積算照射量で照射するように光源110の動作を制御することがより好ましい。さらに、光源制御部140は、光源110が発する光を400mJ/cm2以下で照射するように光源110の動作を制御することがより好ましい。積算照射量が400mJ/cm2以下であれば、葉身に照射した光による葉身へのダメージを生じさせずに植物が枯れるまでの時間を長期化することが可能である。
<Light source control unit>
The light
It is preferable that the light
(1.4)長寿命化処理装置の構成:第四の例
図4は本実施形態の植物の長寿命化処理装置100の第四の例である長寿命化処理装置100Dの構成を示すブロック図である。植物の長寿命化処理装置100Dは、光源110、認識部120、測距部130、光源制御部140、記憶部150,演算部160、照射位置制御部170を備える。
以下、植物の長寿命化処理装置100Dの照射位置制御部170について詳細に説明する。なお、長寿命化処理装置100Dの照射位置制御部170以外の各部は、第一の例で説明した光源110、第二の例で説明した認識部120、測距部130及び光源制御部140並びに第三の例で説明した記憶部150、演算部160と同様の構成であるため説明を省略する。
4 is a block diagram showing the configuration of a plant
The irradiation
<照射位置制御部>
照射位置制御部170は、光源110の位置や角度を変化させて光源110と照射対象との相対的位置関係を制御することが可能である。一例として、照射位置制御部170は、物体上を移動可能な車輪であって良く、空間中に浮遊可能とするプロペラであってもよい。別形態としては、照射位置制御部170は、光源110の空間的照射角度を可変とする機構であっても良い。
照射位置制御部170を備えることにより、光源110から光を一度照射しただけでは所望の全領域に照射ができない場合であっても、照射対象の一部への照射が完了した後に光源110を移動させて照射対象の次の一部を照射することや、連続的に光源110を移動させることで最終的に照射対象の全領域への光照射が可能になる。
照射位置制御部170は、演算部160で演算された光の積算照射量に応じて動作するものであってよい。
<Irradiation position control unit>
The irradiation
By providing the irradiation
The irradiation
(1.5)長寿命化処理装置の構成:その他の例
<植物搬送部>
本実施形態の植物の長寿命化処理装置100(100A~100D)は、照射対象の植物を搬送可能な植物搬送部を更に備えていても良い。植物搬送部は、特に制限されないが、植物を把持しつつ、光源110との相対位置を変化可能なものであってよい。
(1.5) Configuration of life extension treatment device: Other examples <Plant transport section>
The plant longevity treatment device 100 (100A to 100D) of the present embodiment may further include a plant transport unit capable of transporting a plant to be irradiated. The plant transport unit is not particularly limited, but may be capable of changing the relative position of the plant with respect to the
<照射防止部>
本実施形態の植物の長寿命化処理装置100(100A~100D)は、植物の花部分への照射を妨げる照射防止部を更に備えていても良い。照射防止部は、波長200nm以上240nm以下の範囲の光の透過率が低いものであればよい。照射防止部の透過率は、特に制限されないが、例えば10%以下であることが好ましく、5%以下であることがより好ましい。照射防止部は長寿命化処理装置100と物理的に接続していても良いし、離隔していてもよい。
<Radiation prevention part>
The plant longevity treatment device 100 (100A to 100D) of this embodiment may further include an irradiation prevention part that prevents irradiation of the flower part of the plant. The irradiation prevention part may have a low transmittance of light in the wavelength range of 200 nm or more and 240 nm or less. The transmittance of the irradiation prevention part is not particularly limited, but is preferably 10% or less, and more preferably 5% or less, for example. The irradiation prevention part may be physically connected to the plant longevity treatment device 100 or may be separated therefrom.
(1.6)長寿命化処理方法
本実施形態の植物の長寿命化処理方法について説明する。
本実施形態の植物の長寿命化処理方法は、植物の葉身に波長200nm以上240nm以下の範囲の光を照射する照射工程を備える。植物の葉身に波長200nm以上240nm以下の範囲の光を照射することにより、植物が枯れるまでの時間を長期化することが可能になる。
本実施形態の植物の長寿命化処理方法により、植物が枯れるまでの時間が長期化したことのメカニズムは定かではない。しかしながら、本開示者らは、葉身に存在する気孔に対して光が作用することで、過剰な蒸散を抑制され、それにより植物が枯れるまでの時間が長期化したと推察している。
本実施形態の植物の長寿命化処理方法は、上述した本実施形態の植物の長寿命化処理装置100(100A~100D等)により実現可能である。
(1.6) Plant Life Extension Treatment Method The plant life extension treatment method of this embodiment will be described.
The method for extending the lifespan of a plant according to the present embodiment includes an irradiation step of irradiating the leaf blade of the plant with light having a wavelength in the range of 200 nm to 240 nm. By irradiating the leaf blade of the plant with light having a wavelength in the range of 200 nm to 240 nm, it is possible to extend the time until the plant withers.
The mechanism by which the plant lifespan extension treatment method of the present embodiment extends the time until the plant withers is unclear, but the present inventors speculate that the light acts on the stomata in the leaf blade, suppressing excessive transpiration, thereby extending the time until the plant withers.
The plant longevity treatment method of this embodiment can be realized by the plant longevity treatment device 100 (100A to 100D, etc.) of this embodiment described above.
以下、本実施形態の長寿命化処理方法の説明を続ける。
効率的な処理の観点から、光の中心波長が190nm以上230nm以下であってよい。また、光の照射対象となる植物へのダメージを抑制する観点から、植物に照射する光が、250nm以上300nm以下の波長の光を含まないことが好ましい。
葉身に光を照射する際に、葉身に照射する光の積算照射量は、(10×紫外線の中心波長[nm]-2190)mJ/cm2以上であることが好ましい。これにより、光を照射された植物が日光に曝されても気孔が開きにくくなり、植物が長寿命化する。具体的には、葉身に照射する光の積算照射量は、1mJ/cm2以上であってよい。積算照射量が1mJ/cm2以上であれば、葉身に光を照射しない場合と比較して植物が枯れるまでの時間を長期化することが可能である。
また、葉身に照射する光の積算照射量は、400mJ/cm2以下であることが好ましい。積算照射量が400mJ/cm2以下であれば、葉身に照射した光による葉身へのダメージを生じさせずに植物が枯れるまでの時間を長期化することが可能である。
The description of the life extension treatment method of this embodiment will be continued below.
From the viewpoint of efficient treatment, the central wavelength of the light may be 190 nm or more and 230 nm or less. Moreover, from the viewpoint of suppressing damage to the plant to be irradiated with the light, it is preferable that the light irradiated to the plant does not include light with a wavelength of 250 nm or more and 300 nm or less.
When irradiating the leaf blade with light, the cumulative dose of light irradiated to the leaf blade is preferably (10 x central wavelength of ultraviolet light [nm] - 2190) mJ/ cm2 or more. This makes it difficult for the stomata to open even when the plant irradiated with light is exposed to sunlight, and the plant has a longer lifespan. Specifically, the cumulative dose of light irradiated to the leaf blade may be 1 mJ/ cm2 or more. If the cumulative dose is 1 mJ/ cm2 or more, it is possible to extend the time until the plant withers compared to when light is not irradiated to the leaf blade.
In addition, the cumulative dose of light irradiated to the leaf blade is preferably 400 mJ/ cm2 or less. If the cumulative dose is 400 mJ/ cm2 or less, it is possible to extend the time until the plant withers without causing damage to the leaf blade due to the light irradiated to the leaf blade.
葉身に光を照射する際に、葉身の裏側に光を照射してよい。葉身の表面および裏面に光を照射した場合と、葉身の裏面のみに光を照射した場合の対比において、枯れるまでの時間の長期化の効果に大きな差は生じなかったことから、裏面のみに光を照射することが好ましいと理解される。また、葉身は気孔を有していることが好ましい。葉身の気孔を有する面に光を照射することにより、植物がさらに長寿命化する。これは、気孔に光が照射されることで、気孔における蒸散が抑制されるためであると考えられる。 When irradiating the leaf blade with light, the underside of the leaf blade may be irradiated with light. Since there was no significant difference in the effect of extending the time until withering when light was irradiated to the front and underside of the leaf blade compared to when light was irradiated only to the underside of the leaf blade, it is understood that irradiating light only to the underside is preferable. In addition, it is preferable for the leaf blade to have stomata. By irradiating the side of the leaf blade that has stomata with light, the plant's lifespan will be further extended. This is thought to be because transpiration through the stomata is suppressed when light is irradiated to the stomata.
光の照射対象である植物は花卉であってよい。花卉は花の咲く植物である。花卉は観賞用等として、枯れるまでの時間の長期化が高く望まれている植物である。このため、本実施形態の長寿命化処理方法を、花卉に対して適用することが好ましい。
光の照射対象である植物は切り花であってよい。例えば、「平成25年度革新的農業技術に関する研修 切り花の日持ち向上技術 研修テキスト」によると、花卉の一例であるガーベラに対して消費者の8割が望む鑑賞期間は7日間であったが、実際に7日間以上日持ちをしたのは2割以下であり、従来の技術では消費者ニーズは充足されていないことが理解される。同じく、「平成25年度革新的農業技術に関する研修 切り花の日持ち向上技術 研修テキスト」によると、収穫から消費者の手元に花卉が届くまでには通常は3日程度の期間を要し、更に市場間での転送が生じると更に2日程度時間がかかると言われている。すなわち、消費者の望む7日間の鑑賞期間を担保しようとするためには、収穫から10~12日の日持ちが望まれていることが理解される。このため、本実施形態の長寿命化処理方法を、切り花に対して適用することが好ましい。
The plant to be irradiated with light may be a flowering plant. A flowering plant is a plant that blooms with flowers. Flowering plants are ornamental plants, and it is highly desirable to extend the time it takes for them to wither. For this reason, it is preferable to apply the life extension treatment method of the present embodiment to flowering plants.
The plant to be irradiated with light may be a cut flower. For example, according to the "Training Text for Improving the Shelf Life of Cut Flowers, 2013 Innovative Agricultural Technology Training Course," 80% of consumers desire a viewing period of 7 days for gerberas, an example of flowers, but less than 20% actually have a shelf life of more than 7 days, and it is understood that conventional technology does not satisfy consumer needs. Similarly, according to the "Training Text for Improving the Shelf Life of Cut Flowers, 2013 Innovative Agricultural Technology Training Course," it is said that it usually takes about 3 days from harvest to deliver flowers to consumers, and if transfer between markets occurs, it takes another 2 days. That is, it is understood that in order to guarantee the 7-day viewing period desired by consumers, a shelf life of 10 to 12 days from harvest is desired. For this reason, it is preferable to apply the life-extending treatment method of this embodiment to cut flowers.
[実験1:積算照射量検討]
<実施例1>
バラ(品種名:イリアス)から摘出した葉身を準備した。
次いで、中心波長が222nm、かつ波長200nm以上235nm以下の範囲において中心波長の発光強度に対して1%以上の発光強度の紫外光を出射するKrClエキシマランプを備える光源を準備した。当該光源は、波長235nmの光に対する透過率(入射角0度)が17%、波長240nmの光に対する透過率(入射角0度)が3%の光学フィルタを紫外光の出射面に備えていた。また、当該光源は、波長250nm以上300nm以下の光の発光強度が、いずれも中心波長の発光強度の1%以下であった。
光源の出射面から5cmの距離に裏面を光源に向けた葉身を配置し、紫外光の照射量2.5mW/cm2で、積算照射量44.6mJ/cm2となるまで紫外光を照射し、実施例1の処理済み葉身を得た。
[Experiment 1: Accumulative irradiation amount study]
Example 1
Leaf blades excised from a rose (cultivar: Ilias) were prepared.
Next, a light source was prepared that had a KrCl excimer lamp that emitted ultraviolet light with a central wavelength of 222 nm and an emission intensity of 1% or more of the emission intensity of the central wavelength in the wavelength range of 200 nm to 235 nm. The light source had an optical filter on the ultraviolet light emission surface that had a transmittance (
The leaf blade was placed with the underside facing the light source at a distance of 5 cm from the light source's emission surface, and was irradiated with ultraviolet light at an irradiation dose of 2.5 mW/ cm2 until the cumulative irradiation dose reached 44.6 mJ/ cm2 , thereby obtaining the treated leaf blade of Example 1.
<実施例2>
積算照射量を446mJ/cm2とした以外は実施例1と同様に紫外光を照射し、実施例2の処理済み葉身を得た。
Example 2
The treated leaf blade of Example 2 was obtained by irradiating with ultraviolet light in the same manner as in Example 1, except that the cumulative irradiation dose was 446 mJ/ cm2 .
<参考例1>
紫外光の照射処理を行わなかった以外は実施例1と同様にして、参考例の処理なし葉身を得た。
<Reference Example 1>
An untreated leaf blade of a Reference Example was obtained in the same manner as in Example 1, except that the ultraviolet light irradiation treatment was not carried out.
実施例1,2および参考例1の葉身を図5に示す。上段は葉身全体の写真であり、下段は葉身中央付近の拡大写真である。
実施例1の葉身は、参考例1の葉身と比較して、大きな違いは見られなかった。
実施例2の葉身は、参考例1の葉身と比較して、照射部分の変色が見られた。具体的には葉身および葉身内の葉脈の変色が見られた。
The leaf blades of Examples 1 and 2 and Reference Example 1 are shown in Fig. 5. The upper row is a photograph of the entire leaf blade, and the lower row is an enlarged photograph of the vicinity of the center of the leaf blade.
The leaf blade of Example 1 was not significantly different from the leaf blade of Reference Example 1.
Discoloration of the irradiated portion was observed in the leaf blade of Example 2 compared to the leaf blade of Reference Example 1. Specifically, discoloration of the leaf blade and the veins within the leaf blade was observed.
[実験2:表裏の日焼け比較]
<実施例3>
バラ(品種名:イリアス)から摘出した葉身を準備した。
実施例1と同じ光源を準備し、光源の出射面から5cmの距離に裏面を光源に向けた葉身を配置し、紫外光の照射量2.5mW/cm2で、積算照射量37.5mJ/cm2となるまで紫外光を照射した。次いで、同じ葉身の表面にも積算照射量37.5mJ/cm2の紫外光(照射量2.5mW/cm2)を照射し、実施例3の処理済み葉身を得た。
[Experiment 2: Comparison of sunburn on front and back]
Example 3
Leaf blades excised from a rose (cultivar: Ilias) were prepared.
The same light source as in Example 1 was prepared, and a leaf blade was placed 5 cm away from the light source with the back side facing the light source, and irradiated with ultraviolet light at an irradiation dose of 2.5 mW/ cm2 until the cumulative irradiation dose reached 37.5 mJ/ cm2 . Next, the surface of the same leaf blade was also irradiated with ultraviolet light at an cumulative irradiation dose of 37.5 mJ/ cm2 (irradiation dose 2.5 mW/ cm2 ) to obtain the treated leaf blade of Example 3.
<比較例1>
紫外光の照射処理を行わなかった以外は実施例3と同様にして、比較例1の処理なし葉身を得た。
<Comparative Example 1>
An untreated leaf blade of Comparative Example 1 was obtained in the same manner as in Example 3, except that the ultraviolet light irradiation treatment was not carried out.
実施例3の処理済み葉身及び比較例1の処理なし葉身を温度約25℃の室内に配置し、照射開始前(0時間)から6時間毎に照射36時間後まで葉身の表裏の状態変化を観察した結果を図6に示した。また、照射開始前(0時間)の葉身と照射36時間後の葉身との表裏の状態を図7に示した。
図6および図7から、紫外光を照射しなかった比較例1の葉身では、24時間経過時点で葉の輪郭部の変色が始まり、36時間経過時点では輪郭部の変色に加えて葉身全体の縮みが見られた。他方、紫外光での処理を行った実施例3の葉身は、36時間経過後も輪郭部の変色や葉身の縮みも見られなかった。
The treated leaf blade of Example 3 and the untreated leaf blade of Comparative Example 1 were placed in a room at a temperature of about 25° C., and the changes in the condition of the front and back of the leaf blade were observed every 6 hours from before the start of irradiation (0 hours) until 36 hours after irradiation, and the results are shown in Figure 6. In addition, the condition of the front and back of the leaf blade before the start of irradiation (0 hours) and 36 hours after irradiation are shown in Figure 7.
6 and 7, in the leaf blade of Comparative Example 1, which was not irradiated with ultraviolet light, discoloration of the leaf outline began after 24 hours, and in addition to discoloration of the outline, shrinkage of the entire leaf blade was observed after 36 hours. On the other hand, in the leaf blade of Example 3, which was treated with ultraviolet light, neither discoloration of the outline nor shrinkage of the leaf blade was observed even after 36 hours.
[実験3:切り花の形態での変化比較]
<実施例4>
バラ(品種名:オール4ラブ)を準備した。
実施例1と同じ光源を準備し、準備したバラの葉身の表裏に対して、実施例3と同様の方法で紫外光を照射して実施例4の処理済み葉身を得た。
[Experiment 3: Comparison of changes in the shape of cut flowers]
Example 4
Roses (variety name: All 4 Love) were prepared.
The same light source as in Example 1 was prepared, and ultraviolet light was irradiated onto the front and back of the prepared rose leaf blade in the same manner as in Example 3 to obtain a treated leaf blade of Example 4.
<実施例5>
葉身の裏面に対してのみ紫外光の照射処理を行った以外は実施例4と同様に紫外光照射処理を行い、実施例5の処理済み葉身を得た。
Example 5
The ultraviolet light irradiation treatment was carried out in the same manner as in Example 4, except that the ultraviolet light irradiation treatment was carried out only on the back surface of the leaf blade, to obtain the treated leaf blade of Example 5.
<実施例6>
光学フィルタを搭載しない光源を用いた以外は実施例5と同様に紫外光照射処理を行い、実施例6の処理済み葉身を得た。
Example 6
The ultraviolet light irradiation treatment was carried out in the same manner as in Example 5, except that a light source not equipped with an optical filter was used, to obtain the treated leaf blade of Example 6.
<比較例2>
紫外光の照射処理を行わなかった以外は実施例4と同様にして、比較例2の処理なし葉身を得た。
<Comparative Example 2>
An untreated leaf blade of Comparative Example 2 was obtained in the same manner as in Example 4, except that the ultraviolet light irradiation treatment was not carried out.
実施例4から6の葉身への照射処理を施したバラ及び比較例2の葉身への照射処理を施さなかったバラの茎の下部約9cmが水に浸かるようにした状態を維持して室温約25度の室内にバラを配置し、花の状態を中心に日毎の経過観察を行った。観察結果を図8(側面写真)および9(上面写真)に示した。 The roses whose leaves had been irradiated in Examples 4 to 6 and the roses whose leaves had not been irradiated in Comparative Example 2 were placed in a room at a room temperature of about 25°C with the lower 9 cm of the stems submerged in water, and daily observations were made, focusing on the condition of the flowers. The observation results are shown in Figures 8 (side view) and 9 (top view).
図8および9から、紫外光を照射しなかった比較例2のバラは、5日目で花弁の一部が枯れ始めて徐々に下方向に向いて行き、9日目には全ての花弁が下方向を向いてしまった。これに対し、紫外光を照射した実施例4から6のバラは5日目でも花弁の枯れは生じず、花弁が下方向に向くことはなかった。このことから、中心波長が190nm以上230nm以下の光を照射することで植物の長寿命化が実現されたことがわかった。
また、フィルタのない光源を用いて照射処理を行った実施例6のバラは、7日目に花弁のしおれが生じたが、フィルタのある光源を用いて照射処理を行った実施例4、5のバラは依然として枯れやしおれは生じなかった。このことから、フィルタによって波長240nm以上の光が除かれた波長240nm未満の光を照射することにより、植物への不必要なダメージを抑制し、更なる長寿命化が実現可能であることがわかった。
さらに、実施例4、5のバラは、12日経過後も枯れずに良好な状態が維持された。このことから、少なくとも葉身の裏面に対して中心波長が190nm以上230nm以下の光を照射することで植物の長寿命化が実現されることがわかった。
8 and 9, in the rose of Comparative Example 2, which was not irradiated with ultraviolet light, some of the petals began to wither and gradually turned downward on the fifth day, and by the ninth day, all the petals had turned downward. In contrast, in the roses of Examples 4 to 6, which were irradiated with ultraviolet light, the petals did not wither and did not turn downward even on the fifth day. This shows that the longevity of plants was achieved by irradiating them with light having a central wavelength of 190 nm or more and 230 nm or less.
Furthermore, the rose of Example 6, which was irradiated using a light source without a filter, experienced wilting of the petals on the seventh day, whereas the roses of Examples 4 and 5, which were irradiated using a light source with a filter, still did not wither or wilt. This shows that it is possible to suppress unnecessary damage to plants and achieve even longer lifespans by irradiating them with light of wavelengths less than 240 nm, from which light of wavelengths of 240 nm or more has been removed using a filter.
Furthermore, the roses of Examples 4 and 5 did not wither and remained in good condition even after 12 days had passed. This shows that the longevity of plants can be achieved by irradiating at least the backside of the leaf blade with light having a central wavelength of 190 nm or more and 230 nm or less.
[実験4:日光に曝された際の気孔の開きの比較]
<実施例7>
バラ(品種名:オール4ラブ)から摘出した葉身を準備した。
次いで、中心波長が227nmの紫外線LED光源を準備した。
光源の出射面に可能な限り近い位置に裏面を光源に向けた葉身を配置し、紫外光の照射量0.91mW/cm2で、積算照射量83mJ/cm2となるまで紫外光を照射し、実施例7の処理済み葉身を得た。なお、上述する照射は全て暗所で行った。
[Experiment 4: Comparison of stomatal opening when exposed to sunlight]
Example 7
Leaf blades excised from a rose (variety: All 4 Love) were prepared.
Next, an ultraviolet LED light source with a central wavelength of 227 nm was prepared.
The leaf blade was placed with the back side facing the light source as close as possible to the light source emission surface, and was irradiated with ultraviolet light at an irradiation dose of 0.91 mW/ cm2 until the cumulative irradiation dose reached 83 mJ/ cm2 , to obtain the treated leaf blade of Example 7. All of the above irradiations were performed in a dark place.
<実施例8>
積算照射量が100mJ/cm2となるまで紫外光を照射した以外は実施例7と同様に紫外光照射処理を行い、実施例8の処理済み葉身を得た。
Example 8
The ultraviolet light irradiation treatment was carried out in the same manner as in Example 7, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 100 mJ/ cm2 , to obtain the treated leaf blade of Example 8.
<実施例9>
積算照射量が300mJ/cm2となるまで紫外光を照射した以外は実施例7と同様に紫外光照射処理を行い、実施例8の処理済み葉身を得た。
<Example 9>
The ultraviolet light irradiation treatment was carried out in the same manner as in Example 7, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 300 mJ/ cm2 , to obtain the treated leaf blade of Example 8.
<実施例10>
積算照射量が500mJ/cm2となるまで紫外光を照射した以外は実施例7と同様に紫外光照射処理を行い、実施例8の処理済み葉身を得た。
Example 10
The ultraviolet light irradiation treatment was carried out in the same manner as in Example 7, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 500 mJ/ cm2 , to obtain the treated leaf blade of Example 8.
<実施例11>
積算照射量が1000mJ/cm2となるまで紫外光を照射した以外は実施例7と同様に紫外光照射処理を行い、実施例8の処理済み葉身を得た。
Example 11
The ultraviolet light irradiation treatment was carried out in the same manner as in Example 7, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 1000 mJ/ cm2 , to obtain the treated leaf blade of Example 8.
<実施例12>
紫外線LEDの中心波長を238nmとし、紫外光の照射量を1.94mW/cm2とし、積算照射量が200mJ/cm2となるまで紫外光を照射した以外は実施例7と同様に紫外光照射処理を行い、実施例12の処理済み葉身を得た。
Example 12
The ultraviolet light irradiation treatment was performed in the same manner as in Example 7, except that the central wavelength of the ultraviolet LED was 238 nm, the ultraviolet light irradiation dose was 1.94 mW/ cm2 , and ultraviolet light was irradiated until the cumulative irradiation dose reached 200 mJ/ cm2 , thereby obtaining the treated leaf blade of Example 12.
<実施例13>
積算照射量が300mJ/cm2となるまで紫外光を照射した以外は実施例12と同様に紫外光照射処理を行い、実施例13の処理済み葉身を得た。
Example 13
The ultraviolet light irradiation treatment was carried out in the same manner as in Example 12, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 300 mJ/ cm2 , to obtain the treated leaf blade of Example 13.
<実施例14>
積算照射量が400mJ/cm2となるまで紫外光を照射した以外は実施例12と同様に紫外光照射処理を行い、実施例14の処理済み葉身を得た。
<Example 14>
The ultraviolet light irradiation treatment was carried out in the same manner as in Example 12, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 400 mJ/ cm2 , to obtain the treated leaf blade of Example 14.
<実施例15>
積算照射量が500mJ/cm2となるまで紫外光を照射した以外は実施例12と同様に紫外光照射処理を行い、実施例15の処理済み葉身を得た。
Example 15
The ultraviolet light irradiation treatment was carried out in the same manner as in Example 12, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 500 mJ/ cm2 , to obtain the treated leaf blade of Example 15.
<実施例16>
積算照射量が1000mJ/cm2となるまで紫外光を照射した以外は実施例12と同様に紫外光照射処理を行い、実施例16の処理済み葉身を得た。
<Example 16>
The ultraviolet light irradiation treatment was carried out in the same manner as in Example 12, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 1000 mJ/ cm2 , to obtain the treated leaf blade of Example 16.
<比較例3>
紫外光を照射しなかった以外は実施例7と同様にして比較例3の葉身を得た。
<Comparative Example 3>
The leaf blade of Comparative Example 3 was obtained in the same manner as in Example 7, except that ultraviolet light was not irradiated.
<比較例4>
積算照射量が50mJ/cm2となるまで紫外光を照射した以外は実施例7と同様に紫外光照射処理を行い、比較例4の処理済み葉身を得た。
<Comparative Example 4>
The ultraviolet light irradiation treatment was carried out in the same manner as in Example 7, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 50 mJ/ cm2 , and the treated leaf blade of Comparative Example 4 was obtained.
<比較例5>
積算照射量が67mJ/cm2となるまで紫外光を照射した以外は実施例7と同様に紫外光照射処理を行い、比較例4の処理済み葉身を得た。
<Comparative Example 5>
The ultraviolet light irradiation treatment was carried out in the same manner as in Example 7, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 67 mJ/ cm2 , and the treated leaf blade of Comparative Example 4 was obtained.
<比較例6>
積算照射量が50mJ/cm2となるまで紫外光を照射した以外は実施例12と同様に紫外光照射処理を行い、比較例6の処理済み葉身を得た。
<Comparative Example 6>
The ultraviolet light irradiation treatment was carried out in the same manner as in Example 12, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 50 mJ/ cm2 , and the treated leaf blade of Comparative Example 6 was obtained.
<比較例7>
積算照射量が100mJ/cm2となるまで紫外光を照射した以外は実施例12と同様に紫外光照射処理を行い、比較例7の処理済み葉身を得た。
<Comparative Example 7>
The ultraviolet light irradiation treatment was carried out in the same manner as in Example 12, except that the ultraviolet light was irradiated until the cumulative irradiation amount reached 100 mJ/ cm2 , and the treated leaf blade of Comparative Example 7 was obtained.
葉身への照射処理を施した実施例7から実施例16及び比較例4から比較例7のバラ及び葉身への照射処理を施さなかった比較例3のバラを日光に曝した後、表面の気孔を観察した。気孔の開閉は、以下の表1で示す結果となった。また、紫外線照射を行わなかった比較例3以外の各実施例及び比較例(実施例7から実施例16及び比較例4から比較例7)の紫外線の中心波長と積算照射量との関係を、図10に示す。なお、図10中の直線Lは、積算照射量(10×紫外線の中心波長[nm]-2190)mJ/cm2を示している。 The roses of Examples 7 to 16 and Comparative Examples 4 to 7, in which the leaf blades were irradiated, and the rose of Comparative Example 3, in which the leaf blades were not irradiated, were exposed to sunlight, and then the stomata on the surface were observed. The results of opening and closing of stomata were shown in Table 1 below. FIG. 10 shows the relationship between the central wavelength of ultraviolet light and the cumulative dose of irradiation for each of the Examples and Comparative Examples (Examples 7 to 16 and Comparative Examples 4 to 7) other than Comparative Example 3, in which ultraviolet light irradiation was not performed. The straight line L in FIG. 10 indicates the cumulative dose of irradiation (10×central wavelength of ultraviolet light [nm]−2190) mJ/ cm2 .
表1及び図10に示す結果から、葉身に対して(10×紫外線の中心波長[nm]-2190)mJ/cm2以上の積算照射量で紫外線を照射することにより、葉身の気孔を閉じることができることが確認された。また、紫外線未照射の比較例3の葉身についても同様に、日光に曝すことで気孔が開くことが確認された。
このことから、本開示における紫外線の積算照射量は(10×紫外線の中心波長[nm]-2190)mJ/cm2以上であることが好ましいことが確認された。
From the results shown in Table 1 and Figure 10, it was confirmed that the stomata of the leaf blade can be closed by irradiating the leaf blade with ultraviolet light at an integrated dose of (10 x central wavelength of ultraviolet light [nm] - 2190) mJ/cm2 or more . Similarly, it was confirmed that the stomata of the leaf blade of Comparative Example 3, which was not irradiated with ultraviolet light, opened when exposed to sunlight.
From this, it was confirmed that the integrated dose of ultraviolet light in the present disclosure is preferably (10 x central wavelength of ultraviolet light [nm] - 2190) mJ/ cm2 or more.
以上、本開示を実施の形態を用いて説明したが、本開示の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本開示の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 The present disclosure has been described above using embodiments, but the technical scope of the present disclosure is not limited to the scope described in the above embodiments. It will be clear to those skilled in the art that various modifications and improvements can be made to the above embodiments. It is clear from the claims that forms incorporating such modifications or improvements can also be included in the technical scope of the present disclosure.
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The order of execution of each process, such as operations, procedures, steps, and stages, in the devices, systems, programs, and methods shown in the claims, specifications, and drawings is not specifically stated as "before" or "prior to," and it should be noted that the processes can be performed in any order, unless the output of a previous process is used in a later process. Even if the operational flow in the claims, specifications, and drawings is explained using "first," "next," etc. for convenience, it does not mean that it is necessary to perform the processes in that order.
110 光源
120 認識部
130 測距部
140 光源制御部
150 記憶部
160 演算部
170 照射位置制御部
300 植物の葉身
310 葉身の裏面
320 葉身の表面
110
Claims (32)
植物の長寿命化処理方法。 A method for extending the lifespan of a plant, comprising irradiating the leaf blade of the plant with light having a wavelength in the range of 200 nm or more and 240 nm or less.
請求項1に記載の植物の長寿命化処理方法。 2. The method for treating a plant to extend its lifespan according to claim 1, wherein the central wavelength of the light is 190 nm or more and 230 nm or less.
請求項1に記載の植物の長寿命化処理方法。 2. The method for treating a plant to extend its lifespan according to claim 1, wherein the light irradiated to the leaf blade does not include light with a wavelength of 250 nm or more and 300 nm or less.
請求項2に記載の植物の長寿命化処理方法。 The method for treating a plant to extend its lifespan according to claim 2, wherein an integrated irradiation amount when the light is irradiated to the leaf blade is (10 x the central wavelength (nm) - 2190) mJ/cm2 or more .
請求項1に記載の植物の長寿命化処理方法。 2. The method for treating a plant to extend its lifespan according to claim 1, wherein an integrated dose of the light applied to the leaf blade is 1 mJ/cm2 or more and 400 mJ/cm2 or less .
請求項1に記載の植物の長寿命化処理方法。 2. The method for treating a plant to extend its lifespan according to claim 1, wherein the light is irradiated onto a back side of the leaf blade when the light is irradiated onto the leaf blade.
請求項1に記載の植物の長寿命化処理方法。 2. The method for treating a plant to extend its lifespan according to claim 1, wherein the light is irradiated onto the plant which is a flowering plant.
請求項1に記載の植物の長寿命化処理方法。 2. The method for treating a plant to extend its lifespan according to claim 1, wherein the light is irradiated onto the plant which is a cut flower.
請求項1に記載の植物の長寿命化処理方法。 2. The method for treating a plant to extend its lifespan according to claim 1, wherein the light is irradiated onto the leaf blade having stomata.
請求項1に記載の植物の長寿命化処理方法。 The method for treating a plant to extend its lifespan according to claim 1 , wherein the light is emitted from an LED.
請求項1に記載の植物の長寿命化処理方法。 The method for treating a plant to extend its lifespan according to claim 1 , wherein the light is irradiated onto the leaf blade using a plurality of light sources that emit the light.
請求項1に記載の植物の長寿命化処理方法。 The method for treating a plant to extend its lifespan according to claim 1 , wherein the light is irradiated onto a plurality of the leaf blades.
植物の長寿命化処理装置。 A plant longevity treatment device equipped with a light source capable of emitting light having a wavelength in the range of 200 nm or more and 240 nm or less.
請求項13に記載の植物の長寿命化処理装置。 The plant longevity treatment device according to claim 13, wherein the central wavelength of the light emitted from the light source is 190 nm or more and 230 nm or less.
請求項13に記載の植物の長寿命化処理装置。 The plant longevity treatment device according to claim 13 , further comprising an optical member having a transmittance of 20% or less for the light having a wavelength of 240 nm.
請求項13に記載の植物の長寿命化処理装置。 The plant longevity treatment device according to claim 13 , further comprising a recognition unit that recognizes a state of an irradiated area of the light emitted from the light source.
請求項16に記載の植物の長寿命化処理装置。 The plant longevity treatment device according to claim 16 , wherein the recognition unit includes a leaf blade recognition unit capable of recognizing a leaf blade of the plant.
請求項16に記載の植物の長寿命化処理装置。 Further comprising a distance measuring unit for measuring a distance to an irradiation target of the light emitted from the light source.
The plant longevity treatment device according to claim 16.
請求項13に記載の植物の長寿命化処理装置。 Further comprising a light source control unit for controlling the operation of the light source.
The plant longevity treatment device according to claim 13.
請求項17に記載の植物の長寿命化処理装置。 A light source control unit capable of communicating with the leaf blade recognition unit and controlling the operation of the light source is further provided.
The plant longevity treatment device according to claim 17.
請求項13に記載の植物の長寿命化処理装置。 Further comprising a storage unit for storing operation information of the light source.
The plant longevity treatment device according to claim 13.
請求項18に記載の植物の長寿命化処理装置。 A storage unit capable of communicating with the distance measuring unit and storing operation information of the light source and the distance measured by the distance measuring unit.
The plant longevity treatment device according to claim 18.
請求項22に記載の植物の長寿命化処理装置。 The light source may further include a calculation unit that receives the operation information of the light source and the distance and calculates an integrated irradiance of the light on the leaf blade of the plant from the operation information and the distance.
The plant longevity treatment device according to claim 22.
請求項23に記載の植物の長寿命化処理装置。 Further, a light source control unit controls an operation of the light source in accordance with the integrated irradiation amount calculated by the calculation unit.
The plant longevity treatment device according to claim 23.
請求項24に記載の植物の長寿命化処理装置。 The plant longevity treatment device according to claim 24 , wherein the light source control unit controls the light source so that an integrated irradiance of the light on the leaf blade of the plant is equal to or greater than (10 × central wavelength of the light (nm) − 2190) mJ/cm2.
請求項13に記載の植物の長寿命化処理装置。 Further comprising an irradiation position control unit capable of changing an irradiation position of the light emitted from the light source.
The plant longevity treatment device according to claim 13.
請求項23に記載の植物の長寿命化処理装置。 The plant longevity treatment device of claim 23, further comprising an irradiation position control unit capable of changing the direction in which the light source faces in accordance with the accumulated irradiation amount calculated by the calculation unit, thereby changing the irradiation position of the light emitted from the light source.
請求項13に記載の植物の長寿命化処理装置。 The light source has a plurality of light exit surfaces from which the light is emitted.
The plant longevity treatment device according to claim 13.
請求項13に記載の植物の長寿命化処理装置。 Further comprising a plant transport unit,
The plant longevity treatment device according to claim 13.
請求項17に記載の植物の長寿命化処理装置。 The leaf blade recognition unit includes a plant recognition unit capable of recognizing the type of the plant.
The plant longevity treatment device according to claim 17.
請求項17に記載の植物の長寿命化処理装置。 The leaf blade recognition unit includes a flower recognition unit capable of recognizing a flower part of the plant.
The plant longevity treatment device according to claim 17.
請求項13に記載の植物の長寿命化処理装置。 Further comprising an irradiation prevention part that prevents the light from being irradiated onto a flower part of the plant.
The plant longevity treatment device according to claim 13.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2025503747A JPWO2024181116A1 (en) | 2023-02-27 | 2024-02-13 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023028640 | 2023-02-27 | ||
JP2023-028640 | 2023-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024181116A1 true WO2024181116A1 (en) | 2024-09-06 |
Family
ID=92589673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/004884 WO2024181116A1 (en) | 2023-02-27 | 2024-02-13 | Plant life prolongation method and plant life prolongation apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2024181116A1 (en) |
WO (1) | WO2024181116A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002204653A (en) * | 2001-01-11 | 2002-07-23 | Toshiba Lighting & Technology Corp | Gas removal equipment |
JP2009261311A (en) * | 2008-04-24 | 2009-11-12 | Panasonic Electric Works Co Ltd | Plant disease damage-preventing lighting device |
JP2022157607A (en) * | 2021-03-31 | 2022-10-14 | ダイキン工業株式会社 | display device |
WO2022230359A1 (en) * | 2021-04-30 | 2022-11-03 | ウシオ電機株式会社 | Ultraviolet light emission device, method for using ultraviolet light emission device, and ultraviolet light emission method |
WO2023276621A1 (en) * | 2021-06-29 | 2023-01-05 | 旭化成株式会社 | Ultraviolet ray receiving and emitting device |
WO2023058333A1 (en) * | 2021-10-04 | 2023-04-13 | ウシオ電機株式会社 | Plant withering/killing method and plant withering/killing system |
-
2024
- 2024-02-13 JP JP2025503747A patent/JPWO2024181116A1/ja active Pending
- 2024-02-13 WO PCT/JP2024/004884 patent/WO2024181116A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002204653A (en) * | 2001-01-11 | 2002-07-23 | Toshiba Lighting & Technology Corp | Gas removal equipment |
JP2009261311A (en) * | 2008-04-24 | 2009-11-12 | Panasonic Electric Works Co Ltd | Plant disease damage-preventing lighting device |
JP2022157607A (en) * | 2021-03-31 | 2022-10-14 | ダイキン工業株式会社 | display device |
WO2022230359A1 (en) * | 2021-04-30 | 2022-11-03 | ウシオ電機株式会社 | Ultraviolet light emission device, method for using ultraviolet light emission device, and ultraviolet light emission method |
WO2023276621A1 (en) * | 2021-06-29 | 2023-01-05 | 旭化成株式会社 | Ultraviolet ray receiving and emitting device |
WO2023058333A1 (en) * | 2021-10-04 | 2023-04-13 | ウシオ電機株式会社 | Plant withering/killing method and plant withering/killing system |
Also Published As
Publication number | Publication date |
---|---|
JPWO2024181116A1 (en) | 2024-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8384047B2 (en) | Fluorescence-based ultraviolet illumination | |
US20220061228A1 (en) | Radiation-Based Mildew Control | |
US20180028700A1 (en) | Ultraviolet-Based Mildew Control | |
Gupta et al. | Light emitting diodes for agriculture | |
US10433493B2 (en) | Controlling ultraviolet intensity over a surface of a light sensitive object | |
JP5162740B2 (en) | Lighting device for plant disease control | |
CN111615947B (en) | Method for increasing crop yield and/or quality | |
JP5874060B2 (en) | Plant breeding lighting device | |
EP3143869A1 (en) | Method for stimulating the resistance of plants to biotic stress by uv radiation exposure | |
US11382280B1 (en) | Diffused fiber-optic horticultural lighting | |
JP2015092860A (en) | Crop cultivation system | |
AU2017261655B2 (en) | Method to naturally brand a lettuce. | |
JP2013123417A (en) | Illuminating device for plant growth disease control | |
JP5830661B2 (en) | Crop cultivation system | |
JP2001054320A (en) | Plant cultivation method | |
WO2024181116A1 (en) | Plant life prolongation method and plant life prolongation apparatus | |
JP5213255B2 (en) | Pest control device | |
JP7245595B2 (en) | plant growth control method | |
TW201803442A (en) | Spinach cultivation method using artificial lights | |
WO2023170215A1 (en) | Improved control of radiation in agriculture | |
JP5129768B2 (en) | Pest control device | |
US20250000033A1 (en) | Mobile device delivering light pulses and its use in the elimination of pathogens | |
JP7276786B2 (en) | Plant disease control method and disease control device | |
Romanovich et al. | Development of the Multi-wavelength LED Lamp to Improve Plant Growth | |
Runkle | UV radiation and applications in horticulture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24763600 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2025503747 Country of ref document: JP |