[go: up one dir, main page]

WO2024180481A1 - Produit à prendre par voie orale contenant de la caféine - Google Patents

Produit à prendre par voie orale contenant de la caféine Download PDF

Info

Publication number
WO2024180481A1
WO2024180481A1 PCT/IB2024/051878 IB2024051878W WO2024180481A1 WO 2024180481 A1 WO2024180481 A1 WO 2024180481A1 IB 2024051878 W IB2024051878 W IB 2024051878W WO 2024180481 A1 WO2024180481 A1 WO 2024180481A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
weight
fibers
tobacco
caffeine
Prior art date
Application number
PCT/IB2024/051878
Other languages
English (en)
Inventor
Andinet Amare Gessesse
Johan Robert GUSTAFSON
Original Assignee
Nicoventures Trading Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nicoventures Trading Limited filed Critical Nicoventures Trading Limited
Publication of WO2024180481A1 publication Critical patent/WO2024180481A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B13/00Tobacco for pipes, for cigars, e.g. cigar inserts, or for cigarettes; Chewing tobacco; Snuff
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • A24B15/302Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances by natural substances obtained from animals or plants
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • A24B15/302Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances by natural substances obtained from animals or plants
    • A24B15/303Plant extracts other than tobacco
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • A24B15/308Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances vitamins
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • A24B15/36Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances containing a heterocyclic ring
    • A24B15/38Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances containing a heterocyclic ring having only nitrogen as hetero atom
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/42Treatment of tobacco products or tobacco substitutes by chemical substances by organic and inorganic substances

Definitions

  • compositions intended for human use are adapted for oral use and deliver substances such as caffeine, flavors, and/or other active ingredients during use.
  • Such compositions may include tobacco, or a product derived from tobacco, or may be tobacco-free alternatives.
  • Such products typically contain flavorants and/or active ingredients such as nicotine, caffeine, botanicals, or cannabidiol.
  • the format of such products can vary, and include pouched products containing a powdered or granular composition, lozenges, pastilles, liquids, gels, emulsions, meltable compositions, and the like. See, for example, the types of products described in US Patent App. Pub. Nos.
  • compositions comprising a filler, caffeine, at least one sweetener, and one or more flavorants.
  • the compositions may further comprise at least one vitamin, a botanical material or an extract thereof, or both at least one vitamin and a botanical material or an extract thereof.
  • a composition comprising: a filler in an amount of at least 20% by weight, based on the total weight of the composition; caffeine in an amount of at least 5% by weight, based on the total weight of the composition, wherein the caffeine is present in substantially pure form; at least one sweetener; and one or more flavorants.
  • the filler is present in an amount from about 20 to about 40% by weight, based on the total weight of the composition.
  • the filler is microcrystalline cellulose.
  • the caffeine is present in a range from about 5 to about 30% by weight, based on the total weight of the composition.
  • the composition further comprises at least one vitamin.
  • the at least one vitamin is selected from the group consisting of vitamin Bl, B2, B3, B5, B6, B7, B9, B12, C, and combinations thereof.
  • the at least one vitamin is a mixture of vitamins Bl, B2, B3, B5, B6, B7, B9, B12, and C.
  • the composition further comprises zinc, magnesium, selenium, or a combination thereof.
  • the composition further comprises a botanical material or an extract thereof.
  • the botanical material comprises ginseng, guarana extract, or a combination thereof.
  • the composition further comprises sodium chloride, ammonium chloride, or a combination thereof.
  • the composition further comprises a buffer.
  • the composition has a moisture content of in a range from about 1 to about 60% by weight, based on the total weight of the composition.
  • the composition has a moisture content of in a range from about 10 to about 25% by weight, based on the total weight of the composition.
  • the composition is substantially free of one or more of black tea, alginate, inulin, and nicotine. In some embodiments, the composition is substantially free of particulate plant material.
  • the composition is substantially free of particulate tobacco or particulate botanical materials.
  • the composition further comprises a source of caffeine in the form of a caffeine-containing botanical extract.
  • an extract of the composition prepared by placing a 2-gram sample of the composition in 20 mL of purified water for 30 minutes at 25 °C, has a pH in a range from about 8.5 to about 9.0.
  • the at least one sweetener provides a total sweetness index of at least 200 relative to sucrose.
  • a pouched product configured for oral use comprising: a water- permeable pouch; and a composition as disclosed herein, enclosed in the water-permeable pouch.
  • the water-permeable pouch comprises a non-woven material. In some embodiments, the water-permeable pouch comprises a viscose material. In some embodiments, the water- permeable pouch comprises regenerated cellulose fibers, polyester fibers, viscose rayon fibers, or a combination thereof. In some embodiments, the water-permeable pouch further comprises an acrylic heatsealing binder.
  • the pouched product has a moisture content in a range from about 35 to about 50% by weight, based on the total weight of the pouched product.
  • Embodiment 1 A composition comprising: a filler in an amount of at least 20% by weight, based on the total weight of the composition; caffeine in an amount of at least 5% by weight, based on the total weight of the composition, wherein the caffeine is present in substantially pure form; at least one sweetener; and one or more flavorants.
  • Embodiment 2 The composition of embodiment 1, wherein the filler is present in an amount from about 20 to about 40% by weight, based on the total weight of the composition.
  • Embodiment 3 The composition of embodiment 1 or 2, wherein the filler is microcrystalline cellulose.
  • Embodiment 4 The composition of any one of embodiments 1-3, wherein the caffeine is present in a range from about 5 to about 30% by weight, based on the total weight of the composition.
  • Embodiment 5 The composition of any one of embodiments 1-4, further comprising at least one vitamin.
  • Embodiment 6 The composition of embodiment 5, wherein the at least one vitamin is selected from the group consisting of vitamin Bl, B2, B3, B5, B6, B7, B9, B12, C, and combinations thereof.
  • Embodiment 7 The composition of embodiment 5, wherein the at least one vitamin is a mixture of vitamins Bl, B2, B3, B5, B6, B7, B9, B12, and C.
  • Embodiment 8 The composition of any one of embodiments 1-7, wherein the composition further comprises zinc, magnesium, selenium, or a combination thereof.
  • Embodiment 9 The composition of any one of embodiments 1-8, further comprising a botanical material or an extract thereof.
  • Embodiment 10 The composition of embodiment 9, wherein the botanical material comprises ginseng, guarana extract, or a combination thereof.
  • Embodiment 11 The composition of any one of embodiments 1-10, further comprising sodium chloride, ammonium chloride, or a combination thereof.
  • Embodiment 12 The composition of any one of embodiments 1-11, further comprising a buffer.
  • Embodiment 13 The composition of any one of embodiments 1-12, wherein the composition has a moisture content of in a range from about 1 to about 60% by weight, based on the total weight of the composition.
  • Embodiment 14 The composition of any one of embodiments 1-13, wherein the composition has a moisture content of in a range from about 10 to about 25% by weight, based on the total weight of the composition.
  • Embodiment 15 The composition of any one of embodiments 1-14, wherein the composition is substantially free of one or more of black tea, alginate, inulin, and nicotine.
  • Embodiment 16 The composition of any one of embodiments 1-15, wherein the composition is substantially free of particulate plant material.
  • Embodiment 17 The composition of any one of embodiments 1-16, wherein the composition is substantially free of particulate tobacco or particulate botanical materials.
  • Embodiment 18 The composition of any one of embodiments 1-17, further comprising a source of caffeine in the form of a caffeine-containing botanical extract.
  • Embodiment 19 The composition of any one of embodiments 1-18, wherein an extract of the composition, prepared by placing a 2-gram sample of the composition in 20 mL of purified water for 30 minutes at 25 °C, has a pH in a range from about 8.5 to about 9.O..
  • Embodiment 20 The composition of any one of embodiments 1-19, wherein the at least one sweetener provides a total sweetness index of at least 200, relative to sucrose.
  • Embodiment 21 A pouched product configured for oral use comprising: a water-permeable pouch; and the composition of any one of embodiments 1-20 enclosed in the water-permeable pouch.
  • Embodiment 22 The pouched product of embodiment 21, wherein the water-permeable pouch comprises a non-woven material.
  • Embodiment 23 The pouched product of embodiment 21, wherein the water-permeable pouch comprises a viscose material.
  • Embodiment 24 The pouched product of embodiment 21, wherein the water-permeable pouch comprises regenerated cellulose fibers, polyester fibers, viscose rayon fibers, or a combination thereof.
  • Embodiment 25 The pouched product of any one of embodiments 21-24, wherein the water- permeable pouch further comprises an acrylic heat-sealing binder.
  • Embodiment 26 The pouched product of any one of embodiments 21-25, wherein the pouched product has a moisture content in a range from about 35 to about 50% by weight, based on the total weight of the pouched product.
  • FIG. 1 is a perspective view of a pouched product embodiment, taken across the width of the product, showing an outer pouch filled with a composition of the present disclosure.
  • FIG. 2 is a partial cross-sectional view illustrating a pouched product comprising a layered outer pouch, wherein the layered outer pouch comprises a hydrophilic material layer and a hydrophobic material layer.
  • references to "dry weight percent” or “dry weight basis” refers to weight on the basis of dry ingredients (i.e., all ingredients except water).
  • Reference to "wet weight” refers to the weight of the mixture including water. Unless otherwise indicated, reference to “weight percent” of a mixture reflects the total wet weight of the mixture (i.e., including water).
  • Reference herein to "pH” refers to the concentration of hydrogen ions as expressed by -log[H+], Unless the context dictates otherwise, reference herein to the pH of a composition refers to the pH of a solution of a specific quantity of the composition in a specific volume of water and as determined according to the method described herein in as Example 1.
  • compositions includes none of the referenced material as an intentionally added component beyond trace amounts that may be naturally or unintentionally present (e.g., as a contaminant or a substance inherently present in a component of the composition).
  • composition which is indicated as substantially free of a particular material may be characterized in some embodiments as having less than 1% by weight, or less than 0.5% by weight, or less than 0.1% by weight, or less than 0.01% by weight, such as 0.001% by weight, or less than 0.0001% by weight, or even 0% by weight of said material.
  • compositions comprising a filler, caffeine, at least one sweetener, and one or more flavorants.
  • the compositions may further comprise at least one vitamin, and may comprise additional active ingredients, botanical materials, botanical extracts, or combinations thereof.
  • the relative amounts of the various components within the composition may vary, and typically are selected so as to provide the desired sensory and performance characteristics to the composition. The example individual components of the composition are described further herein below.
  • compositions as described herein include a filler.
  • Such fillers may fulfill multiple functions, such as enhancing certain organoleptic properties such as texture and mouthfeel, enhancing cohesiveness or compressibility of the product, and the like.
  • the fillers are porous particulate materials and are cellulose-based.
  • suitable fillers are any non-tobacco plant material or derivative thereof, including cellulose materials derived from such sources.
  • cellulosic non-tobacco plant material include cereal grains (e.g., maize, oat, barley, rye, buckwheat, and the like), sugar beet (e.g., FIBREX® brand filler available from International Fiber Corporation), bran fiber, and mixtures thereof.
  • Non-limiting examples of derivatives of non-tobacco plant material include starches (e.g., from potato, wheat, rice, com), natural cellulose, and modified cellulosic materials. Additional examples of potential fillers include maltodextrin, dextrose, calcium carbonate, calcium phosphate, lactose, mannitol, xylitol, and sorbitol. Combinations of fillers can also be used.
  • Starch as used herein may refer to pure starch from any source, modified starch, or starch derivatives. Starch is present, typically in granular form, in almost all green plants and in various types of plant tissues and organs (e.g., seeds, leaves, rhizomes, roots, tubers, shoots, fruits, grains, and stems). Starch can vary in composition, as well as in granular shape and size. Often, starch from different sources has different chemical and physical characteristics. A specific starch can be selected for inclusion in the composition based on the ability of the starch material to impart a specific organoleptic property to composition. Starches derived from various sources can be used.
  • starch major sources include cereal grains (e.g., rice, wheat, and maize) and root vegetables (e.g., potatoes and cassava).
  • sources of starch include acorns, arrowroot, arracacha, bananas, barley, beans (e.g., favas, lentils, mung beans, peas, chickpeas), breadfruit, buckwheat, canna, chestnuts, colacasia, katakuri, kudzu, malanga, millet, oats, oca, Polynesian arrowroot, sago, sorghum, sweet potato, quinoa, rye, tapioca, taro, tobacco, water chestnuts, and yams.
  • modified starches are modified starches.
  • a modified starch has undergone one or more structural modifications, often designed to alter its high heat properties.
  • Some starches have been developed by genetic modifications and are considered to be "genetically modified” starches.
  • Other starches are obtained and subsequently modified by chemical, enzymatic, or physical means.
  • modified starches can be starches that have been subjected to chemical reactions, such as esterification, etherification, oxidation, depolymerization (thinning) by acid catalysis or oxidation in the presence of base, bleaching, transglycosylation and depolymerization (e.g., dextrinization in the presence of a catalyst), cross-linking, acetylation, hydroxypropylation, and/or partial hydrolysis.
  • Enzymatic treatment includes subjecting native starches to enzyme isolates or concentrates, microbial enzymes, and/or enzymes native to plant materials, e.g., amylase present in com kernels to modify com starch.
  • Other starches are modified by heat treatments, such as pregelatinization, dextrinization, and/or cold water swelling processes.
  • modified starches include monostarch phosphate, distarch glycerol, distarch phosphate esterified with sodium trimetaphosphate, phosphate distarch phosphate, acetylated distarch phosphate, starch acetate esterified with acetic anhydride, starch acetate esterified with vinyl acetate, acetylated distarch adipate, acetylated distarch glycerol, hydroxypropyl starch, hydroxypropyl distarch glycerol, and starch sodium octenyl succinate.
  • the filler is a cellulose material or a cellulose derivative.
  • MCC microcrystalline cellulose
  • the MCC may be synthetic or semi-synthetic, or it may be obtained entirely from natural celluloses.
  • the MCC may be selected from the group consisting of AVICEL® grades PH-100, PH-102, PH-103, PH-105, PH-112, PH- 113, PH-200, PH-300, PH-302, VIVACEL® grades 101, 102, 12, 20 and EMOCEL® grades 50M and 90M, and the like, and mixtures thereof.
  • the composition comprises MCC as the filler.
  • the quantity of MCC present in the composition as described herein may vary according to the desired properties.
  • the amount of filler can vary, but is typically greater than about 20%, and up to about 75% of the composition by weight, based on the total weight of the composition.
  • a typical range of filler (e.g., MCC) within the composition can be from about 20 to about 75% by total weight of the composition, for example, from about 20, about 25, or about 30, to about 35, about 40, about 45, or about 50% by weight (e.g., about 20 to about 50%, or about 25 to about 45% by weight).
  • the amount of filler is at least about 20% by weight, such as at least about 25%, or at least about 30%, or at least about 35%, or at least about 40%, based on the total weight of the composition.
  • the amount of filler present is in a range from about 20% to about 40% by weight, such as about 20, about 25, about 30, about 35, or about 40% by weight, based on the total weight of the composition.
  • the composition comprises inulin, which is a non-digestible starch which may be characterized as a filler.
  • inulin may be present as a component of the composition, or may be present as a filler or diluent in a component of the composition.
  • inulin may serve as a diluent in a dry premix of vitamins, minerals, and the like, which is then added to other components to form the composition.
  • the composition is substantially free of inulin.
  • composition as disclosed herein comprises caffeine.
  • the composition comprises caffeine in an amount of at least 5% by weight, based on the total weight of the composition, wherein the caffeine is present in substantially pure form.
  • substantially pure form is meant caffeine in an isolated and purified solid (e.g., powder or crystalline) form, so as to distinguish from caffeine which may be present naturally in certain plant-based materials in a natural (e.g., botanical) matrix (e.g., tea).
  • a natural matrix e.g., tea
  • isolated and purified solid caffeine will be of a purify of greater than 95%, such as 98%, 99%, 99.5%, or even 100% purity.
  • isolated, purified caffeine can be naturally obtained, semi-synthetic, or wholly synthetic.
  • caffeine can be obtained by extraction and purification from botanical sources (e.g., tea).
  • whole synthetic it is meant that the caffeine has been obtained by chemical synthesis.
  • the caffeine in substantially pure form is typically present in in the composition at a concentration of at least about 5% by weight and up to about 80% by weight, such as from about 10, about 20, about 30, or about 40 to about 50, about 60, about 70, or about 80% by weight.
  • the caffeine is present in an amount from about 5 to about 30% by weight, such as, e.g., from about from about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, to about 11%, or about 12%, to about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, about 20%, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, or about 30% by weight, based on the total weight of the composition.
  • the caffeine in substantially pure form is present in the composition at a concentration from about 5% by weight to about 15% by weight. In some embodiments, the caffeine in substantially pure form is present in the composition at a concentration from about 5% by weight to about 25% by weight.
  • the caffeine in substantially pure form is present in in the composition such that each individual product portion (e.g., a pouch, tablet, chew, or the like) comprises from about 40 to about 60 mg of caffeine, from about 60 to about 80 mg of caffeine, or from about 80 to about 100 mg of caffeine.
  • at least a portion of the caffeine is present in an encapsulated form.
  • an encapsulated caffeine is Vitashure®, available from Balchem Corp., 52 Sunrise Park Road, New Hampton, NY, 10958.
  • the composition further comprises, in addition to the caffeine present in substantially pure form, a source of caffeine in the form of a caffeine-containing botanical material or extract.
  • a source of caffeine in the form of a caffeine-containing botanical material or extract.
  • Certain botanicals e.g., guarana, tea, coffee, cocoa, and the like
  • extracts thereof naturally include caffeine or related alkaloids and have a natural stimulant effect.
  • certain botanical materials may possess a stimulant effect by virtue of the presence of e.g., caffeine, and accordingly are "natural” stimulants.
  • the term “stimulant” refers to a material that increases activity of the central nervous system and/or the body, for example, enhancing focus, cognition, vigor, mood, alertness, and the like.
  • Non-limiting examples of stimulants include caffeine, theacrine, theobromine, and theophylline.
  • Theacrine (1,3,7,9-tetramethyluric acid) is a purine alkaloid which is structurally related to caffeine, and possesses stimulant, analgesic, and anti-inflammatory effects.
  • the composition comprises a caffeine-containing botanical material or extract.
  • the botanical material or extract is guarana.
  • the composition is substantially free of such caffeine-containing botanical materials or extracts.
  • the composition as disclosed herein comprise at least one vitamin.
  • vitamin refers to an organic molecule (or related set of molecules) that is an essential micronutrient needed for the proper functioning of metabolism in a mammal.
  • vitamins required by human metabolism which are: vitamin A (as all-trans-retinol, all-trans-retinyl-esters, as well as all-trans-beta-carotene and other provitamin A carotenoids), vitamin Bl (thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), vitamin B7 (biotin), vitamin B9 (folic acid or folate), vitamin B12 (cobalamins), vitamin C (ascorbic acid), vitamin D (calciferols), vitamin E (tocopherols and tocotrienols), and vitamin K (quinones).
  • the vitamin or combination of vitamins is typically present at a concentration in the composition from about 0.0001% to about 1% by weight, such as, e.g., from about 0.0001, about 0.001, about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, or about 0.1% w/w, to about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1% by weight, based on the total weight of the composition.
  • the at least one vitamin comprises one or more B-vitamins. In some embodiments, the composition comprises a plurality of B-vitamins. In some embodiments, the composition comprises a combination of vitamin C and at least one B-vitamin. In some embodiments, the at least one vitamin is selected from the group consisting of vitamin Bl, B2, B3, B5, B6, B7, B9, B12, C, E, and combinations thereof. In some embodiments, the at least one vitamin is a mixture of vitamins Bl, B2, B3, B5, B6, B7, B9, B 12, vitamin C, and vitamin E.
  • the composition comprises a mineral.
  • mineral refers to an inorganic molecule (or related set of molecules) that is an essential micronutrient needed for the proper functioning of various systems in a mammal.
  • minerals include iron, zinc, copper, selenium, chromium, cobalt, manganese, calcium, phosphorus, sulfur, magnesium, and the like.
  • such minerals will be present in a form suitable for human consumption, such as in the form of a soluble salt.
  • the form of the mineral e.g., zinc or magnesium salts
  • the form of the mineral is selected to be relatively water soluble for compositions with greater water solubility (e.g., magnesium or zinc gluconate or sulfate) or selected to be relatively water insoluble for compositions with reduced water solubility (e.g., magnesium or zinc oxide), or combinations thereof.
  • the mineral or combination of minerals is typically present at a concentration in the composition from about 0.00001% to about 5% by weight, such as, e.g., about 0.00001, about 0.0001, about 0.001, about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.1% w/w, about 0.2% or about 0.3% by weight, based on the total weight of the composition.
  • a mineral or combination of minerals is present in an amount of about 0.1% to about 5% by weight, such as about 0.1% to about 3% by weight, based on the total weight of the composition.
  • the composition comprises zinc, magnesium, selenium, or a combination thereof. In some embodiments, the composition comprises zinc and selenium in the forms of zinc sulfate and sodium selenite, respectively.
  • the composition comprises at least one sweetener.
  • the quantity of sweetener present in the composition may vary according to the desired sweetness of the composition, other flavors present, the nature of the sweetener, the concentration of caffeine and other active substances present, and the like.
  • the sweetener or combination of sweeteners may make up from about 0.01 to about 20% or more of the of the composition by weight, for example, from about 0.01 to about 0.1, from about 0.1 to about 1%, from about 1 to about 5%, from about 5 to about 10%, or from about 10 to about 20% by weight, based on the total weight of the composition.
  • a combination of sweeteners is present at a concentration of from about 0.01% to about 0.1% by weight of the composition, such as about 0.01, about 0.02, about 0.03, about 0.04, about 0.05, about 0.06, about 0.07, about 0.08, about 0.09, or about 0.1% by weight of the composition. In some embodiments, a combination of sweeteners is present at a concentration of from about 0.1% to about 0.5% by weight of the composition, such as about 0.1, about 0.2, about 0.3, about 0.4, or about 0.5% by weight of the composition. In some embodiments, a combination of sweeteners is present at a concentration of from about 1% to about 3% by weight of the composition.
  • the sweetener can be any sweetener or combination of sweeteners, in natural or artificial form, or as a combination of natural and artificial sweeteners.
  • natural sweeteners include fructose, sucrose, glucose, maltose, isomaltulose, mannose, galactose, lactose, stevia, honey, and the like.
  • artificial sweeteners include sucralose, maltodextrin, saccharin, aspartame, acesulfame K, neotame, and the like.
  • the sweetener comprises an artificial sweetener.
  • the artificial sweetener is sucralose.
  • the sweetener comprises one or more sugar alcohols.
  • Sugar alcohols are polyols derived from monosaccharides or disaccharides that have a partially or fully hydrogenated form.
  • Sugar alcohols have, for example, about 4 to about 20 carbon atoms and include erythritol, arabitol, ribitol, isomalt, maltitol, dulcitol, iditol, mannitol, xylitol, lactitol, sorbitol, and combinations thereof (e.g., hydrogenated starch hydrolysates).
  • the sweetener comprises xylitol.
  • the composition comprises a high sweetness index sweetener.
  • certain sweeteners including but not limited to artificial sweeteners, have a sweetness greater than that of sucrose (table sugar) on an equal weight basis. This sweetness can be expressed as a ratio to sucrose (sweetness index).
  • sweetness index To determine the sweetness index of a non-sucrose sweetener, the non-sucrose sweetener is tasted at a series of dilutions to determine the concentration that is as sweet as a given percent sucrose reference.
  • the particular non-sucrose sweetener is said to be 10 times as potent as sucrose (sweetness index of 10).
  • the composition comprises a sweetener having a sweetness index of at least 200 (i.e., is at least 200 times sweeter than an equal concentration of sucrose), for example, about 200, about 300, about 400, about 500, or about 600 or more (e.g., a sweetness index of about 200 to about 600 or about 250 to about 500 or about 300 to about 400).
  • sweeteners having such high sweetness indices include, but are not limited to, aspartame, Acesulfame K, saccharin, sucralose, Neotame, and Advantame.
  • sweeteners may serve to mask the bitterness associated with caffeine or other bitter materials present in the composition (e.g., as botanicals, extracts thereof, or other active ingredients).
  • the composition comprises one or more high index sweeteners in combination with one or more lower index sweeteners, such as sugars and/or sugar alcohols.
  • the composition comprises sucralose as the high index sweetener.
  • the at least one sweetener is a combination of sucralose and xylitol. Flavoring agents
  • composition as disclosed herein comprises one or more flavoring agents.
  • a "flavoring agent” or “flavorant” is any flavorful or aromatic substance capable of altering the sensory characteristics associated with the composition. Examples of sensory characteristics that can be modified by the flavoring agent include taste, mouthfeel, moistness, and/or fragrance/aroma. Flavoring agents may be natural or synthetic, and the character of the flavors imparted thereby may be described, without limitation, as fresh, sweet, herbal, confectionary, floral, fruity, or spicy.
  • Flavoring agents may be imitation, synthetic or natural ingredients or blends thereof. Flavoring agents may include naturally occurring flavor materials, botanicals, extracts of botanicals, synthetically obtained materials, or combinations thereof (e.g., tobacco, cannabis, licorice (liquorice), hydrangea, Japanese white bark magnolia leaf, chamomile, fenugreek, maple, matcha, Japanese mint, aniseed (anise), turmeric, Indian spices, Asian spices, herb, Wintergreen, cherry, berry, red berry, cranberry, peach, apple, orange, mango, clementine, lemon, lime, tropical fruit, papaya, rhubarb, grape, durian, dragon fruit, cucumber, blueberry, mulberry, citrus fruits, Drambuie, bourbon, scotch, whiskey, gin, tequila, rum, spearmint, peppermint, lavender, aloe vera, cardamom, celery, cascarilla, nutmeg, sandalwood,
  • Flavoring agents may be in any suitable form, for example, liquid such as an oil, solid such as a powder, or gas.
  • the flavoring agent may be provided in a spray-dried form or a liquid form.
  • a liquid flavorant is disposed (i.e., adsorbed or absorbed in or on) a porous particulate carrier, for example microcrystalline cellulose, which is then combined with the other composition ingredients.
  • the amount of flavoring agent utilized in the composition can vary, but is typically up to about 10% by weight, and some embodiments are characterized by a flavoring agent content of at least about 0.1% by weight, such as about 0.5 to about 10%, about 1 to about 5%, about 1 to about 3%, or about 2 to about 4% weight, based on the total weight of the composition.
  • the moisture content (e.g., water content) of the composition, prior to use by a consumer of the product, may vary according to the desired properties.
  • the composition, as present within e.g., a pouched product, prior to insertion into the mouth of the user is less than about 60% by weight of water, and generally is from about 1 to about 60% by weight of water, for example, from about 5 to about 55%, about 10 to about 50%, about 20 to about 45%, or about 25 to about 40% water by weight, including water amounts of at least about 5% by weight, at least about 10% by weight, at least about 15% by weight, and at least about 20% by weight.
  • the composition has a moisture content from about 10 to about 25% by weight, based on the total weight of the composition, such as from about 10, about 11, about 12, about 13, about 14, or about 15%, to about 16, about 17, about 18, about 19, about 20, about 21, about 22, about 23, about 24, or about 25% by weight, based on the total weight of the composition.
  • the composition is enclosed in a pouch to form a pouched product, and the pouched product has a moisture content from about 25 to about 60%, such as from about 35 to about 55% by weight, or from about 40 to about 50% by weight, based on the total weight of the pouched product.
  • the composition as disclosed herein may include, in addition to caffeine and the one or more vitamins, one or more further components which may be referred to as active ingredients.
  • active ingredient refers to one or more substances belonging to any of the following categories: API (active pharmaceutical substances), food additives, natural medicaments, and naturally occurring substances that can have an effect on humans.
  • Example active ingredients include any ingredient known to impact one or more biological functions within the body, such as ingredients that furnish pharmacological activity or other direct effect in the diagnosis, cure, mitigation, treatment, or prevention of disease, or which affect the structure or any function of the body of humans (e.g., provide a stimulating action on the central nervous system, have an energizing effect, an antipyretic or analgesic action, or an otherwise useful effect on the body).
  • the active ingredient may be of the type generally referred to as dietary supplements, nutraceuticals, "phytochemicals" or "functional foods”.
  • additives are sometimes defined in the art as encompassing substances typically available from naturally-occurring sources (e.g., botanical materials) that provide one or more advantageous biological effects (e.g., health promotion, disease prevention, or other medicinal properties), but are not classified or regulated as drugs.
  • Non-limiting examples of active ingredients include those falling in the categories of botanical ingredients (e.g., hemp, lavender, peppermint, eucalyptus, rooibos, fennel, cloves, chamomile, basil, rosemary, clove, citrus, ginger, cannabis, ginseng, maca, and tisanes), amino acids (e.g., taurine, theanine, phenylalanine, tyrosine, and tryptophan), antioxidants, nicotine components, pharmaceutical ingredients (e.g., nutraceutical and medicinal ingredients), cannabinoids (e.g., tetrahydrocannabinol (THC) or cannabidiol (CBD)), terpenes, and the like.
  • botanical ingredients e.g., hemp, lavender, peppermint, eucalyptus, rooibos, fennel, cloves, chamomile, basil, rosemary, clove, citrus, ginger, cannabis, ginseng,
  • an active ingredient or combination thereof is present in a total concentration of at least about 0.001% by weight of the composition, such as in a range from about 0.001% to about 20%.
  • the active ingredient or combination of active ingredients is present in a concentration from about 0.1% w/w to about 10% by weight, such as, e.g., from about 0.5% w/w to about 10%, from about 1% to about 10%, from about 1% to about 5% by weight, based on the total weight of the composition.
  • the active ingredient or combination of active ingredients is present in a concentration of from about 0.001%, about 0.01%, about 0.1% , or about 1%, up to about 20% by weight, such as, e.g., from about 0.001%, about 0.002%, about 0.003%, about 0.004%, about 0.005%, about 0.006%, about 0.007%, about 0.008%, about 0.009%, about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.1%, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%,
  • the composition comprises a botanical as an active ingredient.
  • botanical refers to any plant material or fungal-derived material, including plant material in its natural form and plant material derived from natural plant materials, such as extracts or isolates from plant materials or treated plant materials (e.g., plant materials subjected to heat treatment, fermentation, bleaching, or other treatment processes capable of altering the physical and/or chemical nature of the material).
  • a “botanical” includes, but is not limited to, “herbal materials,” which refer to seed-producing plants that do not develop persistent woody tissue and are often valued for their medicinal or sensory characteristics (e.g., teas or tisanes).
  • Reference to botanical material as "non-tobacco” is intended to exclude tobacco materials (i.e., does not include any Nicotiana species).
  • a botanical When present, a botanical is typically at a concentration of from about 0.01% w/w to about 10% by weight, such as, e.g., from about from about 0.01% w/w, about 0.05%, about 0.1%, or about 0.5%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10%, about 11%, about 12%, about 13%, about 14%, or about 15% by weight, based on the total weight of the composition.
  • the botanical materials useful in the present disclosure may comprise, without limitation, any of the compounds and sources set forth herein, including mixtures thereof. Certain botanical materials of this type are sometimes referred to as dietary supplements, nutraceuticals, "phytochemicals" or "functional foods.” Certain botanicals, as the plant material or an extract thereof, have found use in traditional herbal medicine, and are described further herein.
  • Non-limiting examples of non-tobacco botanical materials include without limitation acai berry (Euterpe oleracea martius), acerola (Malpighia glabra), alfalfa, allspice, Angelica root, anise (e.g., star anise), annatto seed, apple (Malus domestica), apricot oil, ashwagandha, Bacopa monniera, baobab, basil (Ocimum basilicum), bay, bee balm, beet root, bergamot, blackberry (Morus nigra), black cohosh, black pepper, black tea, blueberries, boldo (Peumus boldus), borage, bugleweed, cacao, calamus root, camu (Myrcaria dubia), cannabis/hemp, caraway seed, cardamom, cassis, catnip, catuaba, cayenne pepper, Centella asiatica, chaga mushroom, Chai-hu, cham
  • Guarana is a climbing plant in the family Sapindaceae, native to the Amazon basin.
  • the active ingredient comprises guarana.
  • the composition comprises guarana as an active ingredient either as the botanical material or an extract thereof.
  • the composition is substantially free of guarana.
  • Ginseng is the root of plants of the genus Panax, which are characterized by the presence of unique steroid saponin phytochemicals (ginsenosides) and gintonin. Ginseng finds use as a dietary supplement in energy drinks or herbal teas, and in traditional medicine.
  • Cultivated species include Korean ginseng (P. ginseng), South China ginseng (P. notoginseng), and American ginseng (P. quinquefolius).
  • American ginseng and Korean ginseng vary in the type and quantity of various ginsenosides present.
  • the active ingredient comprises ginseng.
  • the composition comprises ginseng as an active ingredient, either as the botanical material or an extract thereof. In other embodiments, the composition is substantially free of ginseng.
  • the composition is substantially free of particulate plant material. In some embodiments, the composition is substantially free of particulate botanical materials. In some embodiments, the composition is substantially free of black tea.
  • the composition comprises an amino acid as an active ingredient.
  • amino acid refers to an organic compound that contains amine (-NH2) and carboxyl (- COOH) or sulfonic acid (SO3H) functional groups, along with a side chain (R group), which is specific to each amino acid.
  • Amino acids may be proteinogenic or non-proteinogenic. By “proteinogenic” is meant that the amino acid is one of the twenty naturally occurring amino acids found in proteins.
  • the proteinogenic amino acids include alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine.
  • non-proteinogenic is meant that either the amino acid is not found naturally in protein, or is not directly produced by cellular machinery (e.g., is the product of post-translational modification).
  • Non-limiting examples of non-proteinogenic amino acids include gamma-aminobutyric acid (GABA), taurine (2-aminoethanesulfonic acid), theanine (L-y-giutamyletiiylamide), hydroxyproline, and beta-alanine.
  • GABA gamma-aminobutyric acid
  • taurine (2-aminoethanesulfonic acid
  • theanine L-y-giutamyletiiylamide
  • hydroxyproline and beta-alanine.
  • an amino acid or combination of amino acids is typically at a concentration of from about 0.01% w/w to about 20% by weight, such as, e.g., from about 0.01, about 0.02, about 0.03, about 0.04, about 0.05, about 0.06, about 0.07, about 0.08, about 0.09, 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, about 10%, about 11%, about 12%, about 13%, about 14%, about 15%, about 16%, about 17%, about 18%, about 19%, or about 20% by weight, based on the total weight of the composition.
  • the amino acid is taurine, theanine, phenylalanine, tyrosine, tryptophan, or a combination thereof. In some embodiments, the amino acid is taurine.
  • the composition comprises one or more antioxidants as an active ingredient.
  • antioxidant refers to a substance which prevents or suppresses oxidation by terminating free radical reactions and may delay or prevent some types of cellular damage. Antioxidants may be naturally occurring or synthetic. Naturally occurring antioxidants include those found in foods and botanical materials. Non-limiting examples of antioxidants include certain botanical materials, vitamins, polyphenols, and phenol derivatives.
  • Examples of botanical materials which are associated with antioxidant characteristics include without limitation acai berry, alfalfa, allspice, annatto seed, apricot oil, basil, bee balm, wild bergamot, black pepper, blueberries, borage seed oil, bugleweed, cacao, calamus root, catnip, catuaba, cayenne pepper, chaga mushroom, chervil, cinnamon, dark chocolate, potato peel, grape seed, ginseng, gingko biloba, Saint John's Wort, saw palmetto, green tea, black tea, black cohosh, cayenne, chamomile, cloves, cocoa powder, cranberry, dandelion, grapefruit, honeybush, echinacea, garlic, evening primrose, feverfew, ginger, goldenseal, hawthorn, hibiscus flower, jiaogulan, kava, lavender, licorice, magoram, milk thistle, mints (menthe), oo
  • Such botanical materials may be provided in fresh or dry form, essential oils, or may be in the form of an extracts.
  • the botanical materials (as well as their extracts) often include compounds from various classes known to provide antioxidant effects, such as minerals, vitamins, isoflavones, phytoesterols, allyl sulfides, dithiolthiones, isothiocyanates, indoles, lignans, flavonoids, polyphenols, and carotenoids.
  • Examples of compounds found in botanical extracts or oils include ascorbic acid, peanut endocarb, resveratrol, sulforaphane, beta-carotene, lycopene, lutein, coenzyme Q, carnitine, quercetin, kaempferol, and the like. See, e.g., Santhosh et al., Phytomedicine, 12(2005) 216-220, which is incorporated herein by reference.
  • Non-limiting examples of other suitable antioxidants include citric acid, Vitamin E or a derivative thereof, a tocopherol, epicatechol, epigallocatechol, epigallocatechol gallate, erythorbic acid, sodium erythorbate, 4-hexylresorcinol, theaflavin, theaflavin monogallate A or B, theaflavin digallate, phenolic acids, glycosides, quercitrin, isoquercitrin, hyperoside, polyphenols, catechols, resveratrols, oleuropein, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tertiary butylhydroquinone (TBHQ), and combinations thereof.
  • the antioxidant is Vitamin E or a derivative thereof, a flavonoid, a polyphenol, a carotenoid, or a combination thereof.
  • an antioxidant is typically at a concentration of from about 0.001% w/w to about 10% by weight, such as, e.g., from about 0.001%, about 0.005%, about 0.01% w/w, about 0.05%, about 0.1%, or about 0.5%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10%, based on the total weight of the composition.
  • the composition comprises a nicotine component as an active ingredient.
  • nicotine component is meant any naturally occurring or synthetically suitable form of nicotine (e.g., free base or salt) for providing oral absorption of at least a portion of the nicotine present.
  • the nicotine component is selected from the group consisting of nicotine free base and a nicotine salt.
  • the nicotine component is nicotine in its free base form, which easily can be adsorbed in for example, a microcrystalline cellulose material to form a microcrystalline cellulose-nicotine carrier complex. See, for example, the discussion of nicotine in free base form in US Pat. Pub. No. 2004/0191322 to Hansson, which is incorporated herein by reference.
  • the nicotine component can be employed in the form of a salt.
  • Salts of nicotine can be provided using the types of ingredients and techniques set forth in US Pat. No. 2,033,909 to Cox et al. and Perfetti, Beitrage Tabak Kauutz. Int., 12: 43-54 (1983), which are incorporated herein by reference. Additionally, salts of nicotine are available from sources such as Pfaltz and Bauer, Inc. and K&K Laboratories, Division of ICN Biochemicals, Inc.
  • the nicotine component is selected from the group consisting of nicotine free base, a nicotine salt such as hydrochloride, dihydrochloride, monotartrate, bitartrate, sulfate, salicylate, and nicotine zinc chloride.
  • the nicotine can be in the form of a resin complex of nicotine, where nicotine is bound in an ion-exchange resin, such as nicotine polacrilex, which is nicotine bound to, for example, a polymethacrilic acid, such as Amberlite IRP64, Purolite C115HMR, or Doshion P551.
  • an ion-exchange resin such as nicotine polacrilex
  • a polymethacrilic acid such as Amberlite IRP64, Purolite C115HMR, or Doshion P551.
  • a nicotine-polyacrylic carbomer complex such as with Carbopol 974P.
  • nicotine may be present in the form of a nicotine polyacrylic complex.
  • the nicotine component when present, is in a concentration of at least about 0.001% by weight of the composition, such as in a range from about 0.001% to about 10%.
  • the nicotine component is present in a concentration from about 0.1% w/w to about 10% by weight, such as, e.g., from about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, or about 0.9%, to about 1%, about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10% by weight, calculated as the free base and based on the total weight of the composition.
  • the nicotine component is present in a concentration from about 0.1% w/w to about 3% by weight, such as, e.g., from about 0.1% w/w to about 2.5%, from about 0.1% to about 2.0%, from about 0.1% to about 1.5%, or from about 0.1% to about l% by weight, calculated as the free base and based on the total weight of the composition.
  • the composition of the disclosure can be characterized as completely free or substantially free of any nicotine component (e.g., any embodiment as disclosed herein may be completely or substantially free of any nicotine component).
  • the composition comprises one or more cannabinoids as an active ingredient.
  • cannabinoid refers to a class of diverse natural or synthetic chemical compounds that acts on cannabinoid receptors (i.e., CB1 and CB2) in cells that alter neurotransmitter release in the brain.
  • Cannabinoids are cyclic molecules exhibiting particular properties such as the ability to easily cross the blood-brain barrier.
  • Cannabinoids may be naturally occurring (Phytocannabinoids) from plants such as cannabis, (endocannabinoids) from animals, or artificially manufactured (synthetic cannabinoids).
  • Cannabis species express at least 85 different phytocannabinoids, and these may be divided into subclasses, including cannabigerols, cannabichromenes, cannabidiols, tetrahydrocannabinols, cannabinols and cannabinodiols, and other cannabinoids, such as cannabigerol (CBG), cannabichromene (CBC), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN) and cannabinodiol (CBDL), cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), cannabigerol monomethyl ether (CBGM), cannabinerolic acid, can
  • the cannabinoid is selected from the group consisting of cannabigerol (CBG), cannabichromene (CBC), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN) and cannabinodiol (CBDL), cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), cannabigerol monomethyl ether (CBGM), cannabinerolic acid, cannabidiolic acid (CBDA), Cannabinol propyl variant (CBNV), cannabitriol (CBO), tetrahydrocannabmolic acid (THCA), tetrahydrocannabivarinic acid (THCV A), and mixtures thereof.
  • CBG
  • the cannabinoid comprises at least tetrahydrocannabinol (THC). In some embodiments, the cannabinoid is tetrahydrocannabinol (THC). In some embodiments, the cannabinoid comprises at least cannabidiol (CBD). In some embodiments, the cannabinoid is cannabidiol (CBD). In some embodiments, the CBD is synthetic CBD.
  • the cannabinoid e.g., CBD
  • CBD cannabinoid
  • An isolate is an extract from a plant, such as cannabis, where the active material of interest (in this case the cannabinoid, such as CBD) is present in a high degree of purity, for example greater than 95%, greater than 96%, greater than 97%, greater than 98%, or around 99% purity.
  • the cannabinoid is an isolate of CBD in a high degree of purity, and the amount of any other cannabinoid in the composition is no greater than about 1% by weight of the composition, such as no greater than about 0.5% by weight of the composition, such as no greater than about 0.1% by weight of the composition, such as no greater than about 0.01% by weight of the composition.
  • the choice of cannabinoid and the particular percentages thereof which may be present within the disclosed composition will vary depending upon the desired flavor, texture, and other characteristics of the composition.
  • the cannabinoid (such as CBD) is present in the composition in a concentration of at least about 0.001% by weight of the composition, such as in a range from about 0.001% to about 2% by weight of the composition. In some embodiments, the cannabinoid (such as CBD) is present in the composition in a concentration of from about 0.1% to about 1.5% by weight, based on the total weight of the composition. In some embodiments, the cannabinoid (such as CBD) is present in a concentration from about 0.4% to about 1.5% by weight, based on the total weight of the oral composition.
  • the composition may include a cannabimimetic, which is a class of compounds derived from plants other than cannabis that have biological effects on the endocannabinoid system similar to cannabinoids.
  • cannabimimetic is a class of compounds derived from plants other than cannabis that have biological effects on the endocannabinoid system similar to cannabinoids. Examples include yangonin, alpha-amyrin or beta-amyrin (also classified as terpenes), cyanidin, curcumin (tumeric), catechin, quercetin, salvinorin A, N- acylethanolamines, and N-alkylamide lipids. Such compounds can be used in the same amounts and ratios noted herein for cannabinoids.
  • the composition as disclosed herein may comprise as an active ingredient compounds classified as terpenes, many of which are associated with biological effects, such as calming effects.
  • Terpenes are understood to have the general formula of (C5H 8 ) n and include monoterpenes, sesquiterpenes, and diterpenes.
  • Terpenes can be acyclic, monocyclic or bicyclic in structure. Some terpenes provide an entourage effect when used in combination with cannabinoids or cannabimimetics.
  • Examples include beta-caryophyllene, linalool, limonene, beta-citronellol, linalyl acetate, pinene (alpha or beta), geraniol, carvone, eucalyptol, menthone, iso-menthone, piperitone, myrcene, beta-bourbonene, and germacrene, which may be used singly or in combination.
  • the terpene is a terpene derivable from a phytocannabinoid producing plant, such as a plant from the stain of the cannabis sativa species, such as hemp.
  • Suitable terpenes in this regard include so-called “CIO” terpenes, which are those terpenes comprising 10 carbon atoms, and so-called “C15” terpenes, which are those terpenes comprising 15 carbon atoms.
  • the active ingredient comprises more than one terpene.
  • the active ingredient may comprise one, two, three, four, five, six, seven, eight, nine, ten or more terpenes as defined herein.
  • the terpene is selected from pinene (alpha and beta), geraniol, linalool, limonene, carvone, eucalyptol, menthone, isomenthone, piperitone, myrcene, beta-bourbonene, germacrene and mixtures thereof.
  • the composition comprises a pharmaceutical ingredient as an active ingredient.
  • the pharmaceutical ingredient can be any known agent adapted for therapeutic, prophylactic, or diagnostic use. These can include, for example, synthetic organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, neurotransmitters or precursors thereof (e.g., serotonin, 5-hydroxy- tryptophan, oxitriptan, acetylcholine, dopamine, melatonin), and nucleic acid sequences, having therapeutic, prophylactic, or diagnostic activity.
  • Non-limiting examples of pharmaceutical ingredients include analgesics and antipyretics (e.g., acetylsalicylic acid, acetaminophen, 3-(4-isobutylphenyl)propanoic acid), phosphatidylserine, myoinositol, docosahexaenoic acid (DHA, Omega-3), arachidonic acid (AA, Omega-6), S-adenosylmethionine (SAM), beta-hydroxy-beta-methylbutyrate (HMB), citicoline (cytidine-5'- diphosphate-choline), and cotinine.
  • analgesics and antipyretics e.g., acetylsalicylic acid, acetaminophen, 3-(4-isobutylphenyl)propanoic acid
  • phosphatidylserine myoinositol
  • DHA docosahexaenoic acid
  • the amount of pharmaceutical ingredient may vary.
  • a pharmaceutical ingredient when present, is typically at a concentration of from about 0.001% w/w to about 10% by weight, such as, e.g., from about 0.01%, about 0.02%, about 0.03%, about 0.04%, about 0.05%, about 0.06%, about 0.07%, about 0.08%, about 0.09%, about 0.1% w/w, about 0.2%, about 0.3%, about 0.4%, about 0.5% about 0.6%, about 0.7%, about 0.8%, about 0.9%, or about 1%, to about 2%, about 3%, about 4%, about 5%, about 6%, about 7%, about 8%, about 9%, or about 10% by weight, based on the total weight of the composition.
  • an active ingredient as described herein may be sensitive to degradation (e.g., oxidative, photolytic, thermal, evaporative) during processing or upon storage of the composition.
  • the active ingredient or a vitamin or other component of the composition as disclosed herein may be encapsulated, or the composition otherwise modified with suitable components (such as fillers, binders, and the like), to provide enhanced stability to the active ingredient, vitamin, or the like.
  • binders such as functional celluloses (e.g., cellulose ethers including, but not limited to, hydroxypropyl cellulose) or alginate-based materials (e.g., cross linked alginate) may be employed to enhance stability of such sensitive materials toward degradation, or to provide extended and/or separate delivery of composition ingredients.
  • encapsulated actives may need to be paired with an excipient in the composition to increase their solubility and/or bioavailability.
  • suitable excipients include beta-carotene, lycopene, Vitamin D, Vitamin E, Co-enzyme Q10, Vitamin K, and curcumin.
  • an initial quantity of the active ingredient may be increased to compensate for a gradual degradative loss. Accordingly, larger initial amounts than those disclosed herein are contemplated by the present disclosure.
  • the composition comprises a salt (e.g., an alkali metal salt), typically employed in an amount sufficient to provide desired sensory attributes to the composition.
  • a salt e.g., an alkali metal salt
  • suitable salts include sodium chloride, potassium chloride, ammonium chloride, flour salt, sodium acetate, sodium citrate, and the like.
  • the salt is sodium chloride, ammonium chloride, or a combination thereof.
  • a representative amount of salt is about 0.5% by weight or more, about 1.0% by weight or more, or about 1.5% by weight or more, but will typically make up about 10% or less of the total weight of the composition, or about 7.5% or less, or about 5% or less (e.g., from about 0.5 to about 5% by weight).
  • a binder (or combination of binders) may be employed in some embodiments, in amounts sufficient to provide the desired physical attributes and physical integrity to the composition, and binders also often function as thickening or gelling agents.
  • Typical binders can be organic or inorganic, or a combination thereof.
  • Representative binders include cellulose derivatives (e.g., cellulose ethers), povidone, sodium alginate, starch-based binders, pectin, gums, carrageenan, pullulan, zein, and the like,%and combinations thereof.
  • the amount of binder utilized in the composition can vary based on the binder and the desired composition properties, but is typically up to about 30% by weight, and some embodiments are characterized by a binder content of at least about 0.1% by weight, such as about 0.5 to about 30% by weight, or about 1 to about 10% by weight, based on the total weight of the composition.
  • binders include a gum, for example, a natural gum.
  • a natural gum refers to polysaccharide materials of natural origin that have binding properties, and which are also useful as a thickening or gelling agents.
  • Representative natural gums derived from plants, which are typically water soluble to some degree, include xanthan gum, guar gum, gum arabic, ghatti gum, gum tragacanth, karaya gum, locust bean gum, gellan gum, and combinations thereof.
  • natural gum binder materials are typically present in an amount of up to about 5% by weight, for example, from about 0.1, about 0.2, about 0.3, about 0.4, about 0.5, about 0.6, about 0.7, about 0.8, about 0.9, or about 1%, to about 2, about 3, about 4, or about 5% by weight, based on the total weight of the composition.
  • the binder comprises a cellulose derivative.
  • the cellulose derivative is a cellulose ether (including carboxyalkyl ethers), meaning a cellulose polymer with the hydrogen of one or more hydroxyl groups in the cellulose stmcture replaced with an alkyl, hydroxyalkyl, or aryl group.
  • Non-limiting examples of such cellulose derivatives include methylcellulose, hydroxypropylcellulose ("HPC"), hydroxypropylmethylcellulose (“HPMC”), hydroxyethyl cellulose, and carboxymethylcellulose (“CMC”).
  • the cellulose derivative is one or more of methylcellulose, HPC, HPMC, hydroxyethyl cellulose, and CMC.
  • the cellulose derivative is HPC.
  • the cellulose derivative is a combination of HPC and HPMC.
  • the binder includes an alginate (e.g., sodium or ammonium alginate).
  • alginate binder materials are typically present in an amount of up to about 1% by weight, for example, from about 0.1, about 0.2, about 0.3, about 0.4, or about 0.5, to about 0.6, about 0.7, about 0.8, about 0.9, or about 1%, by weight, based on the total weight of the composition.
  • the presence of alginate creates an undesirable stickiness to the composition.
  • the composition is substantially free of alginate.
  • the composition of the present disclosure can comprise pH adjusters or buffering agents.
  • pH adjusters and buffering agents that can be used include, but are not limited to, metal hydroxides (e.g., alkali metal hydroxides such as sodium hydroxide and potassium hydroxide), and other alkali metal buffers such as metal carbonates (e.g., potassium carbonate or sodium carbonate), or metal bicarbonates such as sodium bicarbonate, and the like.
  • suitable buffers include alkali metals acetates, glycinates, phosphates, glycerophosphates, citrates, carbonates, hydrogen carbonates, borates, or mixtures thereof.
  • the buffer is sodium bicarbonate.
  • the buffering agent is typically present in an amount less than about 5% by weight, based on the weight of the composition, for example, from about 0.1% to about 5%, such as, e.g., from about 0.1% to about 1%, or from about 0.1% to about 0.5% by weight, based on the total weight of the composition.
  • the composition has, or is adjusted to have, a pH which is alkaline (i.e., greater than 7.0).
  • a pH which is alkaline i.e., greater than 7.0.
  • the pH of the composition is in a range from about 8.5 to about 9.0. Without wishing to be bound by theory, it is believed that a pH in this range is useful in providing optimal absorption of caffeine and related alkaloids from the composition.
  • a colorant may be employed in amounts sufficient to provide the desired physical attributes to the composition.
  • Natural or synthetic colorants such as natural or synthetic dyes, food-grade colorants and pharmaceutical-grade colorants may be used. Examples of colorants include various dyes and pigments, such as caramel coloring and titanium dioxide. Natural colorants such as curcumin, beet juice extract, spirulina; also a variety of synthetic pigments may also be used.
  • the amount of colorant utilized in the composition can vary, but when present is typically up to about 3% by weight, such as from about 0.1%, about 0.5%, or about 1%, to about 3% by weight, based on the total weight of the composition.
  • Humectants such as natural or synthetic dyes, food-grade colorants and pharmaceutical-grade colorants may be used. Examples of colorants include various dyes and pigments, such as caramel coloring and titanium dioxide. Natural colorants such as curcumin, beet juice extract, spirulina; also a variety of synthetic pigments may also be used.
  • one or more humectants may be employed in the composition.
  • humectants include, but are not limited to, glycerin, propylene glycol, and the like.
  • the humectant is typically provided in an amount sufficient to provide desired moisture attributes to the composition.
  • the humectant may impart desirable flow characteristics to the composition for depositing in a mold.
  • the humectant is propylene glycol.
  • a humectant When present, a humectant will typically make up about 5% or less of the weight of the composition (e.g., from about 0.1 to about 5% by weight), for example, from about 0.1% to about 1% by weight, or about 1% to about 5% by weight, based on the total weight of the composition.
  • the composition may include a tobacco material.
  • the tobacco material can vary in species, type, and form. Generally, the tobacco material is obtained from for a harvested plant of the Nicotiana species.
  • Example Nicotiana species include N. tabacum, N. rustica, N. alata, N. arentsii, N. excelsior, N. forgetiana, N. glauca, N. glutinosa, N. gossei, N. kawakamii, N. knightiana, N. langsdorffi, N. otophora, N. setchelli, N. sylvestris, N. tomentosa, N. tomentosiformis, N. undulata, N.
  • Nicotiana species from which suitable tobacco materials can be obtained can be derived using genetic-modification or crossbreeding techniques (e.g., tobacco plants can be genetically engineered or crossbred to increase or decrease production of components, characteristics or attributes). See, for example, the types of genetic modifications of plants set forth in US Pat. Nos. 5,539,093 to Fitzmaurice et al.; 5,668,295 to Wahab et al.; 5,705,624 to Fitzmaurice et al.; 5,844,119 to Weigl; 6,730,832 to Dominguez et al.; 7,173,170 to Liu et al.; 7,208,659 to Colliver et al.
  • Nicotiana species can, in some embodiments, be selected for the content of various compounds that are present therein.
  • plants can be selected on the basis that those plants produce relatively high quantities of one or more of the compounds desired to be isolated therefrom.
  • plants of the Nicotiana species e.g., Galpao commun tobacco
  • Tobacco plants can be grown in greenhouses, growth chambers, or outdoors in fields, or grown hydroponically.
  • the plant of the Nicotiana species can be included within a composition as disclosed herein.
  • virtually all of the plant e.g. , the whole plant
  • various parts or pieces of the plant can be harvested or separated for further use after harvest.
  • the flower, leaves, stem, stalk, roots, seeds, and various combinations thereof, can be isolated for further use or treatment.
  • the tobacco material comprises tobacco leaf (lamina).
  • composition disclosed herein can include processed tobacco parts or pieces, cured and aged tobacco in essentially natural lamina and/or stem form, a tobacco extract, extracted tobacco pulp (e.g., using water as a solvent), or a mixture of the foregoing (e.g., a mixture that combines extracted tobacco pulp with granulated cured and aged natural tobacco lamina).
  • the tobacco material comprises solid tobacco material selected from the group consisting of lamina and stems.
  • the tobacco that is used for the mixture most preferably includes tobacco lamina, or a tobacco lamina and stem mixture (of which at least a portion is smoke-treated).
  • Portions of the tobaccos within the mixture may have processed forms, such as processed tobacco stems (e.g., cut-rolled stems, cut-rolled-expanded stems or cut-puffed stems), or volume expanded tobacco (e.g., puffed tobacco, such as dry ice expanded tobacco (DIET)). See, for example, the tobacco expansion processes set forth in US Pat. Nos.
  • the d mixture optionally may incorporate tobacco that has been fermented. See, also, the types of tobacco processing techniques set forth in PCT W02005/063060 to Atchley et al., which is incorporated herein by reference.
  • the tobacco material is typically used in a form that can be described as particulate (i.e., shredded, ground, granulated, or powder form).
  • the manner by which the tobacco material is provided in a finely divided or powder type of form may vary.
  • plant parts or pieces are comminuted, ground or pulverized into a particulate form using equipment and techniques for grinding, milling, or the like.
  • the plant material is relatively dry in form during grinding or milling, using equipment such as hammer mills, cutter heads, air control mills, or the like.
  • tobacco parts or pieces may be ground or milled when the moisture content thereof is less than about 15% by weight, or less than about % by weight.
  • the tobacco material is employed in the form of parts or pieces that have an average particle size between 1.4 millimeters and 250 microns.
  • the tobacco particles may be sized to pass through a screen mesh to obtain the particle size range required.
  • air classification equipment may be used to ensure that small sized tobacco particles of the desired sizes, or range of sizes, may be collected.
  • differently sized pieces of granulated tobacco may be mixed together.
  • tobacco parts or pieces are comminuted, ground or pulverized into a powder type of form using equipment and techniques for grinding, milling, or the like.
  • the tobacco is relatively dry in form during grinding or milling, using equipment such as hammer mills, cutter heads, air control mills, or the like.
  • tobacco parts or pieces may be ground or milled when the moisture content thereof is less than about 15% by weight to less than about 5% by weight.
  • the tobacco plant or portion thereof can be separated into individual parts or pieces (e.g., the leaves can be removed from the stems, and/or the stems and leaves can be removed from the stalk).
  • the harvested plant or individual parts or pieces can be further subdivided into parts or pieces (e.g., the leaves can be shredded, cut, comminuted, pulverized, milled or ground into pieces or parts that can be characterized as filler-type pieces, granules, particulates or fine powders).
  • the plant, or parts thereof can be subjected to external forces or pressure (e.g., by being pressed or subjected to roll treatment).
  • the plant or portion thereof can have a moisture content that approximates its natural moisture content (e.g., its moisture content immediately upon harvest), a moisture content achieved by adding moisture to the plant or portion thereof, or a moisture content that results from the drying of the plant or portion thereof.
  • powdered, pulverized, ground or milled pieces of plants or portions thereof can have moisture contents of less than about 25% by weight, often less than about 20%, and frequently less than about 15% by weight.
  • tobacco materials that can be employed include flue-cured or Virginia (e.g., K326), burley, sun-cured (e.g., Indian Kumool and Oriental tobaccos, including Katerini, Prelip, Komotini, Xanthi and Yambol tobaccos), Maryland, dark, dark-fired, dark air cured (e.g., Madole, Passanda, Cubano, Jatin and Bezuki tobaccos), light air cured (e.g., North Wisconsin and Galpao tobaccos), Indian air cured, Red Russian and Rustica tobaccos, as well as various other rare or specialty tobaccos and various blends of any of the foregoing tobaccos.
  • flue-cured or Virginia e.g., K326)
  • burley sun-cured
  • Indian Kumool and Oriental tobaccos including Katerini, Prelip, Komotini, Xanthi and Yambol tobaccos
  • Maryland dark, dark-fired, dark air cured (e.g., Madole, Passand
  • the tobacco material may also have a so-called "blended" form.
  • the tobacco material may include a mixture of parts or pieces of flue-cured, burley (e.g., Malawi burley tobacco) and Oriental tobaccos (e.g., as tobacco composed of, or derived from, tobacco lamina, or a mixture of tobacco lamina and tobacco stem).
  • a representative blend may incorporate about 30 to about 70 parts burley tobacco (e.g., lamina, or lamina and stem), and about 30 to about 70 parts flue cured tobacco (e.g., stem, lamina, or lamina and stem) on a dry weight basis.
  • example tobacco blends incorporate about 75 parts flue-cured tobacco, about 15 parts burley tobacco, and about 10 parts Oriental tobacco; or about 65 parts flue-cured tobacco, about 25 parts burley tobacco, and about 10 parts Oriental tobacco; or about 65 parts flue-cured tobacco, about 10 parts burley tobacco, and about 25 parts Oriental tobacco; on a dry weight basis.
  • Other example tobacco blends incorporate about 20 to about 30 parts Oriental tobacco and about 70 to about 80 parts flue-cured tobacco on a dry weight basis.
  • Tobacco materials used in the present disclosure can be subjected to, for example, fermentation, bleaching, and the like.
  • the tobacco materials can be, for example, irradiated, pasteurized, or otherwise subjected to controlled heat treatment.
  • controlled heat treatment processes are detailed, for example, in US Pat. No. 8,061,362 to Mua et al., which is incorporated herein by reference.
  • tobacco materials can be treated with water and an additive capable of inhibiting reaction of asparagine to form acrylamide upon heating of the tobacco material (e.g., an additive selected from the group consisting of lysine, glycine, histidine, alanine, methionine, cysteine, glutamic acid, aspartic acid, proline, phenylalanine, valine, arginine, compositions incorporating di- and trivalent cations, asparaginase, certain non-reducing saccharides, certain reducing agents, phenolic compounds, certain compounds having at least one free thiol group or functionality, oxidizing agents, oxidation catalysts, natural plant extracts (e.g., rosemary extract), and combinations thereof.
  • an additive selected from the group consisting of lysine, glycine, histidine, alanine, methionine, cysteine, glutamic acid, aspartic acid, proline, phenylalanine, valine, arginine, compositions incorporating di
  • the tobacco material can be treated to extract a soluble component of the tobacco material therefrom.
  • tobacco extract refers to the isolated components of a tobacco material that are extracted from solid tobacco pulp by a solvent that is brought into contact with the tobacco material in an extraction process.
  • extraction techniques of tobacco materials can be used to provide a tobacco extract and tobacco solid material. See, for example, the extraction processes described in US Pat. Appl. Pub. No. 2011/0247640 to Beeson et al., which is incorporated herein by reference.
  • Other example techniques for extracting components of tobacco are described in US Pat. Nos. 4,144,895 to Fiore; 4,150,677 to Osborne, Jr.
  • the type of tobacco material is selected such that it is initially visually lighter in color than other tobacco materials to some degree (e.g., whitened or bleached).
  • Tobacco pulp can be whitened in some embodiments according to any means known in the art, and as described above in reference to color-eliminated active ingredients.
  • Typical inclusion ranges for tobacco materials can vary depending on the nature and type of the tobacco material, and the intended effect on the final composition, with an example range of up to about 30% by weight (or up to about 20% by weight or up to about 10% by weight or up to about 5% by weight), based on total weight of the composition (e.g., about 0.1 to about 15% by weight).
  • the products of the disclosure can be characterized as completely free or substantially free of tobacco material (other than purified nicotine as an active ingredient).
  • the composition may include one or more taste modifying agents ("taste modifiers") which may serve to mask, alter, block, or improve e.g., the flavor of a composition as described herein.
  • taste modifiers include analgesic or anesthetic herbs, spices, and flavors which produce a perceived cooling (e.g., menthol, eucalyptus, mint), warming (e.g., cinnamon), or painful (e.g., capsaicin) sensation.
  • Certain taste modifiers fall into more than one overlapping category.
  • the taste modifier modifies one or more of bitter, sweet, salty, or sour tastes.
  • the taste modifier targets pain receptors.
  • the composition comprises an active ingredient having a bitter taste, and a taste modifier which masks or blocks the perception of the bitter taste.
  • the taste modifier is a substance which targets pain receptors (e.g., vanilloid receptors) in the user's mouth to mask e.g., a bitter taste of another component (e.g., an active ingredient).
  • the taste modifier is capsaicin.
  • the taste modifier is the amino acid gamma-amino butyric acid (GABA), referenced herein above with respect to amino acids.
  • GABA amino acid gamma-amino butyric acid
  • GABA may suppress the perception of certain tastes, such as bitterness.
  • the composition comprises caffeine and GABA.
  • the taste modifier is adenosine monophosphate (AMP).
  • AMP is a naturally occurring nucleotide substance which can block bitter food flavors or enhance sweetness. It does not directly alter the bitter flavor but may alter human perception of "bitter” by blocking the associated receptor.
  • the taste modifier is lactisole.
  • Lactisole is an antagonist of sweet taste receptors. Temporarily blocking sweetness receptors may accentuate e.g., savory notes.
  • a representative amount of taste modifier is about 0.01% by weight or more, about 0.1% by weight or more, or about 1.0% by weight or more, but will typically make up less than about 10% by weight of the total weight of the composition, (e.g., from about 0.01%, about 0.05%, about 0.1%, or about 0.5%, to about 1%, about 5%, or about 10% by weight of the total weight of the composition).
  • the composition comprises an oral care ingredient (or mixture of such ingredients).
  • Oral care ingredients provide the ability to inhibit tooth decay or loss, inhibit gum disease, relieve mouth pain, whiten teeth, or otherwise inhibit tooth staining, elicit salivary stimulation, inhibit breath malodor, freshen breath, or the like.
  • effective amounts of ingredients such as thyme oil, eucalyptus oil and zinc (e.g., such as the ingredients of formulations commercially available as ZYTEX® from Discus Dental) can be incorporated into the composition.
  • ingredients that can be incorporated in desired effective amounts within the present composition can include those that are incorporated within the types of oral care compositions set forth in Takahashi et al., Oral Microbiology and Immunology, 19(1), 61-64 (2004); U.S. Pat. No. 6,083,527 to Thistle; and US Pat. Appl. Pub. Nos. 2006/0210488 to Jakubowski and 2006/02228308 to Cummins et al.
  • Other exemplary ingredients of tobacco containing-formulation include those contained in formulations marketed as MALTISORB® by Roquette and DENTIZYME® by NatraRx.
  • a representative amount of oral care additive is at least about 1%, often at least about 3%, and frequently at least about 5% of the total dry weight of the composition.
  • the amount of oral care additive within the composition will not typically exceed about 30%, often will not exceed about 25%, and frequently will not exceed about 20% of the total dry weight of the composition.
  • a flow aid can also be added to the composition in order to enhance flowability of the composition.
  • the composition e.g., melt and chew forms
  • Exemplary flow aids include microcrystalline cellulose, silica, polyethylene glycol, stearic acid, calcium stearate, magnesium stearate, zinc stearate, sodium stearyl fumarate, canauba wax, and combinations thereof.
  • the flow aid is sodium stearyl fumarate.
  • a representative amount of flow aid may make up at least about 0.5 percent or at least about 1 percent, of the total dry weight of the composition.
  • the amount of flow aid within the composition will not exceed about 5 percent, and frequently will not exceed about 3 percent, of the total dry weight of the composition.
  • additives can be included in the disclosed composition.
  • the composition can be processed, blended, formulated, combined, and/or mixed with other materials or ingredients.
  • the additives can be artificial or can be obtained or derived from herbal or biological sources.
  • further types of additives include thickening or gelling agents (e.g., fish gelatin), emulsifiers, preservatives (e.g., potassium sorbate and the like), disintegration aids, or combinations thereof. See, for example, those representative components, combination of components, relative amounts of those components, and manners and methods for employing those components, set forth in US Pat. No. 9,237,769 to Mua et al., US Pat. No. 7,861,728 to Holton, Jr.
  • Typical inclusion ranges for such additional additives can vary depending on the nature and function of the additive and the intended effect on the final composition, with an example range of up to about 10% by weight, based on total weight of the composition (e.g., about 0.1 to about 5% by weight).
  • additives can be employed together (e.g., as additive formulations) or separately (e.g., individual additive components can be added at different stages involved in the preparation of the final composition).
  • aforementioned types of additives may be encapsulated as provided in the final product or composition. Exemplary encapsulated additives are described, for example, in WO2010/132444 to Atchley, which has been previously incorporated by reference herein.
  • any one or more of the filler, tobacco material, botanical material, other composition components, and the overall composition as disclosed herein can be described as a particulate material.
  • the term "particulate” refers to a material in the form of a plurality of individual particles, some of which can be in the form of an agglomerate of multiple particles, wherein the particles have an average length to width ratio less than 2:1, such as less than 1.5:1, such as about 1:1.
  • the particles of a particulate material can be described as substantially spherical or granular.
  • the particle size of a particulate material may be measured by sieve analysis.
  • sieve analysis is a method used to measure the particle size distribution of a particulate material.
  • sieve analysis involves a nested column of sieves which comprise screens, preferably in the form of wire mesh cloths. A pre-weighed sample may be introduced into the top or uppermost sieve in the column, which has the largest screen openings or mesh size (i.e. the largest pore diameter of the sieve). Each lower sieve in the column has progressively smaller screen openings or mesh sizes than the sieve above.
  • a receiver portion to collect any particles having a particle size smaller than the screen opening size or mesh size of the bottom or lowermost sieve in the column (which has the smallest screen opening or mesh size).
  • the column of sieves may be placed on or in a mechanical agitator.
  • the agitator causes the vibration of each of the sieves in the column.
  • the mechanical agitator may be activated for a pre-determined period of time in order to ensure that all particles are collected in the correct sieve.
  • the column of sieves is agitated for a period of time from 0.5 minutes to 10 minutes, such as from 1 minute to 10 minutes, such as from 1 minute to 5 minutes, such as for approximately 3 minutes.
  • the screen opening sizes or mesh sizes for each sieve in the column used for sieve analysis may be selected based on the granularity or known maximum/minimum particle sizes of the sample to be analysed.
  • a column of sieves may be used for sieve analysis, wherein the column comprises from 2 to 20 sieves, such as from 5 to 15 sieves.
  • a column of sieves may be used for sieve analysis, wherein the column comprises 10 sieves.
  • the largest screen opening or mesh sizes of the sieves used for sieve analysis may be 1000 pm, such as 500 pm, such as 400 pm, such as 300 pm.
  • any particulate material referenced herein can be characterized as having at least 50% by weight of particles with a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • at least 60% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 70% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm. In some embodiments, at least 80% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 pm, such as no greater than about 400 pm, such as no greater than about 350 pm, such as no greater than about 300 pm.
  • At least 90% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 pm, such as no greater than about 500 gm, such as no greater than about 400 gm, such as no greater than about 350 gm, such as no greater than about 300 gm. In some embodiments, at least 95% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 gm, such as no greater than about 500 gm, such as no greater than about 400 gm, such as no greater than about 350 gm, such as no greater than about 300 gm.
  • At least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 gm, such as no greater than about 500 gm, such as no greater than about 400 gm, such as no greater than about 350 gm, such as no greater than about 300 gm. In some embodiments, approximately 100% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of no greater than about 1000 gm, such as no greater than about 500 gm, such as no greater than about 400 gm, such as no greater than about 350 gm, such as no greater than about 300 gm.
  • At least 50% by weight, such as at least 60% by weight, such as at least 70% by weight, such as at least 80% by weight, such as at least 90% by weight, such as at least 95% by weight, such as at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of from about 0.01 gm to about 1000 gm, such as from about 0.05 gm to about 750 gm, such as from about 0.1 gm to about 500 gm, such as from about 0.25 gm to about 500 gm.
  • At least 50% by weight, such as at least 60% by weight, such as at least 70% by weight, such as at least 80% by weight, such as at least 90% by weight, such as at least 95% by weight, such as at least 99% by weight of the particles of any particulate material referenced herein have a particle size as measured by sieve analysis of from about 10 gm to about 400 gm, such as from about 50 gm to about 350 gm, such as from about 100 gm to about 350 gm, such as from about 200 gm to about 300 gm.
  • compositions and products provided herein are generally configured for oral use.
  • the term "configured for oral use” as used herein means that the product or composition is provided in a form such that during use, saliva in the mouth of the user causes one or more of the components of the composition (e.g., caffeine, flavoring agents, and/or active ingredients) to pass into the mouth of the user.
  • the composition is adapted to deliver components to a user through mucous membranes in the user's mouth, the user's digestive system, or both, and, in some instances, said component (including, but not limited to, for example, caffeine, vitamins, flavorants, and combination thereof) can be absorbed through the mucous membranes in the mouth or absorbed through the digestive tract when the composition or product is used.
  • Products configured for oral use as described herein may take various forms, including gels, pastilles, gums, lozenges, powders, and pouches. Gels can be soft or hard. Certain products configured for oral use are in the form of pastilles. As used herein, the term "pastille” refers to a dissolvable oral product made by solidifying a liquid or gel composition so that the final product is a somewhat hardened solid gel. The rigidity of the gel is highly variable. Certain products of the disclosure are in the form of solids. Certain products can exhibit, for example, one or more of the following characteristics: crispy, granular, chewy, syrupy, pasty, fluffy, smooth, and/or creamy.
  • the desired textural property can be selected from the group consisting of adhesiveness, cohesiveness, density, dryness, fracturability, graininess, gumminess, hardness, heaviness, moisture absorption, moisture release, mouthcoating, roughness, slipperiness, smoothness, viscosity, wetness, and combinations thereof.
  • the products comprising the compositions of the present disclosure may be dissolvable.
  • dissolve refers to compositions having aqueous-soluble components that interact with moisture in the oral cavity and enter into solution, thereby causing gradual consumption of the product.
  • the dissolvable product is capable of lasting in the user’s mouth for a given period of time until it completely dissolves. Dissolution rates can vary over a wide range, from about 1 minute or less to about 60 minutes.
  • fast release compositions typically dissolve and/or release the active substance in about 2 minutes or less, often about 1 minute or less (e.g., about 50 seconds or less, about 40 seconds or less, about 30 seconds or less, or about 20 seconds or less). Dissolution can occur by any means, such as melting, mechanical disruption (e.g., chewing), enzymatic or other chemical degradation, or by disruption of the interaction between the components of the composition.
  • the product can be meltable as discussed, for example, in US Patent App. Pub. No. 2012/0037175 to Cantrell et al.
  • the products do not dissolve during the product’s residence in the user’s mouth.
  • compositions as disclosed herein can be formed into a variety of shapes, including pills, tablets, spheres, strips, films, sheets, coins, cubes, beads, ovoids, obloids, cylinders, bean-shaped, sticks, or rods.
  • Cross-sectional shapes of the composition can vary, and example cross-sectional shapes include circles, squares, ovals, rectangles, and the like. Such shapes can be formed in a variety of manners using equipment such as moving belts, nips, extruders, granulation devices, compaction devices, and the like.
  • compositions configured for oral use are in the form of pastilles.
  • the term "pastille” refers to a dissolvable oral composition made by solidifying a liquid or gel composition so that the final composition is a somewhat hardened solid gel. The rigidity of the gel is highly variable.
  • a pastille product may alternatively be referred to as a soft lozenge.
  • the pastille products of the disclosure are characterized by sufficient cohesiveness to withstand light chewing action in the oral cavity without rapidly disintegrating. The pastille products of the disclosure typically do not exhibit a highly deformable chewing quality as found in conventional chewing gum.
  • the products disclosed herein may be in the form of a dissolvable lozenge product configured for oral use.
  • Example lozenge-type products of the disclosure have the form of a lozenge, tablet, microtab, or other tablet-type product. See, for example, the types of nicotine-containing lozenges, lozenge formulations, lozenge formats and configurations, lozenge characteristics and techniques for formulating or manufacturing lozenges set forth in US Pat. Nos. 4,967,773 to Shaw; 5,110,605 to Acharya; 5,733,574 to Dam; 6,280,761 to Santus; 6,676,959 to Andersson et al.; 6,248,760 to Wilhelmsen; and 7,374,779; US Pat. Pub. Nos.
  • Lozenge products are generally described as "hard” and are distinguished in this manner from soft lozenges (i.e., pastilles).
  • Hard lozenges are mixtures of sugars and/or carbohydrates in an amorphous state. Although they are made from aqueous syrups, the water, which is initially present, evaporates as the syrup is boiled during processing so that the moisture content in the finished product is very low, such as 0.5% to 1.5% by weight.
  • the temperature of the melt generally must reach the hard crack stage, with an example temperature range of 149° to 154°C.
  • oral products provided herein may be in the form of center-filled pastilles or lozenges, for example, such that the interior (or at least a portion) of the product has one or more different organoleptic properties (e.g., texture, mouthfeel, taste, etc.) from the outer surface thereof (or other portion thereof).
  • Such center-filled pastille or lozenge formulations may include a liquid and/or a gel and/or a meltable and/or a chewable and/or a gummy and/or an effervescent center-filling that is surrounded by a harder outer shell that can be associated with pastille-type or lozenge products as described herein.
  • the center-filling may be described as having less rigidity and/or increased softness compared to the outer shell.
  • the center-filling may or may not include an active ingredient therein.
  • both the outer shell and the center-filling formulations may include an active ingredient so as to provide an extended release of the active ingredient therefrom.
  • at least the outer shell formulation includes a pastille formulation as described herein above.
  • both the outer shell formulation and the center-filling formulation may comprise a pastille formulation as described herein having similar or different organoleptic properties.
  • the composition can be chewable, meaning the composition has a mild resilience or "bounce" upon chewing, and possesses a desirable degree of malleability.
  • a composition in chewable form may be entirely dissolving or may be in the form of a non-dissolving gum in which only certain components (e.g., active ingredients, flavor, sweetener) dissolve, leaving behind a non-dissolving matrix.
  • Chewable embodiments generally include a binder, such as a natural gum or pectin.
  • the composition in chewable form comprises pectin and an organic acid, along with one or more sugar alcohols in an amount by weight of at least 50%, based on the total weight of the composition. Generally, the pectin is present in an amount of from about 1 to about 3% by weight, based on the total weight of the composition.
  • the composition can be meltable as discussed, for example, in US Patent App. Pub. No. 2012/0037175 to Cantrell et al., incorporated by reference herein in its entirety.
  • melt refers to the ability of the composition to change from a solid state to a liquid state. That is, melting occurs when a substance (e.g., a composition as disclosed herein) changes from solid to liquid, usually by the application of heat.
  • the application of heat in regard to a composition as disclosed herein is provided by the internal temperature of a user's mouth.
  • meltable compositions refers to a composition that is capable of liquefying in the mouth of the user as the composition changes phase from solid to liquid, and is intended to distinguish compositions that merely disintegrate in the oral cavity through loss of cohesiveness within the composition that merely dissolve in the oral cavity as aqueous- soluble components of the composition interact with moisture.
  • meltable compositions comprise a lipid as described herein above.
  • the composition in meltable form comprises a lipid in an amount of from about 35 to about 50% by weight, based on the total weight of the composition, and a sugar alcohol in an amount of from about 35 to about 55% by weight, based on the total weight of the composition.
  • the sugar alcohol is isomalt, erythritol, sorbitol, arabitol, ribitol, maltitol, dulcitol, iditol, mannitol, xylitol, lactitol, or a combination thereof. In some embodiments, the sugar alcohol is isomalt.
  • the composition is in the form of a compressed or molded pellet.
  • Example pellet weights range from about 250 mg to about 1500 mg, such as about 250 mg to about 700 mg, or from about 700 mg to about 1500 mg.
  • the pellet can have any of a variety of shapes, including traditional pill or tablet shapes.
  • the composition in tablet form comprises a glucose-polysaccharide blend and a sugar alcohol.
  • the glucose-polysaccharide blend is present in an amount of from about 35 to about 50% by weight, based on the total weight of the composition; and the sugar alcohol is present in an amount of from about 30 to about 45% by weight, based on the total weight of the composition.
  • the sugar alcohol is isomalt, erythritol, sorbitol, arabitol, ribitol, maltitol, dulcitol, iditol, mannitol, xylitol, lactitol, or a combination thereof. In some embodiments, the sugar alcohol is isomalt.
  • the product comprising the composition of the present disclosure is in the form of a composition disposed within a moisture-permeable container (e.g., a water-permeable pouch) that acts as a container for use of the composition to provide a pouched product configured for oral use.
  • a moisture-permeable container e.g., a water-permeable pouch
  • Such compositions in the water-permeable pouch format are typically used by placing one pouch containing the composition in the mouth of a human subject/user.
  • the pouch is placed somewhere in the oral cavity of the user, for example under the lips, in the same way as moist snuff products are generally used.
  • the pouch preferably is not chewed or swallowed.
  • the components of the composition therein e.g., flavoring agents and/or active ingredients
  • substantial amounts of the composition have been absorbed through oral mucosa of the human subject, and the pouch may be removed from the mouth of the human subject for disposal.
  • the pouched products of the present disclosure can include the composition in other forms.
  • the composition/construction of such packets or pouches, such as the container pouch 102 in the embodiment illustrated in FIG. 1, may be varied.
  • FIG. 1 there is shown a first embodiment of a pouched product 100.
  • the pouched product 100 includes a moisture- permeable container in the form of a pouch 102, which contains a composition 104 as described herein.
  • Suitable packets, pouches or containers of the type used for the manufacture of smokeless tobacco products may be used for the present pouched embodiments.
  • smokeless tobacco products are available under the tradenames CatchDry, Ettan, General, Granit, Goteborgs Rape, Grovsnus White, Metropol Kaktus, Mocca Anis, Mocca Mint, Mocca Wintergreen, Kicks, Probe, Prince, Skruf and TreAnkrare.
  • the composition may be contained in pouches and packaged, in a manner and using the types of components used for the manufacture of conventional snus types of products.
  • the pouch provides a liquid-permeable container of a type that may be considered to be similar in character to the mesh-like type of material that is used for the construction of a tea bag. Components of the composition readily diffuse through the pouch and into the mouth of the user.
  • Non-limiting examples of suitable types of pouches are set forth in, for example, US Pat. Nos. 5,167,244 to Kjerstad and 8,931,493 to Sebastian et al.; as well as US Patent App. Pub. Nos. 2016/0000140 to Sebastian et al.; 2016/0073689 to Sebastian et al.; 2016/0157515 to Chapman et al.; and 2016/0192703 to Sebastian et al., each of which is incorporated herein by reference.
  • Pouches can be provided as individual pouches, or a plurality of pouches (e.g., 2, 4, 5, 10, 12, 15, 20, 25 or 30 pouches) can be connected or linked together (e.g., in an end-to-end manner) such that a single pouch or individual portion can be readily removed for use from a one-piece strand or matrix of pouches.
  • a plurality of pouches e.g., 2, 4, 5, 10, 12, 15, 20, 25 or 30 pouches
  • the pouch may be manufactured from materials, and in such a manner, such that during use by the user, the pouch undergoes a controlled dispersion or dissolution.
  • Such pouch materials may have the form of a mesh, screen, perforated paper, permeable fabric, or the like.
  • pouch material manufactured from a mesh-like form of rice paper, or perforated rice paper may dissolve in the mouth of the user.
  • the pouch and composition each may undergo complete dispersion within the mouth of the user during normal conditions of use, and hence the pouch and composition both may be ingested by the user.
  • pouch materials may be manufactured using water dispersible film forming materials (e.g., binding agents such as alginates, carboxymethylcellulose, xanthan gum, pullulan, and the like), as well as those materials in combination with materials such as ground cellulosics (e.g., fine particle size wood pulp).
  • Pouch materials which may in some embodiments be water dispersible or dissolvable, may be designed and manufactured such that under conditions of normal use, a significant amount of the composition contents permeate through the pouch material prior to the time that the pouch undergoes loss of its physical integrity. If desired, flavoring ingredients, disintegration aids, and other desired components, may be incorporated within, or applied to, the pouch material.
  • the pouch is formed from a fleece material, e.g., fibrous nonwoven webs.
  • a fleece material e.g., fibrous nonwoven webs.
  • fiber is defined as a basic element of textiles. Fibers are often in the form of a rope- or string-like element.
  • fiber is intended to include fibers, filaments, continuous filaments, staple fibers, and the like.
  • multicomponent fibers refers to fibers that comprise two or more components that are different by physical or chemical nature, including bicomponent fibers.
  • multicomponent fibers includes staple and continuous fibers prepared from two or more polymers present in discrete stmctured domains in the fiber, as opposed to blends where the domains tend to be dispersed, random or unstructured.
  • a "fleece material" as used herein may be formed from various types of fibers, as described in more detail herein below, capable of being formed into a traditional fleece fabric or other traditional pouch material.
  • fleece materials may be provided in the form of a woven or nonwoven fabric. Suitable types of fleece materials are described in, for example, U.S. Patent No. 8,931,493 to Sebastian et al.; US Patent App. Pub. No. 2016/0000140 to Sebastian et al.; and US Patent App. Pub. No. 2016/0073689 to Sebastian et al.; which are all incorporated herein by reference.
  • nonwoven is used herein in reference to fibrous materials, webs, mats, batts, or sheets in which fibers are aligned in an undefined or random orientation.
  • the nonwoven fibers are initially presented as unbound fibers or filaments.
  • An important step in the manufacturing of nonwovens involves binding the various fibers or filaments together.
  • the manner in which the fibers or filaments are bound can vary, and include thermal, mechanical and chemical techniques that are selected in part based on the desired characteristics of the final product, as discussed in more detail herein below.
  • the fleece material is a nonwoven web comprising fibers and at least a portion of the fibers are selected from the group consisting of polyester fibers, tobacco-derived viscose fibers, sisal fibers, com silk fibers, long wood fibers, MCC fibers, and combinations thereof.
  • Such fleece materials are described further herein below, and in International Application Publication No. WO2021116853A1 to Hutchens et al., which is incorporated by reference herein in its entirety.
  • At least about 10%, at least about 20%, at least about 40%, at least about 50%, at least about 60%, at least about 80%, or at least about 90% of the fibers of the nonwoven web is selected from the group consisting of polyester fibers, viscose fibers, sisal fibers, com silk fibers, long wood fibers, MCC fibers, and combinations thereof, based on the total weight of the fibers within the nonwoven web.
  • about 10% to about 100%, about 50% to about 100%, about 40% to about 90%, or about 60% to about 80% of the fibers of the nonwoven web is selected from the group consisting of polyester fibers, viscose fibers, sisal fibers, com silk fibers, long wood fibers, MCC fibers, and combinations thereof, based on the total weight of the fibers within the nonwoven web.
  • the remainder of the fibers comprising the fleece material can be, in some embodiments, conventional fibrous types, including, but not limited to fibers comprising a polymer component, wool fibers, cotton fibers, conventional cellulosic fibers, and combinations thereof, as will be discussed further herein.
  • the amount of "alternative fiber” incorporated within the disclosed pouches provides some benefit to the pouch (e.g., enhanced biodegradability, enhanced mouthfeel, etc.), while not significantly negatively impacting other characteristics of the fleece (e.g., taste, strength, mouthfeel, etc.).
  • the nonwoven web can comprise polyester fibers.
  • polyester is a category of polymer that contains ester functional groups in the main polymer chain.
  • Polyesters include naturally occurring polymers (e.g., cutin of plant cuticles), as well as synthetically produced polymers (e.g., polybutyrate).
  • polyesters that can be incorporated, in fiber form, within a nonwoven web pouch comprising polyester fibers include, but are not limited to, cutin, polybutyrate, polyethylene terephthalate), polyglycolide, polylactic acid, polycaprolactone, polyhydroxyalkanoate, polyhydroxybutyrate, and copolymers and derivatives thereof.
  • polyester fibers in a pouch material can enhance the biodegradability of the pouched product.
  • the use of polyester fibers in a fleece material can provide a softer fleece material, which can improve the feel of the pouch in a user’s mouth, particularly in larger pouched products, for example, the pouched products having a length in a range from about 35-45 mm and a width in a range from about 12- 18 mm.
  • polyester fibers can be spun together with other fiber types to produce fibers having blended properties.
  • the fleece material can comprise at least about 10 wt. %, at least about 20 wt. %, at least about 25 wt.
  • the fleece materials can comprise 100 wt. % polyester fibers, based on the total weight of the fibers within the nonwoven web. It is noted that certain conventional fleece materials (e.g., hygiene wipes, sound dampening materials, etc.) incorporate polyester materials in an amount of about 20 wt.
  • the fleece material can incorporate polyester fibers in an amount greater than 20 wt. %, based on the total weight of the fibers within the nonwoven web.
  • a relatively high amount of polyester fibers can provide enhanced sustainability as compared to conventional fleece materials, and can avoid the use of viscose fibers, which, in some embodiments, can include toxic chemicals used during manufacturing of the viscose fibers.
  • the fleece material can comprise viscose fibers, including but not limited to, viscose fibers derived from tobacco.
  • viscose is a type of rayon fiber that is made from natural cellulose sources. In a typical rayon manufacturing process, cellulose is chemically converted into a soluble compound, dissolved, and then forced through a spinneret to produce filaments which are chemically solidified, resulting in fibers of regenerated cellulose. Regenerated cellulose fibers can be particularly advantageous as they can provide enhanced biodegradability and favorable sensory characteristics when used in a fleece material.
  • Regenerated cellulose fibers are typically prepared by extracting non-cellulosic compounds from wood, contacting the extracted wood with caustic soda, followed by carbon disulfide and then by sodium hydroxide, giving a viscous solution. The solution is subsequently forced through spinneret heads to create viscous threads of regenerated fibers.
  • Example methods for the preparation of regenerated cellulose are provided in U.S. Pat. No. 4,237,274 to Leoni et al; U.S. Pat. No. 4,268,666 to Baldini et al; U.S. Pat. No. 4,252,766 to Baldini et al.; U.S. Pat. No. 4,388,256 to Ishida et al.; U.S.
  • regenerated cellulose is made is not limiting, and can include, for example, both the rayon and the TENCEL processes.
  • Various suppliers of regenerated cellulose are known, including Lenzing (Austria), Cordenka (Germany), Aditya Birla (India), and Daicel (Japan).
  • the fleece material can comprise at least about 10 wt. %, at least about 20 wt. %, at least about 25 wt. %, at least about 30 wt. %, at least about 40 wt. %, at least about 50 wt. %, at least about 60 wt. %, at least about 70 wt. %, at least about 80 wt. %, or at least about 90 wt. % viscose fibers, based on the total weight of the fibers within the fleece material.
  • the fleece material is 100% viscose.
  • At least a portion of the viscose fibers are tobacco -derived viscose (i.e., obtained from a tobacco-derived cellulose material).
  • tobacco-derived cellulose material suitable for the production of tobacco-derived viscose may be prepared from tobacco biomass by subjecting the biomass to a pulping process, as described in U.S. Pat. Pub. Nos. 2013/0276801 to Byrd, Jr. et al., 2016/0073686 to Crooks, and 2016/0208440 to Byrd, Jr. et al., which are herein incorporated by reference in their entireties.
  • the fleece material comprises microcrystalline cellulose (MCC) fibers.
  • MCC microcrystalline cellulose
  • MCC is a term used to describe refined cellulosic pulp.
  • MCC can be derived from any cellulosic biomass (e.g., wood, cotton, any portion of a plant of the Nicotiana species, etc.).
  • the cellulosic biomass can be subjected to a pulping process to derive a dissolving grade pulp material. See, e.g., the pulping processes described in U.S. Pat. Pub. Nos. 2013/0276801 to Byrd, Jr. et al., 2016/0073686 to Crooks, and 2016/0208440 to Byrd, Jr.
  • the dissolving grade pulp (e.g., after bleaching) can be characterized by a brightness of at least about 83%, a content of alpha-cellulose of at least about 88% by weight, a degree of polymerization of less than about 750, and/or a viscosity between about 2 centipoise and about 15 centipoise in a solution of 0.5% cupriethylenediamine by weight.
  • various additional operations can be applied to the dissolving grade pulp to convert the alpha cellulose in the dissolving grade pulp into microcrystalline cellulose (MCC).
  • the MCC can be formed from biomass derived from a plant of the Nicotiana species. The MCC can then be spun into fibers, which can be incorporated into the fleece material.
  • the fleece material comprises at least about 10 wt. %, at least about 20 wt. %, at least about 25 wt. %, at least about 30 wt. %, at least about 40 wt. %, at least about 50 wt. %, at least about 60 wt. %, at least about 70 wt. %, at least about 80 wt. %, or at least about 90 wt. % MCC fibers, based on the total weight of the fibers within the fleece material.
  • the fleece material comprises 100 wt. % MCC fibers, based on the total weight of the fibers within the fleece material.
  • a fleece material formed from 100% MCC fibers could be ingestible by a user of the pouched products described herein.
  • the fleece material comprises sisal fibers.
  • Sisal with the botanical name Agave sisalana, is a species of Agave native to southern Mexico, but cultivated in many other countries. It yields a relatively stiff fiber as compared to cellulose/viscose fibers. Conventionally, sisal fibers have been used for rope and twine.
  • the fleece material comprises a first plurality of sisal fibers and a second plurality of viscose fibers.
  • sisal can be blended with a viscose material in order to produce a blended sisal/viscose fiber, which can then be used to form a fleece material.
  • the viscose can help soften the feel of the stiffer sisal material.
  • the fleece material comprises at least about 10 wt. %, at least about 20 wt. %, at least about 25 wt. %, at least about 30 wt. %, at least about 40 wt. %, at least about 50 wt. %, at least about 60 wt. %, at least about 70 wt. %, at least about 80 wt. %, or at least about 90 wt. % sisal fibers, based on the total weight of the fibers within the fleece material.
  • the fleece material comprises 100 wt. % sisal fibers, based on the total weight of the fibers within the fleece material.
  • the fleece material comprises com silk fibers.
  • Corn silk is a common name for the shiny, thread-like, weak fibers that grow as part of ears of com.
  • Com silk is known, e.g., for its good buoyancy, huge hollowness, and low density, as well as its biodegradability.
  • the fleece material comprises at least about 10 wt. %, at least about 20 wt. %, at least about 25 wt. %, at least about 30 wt. %, at least about 40 wt. %, at least about 50 wt. %, at least about 60 wt. %, at least about 70 wt. %, at least about 80 wt.
  • the fleece material comprises 100 wt. % com silk fibers, based on the total weight of the fibers within the fleece material.
  • the fleece material comprises long wood fibers (e.g., softwood fibers).
  • long wood fibers can have a length of about 1-5 mm, about 2-4 mm, or about 2.5-3.5 mm.
  • the long wood fibers can be formed from cellulosic material derived from hardwood biomass and/or softwood biomass.
  • the cellulosic material is derived from any softwood biomass.
  • Softwood includes wood from gymnosperm trees such as, but not limited to, conifers (e.g., pines, spruces, etc.). Although not always the case, many softwoods have a lower density than most hardwoods.
  • the fleece materials described herein can comprise at least about 10 wt.
  • the fleece material comprises 100 wt. % long wood fibers, based on the total weight of the fibers within the fleece material. Without being limited by theory, it is noted that natural wood fibers can provide improved biodegradability of the fleece materials made therefrom.
  • the fibers may be selected from the group consisting of polyester fibers, viscose fibers, sisal fibers, com silk fibers, long wood fibers, MCC fibers, and combinations thereof, and can be mixed with any type of fiber known in the art as useful in making nonwoven webs.
  • at least a portion of the fibers within the fleece material may include, but are not limited to, fibers formed from a polymer material.
  • At least a portion of the fibers within the fleece material may be selected from the group consisting of wool, cotton, fibers made of cellulosic material (e.g., regenerated cellulose, cellulose acetate, cellulose triacetate, cellulose nitrate, ethyl cellulose, cellulose acetate propionate, cellulose acetate butyrate, hydroxypropyl cellulose, methyl hydroxypropyl cellulose, and the like) derived from a source other than wood or a plant of the Nicotiana species, protein fibers, and the like. See also, the fiber types set forth in US Pat. Appl. Pub. No. 2014/0083438 to Sebastian et al., which is incorporated by reference herein.
  • cellulosic material e.g., regenerated cellulose, cellulose acetate, cellulose triacetate, cellulose nitrate, ethyl cellulose, cellulose acetate propionate, cellulose acetate butyrate, hydroxypropy
  • combinations of the fiber types referenced herein are used in combination, e.g., such that a fleece material for a pouch is provided comprising only a combination of these types of fibers.
  • the form of the fibers used in the nonwoven web according to the present disclosure can vary, and include fibers having any type of cross-section, including, but not limited to, circular, rectangular, square, oval, triangular, and multilobal.
  • the fibers can have one or more void spaces, wherein the void spaces can have, for example, circular, rectangular, square, oval, triangular, or multilobal cross-sections.
  • the fibers can be selected from single-component (i.e., uniform in composition throughout the fiber) or multicomponent fiber types including, but not limited to, fibers having a sheath/core structure and fibers having an islands-in-the-sea structure, as well as fibers having a side-by- side, segmented pie, segmented cross, segmented ribbon, or tipped multilobal cross-sections.
  • the physical parameters of the fibers present in the nonwoven web can vary.
  • the fibers used in the nonwoven web can have varying size (e.g., length, denier per filament (dpf)) and crimp characteristics.
  • fibers used in the nonwoven web can be nano fibers, sub-micron fibers, and/or micron-sized fibers.
  • fibers of the nonwoven webs useful herein can measure about 1.5 dpf to about 2.0 dpf, or about 1.6 dpf to about 1.90 dpf.
  • each fiber can measure about 4-10 crimps per cm, or about 5-8 crimps per cm.
  • each fiber can be a continuous filament fiber.
  • each fiber can be a staple fiber.
  • Each fiber length can measure about 35 mm to about 60 mm, or about 38 mm to about 55 mm, for example. It can be advantageous for all fibers in the nonwoven web to have similar fiber size and crimp attributes to ensure favorable blending and orientation of the fibers in the nonwoven web.
  • the fibrous webs can have varying thicknesses, porosities and other parameters.
  • the nonwoven web can be formed such that the fiber orientation and porosity of the pouched product formed therefrom can retain the composition adapted for oral use that is enclosed within the outer water-permeable pouch, but can also allow the flavors of the composition to be enjoyed by the consumer.
  • the fibrous webs can have a basis weight of about 20 gsm to about 35 gsm, or about 25 gsm to about 30 gsm. In a preferred embodiment, the fibrous web can have a basis weight of about 28 gsm. Basis weight of a fabric can be measured using ASTM D3776/D3776M-09a (2013) (Standard Test Methods for Mass Per Unit Area (Weight) of Fabric), for example. In various embodiments, the fibrous web can have a thickness of about 0.1 mm to about 0.15 mm (e.g., about 0.11 mm). The fibrous web can have an elongation of about 70% to about 80%, e.g., about 78%.
  • the fibrous web can have a peak load of about 4 lbs. to about 8 lbs., e.g., about 5.5 lbs. Elongation and breaking strength of textile fabrics can be measured using ASTM D5034-09(2013) (Standard Test Method for Breaking Strength and Elongation of Textile Fabrics (Grab Test)), for example.
  • the fibrous web can have a Tensile Energy Absorption (TEA) of about 35 to about 40, e.g., about 37.
  • the fibrous web can have a porosity of greater than about 10,000 ml/min/cnr.
  • TEA can be measured, for example, as the work done to break the specimen under tensile loading per lateral area of the specimen.
  • Porosity, or air permeability of textile fabrics can be measured using ASTM D737-04(2012) (Standard Test method for Air Permeability of Textile Fabrics), for example.
  • the outer water-permeable pouch is made from a nonwoven web as described above.
  • the pouch is constmcted of a single layer of the nonwoven web.
  • the pouch material comprises a multilayer composite made up of two or more nonwoven layers. Each nonwoven layer can be formed by processes discussed above.
  • the pouched product 100 may have a first layer 200 which can be relatively hydrophilic and a second layer 201 which can be relatively hydrophobic (compared to each other).
  • the pouched product 100 may comprise an outer water-permeable pouch comprising an outer hydrophilic layer 200 and an inner hydrophobic layer 201 in contact with the composition 202 as described herein.
  • the hydrophobic layer 201 can, during storage of the pouched product 100, retain any moisture in the composition 202 such that flavors in the composition 202 are not lost due to moisture loss.
  • capillaries in the hydrophobic layer 201 can wick out moisture into the mouth of the user, such that composition components are released into the oral cavity when used. In this manner, the pouch material can enhance storage stability without significantly compromising the enjoyment of the product by the end user.
  • the relatively hydrophilic layer 200 could be located on the interior of the multi-layer structure.
  • the two layers can be formed into a multilayer composite nonwoven material using any means known in the art, such as by attaching the two layers together using adhesive or stitching.
  • the hydrophobicity of a textile material can be evaluated, for example, by measuring the contact angles between a drop of liquid and the surface of a textile material, as is known in the art.
  • an outer hydrophilic layer can comprise a flavor component (such as a flavorant as described herein), which can be applied to the nonwoven layer in any conventional manner such as by coating, printing, and the like.
  • the flavor within an outer hydrophilic layer can differ from a flavor contained within the internal composition adapted for oral use.
  • the product can be designed to provide multiple, different sensory experiences, a first sensory experience where the flavor in the outer layer transitions into the mouth of the user and a second sensory experience, typically occurring later in time, where the flavor of the internal composition transitions into the mouth of the user.
  • the hydrophilic and hydrophobic layers can be formed from similar nonwoven web compositions, but one of the nonwoven webs can be treated to enhance either hydrophobicity or hydrophilicity.
  • a layer of the nonwoven web can be treated with a wet chemical solution to confer hydrophilicity thereupon.
  • a nonwoven web layer is treated with an aqueous alcohol solution containing a food-grade surfactant.
  • the surfactant may include, for example one or more of sorbitan aliphatic acid ester, polyglycerin aliphatic acid ester, or sucrose aliphatic acid ester (see, e.g., U.S. Pat. No.
  • the fleece fabric layers can be made hydrophilic or hydrophobic by changing the type of fiber chosen.
  • predominantly hydrophobic cellulose fibers are commercially available as Tencel® Biosoft from Lenzing of Austria and as Olea Fiber from Kelheim of Germany.
  • the hydrophilic layer can incorporate cationic or anionic cellulose fibers that are also available from Kelheim of Germany, for example.
  • the fibers referenced herein can be incorporated in some amount within the hydrophilic layer, the hydrophobic layer, or both.
  • the hydrophilic layer can contain additives such as polyethylene glycols, methyl cellulose, hydroxypropylmethyl cellulose, hydroxypropyl cellulose, hydroxypropylmethyl cellulose phthalate, polyvinyl pyrrolidone, polyvinyl alcohol, polyacrylic acids, gelatins, alginates, sulfosuccinates, and combinations thereof.
  • a heat sealable binder coating or a binder material may be added to the fibers prior to, during, or after forming the fleece material.
  • heat sealable binder coatings refers to coating materials, such as acrylic polymer compositions, applied to a substrate (e.g., a nonwoven web or fleece material) and which are capable of sealing seams of individual pouches upon heating.
  • a binder material can be added to the web fibers before or during the laying of the fibrous web (i.e., before the fibrous web is bonded to form a fleece material).
  • a binder material can be added to the fleece material after it has been formed.
  • the binder material is in the form of a liquid coating.
  • a binding powder can be applied to the fleece material.
  • powdered polyethylene can be used as a binder material.
  • the liquid or powder coating can be applied, for example, between layers of fibers when crosslaying, air laying, or as an after treatment. A short exposure in an oven is sufficient to melt and fuse the binder material.
  • Nonwoven web formation will typically involve a carding step, which involves deposition of the fibers onto a surface followed by aligning/blending the fibers in a machine direction. Thereafter, the fibrous web is typically subjected to some type of bonding/entanglement including, but not limited to, thermal fusion or bonding, mechanical entanglement, chemical adhesive, or a combination thereof.
  • the fibrous web is bonded thermally using a calendar (which can provide flat or point bonding), steam jet bonding, or a thru-air oven. Additional bonding methods include ultrasonic bonding and crimping.
  • needle punching is utilized, wherein needles are used to provide physical entanglement between fibers.
  • the web is entangled using hydroentanglement, which is a process used to entangle and bond fibers using hydrodynamic forces.
  • a binder material can be applied to the fibers of the fibrous web before laying the fibrous web, during formation of the fibrous web, and/or after the fibrous web has been bonded to form a fleece material. After forming the fleece material, heat can be applied to the fleece material in order to activate/at least partially melt the binder material to further bond the fleece material and thereby further enhance the mechanical integrity of the fleece material.
  • Methods for forming a nonwoven web comprising natural and synthetic fibers may include drylaid, airlaid and wetlaid methods.
  • the nonwoven fabric can be formed using a spunlaid or spunmelt process, which includes both spunbond and meltblown processes, wherein such processes are understood to typically entail melting, extruding, collecting and bonding thermoplastic polymer materials to form a fibrous nonwoven web.
  • the technique of meltblowing is known in the art and is discussed in various patents, for example, U.S. Pat. Nos.
  • the fibrous webs can be wetlaid. Any method known in the art can be used to form fibrous webs comprising synthetic fibers.
  • the nonwoven web is made by providing a drylaid or a spunlaid web of fibers, and then needle punching the web to bond the dry laid or spun laid web.
  • the needle punched fleece material is produced when barbed needles are pushed through the fibrous web, forcing some fibers upwards or downwards through the web by the barbed needles.
  • the fibers punched through the web remain at their new position once the needles are withdrawn. This needling action interlocks fibers and holds the structure together by inter fiber friction forces caused by compression of the web, thereby bonding the web.
  • the web is converted into a nonwoven fabric.
  • the nonwoven web is made by a fleece carding process with point bonding.
  • the point bonding (e.g., using a calendar) should be limited to a relatively small portion of the surface area of the nonwoven web to maintain good porosity in the web for migration of water-soluble components through the web during oral use.
  • the point bonding is limited to less than about 60% of the surface area of the nonwoven web (or resulting pouch), such as less than about 50%, less than about 30%, or less than about 20% (e.g., about 1% to about 50%, about 5% to about 40%, or about 10% to about 30%).
  • An advantage of point bonding is the ability to control the porosity, flexibility and fabric strength.
  • the nonwoven web can be subjected to hydroentangling.
  • hydroentangled or "spunlaced" as applied to a nonwoven fabric herein defines a web subjected to impingement by a curtain of high speed, fine water jets, typically emanating from a nozzle jet strip accommodated in a pressure vessel often referred to as a manifold or an injector.
  • This hydroentangled fabric can be characterized by reoriented, twisted, turned and entangled fibers.
  • the fibers can be hydroentangled by exposing the nonwoven web to water pressure from one or more hydroentangling manifolds at a water pressure in the range of about 10 bar to about 1000 bar.
  • spunlace technology in some embodiments, will have less impact on porosity of the web and, thus, may enhance flavor transfer through the nonwoven pouch material.
  • the nonwoven web can be subjected to a second bonding method in order to reduce elongation of the web during processing.
  • nonwoven webs of the present disclosure can exhibit significant elongation during high-speed processing on pouching equipment. Too much elongation of the nonwoven web can cause the web to shrink during processing, such that the final product is not sized appropriately. As such, it can be necessary to modify process equipment to fit a wider roll of fleece, for example, to compensate for any shrinkage in the final product due to elongation.
  • the nonwoven web can be point bonded after the first bonding (e.g., hydroentangling) is completed.
  • a second bonding process can increase the tensile strength of the nonwoven web and reduce elongation characteristics.
  • a point bonding process can bond a nonwoven web by partially or completely melting the web (e.g., the heat sealable binder material) at discrete points.
  • the nonwoven web can be subjected to ultrasonic bonding after initial bonding of the web. Any ultrasonic bonding system for nonwoven materials known in the art can be used to ultrasonically bond the nonwoven web. See, for example, the apparatuses and devices disclosed in U.S.
  • the nonwoven web can be subjected to point bonding via embossed and/or engraved calendar rolls, which are typically heated. See, e.g., the point bonding methods incorporating the use of very high calendar pressures and embossing techniques discussed in U.S. Pat. Publ. No. 2008/0249492 to Schmidt, herein incorporated by reference in its entirety.
  • the point bonding process is typically limited to less than about 60% of the surface area of the nonwoven web as noted above.
  • the processing techniques used to blend, entangle and bond the nonwoven web can also impart a desired texture to the fibrous nonwoven web material.
  • a desired texture e.g., a desired pattern
  • This textured pattern can include product identifying information.
  • the product identifying information is selected from the group consisting of product brand, a company name, a corporate logo, a corporate brand, a marketing message, product strength, active ingredient, product manufacture date, product expiration date, product flavor, product release profile, weight, product code (e.g., batch code), other product differentiating markings, and combinations thereof.
  • pouched embodiments are prepared by introducing a charge of the composition as disclosed herein to a pouch member portion by an insertion unit after a leading end of the pouch member portion has been closed, but prior to the closing of a trailing end.
  • discrete individual pouch member portions can be formed by closing the trailing end and severing the closed pouch member portion from the continuous tubular member such that an individual pouched product is formed.
  • U.S. Patent Application Publication No. 2012/0055493 to Novak, III et al. incorporated by reference in its entirety, relates to an apparatus and process for providing pouch material formed into a tube for use in the manufacture of smokeless tobacco products.
  • Similar apparatuses that incorporate equipment for supplying a continuous supply of a pouch material e.g., a pouch processing unit adapted to supply a pouch material to a continuous tube forming unit for forming a continuous tubular member from the pouch material
  • Representative equipment for forming such a continuous tube of pouch material is disclosed, for example, in U.S. Patent Application Publication No.
  • the apparatus further includes equipment for supplying pouched material to the continuous tubular member such that, when the continuous tubular member is subdivided and sealed into discrete pouch portions, each pouch portion includes a charge of a composition adapted for oral use.
  • Representative equipment for supplying the fdler material is disclosed, for example, in U.S. Patent Application Publication No. 2010/0018539 to Brinkley, which is incorporated herein by reference in its entirety.
  • the apparatus may include a subdividing unit for subdividing the continuous tubular member into individual pouch portions and, once subdivided into the individual pouch portions, may also include a sealing unit for sealing at least one of the ends of each pouch portion.
  • the continuous tubular member may be sealed into individual pouch portions with a sealing unit and then, once the individual pouch portions are sealed, the continuous tubular member may be subdivided into discrete individual pouch portions by a subdividing unit subdividing the continuous tubular member between the sealed ends of serially-disposed pouch portions. Still in other instances, sealing (closing) of the individual pouch portions of the continuous tubular member may occur substantially concurrently with the subdivision thereof, using a closing and dividing unit. It is noted that in some embodiments of the present disclosure wherein a low melting point binder material is used, the temperature required for sealing the seams of the pouched product can be less than the temperature required in conventional processes associated with conventional binder materials.
  • the amount of composition contained within each product unit may vary.
  • the weight of the composition within each pouch is at least about 50 mg, for example, from about 50 mg to about 2 grams, from about 100 mg to about 1.5 grams, or from about 200 to about 700 mg.
  • the weight of the composition within each pouch may be from about 100 to about 300 mg.
  • the weight of the material within each pouch may be from about 300 mg to about 1500 mg, such as about 300, about 500, about 700, about 100, or about 1500 mg.
  • the amount of composition contained within each pouch may also be described in terms of density of fill or the percent of the total available pouch volume occupied by the composition. In some embodiments, the composition occupies from about 50 to about 100% of the total volume of the pouch. The higher the percent by volume occupied by the composition, the higher the fill density. Accordingly, pouched products containing a high fill volume percentage of composition may be described as having a high fill density.
  • each pouch can contain at least one flavored strip, piece or sheet of flavored water dispersible or water-soluble material (e.g., a breath-freshening edible film type of material) may be disposed within each pouch along with or without at least one capsule.
  • flavored water dispersible or water-soluble material e.g., a breath-freshening edible film type of material
  • Such strips or sheets may be folded or crumpled in order to be readily incorporated within the pouch. See, for example, the types of materials and technologies set forth in US Pat. Nos. 6,887,307 to Scott et al. and 6,923,981 to Leung et al.; and The EFSA Journal (2004) 85, 1-32; which are incorporated herein by reference.
  • a pouched product as described herein can be packaged within any suitable inner packaging material and/or outer container, such as those utilized for smokeless tobacco products. See, for example, the various types of containers for smokeless types of products that are set forth in US Pat. Nos. 7,014,039 to Henson et al.; 7,537,110 to Kutsch et al.; 7,584,843 to Kutsch et al.; 8,397,945 to Gelardi et al., D592,956 to Thiellier; D594,154 to Patel et al.; and D625,178 to Bailey et al.; US Pat. Pub. Nos.
  • the various components of the composition may vary.
  • the overall composition with e.g., powdered composition components may be relatively uniform in nature.
  • the components noted above, which may be in liquid or dry solid form, can be admixed in a pretreatment step prior to mixture with any remaining components of the composition, or simply mixed together with all other liquid or dry ingredients.
  • the various components of the composition may be contacted, combined, or mixed together using any mixing technique or equipment known in the art. Any mixing method that brings the composition ingredients into intimate contact can be used, such as a mixing apparatus featuring an impeller or other structure capable of agitation.
  • mixing equipment examples include casing drums, conditioning cylinders or drums, liquid spray apparatus, conical-type blenders, ribbon blenders, mixers available as FKM130, FKM600, FKM1200, FKM2000 and FKM3000 from Littleford Day, Inc., Plough Share types of mixer cylinders, Hobart mixers, and the like. See also, for example, the types of methodologies set forth in US Pat. Nos. 4,148,325 to Solomon et al.; 6,510,855 to Korte et al.; and 6,834,654 to Williams, each of which is incorporated herein by reference.
  • the components forming the composition are prepared such that the mixture thereof may be used in a starch molding process for forming the composition.
  • Example 1 Composition pH determination
  • samples of pouches containing such compositions are extracted into a known volume of water and the pH of the resulting solution obtained with a pH meter.
  • a pH meter Specifically, an accurately weighed pouch sample of approximately 2 grams is placed in a beaker (pouch or pouches are cut in half or quarters) and 20 mL of purified water is added. The mixture is stirred with a glass stirring rod, and the resulting test solution allowed to equilibrate for 30 minutes and up to 3 hours. A calibrated meter probe is introduced into the solution, and the pH measured and recorded.
  • Example 2 Pouched product with caffeine, vitamins, and guarana
  • Samples of pouched products according to embodiments of the present disclosure were prepared from a composition comprising caffeine, vitamins, microcrystalline cellulose (MCC), water, and additional components as disclosed herein (salts, sweeteners, buffer, botanical, and flavoring agent).
  • the formulation composition is provided in Table 1.
  • the composition was prepared by combining microcrystalline cellulose, caffeine, salts, buffer, a vitamin premix (including vitamins Bl, B2, B3, B5, B6, B7, B9, B12, C, E, sodium selenite, and zinc sulfate), sweeteners, and guarana extract to form a mixture of dry ingredients.
  • the dry ingredients were mixed together for 10 minutes to form a dry mix, to which was added a portion of the water. After a further 7 minutes of mixing, the flavoring agent was added, followed by another 7 minutes of mixing. A further quantity of water was added, followed by another 7 minutes of mixing to form a homogenous composition.
  • the composition had a moisture content of about 14 to about 21%.
  • Portions of the composition (662.3 mg) were placed into non-woven fleece pouches and additional water was sprayed onto the product for a final pouch weight of 700 mg.
  • the moisture content of the pouched product was 48%, and the pH of the contents, determined according to Example 1, was 8.0.
  • Each pouch contained from 60 mg to 100 mg of caffeine in pure, solid form (i.e., excluding any caffeine present in the guarana extract).
  • Example 3 Pouched product with caffeine Samples of pouched products according to embodiments of the present disclosure were prepared from a composition comprising caffeine, micro crystalline cellulose (MCC), water, and additional components as disclosed herein (salts, sweeteners, buffer, and flavoring agent).
  • MMC micro crystalline cellulose
  • the composition was prepared as in Example 2 but using the formulation composition provided in Table 2 (i.e., excluding the vitamin premix and guarana extract present in Example 2).
  • the moisture content of the pouched product was 48%, and the pH of the contents, determined according to Example 1, was 8.0.
  • Each pouch contained from 60 mg to 100 mg of caffeine in pure, solid form.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Botany (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

L'invention concerne une composition qui comprend une charge en une quantité d'au moins 20% en poids, rapportée au poids total de la composition, et de la caféine en une quantité d'au moins 5% en poids, rapportée au poids total de la composition, se présentant sous une forme sensiblement pure. La composition comprend en outre au moins un édulcorant et un ou plusieurs agents aromatisants, et éventuellement, au moins une vitamine.
PCT/IB2024/051878 2023-02-28 2024-02-27 Produit à prendre par voie orale contenant de la caféine WO2024180481A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202363448749P 2023-02-28 2023-02-28
US63/448,749 2023-02-28

Publications (1)

Publication Number Publication Date
WO2024180481A1 true WO2024180481A1 (fr) 2024-09-06

Family

ID=90362036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2024/051878 WO2024180481A1 (fr) 2023-02-28 2024-02-27 Produit à prendre par voie orale contenant de la caféine

Country Status (1)

Country Link
WO (1) WO2024180481A1 (fr)

Citations (187)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2033909A (en) 1934-12-19 1936-03-17 Niacet Chemicals Corp Manufacture of calcium levulinate
US3338992A (en) 1959-12-15 1967-08-29 Du Pont Process for forming non-woven filamentary structures from fiber-forming synthetic organic polymers
US3502763A (en) 1962-02-03 1970-03-24 Freudenberg Carl Kg Process of producing non-woven fabric fleece
US3542615A (en) 1967-06-16 1970-11-24 Monsanto Co Process for producing a nylon non-woven fabric
US3692618A (en) 1969-10-08 1972-09-19 Metallgesellschaft Ag Continuous filament nonwoven web
US3802817A (en) 1969-10-01 1974-04-09 Asahi Chemical Ind Apparatus for producing non-woven fleeces
US3849241A (en) 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
US3901248A (en) 1970-07-22 1975-08-26 Leo Ab Chewable smoking substitute composition
US3972759A (en) 1972-06-29 1976-08-03 Exxon Research And Engineering Company Battery separators made from polymeric fibers
US3987185A (en) 1973-11-12 1976-10-19 Richardson-Merrell Inc. Method of treatment using 1-oxo-1h-2-benzopyran-3-carboxylic acid derivatives
US4144895A (en) 1974-03-08 1979-03-20 Amf Incorporated Solvent extraction process
US4148325A (en) 1975-08-18 1979-04-10 British-American Tobacco Company Limited Treatment of tobacco
US4150677A (en) 1977-01-24 1979-04-24 Philip Morris Incorporated Treatment of tobacco
US4237274A (en) 1978-02-24 1980-12-02 Snia Viscosa Societa' Nazionale Industria Applicazioni Viscosa S.P.A. Process for the preparation of solutions of cellulose derivatives which can be coagulated and spun to form regenerated cellulose _bodies
US4252766A (en) 1978-07-27 1981-02-24 Snia Viscosa Societa Nazionale Industria Applicazioni Viscosa S.P.A. Process for the preparation of formed bodies of regenerated cellulose from solutions of cellulose derivatives in dimethylsulphoxide
US4267847A (en) 1978-05-12 1981-05-19 British-American Tobacco Company Limited Tobacco additives
US4268666A (en) 1978-04-03 1981-05-19 Snia Viscosa Societa Nazionale Industria Applicazioni Viscosa S.P.A. Process for the dissolution of cellulose in organic solvents, solutions obtained by said process, and process for the production of formed bodies of regenerated cellulose from said solutions
US4289147A (en) 1979-11-15 1981-09-15 Leaf Proteins, Inc. Process for obtaining deproteinized tobacco freed of nicotine and green pigment, for use as a smoking product
US4340073A (en) 1974-02-12 1982-07-20 Philip Morris, Incorporated Expanding tobacco
US4340563A (en) 1980-05-05 1982-07-20 Kimberly-Clark Corporation Method for forming nonwoven webs
US4351346A (en) 1980-03-08 1982-09-28 B.A.T. Cigaretten-Fabriken Gmbh Process for the preparation of aromatic substances
US4359059A (en) 1980-03-08 1982-11-16 B.A.T. Cigaretten-Fabriken Gmbh Process for the preparation of aromatic substances
US4388256A (en) 1978-11-24 1983-06-14 Masamichi Ishida Process for manufacturing regenerated cellulose hollow fiber
US4506682A (en) 1981-12-07 1985-03-26 Mueller Adam Clear tobacco aroma oil, a process for obtaining it from a tobacco extract, and its use
US4535028A (en) 1981-10-01 1985-08-13 Asahi Kasei Kogyo Kabushiki Kaisha Hollow fiber of cuprammonium regenerated cellulose and process for producing the same
US4589428A (en) 1980-02-21 1986-05-20 Philip Morris Incorporated Tobacco treatment
US4605016A (en) 1983-07-21 1986-08-12 Japan Tobacco, Inc. Process for preparing tobacco flavoring formulations
US4622259A (en) 1985-08-08 1986-11-11 Surgikos, Inc. Nonwoven medical fabric
US4660577A (en) 1982-08-20 1987-04-28 R.J. Reynolds Tobacco Company Dry pre-mix for moist snuff
US4716911A (en) 1986-04-08 1988-01-05 Genencor, Inc. Method for protein removal from tobacco
US4725440A (en) 1982-07-02 1988-02-16 E. R. Squibb & Sons, Inc. Antifungal pastille formulation and method
US4727889A (en) 1986-12-22 1988-03-01 R. J. Reynolds Tobacco Company Tobacco processing
US4887618A (en) 1988-05-19 1989-12-19 R. J. Reynolds Tobacco Company Tobacco processing
US4941484A (en) 1989-05-30 1990-07-17 R. J. Reynolds Tobacco Company Tobacco processing
US4967773A (en) 1986-06-26 1990-11-06 Shaw Alec S W Nicotine containing lozenge
US4967771A (en) 1988-12-07 1990-11-06 R. J. Reynolds Tobacco Company Process for extracting tobacco
US4986286A (en) 1989-05-02 1991-01-22 R. J. Reynolds Tobacco Company Tobacco treatment process
US5005593A (en) 1988-01-27 1991-04-09 R. J. Reynolds Tobacco Company Process for providing tobacco extracts
US5018540A (en) 1986-12-29 1991-05-28 Philip Morris Incorporated Process for removal of basic materials
US5060669A (en) 1989-12-18 1991-10-29 R. J. Reynolds Tobacco Company Tobacco treatment process
US5065775A (en) 1990-02-23 1991-11-19 R. J. Reynolds Tobacco Company Tobacco processing
US5074319A (en) 1990-04-19 1991-12-24 R. J. Reynolds Tobacco Company Tobacco extraction process
US5099862A (en) 1990-04-05 1992-03-31 R. J. Reynolds Tobacco Company Tobacco extraction process
US5110605A (en) 1990-08-21 1992-05-05 Oramed, Inc. Calcium polycarbophil-alginate controlled release composition and method
US5121757A (en) 1989-12-18 1992-06-16 R. J. Reynolds Tobacco Company Tobacco treatment process
US5131414A (en) 1990-02-23 1992-07-21 R. J. Reynolds Tobacco Company Tobacco processing
US5131415A (en) 1991-04-04 1992-07-21 R. J. Reynolds Tobacco Company Tobacco extraction process
US5148819A (en) 1991-08-15 1992-09-22 R. J. Reynolds Tobacco Company Process for extracting tobacco
US5167244A (en) 1990-01-19 1992-12-01 Kjerstad Randy E Tobacco substitute
US5197494A (en) 1991-06-04 1993-03-30 R.J. Reynolds Tobacco Company Tobacco extraction process
US5230354A (en) 1991-09-03 1993-07-27 R. J. Reynolds Tobacco Company Tobacco processing
US5234008A (en) 1990-02-23 1993-08-10 R. J. Reynolds Tobacco Company Tobacco processing
US5243999A (en) 1991-09-03 1993-09-14 R. J. Reynolds Tobacco Company Tobacco processing
US5259403A (en) 1992-03-18 1993-11-09 R. J. Reynolds Tobacco Company Process and apparatus for expanding tobacco cut filler
US5301694A (en) 1991-11-12 1994-04-12 Philip Morris Incorporated Process for isolating plant extract fractions
US5318050A (en) 1991-06-04 1994-06-07 R. J. Reynolds Tobacco Company Tobacco treatment process
US5343879A (en) 1991-06-21 1994-09-06 R. J. Reynolds Tobacco Company Tobacco treatment process
US5360022A (en) 1991-07-22 1994-11-01 R. J. Reynolds Tobacco Company Tobacco processing
US5387416A (en) 1993-07-23 1995-02-07 R. J. Reynolds Tobacco Company Tobacco composition
US5435325A (en) 1988-04-21 1995-07-25 R. J. Reynolds Tobacco Company Process for providing tobacco extracts using a solvent in a supercritical state
US5441689A (en) 1991-12-02 1995-08-15 Courtaulds Plc Process of making regenerated cellulose articles
US5445169A (en) 1992-08-17 1995-08-29 R. J. Reynolds Tobacco Company Process for providing a tobacco extract
US5539093A (en) 1994-06-16 1996-07-23 Fitzmaurice; Wayne P. DNA sequences encoding enzymes useful in carotenoid biosynthesis
US5668295A (en) 1990-11-14 1997-09-16 Philip Morris Incorporated Protein involved in nicotine synthesis, DNA encoding, and use of sense and antisense DNAs corresponding thereto to affect nicotine content in transgenic tobacco cells and plants
US5705624A (en) 1995-12-27 1998-01-06 Fitzmaurice; Wayne Paul DNA sequences encoding enzymes useful in phytoene biosynthesis
US5733574A (en) 1989-11-07 1998-03-31 Dam; Anders Nicotine containing stimulant unit
US5844119A (en) 1994-12-21 1998-12-01 The Salk Institute For Biological Studies Genetically modified plants having modulated flower development
US5908032A (en) 1996-08-09 1999-06-01 R.J. Reynolds Tobacco Company Method of and apparatus for expanding tobacco
US5997790A (en) 1995-11-20 1999-12-07 Michelin Recherche Et Technique S.A. Process for the preparation of regenerated cellulose filaments
US6077524A (en) 1994-05-06 2000-06-20 Bolder Arzneimittel Gmbh Gastric acid binding chewing pastilles
US6083527A (en) 1998-11-05 2000-07-04 Thistle; Robert Breath mint with tooth decay and halitosis prevention characteristics
US6131584A (en) 1999-04-15 2000-10-17 Brown & Williamson Tobacco Corporation Tobacco treatment process
US6248760B1 (en) 1999-04-14 2001-06-19 Paul C Wilhelmsen Tablet giving rapid release of nicotine for transmucosal administration
US20010016593A1 (en) 1999-04-14 2001-08-23 Wilhelmsen Paul C. Element giving rapid release of nicotine for transmucosal administration
US6280761B1 (en) 1993-07-26 2001-08-28 Pharmacia Ab Nicotine lozenge
US6298859B1 (en) 1998-07-08 2001-10-09 Novozymes A/S Use of a phenol oxidizing enzyme in the treatment of tobacco
US6510855B1 (en) 2000-03-03 2003-01-28 Brown & Williamson Tobacco Corporation Tobacco recovery system
US6668839B2 (en) 2001-05-01 2003-12-30 Jonnie R. Williams Smokeless tobacco product
US6676959B1 (en) 1998-11-23 2004-01-13 Pharmacia Ab Nicotine-containing pharmaceutical compositions giving a rapid transmucosal absorption
US6730832B1 (en) 2001-09-10 2004-05-04 Luis Mayan Dominguez High threonine producing lines of Nicotiana tobacum and methods for producing
US20040101543A1 (en) 2002-03-22 2004-05-27 John Liu Nicotine-containing oral dosage form
US6772767B2 (en) 2002-09-09 2004-08-10 Brown & Williamson Tobacco Corporation Process for reducing nitrogen containing compounds and lignin in tobacco
US20040191322A1 (en) 2002-12-20 2004-09-30 Henri Hansson Physically and chemically stable nicotine-containing particulate material
US6834654B2 (en) 2001-05-01 2004-12-28 Regent Court Technologies, Llc Smokeless tobacco product
US6887307B1 (en) 1999-07-22 2005-05-03 Warner-Lambert Company, Llc Pullulan film compositions
US6895974B2 (en) 1999-04-26 2005-05-24 R. J. Reynolds Tobacco Company Tobacco processing
WO2005063060A1 (fr) 2003-12-22 2005-07-14 U.S. Smokeless Tobacco Company Procede de traitement pour compositions de tabac ou de tabac a priser
US6923981B2 (en) 1998-09-25 2005-08-02 Warner-Lambert Company Fast dissolving orally consumable films
US6953040B2 (en) 2001-09-28 2005-10-11 U.S. Smokeless Tobacco Company Tobacco mint plant material product
US7014039B2 (en) 2003-06-19 2006-03-21 R.J. Reynolds Tobacco Company Sliding shell package for smoking articles
US7025066B2 (en) 2002-10-31 2006-04-11 Jerry Wayne Lawson Method of reducing the sucrose ester concentration of a tobacco mixture
US7032601B2 (en) 2001-09-28 2006-04-25 U.S. Smokeless Tobacco Company Encapsulated materials
US20060120974A1 (en) 1999-05-13 2006-06-08 Fluid Technologies Limited Of Great Britain Nicotine delivery systems
US20060210488A1 (en) 2005-03-19 2006-09-21 Jakubowski Henryk P Teeth whitening candy with tartar removal and breath freshening properties
US20060228308A1 (en) 2004-02-26 2006-10-12 Cummins Barry W Oral health care drink and method for reducing malodors
US20060236434A1 (en) 2000-08-30 2006-10-19 North Carolina State University Methods and compositions for tobacco plants with reduced nicotine
US20070031539A1 (en) * 2005-08-02 2007-02-08 Calton Jim S Jr Personal caffeine delivery pouch
US20070062549A1 (en) 2005-09-22 2007-03-22 Holton Darrell E Jr Smokeless tobacco composition
US7208659B2 (en) 2001-05-02 2007-04-24 Conopco Inc. Process for increasing the flavonoid content of a plant and plants obtainable thereby
US7230160B2 (en) 2001-03-08 2007-06-12 Michigan State University Lipid metabolism regulators in plants
US20080020050A1 (en) 2006-07-21 2008-01-24 Chau Tommy L Medicinal delivery system, and related methods
US7337782B2 (en) 2004-08-18 2008-03-04 R.J. Reynolds Tobacco Company Process to remove protein and other biomolecules from tobacco extract or slurry
US7374779B2 (en) 1999-02-26 2008-05-20 Lipocine, Inc. Pharmaceutical formulations and systems for improved absorption and multistage release of active agents
US20080173317A1 (en) 2006-08-01 2008-07-24 John Howard Robinson Smokeless tobacco
US20080196730A1 (en) 2004-07-02 2008-08-21 Radi Medical Systems Ab Smokeless Tobacco Product
WO2008103935A2 (fr) 2007-02-23 2008-08-28 U.S. Smokeless Tobacco Company Nouvelles compositions de tabac et leurs procédés de fabrication
US20080249492A1 (en) 2007-04-05 2008-10-09 Mcairlaid's Vliesstoffe Gmbh & Co. Kg Fiber material web
US20080305216A1 (en) 2007-06-08 2008-12-11 Philip Morris Usa Inc. Capsule clusters for oral consumption
US20090014450A1 (en) 2003-08-18 2009-01-15 Gustavus Ab Snuff-box lid
US20090014343A1 (en) 2007-05-07 2009-01-15 Philip Morris Usa Inc. Pocket-size hybrid container for consumer items
US7498281B2 (en) 2002-07-01 2009-03-03 Asahi Kasei Fibers Corporation Nonwoven fabric and tea bag
US20090081291A1 (en) 2007-09-26 2009-03-26 Gin Jerry B Sustained Release Dosage Forms For Delivery of Agents to an Oral Cavity of a User
USD592956S1 (en) 2008-02-08 2009-05-26 Philip Morris Usa Inc. Container
US7537110B2 (en) 2005-06-02 2009-05-26 Philip Morris Usa Inc. Container for consumer article
USD594154S1 (en) 2007-11-13 2009-06-09 R.J. Reynolds Tobacco Company Container with bottom compartment
US7556047B2 (en) 2003-03-20 2009-07-07 R.J. Reynolds Tobacco Company Method of expanding tobacco using steam
US7584843B2 (en) 2005-07-18 2009-09-08 Philip Morris Usa Inc. Pocket-size hand-held container for consumer items
US20090223989A1 (en) 2008-03-04 2009-09-10 R.J. Reynolds Tobacco Company Dispensing Container
US20090230003A1 (en) 2008-02-08 2009-09-17 Philip Morris Usa Inc. Pocket-sized container
US20090250360A1 (en) 2007-11-30 2009-10-08 Philip Morris Usa Inc. Pocket-size container for consumer items
US20090266837A1 (en) 2008-04-25 2009-10-29 R. J. Reynolds Tobacco Company Dispensing Container
US20090293889A1 (en) 2007-11-28 2009-12-03 Philip Morris Usa Inc. Smokeless compressed tobacco product for oral consumption
US20100004294A1 (en) 2006-03-16 2010-01-07 Niconovum Ab Stable Lozenge Compositions Providing Rapid Release of Nicotine
US7650892B1 (en) 2004-09-03 2010-01-26 Rosswil Llc Ltd. Methods for hindering formation of tobacco-specific nitrosamines
US20100018539A1 (en) 2008-07-28 2010-01-28 Paul Andrew Brinkley Smokeless tobacco products and processes
US20100084424A1 (en) 2006-12-12 2010-04-08 John Gelardi Container with pivoting cover
US20100101588A1 (en) 2007-03-20 2010-04-29 Azionaria Costruzioni Macchine Automatiche A.C.M.A S.P.A. Machine for manufacturing pouches of cohesionless material
US20100133140A1 (en) 2008-12-01 2010-06-03 Bailey Ryan A Dual cavity sliding dispenser
US7798153B2 (en) 2004-08-23 2010-09-21 Us Smokeless Tobacco Co. Nicotiana Kawakamii smokeless tobacco
USD625178S1 (en) 2009-04-16 2010-10-12 R.J. Reynolds Tobacco Company, Inc. Container with hinged insert
US7810507B2 (en) 2006-02-10 2010-10-12 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US20100264157A1 (en) 2009-04-16 2010-10-21 R.J. Reynolds Tobacco Company Dispensing container for metered dispensing of product
US7819124B2 (en) 2006-01-31 2010-10-26 U.S. Smokeless Tobacco Company Tobacco articles and methods
WO2010132444A2 (fr) 2009-05-11 2010-11-18 U.S. Smokeless Tobacco Company Llc Procédé et dispositif pour aromatiser du tabac sans fumée
US20100291245A1 (en) 2008-12-08 2010-11-18 Philip Morris Usa Inc. Soft, chewable and orally dissolvable and/or disintegrable products
US7861728B2 (en) 2006-02-10 2011-01-04 R.J. Reynolds Tobacco Company Smokeless tobacco composition having an outer and inner pouch
US7901512B2 (en) 2003-11-03 2011-03-08 U.S. Smokeless Tobacco Company Flavored smokeless tobacco and methods of making
US20110139164A1 (en) 2009-12-15 2011-06-16 R. J. Reynolds Tobacco Company Tobacco Product And Method For Manufacture
US20110168712A1 (en) 2010-01-12 2011-07-14 R.J. Reynolds Tobacco Company Dispensing container
US20110247640A1 (en) 2010-04-08 2011-10-13 R. J. Reynolds Tobacco Company Smokeless Tobacco Composition Comprising Tobacco-Derived Material and Non-Tobacco Plant Material
US8061362B2 (en) 2007-07-23 2011-11-22 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US8096339B2 (en) 2008-03-27 2012-01-17 Herrmann Ultraschalltechnik Gmbh & Co. Kg Ultrasonic welding tool with fluid drive
US20120037175A1 (en) 2010-08-11 2012-02-16 R.J. Reynolds Tobacco Company Meltable smokeless tobacco composition
US20120055493A1 (en) 2010-09-02 2012-03-08 R.J. Reynolds Tobacco Company Apparatus for manufacturing a smokeless tobacco product incorporating an object, and associated method
US20120055494A1 (en) 2010-09-07 2012-03-08 Rj Reynolds Tobacco Company Smokeless Tobacco Product Comprising Effervescent Composition
US8177938B2 (en) 2007-01-19 2012-05-15 Georgia-Pacific Consumer Products Lp Method of making regenerated cellulose microfibers and absorbent products incorporating same
US8186360B2 (en) 2007-04-04 2012-05-29 R.J. Reynolds Tobacco Company Cigarette comprising dark air-cured tobacco
US20120138073A1 (en) 2010-12-01 2012-06-07 Rj Reynolds Tobacco Company Smokeless tobacco pastille and injection molding process for forming smokeless tobacco products
US20120138074A1 (en) 2010-12-01 2012-06-07 Rj Reynolds Tobacco Company Smokeless tobacco pastille and moulding process for forming smokeless tobacco products
US8397945B2 (en) 2010-02-23 2013-03-19 R.J. Reynolds Tobacco Company Dispensing container
US20130074856A1 (en) 2011-09-22 2013-03-28 R.J. Reynolds Tobacco Company Translucent smokeless tobacco product
US20130074855A1 (en) 2011-09-22 2013-03-28 R.J. Reynolds Tobacco Company Translucent smokeless tobacco product
US8434496B2 (en) 2009-06-02 2013-05-07 R. J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US20130152953A1 (en) 2011-12-14 2013-06-20 R. J. Reynolds Tobacco Company Smokeless tobacco product comprising effervescent composition
US8557071B2 (en) 2009-04-27 2013-10-15 Herrmann Ultraschalltechnik Gmbh & Co. Kg Ultrasound welding device and method for welding material webs
US20130274296A1 (en) 2012-04-17 2013-10-17 R.J. Reynolds Tobacco Company Remelted ingestible products
US20130276801A1 (en) 2012-04-19 2013-10-24 North Carolina State University Method for producing microcrystalline cellulose from tobacco and related tobacco product
US8627828B2 (en) 2003-11-07 2014-01-14 U.S. Smokeless Tobacco Company Llc Tobacco compositions
US20140083438A1 (en) 2012-09-21 2014-03-27 R.J. Reynolds Tobacco Company Fibrous composite tobacco-containing materials
US8931493B2 (en) 2010-11-01 2015-01-13 R.J. Reynolds Tobacco Co. Smokeless tobacco products
US8944072B2 (en) 2009-06-02 2015-02-03 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US20150068545A1 (en) 2013-09-09 2015-03-12 R.J. Reynolds Tobacco Company Smokeless tobacco composition incorporating a botanical material
US8991403B2 (en) 2009-06-02 2015-03-31 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US20150101627A1 (en) 2013-10-16 2015-04-16 R.J. Reynolds Tobacco Company Smokeless tobacco pastille
US20150230515A1 (en) 2014-02-14 2015-08-20 R.J. Reynolds Tobacco Company Tobacco-containing gel composition
US20160000140A1 (en) 2014-07-02 2016-01-07 R.J. Reynolds Tobacco Company Oral pouch products
US20160073686A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Tobacco-derived filter element
US20160073689A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Nonwoven pouch comprising heat sealable binder fiber
US20160157515A1 (en) 2014-12-05 2016-06-09 R.J. Reynolds Tobacco Company Smokeless tobacco pouch
US20160192703A1 (en) 2015-01-07 2016-07-07 R.J. Reynolds Tobacco Company Oral pouch products
US20160208440A1 (en) 2015-01-16 2016-07-21 R.J. Reynolds Tobacco Company Tobacco-derived cellulose material and products formed thereof
US20170210550A1 (en) * 2016-01-26 2017-07-27 Sergio Siu Coffee Packet
US20210169806A1 (en) * 2019-12-09 2021-06-10 Nicoventures Trading Limited Agents for oral composition
US20210169792A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral compositions and methods of manufacture
US20210169122A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral foam composition
US20210169132A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral composition including gels
US20210169867A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Moist oral compositions
US20210169121A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Liquid oral composition
US20210177754A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Nanoemulsion for oral use
US20210177738A1 (en) * 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral products
US20210177038A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral products with active ingredient combinations
US20210177043A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral product
WO2021116853A1 (fr) 2019-12-09 2021-06-17 Nicoventures Trading Limited Matériau de toison fibreux
US20210186081A1 (en) 2019-12-09 2021-06-24 Nicoventures Trading Limited Pouched oral product with cannabinoid
US20210378948A1 (en) 2020-06-08 2021-12-09 Nicoventures Trading Limited Effervescent oral composition
US20220071984A1 (en) 2019-09-11 2022-03-10 Nicoventures Trading Limited Oral product with nicotine and ion pairing agent
US20220160675A1 (en) 2020-11-25 2022-05-26 Nicoventures Trading Limited Oral cannabinoid product with lipid component

Patent Citations (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2033909A (en) 1934-12-19 1936-03-17 Niacet Chemicals Corp Manufacture of calcium levulinate
US3338992A (en) 1959-12-15 1967-08-29 Du Pont Process for forming non-woven filamentary structures from fiber-forming synthetic organic polymers
US3502763A (en) 1962-02-03 1970-03-24 Freudenberg Carl Kg Process of producing non-woven fabric fleece
US3542615A (en) 1967-06-16 1970-11-24 Monsanto Co Process for producing a nylon non-woven fabric
US3849241A (en) 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
US3802817A (en) 1969-10-01 1974-04-09 Asahi Chemical Ind Apparatus for producing non-woven fleeces
US3692618A (en) 1969-10-08 1972-09-19 Metallgesellschaft Ag Continuous filament nonwoven web
US3901248A (en) 1970-07-22 1975-08-26 Leo Ab Chewable smoking substitute composition
US3972759A (en) 1972-06-29 1976-08-03 Exxon Research And Engineering Company Battery separators made from polymeric fibers
US3987185A (en) 1973-11-12 1976-10-19 Richardson-Merrell Inc. Method of treatment using 1-oxo-1h-2-benzopyran-3-carboxylic acid derivatives
US4340073A (en) 1974-02-12 1982-07-20 Philip Morris, Incorporated Expanding tobacco
US4144895A (en) 1974-03-08 1979-03-20 Amf Incorporated Solvent extraction process
US4148325A (en) 1975-08-18 1979-04-10 British-American Tobacco Company Limited Treatment of tobacco
US4150677A (en) 1977-01-24 1979-04-24 Philip Morris Incorporated Treatment of tobacco
US4237274A (en) 1978-02-24 1980-12-02 Snia Viscosa Societa' Nazionale Industria Applicazioni Viscosa S.P.A. Process for the preparation of solutions of cellulose derivatives which can be coagulated and spun to form regenerated cellulose _bodies
US4268666A (en) 1978-04-03 1981-05-19 Snia Viscosa Societa Nazionale Industria Applicazioni Viscosa S.P.A. Process for the dissolution of cellulose in organic solvents, solutions obtained by said process, and process for the production of formed bodies of regenerated cellulose from said solutions
US4267847A (en) 1978-05-12 1981-05-19 British-American Tobacco Company Limited Tobacco additives
US4252766A (en) 1978-07-27 1981-02-24 Snia Viscosa Societa Nazionale Industria Applicazioni Viscosa S.P.A. Process for the preparation of formed bodies of regenerated cellulose from solutions of cellulose derivatives in dimethylsulphoxide
US4388256A (en) 1978-11-24 1983-06-14 Masamichi Ishida Process for manufacturing regenerated cellulose hollow fiber
US4289147A (en) 1979-11-15 1981-09-15 Leaf Proteins, Inc. Process for obtaining deproteinized tobacco freed of nicotine and green pigment, for use as a smoking product
US4589428A (en) 1980-02-21 1986-05-20 Philip Morris Incorporated Tobacco treatment
US4359059A (en) 1980-03-08 1982-11-16 B.A.T. Cigaretten-Fabriken Gmbh Process for the preparation of aromatic substances
US4351346A (en) 1980-03-08 1982-09-28 B.A.T. Cigaretten-Fabriken Gmbh Process for the preparation of aromatic substances
US4340563A (en) 1980-05-05 1982-07-20 Kimberly-Clark Corporation Method for forming nonwoven webs
US4535028A (en) 1981-10-01 1985-08-13 Asahi Kasei Kogyo Kabushiki Kaisha Hollow fiber of cuprammonium regenerated cellulose and process for producing the same
US4506682A (en) 1981-12-07 1985-03-26 Mueller Adam Clear tobacco aroma oil, a process for obtaining it from a tobacco extract, and its use
US4725440A (en) 1982-07-02 1988-02-16 E. R. Squibb & Sons, Inc. Antifungal pastille formulation and method
US4660577A (en) 1982-08-20 1987-04-28 R.J. Reynolds Tobacco Company Dry pre-mix for moist snuff
US4605016A (en) 1983-07-21 1986-08-12 Japan Tobacco, Inc. Process for preparing tobacco flavoring formulations
US4622259A (en) 1985-08-08 1986-11-11 Surgikos, Inc. Nonwoven medical fabric
US4716911A (en) 1986-04-08 1988-01-05 Genencor, Inc. Method for protein removal from tobacco
US4967773A (en) 1986-06-26 1990-11-06 Shaw Alec S W Nicotine containing lozenge
US4727889A (en) 1986-12-22 1988-03-01 R. J. Reynolds Tobacco Company Tobacco processing
US5018540A (en) 1986-12-29 1991-05-28 Philip Morris Incorporated Process for removal of basic materials
US5005593A (en) 1988-01-27 1991-04-09 R. J. Reynolds Tobacco Company Process for providing tobacco extracts
US5435325A (en) 1988-04-21 1995-07-25 R. J. Reynolds Tobacco Company Process for providing tobacco extracts using a solvent in a supercritical state
US4887618A (en) 1988-05-19 1989-12-19 R. J. Reynolds Tobacco Company Tobacco processing
US4967771A (en) 1988-12-07 1990-11-06 R. J. Reynolds Tobacco Company Process for extracting tobacco
US4986286A (en) 1989-05-02 1991-01-22 R. J. Reynolds Tobacco Company Tobacco treatment process
US4941484A (en) 1989-05-30 1990-07-17 R. J. Reynolds Tobacco Company Tobacco processing
US5733574A (en) 1989-11-07 1998-03-31 Dam; Anders Nicotine containing stimulant unit
US5060669A (en) 1989-12-18 1991-10-29 R. J. Reynolds Tobacco Company Tobacco treatment process
US5121757A (en) 1989-12-18 1992-06-16 R. J. Reynolds Tobacco Company Tobacco treatment process
US5167244A (en) 1990-01-19 1992-12-01 Kjerstad Randy E Tobacco substitute
US5131414A (en) 1990-02-23 1992-07-21 R. J. Reynolds Tobacco Company Tobacco processing
US5065775A (en) 1990-02-23 1991-11-19 R. J. Reynolds Tobacco Company Tobacco processing
US5234008A (en) 1990-02-23 1993-08-10 R. J. Reynolds Tobacco Company Tobacco processing
US5099862A (en) 1990-04-05 1992-03-31 R. J. Reynolds Tobacco Company Tobacco extraction process
US5074319A (en) 1990-04-19 1991-12-24 R. J. Reynolds Tobacco Company Tobacco extraction process
US5110605A (en) 1990-08-21 1992-05-05 Oramed, Inc. Calcium polycarbophil-alginate controlled release composition and method
US5668295A (en) 1990-11-14 1997-09-16 Philip Morris Incorporated Protein involved in nicotine synthesis, DNA encoding, and use of sense and antisense DNAs corresponding thereto to affect nicotine content in transgenic tobacco cells and plants
US5131415A (en) 1991-04-04 1992-07-21 R. J. Reynolds Tobacco Company Tobacco extraction process
US5318050A (en) 1991-06-04 1994-06-07 R. J. Reynolds Tobacco Company Tobacco treatment process
US5197494A (en) 1991-06-04 1993-03-30 R.J. Reynolds Tobacco Company Tobacco extraction process
US5343879A (en) 1991-06-21 1994-09-06 R. J. Reynolds Tobacco Company Tobacco treatment process
US5360022A (en) 1991-07-22 1994-11-01 R. J. Reynolds Tobacco Company Tobacco processing
US5148819A (en) 1991-08-15 1992-09-22 R. J. Reynolds Tobacco Company Process for extracting tobacco
US5243999A (en) 1991-09-03 1993-09-14 R. J. Reynolds Tobacco Company Tobacco processing
US5230354A (en) 1991-09-03 1993-07-27 R. J. Reynolds Tobacco Company Tobacco processing
US5301694A (en) 1991-11-12 1994-04-12 Philip Morris Incorporated Process for isolating plant extract fractions
US5441689A (en) 1991-12-02 1995-08-15 Courtaulds Plc Process of making regenerated cellulose articles
US5259403A (en) 1992-03-18 1993-11-09 R. J. Reynolds Tobacco Company Process and apparatus for expanding tobacco cut filler
US5445169A (en) 1992-08-17 1995-08-29 R. J. Reynolds Tobacco Company Process for providing a tobacco extract
US5387416A (en) 1993-07-23 1995-02-07 R. J. Reynolds Tobacco Company Tobacco composition
US6280761B1 (en) 1993-07-26 2001-08-28 Pharmacia Ab Nicotine lozenge
US6077524A (en) 1994-05-06 2000-06-20 Bolder Arzneimittel Gmbh Gastric acid binding chewing pastilles
US5539093A (en) 1994-06-16 1996-07-23 Fitzmaurice; Wayne P. DNA sequences encoding enzymes useful in carotenoid biosynthesis
US5844119A (en) 1994-12-21 1998-12-01 The Salk Institute For Biological Studies Genetically modified plants having modulated flower development
US5997790A (en) 1995-11-20 1999-12-07 Michelin Recherche Et Technique S.A. Process for the preparation of regenerated cellulose filaments
US5705624A (en) 1995-12-27 1998-01-06 Fitzmaurice; Wayne Paul DNA sequences encoding enzymes useful in phytoene biosynthesis
US5908032A (en) 1996-08-09 1999-06-01 R.J. Reynolds Tobacco Company Method of and apparatus for expanding tobacco
US6298859B1 (en) 1998-07-08 2001-10-09 Novozymes A/S Use of a phenol oxidizing enzyme in the treatment of tobacco
US6923981B2 (en) 1998-09-25 2005-08-02 Warner-Lambert Company Fast dissolving orally consumable films
US6083527A (en) 1998-11-05 2000-07-04 Thistle; Robert Breath mint with tooth decay and halitosis prevention characteristics
US6676959B1 (en) 1998-11-23 2004-01-13 Pharmacia Ab Nicotine-containing pharmaceutical compositions giving a rapid transmucosal absorption
US7374779B2 (en) 1999-02-26 2008-05-20 Lipocine, Inc. Pharmaceutical formulations and systems for improved absorption and multistage release of active agents
US20010016593A1 (en) 1999-04-14 2001-08-23 Wilhelmsen Paul C. Element giving rapid release of nicotine for transmucosal administration
US6248760B1 (en) 1999-04-14 2001-06-19 Paul C Wilhelmsen Tablet giving rapid release of nicotine for transmucosal administration
US6131584A (en) 1999-04-15 2000-10-17 Brown & Williamson Tobacco Corporation Tobacco treatment process
US6895974B2 (en) 1999-04-26 2005-05-24 R. J. Reynolds Tobacco Company Tobacco processing
US20060120974A1 (en) 1999-05-13 2006-06-08 Fluid Technologies Limited Of Great Britain Nicotine delivery systems
US6887307B1 (en) 1999-07-22 2005-05-03 Warner-Lambert Company, Llc Pullulan film compositions
US6510855B1 (en) 2000-03-03 2003-01-28 Brown & Williamson Tobacco Corporation Tobacco recovery system
US20060236434A1 (en) 2000-08-30 2006-10-19 North Carolina State University Methods and compositions for tobacco plants with reduced nicotine
US7230160B2 (en) 2001-03-08 2007-06-12 Michigan State University Lipid metabolism regulators in plants
US6834654B2 (en) 2001-05-01 2004-12-28 Regent Court Technologies, Llc Smokeless tobacco product
US6668839B2 (en) 2001-05-01 2003-12-30 Jonnie R. Williams Smokeless tobacco product
US7208659B2 (en) 2001-05-02 2007-04-24 Conopco Inc. Process for increasing the flavonoid content of a plant and plants obtainable thereby
US7173170B2 (en) 2001-09-10 2007-02-06 Reynolds Technologies, Inc. High threonine producing lines of Nicotiana tobacum and methods of producing
US6730832B1 (en) 2001-09-10 2004-05-04 Luis Mayan Dominguez High threonine producing lines of Nicotiana tobacum and methods for producing
US7032601B2 (en) 2001-09-28 2006-04-25 U.S. Smokeless Tobacco Company Encapsulated materials
US6953040B2 (en) 2001-09-28 2005-10-11 U.S. Smokeless Tobacco Company Tobacco mint plant material product
US20040101543A1 (en) 2002-03-22 2004-05-27 John Liu Nicotine-containing oral dosage form
US7498281B2 (en) 2002-07-01 2009-03-03 Asahi Kasei Fibers Corporation Nonwoven fabric and tea bag
US6772767B2 (en) 2002-09-09 2004-08-10 Brown & Williamson Tobacco Corporation Process for reducing nitrogen containing compounds and lignin in tobacco
US7025066B2 (en) 2002-10-31 2006-04-11 Jerry Wayne Lawson Method of reducing the sucrose ester concentration of a tobacco mixture
US20040191322A1 (en) 2002-12-20 2004-09-30 Henri Hansson Physically and chemically stable nicotine-containing particulate material
US7556047B2 (en) 2003-03-20 2009-07-07 R.J. Reynolds Tobacco Company Method of expanding tobacco using steam
US7014039B2 (en) 2003-06-19 2006-03-21 R.J. Reynolds Tobacco Company Sliding shell package for smoking articles
US20090014450A1 (en) 2003-08-18 2009-01-15 Gustavus Ab Snuff-box lid
US7901512B2 (en) 2003-11-03 2011-03-08 U.S. Smokeless Tobacco Company Flavored smokeless tobacco and methods of making
US8627828B2 (en) 2003-11-07 2014-01-14 U.S. Smokeless Tobacco Company Llc Tobacco compositions
US7694686B2 (en) 2003-12-22 2010-04-13 U.S. Smokeless Tobacco Company Conditioning process for tobacco and/or snuff compositions
WO2005063060A1 (fr) 2003-12-22 2005-07-14 U.S. Smokeless Tobacco Company Procede de traitement pour compositions de tabac ou de tabac a priser
US20060228308A1 (en) 2004-02-26 2006-10-12 Cummins Barry W Oral health care drink and method for reducing malodors
US20080196730A1 (en) 2004-07-02 2008-08-21 Radi Medical Systems Ab Smokeless Tobacco Product
US7337782B2 (en) 2004-08-18 2008-03-04 R.J. Reynolds Tobacco Company Process to remove protein and other biomolecules from tobacco extract or slurry
US7798153B2 (en) 2004-08-23 2010-09-21 Us Smokeless Tobacco Co. Nicotiana Kawakamii smokeless tobacco
US7650892B1 (en) 2004-09-03 2010-01-26 Rosswil Llc Ltd. Methods for hindering formation of tobacco-specific nitrosamines
US20060210488A1 (en) 2005-03-19 2006-09-21 Jakubowski Henryk P Teeth whitening candy with tartar removal and breath freshening properties
US7537110B2 (en) 2005-06-02 2009-05-26 Philip Morris Usa Inc. Container for consumer article
US7584843B2 (en) 2005-07-18 2009-09-08 Philip Morris Usa Inc. Pocket-size hand-held container for consumer items
US20070031539A1 (en) * 2005-08-02 2007-02-08 Calton Jim S Jr Personal caffeine delivery pouch
US20070062549A1 (en) 2005-09-22 2007-03-22 Holton Darrell E Jr Smokeless tobacco composition
US7819124B2 (en) 2006-01-31 2010-10-26 U.S. Smokeless Tobacco Company Tobacco articles and methods
US7810507B2 (en) 2006-02-10 2010-10-12 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US7861728B2 (en) 2006-02-10 2011-01-04 R.J. Reynolds Tobacco Company Smokeless tobacco composition having an outer and inner pouch
US20100004294A1 (en) 2006-03-16 2010-01-07 Niconovum Ab Stable Lozenge Compositions Providing Rapid Release of Nicotine
US20080020050A1 (en) 2006-07-21 2008-01-24 Chau Tommy L Medicinal delivery system, and related methods
US20080173317A1 (en) 2006-08-01 2008-07-24 John Howard Robinson Smokeless tobacco
US20100084424A1 (en) 2006-12-12 2010-04-08 John Gelardi Container with pivoting cover
US8177938B2 (en) 2007-01-19 2012-05-15 Georgia-Pacific Consumer Products Lp Method of making regenerated cellulose microfibers and absorbent products incorporating same
WO2008103935A2 (fr) 2007-02-23 2008-08-28 U.S. Smokeless Tobacco Company Nouvelles compositions de tabac et leurs procédés de fabrication
US20100101588A1 (en) 2007-03-20 2010-04-29 Azionaria Costruzioni Macchine Automatiche A.C.M.A S.P.A. Machine for manufacturing pouches of cohesionless material
US8186360B2 (en) 2007-04-04 2012-05-29 R.J. Reynolds Tobacco Company Cigarette comprising dark air-cured tobacco
US20080249492A1 (en) 2007-04-05 2008-10-09 Mcairlaid's Vliesstoffe Gmbh & Co. Kg Fiber material web
US20090014343A1 (en) 2007-05-07 2009-01-15 Philip Morris Usa Inc. Pocket-size hybrid container for consumer items
US20080305216A1 (en) 2007-06-08 2008-12-11 Philip Morris Usa Inc. Capsule clusters for oral consumption
US9237769B2 (en) 2007-07-23 2016-01-19 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US8061362B2 (en) 2007-07-23 2011-11-22 R. J. Reynolds Tobacco Company Smokeless tobacco composition
US20090081291A1 (en) 2007-09-26 2009-03-26 Gin Jerry B Sustained Release Dosage Forms For Delivery of Agents to an Oral Cavity of a User
USD594154S1 (en) 2007-11-13 2009-06-09 R.J. Reynolds Tobacco Company Container with bottom compartment
US20090293889A1 (en) 2007-11-28 2009-12-03 Philip Morris Usa Inc. Smokeless compressed tobacco product for oral consumption
US20090250360A1 (en) 2007-11-30 2009-10-08 Philip Morris Usa Inc. Pocket-size container for consumer items
US20090230003A1 (en) 2008-02-08 2009-09-17 Philip Morris Usa Inc. Pocket-sized container
USD592956S1 (en) 2008-02-08 2009-05-26 Philip Morris Usa Inc. Container
US20090223989A1 (en) 2008-03-04 2009-09-10 R.J. Reynolds Tobacco Company Dispensing Container
US8096339B2 (en) 2008-03-27 2012-01-17 Herrmann Ultraschalltechnik Gmbh & Co. Kg Ultrasonic welding tool with fluid drive
US20090266837A1 (en) 2008-04-25 2009-10-29 R. J. Reynolds Tobacco Company Dispensing Container
US20100018539A1 (en) 2008-07-28 2010-01-28 Paul Andrew Brinkley Smokeless tobacco products and processes
US20100133140A1 (en) 2008-12-01 2010-06-03 Bailey Ryan A Dual cavity sliding dispenser
US20100291245A1 (en) 2008-12-08 2010-11-18 Philip Morris Usa Inc. Soft, chewable and orally dissolvable and/or disintegrable products
USD625178S1 (en) 2009-04-16 2010-10-12 R.J. Reynolds Tobacco Company, Inc. Container with hinged insert
US20100264157A1 (en) 2009-04-16 2010-10-21 R.J. Reynolds Tobacco Company Dispensing container for metered dispensing of product
US8557071B2 (en) 2009-04-27 2013-10-15 Herrmann Ultraschalltechnik Gmbh & Co. Kg Ultrasound welding device and method for welding material webs
US11246334B2 (en) 2009-05-11 2022-02-15 Altria Client Services Llc Method and device for flavoring smokeless tobacco
WO2010132444A2 (fr) 2009-05-11 2010-11-18 U.S. Smokeless Tobacco Company Llc Procédé et dispositif pour aromatiser du tabac sans fumée
US8991403B2 (en) 2009-06-02 2015-03-31 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US8944072B2 (en) 2009-06-02 2015-02-03 R.J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US8434496B2 (en) 2009-06-02 2013-05-07 R. J. Reynolds Tobacco Company Thermal treatment process for tobacco materials
US20110139164A1 (en) 2009-12-15 2011-06-16 R. J. Reynolds Tobacco Company Tobacco Product And Method For Manufacture
US20110168712A1 (en) 2010-01-12 2011-07-14 R.J. Reynolds Tobacco Company Dispensing container
US8397945B2 (en) 2010-02-23 2013-03-19 R.J. Reynolds Tobacco Company Dispensing container
US20110247640A1 (en) 2010-04-08 2011-10-13 R. J. Reynolds Tobacco Company Smokeless Tobacco Composition Comprising Tobacco-Derived Material and Non-Tobacco Plant Material
US20120037175A1 (en) 2010-08-11 2012-02-16 R.J. Reynolds Tobacco Company Meltable smokeless tobacco composition
US20120055493A1 (en) 2010-09-02 2012-03-08 R.J. Reynolds Tobacco Company Apparatus for manufacturing a smokeless tobacco product incorporating an object, and associated method
US20120055494A1 (en) 2010-09-07 2012-03-08 Rj Reynolds Tobacco Company Smokeless Tobacco Product Comprising Effervescent Composition
US8931493B2 (en) 2010-11-01 2015-01-13 R.J. Reynolds Tobacco Co. Smokeless tobacco products
US20120138073A1 (en) 2010-12-01 2012-06-07 Rj Reynolds Tobacco Company Smokeless tobacco pastille and injection molding process for forming smokeless tobacco products
US20120138074A1 (en) 2010-12-01 2012-06-07 Rj Reynolds Tobacco Company Smokeless tobacco pastille and moulding process for forming smokeless tobacco products
US20130074856A1 (en) 2011-09-22 2013-03-28 R.J. Reynolds Tobacco Company Translucent smokeless tobacco product
US20130074855A1 (en) 2011-09-22 2013-03-28 R.J. Reynolds Tobacco Company Translucent smokeless tobacco product
US20130152953A1 (en) 2011-12-14 2013-06-20 R. J. Reynolds Tobacco Company Smokeless tobacco product comprising effervescent composition
US20130274296A1 (en) 2012-04-17 2013-10-17 R.J. Reynolds Tobacco Company Remelted ingestible products
US20130276801A1 (en) 2012-04-19 2013-10-24 North Carolina State University Method for producing microcrystalline cellulose from tobacco and related tobacco product
US20140083438A1 (en) 2012-09-21 2014-03-27 R.J. Reynolds Tobacco Company Fibrous composite tobacco-containing materials
US20150068545A1 (en) 2013-09-09 2015-03-12 R.J. Reynolds Tobacco Company Smokeless tobacco composition incorporating a botanical material
US20150101627A1 (en) 2013-10-16 2015-04-16 R.J. Reynolds Tobacco Company Smokeless tobacco pastille
US20150230515A1 (en) 2014-02-14 2015-08-20 R.J. Reynolds Tobacco Company Tobacco-containing gel composition
US20160000140A1 (en) 2014-07-02 2016-01-07 R.J. Reynolds Tobacco Company Oral pouch products
US20160073686A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Tobacco-derived filter element
US20160073689A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Nonwoven pouch comprising heat sealable binder fiber
US20160157515A1 (en) 2014-12-05 2016-06-09 R.J. Reynolds Tobacco Company Smokeless tobacco pouch
US20160192703A1 (en) 2015-01-07 2016-07-07 R.J. Reynolds Tobacco Company Oral pouch products
US20160208440A1 (en) 2015-01-16 2016-07-21 R.J. Reynolds Tobacco Company Tobacco-derived cellulose material and products formed thereof
US20170210550A1 (en) * 2016-01-26 2017-07-27 Sergio Siu Coffee Packet
US20220071984A1 (en) 2019-09-11 2022-03-10 Nicoventures Trading Limited Oral product with nicotine and ion pairing agent
US20210177754A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Nanoemulsion for oral use
US20210177043A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral product
US20210169867A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Moist oral compositions
US20210169121A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Liquid oral composition
US20210169122A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral foam composition
US20210177738A1 (en) * 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral products
US20210177038A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral products with active ingredient combinations
US20210169132A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral composition including gels
WO2021116853A1 (fr) 2019-12-09 2021-06-17 Nicoventures Trading Limited Matériau de toison fibreux
US20210186081A1 (en) 2019-12-09 2021-06-24 Nicoventures Trading Limited Pouched oral product with cannabinoid
US20210330590A1 (en) 2019-12-09 2021-10-28 Nicoventures Trading Limited Agents for oral composition
US20210169806A1 (en) * 2019-12-09 2021-06-10 Nicoventures Trading Limited Agents for oral composition
US20210169792A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral compositions and methods of manufacture
US20210378948A1 (en) 2020-06-08 2021-12-09 Nicoventures Trading Limited Effervescent oral composition
US20220160675A1 (en) 2020-11-25 2022-05-26 Nicoventures Trading Limited Oral cannabinoid product with lipid component

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Tobacco Production, Chemistry and Technology", 1999
DVORYANCHIKOV ET AL., J NEUROSCI., vol. 31, no. 15, 13 April 2011 (2011-04-13), pages 5782 - 91
GOODSPEED, THE GENUS NICOTIANA, (CHONICA BOTANICA, 1954
NESTOR ET AL., BEITRAGE TABAKFORSCH. INT., vol. 20, 2003, pages 467 - 475
PERFETTI, BEITRAGE TABAKFORSCHUNG INT., vol. 12, 1983, pages 43 - 54
SANTHOSH ET AL., PHYTOMEDICINE, vol. 12, 2005, pages 216 - 220
STAAF ET AL., BEITRAGE TABAKFORSCH. INT., vol. 21, 2005, pages 321 - 330
TAKAHASHI ET AL., ORAL MICROBIOLOGY AND IMMUNOLOGY, vol. 19, no. 1, 2004, pages 61 - 64
THE EFSA JOURNAL, vol. 85, 2004, pages 1 - 32

Similar Documents

Publication Publication Date Title
US20210206554A1 (en) Oral product with dissolvable component
EP4073307B1 (fr) Produit en sachet
US20250032406A1 (en) Fleece for oral product with releasable component
US20210204590A1 (en) Pouched products
US20210251276A1 (en) Layered fleece for pouched product
US20220225660A1 (en) Pouched products with heat sealable binder
US20230049343A1 (en) Shaped pouched products
US20210204585A1 (en) Pouched products with heat sealable binder
CA3159665A1 (fr) Produits oraux a irritation reduite
EP4072346A1 (fr) Composition orale à base de cellulose nanocristalline
WO2021116919A1 (fr) Non-tissé pour produit oral avec composant libérable
US20230148660A1 (en) Products with enhanced sensory characteristics
WO2024180481A1 (fr) Produit à prendre par voie orale contenant de la caféine
US20220295861A1 (en) Oral composition with nanocrystalline cellulose
WO2023194959A1 (fr) Produits en sachet avec liant thermoscellable
WO2024089588A1 (fr) Produits en forme de sachet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24709846

Country of ref document: EP

Kind code of ref document: A1