WO2024176771A1 - Vinylidene fluoride production method and vinylidene fluoride production device - Google Patents
Vinylidene fluoride production method and vinylidene fluoride production device Download PDFInfo
- Publication number
- WO2024176771A1 WO2024176771A1 PCT/JP2024/003330 JP2024003330W WO2024176771A1 WO 2024176771 A1 WO2024176771 A1 WO 2024176771A1 JP 2024003330 W JP2024003330 W JP 2024003330W WO 2024176771 A1 WO2024176771 A1 WO 2024176771A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reactor
- vinylidene fluoride
- raw material
- material composition
- seconds
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/90—Heating or cooling systems
- B01F35/91—Heating or cooling systems using gas or liquid injected into the material, e.g. using liquefied carbon dioxide or steam
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/26—Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
- C07C17/263—Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
- C07C17/269—Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions of only halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C21/00—Acyclic unsaturated compounds containing halogen atoms
- C07C21/02—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
- C07C21/18—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
Definitions
- This disclosure relates to a method for producing vinylidene fluoride and an apparatus for producing vinylidene fluoride.
- Vinylidene fluoride is useful as a monomer for fluororesins.
- Patent Document 1 describes a method for producing 2,3,3,3-tetrafluoropropene (HFO-1234yf) from a raw material composition containing chlorodifluoromethane (R22) and chloromethane (R40) in the presence of a heat transfer medium through a synthesis reaction involving thermal decomposition, the method comprising the steps of (a) premixing 0.01 to 3 moles of R40 per mole of R22 or separately supplying the mixture to a reactor and allowing the mixture to remain in the reactor for a predetermined period of time, and (b) supplying a heat transfer medium to the reactor and bringing the raw material composition into contact with the heat transfer medium in the reactor.
- HFO-1234yf 2,3,3,3-tetrafluoropropene
- Patent Document 1 the objective is to produce HFO-1234yf, and vinylidene fluoride (VdF) is considered a by-product, so there was a demand for a production method aimed at producing VdF. In addition, there was a demand for reducing the by-product acetylene in the production of VdF.
- VdF vinylidene fluoride
- the objective of one embodiment of the present invention is to provide a method and apparatus for producing VdF that can reduce the amount of by-product acetylene.
- a method for producing VdF by a synthesis method involving thermal decomposition from a raw material composition containing chlorodifluoromethane and chloromethane in the presence of a heat transfer medium comprising the steps of: A method for producing VdF, comprising a step of contacting a raw material composition with a heat transfer medium in a reactor for a contact time of 0.2 seconds or less.
- a method for producing VdF comprising a step of contacting a raw material composition with a heat transfer medium in a reactor for a contact time of 0.2 seconds or less.
- ⁇ 3> The method for producing VdF according to ⁇ 1> or ⁇ 2>, wherein the temperature in the reactor is 800° C. or higher.
- ⁇ 4> The method for producing VdF according to any one of ⁇ 1> to ⁇ 3>, wherein the contact time is 0.1 seconds or less.
- ⁇ 5> The method for producing VdF according to any one of ⁇ 1> to ⁇ 4>, wherein the contact time is 0.01 seconds or more.
- a reactor for contacting a raw material composition containing chlorodifluoromethane and chloromethane with a heat transfer medium; a chlorodifluoromethane supply section that contains chlorodifluoromethane and supplies the chlorodifluoromethane to the reactor; a chloromethane supply section that contains chloromethane and supplies the chloromethane to the reactor; a heat transfer medium supplying section that accommodates a heat transfer medium and supplies the heat transfer medium to the reactor; A control unit that controls the contact time between the raw material composition and the heat transfer medium in the reactor to 0.2 seconds or less.
- a method and apparatus for producing VdF are provided that can reduce the amount of by-product acetylene.
- FIG. 1 is a diagram showing an example of a VdF manufacturing apparatus according to the present disclosure.
- a numerical range indicated using “to” means a range that includes the numerical values before and after “to” as the minimum and maximum values, respectively.
- the upper or lower limit value described in a certain numerical range may be replaced with the upper or lower limit value of another numerical range described in the present disclosure.
- the upper or lower limit value described in a certain numerical range may be replaced with a value shown in the examples.
- a combination of two or more preferred aspects is a more preferred aspect.
- the amount of each component means the total amount of multiple substances, unless otherwise specified.
- the method for producing VdF disclosed herein is a method for producing VdF from a raw material composition containing R22 and R40 in the presence of a heat transfer medium by a synthesis method involving thermal decomposition, and includes a step of contacting the raw material composition with the heat transfer medium in a reactor for a contact time of 0.2 seconds or less.
- the content of acetylene produced as a by-product can be reduced by contacting the raw material composition with the heat transfer medium in the reactor for a contact time of 0.2 seconds or less.
- the boiling point of VdF is ⁇ 83° C.
- the boiling point of acetylene is ⁇ 84° C. Since the boiling points of VdF and acetylene are close to each other, it is difficult to separate and purify VdF and acetylene, and therefore, in the method for producing VdF, it is desirable to have a low content of acetylene as a by-product.
- the production method described in Patent Document 1 aims to produce HFO-1234yf, and does not focus on acetylene because the boiling points of HFO-1234yf and acetylene are significantly different. Furthermore, Patent Document 1 does not mention the content of acetylene produced as a by-product in the production of VdF.
- the feed composition includes R22 and R40.
- a raw material composition containing R22 and R40 undergoes thermal decomposition and dehydrochlorination reactions in a reactor to produce a reaction mixture containing difluorocarbene (F 2 C:) and R40, and it is believed that this reaction mixture undergoes a direct addition reaction or is converted to VdF via one or more intermediates.
- the ratio of the molar amount of R40 to the molar amount of R22 is not particularly limited, but from the viewpoint of further reducing the content of by-produced acetylene, it is preferably 1 or more, more preferably 2 or more, and even more preferably 3.5 or more.
- the upper limit of R40/R22 is not particularly limited, but from the viewpoint of ensuring a certain level of VdF content in the outlet gas, it is preferably 8 or less, and more preferably 6 or less.
- the raw material composition may contain components other than R22 and R40.
- fluorine-containing compounds capable of generating difluorocarbene by thermal decomposition in a reactor are preferred, and examples thereof include HFO-1234yf, tetrafluoroethylene (TFE), hexafluoropropene (HFP), octafluorocyclobutane (RC318), chlorotrifluoroethylene (CTFE), trifluoroethylene, and hexafluoropropylene oxide (HFPO).
- TFE tetrafluoroethylene
- HFP hexafluoropropene
- RC318 octafluorocyclobutane
- CTFE chlorotrifluoroethylene
- HFPO hexafluoropropylene oxide
- a newly prepared fluorine-containing compound may be used, but from the viewpoint of recycling, it is preferred to use at least one fluorine-containing compound by-produced in the production method of the present disclosure, for example, selected from the group consisting of HFO-1234yf, TFE, HFP, RC318, CTFE, and trifluoroethylene.
- the outlet gas of the reactor contains unreacted raw materials, reaction products, and a heat transfer medium.
- a composition is obtained that is mainly composed of the unreacted raw materials R22 and R40, HFO-1234yf, TFE, HFP, RC318, CTFE, and trifluoroethylene. Supplying this composition to the reactor makes it possible to recycle, which is economically advantageous.
- the raw material composition may be introduced into the reactor at room temperature, but in order to improve the reactivity in the reactor, the temperature when introduced into the reactor may be adjusted by heating or the like.
- the fluorine-containing compound capable of generating difluorocarbene containing R22 and R40 have different temperature ranges suitable for improving the reactivity, it is preferable to adjust the temperatures separately.
- the temperature of R22 supplied to the reactor, or the temperature of the fluorine-containing compound capable of producing difluorocarbene containing R22 supplied to the reactor, is preferably 0 to 600° C. from the viewpoint of a temperature at which the reactivity is somewhat high but carbonization is difficult.
- R22 or a fluorine-containing compound capable of producing a difluorocarbene containing R22 is preferably heated to 50° C. or higher, more preferably 100 to 500° C., before being introduced into a reactor.
- the temperature of R40 supplied to the reactor is preferably 0 to 1200° C. From the viewpoint of increasing the reactivity, it is preferable to heat R40 to 50 to 1200° C., and more preferably to heat R40 to 100 to 800° C. before introducing it into the reactor.
- the temperature of each of the raw material components supplied to the reactor is set to be equal to or lower than the temperature inside the reactor, which will be described later.
- the raw materials R22, R40, and the fluorine-containing compound capable of producing difluorocarbene, which is used as necessary, may be supplied to the reactor separately, or after mixing the components.
- the raw material composition may be divided into groups, for example, fluorine-containing compounds capable of producing difluorocarbene and others, and the components in each group may be mixed and supplied separately to the reactor, or all the components may be mixed and then supplied.
- the temperature at which they are introduced into the reactor is preferably less than 600°C, and more preferably less than 500°C, in order to prevent the reaction or decomposition from proceeding before the reactor.
- the heat medium is a medium that does not undergo thermal decomposition at the temperature in the reactor, and specifically, is preferably a medium that does not undergo thermal decomposition at a temperature of 100 to 1200° C.
- the heat medium may be at least one gas selected from the group consisting of water vapor, nitrogen, hydrogen fluoride, and carbon dioxide. From the viewpoint of removing hydrogen chloride produced in the thermal decomposition reaction as hydrochloric acid, the heat medium is preferably water vapor.
- the proportion of water vapor in the heat medium is preferably 50% by volume or more, and the heat medium is more preferably composed of only water vapor.
- the ratio of the number of moles of water vapor to the total number of moles of the raw material composition is preferably 0.5 or more, more preferably 0.6 or more, and even more preferably 0.7 or more, from the viewpoint of preventing clogging of the reactor by carbon generated in the reaction.
- the upper limit of the above ratio is, for example, 0.99.
- the contact time between the raw material composition and the heat transfer medium in the reactor is 0.2 seconds or less. From the viewpoint of further reducing the content of by-produced acetylene, the contact time is preferably 0.1 seconds or less, more preferably 0.08 seconds or less. From the viewpoint of ensuring a certain level of VdF content in the outlet gas, the contact time is preferably 0.01 seconds or more.
- the contact time between the raw material composition and the heat transfer medium corresponds to the residence time of the raw material composition in the reactor, and can be controlled by adjusting the flow rate of the raw material composition.
- the reactor is not particularly limited in shape as long as it can withstand the temperature and pressure in the reactor described below, and may be, for example, a cylindrical vertical reactor.
- the reactor may be made of glass, iron, nickel, or an alloy mainly composed of iron or nickel.
- the temperature inside the reactor is preferably 800°C or higher, and more preferably 850°C or higher.
- the temperature inside the reactor is preferably 1000°C or lower. From these viewpoints, the temperature inside the reactor is preferably 850 to 950°C.
- the pressure inside the reactor is preferably 0 to 2.0 MPa, more preferably 0 to 0.5 MPa, even more preferably 0 to 0.3 MPa, and particularly preferably 0 to 0.2 MPa, in terms of gauge pressure.
- VdF can be obtained as an outlet gas discharged from a reactor.
- components other than VdF contained in the outlet gas include acetylene, methane, ethylene, HFO-1234yf, TFE, HFP, CTFE, trifluoroethylene, RC318, 1,3,3,3-tetrafluoropropene (HFO-1234ze), and 1,2-difluoroethylene.
- the acetylene content relative to the VdF content is preferably 20 mol% or less, and more preferably 15 mol% or less.
- the above components other than VdF contained in the outlet gas can be removed to the desired extent by known means such as distillation.
- the separated TFE, HFP, CTFE, trifluoroethylene, and RC318 are fluorine-containing compounds capable of producing difluorocarbene, and can be recycled as part of the raw material composition.
- the VdF production apparatus of the present disclosure includes a reactor that brings a raw material composition containing R22 and R40 into contact with a heat transfer medium, an R22 supplying section that contains R22 and supplies R22 to the reactor, an R40 supplying section that contains R40 and supplies R40 to the reactor, a heat transfer medium supplying section that contains a heat transfer medium and supplies the heat transfer medium to the reactor, and a control section that controls the contact time between the raw material composition and the heat transfer medium in the reactor to 0.2 seconds or less.
- the VdF manufacturing apparatus disclosed herein may be of a continuous type or a batch type.
- the supply of each raw material to the reactor and the supply of the heat transfer medium to the reactor are both carried out continuously.
- the supply of each raw material to the reactor and the supply of the heat transfer medium to the reactor may be either one first or simultaneously.
- the continuous method is preferred.
- FIG. 1 shows an example of a VdF manufacturing apparatus according to the present disclosure.
- the manufacturing apparatus 100 has an R40 supply section 51 in which R40 is stored, an R22 supply section 52 in which R22 is stored, a steam supply section 53 in which steam is stored as a heat medium, a reactor 1 equipped with a heating means such as an electric heater, and a control section 12.
- An R40 supply line 2, an R22 supply line 3, and a steam supply line 4 are connected to the reactor 1. Note that the installation of a heating means in the reactor 1 is not essential.
- the R40 supply line 2 and the R22 supply line 3 are provided with preheaters 2a and 3a equipped with electric heaters or the like, respectively, so that the raw materials supplied from the R40 supply unit 51 and the R22 supply unit 52 are preheated to a predetermined temperature and then supplied to the reactor 1.
- the steam supply line 4 is provided with a superheated steam generator 4a, and the steam supplied from the steam supply unit 53 is mixed with the superheated steam, thereby adjusting the temperature and pressure of the supplied steam.
- the water vapor contained in the water vapor supply unit 53 may be supplied to the reactor as it is, or may be heated and then supplied to the reactor in a heated state.
- the water vapor contained in the water vapor supply unit 53 in addition to the method of mixing the water vapor with superheated steam as described above, a method of heating the water vapor using a heater may be mentioned. Furthermore, the water vapor contained in the water vapor supply unit 53 may be subjected to a phase change (for example, water, water vapor, or both water and water vapor) and then supplied to the reactor.
- a phase change for example, water, water vapor, or both water and water vapor
- An R40 supply unit 51 is connected to the R40 supply line 2.
- R40 is accommodated in the R40 supply unit 51.
- the R40 supply unit 51 has a function of supplying R40 to the reactor 1.
- the R40 supply unit 51 and the reactor 1 may be directly connected to each other, or may be connected to each other via a preheater 2a and an R40 supply line 2 as shown in FIG. 1.
- An R22 supply unit 52 is connected to the R22 supply line 3.
- R22 is accommodated in the R22 supply unit 52.
- the R22 supply unit 52 has a function of supplying R22 to the reactor 1.
- the R22 supply unit 52 and the reactor 2 may be directly connected to each other, or may be connected to each other via a preheater 3a and an R22 supply line 3 as shown in FIG.
- a water vapor supply unit 53 is connected to the water vapor supply line 4. Water vapor is accommodated in the water vapor supply unit 53.
- the water vapor supply unit 53 has a function of supplying water vapor to the reactor 1.
- the water vapor supply unit 53 and the reactor 1 may be directly connected to each other, or may be connected to each other via a superheated steam generator 4a and a water vapor supply line 4 as shown in FIG. 1 .
- the supply lines 2, 3, and 4 may each be connected separately to the reactor 1, but as shown in FIG. 1, the supply lines 2, 3, and 4 may be connected after passing through the preheaters 2a and 3a and the superheated steam generator 4a, so that all the components are mixed and then supplied to the reactor 1 via the raw material/steam mixture supply line 5.
- the outlet of the reactor 1 is connected to an outlet line 7 equipped with a cooling means 6 such as a water cooler.
- the outlet line 7 is further equipped with a steam and acid liquid recovery tank 8, an alkaline washing device 9, and a dehydration tower 10, in that order.
- an analysis device 11 such as a gas chromatography (GC).
- the control unit 12 controls the contact time between the raw material composition and the heat medium to 0.2 seconds or less. Specifically, it controls the flow rate (supply rate) of each raw material and the flow rate (supply rate) of the heat medium so that the contact time between the raw material composition and the heat medium is 0.2 seconds or less.
- Examples 1 to 11 are examples, and Examples 12 to 14 are comparative examples.
- VdF was obtained from a raw material composition (hereinafter also referred to as raw material gas) consisting of R22 and R40 by the method described below.
- R40 was continuously introduced into a stainless steel tube in an electric furnace with an internal temperature set to 500°C, and the R40 was heated to 500°C.
- R22 was continuously introduced into a stainless steel tube in an electric furnace with an internal temperature set to 500°C, and the R22 was heated to 500°C.
- the raw material gas, which had been preheated and adjusted to the above temperature, and steam (water vapor) heated by an electric furnace set to an internal temperature of 800°C were supplied to the reactor so that the ratio of the molar amount of R40 to the molar amount of R22 (R40/R22) was 4, and the ratio of the molar amount of water vapor to the total number of moles of R22 and R40 (water vapor/(R22+R40)) was 6.
- the temperature inside the reactor was 800°C, and the pressure was 0.014 MPa in gauge pressure.
- the flow rate of the raw material gas was controlled so that the contact time between the raw material gas and the water vapor in the reactor was 0.2 seconds.
- the outlet gas discharged from the reactor contained unreacted raw material gas in addition to the gases produced or by-produced by the reaction.
- the outlet gas was cooled to below 100°C, and after the steam and acidic liquid were collected and the gas was washed with alkali, it was dehydrated and then analyzed by gas chromatography to calculate the molar composition of the components contained in the outlet gas.
- the calculation results are shown in Tables 1 and 2, along with the reaction conditions.
- acetylene content relative to the VdF content was calculated based on the molar composition of the outlet gas obtained by gas chromatography analysis.
- Examples 2 to 14 In Examples 2 to 14, the reaction was carried out in the same manner as in Example 1, except that the reaction temperature, contact time, reaction pressure, steam/(R22+R40), and R40/R22 were changed to the values shown in Tables 1 and 2.
- VdF is produced by a synthesis method involving thermal decomposition from a raw material composition containing R22 and R40 in the presence of a heat transfer medium, and it was found that the content of by-product acetylene can be reduced by contacting the raw material composition with the heat transfer medium in the reactor for a contact time of 0.2 seconds or less.
- Example 12 to 14 the contact time between the raw material composition and the heat transfer medium was more than 0.2 seconds, and it was found that the content of by-produced acetylene was high.
- the examples in Patent Document 1 disclose examples in which the contact times of the raw material compositions containing R22 and R40 with the heat transfer medium are both longer than 0.2 seconds, and a composition with a high acetylene content is obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
A vinylidene fluoride production method for producing vinylidene fluoride, in the presence of a heat medium, from a source material composition that includes chlorodifluoromethane and chloromethane by using a synethesis method that accompanies thermal decomposition, said method including a step in which the source material composition and a heat medium are brought into contact in a reaction vessel for a contact time of 0.2 seconds or less.
Description
本開示は、フッ化ビニリデンの製造方法及びフッ化ビニリデンの製造装置に関する。
This disclosure relates to a method for producing vinylidene fluoride and an apparatus for producing vinylidene fluoride.
フッ化ビニリデンは、フッ素樹脂のモノマーとして有用である。
Vinylidene fluoride is useful as a monomer for fluororesins.
例えば、特許文献1には、熱媒体存在下、クロロジフルオロメタン(R22)及びクロロメタン(R40)を含む原料組成物から、熱分解を伴う合成反応により2,3,3,3-テトラフルオロプロペン(HFO-1234yf)を製造する方法であって、(a)R22の1モルに対してR40を0.01~3モルの割合で予め混合し、または別々に反応器に供給し、該反応器内に所定の時間滞留させる工程と、(b)熱媒体を反応器に供給し、該反応器内で原料組成物と熱媒体とを接触させる工程とを有することを特徴とするHFO-1234yfの製造方法が記載されている。
For example, Patent Document 1 describes a method for producing 2,3,3,3-tetrafluoropropene (HFO-1234yf) from a raw material composition containing chlorodifluoromethane (R22) and chloromethane (R40) in the presence of a heat transfer medium through a synthesis reaction involving thermal decomposition, the method comprising the steps of (a) premixing 0.01 to 3 moles of R40 per mole of R22 or separately supplying the mixture to a reactor and allowing the mixture to remain in the reactor for a predetermined period of time, and (b) supplying a heat transfer medium to the reactor and bringing the raw material composition into contact with the heat transfer medium in the reactor.
しかし、特許文献1では、HFO-1234yfを製造することを目的としており、フッ化ビニリデン(VdF)は、副生物として位置づけられており、VdFを製造することを目的とした製造方法が求められていた。また、VdFの製造においては、副生するアセチレンの低減が求められていた。
However, in Patent Document 1, the objective is to produce HFO-1234yf, and vinylidene fluoride (VdF) is considered a by-product, so there was a demand for a production method aimed at producing VdF. In addition, there was a demand for reducing the by-product acetylene in the production of VdF.
本発明の一実施形態における課題は、副生するアセチレンの含有量を低減させることが可能なVdFの製造方法及びVdFの製造装置を提供することにある。
The objective of one embodiment of the present invention is to provide a method and apparatus for producing VdF that can reduce the amount of by-product acetylene.
本開示は、以下の態様を含む。
<1>
熱媒体の存在下、クロロジフルオロメタン及びクロロメタンを含む原料組成物から、熱分解を伴う合成方法によりVdFを製造する方法であって、
反応器内において原料組成物と熱媒体とを0.2秒以下の接触時間で接触させる工程を含む、VdFの製造方法。
<2>
反応器から排出される出口ガス中、VdFの含有量に対するアセチレンの含有量は20mol%以下である、<1>に記載のVdFの製造方法。
<3>
反応器内の温度は800℃以上である、<1>又は<2>に記載のVdFの製造方法。
<4>
接触時間が0.1秒以下である、<1>~<3>のいずれか1つに記載のVdFの製造方法。
<5>
接触時間が0.01秒以上である、<1>~<4>のいずれか1つに記載のVdFの製造方法。
<6>
反応器内の温度をx℃とし、接触時間をy秒としたとき、
下記式1及び式2を満たす、<1>~<5>のいずれか1つに記載のVdFの製造方法。
y≦-0.001x+1.05 …式1
850≦x≦950 …式2
<7>
クロロジフルオロメタンのモル量に対するクロロメタンのモル量の比率が1以上である、<1>~<6>のいずれか1つに記載のVdFの製造方法。
<8>
クロロジフルオロメタン及びクロロメタンを含む原料組成物と熱媒体とを接触させる反応器と、
クロロジフルオロメタンが収容されており、クロロジフルオロメタンを反応器へ供給するクロロジフルオロメタン供給部と、
クロロメタンが収容されており、クロロメタンを反応器へ供給するクロロメタン供給部と、
熱媒体が収容されており、熱媒体を反応器へ供給する熱媒体供給部と、
反応器内において、原料組成物と熱媒体との接触時間を0.2秒以下に制御する制御部と、を備えるVdFの製造装置。 The present disclosure includes the following aspects.
<1>
A method for producing VdF by a synthesis method involving thermal decomposition from a raw material composition containing chlorodifluoromethane and chloromethane in the presence of a heat transfer medium, comprising the steps of:
A method for producing VdF, comprising a step of contacting a raw material composition with a heat transfer medium in a reactor for a contact time of 0.2 seconds or less.
<2>
The method for producing VdF according to <1>, wherein the acetylene content relative to the VdF content in the outlet gas discharged from the reactor is 20 mol % or less.
<3>
The method for producing VdF according to <1> or <2>, wherein the temperature in the reactor is 800° C. or higher.
<4>
The method for producing VdF according to any one of <1> to <3>, wherein the contact time is 0.1 seconds or less.
<5>
The method for producing VdF according to any one of <1> to <4>, wherein the contact time is 0.01 seconds or more.
<6>
When the temperature in the reactor is x°C and the contact time is y seconds,
The method for producing VdF according to any one of <1> to <5>, which satisfies the following formulas 1 and 2:
y≦-0.001x+1.05...Formula 1
850≦x≦950…Formula 2
<7>
The method for producing VdF according to any one of <1> to <6>, wherein the ratio of the molar amount of chloromethane to the molar amount of chlorodifluoromethane is 1 or more.
<8>
a reactor for contacting a raw material composition containing chlorodifluoromethane and chloromethane with a heat transfer medium;
a chlorodifluoromethane supply section that contains chlorodifluoromethane and supplies the chlorodifluoromethane to the reactor;
a chloromethane supply section that contains chloromethane and supplies the chloromethane to the reactor;
a heat transfer medium supplying section that accommodates a heat transfer medium and supplies the heat transfer medium to the reactor;
A control unit that controls the contact time between the raw material composition and the heat transfer medium in the reactor to 0.2 seconds or less.
<1>
熱媒体の存在下、クロロジフルオロメタン及びクロロメタンを含む原料組成物から、熱分解を伴う合成方法によりVdFを製造する方法であって、
反応器内において原料組成物と熱媒体とを0.2秒以下の接触時間で接触させる工程を含む、VdFの製造方法。
<2>
反応器から排出される出口ガス中、VdFの含有量に対するアセチレンの含有量は20mol%以下である、<1>に記載のVdFの製造方法。
<3>
反応器内の温度は800℃以上である、<1>又は<2>に記載のVdFの製造方法。
<4>
接触時間が0.1秒以下である、<1>~<3>のいずれか1つに記載のVdFの製造方法。
<5>
接触時間が0.01秒以上である、<1>~<4>のいずれか1つに記載のVdFの製造方法。
<6>
反応器内の温度をx℃とし、接触時間をy秒としたとき、
下記式1及び式2を満たす、<1>~<5>のいずれか1つに記載のVdFの製造方法。
y≦-0.001x+1.05 …式1
850≦x≦950 …式2
<7>
クロロジフルオロメタンのモル量に対するクロロメタンのモル量の比率が1以上である、<1>~<6>のいずれか1つに記載のVdFの製造方法。
<8>
クロロジフルオロメタン及びクロロメタンを含む原料組成物と熱媒体とを接触させる反応器と、
クロロジフルオロメタンが収容されており、クロロジフルオロメタンを反応器へ供給するクロロジフルオロメタン供給部と、
クロロメタンが収容されており、クロロメタンを反応器へ供給するクロロメタン供給部と、
熱媒体が収容されており、熱媒体を反応器へ供給する熱媒体供給部と、
反応器内において、原料組成物と熱媒体との接触時間を0.2秒以下に制御する制御部と、を備えるVdFの製造装置。 The present disclosure includes the following aspects.
<1>
A method for producing VdF by a synthesis method involving thermal decomposition from a raw material composition containing chlorodifluoromethane and chloromethane in the presence of a heat transfer medium, comprising the steps of:
A method for producing VdF, comprising a step of contacting a raw material composition with a heat transfer medium in a reactor for a contact time of 0.2 seconds or less.
<2>
The method for producing VdF according to <1>, wherein the acetylene content relative to the VdF content in the outlet gas discharged from the reactor is 20 mol % or less.
<3>
The method for producing VdF according to <1> or <2>, wherein the temperature in the reactor is 800° C. or higher.
<4>
The method for producing VdF according to any one of <1> to <3>, wherein the contact time is 0.1 seconds or less.
<5>
The method for producing VdF according to any one of <1> to <4>, wherein the contact time is 0.01 seconds or more.
<6>
When the temperature in the reactor is x°C and the contact time is y seconds,
The method for producing VdF according to any one of <1> to <5>, which satisfies the following formulas 1 and 2:
y≦-0.001x+1.05...Formula 1
850≦x≦950…Formula 2
<7>
The method for producing VdF according to any one of <1> to <6>, wherein the ratio of the molar amount of chloromethane to the molar amount of chlorodifluoromethane is 1 or more.
<8>
a reactor for contacting a raw material composition containing chlorodifluoromethane and chloromethane with a heat transfer medium;
a chlorodifluoromethane supply section that contains chlorodifluoromethane and supplies the chlorodifluoromethane to the reactor;
a chloromethane supply section that contains chloromethane and supplies the chloromethane to the reactor;
a heat transfer medium supplying section that accommodates a heat transfer medium and supplies the heat transfer medium to the reactor;
A control unit that controls the contact time between the raw material composition and the heat transfer medium in the reactor to 0.2 seconds or less.
本発明の一実施形態によれば、副生するアセチレンの含有量を低減させることが可能なVdFの製造方法及びVdFの製造装置が提供される。
According to one embodiment of the present invention, a method and apparatus for producing VdF are provided that can reduce the amount of by-product acetylene.
本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
本開示において、各成分の量は、各成分に該当する物質が複数種存在する場合には、特に断らない限り、複数種の物質の合計量を意味する。 In the present disclosure, a numerical range indicated using "to" means a range that includes the numerical values before and after "to" as the minimum and maximum values, respectively.
In the numerical ranges described in the present disclosure, the upper or lower limit value described in a certain numerical range may be replaced with the upper or lower limit value of another numerical range described in the present disclosure. In addition, in the numerical ranges described in the present disclosure, the upper or lower limit value described in a certain numerical range may be replaced with a value shown in the examples.
In the present disclosure, a combination of two or more preferred aspects is a more preferred aspect.
In the present disclosure, when there are multiple substances corresponding to each component, the amount of each component means the total amount of multiple substances, unless otherwise specified.
本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
本開示において、各成分の量は、各成分に該当する物質が複数種存在する場合には、特に断らない限り、複数種の物質の合計量を意味する。 In the present disclosure, a numerical range indicated using "to" means a range that includes the numerical values before and after "to" as the minimum and maximum values, respectively.
In the numerical ranges described in the present disclosure, the upper or lower limit value described in a certain numerical range may be replaced with the upper or lower limit value of another numerical range described in the present disclosure. In addition, in the numerical ranges described in the present disclosure, the upper or lower limit value described in a certain numerical range may be replaced with a value shown in the examples.
In the present disclosure, a combination of two or more preferred aspects is a more preferred aspect.
In the present disclosure, when there are multiple substances corresponding to each component, the amount of each component means the total amount of multiple substances, unless otherwise specified.
[VdFの製造方法]
本開示のVdFの製造方法は、熱媒体の存在下、R22及びR40を含む原料組成物から、熱分解を伴う合成方法によりVdFを製造する方法であって、反応器内において原料組成物と熱媒体とを0.2秒以下の接触時間で接触させる工程を含む。 [Method of manufacturing VdF]
The method for producing VdF disclosed herein is a method for producing VdF from a raw material composition containing R22 and R40 in the presence of a heat transfer medium by a synthesis method involving thermal decomposition, and includes a step of contacting the raw material composition with the heat transfer medium in a reactor for a contact time of 0.2 seconds or less.
本開示のVdFの製造方法は、熱媒体の存在下、R22及びR40を含む原料組成物から、熱分解を伴う合成方法によりVdFを製造する方法であって、反応器内において原料組成物と熱媒体とを0.2秒以下の接触時間で接触させる工程を含む。 [Method of manufacturing VdF]
The method for producing VdF disclosed herein is a method for producing VdF from a raw material composition containing R22 and R40 in the presence of a heat transfer medium by a synthesis method involving thermal decomposition, and includes a step of contacting the raw material composition with the heat transfer medium in a reactor for a contact time of 0.2 seconds or less.
本開示のVdFの製造方法によれば、反応器内において原料組成物と熱媒体とを0.2秒以下の接触時間で接触させることにより、副生するアセチレンの含有量を低減させることができる。
According to the method for producing VdF disclosed herein, the content of acetylene produced as a by-product can be reduced by contacting the raw material composition with the heat transfer medium in the reactor for a contact time of 0.2 seconds or less.
VdFは沸点が-83℃であり、アセチレンは沸点が-84℃である。VdFとアセチレンとは沸点が近いため、VdFとアセチレンとを分離精製することは難しく、VdFの製造方法において、副生するアセチレンの含有量が少ないことは望ましい。
一方、特許文献1に記載されている製造方法は、HFO-1234yfを製造することを目的としており、HFO-1234yfとアセチレンとは沸点が大きく異なることから、アセチレンには着目していない。また、特許文献1には、VdFの製造において副生するアセチレンの含有量に着目した記載はない。 The boiling point of VdF is −83° C., and the boiling point of acetylene is −84° C. Since the boiling points of VdF and acetylene are close to each other, it is difficult to separate and purify VdF and acetylene, and therefore, in the method for producing VdF, it is desirable to have a low content of acetylene as a by-product.
On the other hand, the production method described in Patent Document 1 aims to produce HFO-1234yf, and does not focus on acetylene because the boiling points of HFO-1234yf and acetylene are significantly different. Furthermore, Patent Document 1 does not mention the content of acetylene produced as a by-product in the production of VdF.
一方、特許文献1に記載されている製造方法は、HFO-1234yfを製造することを目的としており、HFO-1234yfとアセチレンとは沸点が大きく異なることから、アセチレンには着目していない。また、特許文献1には、VdFの製造において副生するアセチレンの含有量に着目した記載はない。 The boiling point of VdF is −83° C., and the boiling point of acetylene is −84° C. Since the boiling points of VdF and acetylene are close to each other, it is difficult to separate and purify VdF and acetylene, and therefore, in the method for producing VdF, it is desirable to have a low content of acetylene as a by-product.
On the other hand, the production method described in Patent Document 1 aims to produce HFO-1234yf, and does not focus on acetylene because the boiling points of HFO-1234yf and acetylene are significantly different. Furthermore, Patent Document 1 does not mention the content of acetylene produced as a by-product in the production of VdF.
<原料組成物>
原料組成物は、R22及びR40を含む。
R22及びR40を含む原料組成物は、反応器内で熱分解及び脱塩化水素反応によりジフルオロカルベン(F2C:)とR40とを含む反応混合物を生成し、これらの反応混合物は、直接付加反応するか、又は、1種若しくは2種以上の中間体を経て、VdFと転化されると考えられる。 <Raw Material Composition>
The feed composition includes R22 and R40.
A raw material composition containing R22 and R40 undergoes thermal decomposition and dehydrochlorination reactions in a reactor to produce a reaction mixture containing difluorocarbene (F 2 C:) and R40, and it is believed that this reaction mixture undergoes a direct addition reaction or is converted to VdF via one or more intermediates.
原料組成物は、R22及びR40を含む。
R22及びR40を含む原料組成物は、反応器内で熱分解及び脱塩化水素反応によりジフルオロカルベン(F2C:)とR40とを含む反応混合物を生成し、これらの反応混合物は、直接付加反応するか、又は、1種若しくは2種以上の中間体を経て、VdFと転化されると考えられる。 <Raw Material Composition>
The feed composition includes R22 and R40.
A raw material composition containing R22 and R40 undergoes thermal decomposition and dehydrochlorination reactions in a reactor to produce a reaction mixture containing difluorocarbene (F 2 C:) and R40, and it is believed that this reaction mixture undergoes a direct addition reaction or is converted to VdF via one or more intermediates.
原料組成物において、R22のモル量に対するR40のモル量の比率(R40/R22)は特に限定されないが、副生するアセチレンの含有量をより低減させる観点から、1以上が好ましく、2以上がより好ましく、3.5以上がさらに好ましい。
In the raw material composition, the ratio of the molar amount of R40 to the molar amount of R22 (R40/R22) is not particularly limited, but from the viewpoint of further reducing the content of by-produced acetylene, it is preferably 1 or more, more preferably 2 or more, and even more preferably 3.5 or more.
R40/R22の上限値は特に限定されないが、出口ガスに含まれるVdFの含有量をある程度確保する観点から、8以下が好ましく、6以下がより好ましい。
The upper limit of R40/R22 is not particularly limited, but from the viewpoint of ensuring a certain level of VdF content in the outlet gas, it is preferably 8 or less, and more preferably 6 or less.
原料組成物は、R22及びR40以外の成分を含んでいてもよい。
R22及びR40以外の成分としては、反応器内で熱分解してジフルオロカルベンを生成しうる含フッ素化合物が好ましく、例えば、HFO-1234yf、テトラフルオロエチレン(TFE)、ヘキサフルオロプロペン(HFP)、オクタフルオロシクロブタン(RC318)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン、ヘキサフルオロプロピレンオキサイド(HFPO)が挙げられる。原料組成物に、上記含フッ素化合物を用いる場合に、新たに用意した含フッ素化合物を用いてもよいが、リサイクルの観点から、本開示の製造方法で副生される含フッ素化合物、例えば、HFO-1234yf、TFE、HFP、RC318、CTFE、及びトリフルオロエチレンからなる群より選択される少なくとも1種を用いることが好ましい。 The raw material composition may contain components other than R22 and R40.
As the components other than R22 and R40, fluorine-containing compounds capable of generating difluorocarbene by thermal decomposition in a reactor are preferred, and examples thereof include HFO-1234yf, tetrafluoroethylene (TFE), hexafluoropropene (HFP), octafluorocyclobutane (RC318), chlorotrifluoroethylene (CTFE), trifluoroethylene, and hexafluoropropylene oxide (HFPO). When the above-mentioned fluorine-containing compounds are used in the raw material composition, a newly prepared fluorine-containing compound may be used, but from the viewpoint of recycling, it is preferred to use at least one fluorine-containing compound by-produced in the production method of the present disclosure, for example, selected from the group consisting of HFO-1234yf, TFE, HFP, RC318, CTFE, and trifluoroethylene.
R22及びR40以外の成分としては、反応器内で熱分解してジフルオロカルベンを生成しうる含フッ素化合物が好ましく、例えば、HFO-1234yf、テトラフルオロエチレン(TFE)、ヘキサフルオロプロペン(HFP)、オクタフルオロシクロブタン(RC318)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン、ヘキサフルオロプロピレンオキサイド(HFPO)が挙げられる。原料組成物に、上記含フッ素化合物を用いる場合に、新たに用意した含フッ素化合物を用いてもよいが、リサイクルの観点から、本開示の製造方法で副生される含フッ素化合物、例えば、HFO-1234yf、TFE、HFP、RC318、CTFE、及びトリフルオロエチレンからなる群より選択される少なくとも1種を用いることが好ましい。 The raw material composition may contain components other than R22 and R40.
As the components other than R22 and R40, fluorine-containing compounds capable of generating difluorocarbene by thermal decomposition in a reactor are preferred, and examples thereof include HFO-1234yf, tetrafluoroethylene (TFE), hexafluoropropene (HFP), octafluorocyclobutane (RC318), chlorotrifluoroethylene (CTFE), trifluoroethylene, and hexafluoropropylene oxide (HFPO). When the above-mentioned fluorine-containing compounds are used in the raw material composition, a newly prepared fluorine-containing compound may be used, but from the viewpoint of recycling, it is preferred to use at least one fluorine-containing compound by-produced in the production method of the present disclosure, for example, selected from the group consisting of HFO-1234yf, TFE, HFP, RC318, CTFE, and trifluoroethylene.
本開示のVdFの製造方法において、反応器の出口ガスには、未反応の原料と反応生成物と熱媒体とが含まれる。出口ガスから、熱媒体及び目的生成物であるVdFを分離し、さらに、反応器内で熱分解してジフルオロカルベンを生成しうる含フッ素化合物以外の副生物を除去することで、未反応の原料であるR22及びR40と、HFO-1234yf、TFE、HFP、RC318、CTFE、及びトリフルオロエチレンを主として構成される組成物が得られる。この組成物を、反応器に供給することで、リサイクルが可能となり、経済的に有利である。
In the disclosed method for producing VdF, the outlet gas of the reactor contains unreacted raw materials, reaction products, and a heat transfer medium. By separating the heat transfer medium and the target product VdF from the outlet gas, and further removing by-products other than fluorine-containing compounds that can be thermally decomposed in the reactor to produce difluorocarbene, a composition is obtained that is mainly composed of the unreacted raw materials R22 and R40, HFO-1234yf, TFE, HFP, RC318, CTFE, and trifluoroethylene. Supplying this composition to the reactor makes it possible to recycle, which is economically advantageous.
原料組成物は、常温のまま反応器に導入してもよいが、反応器内での反応性を向上させるために、反応器に導入する際の温度を加熱等により調整してもよい。ただし、R22を含むジフルオロカルベンを生成しうる含フッ素化合物とR40とは、反応性を向上させるのに好適な温度範囲が異なるので、温度調整を別々に行うことが好ましい。
The raw material composition may be introduced into the reactor at room temperature, but in order to improve the reactivity in the reactor, the temperature when introduced into the reactor may be adjusted by heating or the like. However, since the fluorine-containing compound capable of generating difluorocarbene containing R22 and R40 have different temperature ranges suitable for improving the reactivity, it is preferable to adjust the temperatures separately.
反応器に供給するR22の温度、又は、反応器に供給するR22を含むジフルオロカルベンを生成しうる含フッ素化合物の温度は、反応性がある程度高いが、カーボン化しにくい温度とするという観点から、0~600℃とすることが好ましい。
反応性を高める観点からは、R22、又は、R22を含むジフルオロカルベンを生成しうる含フッ素化合物を、反応器に導入する前に50℃以上に加熱することが好ましく、100~500℃に加熱することがより好ましい。 The temperature of R22 supplied to the reactor, or the temperature of the fluorine-containing compound capable of producing difluorocarbene containing R22 supplied to the reactor, is preferably 0 to 600° C. from the viewpoint of a temperature at which the reactivity is somewhat high but carbonization is difficult.
From the viewpoint of enhancing reactivity, R22 or a fluorine-containing compound capable of producing a difluorocarbene containing R22 is preferably heated to 50° C. or higher, more preferably 100 to 500° C., before being introduced into a reactor.
反応性を高める観点からは、R22、又は、R22を含むジフルオロカルベンを生成しうる含フッ素化合物を、反応器に導入する前に50℃以上に加熱することが好ましく、100~500℃に加熱することがより好ましい。 The temperature of R22 supplied to the reactor, or the temperature of the fluorine-containing compound capable of producing difluorocarbene containing R22 supplied to the reactor, is preferably 0 to 600° C. from the viewpoint of a temperature at which the reactivity is somewhat high but carbonization is difficult.
From the viewpoint of enhancing reactivity, R22 or a fluorine-containing compound capable of producing a difluorocarbene containing R22 is preferably heated to 50° C. or higher, more preferably 100 to 500° C., before being introduced into a reactor.
反応器に供給するR40の温度は、反応性の観点から0~1200℃とすることが好ましい。反応性を高める観点からは、R40を反応器に導入する前に50~1200℃に加熱することが好ましく、100~800℃に加熱することがより好ましい。
ただし、反応器に供給する上記各原料成分の温度はそれぞれ、後述する反応器内の温度以下に設定される。 From the viewpoint of reactivity, the temperature of R40 supplied to the reactor is preferably 0 to 1200° C. From the viewpoint of increasing the reactivity, it is preferable to heat R40 to 50 to 1200° C., and more preferably to heat R40 to 100 to 800° C. before introducing it into the reactor.
However, the temperature of each of the raw material components supplied to the reactor is set to be equal to or lower than the temperature inside the reactor, which will be described later.
ただし、反応器に供給する上記各原料成分の温度はそれぞれ、後述する反応器内の温度以下に設定される。 From the viewpoint of reactivity, the temperature of R40 supplied to the reactor is preferably 0 to 1200° C. From the viewpoint of increasing the reactivity, it is preferable to heat R40 to 50 to 1200° C., and more preferably to heat R40 to 100 to 800° C. before introducing it into the reactor.
However, the temperature of each of the raw material components supplied to the reactor is set to be equal to or lower than the temperature inside the reactor, which will be described later.
R22及びR40、さらに必要に応じて用いられるジフルオロカルベンを生成しうる含フッ素化合物等の各原料の反応器への供給は、別々であってもよいし、各成分を混合してからであってもよい。各成分を混合してから供給する場合には、原料組成物をグループに分けて、例えば、ジフルオロカルベンを生成しうる含フッ素化合物とそれ以外とに分けて、各グループで各成分を混合し反応器に別々に供給してもよいし、全成分を混合してから供給してもよい。上記温度条件の違いを考慮すると、R22を含むジフルオロカルベンを生成しうる含フッ素化合物と、R40とは、好ましい温度条件にそれぞれ調整して反応器に供給することが好ましい。
The raw materials R22, R40, and the fluorine-containing compound capable of producing difluorocarbene, which is used as necessary, may be supplied to the reactor separately, or after mixing the components. When the components are mixed and then supplied, the raw material composition may be divided into groups, for example, fluorine-containing compounds capable of producing difluorocarbene and others, and the components in each group may be mixed and supplied separately to the reactor, or all the components may be mixed and then supplied. Considering the difference in temperature conditions described above, it is preferable to supply the fluorine-containing compound capable of producing difluorocarbene, including R22, and R40 to the reactor after adjusting them to their preferred temperature conditions.
なお、R22及びR40、さらに必要に応じて用いられるジフルオロカルベンを生成しうる含フッ素化合物等の各原料を予め混合してから反応器に供給する場合は、反応器の手前で反応又は分解が進行してしまうことを防ぐ観点から、反応器に導入する際の温度は600℃未満にすることが好ましく、500℃未満にすることがより好ましい。
In addition, when the raw materials such as R22, R40, and optionally a fluorine-containing compound capable of producing difluorocarbene are mixed in advance and then fed to the reactor, the temperature at which they are introduced into the reactor is preferably less than 600°C, and more preferably less than 500°C, in order to prevent the reaction or decomposition from proceeding before the reactor.
<熱媒体>
熱媒体は、反応器内の温度で熱分解が生じない媒体であり、具体的には100~1200℃の温度で熱分解しない媒体であるのが好ましい。熱媒体としては、水蒸気、窒素、フッ化水素、及び二酸化炭素からなる群より選択される少なくとも1種の気体が挙げられる。熱媒体は、熱分解反応で生成する塩化水素を塩酸として除去する観点から、水蒸気であることが好ましい。熱媒体に占める水蒸気の割合は50体積%以上であることが好ましく、熱媒体は水蒸気のみからなることがより好ましい。 <Heat medium>
The heat medium is a medium that does not undergo thermal decomposition at the temperature in the reactor, and specifically, is preferably a medium that does not undergo thermal decomposition at a temperature of 100 to 1200° C. The heat medium may be at least one gas selected from the group consisting of water vapor, nitrogen, hydrogen fluoride, and carbon dioxide. From the viewpoint of removing hydrogen chloride produced in the thermal decomposition reaction as hydrochloric acid, the heat medium is preferably water vapor. The proportion of water vapor in the heat medium is preferably 50% by volume or more, and the heat medium is more preferably composed of only water vapor.
熱媒体は、反応器内の温度で熱分解が生じない媒体であり、具体的には100~1200℃の温度で熱分解しない媒体であるのが好ましい。熱媒体としては、水蒸気、窒素、フッ化水素、及び二酸化炭素からなる群より選択される少なくとも1種の気体が挙げられる。熱媒体は、熱分解反応で生成する塩化水素を塩酸として除去する観点から、水蒸気であることが好ましい。熱媒体に占める水蒸気の割合は50体積%以上であることが好ましく、熱媒体は水蒸気のみからなることがより好ましい。 <Heat medium>
The heat medium is a medium that does not undergo thermal decomposition at the temperature in the reactor, and specifically, is preferably a medium that does not undergo thermal decomposition at a temperature of 100 to 1200° C. The heat medium may be at least one gas selected from the group consisting of water vapor, nitrogen, hydrogen fluoride, and carbon dioxide. From the viewpoint of removing hydrogen chloride produced in the thermal decomposition reaction as hydrochloric acid, the heat medium is preferably water vapor. The proportion of water vapor in the heat medium is preferably 50% by volume or more, and the heat medium is more preferably composed of only water vapor.
原料組成物の合計モル数に対する水蒸気のモル数の比率は、反応で生じるカーボンにより反応器が閉塞することを防ぐ観点から、0.5以上が好ましく、0.6以上がより好ましく、0.7以上がさらに好ましい。上記比率の上限値は、例えば、0.99である。
The ratio of the number of moles of water vapor to the total number of moles of the raw material composition is preferably 0.5 or more, more preferably 0.6 or more, and even more preferably 0.7 or more, from the viewpoint of preventing clogging of the reactor by carbon generated in the reaction. The upper limit of the above ratio is, for example, 0.99.
本開示のVdFの製造方法では、反応器内において、原料組成物と熱媒体との接触時間は、0.2秒以下とする。副生するアセチレンの含有量をより低減させる観点から、接触時間は0.1秒以下であることが好ましく、0.08秒以下であることがより好ましい。出口ガスに含まれるVdFの含有量をある程度確保する観点から、接触時間は、0.01秒以上であることが好ましい。原料組成物と熱媒体との接触時間は、原料組成物の反応器内での滞留時間に相当し、原料組成物の流量を調整することで制御できる。
上記接触時間(秒)は、以下の式を用いて算出される。
接触時間(秒)=[反応器に供給する1秒あたりの反応温度での原料組成物の体積]/[反応器の体積] In the VdF production method of the present disclosure, the contact time between the raw material composition and the heat transfer medium in the reactor is 0.2 seconds or less. From the viewpoint of further reducing the content of by-produced acetylene, the contact time is preferably 0.1 seconds or less, more preferably 0.08 seconds or less. From the viewpoint of ensuring a certain level of VdF content in the outlet gas, the contact time is preferably 0.01 seconds or more. The contact time between the raw material composition and the heat transfer medium corresponds to the residence time of the raw material composition in the reactor, and can be controlled by adjusting the flow rate of the raw material composition.
The contact time (seconds) is calculated using the following formula:
Contact time (seconds) = [volume of raw material composition at reaction temperature per second supplied to reactor] / [volume of reactor]
上記接触時間(秒)は、以下の式を用いて算出される。
接触時間(秒)=[反応器に供給する1秒あたりの反応温度での原料組成物の体積]/[反応器の体積] In the VdF production method of the present disclosure, the contact time between the raw material composition and the heat transfer medium in the reactor is 0.2 seconds or less. From the viewpoint of further reducing the content of by-produced acetylene, the contact time is preferably 0.1 seconds or less, more preferably 0.08 seconds or less. From the viewpoint of ensuring a certain level of VdF content in the outlet gas, the contact time is preferably 0.01 seconds or more. The contact time between the raw material composition and the heat transfer medium corresponds to the residence time of the raw material composition in the reactor, and can be controlled by adjusting the flow rate of the raw material composition.
The contact time (seconds) is calculated using the following formula:
Contact time (seconds) = [volume of raw material composition at reaction temperature per second supplied to reactor] / [volume of reactor]
<反応器>
反応器としては、後述する反応器内の温度及び圧力に耐え得るものであれば、特に形状は限定されず、例えば、円筒状の縦型反応器が挙げられる。反応器の材質としては、ガラス、鉄、ニッケル;鉄、ニッケルを主成分とする合金等が挙げられる。 <Reactor>
The reactor is not particularly limited in shape as long as it can withstand the temperature and pressure in the reactor described below, and may be, for example, a cylindrical vertical reactor. The reactor may be made of glass, iron, nickel, or an alloy mainly composed of iron or nickel.
反応器としては、後述する反応器内の温度及び圧力に耐え得るものであれば、特に形状は限定されず、例えば、円筒状の縦型反応器が挙げられる。反応器の材質としては、ガラス、鉄、ニッケル;鉄、ニッケルを主成分とする合金等が挙げられる。 <Reactor>
The reactor is not particularly limited in shape as long as it can withstand the temperature and pressure in the reactor described below, and may be, for example, a cylindrical vertical reactor. The reactor may be made of glass, iron, nickel, or an alloy mainly composed of iron or nickel.
原料組成物からVdFへの転化率を向上させる観点から、反応器内の温度は、800℃以上であることが好ましく、850℃以上であることがより好ましい。一方、反応器内の温度を高めるための設備投資を抑える観点から、反応器内の温度は、1000℃以下であることが好ましい。これらの観点から、反応器内の温度は、850~950℃であることが好ましい。
From the viewpoint of improving the conversion rate of the raw material composition to VdF, the temperature inside the reactor is preferably 800°C or higher, and more preferably 850°C or higher. On the other hand, from the viewpoint of reducing capital investment for increasing the temperature inside the reactor, the temperature inside the reactor is preferably 1000°C or lower. From these viewpoints, the temperature inside the reactor is preferably 850 to 950°C.
特に、反応器内の温度をx℃とし、接触時間をy秒としたとき、下記式1及び式2を満たすことが好ましい。
y≦-0.001x+1.05 …式1
850≦x≦950 …式2 In particular, when the temperature inside the reactor is x° C. and the contact time is y seconds, it is preferable that the following formulas 1 and 2 are satisfied.
y≦-0.001x+1.05...Formula 1
850≦x≦950…Formula 2
y≦-0.001x+1.05 …式1
850≦x≦950 …式2 In particular, when the temperature inside the reactor is x° C. and the contact time is y seconds, it is preferable that the following formulas 1 and 2 are satisfied.
y≦-0.001x+1.05...Formula 1
850≦x≦950…Formula 2
副生するアセチレンの含有量をより低減させる観点から、下記式1A及び上記式2を満たすことがより好ましく、下記式1B及び上記式2を満たすことがさらに好ましい。
y≦-0.001x+1.00 …式1A
y≦-0.001x+0.95 …式1B From the viewpoint of further reducing the content of by-produced acetylene, it is more preferable that the following formula 1A and the above formula 2 are satisfied, and it is even more preferable that the following formula 1B and the above formula 2 are satisfied.
y≦-0.001x+1.00...Formula 1A
y≦-0.001x+0.95...Formula 1B
y≦-0.001x+1.00 …式1A
y≦-0.001x+0.95 …式1B From the viewpoint of further reducing the content of by-produced acetylene, it is more preferable that the following formula 1A and the above formula 2 are satisfied, and it is even more preferable that the following formula 1B and the above formula 2 are satisfied.
y≦-0.001x+1.00...Formula 1A
y≦-0.001x+0.95...Formula 1B
反応器内の圧力は、反応器等の耐圧性能を高めるための設備投資を抑える観点から、ゲージ圧で0~2.0MPaが好ましく、0~0.5MPaがより好ましく、0~0.3MPaがさらに好ましく、0~0.2MPaが特に好ましい。
From the viewpoint of reducing capital investment required to improve the pressure resistance of the reactor, etc., the pressure inside the reactor is preferably 0 to 2.0 MPa, more preferably 0 to 0.5 MPa, even more preferably 0 to 0.3 MPa, and particularly preferably 0 to 0.2 MPa, in terms of gauge pressure.
<出口ガス>
本開示のVdFの製造方法では、反応器から排出される出口ガスとして、VdFを得ることができる。出口ガスに含まれるVdF以外の成分としては、例えば、アセチレン、メタン、エチレン、HFO-1234yf、TFE、HFP、CTFE、トリフルオロエチレン、RC318、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、及び1,2-ジフルオロエチレンが挙げられる。 <Outlet gas>
In the method for producing VdF disclosed herein, VdF can be obtained as an outlet gas discharged from a reactor. Examples of components other than VdF contained in the outlet gas include acetylene, methane, ethylene, HFO-1234yf, TFE, HFP, CTFE, trifluoroethylene, RC318, 1,3,3,3-tetrafluoropropene (HFO-1234ze), and 1,2-difluoroethylene.
本開示のVdFの製造方法では、反応器から排出される出口ガスとして、VdFを得ることができる。出口ガスに含まれるVdF以外の成分としては、例えば、アセチレン、メタン、エチレン、HFO-1234yf、TFE、HFP、CTFE、トリフルオロエチレン、RC318、1,3,3,3-テトラフルオロプロペン(HFO-1234ze)、及び1,2-ジフルオロエチレンが挙げられる。 <Outlet gas>
In the method for producing VdF disclosed herein, VdF can be obtained as an outlet gas discharged from a reactor. Examples of components other than VdF contained in the outlet gas include acetylene, methane, ethylene, HFO-1234yf, TFE, HFP, CTFE, trifluoroethylene, RC318, 1,3,3,3-tetrafluoropropene (HFO-1234ze), and 1,2-difluoroethylene.
反応器から排出される出口ガス中、VdFの含有量に対するアセチレンの含有量は20mol%以下であることが好ましく、15mol%以下であることがより好ましい。
In the outlet gas discharged from the reactor, the acetylene content relative to the VdF content is preferably 20 mol% or less, and more preferably 15 mol% or less.
出口ガスに含まれるVdF以外の上記成分は、蒸留等の既知の手段により、望まれる程度に除去することができる。そして、分離されたTFE、HFP、CTFE、トリフルオロエチレン、及びRC318は、ジフルオロカルベンを生成しうる含フッ素化合物であり、原料組成物の一部としてリサイクルが可能である。
The above components other than VdF contained in the outlet gas can be removed to the desired extent by known means such as distillation. The separated TFE, HFP, CTFE, trifluoroethylene, and RC318 are fluorine-containing compounds capable of producing difluorocarbene, and can be recycled as part of the raw material composition.
[VdFの製造装置]
本開示のVdFの製造装置は、R22及びR40を含む原料組成物と熱媒体とを接触させる反応器と、R22が収容されており、R22を反応器へ供給するR22供給部と、R40が収容されており、R40を反応器へ供給するR40供給部と、熱媒体が収容されており、熱媒体を反応器へ供給する熱媒体供給部と、反応器内において、原料組成物と熱媒体との接触時間を0.2秒以下に制御する制御部と、を備える。 [VdF manufacturing equipment]
The VdF production apparatus of the present disclosure includes a reactor that brings a raw material composition containing R22 and R40 into contact with a heat transfer medium, an R22 supplying section that contains R22 and supplies R22 to the reactor, an R40 supplying section that contains R40 and supplies R40 to the reactor, a heat transfer medium supplying section that contains a heat transfer medium and supplies the heat transfer medium to the reactor, and a control section that controls the contact time between the raw material composition and the heat transfer medium in the reactor to 0.2 seconds or less.
本開示のVdFの製造装置は、R22及びR40を含む原料組成物と熱媒体とを接触させる反応器と、R22が収容されており、R22を反応器へ供給するR22供給部と、R40が収容されており、R40を反応器へ供給するR40供給部と、熱媒体が収容されており、熱媒体を反応器へ供給する熱媒体供給部と、反応器内において、原料組成物と熱媒体との接触時間を0.2秒以下に制御する制御部と、を備える。 [VdF manufacturing equipment]
The VdF production apparatus of the present disclosure includes a reactor that brings a raw material composition containing R22 and R40 into contact with a heat transfer medium, an R22 supplying section that contains R22 and supplies R22 to the reactor, an R40 supplying section that contains R40 and supplies R40 to the reactor, a heat transfer medium supplying section that contains a heat transfer medium and supplies the heat transfer medium to the reactor, and a control section that controls the contact time between the raw material composition and the heat transfer medium in the reactor to 0.2 seconds or less.
本開示のVdFの製造装置は、連続式であってもよく、バッチ式であってもよい。
The VdF manufacturing apparatus disclosed herein may be of a continuous type or a batch type.
連続式では、各原料の反応器への供給と熱媒体の反応器への供給は、いずれも連続的に行われる。バッチ式では、各原料の反応器への供給と、熱媒体の反応器への供給とは、いずれか一方が先であってもよく、同時であってもよい。
In a continuous system, the supply of each raw material to the reactor and the supply of the heat transfer medium to the reactor are both carried out continuously. In a batch system, the supply of each raw material to the reactor and the supply of the heat transfer medium to the reactor may be either one first or simultaneously.
製造効率の観点から、連続式が好ましい。
From the standpoint of production efficiency, the continuous method is preferred.
図1は、本開示のVdFの製造装置の一例を示す図である。
FIG. 1 shows an example of a VdF manufacturing apparatus according to the present disclosure.
製造装置100は、R40が収容されているR40供給部51と、R22が収容されているR22供給部52と、熱媒体としての水蒸気が収容されている水蒸気供給部53と、電気ヒータ等の加熱手段を備えた反応器1と、制御部12と、を有する。反応器1には、R40供給ライン2、R22供給ライン3、及び水蒸気供給ライン4が接続されている。なお、反応器1における加熱手段の設置は必須ではない。
The manufacturing apparatus 100 has an R40 supply section 51 in which R40 is stored, an R22 supply section 52 in which R22 is stored, a steam supply section 53 in which steam is stored as a heat medium, a reactor 1 equipped with a heating means such as an electric heater, and a control section 12. An R40 supply line 2, an R22 supply line 3, and a steam supply line 4 are connected to the reactor 1. Note that the installation of a heating means in the reactor 1 is not essential.
R40供給ライン2及びR22供給ライン3には、それぞれ電気ヒータ等を備えた予熱器(プレヒータ)2a、3aが設置されており、R40供給部51及びR22供給部52から供給される各原料が所定の温度に予熱されてから反応器1に供給される。また、水蒸気供給ライン4には、過熱水蒸気発生器4aが設置されており、水蒸気供給部53から供給される水蒸気が過熱水蒸気と混合されることで、供給される水蒸気の温度および圧力が調整される。
水蒸気供給部53に収容されている水蒸気は、そのまま反応器に供給されてもよく、加熱された後に、加熱された状態で反応器に供給されてもよい。水蒸気供給部53に収容されている水蒸気を加熱する方法としては、上記のように、過熱水蒸気と混合する方法以外に、加熱器(ヒータ)を用いて加熱する方法が挙げられる。
また、水蒸気供給部53に収容されている水蒸気が相変化したもの(例えば、水、水蒸気、及び、水と水蒸気の両方)が反応器に供給されてもよい。 The R40 supply line 2 and the R22 supply line 3 are provided with preheaters 2a and 3a equipped with electric heaters or the like, respectively, so that the raw materials supplied from the R40 supply unit 51 and the R22 supply unit 52 are preheated to a predetermined temperature and then supplied to the reactor 1. In addition, the steam supply line 4 is provided with a superheated steam generator 4a, and the steam supplied from the steam supply unit 53 is mixed with the superheated steam, thereby adjusting the temperature and pressure of the supplied steam.
The water vapor contained in the water vapor supply unit 53 may be supplied to the reactor as it is, or may be heated and then supplied to the reactor in a heated state. As a method for heating the water vapor contained in the water vapor supply unit 53, in addition to the method of mixing the water vapor with superheated steam as described above, a method of heating the water vapor using a heater may be mentioned.
Furthermore, the water vapor contained in the water vapor supply unit 53 may be subjected to a phase change (for example, water, water vapor, or both water and water vapor) and then supplied to the reactor.
水蒸気供給部53に収容されている水蒸気は、そのまま反応器に供給されてもよく、加熱された後に、加熱された状態で反応器に供給されてもよい。水蒸気供給部53に収容されている水蒸気を加熱する方法としては、上記のように、過熱水蒸気と混合する方法以外に、加熱器(ヒータ)を用いて加熱する方法が挙げられる。
また、水蒸気供給部53に収容されている水蒸気が相変化したもの(例えば、水、水蒸気、及び、水と水蒸気の両方)が反応器に供給されてもよい。 The R40 supply line 2 and the R22 supply line 3 are provided with preheaters 2a and 3a equipped with electric heaters or the like, respectively, so that the raw materials supplied from the R40 supply unit 51 and the R22 supply unit 52 are preheated to a predetermined temperature and then supplied to the reactor 1. In addition, the steam supply line 4 is provided with a superheated steam generator 4a, and the steam supplied from the steam supply unit 53 is mixed with the superheated steam, thereby adjusting the temperature and pressure of the supplied steam.
The water vapor contained in the water vapor supply unit 53 may be supplied to the reactor as it is, or may be heated and then supplied to the reactor in a heated state. As a method for heating the water vapor contained in the water vapor supply unit 53, in addition to the method of mixing the water vapor with superheated steam as described above, a method of heating the water vapor using a heater may be mentioned.
Furthermore, the water vapor contained in the water vapor supply unit 53 may be subjected to a phase change (for example, water, water vapor, or both water and water vapor) and then supplied to the reactor.
R40供給ライン2には、R40供給部51が接続されている。R40供給部51には、R40が収容されている。R40供給部51は、R40を反応器1へ供給する機能を有する。R40供給部51と反応器1とは直接接続されていてもよく、図1に示すように、予熱器2a、R40供給ライン2を介して接続されていてもよい。
R22供給ライン3には、R22供給部52が接続されている。R22供給部52には、R22が収容されている。R22供給部52は、R22を反応器1へ供給する機能を有する。R22供給部52と反応器2とは直接接続されていてもよく、図1に示すように、予熱器3a、R22供給ライン3を介して接続されていてもよい。
水蒸気供給ライン4には、水蒸気供給部53が接続されている。水蒸気供給部53には、水蒸気が収容されている。水蒸気供給部53は、水蒸気を反応器1へ供給する機能を有する。水蒸気供給部53と反応器1とは直接接続されていてもよく、図1に示すように、過熱水蒸気発生器4a、水蒸気供給ライン4を介して接続されていてもよい。 An R40 supply unit 51 is connected to the R40 supply line 2. R40 is accommodated in the R40 supply unit 51. The R40 supply unit 51 has a function of supplying R40 to the reactor 1. The R40 supply unit 51 and the reactor 1 may be directly connected to each other, or may be connected to each other via a preheater 2a and an R40 supply line 2 as shown in FIG. 1.
An R22 supply unit 52 is connected to the R22 supply line 3. R22 is accommodated in the R22 supply unit 52. The R22 supply unit 52 has a function of supplying R22 to the reactor 1. The R22 supply unit 52 and the reactor 2 may be directly connected to each other, or may be connected to each other via a preheater 3a and an R22 supply line 3 as shown in FIG.
A water vapor supply unit 53 is connected to the water vapor supply line 4. Water vapor is accommodated in the water vapor supply unit 53. The water vapor supply unit 53 has a function of supplying water vapor to the reactor 1. The water vapor supply unit 53 and the reactor 1 may be directly connected to each other, or may be connected to each other via a superheated steam generator 4a and a water vapor supply line 4 as shown in FIG. 1 .
R22供給ライン3には、R22供給部52が接続されている。R22供給部52には、R22が収容されている。R22供給部52は、R22を反応器1へ供給する機能を有する。R22供給部52と反応器2とは直接接続されていてもよく、図1に示すように、予熱器3a、R22供給ライン3を介して接続されていてもよい。
水蒸気供給ライン4には、水蒸気供給部53が接続されている。水蒸気供給部53には、水蒸気が収容されている。水蒸気供給部53は、水蒸気を反応器1へ供給する機能を有する。水蒸気供給部53と反応器1とは直接接続されていてもよく、図1に示すように、過熱水蒸気発生器4a、水蒸気供給ライン4を介して接続されていてもよい。 An R40 supply unit 51 is connected to the R40 supply line 2. R40 is accommodated in the R40 supply unit 51. The R40 supply unit 51 has a function of supplying R40 to the reactor 1. The R40 supply unit 51 and the reactor 1 may be directly connected to each other, or may be connected to each other via a preheater 2a and an R40 supply line 2 as shown in FIG. 1.
An R22 supply unit 52 is connected to the R22 supply line 3. R22 is accommodated in the R22 supply unit 52. The R22 supply unit 52 has a function of supplying R22 to the reactor 1. The R22 supply unit 52 and the reactor 2 may be directly connected to each other, or may be connected to each other via a preheater 3a and an R22 supply line 3 as shown in FIG.
A water vapor supply unit 53 is connected to the water vapor supply line 4. Water vapor is accommodated in the water vapor supply unit 53. The water vapor supply unit 53 has a function of supplying water vapor to the reactor 1. The water vapor supply unit 53 and the reactor 1 may be directly connected to each other, or may be connected to each other via a superheated steam generator 4a and a water vapor supply line 4 as shown in FIG. 1 .
供給ライン2、3、4はそれぞれ別々に反応器1に接続されていてもよいが、図1に示すように、予熱器2a、3a、過熱水蒸気発生器4aを経た後の供給ライン2、3、4を連結することで、全ての成分を混合した後に、原料・水蒸気混合供給ライン5を介して反応器1に供給されるように構成してもよい。
The supply lines 2, 3, and 4 may each be connected separately to the reactor 1, but as shown in FIG. 1, the supply lines 2, 3, and 4 may be connected after passing through the preheaters 2a and 3a and the superheated steam generator 4a, so that all the components are mixed and then supplied to the reactor 1 via the raw material/steam mixture supply line 5.
反応器1の出口には、水冷器のような冷却手段6が設置された出口ライン7が接続されている。出口ライン7には、さらに、蒸気及び酸性液回収槽8、アルカリ洗浄装置9及び脱水塔10が順に設置されている。そして、脱水塔10により脱水された後、出口ガスの各成分は、ガスクロマトグラフィ(GC)のような分析装置11により分析・定量される。
The outlet of the reactor 1 is connected to an outlet line 7 equipped with a cooling means 6 such as a water cooler. The outlet line 7 is further equipped with a steam and acid liquid recovery tank 8, an alkaline washing device 9, and a dehydration tower 10, in that order. After being dehydrated by the dehydration tower 10, each component of the outlet gas is analyzed and quantified by an analysis device 11 such as a gas chromatography (GC).
制御部12は、原料組成物と熱媒体との接触時間を0.2秒以下に制御する。具体的には、原料組成物と熱媒体との接触時間が0.2秒以下となるように、各原料の流量(供給速度)、及び、熱媒体の流量(供給速度)を制御する。
The control unit 12 controls the contact time between the raw material composition and the heat medium to 0.2 seconds or less. Specifically, it controls the flow rate (supply rate) of each raw material and the flow rate (supply rate) of the heat medium so that the contact time between the raw material composition and the heat medium is 0.2 seconds or less.
以下に、本開示を実施例によって具体的に説明するが、本開示はこれらの実施例によって限定されるものではない。例1~例11は実施例であり、例12~例14は比較例である。
Below, the present disclosure will be specifically explained using examples, but the present disclosure is not limited to these examples. Examples 1 to 11 are examples, and Examples 12 to 14 are comparative examples.
[例1]
図1に示す製造装置を用い、R22とR40とからなる原料組成物(以下、原料ガスともいう。)から、以下に示す方法にてVdFを得た。 [Example 1]
Using the production apparatus shown in FIG. 1, VdF was obtained from a raw material composition (hereinafter also referred to as raw material gas) consisting of R22 and R40 by the method described below.
図1に示す製造装置を用い、R22とR40とからなる原料組成物(以下、原料ガスともいう。)から、以下に示す方法にてVdFを得た。 [Example 1]
Using the production apparatus shown in FIG. 1, VdF was obtained from a raw material composition (hereinafter also referred to as raw material gas) consisting of R22 and R40 by the method described below.
炉内温度500℃に設定した電気炉内のステンレス製チューブに、R40を連続的に導入し、R40を500℃に加熱した。また、炉内温度500℃に設定した電気炉内のステンレス製チューブに、R22を連続的に導入し、R22を500℃に加熱した。
R40 was continuously introduced into a stainless steel tube in an electric furnace with an internal temperature set to 500°C, and the R40 was heated to 500°C. R22 was continuously introduced into a stainless steel tube in an electric furnace with an internal temperature set to 500°C, and the R22 was heated to 500°C.
予め加熱されて上記温度に調整された原料ガスと、炉内温度800℃に設定した電気炉によって加熱されたスチーム(水蒸気)とを、R22のモル量に対するR40のモル量の比率(R40/R22)が4となり、R22及びR40の合計モル数に対する水蒸気のモル数の比率(水蒸気/(R22+R40))が6となるように、反応器に供給した。反応器内の温度は800℃、圧力はゲージ圧で0.014MPaとした。
The raw material gas, which had been preheated and adjusted to the above temperature, and steam (water vapor) heated by an electric furnace set to an internal temperature of 800°C were supplied to the reactor so that the ratio of the molar amount of R40 to the molar amount of R22 (R40/R22) was 4, and the ratio of the molar amount of water vapor to the total number of moles of R22 and R40 (water vapor/(R22+R40)) was 6. The temperature inside the reactor was 800°C, and the pressure was 0.014 MPa in gauge pressure.
反応器内において、原料ガスと水蒸気との接触時間が0.2秒となるように、原料ガスの流量を制御した。反応器から排出された出口ガスには、反応により生成又は副生したガスの他に、未反応の原料ガスも含まれていた。
The flow rate of the raw material gas was controlled so that the contact time between the raw material gas and the water vapor in the reactor was 0.2 seconds. The outlet gas discharged from the reactor contained unreacted raw material gas in addition to the gases produced or by-produced by the reaction.
出口ガスを、100℃以下に冷却し、蒸気及び酸性液の回収とアルカリ洗浄を順に行ってから脱水処理した後、ガスクロマトグラフィで分析して、出口ガスに含まれる成分のモル組成を算出した。算出結果を、反応条件とともに表1及び表2に示す。
The outlet gas was cooled to below 100°C, and after the steam and acidic liquid were collected and the gas was washed with alkali, it was dehydrated and then analyzed by gas chromatography to calculate the molar composition of the components contained in the outlet gas. The calculation results are shown in Tables 1 and 2, along with the reaction conditions.
また、ガスクロマトグラフィでの分析で得られた出口ガスのモル組成に基づいて、VdFの含有量に対するアセチレンの含有量(アセチレン/VdF)を算出した。
In addition, the acetylene content relative to the VdF content (acetylene/VdF) was calculated based on the molar composition of the outlet gas obtained by gas chromatography analysis.
[例2~例14]
例2~例14では、反応温度、接触時間、反応圧力、水蒸気/(R22+R40)、及びR40/R22を、表1及び表2に記載の値に変更したこと以外は、例1と同様の方法で反応を行った。 [Examples 2 to 14]
In Examples 2 to 14, the reaction was carried out in the same manner as in Example 1, except that the reaction temperature, contact time, reaction pressure, steam/(R22+R40), and R40/R22 were changed to the values shown in Tables 1 and 2.
例2~例14では、反応温度、接触時間、反応圧力、水蒸気/(R22+R40)、及びR40/R22を、表1及び表2に記載の値に変更したこと以外は、例1と同様の方法で反応を行った。 [Examples 2 to 14]
In Examples 2 to 14, the reaction was carried out in the same manner as in Example 1, except that the reaction temperature, contact time, reaction pressure, steam/(R22+R40), and R40/R22 were changed to the values shown in Tables 1 and 2.
表1及び表2に示すように、例1~例11では、熱媒体の存在下、R22及びR40を含む原料組成物から、熱分解を伴う合成方法によりVdFを製造する方法であって、反応器内において原料組成物と熱媒体とを0.2秒以下の接触時間で接触させることにより、副生するアセチレンの含有量を低減できることが分かった。
As shown in Tables 1 and 2, in Examples 1 to 11, VdF is produced by a synthesis method involving thermal decomposition from a raw material composition containing R22 and R40 in the presence of a heat transfer medium, and it was found that the content of by-product acetylene can be reduced by contacting the raw material composition with the heat transfer medium in the reactor for a contact time of 0.2 seconds or less.
例12~例14では、原料組成物と熱媒体との接触時間が0.2秒超であり、副生するアセチレンの含有量が多いことが分かった。
特許文献1の実施例には、R22及びR40を含む原料組成物と熱媒体との接触時間がいずれも0.2秒超である例が記載されており、アセチレン含有量の多い組成物が得られる。 In Examples 12 to 14, the contact time between the raw material composition and the heat transfer medium was more than 0.2 seconds, and it was found that the content of by-produced acetylene was high.
The examples in Patent Document 1 disclose examples in which the contact times of the raw material compositions containing R22 and R40 with the heat transfer medium are both longer than 0.2 seconds, and a composition with a high acetylene content is obtained.
特許文献1の実施例には、R22及びR40を含む原料組成物と熱媒体との接触時間がいずれも0.2秒超である例が記載されており、アセチレン含有量の多い組成物が得られる。 In Examples 12 to 14, the contact time between the raw material composition and the heat transfer medium was more than 0.2 seconds, and it was found that the content of by-produced acetylene was high.
The examples in Patent Document 1 disclose examples in which the contact times of the raw material compositions containing R22 and R40 with the heat transfer medium are both longer than 0.2 seconds, and a composition with a high acetylene content is obtained.
なお、2023年2月20日に出願された日本国特許出願2023-024581号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2023-024581, filed on February 20, 2023, is incorporated herein by reference in its entirety. In addition, all documents, patent applications, and technical standards described herein are incorporated herein by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference.
Claims (8)
- 熱媒体の存在下、クロロジフルオロメタン及びクロロメタンを含む原料組成物から、熱分解を伴う合成方法によりフッ化ビニリデンを製造する方法であって、
反応器内において前記原料組成物と前記熱媒体とを0.2秒以下の接触時間で接触させる工程を含む、フッ化ビニリデンの製造方法。 A method for producing vinylidene fluoride from a raw material composition containing chlorodifluoromethane and chloromethane by a synthesis method involving thermal decomposition in the presence of a heat transfer medium, comprising the steps of:
A method for producing vinylidene fluoride, comprising the step of contacting the raw material composition with the heat transfer medium in a reactor for a contact time of 0.2 seconds or less. - 前記反応器から排出される出口ガス中、フッ化ビニリデンの含有量に対するアセチレンの含有量は20mol%以下である、請求項1に記載のフッ化ビニリデンの製造方法。 The method for producing vinylidene fluoride according to claim 1, wherein the acetylene content relative to the vinylidene fluoride content in the outlet gas discharged from the reactor is 20 mol% or less.
- 前記反応器内の温度は800℃以上である、請求項1又は請求項2に記載のフッ化ビニリデンの製造方法。 The method for producing vinylidene fluoride according to claim 1 or 2, wherein the temperature inside the reactor is 800°C or higher.
- 前記接触時間が0.1秒以下である、請求項1又は請求項2に記載のフッ化ビニリデンの製造方法。 The method for producing vinylidene fluoride according to claim 1 or 2, wherein the contact time is 0.1 seconds or less.
- 前記接触時間が0.01秒以上である、請求項1又は請求項2に記載のフッ化ビニリデンの製造方法。 The method for producing vinylidene fluoride according to claim 1 or 2, wherein the contact time is 0.01 seconds or more.
- 前記反応器内の温度をx℃とし、前記接触時間をy秒としたとき、
下記式1及び式2を満たす、請求項1又は請求項2に記載のフッ化ビニリデンの製造方法。
y≦-0.001x+1.05 …式1
850≦x≦950 …式2 When the temperature in the reactor is x° C. and the contact time is y seconds,
The method for producing vinylidene fluoride according to claim 1 or 2, which satisfies the following formulae 1 and 2:
y≦-0.001x+1.05...Formula 1
850≦x≦950…Formula 2 - 前記クロロジフルオロメタンのモル量に対する前記クロロメタンのモル量の比率が1以上である、請求項1又は請求項2に記載のフッ化ビニリデンの製造方法。 The method for producing vinylidene fluoride according to claim 1 or 2, wherein the ratio of the molar amount of chloromethane to the molar amount of chlorodifluoromethane is 1 or more.
- クロロジフルオロメタン及びクロロメタンを含む原料組成物と熱媒体とを接触させる反応器と、
前記クロロジフルオロメタンが収容されており、前記クロロジフルオロメタンを前記反応器へ供給するクロロジフルオロメタン供給部と、
前記クロロメタンが収容されており、前記クロロメタンを前記反応器へ供給するクロロメタン供給部と、
前記熱媒体が収容されており、前記熱媒体を前記反応器へ供給する熱媒体供給部と、
前記反応器内において、前記原料組成物と前記熱媒体との接触時間を0.2秒以下に制御する制御部と、を備えるフッ化ビニリデンの製造装置。 a reactor for contacting a raw material composition containing chlorodifluoromethane and chloromethane with a heat transfer medium;
a chlorodifluoromethane supply section containing the chlorodifluoromethane and supplying the chlorodifluoromethane to the reactor;
a chloromethane supply section that contains the chloromethane and supplies the chloromethane to the reactor;
a heat medium supplying section that accommodates the heat medium and supplies the heat medium to the reactor;
a control unit that controls a contact time between the raw material composition and the heat transfer medium in the reactor to 0.2 seconds or less.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-024581 | 2023-02-20 | ||
JP2023024581 | 2023-02-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024176771A1 true WO2024176771A1 (en) | 2024-08-29 |
Family
ID=92500559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/003330 WO2024176771A1 (en) | 2023-02-20 | 2024-02-01 | Vinylidene fluoride production method and vinylidene fluoride production device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024176771A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3073870A (en) * | 1958-11-25 | 1963-01-15 | Du Pont | Process for the pyrolysis of chcif2 and ch3ci to prepare ch2 cf2 |
WO2013137408A1 (en) * | 2012-03-14 | 2013-09-19 | 旭硝子株式会社 | Production method for 2,3,3,3-tetra-fluoropropene |
WO2013137409A1 (en) * | 2012-03-14 | 2013-09-19 | 旭硝子株式会社 | Production method for 2,3,3,3-tetra-fluoropropene and 1,1-difluoroethylene |
WO2015125877A1 (en) * | 2014-02-20 | 2015-08-27 | 旭硝子株式会社 | Method for purifying fluid that includes trifluoroethylene, and method for producing trifluoroethylene |
WO2015125874A1 (en) * | 2014-02-20 | 2015-08-27 | 旭硝子株式会社 | Working medium for thermal cycle |
-
2024
- 2024-02-01 WO PCT/JP2024/003330 patent/WO2024176771A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3073870A (en) * | 1958-11-25 | 1963-01-15 | Du Pont | Process for the pyrolysis of chcif2 and ch3ci to prepare ch2 cf2 |
WO2013137408A1 (en) * | 2012-03-14 | 2013-09-19 | 旭硝子株式会社 | Production method for 2,3,3,3-tetra-fluoropropene |
WO2013137409A1 (en) * | 2012-03-14 | 2013-09-19 | 旭硝子株式会社 | Production method for 2,3,3,3-tetra-fluoropropene and 1,1-difluoroethylene |
WO2015125877A1 (en) * | 2014-02-20 | 2015-08-27 | 旭硝子株式会社 | Method for purifying fluid that includes trifluoroethylene, and method for producing trifluoroethylene |
WO2015125874A1 (en) * | 2014-02-20 | 2015-08-27 | 旭硝子株式会社 | Working medium for thermal cycle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5201284B1 (en) | Method for producing 2,3,3,3-tetrafluoropropene | |
JP5149456B1 (en) | Process for producing 2,3,3,3-tetrafluoropropene and 1,1-difluoroethylene | |
JP5975096B2 (en) | Process for producing 2,3,3,3-tetrafluoropropene and 1,1-difluoroethylene | |
WO2014080916A1 (en) | Method for producing 2,3,3,3-tetrafluoropropene | |
WO2024176771A1 (en) | Vinylidene fluoride production method and vinylidene fluoride production device | |
JP2013227244A (en) | Method for producing 2,3,3,3-tetrafluoropropene | |
JP2014101326A (en) | Method for producing 2,3,3,3-tetrafluoro-propene | |
JP2013227245A (en) | Method for producing 2,3,3,3-tetrafluoropropene and 1,1- difluoroethylene | |
JP2014129260A (en) | Method for producing 2,3,3,3-tetrafluoropropene | |
WO2014080779A1 (en) | Method for producing 2,3,3,3-tetrafluoropropene and 1,1-difluoroethylene | |
JP2015110533A (en) | Method of producing 2,3,3,3-tetrafluoropropene and 1,1-difluoroethylene | |
WO2024195348A1 (en) | Method for producing 1,1,2,2-tetrafluorocyclobutane and method for producing vinylidene fluoride | |
WO2024195350A1 (en) | Method for producing 1,1,2,2-tetrafluorocyclobutane, and method for producing vinylidene fluoride | |
JP2014129273A (en) | Method for producing 2,3,3,3-tetrafluoropropene | |
JP2014129259A (en) | Method for producing 2,3,3,3-tetrafluoropropene | |
EP3218336B1 (en) | Process for the production of ethylene, hydrogen chloride, and vinyl chloride from ethane | |
EP3218335B1 (en) | Process for the production of hydrogen chloride, ethylene and vinyl chloride from ethane | |
JP2015117188A (en) | Method for producing trifluoroethylene | |
WO2014208452A1 (en) | Method for producing trifluoroethylene | |
JP2015117184A (en) | Method for producing trifluoroethylene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24760078 Country of ref document: EP Kind code of ref document: A1 |