WO2024176758A1 - Water-absorbing resin composition - Google Patents
Water-absorbing resin composition Download PDFInfo
- Publication number
- WO2024176758A1 WO2024176758A1 PCT/JP2024/003048 JP2024003048W WO2024176758A1 WO 2024176758 A1 WO2024176758 A1 WO 2024176758A1 JP 2024003048 W JP2024003048 W JP 2024003048W WO 2024176758 A1 WO2024176758 A1 WO 2024176758A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- water
- deodorant
- resin composition
- antibacterial metal
- Prior art date
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 100
- 239000002781 deodorant agent Substances 0.000 claims abstract description 185
- 239000002245 particle Substances 0.000 claims abstract description 126
- 230000000844 anti-bacterial effect Effects 0.000 claims abstract description 108
- 229910052751 metal Inorganic materials 0.000 claims abstract description 108
- 239000002184 metal Substances 0.000 claims abstract description 108
- 229920000642 polymer Polymers 0.000 claims abstract description 92
- 239000002250 absorbent Substances 0.000 claims description 181
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 86
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 60
- 230000002745 absorbent Effects 0.000 claims description 59
- -1 silver ions Chemical class 0.000 claims description 58
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 15
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 14
- 229910052709 silver Inorganic materials 0.000 claims description 14
- 239000004332 silver Substances 0.000 claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 11
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 claims description 10
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 235000012239 silicon dioxide Nutrition 0.000 claims description 8
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 7
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 239000011701 zinc Substances 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 150000004760 silicates Chemical class 0.000 claims description 6
- 229910021607 Silver chloride Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052797 bismuth Inorganic materials 0.000 claims description 5
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 5
- 229910001923 silver oxide Inorganic materials 0.000 claims description 5
- 230000001877 deodorizing effect Effects 0.000 abstract description 18
- 239000000178 monomer Substances 0.000 description 54
- 238000006116 polymerization reaction Methods 0.000 description 33
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 27
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 25
- 239000003431 cross linking reagent Substances 0.000 description 22
- 229930195733 hydrocarbon Natural products 0.000 description 22
- 238000010557 suspension polymerization reaction Methods 0.000 description 22
- 239000004215 Carbon black (E152) Substances 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 21
- 239000002612 dispersion medium Substances 0.000 description 21
- 150000002430 hydrocarbons Chemical class 0.000 description 21
- 239000012071 phase Substances 0.000 description 21
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 20
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 20
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 20
- 229910021536 Zeolite Inorganic materials 0.000 description 19
- 238000000034 method Methods 0.000 description 19
- 239000010457 zeolite Substances 0.000 description 19
- 210000002700 urine Anatomy 0.000 description 18
- 238000010521 absorption reaction Methods 0.000 description 17
- 238000001035 drying Methods 0.000 description 17
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 16
- 239000004158 L-cystine Substances 0.000 description 16
- 235000019393 L-cystine Nutrition 0.000 description 16
- 108010046334 Urease Proteins 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 16
- 229960003067 cystine Drugs 0.000 description 16
- BSWGGJHLVUUXTL-UHFFFAOYSA-N silver zinc Chemical compound [Zn].[Ag] BSWGGJHLVUUXTL-UHFFFAOYSA-N 0.000 description 16
- 229910021529 ammonia Inorganic materials 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 238000005259 measurement Methods 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 13
- 238000004132 cross linking Methods 0.000 description 13
- 239000000428 dust Substances 0.000 description 13
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 12
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 12
- 235000014113 dietary fatty acids Nutrition 0.000 description 12
- 239000000194 fatty acid Substances 0.000 description 12
- 229930195729 fatty acid Natural products 0.000 description 12
- 239000004094 surface-active agent Substances 0.000 description 12
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical class OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 11
- 239000011780 sodium chloride Substances 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 10
- 239000002270 dispersing agent Substances 0.000 description 10
- 239000000835 fiber Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 235000011187 glycerol Nutrition 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000002504 physiological saline solution Substances 0.000 description 9
- 239000007870 radical polymerization initiator Substances 0.000 description 9
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 239000004952 Polyamide Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 229920002647 polyamide Polymers 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 6
- 229920000742 Cotton Polymers 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 6
- 229910021645 metal ion Inorganic materials 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 6
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 5
- 230000003472 neutralizing effect Effects 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 239000002562 thickening agent Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000017 hydrogel Substances 0.000 description 4
- 230000002779 inactivation Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 4
- 239000011164 primary particle Substances 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 230000002195 synergetic effect Effects 0.000 description 4
- XAZKFISIRYLAEE-UHFFFAOYSA-N (+-)-trans-1,3-Dimethyl-cyclopentan Natural products CC1CCC(C)C1 XAZKFISIRYLAEE-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 3
- 206010021639 Incontinence Diseases 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229920001131 Pulp (paper) Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000005215 alkyl ethers Chemical class 0.000 description 3
- 238000010533 azeotropic distillation Methods 0.000 description 3
- 229920006037 cross link polymer Polymers 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 3
- 230000000415 inactivating effect Effects 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 3
- NLQMSBJFLQPLIJ-UHFFFAOYSA-N (3-methyloxetan-3-yl)methanol Chemical compound OCC1(C)COC1 NLQMSBJFLQPLIJ-UHFFFAOYSA-N 0.000 description 2
- WGECXQBGLLYSFP-UHFFFAOYSA-N 2,3-dimethylpentane Chemical compound CCC(C)C(C)C WGECXQBGLLYSFP-UHFFFAOYSA-N 0.000 description 2
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 2
- NQIGSEBFOJIXSE-UHFFFAOYSA-N 2-(3-ethyloxetan-3-yl)ethanol Chemical compound OCCC1(CC)COC1 NQIGSEBFOJIXSE-UHFFFAOYSA-N 0.000 description 2
- SYEWHONLFGZGLK-UHFFFAOYSA-N 2-[1,3-bis(oxiran-2-ylmethoxy)propan-2-yloxymethyl]oxirane Chemical compound C1OC1COCC(OCC1OC1)COCC1CO1 SYEWHONLFGZGLK-UHFFFAOYSA-N 0.000 description 2
- HDPLHDGYGLENEI-UHFFFAOYSA-N 2-[1-(oxiran-2-ylmethoxy)propan-2-yloxymethyl]oxirane Chemical compound C1OC1COC(C)COCC1CO1 HDPLHDGYGLENEI-UHFFFAOYSA-N 0.000 description 2
- GXDHCNNESPLIKD-UHFFFAOYSA-N 2-methylhexane Chemical compound CCCCC(C)C GXDHCNNESPLIKD-UHFFFAOYSA-N 0.000 description 2
- AORMDLNPRGXHHL-UHFFFAOYSA-N 3-ethylpentane Chemical compound CCC(CC)CC AORMDLNPRGXHHL-UHFFFAOYSA-N 0.000 description 2
- VLJXXKKOSFGPHI-UHFFFAOYSA-N 3-methylhexane Chemical compound CCCC(C)CC VLJXXKKOSFGPHI-UHFFFAOYSA-N 0.000 description 2
- MECNWXGGNCJFQJ-UHFFFAOYSA-N 3-piperidin-1-ylpropane-1,2-diol Chemical compound OCC(O)CN1CCCCC1 MECNWXGGNCJFQJ-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- 206010011778 Cystinuria Diseases 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- AZUZXOSWBOBCJY-UHFFFAOYSA-N Polyethylene, oxidized Polymers OC(=O)CCC(=O)C(C)C(O)CCCCC=O AZUZXOSWBOBCJY-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 2
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000004332 deodorization Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- GKIPXFAANLTWBM-UHFFFAOYSA-N epibromohydrin Chemical compound BrCC1CO1 GKIPXFAANLTWBM-UHFFFAOYSA-N 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- YYXLGGIKSIZHSF-UHFFFAOYSA-N ethene;furan-2,5-dione Chemical group C=C.O=C1OC(=O)C=C1 YYXLGGIKSIZHSF-UHFFFAOYSA-N 0.000 description 2
- 229920001038 ethylene copolymer Polymers 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 125000005395 methacrylic acid group Chemical group 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methylcyclopentane Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 2
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- RIRARCHMRDHZAR-UHFFFAOYSA-N (+-)-trans-1,2-Dimethyl-cyclopentan Natural products CC1CCCC1C RIRARCHMRDHZAR-UHFFFAOYSA-N 0.000 description 1
- RIRARCHMRDHZAR-RNFRBKRXSA-N (1r,2r)-1,2-dimethylcyclopentane Chemical compound C[C@@H]1CCC[C@H]1C RIRARCHMRDHZAR-RNFRBKRXSA-N 0.000 description 1
- XAZKFISIRYLAEE-RNFRBKRXSA-N (1r,3r)-1,3-dimethylcyclopentane Chemical compound C[C@@H]1CC[C@@H](C)C1 XAZKFISIRYLAEE-RNFRBKRXSA-N 0.000 description 1
- XAZKFISIRYLAEE-KNVOCYPGSA-N (1r,3s)-1,3-dimethylcyclopentane Chemical compound C[C@H]1CC[C@@H](C)C1 XAZKFISIRYLAEE-KNVOCYPGSA-N 0.000 description 1
- BJYGGFGTOTUNJA-UHFFFAOYSA-N (3-butyloxetan-3-yl)methanol Chemical compound CCCCC1(CO)COC1 BJYGGFGTOTUNJA-UHFFFAOYSA-N 0.000 description 1
- UNMJLQGKEDTEKJ-UHFFFAOYSA-N (3-ethyloxetan-3-yl)methanol Chemical compound CCC1(CO)COC1 UNMJLQGKEDTEKJ-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- AYMDJPGTQFHDSA-UHFFFAOYSA-N 1-(2-ethenoxyethoxy)-2-ethoxyethane Chemical compound CCOCCOCCOC=C AYMDJPGTQFHDSA-UHFFFAOYSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- BZHMBWZPUJHVEE-UHFFFAOYSA-N 2,3-dimethylpentane Natural products CC(C)CC(C)C BZHMBWZPUJHVEE-UHFFFAOYSA-N 0.000 description 1
- KHEWHSKCDPEONS-UHFFFAOYSA-N 2-(3-butyloxetan-3-yl)ethanol Chemical compound CCCCC1(CCO)COC1 KHEWHSKCDPEONS-UHFFFAOYSA-N 0.000 description 1
- NFMOAAFJCIYUQR-UHFFFAOYSA-N 2-(3-methyloxetan-3-yl)ethanol Chemical compound OCCC1(C)COC1 NFMOAAFJCIYUQR-UHFFFAOYSA-N 0.000 description 1
- KFNAHVKJFHDCSK-UHFFFAOYSA-N 2-[2-(4,5-dihydro-1,3-oxazol-2-yl)ethyl]-4,5-dihydro-1,3-oxazole Chemical compound N=1CCOC=1CCC1=NCCO1 KFNAHVKJFHDCSK-UHFFFAOYSA-N 0.000 description 1
- FLKBKUFGKQPPRY-UHFFFAOYSA-N 2-[2-[2-[2-[1-(2-hydroxyethyl)-4,5-dihydroimidazol-2-yl]propan-2-yldiazenyl]propan-2-yl]-4,5-dihydroimidazol-1-yl]ethanol;dihydrochloride Chemical compound Cl.Cl.N=1CCN(CCO)C=1C(C)(C)N=NC(C)(C)C1=NCCN1CCO FLKBKUFGKQPPRY-UHFFFAOYSA-N 0.000 description 1
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- QENRKQYUEGJNNZ-UHFFFAOYSA-N 2-methyl-1-(prop-2-enoylamino)propane-1-sulfonic acid Chemical compound CC(C)C(S(O)(=O)=O)NC(=O)C=C QENRKQYUEGJNNZ-UHFFFAOYSA-N 0.000 description 1
- AUZRCMMVHXRSGT-UHFFFAOYSA-N 2-methylpropane-1-sulfonic acid;prop-2-enamide Chemical compound NC(=O)C=C.CC(C)CS(O)(=O)=O AUZRCMMVHXRSGT-UHFFFAOYSA-N 0.000 description 1
- BIISIZOQPWZPPS-UHFFFAOYSA-N 2-tert-butylperoxypropan-2-ylbenzene Chemical compound CC(C)(C)OOC(C)(C)C1=CC=CC=C1 BIISIZOQPWZPPS-UHFFFAOYSA-N 0.000 description 1
- VFXXTYGQYWRHJP-UHFFFAOYSA-N 4,4'-azobis(4-cyanopentanoic acid) Chemical compound OC(=O)CCC(C)(C#N)N=NC(C)(CCC(O)=O)C#N VFXXTYGQYWRHJP-UHFFFAOYSA-N 0.000 description 1
- PUEFXLJYTSRTGI-UHFFFAOYSA-N 4,4-dimethyl-1,3-dioxolan-2-one Chemical compound CC1(C)COC(=O)O1 PUEFXLJYTSRTGI-UHFFFAOYSA-N 0.000 description 1
- LWLOKSXSAUHTJO-UHFFFAOYSA-N 4,5-dimethyl-1,3-dioxolan-2-one Chemical compound CC1OC(=O)OC1C LWLOKSXSAUHTJO-UHFFFAOYSA-N 0.000 description 1
- UHIIHYFGCONAHB-UHFFFAOYSA-N 4,6-dimethyl-1,3-dioxan-2-one Chemical compound CC1CC(C)OC(=O)O1 UHIIHYFGCONAHB-UHFFFAOYSA-N 0.000 description 1
- JFMGYULNQJPJCY-UHFFFAOYSA-N 4-(hydroxymethyl)-1,3-dioxolan-2-one Chemical compound OCC1COC(=O)O1 JFMGYULNQJPJCY-UHFFFAOYSA-N 0.000 description 1
- OVDQEUFSGODEBT-UHFFFAOYSA-N 4-methyl-1,3-dioxan-2-one Chemical compound CC1CCOC(=O)O1 OVDQEUFSGODEBT-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- GVNWZKBFMFUVNX-UHFFFAOYSA-N Adipamide Chemical compound NC(=O)CCCCC(N)=O GVNWZKBFMFUVNX-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- 244000045232 Canavalia ensiformis Species 0.000 description 1
- 235000010520 Canavalia ensiformis Nutrition 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- SJIXRGNQPBQWMK-UHFFFAOYSA-N DEAEMA Natural products CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- 229920000896 Ethulose Polymers 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000011837 N,N-methylenebisacrylamide Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- SZYSLWCAWVWFLT-UTGHZIEOSA-N [(2s,3s,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)-2-[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxolan-2-yl]methyl octadecanoate Chemical compound O([C@@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@]1(COC(=O)CCCCCCCCCCCCCCCCC)O[C@H](CO)[C@@H](O)[C@@H]1O SZYSLWCAWVWFLT-UTGHZIEOSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 description 1
- 239000001527 calcium lactate Substances 0.000 description 1
- 235000011086 calcium lactate Nutrition 0.000 description 1
- 229960002401 calcium lactate Drugs 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229960001781 ferrous sulfate Drugs 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229930182478 glucoside Natural products 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 1
- 229940061634 magnesium sulfate heptahydrate Drugs 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000002175 menstrual effect Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- WVFLGSMUPMVNTQ-UHFFFAOYSA-N n-(2-hydroxyethyl)-2-[[1-(2-hydroxyethylamino)-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCO WVFLGSMUPMVNTQ-UHFFFAOYSA-N 0.000 description 1
- BUGISVZCMXHOHO-UHFFFAOYSA-N n-[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]-2-[[1-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCC(CO)(CO)NC(=O)C(C)(C)N=NC(C)(C)C(=O)NC(CO)(CO)CO BUGISVZCMXHOHO-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002918 oxazolines Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000012985 polymerization agent Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000056 polyoxyethylene ether Polymers 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 150000003254 radicals Chemical group 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000007717 redox polymerization reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 229940001482 sodium sulfite Drugs 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- OPQYOFWUFGEMRZ-UHFFFAOYSA-N tert-butyl 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOC(=O)C(C)(C)C OPQYOFWUFGEMRZ-UHFFFAOYSA-N 0.000 description 1
- SWAXTRYEYUTSAP-UHFFFAOYSA-N tert-butyl ethaneperoxoate Chemical compound CC(=O)OOC(C)(C)C SWAXTRYEYUTSAP-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- YFHICDDUDORKJB-UHFFFAOYSA-N trimethylene carbonate Chemical compound O=C1OCCCO1 YFHICDDUDORKJB-UHFFFAOYSA-N 0.000 description 1
- 150000004072 triols Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/01—Deodorant compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/01—Deodorant compositions
- A61L9/014—Deodorant compositions containing sorbent material, e.g. activated carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/015—Biocides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/12—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
- C08L101/14—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
Definitions
- the present invention relates to a water-absorbent resin composition, and more specifically to a water-absorbent resin composition that constitutes an absorbent material suitable for use in sanitary materials such as disposable diapers, sanitary napkins, and incontinence pads.
- water-absorbent resins have been widely used in the field of sanitary materials such as disposable diapers, sanitary napkins, and incontinence pads.
- cross-linked polymers of partially neutralized acrylic acid salts have excellent water-absorbing properties, and because the raw material, acrylic acid, is easily available industrially, they can be produced at low cost with consistent quality, and are less susceptible to spoilage or deterioration, making them a preferred water-absorbent resin.
- Absorbent articles such as disposable diapers, sanitary napkins, and incontinence pads are mainly composed of an absorbent body located in the center that absorbs and retains bodily fluids such as urine and menstrual blood excreted from the body, a liquid-permeable surface sheet (top sheet) located on the side that comes into contact with the body, and a liquid-impermeable back sheet (back sheet) located on the opposite side that comes into contact with the body.
- the absorbent body is usually composed of hydrophilic fibers such as pulp and water-absorbent resin.
- absorbents When such absorbents are used, for example, as sanitary materials, they may emit unpleasant odors such as ammonia after absorbing bodily fluids, particularly urine, blood, sweat, etc.
- the inventor attempted to inhibit the decomposition reaction of urea by urease and suppress the generation of ammonia by inactivating urease using a deodorant containing an antibacterial metal such as silver.
- a deodorant containing an antibacterial metal such as silver.
- the inventor discovered a problem in that when a large amount of L-cystine (a sulfur-containing amino acid) is present in urine, such as in the urine of a patient with cystinuria, the antibacterial metal binds to L-cystine, weakening the antibacterial metal's ability to inactivate urease, and the deodorant effect is not fully exerted.
- L-cystine a sulfur-containing amino acid
- the main objective of the present invention is to provide a water-absorbent resin composition that has an excellent deodorizing effect on urine that contains a large amount of L-cystine.
- the present inventors have conducted extensive research to solve the above problems. As a result, they have found that, in a water-absorbent resin composition containing water-absorbent polymer particles, by combining an antibacterial metal-containing deodorant and a porous deodorant, and further setting the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant to a predetermined ratio or more, and further setting the sum (x+y) of the content x (% by mass) of the porous deodorant and the content y (% by mass) of the antibacterial metal-containing deodorant in the entire water-absorbent resin composition to a predetermined ratio or more, the water-absorbent resin composition exhibits a high deodorizing function against ammonia and the like even when urine containing a large amount of L-cystine is absorbed.
- a water-absorbing resin composition comprising an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbing polymer particles, the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more;
- a water absorbent resin composition wherein the sum (x+y) of a content rate x (mass%) of the porous deodorant and a content rate y (mass%) of the antibacterial metal-containing deodorant in the entire water absorbent resin composition is 0.10 mass% or more.
- the water-absorbing resin composition according to Item 1 wherein the sum (x+y) of the content x (% by mass) and the content y (% by mass) is 0.50% by mass or less.
- Item 3 The water absorbent resin composition according to Item 1 or 2, wherein the antibacterial metal contained in the antibacterial metal-containing deodorant contains at least one selected from the group consisting of silver, copper, zinc, bismuth, cobalt, aluminum, and nickel.
- the antibacterial metal-containing deodorant comprises at least one selected from the group consisting of silver powder, silver chloride (I), silver oxide (I), and a substance carrying at least one metal ion selected from the group consisting of silver ions and zinc ions.
- the porous deodorant comprises at least one selected from the group consisting of activated carbon, silicon dioxide, and silicates.
- the water absorbent resin composition according to any one of Items 1 to 5, wherein the antibacterial metal-containing deodorant has a median particle diameter of 0.1 ⁇ m to 100 ⁇ m, and the porous deodorant has a median particle diameter of 1 ⁇ m to 100 ⁇ m.
- An absorbent article comprising an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbing polymer particles, the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more;
- the sum (x+y) of the content x (mass%) of the porous deodorant and the content y (mass%) of the antibacterial metal-containing deodorant based on the total amount of the antibacterial metal-containing deodorant, the porous deodorant, and the water-absorbent polymer particles is 0.10 mass% or more.
- the present invention provides a water-absorbent resin composition that has an excellent deodorizing effect on urine that contains a large amount of L-cystine.
- FIG. 4 is a schematic diagram of a device for measuring the amount of physiological saline solution absorbed under a load of 4.14 kPa.
- water-soluble refers to a solubility of 5% by mass or more in water at 25°C.
- a numerical value connected with “ ⁇ ” means a numerical range that includes the numerical values before and after " ⁇ " as the lower and upper limits.
- the water-absorbent resin composition of the present invention is a water-absorbent resin composition containing an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbent polymer particles, characterized in that the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more, and the sum (x+y) of the content x (% by mass) of the porous deodorant and the content y (% by mass) of the antibacterial metal-containing deodorant in the entire water-absorbent resin composition is 0.10% by mass or more.
- the water-absorbent resin composition of the present invention having such characteristics exerts an excellent deodorizing effect on urine containing a large amount of L-cystine.
- the water-absorbent resin composition of the present invention will be described in detail below.
- the inventor attempted to inhibit the decomposition reaction of urea by urease and suppress the generation of ammonia by inactivating urease using a deodorant containing an antibacterial metal such as silver.
- a deodorant containing an antibacterial metal such as silver.
- the inventor's investigation revealed the problem that when a large amount of L-cystine (a sulfur-containing amino acid) is present in urine, such as in the urine of patients with cystinuria, the antibacterial metal tends to bind to L-cystine, weakening the urease inactivation effect of the antibacterial metal and preventing the deodorant effect from being fully exerted.
- L-cystine a sulfur-containing amino acid
- the present inventors have found that, in a water absorbent resin composition containing water absorbent polymer particles, an antibacterial metal-containing deodorant and a porous deodorant are used in combination, the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is set to 0.8 or more, and further, the sum (x+y) of the content x (% by mass) of the porous deodorant and the content y (% by mass) of the antibacterial metal-containing deodorant in the entire water absorbent resin composition is set to 0.10% by mass or more, whereby the antibacterial metal-containing deodorant and the porous deodorant function synergistically, and the water absorbent resin composition exhibits a high deodorizing function against ammonia even when absorbing urine containing a large amount of L-cystine.
- the porous deodorant adsorbs L-cystine in urine, preventing L-cystine from inhibiting the urease inactivation action of the antibacterial metal-containing deodorant, allowing the urease inactivation action of the antibacterial metal-containing deodorant to be optimally exerted, allowing the water absorbent resin composition to exert a high deodorizing function against ammonia, etc.
- At least a portion of the antibacterial metal-containing deodorant e.g., 20% by mass to 100% by mass, 50% by mass to 100% by mass, 80% by mass to 100% by mass, 90% by mass to 100% by mass, 95% by mass to 100% by mass, or 100% by mass
- the antibacterial metal-containing deodorant may be disposed on the surface of the water absorbent polymer particle, and at least a portion of the antibacterial metal-containing deodorant may permeate the inside of the water absorbent polymer particle.
- the porous deodorant e.g., 20% by mass to 100% by mass, 50% by mass to 100% by mass, 80% by mass to 100% by mass, 90% by mass to 100% by mass, 95% by mass to 100% by mass, or 100% by mass
- the entire antibacterial metal-containing deodorant may be disposed on the surface of the water absorbent polymer particle.
- at least a portion of the antibacterial metal-containing deodorant and at least a portion of the porous deodorant may be disposed on the surface of the water-absorbent polymer particles.
- the antibacterial metal-containing deodorant is a deodorant containing an antibacterial metal.
- the antibacterial metal is preferably a metal that exerts an inactivating effect on urease.
- the "antibacterial metal” is at least one selected from the group consisting of gold, silver, copper, platinum, zinc, bismuth, titanium, tungsten, nickel, iron, tin, mercury, lead, palladium, aluminum, cobalt, molybdenum, chromium, vanadium, and zirconium.
- the "antibacterial metal-containing deodorant” is a deodorant containing an antibacterial metal to a degree that exerts a substantial antibacterial effect, for example, a deodorant containing 1 mass % or more of antibacterial metal (when two or more kinds of antibacterial metals are contained, the total amount is used as the basis).
- the antibacterial metal-containing deodorant is, for example, contained in the water absorbent resin composition in the form of particles.
- the antibacterial metal may include at least one selected from the group consisting of silver, copper, zinc, bismuth, cobalt, aluminum, and nickel, may include at least one selected from the group consisting of silver, copper, and zinc, or may include at least one of silver and zinc.
- Antibacterial metal-containing deodorants include, for example, at least one selected from the group consisting of silver powder, silver chloride (I), silver oxide (I), and materials carrying at least one of the metal ions silver ions and zinc ions.
- the material on which the metal ions are carried may be, for example, a porous material.
- the porous material may include, for example, at least one selected from the group consisting of zeolite, activated carbon, silicon dioxide, silicate, titania, alumina, aluminum hydroxide, and magnesium hydroxide, may include at least one selected from the group consisting of zeolite, activated carbon, and silicon dioxide, or may include zeolite.
- silver zinc zeolite is suitable as a porous material carrying silver ions and zinc ions.
- the porous substance when the substance that carries the metal ions is a porous substance, the porous substance may be a substance that can function as a deodorant by itself.
- the porous substance and the porous deodorant described below may be substances with the same chemical composition or different substances.
- the median particle diameter (D50 (median diameter), volume basis) of the antibacterial metal-containing deodorant is 0.1 ⁇ m to 100 ⁇ m, 0.1 ⁇ m to 50 ⁇ m, 0.1 ⁇ m to 10 ⁇ m, 0.1 ⁇ m to 5 ⁇ m, 0.1 ⁇ m to 3 ⁇ m, 0.5 ⁇ m to 1 00 ⁇ m, 0.5 ⁇ m to 50 ⁇ m, 0.5 ⁇ m to 10 ⁇ m, 0.5 ⁇ m to 5 ⁇ m, 0.5 ⁇ m to 3 ⁇ m, 0.8 ⁇ m to 100 ⁇ m, 0.8 ⁇ m to 50 ⁇ m, 0.8 ⁇ m to 10 ⁇ m, 0.8 ⁇ m to 5 ⁇ m, 0.8 ⁇ m to 3 ⁇ m, 1 ⁇ m to 100 ⁇ m, 1 ⁇ m to 50 ⁇ m,
- the BET specific surface area of the antibacterial metal-containing deodorant is large, the frequency of contact between the antibacterial metal and urease increases, while the frequency of contact between the antibacterial metal and L-cystine also increases. Also, if the BET specific surface area of the antibacterial metal-containing deodorant is too large, there is a possibility that the degree of dust generation increases.
- the BET specific surface area of the porous deodorant is preferably 100 m 2 /g to 2000 m 2 /g, 100 m 2 /g to 1500 m 2 /g, 100 m 2 /g to 1000 m 2 /g, 100 m 2 /g to 800 m 2 /g, 300 m 2 /g to 2000 m 2 /g, 300 m 2 /g to 1500 m 2 /g, 300 m 2 /g to 1000 m 2 /g, 300 m 2 /g to 800 m 2 /g, 500 m 2 /g to 2000 m 2 /g, 500 m 2 /g to 1500 m 2 /g, 500 m 2 /g to 1000 m 2 /g or 500 m 2 /g to 800 m 2 /g.
- the BET specific surface area of the antibacterial metal-containing deodorant can be measured using a specific surface area measuring device, and specifically, is a value measured by the method described in the Examples.
- the sum (x+y) of the content x (mass%) of the porous deodorant and the content y (mass%) of the antibacterial metal-containing deodorant is 0.10 mass% or more.
- the sum (x+y) is 0.10 mass% to 0.80 mass%, 0.10 mass% to 0.60 mass%, 0.10 mass% to 0.50 mass%, 0.10 mass% to 0.40 mass%, 0.10 mass% to 0.35 mass%, 0.10 mass% to 0.30 mass%, 0.13 mass% to 0.80 mass%, 0.13 mass% to 0.60 mass%, 0.
- the dust generation rate increases, which may reduce the handleability of the water absorbent resin composition.
- the sum (x+y) is preferably 0.50% by mass or less.
- the content y (mass%) of the antibacterial metal-containing deodorant in the entire water absorbent resin composition of the present invention is 0.020 mass% to 0.12 mass%, 0.020 mass% to 0.08 mass%, 0.020 mass% to 0.06 mass%, 0.020 mass% to 0.04 mass%, 0.024 mass% to 0.12 mass%, 0.024 mass% to 0.
- the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more.
- the ratio (X/Y) may be 0.8 to 15.0, 0.8 to 12.0, 0.8 to 10.0, 0.8 to 8.0, 0.8 to 5.0, 1.0 to 15.0, 1.0 to 12.0, 1.0 to 10.0, 1.0 to 8.0, 1.0 to 5.0, 2.0 to 15.0, 2.0 to 12.0, 2.0 to 10.0, 2.0 to 8.0, 2.0 to 5.0, 3.0 to 15.0, 3.0 to 12.0, 3.0 to 10.0, 3.0 to 8.0, or 3.0 to 5.0.
- the antibacterial metal-containing deodorant may be disposed on the surface of the water-absorbent polymer particles (i.e., the antibacterial metal-containing deodorant is present on the surface of the water-absorbent polymer particles).
- the antibacterial metal-containing deodorant adheres to the surface of the water-absorbent polymer particles, and the antibacterial metal-containing deodorant can be disposed on the surface of the water-absorbent polymer particles.
- the porous deodorant is a deodorant that is porous and does not substantially contain the above-mentioned antibacterial metal.
- the term "deodorant that does not substantially contain antibacterial metal” includes deodorants that contain antibacterial metal to an extent that they do not exhibit substantial antibacterial properties and deodorants that do not contain antibacterial metal at all, for example, a deodorant that contains less than 1 mass % of antibacterial metal.
- the porous deodorant may contain at least one selected from the group consisting of activated carbon, silicon dioxide, and silicates, or may contain at least one of activated carbon and silicon dioxide.
- the porous deodorant contains at least activated carbon, and the proportion (mass %) is, for example, 80% to 100% by mass, 90% to 100% by mass, or 95% to 100% by mass.
- the median particle size of the porous deodorant may be 1 ⁇ m to 100 ⁇ m, 1 ⁇ m to 80 ⁇ m, 1 ⁇ m to 60 ⁇ m, 10 ⁇ m to 100 ⁇ m, 10 ⁇ m to 80 ⁇ m, 10 ⁇ m to 60 ⁇ m, 15 ⁇ m to 100 ⁇ m, 15 ⁇ m to 80 ⁇ m, 15 ⁇ m to 60 ⁇ m, 20 ⁇ m to 100 ⁇ m, 20 ⁇ m to 80 ⁇ m, or 20 ⁇ m to 60 ⁇ m.
- the median particle size (D50 (median size), volume basis) of the porous deodorant can be measured using a laser diffraction particle size distribution measuring device, and specifically, is a value measured by the method described in the Examples.
- the shape of the porous deodorant is preferably crushed or cylindrical, and more preferably crushed.
- the BET specific surface area of the porous deodorant is preferably 100 m 2 /g to 3000 m 2 /g, 100 m 2 /g to 2500 m 2 /g, 100 m 2 /g to 2000 m 2 /g, 100 m 2 /g to 1500 m 2 /g, 500 m 2 /g to 3000 m 2 /g, 500 m 2 /g to 2500 m 2 /g, 500 m 2 /g to 2000 m 2 /g, 500 m 2 /g to 1500 m 2 /g, 1000 m 2 /g to 3000 m 2 /g, 1000 m 2 / g to 2500 m 2 /g, 1000 m 2
- the BET specific surface area may be from 1000 m 2 /g to 2000 m 2 /g or from 1000 m 2 /g to 1500 m 2 /g.
- the BET specific surface area of the porous deodorant is large, it can efficiently adsorb L-cystine contained in urine.
- the BET specific surface area of the porous deodorant is too large, the strength of the porous deodorant decreases due to the individual pores becoming finer, and there is a possibility that the above-mentioned dust generation rate increases, so that the upper limit of the BET specific surface area is preferably 2000 m 2 /g.
- the BET specific surface area of the porous deodorant can be measured using a specific surface area measuring device, and specifically, is a value measured by the method described in the Examples.
- the activated carbon used as the porous deodorant is activated carbon having a polar functional group (hydrophilic functional group) on the surface (i.e., hydrophilic activated carbon).
- polar functional groups include hydroxyl groups, carboxyl groups, and phenol groups.
- Activated carbon having polar functional groups on the surface is commercially available, for example, as activated carbon for liquid phase and activated carbon for water treatment.
- Sources of activated carbon include, for example, coconut shells, infusible or carbonized organic materials, and infusible resins such as phenolic resins.
- organic materials include polyacrylonitrile, pitch, polyvinyl alcohol, and cellulose. Of these, it is preferable that activated carbon is derived from wood (sawdust), coconut shells, and pitch (for example, coal pitch).
- the content x (mass%) of the porous deodorant in the water absorbent resin composition of the present invention is, for example, 0.05 mass% to 0.40 mass%, 0.05 mass% to 0.35 mass%, 0.05 mass% to 0.30 mass%, 0.08 mass% to 0.40 mass%, 0.08 mass% to 0.35 mass%, 0.08 mass% to 0.30 mass%, 0.10 mass% to 0.4 ...
- % to 0.35 mass% 0.10 mass% to 0.30 mass%, 0.15 mass% to 0.40 mass%, 0.15 mass% to 0.35 mass%, 0.15 mass% to 0.30 mass%, 0.20 mass% to 0.40 mass%, 0.20 mass% to 0.35 mass%, 0.20 mass% to 0.30 mass%, 0.25 mass% to 0.40 mass% , 0.25% to 0.35% by weight, or 0.25% to 0.30% by weight.
- the iodine adsorption amount of the porous deodorant may be, for example, 100 mg/g to 3000 mg/g, 100 mg/g to 2000 mg/g, 500 mg/g to 3000 mg/g, or 500 mg/g to 2000 mg/g.
- the iodine adsorption capacity of activated carbon here is a value measured in accordance with JIS K1474:2014.
- the drying loss of a porous deodorant When the drying loss of a porous deodorant is low (in other words, the purity of the porous deodorant is high), it is easier to exert a deodorizing effect, but it also tends to generate dust. Taking this into consideration, the drying loss of the porous deodorant may be, for example, 0.1% to 15.0%, 0.1% to 10.0%, 0.1% to 5.0%, 0.5% to 15.0%, 0.5% to 10.0%, 0.5% to 5.0%, 1.0% to 15.0%, 1.0% to 10.0%, or 1.0% to 5.0%.
- the loss on drying of the porous deodorant here is the value measured in accordance with JIS K1474:2014.
- the pH of the porous deodorant may be, for example, 3.0 to 12.0, 3.0 to 11.0, 3.0 to 8.0, 3.0 to 5.0, 4.0 to 12.0, 4.0 to 11.0, 4.0 to 8.0, or 4.0 to 5.0.
- the pH of the porous deodorant here is the value measured in accordance with JIS K1474:2014.
- the porous deodorant may be disposed on the surface of the water-absorbent polymer particles (i.e., the porous deodorant may be present on the surface of the water-absorbent polymer particles).
- the porous deodorant may be attached to the surface of the water-absorbent polymer particles, and the porous deodorant can be disposed on the surface of the water-absorbent polymer particles.
- water-absorbent polymer particles contained in the water-absorbent resin composition of the present invention will be described in detail.
- the water-absorbent polymer particles contained in the water-absorbent resin composition of the present invention are crosslinked polymers of water-soluble ethylenically unsaturated monomers, i.e., structural units derived from water-soluble ethylenically unsaturated monomers.
- the polymer is composed of a crosslinked polymer having the following structure:
- the water-absorbent polymer particles' water-absorption speed by the Vortex method may be, for example, 10 to 80 seconds, 10 to 60 seconds, 10 to 40 seconds, 20 to 80 seconds, 20 to 60 seconds, 20 to 40 seconds, 30 to 80 seconds, 30 to 60 seconds, or 30 to 40 seconds.
- the water absorption rate of water-absorbent polymer particles using the Vortex method is a value measured using the method described in the Examples.
- the saline water retention capacity of the water-absorbent polymer particles may be, for example, 20 g/g to 60 g/g, 20 g/g to 55 g/g, 20 g/g to 50 g/g, 25 g/g to 60 g/g, 25 g/g to 55 g/g, 25 g/g to 50 g/g, 30 g/g to 60 g/g, 30 g/g to 55 g/g, or 30 g/g to 50 g/g.
- the physiological saline water absorption capacity of the water-absorbent polymer particles under a load of 4.14 kPa may be, for example, 10 mL/g to 40 mL/g, 10 mL/g to 35 mL/g, 10 mL/g to 30 mL/g, 13 mL/g to 40 mL/g, 13 mL/g to 35 mL/g, 13 mL/g to 30 mL/g, 15 mL/g to 40 mL/g, 15 mL/g to 35 mL/g, or 15 mL/g to 30 mL/g.
- the saline water retention capacity of the water-absorbent polymer particles and the saline water absorption capacity under a load of 4.14 kPa were each measured using the method described in the Examples.
- the median particle size of the water-absorbing polymer particles is, for example, 150 ⁇ m to 850 ⁇ m, 150 ⁇ m to 600 ⁇ m, 150 ⁇ m to 550 ⁇ m, 150 ⁇ m to 500 ⁇ m, 150 ⁇ m to 450 ⁇ m, 150 ⁇ m to 400 ⁇ m, 200 ⁇ m to 850 ⁇ m, 200 ⁇ m to 600 ⁇ m, 200 ⁇ m to 550 ⁇ m, 200 ⁇ m to 500 ⁇ m, 200 ⁇ m to 450 ⁇ m, 200 ⁇ m to 400 ⁇ m, 240 ⁇ m to 850 ⁇ m, 240 ⁇ m to 600 ⁇ m, 240 ⁇ m to 550 ⁇ m, 240 ⁇ m to 500 ⁇ m, 240 ⁇ m to 450 ⁇ m, 240 ⁇ m It may be up to 400 ⁇ m, 260 ⁇ m to 850 ⁇ m, 260 ⁇ m to 600 ⁇ m, 260 ⁇ m to 550 ⁇ m, 260 ⁇ m to 500 ⁇ m, 260 ⁇ m to 450 ⁇ m, 260 ⁇ m to 400 ⁇ m, 280 ⁇
- the water-absorbing polymer particles may be in a form consisting of a single particle, or in a form consisting of an aggregate of fine particles (primary particles) (secondary particles).
- primary particles fine particles
- secondary particles examples of the shape of the primary particles include an approximately spherical shape, an irregularly crushed shape, a plate shape, etc.
- examples of the shape include an approximately spherical single particle shape having a smooth surface shape such as a perfect sphere or an oval sphere.
- the median particle size of the water-absorbent polymer particles can be measured using a JIS standard sieve, and specifically, is the value measured by the method described in the examples.
- the typical polymerization methods used for polymerizing water-soluble ethylenically unsaturated monomers include aqueous solution polymerization, emulsion polymerization, and reversed-phase suspension polymerization.
- aqueous solution polymerization method polymerization is carried out by heating an aqueous solution of the water-soluble ethylenically unsaturated monomer, with stirring as necessary.
- reversed-phase suspension polymerization method polymerization is carried out by heating the water-soluble ethylenically unsaturated monomer in a hydrocarbon dispersion medium, with stirring.
- a specific example of a method for producing water-absorbent polymer particles is a method for producing water-absorbent polymer particles by reverse phase suspension polymerization of a water-soluble ethylenically unsaturated monomer in a hydrocarbon dispersion medium, which includes a step of carrying out polymerization in the presence of a radical polymerization initiator and a step of surface cross-linking the hydrogel-like material obtained by polymerization in the presence of a surface cross-linking agent.
- an internal cross-linking agent may be added to the water-soluble ethylenically unsaturated monomer as necessary to form a hydrogel-like material having an internal cross-linking structure.
- water-soluble ethylenically unsaturated monomers include (meth)acrylic acid (in the present specification, "acrylic” and “methacrylic” are collectively referred to as “(meth)acrylic", the same applies below) and salts thereof; 2-(meth)acrylamido-2-methylpropanesulfonic acid and salts thereof; nonionic monomers such as (meth)acrylamide, N,N-dimethyl(meth)acrylamide, 2-hydroxyethyl(meth)acrylate, N-methylol(meth)acrylamide, and polyethylene glycol mono(meth)acrylate; and amino group-containing unsaturated monomers and quaternized products thereof such as N,N-diethylaminoethyl(meth)acrylate, N,N-diethylaminopropyl(meth)acrylate, and diethylaminopropyl(meth)
- water-soluble ethylenically unsaturated monomers from the viewpoint of industrial ease of availability, etc., (meth)acrylic acid or a salt thereof, (meth)acrylamide, and N,N-dimethylacrylamide are preferred, and (meth)acrylic acid and a salt thereof are more preferred.
- These water-soluble ethylenically unsaturated monomers may be used alone or in combination of two or more kinds.
- acrylic acid and its salts are widely used as raw materials for water-absorbent polymer particles, and these acrylic acid and/or its salts may be copolymerized with the other water-soluble ethylenically unsaturated monomers mentioned above.
- acrylic acid and/or its salts are used as the main water-soluble ethylenically unsaturated monomer in an amount of 70 to 100 mol % based on the total water-soluble ethylenically unsaturated monomers.
- the water-soluble ethylenically unsaturated monomer may be dispersed in a hydrocarbon dispersion medium in the form of an aqueous solution and subjected to reversed-phase suspension polymerization.
- a hydrocarbon dispersion medium in the form of an aqueous solution
- the concentration of the water-soluble ethylenically unsaturated monomer in this aqueous solution is preferably in the range of 20% by mass to the saturated concentration or less.
- the concentration of the water-soluble ethylenically unsaturated monomer is more preferably 55% by mass or less, even more preferably 50% by mass or less, and even more preferably 45% by mass or less.
- the concentration of the water-soluble ethylenically unsaturated monomer is more preferably 25% by mass or more, even more preferably 28% by mass or more, and even more preferably 30% by mass or more.
- the acid group may be neutralized in advance with an alkaline neutralizing agent, if necessary.
- alkaline neutralizing agents include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium hydroxide, potassium carbonate, etc.; ammonia, etc.
- alkaline neutralizing agents may be used in the form of an aqueous solution to simplify the neutralization operation.
- the alkaline neutralizing agents described above may be used alone or in combination of two or more types.
- the degree of neutralization of the water-soluble ethylenically unsaturated monomer by the alkaline neutralizing agent is preferably 10 to 100 mol%, more preferably 30 to 90 mol%, even more preferably 40 to 85 mol%, and even more preferably 50 to 80 mol%, in terms of the degree of neutralization of all acid groups possessed by the water-soluble ethylenically unsaturated monomer.
- radical polymerization initiator examples include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate, peroxides such as methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t-butyl peroxyacetate, t-butyl peroxyisobutyrate, t-butyl peroxypivalate, and hydrogen peroxide, as well as 2,2'-azobis(2-amidinopropane) dihydrochloride and 2,2'-azobis[2-(N-phenylenediamine)-2-methylpropane].
- persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate
- peroxides such as methyl ethyl ketone peroxide, methyl isobutyl ketone per
- azo compounds examples include 2,2'-azobis[2-(N-allylamidino)propane] dihydrochloride, 2,2'-azobis ⁇ 2-[1-(2-hydroxyethyl)-2-imidazolin-2-yl]propane ⁇ dihydrochloride, 2,2'-azobis ⁇ 2-methyl-N-[1,1-bis(hydroxymethyl)-2-hydroxyethyl]propionamide ⁇ , 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)-propionamide], and 4,4'-azobis(4-cyanovaleric acid).
- radical polymerization initiators potassium persulfate, ammonium persulfate, sodium persulfate, and 2,2'-azobis(2-amidinopropane) dihydrochloride are preferred from the viewpoint of easy availability and ease of handling.
- These radical polymerization initiators may be used alone or in combination of two or more.
- the radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, or L-ascorbic acid.
- the amount of radical polymerization initiator used is, for example, 0.00005 to 0.01 mole per mole of water-soluble ethylenically unsaturated monomer. By using such an amount, it is possible to avoid a sudden polymerization reaction and to complete the polymerization reaction within an appropriate time.
- the internal crosslinking agent may be one capable of crosslinking the polymer of the water-soluble ethylenically unsaturated monomer used, such as (poly)ethylene glycol (the term “(poly)” refers to the case where the "poly" prefix is used or not).
- unsaturated polyesters obtained by reacting polyols such as diols and triols, such as (poly)propylene glycol, 1,4-butanediol, 1,6-hexanediol, trimethylolpropane, and (poly)glycerin, with unsaturated acids, such as (meth)acrylic acid, maleic acid, and fumaric acid; bisacrylamides such as N,N-methylenebisacrylamide; di(meth)acrylic acid esters or tri(meth)acrylic acid esters obtained by reacting polyepoxides with (meth)acrylic acid; di(meth)acrylic acid carbamyl esters obtained by reacting polyisocyanates, such as tolylene diisocyanate and hexamethylene diisocyanate, with hydroxyethyl (meth)acrylate; allylated starch, allylated cellulose, diallyl phthalate, N,N',N''-
- a polyglycidyl compound more preferably a diglycidyl ether compound, and it is preferable to use (poly)ethylene glycol diglycidyl ether, (poly)propylene glycol diglycidyl ether, or (poly)glycerin diglycidyl ether.
- These internal cross-linking agents may be used alone or in combination of two or more kinds.
- the amount of the internal crosslinking agent used is preferably 0.000001 to 0.02 mol, more preferably 0.00001 to 0.01 mol, even more preferably 0.00001 to 0.005 mol, and even more preferably 0.00005 to 0.002 mol per mol of the water-soluble ethylenically unsaturated monomer.
- hydrocarbon dispersion medium examples include aliphatic hydrocarbons having 6 to 8 carbon atoms, such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, and n-octane; alicyclic hydrocarbons, such as cyclohexane, methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, and trans-1,3-dimethylcyclopentane; and aromatic hydrocarbons, such as benzene, toluene, and xylene.
- aliphatic hydrocarbons having 6 to 8 carbon atoms such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylp
- hydrocarbon dispersion media n-hexane, n-heptane, and cyclohexane are particularly preferred because they are easily available industrially, have stable quality, and are inexpensive.
- These hydrocarbon dispersion media may be used alone or in combination of two or more types.
- a commercially available product such as Exxol Heptane (manufactured by Exxon Mobil Corp.: contains 75 to 85% by mass of heptane and its isomers) can also be used to obtain favorable results.
- the amount of the hydrocarbon dispersion medium used is preferably 100 to 1500 parts by mass, and more preferably 200 to 1400 parts by mass, per 100 parts by mass of the water-soluble ethylenically unsaturated monomer in the first stage, from the viewpoint of uniformly dispersing the water-soluble ethylenically unsaturated monomer and facilitating control of the polymerization temperature.
- reversed-phase suspension polymerization is carried out in one stage (single stage) or in multiple stages of two or more stages, and the above-mentioned first stage polymerization refers to the polymerization reaction in a single stage or in a multiple stage polymerization (the same applies below).
- a dispersion stabilizer In the reversed-phase suspension polymerization, a dispersion stabilizer can be used to improve the dispersion stability of the water-soluble ethylenically unsaturated monomer in the hydrocarbon dispersion medium. As the dispersion stabilizer, a surfactant can be used.
- Surfactants that can be used include, for example, sucrose fatty acid esters, polyglycerin fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene glycerin fatty acid esters, sorbitol fatty acid esters, polyoxyethylene sorbitol fatty acid esters, polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkylarylformaldehyde condensed polyoxyethylene ethers, polyoxyethylene polyoxypropylene block copolymers, polyoxyethylene polyoxypropyl alkyl ethers, polyethylene glycol fatty acid esters, alkyl glucosides, N-alkyl gluconamides, polyoxyethylene fatty acid amides, polyoxyethylene alkylamines, phosphate esters of polyoxyethylene alkyl ethers, and phosphate esters of poly
- surfactants it is particularly preferable to use sorbitan fatty acid esters, polyglycerin fatty acid esters, and sucrose fatty acid esters from the standpoint of dispersion stability of the monomer. These surfactants may be used alone or in combination of two or more.
- the amount of surfactant used is preferably 0.1 to 30 parts by mass, and more preferably 0.3 to 20 parts by mass, per 100 parts by mass of the first stage water-soluble ethylenically unsaturated monomer.
- a polymeric dispersant As the dispersion stabilizer used in the reversed phase suspension polymerization, a polymeric dispersant may be used in combination with the above-mentioned surfactant.
- polymeric dispersants include maleic anhydride modified polyethylene, maleic anhydride modified polypropylene, maleic anhydride modified ethylene-propylene copolymer, maleic anhydride modified EPDM (ethylene-propylene-diene terpolymer), maleic anhydride modified polybutadiene, maleic anhydride-ethylene copolymer, maleic anhydride-propylene copolymer, maleic anhydride-ethylene-propylene copolymer, maleic anhydride-butadiene copolymer, polyethylene, polypropylene, ethylene-propylene copolymer, oxidized polyethylene, oxidized polypropylene, oxidized ethylene-propylene copolymer, ethylene-acrylic acid copolymer, ethyl cellulose, ethylhydroxyethyl cellulose, etc.
- polymeric dispersants it is particularly preferable to use maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene-propylene copolymer, maleic anhydride-ethylene copolymer, maleic anhydride-propylene copolymer, maleic anhydride-ethylene-propylene copolymer, polyethylene, polypropylene, ethylene-propylene copolymer, oxidized polyethylene, oxidized polypropylene, and oxidized ethylene-propylene copolymer, from the viewpoint of dispersion stability of the monomer.
- These polymeric dispersants may be used alone or in combination of two or more kinds.
- the amount of polymeric dispersant used is preferably 0.1 to 30 parts by mass, and more preferably 0.3 to 20 parts by mass, per 100 parts by mass of the first stage water-soluble ethylenically unsaturated monomer.
- a thickener can be added to an aqueous solution containing a water-soluble ethylenically unsaturated monomer to carry out reverse suspension polymerization.
- a thickener in this way to adjust the viscosity of the aqueous solution, it is possible to control the median particle size obtained in reverse suspension polymerization.
- thickeners for example, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyacrylic acid, partially neutralized polyacrylic acid, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide, etc. can be used. Note that, if the stirring speed during polymerization is the same, the higher the viscosity of the water-soluble ethylenically unsaturated monomer aqueous solution, the larger the primary particles and/or secondary particles obtained tend to be.
- aqueous monomer solution containing a water-soluble ethylenically unsaturated monomer is dispersed in a hydrocarbon dispersion medium in the presence of a dispersion stabilizer.
- the dispersion stabilizer surfactant or polymeric dispersant
- the dispersion stabilizer may be added either before or after the addition of the aqueous monomer solution, so long as it is before the start of the polymerization reaction.
- Such reverse phase suspension polymerization can be carried out in one stage or in multiple stages (two or more stages). From the viewpoint of increasing productivity, it is preferable to carry out the polymerization in two to three stages.
- the water-soluble ethylenically unsaturated monomer is added to the reaction mixture obtained in the first stage of polymerization reaction and mixed, and the second and subsequent stages of reversed-phase suspension polymerization can be performed in the same manner as the first stage.
- the reaction temperature for the polymerization reaction is preferably 20 to 110°C, and more preferably 40 to 90°C, from the viewpoints of promoting rapid polymerization and shortening the polymerization time, thereby improving economy, and of easily removing the heat of polymerization to allow the reaction to proceed smoothly.
- the water-absorbent polymer particles of the present invention are obtained by adding a surface crosslinking agent to the hydrogel having an internal crosslinked structure obtained by polymerizing a water-soluble ethylenically unsaturated monomer to crosslink (surface crosslinking reaction).
- This surface crosslinking reaction is preferably carried out in the presence of a surface crosslinking agent after the polymerization of the water-soluble ethylenically unsaturated monomer.
- the crosslinking density near the surface of the water-absorbent polymer particles can be increased, and water-absorbent polymer particles with improved performance such as water absorption capacity under load can be obtained.
- Examples of surface cross-linking agents include compounds having two or more reactive functional groups.
- polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, diethylene glycol, triethylene glycol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin
- polyglycidyl compounds such as (poly)ethylene glycol diglycidyl ether, (poly)glycerin diglycidyl ether, (poly)glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, (poly)propylene glycol polyglycidyl ether, and (poly)glycerol polyglycidyl ether
- haloepoxy compounds such as epichlorohydrin, epibromohydrin, and ⁇ -methylepichlorohydrin
- isocyanate compounds such as 2,4-to
- polyglycidyl compounds such as (poly)ethylene glycol diglycidyl ether, (poly)glycerin diglycidyl ether, (poly)glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, (poly)propylene glycol polyglycidyl ether, and (poly)glycerol polyglycidyl ether are preferred.
- These surface crosslinking agents may be used alone or in combination of two or more.
- the amount of the surface cross-linking agent used is preferably 0.00001 to 0.01 mol, more preferably 0.00005 to 0.005 mol, and even more preferably 0.0001 to 0.002 mol, per mol of the total amount of water-soluble ethylenically unsaturated monomers used in the polymerization.
- the surface cross-linking agent may be added as it is or as an aqueous solution, but if necessary, it may be added as a solution using a hydrophilic organic solvent as a solvent.
- hydrophilic organic solvents include lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, etc.; ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether, dioxane, tetrahydrofuran, etc.; amides such as N,N-dimethylformamide; sulfoxides such as dimethyl sulfoxide, etc.
- These hydrophilic organic solvents may be used alone, in combination of two or more types, or as a mixed solvent with water.
- the timing of adding the surface cross-linking agent may be after the polymerization reaction of the water-soluble ethylenically unsaturated monomer has been almost completely completed. It is preferable to add the agent in the presence of moisture in the range of 1 to 400 parts by mass, more preferably in the range of 5 to 200 parts by mass, even more preferably in the range of 10 to 100 parts by mass, and even more preferably in the range of 20 to 60 parts by mass, relative to 100 parts by mass of the water-soluble ethylenically unsaturated monomer.
- the amount of moisture means the total amount of moisture contained in the reaction system and the moisture used as necessary when adding the surface cross-linking agent.
- the reaction temperature in the surface cross-linking reaction is preferably 50 to 250°C, more preferably 60 to 180°C, even more preferably 60 to 140°C, and even more preferably 70 to 120°C.
- the reaction time in the surface cross-linking reaction is preferably 1 to 300 minutes, and more preferably 5 to 200 minutes.
- a drying step may be included in which water, the hydrocarbon dispersion medium, and the like are removed by distillation by adding energy such as heat from the outside.
- the system in which the hydrogel is dispersed in the hydrocarbon dispersion medium is heated, and the water and the hydrocarbon dispersion medium are once distilled out of the system by azeotropic distillation. At this time, if only the distilled hydrocarbon dispersion medium is returned to the system, continuous azeotropic distillation is possible.
- the temperature in the system during drying is maintained below the azeotropic temperature with the hydrocarbon dispersion medium, which is preferable from the viewpoint of the resin being less likely to deteriorate.
- the water and the hydrocarbon dispersion medium are distilled off to obtain water-absorbing polymer particles.
- the drying process by distillation may be performed under normal pressure or under reduced pressure. From the viewpoint of increasing the drying efficiency, it may also be performed under a stream of nitrogen or the like.
- the drying temperature is preferably 70 to 250°C, more preferably 80 to 180°C, even more preferably 80 to 140°C, and even more preferably 90 to 130°C.
- the drying temperature is preferably 40 to 160°C, and more preferably 50 to 110°C.
- a surface cross-linking step using a surface cross-linking agent is carried out after polymerization of monomers by reversed-phase suspension polymerization
- the above-mentioned drying step by distillation is carried out after the surface cross-linking step is completed.
- the surface cross-linking step and the drying step may be carried out simultaneously.
- the water-absorbent resin composition of the present invention may contain additives according to the purpose.
- additives include inorganic powders, surfactants, oxidizing agents, reducing agents, metal chelating agents, radical chain inhibitors, antioxidants, antibacterial agents, and the like.
- the fluidity of the water-absorbent resin composition can be further improved by adding 0.05 to 5 parts by mass of amorphous silica as inorganic powder per 100 parts by mass of water-absorbent polymer particles.
- the additives are preferably hydrophilic or water-soluble.
- the content of water-absorbent polymer particles is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more.
- the water-absorbent resin composition of the present invention can be produced, for example, by mixing water-absorbent polymer particles, a particulate antibacterial metal-containing deodorant, and a porous deodorant in a solid phase.
- the water-absorbing resin composition of the present invention is preferably used for absorbent articles such as sanitary napkins and paper diapers.
- the absorbent article of the present invention is an absorbent article containing an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbing polymer particles, and the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more, and the sum (x+y) of the content x (% by mass) of the porous deodorant and the content y (% by mass) of the antibacterial metal-containing deodorant based on the total amount of the antibacterial metal-containing deodorant, the porous deodorant, and the water-absorbing polymer particles is 0.10% by mass or more.
- the more detailed configuration of the absorbent article of the present invention can be set in the same manner as the above-mentioned water-absorbing resin composition.
- the absorbent using the water-absorbing resin composition of the present invention includes the particulate water-absorbing resin composition of the present invention.
- the absorbent may further include hydrophilic fibers.
- Examples of the absorbent configuration include a sheet-like structure in which water-absorbing polymer particles are fixed on a nonwoven fabric or between multiple nonwoven fabrics, a mixed dispersion obtained by mixing the particulate water-absorbing resin composition and hydrophilic fibers to a uniform composition, a sandwich structure in which the particulate water-absorbing resin composition is sandwiched between layered hydrophilic fibers, and a structure in which the particulate water-absorbing resin composition and hydrophilic fibers are wrapped in tissue.
- the absorbent may also contain other components, such as adhesive binders such as heat-fusible synthetic fibers, hot melt adhesives, and adhesive emulsions, in order to improve the shape retention of the absorbent.
- the content of the water-absorbent resin composition in the absorbent is preferably 5 to 100% by mass, more preferably 10 to 95% by mass, even more preferably 20 to 90% by mass, and even more preferably 30 to 80% by mass.
- Hydrophilic fibers include cellulose fibers such as cotton-like pulp obtained from wood, mechanical pulp, chemical pulp, and semi-chemical pulp, artificial cellulose fibers such as rayon and acetate, and fibers made of synthetic resins such as polyamide, polyester, and polyolefin that have been hydrophilically treated.
- the average fiber length of hydrophilic fibers is usually 0.1 to 10 mm, or may be 0.5 to 5 mm.
- the absorbent article of the present invention can be produced by holding an absorbent using the particulate water-absorbent resin composition of the present invention between a liquid-permeable sheet (top sheet) through which liquid can pass and a liquid-impermeable sheet (back sheet) through which liquid cannot pass.
- the liquid-permeable sheet is placed on the side that comes into contact with the body, and the liquid-impermeable sheet is placed on the opposite side that comes into contact with the body.
- Liquid-permeable sheets include nonwoven fabrics such as air-through, spunbond, chemical bond, and needle-punch types made of fibers such as polyethylene, polypropylene, and polyester, as well as porous synthetic resin sheets.
- Liquid-impermeable sheets include synthetic resin films made of resins such as polyethylene, polypropylene, and polyvinyl chloride.
- a water-absorbent resin composition comprising an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbent polymer particles, wherein a ratio (X/Y) of a content X (parts by mass) of the porous deodorant to a content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more, and a sum (x+y) of a content x (% by mass) of the porous deodorant and a content y (% by mass) of the antibacterial metal-containing deodorant in the entire water-absorbent resin composition is 0.10% by mass or more.
- the sum (x+y) of the content x (mass%) and the content y (mass%) is 0.10 mass% to 0.80 mass%, 0.10 mass% to 0.60 mass%, 0.10 mass% to 0.50 mass%, 0.10 mass% to 0.40 mass%, 0.10 mass% to 0.35 mass%, 0.10 mass% to 0.30 mass%, 0.13 mass% to 0.80 mass% %, 0.13% by mass to 0.60% by mass, 0.13% by mass % to 0.50 mass%, 0.13 mass% to 0.40 mass%, 0.13 mass% to 0.35 mass%, 0.13 mass% to 0.30 mass%, 0.18 mass% to 0.80 mass%, 0.18 mass% to 0.60 mass%, 0.18 mass% to 0.50 mass%, 0.18 mass% to 0.40 mass%, 0.18 mass% to 0.35 mass%, 0.18% by mass to 0.30% by mass, 0.20% by mass to 0.8 0 mass%, 0.20 mass% to 0.60 mass%, 0.20 mass% to 0.50 mass%, 0.20 mass% to 0.
- the water absorbent resin composition according to (1) above which has a content of 40% by mass.
- the porous deodorant comprises at least one selected from the group consisting of activated carbon, silicon dioxide, and silicates.
- the water-absorbing polymer particles have a water-absorbing speed measured by a Vortex method of 10 seconds to 80 seconds, 10 seconds to 60 seconds, 10 seconds to 40 seconds, 20 seconds to 80 seconds, 20 seconds to 60 seconds, 20 seconds to 40 seconds, 30 seconds to 80 seconds, 30 seconds to 60 seconds, or 30 seconds to 40 seconds.
- the water-absorbing resin composition according to any one of (1) to (7) above.
- An absorbent article comprising an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbent polymer particles, wherein a ratio (X/Y) of a content X (parts by mass) of the porous deodorant to a content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more, and a sum (x+y) of a content x (% by mass) of the porous deodorant and a content y (% by mass) of the antibacterial metal-containing deodorant based on a total amount of the antibacterial metal-containing deodorant, the porous deodorant, and the water-absorbent polymer particles is 0.10% by mass or more.
- the sum (x+y) of the content x (mass%) and the content y (mass%) is 0.10 mass% to 0.50 mass%, 0.10 mass% to 0.40 mass%, 0.10 mass% to 0.35 mass%, 0.10 mass% to 0.30 mass%, 0.18 mass% to 0.50 mass%, 0.18 mass% to 0.40 mass%, 0.18 mass% to 0.35 mass% %, 0.18% by mass to 0.30% by mass, 0.30% by mass to 0.50% by mass, or 0.30% by mass to 0.40% by mass.
- the absorbent article according to (9) or (10) above, wherein the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 to 15.0, 0.8 to 12.0, 0.8 to 10.0, 0.8 to 8.0, 0.8 to 5.0, 1.0 to 15.0, 1.0 to 12.0, 1.0 to 10.0, 1.0 to 8.0, 1.0 to 5.0, 2.0 to 15.0, 2.0 to 12.0, 2.0 to 10.0, 2.0 to 8.0, 2.0 to 5.0, 3.0 to 15.0, 3.0 to 12.0, 3.0 to 10.0, 3.0 to 8.0, or 3.0 to 5.0.
- the porous deodorant comprises at least one selected from the group consisting of activated carbon, silicon dioxide, and silicates.
- the water absorption speed of the water-absorbent polymer particles by the Vortex method is 10 seconds to 80 seconds, 10 seconds to 60 seconds, 10 seconds to 40 seconds, 20 seconds to 80 seconds, 20 seconds to 60 seconds, 20 seconds to 40 seconds, 30 seconds to 80 seconds, 30 seconds to 60 seconds, or 30 seconds to 40 seconds.
- the absorbent article according to any one of (9) to (13).
- water-absorbent polymer particles, activated carbon as a porous deodorant, and water-absorbent resin compositions obtained in the examples and comparative examples were evaluated by the following various tests. Unless otherwise specified, measurements were performed in an environment with a temperature of 25 ⁇ 2°C and a humidity of 50 ⁇ 10%.
- the aqueous liquid prepared above was added to a separable flask and stirred for 10 minutes.
- a surfactant solution prepared by heating and dissolving 0.736 g of sucrose stearate with an HLB of 3 (Ryoto Sugar Ester S-370, Mitsubishi Chemical Foods Corporation) in 6.62 g of n-heptane as a surfactant in a 20 mL vial was then added.
- the system was thoroughly purged with nitrogen while stirring at a stirrer speed of 550 rpm, and the flask was immersed in a water bath at 70° C. to raise the temperature, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry.
- the contents of the separable flask system were cooled to 25°C while stirring at a stirrer speed of 1000 rpm, and then the entire amount of the second-stage aqueous liquid was added to the first-stage polymerization slurry liquid, and the system was replaced with nitrogen for 30 minutes. After that, the flask was again immersed in a 70°C water bath to raise the temperature, and the polymerization reaction was carried out for 60 minutes to obtain a hydrous gel polymer.
- the flask was immersed in an oil bath set at 125°C, and 259.9 g of water was extracted from the system by azeotropic distillation of n-heptane and water while refluxing n-heptane. Then, 4.42 g (0.507 mmol) of a 2% by mass aqueous solution of ethylene glycol diglycidyl ether was added to the flask as a surface crosslinking agent, and the flask was kept at 83°C for 2 hours.
- the n-heptane was evaporated at 125°C to dry the particles, and the particles were passed through a sieve with 850 ⁇ m mesh to obtain 226.1 g of water-absorbent polymer particles.
- the saline water retention capacity of the water-absorbent polymer particles was 42 g/g
- the water absorption speed was 39 seconds
- the median particle size was 360 ⁇ m
- the saline water absorption capacity under a load of 4.14 kPa was 20 ml/g.
- the cotton bag was dehydrated for 1 minute using a dehydrator (Kokusan Co., Ltd., product number: H-122) set to a centrifugal force of 167 G, and the mass Wd (g) of the cotton bag containing the swollen gel after dehydration was measured.
- the same operation was performed without adding the water-absorbent polymer particles, the empty mass We (g) of the cotton bag when wet was measured, and the physiological saline water retention was calculated from the following formula.
- Saline water retention capacity (g/g) [Wd-We]/2.0
- the mass of the water-absorbing polymer particles remaining on each sieve was calculated as a mass percentage relative to the total amount to obtain the particle size distribution.
- the particle size distribution was calculated by accumulating the particles remaining on the sieve in order of particle size from the largest to the smallest, and the relationship between the sieve opening and the accumulated value of the mass percentage of the water-absorbent polymer particles remaining on the sieve was plotted on a logarithmic probability paper.
- the particle size corresponding to an accumulated mass percentage of 50% by mass was determined as the median particle size by connecting the plots on the probability paper with a straight line.
- the measuring device includes a burette part 1, a clamp 3, a conduit 5, a stand 11, a measurement table 13, and a measurement part 4 placed on the measurement table 13.
- the burette part 1 has a burette tube 21 with a scale, a rubber plug 23 that seals the opening at the top of the burette tube 21, a cock 22 connected to the tip of the bottom of the burette tube 21, and an air introduction tube 25 and a cock 24 connected to the bottom of the burette tube 21.
- the burette part 1 is fixed with a clamp 3.
- the flat measurement table 13 has a through hole 13a with a diameter of 2 mm formed in its center, and is supported by a height-variable stand 11.
- the through hole 13a of the measuring table 13 and the cock 22 of the burette part 1 are connected by a conduit 5.
- the inside diameter of the conduit 5 is 6 mm.
- the measuring section 4 has a Plexiglas cylinder 31, a polyamide mesh 32 attached to one opening of the cylinder 31, and a weight 33 that can move up and down inside the cylinder 31.
- the cylinder 31 is placed on the measuring table 13 via the polyamide mesh 32.
- the inner diameter of the cylinder 31 is 20 mm.
- the opening of the polyamide mesh 32 is 75 ⁇ m (200 mesh).
- the weight 33 has a diameter of 19 mm and a mass of 119.6 g, and can apply a load of 4.14 kPa (0.6 psi) to the water-absorbent polymer particles 10a that are uniformly arranged on the polyamide mesh 32 as described below.
- the stopcocks 22 and 24 of the burette part 1 were closed, and 0.9% by mass physiological saline adjusted to 25°C was poured into the burette tube 21 through the opening at the top of the burette tube 21.
- the top opening of the burette tube 21 was sealed with a rubber stopper 23, and then the stopcocks 22 and 24 were opened.
- the inside of the conduit 5 was filled with 0.9% by mass saline 50 to prevent air bubbles from entering.
- the height of the measurement table 13 was adjusted so that the height of the water surface of the 0.9% by mass saline solution 50 that reached the through hole 13a was the same as the height of the upper surface of the measurement table 13. After the adjustment, the height of the water surface of the 0.9% by mass saline solution 50 in the burette tube 21 was read on the scale of the burette tube 21, and this position was set as the zero point (the reading at 0 seconds).
- Activated carbon (Carborafine-6, manufactured by Osaka Gas Chemicals Co., Ltd.) having a BET specific surface area of 1345 m 2 /g, a median particle size of 46 ⁇ m, an ignition residue of 0.4%, a loss on drying of 3.2%, a pH of 4.9 and a crushed shape was prepared.
- Example 1 To 100 parts by mass of the water-absorbent polymer particles obtained in the manufacturing example, 0.03 parts by mass of silver-zinc zeolite (Zeomic HD10N, manufactured by Sinanen Zeomic Co., Ltd., median particle size 2.1 ⁇ m, BET specific surface area 653 m2 /g) was added as an antibacterial metal-containing deodorant, and 0.10 parts by mass of the above-mentioned activated carbon was added as a porous deodorant, and these were mixed by rotating them for 30 minutes under conditions of a rotation speed of 50 rpm and a revolution speed of 50 rpm using a cross rotary mixer manufactured by Meiwa Kogyo Co., Ltd., to obtain a water-absorbent resin composition. The median particle size and BET specific surface area of the antibacterial metal-containing deodorant were measured by the same measuring method as that for the activated carbon described above.
- Example 2 A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of activated carbon added was changed to 0.30 parts by mass.
- Example 3 A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was changed to 0.10 parts by mass.
- Example 4 A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.10 parts by mass and the amount of activated carbon added was 0.30 parts by mass.
- Example 5 A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.06 parts by mass and the amount of activated carbon added was 0.20 parts by mass.
- Example 1 A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.015 parts by mass and the amount of activated carbon added was 0.05 parts by mass.
- Example 2 A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.06 parts by mass and the amount of activated carbon added was 0.03 parts by mass.
- Example 3 A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.015 parts by mass and no activated carbon was added.
- Example 4 A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.03 parts by mass and no activated carbon was added.
- Example 5 A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.06 parts by mass and no activated carbon was added.
- Example 6 A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.10 parts by mass and no activated carbon was added.
- Example 7 A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the silver-zinc zeolite was not added and the amount of activated carbon added was 0.03 parts by mass.
- Example 8 A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the silver-zinc zeolite was not added and the amount of activated carbon added was 0.05 parts by mass.
- Example 9 A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the silver-zinc zeolite was not added and the amount of activated carbon added was 0.10 parts by mass.
- Example 10 A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the silver-zinc zeolite was not added and the amount of activated carbon added was 0.20 parts by mass.
- Example 11 A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the silver-zinc zeolite was not added and the amount of activated carbon added was 0.30 parts by mass.
- Deodorization rate (%) [(ammonia concentration in Reference Example 1 - ammonia concentration in Examples or Comparative Examples) / ammonia concentration in Reference Example 1] x 100
- a glass suction bottle with a capacity of 500 mL was prepared.
- a SUS hopper (upper inner diameter 88 mm x foot inner diameter 18 mm) was set so that the height from the bottom of the suction bottle to the outlet of the hopper was 180 mm, and the suction port of the suction bottle and a dust generation meter (manufactured by Shibata Scientific Co., Ltd., digital indicator LD-5R type) were connected with a glass tube (inner diameter 7.7 mm x length 300 mm).
- the deodorizing rate of Comparative Example 9 in which the content x of the porous deodorant in the water absorbent resin composition is 0.10 mass%, is 20%, and the deodorizing rate of Comparative Example 6, in which the content y of the antibacterial metal-containing deodorant in the water absorbent resin composition is 0.10 mass%, is 60%.
- Example 3 in which the content x of the porous deodorant in the water absorbent resin composition is 0.10 mass% and the content y of the antibacterial metal-containing deodorant is 0.10 mass%, is extremely high at 98%, and it can be seen that a synergistic effect between the antibacterial metal-containing deodorant and the porous deodorant is exerted, which cannot be predicted from the results of Comparative Examples 6 and 9 (the sum of the deodorizing rates of Comparative Examples 6 and 9 is 80%).
- the synergistic effect of the deodorizing rate of the water-absorbent resin composition shown in Table 2 is the deodorizing rate of the example divided by the sum of the deodorizing rates of the comparative examples in which each deodorant was used alone.
- the synergistic effect of Example 3 is a value calculated by deodorizing rate of Example 3 (98) / (deodorizing rate of Comparative Example 9 (20) + deodorizing rate of Comparative Example 6 (60)). If the standard value exceeds 1.00, it can be said that a synergistic effect is being exerted.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Absorbent Articles And Supports Therefor (AREA)
Abstract
Provided is a water-absorbing resin composition having an excellent deodorizing effect. The water-absorbing resin composition contains an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbing polymer particles. The ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more, and in the entire water-absorbing resin composition, the sum (x + y) of the content x (mass %) of the porous deodorant and the content y (mass %) of the antibacterial metal-containing deodorant is 0.10 mass % or more.
Description
本発明は、吸水性樹脂組成物に関し、より詳しくは、紙オムツ、生理用ナプキン、失禁用パッド等の衛生材料に好適に用いられる吸収体を構成する吸水性樹脂組成物に関する。
The present invention relates to a water-absorbent resin composition, and more specifically to a water-absorbent resin composition that constitutes an absorbent material suitable for use in sanitary materials such as disposable diapers, sanitary napkins, and incontinence pads.
吸水性樹脂は、近年、紙オムツ、生理用ナプキン、失禁用パッド等の衛生材料の分野に広く使用されている。
In recent years, water-absorbent resins have been widely used in the field of sanitary materials such as disposable diapers, sanitary napkins, and incontinence pads.
このような吸水性樹脂としては、アクリル酸部分中和塩重合体架橋物が、優れた吸水能を有するとともに、その原料であるアクリル酸の工業的な入手が容易であるため、品質が一定で且つ安価に製造でき、しかも腐敗や劣化がおこりにくい等の数々の利点を有することから、好ましい吸水性樹脂であるとされている。
As such water-absorbent resins, cross-linked polymers of partially neutralized acrylic acid salts have excellent water-absorbing properties, and because the raw material, acrylic acid, is easily available industrially, they can be produced at low cost with consistent quality, and are less susceptible to spoilage or deterioration, making them a preferred water-absorbent resin.
一方、紙オムツ、生理用ナプキン、失禁用パッド等の吸収性物品は、主として中心部に配された、身体から排泄される尿、経血等の体液を吸収、保持する吸収体と、身体に接する側に配された液透過性の表面シート(トップシート)と、身体と接する反対側に配された液不透過性の裏面シート(バックシート)から構成されている。また、吸収体は、通常、パルプ等の親水性繊維と吸水性樹脂とから構成されている。
Absorbent articles such as disposable diapers, sanitary napkins, and incontinence pads are mainly composed of an absorbent body located in the center that absorbs and retains bodily fluids such as urine and menstrual blood excreted from the body, a liquid-permeable surface sheet (top sheet) located on the side that comes into contact with the body, and a liquid-impermeable back sheet (back sheet) located on the opposite side that comes into contact with the body. The absorbent body is usually composed of hydrophilic fibers such as pulp and water-absorbent resin.
このような吸収体が例えば衛生材料などに使用される場合には、体液、特に尿、血液、汗等を吸収した吸収体から、アンモニアなどの不快臭が発生する場合がある。
When such absorbents are used, for example, as sanitary materials, they may emit unpleasant odors such as ammonia after absorbing bodily fluids, particularly urine, blood, sweat, etc.
吸収体に尿が吸収されると、ウレアーゼ産生菌が有するウレアーゼの作用により、尿中の尿素が分解され、アンモニアが発生する。
When urine is absorbed into the absorbent, the urea in the urine is broken down by the action of urease contained in the urease-producing bacteria, generating ammonia.
本発明者は、銀などの抗菌性金属を含む消臭剤を用いてウレアーゼを不活性化させることにより、ウレアーゼによる尿素の分解反応を阻害し、アンモニアの発生を抑制することを試みた。ところが、本発明者が検討したところ、シスチン尿症患者の尿のように、尿中に多量のL-シスチン(硫黄含有アミノ酸)が存在する場合、抗菌性金属がL-シスチンと結合することによって抗菌性金属によるウレアーゼの不活性化作用が弱められ、消臭効果が十分に発揮されないという問題点を知得した。
The inventor attempted to inhibit the decomposition reaction of urea by urease and suppress the generation of ammonia by inactivating urease using a deodorant containing an antibacterial metal such as silver. However, the inventor discovered a problem in that when a large amount of L-cystine (a sulfur-containing amino acid) is present in urine, such as in the urine of a patient with cystinuria, the antibacterial metal binds to L-cystine, weakening the antibacterial metal's ability to inactivate urease, and the deodorant effect is not fully exerted.
本発明は、L-シスチンを多く含む尿に対し優れた消臭効果を有する吸水性樹脂組成物を提供することを主な目的とする。
The main objective of the present invention is to provide a water-absorbent resin composition that has an excellent deodorizing effect on urine that contains a large amount of L-cystine.
本発明者は、上記課題を解決するために鋭意検討した。その結果、吸水性重合体粒子を含む吸水性樹脂組成物において、抗菌性金属含有消臭剤と多孔性消臭剤とを併用した上で、さらに、多孔性消臭剤の含有量X(質量部)と、抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)を所定の比率以上とし、さらに、吸水性樹脂組成物全体における、多孔性消臭剤の含有率x(質量%)と抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)を所定の割合以上とすることで、多量のL-シスチンを含む尿を吸水させた場合であっても、吸水性樹脂組成物がアンモニアなどに対する高い消臭機能を発揮することを見出した。
The present inventors have conducted extensive research to solve the above problems. As a result, they have found that, in a water-absorbent resin composition containing water-absorbent polymer particles, by combining an antibacterial metal-containing deodorant and a porous deodorant, and further setting the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant to a predetermined ratio or more, and further setting the sum (x+y) of the content x (% by mass) of the porous deodorant and the content y (% by mass) of the antibacterial metal-containing deodorant in the entire water-absorbent resin composition to a predetermined ratio or more, the water-absorbent resin composition exhibits a high deodorizing function against ammonia and the like even when urine containing a large amount of L-cystine is absorbed.
すなわち、本発明は、下記の構成を備える発明を提供する。
項1. 抗菌性金属含有消臭剤、多孔性消臭剤、及び吸水性重合体粒子を含む、吸水性樹脂組成物であって、
前記多孔性消臭剤の含有量X(質量部)と、前記抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8以上であり、
前記吸水性樹脂組成物全体における、前記多孔性消臭剤の含有率x(質量%)と前記抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)が、0.10質量%以上である、吸水性樹脂組成物。
項2. 前記含有率x(質量%)と前記含有率y(質量%)の和(x+y)が0.50質量%以下である、項1に記載の吸水性樹脂組成物。
項3. 前記抗菌性金属含有消臭剤に含まれる抗菌性金属が、銀、銅、亜鉛、ビスマス、コバルト、アルミニウム及びニッケルからなる群より選択される少なくとも1種を含む、項1又は2に記載の吸水性樹脂組成物。
項4. 前記抗菌性金属含有消臭剤が、銀粉、塩化銀(I)、酸化銀(I)、並びに銀イオン及び亜鉛イオンのうち少なくとも一方の金属イオンが担持された物質からなる群より選択される少なくとも1種を含む、項1~3のいずれか1項に記載の吸水性樹脂組成物。
項5. 前記多孔性消臭剤が活性炭、二酸化ケイ素及びケイ酸塩からなる群より選択される少なくとも1種を含む、項1~4のいずれか1項に記載の吸水性樹脂組成物。
項6. 前記抗菌性金属含有消臭剤の中位粒子径が、0.1μm~100μmであり、前記多孔性消臭剤の中位粒子径が1μm~100μmである、項1~5のいずれか1項に記載の吸水性樹脂組成物。
項7. 抗菌性金属含有消臭剤、多孔性消臭剤、及び吸水性重合体粒子を含む、吸収性物品であって、
前記多孔性消臭剤の含有量X(質量部)と、前記抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8以上であり、
前記抗菌性金属含有消臭剤、前記多孔性消臭剤、及び前記吸水性重合体粒子の総量を基準とする前記多孔性消臭剤の含有率x(質量%)と前記抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)が、0.10質量%以上である、吸収性物品。 That is, the present invention provides the following configuration.
Item 1. A water-absorbing resin composition comprising an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbing polymer particles,
the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more;
A water absorbent resin composition, wherein the sum (x+y) of a content rate x (mass%) of the porous deodorant and a content rate y (mass%) of the antibacterial metal-containing deodorant in the entire water absorbent resin composition is 0.10 mass% or more.
Item 2. The water-absorbing resin composition according to Item 1, wherein the sum (x+y) of the content x (% by mass) and the content y (% by mass) is 0.50% by mass or less.
Item 3. The water absorbent resin composition according to Item 1 or 2, wherein the antibacterial metal contained in the antibacterial metal-containing deodorant contains at least one selected from the group consisting of silver, copper, zinc, bismuth, cobalt, aluminum, and nickel.
Item 4. The water absorbent resin composition according to any one of Items 1 to 3, wherein the antibacterial metal-containing deodorant comprises at least one selected from the group consisting of silver powder, silver chloride (I), silver oxide (I), and a substance carrying at least one metal ion selected from the group consisting of silver ions and zinc ions.
Item 5. The water-absorbing resin composition according to any one of Items 1 to 4, wherein the porous deodorant comprises at least one selected from the group consisting of activated carbon, silicon dioxide, and silicates.
Item 6. The water absorbent resin composition according to any one of Items 1 to 5, wherein the antibacterial metal-containing deodorant has a median particle diameter of 0.1 μm to 100 μm, and the porous deodorant has a median particle diameter of 1 μm to 100 μm.
Item 7. An absorbent article comprising an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbing polymer particles,
the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more;
The sum (x+y) of the content x (mass%) of the porous deodorant and the content y (mass%) of the antibacterial metal-containing deodorant based on the total amount of the antibacterial metal-containing deodorant, the porous deodorant, and the water-absorbent polymer particles is 0.10 mass% or more.
項1. 抗菌性金属含有消臭剤、多孔性消臭剤、及び吸水性重合体粒子を含む、吸水性樹脂組成物であって、
前記多孔性消臭剤の含有量X(質量部)と、前記抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8以上であり、
前記吸水性樹脂組成物全体における、前記多孔性消臭剤の含有率x(質量%)と前記抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)が、0.10質量%以上である、吸水性樹脂組成物。
項2. 前記含有率x(質量%)と前記含有率y(質量%)の和(x+y)が0.50質量%以下である、項1に記載の吸水性樹脂組成物。
項3. 前記抗菌性金属含有消臭剤に含まれる抗菌性金属が、銀、銅、亜鉛、ビスマス、コバルト、アルミニウム及びニッケルからなる群より選択される少なくとも1種を含む、項1又は2に記載の吸水性樹脂組成物。
項4. 前記抗菌性金属含有消臭剤が、銀粉、塩化銀(I)、酸化銀(I)、並びに銀イオン及び亜鉛イオンのうち少なくとも一方の金属イオンが担持された物質からなる群より選択される少なくとも1種を含む、項1~3のいずれか1項に記載の吸水性樹脂組成物。
項5. 前記多孔性消臭剤が活性炭、二酸化ケイ素及びケイ酸塩からなる群より選択される少なくとも1種を含む、項1~4のいずれか1項に記載の吸水性樹脂組成物。
項6. 前記抗菌性金属含有消臭剤の中位粒子径が、0.1μm~100μmであり、前記多孔性消臭剤の中位粒子径が1μm~100μmである、項1~5のいずれか1項に記載の吸水性樹脂組成物。
項7. 抗菌性金属含有消臭剤、多孔性消臭剤、及び吸水性重合体粒子を含む、吸収性物品であって、
前記多孔性消臭剤の含有量X(質量部)と、前記抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8以上であり、
前記抗菌性金属含有消臭剤、前記多孔性消臭剤、及び前記吸水性重合体粒子の総量を基準とする前記多孔性消臭剤の含有率x(質量%)と前記抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)が、0.10質量%以上である、吸収性物品。 That is, the present invention provides the following configuration.
Item 1. A water-absorbing resin composition comprising an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbing polymer particles,
the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more;
A water absorbent resin composition, wherein the sum (x+y) of a content rate x (mass%) of the porous deodorant and a content rate y (mass%) of the antibacterial metal-containing deodorant in the entire water absorbent resin composition is 0.10 mass% or more.
Item 2. The water-absorbing resin composition according to Item 1, wherein the sum (x+y) of the content x (% by mass) and the content y (% by mass) is 0.50% by mass or less.
Item 3. The water absorbent resin composition according to Item 1 or 2, wherein the antibacterial metal contained in the antibacterial metal-containing deodorant contains at least one selected from the group consisting of silver, copper, zinc, bismuth, cobalt, aluminum, and nickel.
Item 4. The water absorbent resin composition according to any one of Items 1 to 3, wherein the antibacterial metal-containing deodorant comprises at least one selected from the group consisting of silver powder, silver chloride (I), silver oxide (I), and a substance carrying at least one metal ion selected from the group consisting of silver ions and zinc ions.
Item 5. The water-absorbing resin composition according to any one of Items 1 to 4, wherein the porous deodorant comprises at least one selected from the group consisting of activated carbon, silicon dioxide, and silicates.
Item 6. The water absorbent resin composition according to any one of Items 1 to 5, wherein the antibacterial metal-containing deodorant has a median particle diameter of 0.1 μm to 100 μm, and the porous deodorant has a median particle diameter of 1 μm to 100 μm.
Item 7. An absorbent article comprising an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbing polymer particles,
the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more;
The sum (x+y) of the content x (mass%) of the porous deodorant and the content y (mass%) of the antibacterial metal-containing deodorant based on the total amount of the antibacterial metal-containing deodorant, the porous deodorant, and the water-absorbent polymer particles is 0.10 mass% or more.
本発明によれば、L-シスチンを多く含む尿に対し優れた消臭効果を有する吸水性樹脂組成物を提供することができる。
The present invention provides a water-absorbent resin composition that has an excellent deodorizing effect on urine that contains a large amount of L-cystine.
本明細書において、「含む」とは、「本質的にからなる」と、「からなる」をも包含する(The term "comprising" includes "consisting essentially of" and "consisting of".)。また、本明細書において、「(メタ)アクリル」とは「アクリル又はメタクリル」を意味し、「(メタ)アクリレート」とは「アクリレート又はメタクリレート」を意味する。なお「水溶性」とは、25℃において水に5質量%以上の溶解性を示すことをいう。
In this specification, the term "comprising" includes "consisting essentially of" and "consisting of". In addition, in this specification, "(meth)acrylic" means "acrylic or methacrylic" and "(meth)acrylate" means "acrylate or methacrylate". Furthermore, "water-soluble" refers to a solubility of 5% by mass or more in water at 25°C.
また、本明細書において、「~」で結ばれた数値は、「~」の前後の数値を下限値及び上限値として含む数値範囲を意味する。複数の下限値と複数の上限値が別個に記載されている場合、任意の下限値と上限値を選択し、「~」で結ぶことができるものとする。
In addition, in this specification, a numerical value connected with "~" means a numerical range that includes the numerical values before and after "~" as the lower and upper limits. When multiple lower limits and multiple upper limits are listed separately, any lower limit and upper limit can be selected and connected with "~".
1.吸水性樹脂組成物
本発明の吸水性樹脂組成物は、抗菌性金属含有消臭剤、多孔性消臭剤、及び吸水性重合体粒子を含む、吸水性樹脂組成物であって、多孔性消臭剤の含有量X(質量部)と、抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8以上であり、かつ、吸水性樹脂組成物全体における、多孔性消臭剤の含有率x(質量%)と抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)が、0.10質量%以上であることを特徴とする。このような特徴を備える本発明の吸水性樹脂組成物は、L-シスチンを多く含む尿に対し優れた消臭効果を発揮する。以下、本発明の吸水性樹脂組成物について詳述する。 1. Water-absorbent resin composition The water-absorbent resin composition of the present invention is a water-absorbent resin composition containing an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbent polymer particles, characterized in that the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more, and the sum (x+y) of the content x (% by mass) of the porous deodorant and the content y (% by mass) of the antibacterial metal-containing deodorant in the entire water-absorbent resin composition is 0.10% by mass or more. The water-absorbent resin composition of the present invention having such characteristics exerts an excellent deodorizing effect on urine containing a large amount of L-cystine. The water-absorbent resin composition of the present invention will be described in detail below.
本発明の吸水性樹脂組成物は、抗菌性金属含有消臭剤、多孔性消臭剤、及び吸水性重合体粒子を含む、吸水性樹脂組成物であって、多孔性消臭剤の含有量X(質量部)と、抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8以上であり、かつ、吸水性樹脂組成物全体における、多孔性消臭剤の含有率x(質量%)と抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)が、0.10質量%以上であることを特徴とする。このような特徴を備える本発明の吸水性樹脂組成物は、L-シスチンを多く含む尿に対し優れた消臭効果を発揮する。以下、本発明の吸水性樹脂組成物について詳述する。 1. Water-absorbent resin composition The water-absorbent resin composition of the present invention is a water-absorbent resin composition containing an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbent polymer particles, characterized in that the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more, and the sum (x+y) of the content x (% by mass) of the porous deodorant and the content y (% by mass) of the antibacterial metal-containing deodorant in the entire water-absorbent resin composition is 0.10% by mass or more. The water-absorbent resin composition of the present invention having such characteristics exerts an excellent deodorizing effect on urine containing a large amount of L-cystine. The water-absorbent resin composition of the present invention will be described in detail below.
前述の通り、本発明者は、銀などの抗菌性金属を含む消臭剤を用いてウレアーゼを不活性化させることにより、ウレアーゼによる尿素の分解反応を阻害し、アンモニアの発生を抑制することを試みた。ところが、本発明者が検討したところ、シスチン尿症患者の尿のように、尿中にL-シスチン(硫黄含有アミノ酸)が多量に存在することで、抗菌性金属がL-シスチンと結合し易くなり、抗菌性金属によるウレアーゼの不活性化作用が弱められ、消臭効果が十分に発揮されないという問題点を知得した。さらに、本発明者が検討を重ねたところ、吸水性重合体粒子を含む吸水性樹脂組成物において、抗菌性金属含有消臭剤と多孔性消臭剤とを併用した上で、多孔性消臭剤の含有量X(質量部)と、抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)を0.8以上とし、さらに、吸水性樹脂組成物全体における、多孔性消臭剤の含有率x(質量%)と抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)を0.10質量%以上とすることで、抗菌性金属含有消臭剤と多孔性消臭剤とが相乗的に機能し、L-シスチンを多く含む尿を吸水した場合であっても、吸水性樹脂組成物がアンモニアに対する高い消臭機能を発揮することを見出した。これは、多孔性消臭剤が尿中のL-シスチンを吸着することで、抗菌性金属含有消臭剤によるウレアーゼの不活性化作用がL-シスチンによって阻害されることが抑制され、抗菌性金属含有消臭剤によるウレアーゼの不活性化作用が好適に発揮されて、吸水性樹脂組成物がアンモニアなどに対する高い消臭機能を発揮しているものと考えることができる。
As mentioned above, the inventor attempted to inhibit the decomposition reaction of urea by urease and suppress the generation of ammonia by inactivating urease using a deodorant containing an antibacterial metal such as silver. However, the inventor's investigation revealed the problem that when a large amount of L-cystine (a sulfur-containing amino acid) is present in urine, such as in the urine of patients with cystinuria, the antibacterial metal tends to bind to L-cystine, weakening the urease inactivation effect of the antibacterial metal and preventing the deodorant effect from being fully exerted. Furthermore, as a result of further investigations, the present inventors have found that, in a water absorbent resin composition containing water absorbent polymer particles, an antibacterial metal-containing deodorant and a porous deodorant are used in combination, the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is set to 0.8 or more, and further, the sum (x+y) of the content x (% by mass) of the porous deodorant and the content y (% by mass) of the antibacterial metal-containing deodorant in the entire water absorbent resin composition is set to 0.10% by mass or more, whereby the antibacterial metal-containing deodorant and the porous deodorant function synergistically, and the water absorbent resin composition exhibits a high deodorizing function against ammonia even when absorbing urine containing a large amount of L-cystine. This is thought to be because the porous deodorant adsorbs L-cystine in urine, preventing L-cystine from inhibiting the urease inactivation action of the antibacterial metal-containing deodorant, allowing the urease inactivation action of the antibacterial metal-containing deodorant to be optimally exerted, allowing the water absorbent resin composition to exert a high deodorizing function against ammonia, etc.
本発明の吸水性樹脂組成物において、抗菌性金属含有消臭剤の少なくとも一部(例えば、抗菌性金属含有消臭剤全体の20質量%~100質量%、50質量%~100質量%、80質量%~100質量%、90質量%~100質量%、95質量%~100質量%又は100質量%)が吸水性重合体粒子の表面に配されていてもよく、抗菌性金属含有消臭剤の少なくとも一部が吸水性重合体粒子の内部に浸透していてもよい。また、本発明の吸水性樹脂組成物において、多孔性消臭剤の少なくとも一部(例えば、抗菌性金属含有消臭剤全体の20質量%~100質量%、50質量%~100質量%、80質量%~100質量%、90質量%~100質量%、95質量%~100質量%又は100質量%)が吸水性重合体粒子の表面に配されていてもよい。本発明の吸水性樹脂組成物において、抗菌性金属含有消臭剤の少なくとも一部及び多孔性消臭剤の少なくとも一部が吸水性重合体粒子の表面に配されていてもよい。
In the water absorbent resin composition of the present invention, at least a portion of the antibacterial metal-containing deodorant (e.g., 20% by mass to 100% by mass, 50% by mass to 100% by mass, 80% by mass to 100% by mass, 90% by mass to 100% by mass, 95% by mass to 100% by mass, or 100% by mass) of the entire antibacterial metal-containing deodorant may be disposed on the surface of the water absorbent polymer particle, and at least a portion of the antibacterial metal-containing deodorant may permeate the inside of the water absorbent polymer particle. In addition, in the water absorbent resin composition of the present invention, at least a portion of the porous deodorant (e.g., 20% by mass to 100% by mass, 50% by mass to 100% by mass, 80% by mass to 100% by mass, 90% by mass to 100% by mass, 95% by mass to 100% by mass, or 100% by mass) of the entire antibacterial metal-containing deodorant may be disposed on the surface of the water absorbent polymer particle. In the water-absorbent resin composition of the present invention, at least a portion of the antibacterial metal-containing deodorant and at least a portion of the porous deodorant may be disposed on the surface of the water-absorbent polymer particles.
(抗菌性金属含有消臭剤)
抗菌性金属含有消臭剤は、抗菌性金属を含む消臭剤である。抗菌性金属は、ウレアーゼの不活性化作用を発揮する金属であることが好ましい。ここで、「抗菌性金属」とは、金、銀、銅、白金、亜鉛、ビスマス、チタン、タングステン,ニッケル、鉄、錫、水銀、鉛、パラジウム、アルミニウム、コバルト、モリブデン、クロム、バナジウム及びジルコニウムから成る群より選択される少なくとも1種である。また、「抗菌性金属を含む消臭剤」は、実質的な抗菌効果を奏する程度に抗菌性金属を含む消臭剤であり、例えば、1質量%以上の抗菌性金属(抗菌性金属を2種以上含む場合はその総量を基準とする)を含む消臭剤である。抗菌性金属含有消臭剤は、例えば、粒子状で吸水性樹脂組成物に含まれている。 (Antibacterial metal-containing deodorant)
The antibacterial metal-containing deodorant is a deodorant containing an antibacterial metal. The antibacterial metal is preferably a metal that exerts an inactivating effect on urease. Here, the "antibacterial metal" is at least one selected from the group consisting of gold, silver, copper, platinum, zinc, bismuth, titanium, tungsten, nickel, iron, tin, mercury, lead, palladium, aluminum, cobalt, molybdenum, chromium, vanadium, and zirconium. The "antibacterial metal-containing deodorant" is a deodorant containing an antibacterial metal to a degree that exerts a substantial antibacterial effect, for example, a deodorant containing 1 mass % or more of antibacterial metal (when two or more kinds of antibacterial metals are contained, the total amount is used as the basis). The antibacterial metal-containing deodorant is, for example, contained in the water absorbent resin composition in the form of particles.
抗菌性金属含有消臭剤は、抗菌性金属を含む消臭剤である。抗菌性金属は、ウレアーゼの不活性化作用を発揮する金属であることが好ましい。ここで、「抗菌性金属」とは、金、銀、銅、白金、亜鉛、ビスマス、チタン、タングステン,ニッケル、鉄、錫、水銀、鉛、パラジウム、アルミニウム、コバルト、モリブデン、クロム、バナジウム及びジルコニウムから成る群より選択される少なくとも1種である。また、「抗菌性金属を含む消臭剤」は、実質的な抗菌効果を奏する程度に抗菌性金属を含む消臭剤であり、例えば、1質量%以上の抗菌性金属(抗菌性金属を2種以上含む場合はその総量を基準とする)を含む消臭剤である。抗菌性金属含有消臭剤は、例えば、粒子状で吸水性樹脂組成物に含まれている。 (Antibacterial metal-containing deodorant)
The antibacterial metal-containing deodorant is a deodorant containing an antibacterial metal. The antibacterial metal is preferably a metal that exerts an inactivating effect on urease. Here, the "antibacterial metal" is at least one selected from the group consisting of gold, silver, copper, platinum, zinc, bismuth, titanium, tungsten, nickel, iron, tin, mercury, lead, palladium, aluminum, cobalt, molybdenum, chromium, vanadium, and zirconium. The "antibacterial metal-containing deodorant" is a deodorant containing an antibacterial metal to a degree that exerts a substantial antibacterial effect, for example, a deodorant containing 1 mass % or more of antibacterial metal (when two or more kinds of antibacterial metals are contained, the total amount is used as the basis). The antibacterial metal-containing deodorant is, for example, contained in the water absorbent resin composition in the form of particles.
本発明の吸水性樹脂組成物がオムツなどの衛生材料に典型的に使用されること、及び、優れたウレアーゼ不活性作用が期待できることから、抗菌性金属は、銀、銅、亜鉛、ビスマス、コバルト、アルミニウム及びニッケルからなる群より選択される少なくとも1種を含んでよく、銀、銅、及び亜鉛からなる群より選択される少なくとも1種を含んでよく又は銀及び亜鉛のうち少なくとも1種を含んでよい。
Because the water-absorbent resin composition of the present invention is typically used in sanitary materials such as diapers, and is expected to have excellent urease inactivation properties, the antibacterial metal may include at least one selected from the group consisting of silver, copper, zinc, bismuth, cobalt, aluminum, and nickel, may include at least one selected from the group consisting of silver, copper, and zinc, or may include at least one of silver and zinc.
抗菌性金属含有消臭剤としては、例えば、銀粉、塩化銀(I)、酸化銀(I)、並びに銀イオン及び亜鉛イオンのうち少なくとも一方の金属イオンが担持された物質からなる群より選択される少なくとも1種が挙げられる。金属イオンが担持される対象(担持体)となる物質は、例えば、多孔質物質であってよい。多孔質物質は、例えば、ゼオライト、活性炭、二酸化ケイ素、ケイ酸塩、チタニア、アルミナ、水酸化アルミニウム及び水酸化マグネシウムからなる群より選択される少なくとも1種を含んでよく、ゼオライト、活性炭、及び二酸化ケイ素からなる群より選択される少なくとも1種を含んでよく、又はゼオライトを含んでよい。銀イオン及び亜鉛イオンが担持された多孔質物質として、具体的には、銀亜鉛ゼオライトが好適である。
Antibacterial metal-containing deodorants include, for example, at least one selected from the group consisting of silver powder, silver chloride (I), silver oxide (I), and materials carrying at least one of the metal ions silver ions and zinc ions. The material on which the metal ions are carried (the carrier) may be, for example, a porous material. The porous material may include, for example, at least one selected from the group consisting of zeolite, activated carbon, silicon dioxide, silicate, titania, alumina, aluminum hydroxide, and magnesium hydroxide, may include at least one selected from the group consisting of zeolite, activated carbon, and silicon dioxide, or may include zeolite. Specifically, silver zinc zeolite is suitable as a porous material carrying silver ions and zinc ions.
なお、金属イオンの担持体である物質が多孔質物質である場合、当該多孔質物質は、それ単体で消臭剤として機能し得る物質であってもよい。この場合、多孔質物質と後述の多孔性消臭剤は、化学的な組成が同じ物質であってもよく異なる物質であってもよい。
In addition, when the substance that carries the metal ions is a porous substance, the porous substance may be a substance that can function as a deodorant by itself. In this case, the porous substance and the porous deodorant described below may be substances with the same chemical composition or different substances.
本発明の効果をより好適に発揮する観点から、抗菌性金属含有消臭剤が粒子状で吸水性樹脂組成物に含まれている場合、抗菌性金属含有消臭剤の中位粒子径(D50(メジアン径)、体積基準)は、0.1μm~100μm、0.1μm~50μm、0.1μm~10μm、0.1μm~5μm、0.1μm~3μm、0.5μm~100μm、0.5μm~50μm、0.5μm~10μm、0.5μm~5μm、0.5μm~3μm、0.8μm~100μm、0.8μm~50μm、0.8μm~10μm、0.8μm~5μm、0.8μm~3μm、1μm~100μm、1μm~50μm、1μm~10μm、1μm~5μm、又は1μm~3μmであってよい。抗菌性金属含有消臭剤の中位粒子径(D50(メジアン径)、体積基準)は、レーザー回折式粒度分布測定装置を用いて測定することができ、具体的には、実施例に記載の方法により測定した値である。
From the viewpoint of more suitably exerting the effects of the present invention, when the antibacterial metal-containing deodorant is contained in the water absorbent resin composition in a particulate form, the median particle diameter (D50 (median diameter), volume basis) of the antibacterial metal-containing deodorant is 0.1 μm to 100 μm, 0.1 μm to 50 μm, 0.1 μm to 10 μm, 0.1 μm to 5 μm, 0.1 μm to 3 μm, 0.5 μm to 1 00 μm, 0.5 μm to 50 μm, 0.5 μm to 10 μm, 0.5 μm to 5 μm, 0.5 μm to 3 μm, 0.8 μm to 100 μm, 0.8 μm to 50 μm, 0.8 μm to 10 μm, 0.8 μm to 5 μm, 0.8 μm to 3 μm, 1 μm to 100 μm, 1 μm to 50 μm, 1 μm to 10 μm, 1 μm to 5 μm, or 1 μm to 3 μm. The median particle size (D50 (median size), volume basis) of the antibacterial metal-containing deodorant can be measured using a laser diffraction particle size distribution measuring device, and specifically, it is a value measured by the method described in the examples.
また、抗菌性金属含有消臭剤のBET比表面積が大きければ抗菌性金属とウレアーゼが接触する頻度が向上する一方、抗菌性金属とL-シスチンが接触する頻度も向上すること、及び、抗菌性金属含有消臭剤のBET比表面積が大きすぎる場合、発塵度が増加する可能性があることを考慮すると、多孔性消臭剤のBET比表面積は100m2/g~2000m2/g、100m2/g~1500m2/g、100m2/g~1000m2/g、100m2/g~800m2/g、300m2/g~2000m2/g、300m2/g~1500m2/g、300m2/g~1000m2/g、300m2/g~800m2/g、500m2/g~2000m2/g、500m2/g~1500m2/g、500m2/g~1000m2/g又は500m2/g~800m2/gであってよい。
In addition, if the BET specific surface area of the antibacterial metal-containing deodorant is large, the frequency of contact between the antibacterial metal and urease increases, while the frequency of contact between the antibacterial metal and L-cystine also increases. Also, if the BET specific surface area of the antibacterial metal-containing deodorant is too large, there is a possibility that the degree of dust generation increases. Considering this, the BET specific surface area of the porous deodorant is preferably 100 m 2 /g to 2000 m 2 /g, 100 m 2 /g to 1500 m 2 /g, 100 m 2 /g to 1000 m 2 /g, 100 m 2 /g to 800 m 2 /g, 300 m 2 /g to 2000 m 2 /g, 300 m 2 /g to 1500 m 2 /g, 300 m 2 /g to 1000 m 2 /g, 300 m 2 /g to 800 m 2 /g, 500 m 2 /g to 2000 m 2 /g, 500 m 2 /g to 1500 m 2 /g, 500 m 2 /g to 1000 m 2 /g or 500 m 2 /g to 800 m 2 /g.
抗菌性金属含有消臭剤のBET比表面積は、比表面積測定装置を用いて測定することができ、具体的には、実施例に記載の方法により測定した値である。
The BET specific surface area of the antibacterial metal-containing deodorant can be measured using a specific surface area measuring device, and specifically, is a value measured by the method described in the Examples.
本発明の吸水性樹脂組成物全体における、多孔性消臭剤の含有率x(質量%)と抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)は、0.10質量%以上である。本発明の効果をより好適に発揮する観点から、当該和(x+y)は、0.10質量%~0.80質量%、0.10質量%~0.60質量%、0.10質量%~0.50質量%、0.10質量%~0.40質量%、0.10質量%~0.35質量%、0.10質量%~0.30質量%、0.13質量%~0.80質量%、0.13質量%~0.60質量%、0.13質量%~0.50質量%、0.13質量%~0.40質量%、0.13質量%~0.35質量%、0.13質量%~0.30質量%、0.18質量%~0.80質量%、0.18質量%~0.60質量%、0.18質量%~0.50質量%、0.18質量%~0.40質量%、0.18質量%~0.35質量%、0.18質量%~0.30質量%、0.20質量%~0.80質量%、0.20質量%~0.60質量%、0.20質量%~0.50質量%、0.20質量%~0.40質量%、0.20質量%~0.35質量%、0.20質量%~0.30質量%、0.25質量%~0.80質量%、0.25質量%~0.60質量%、0.25質量%~0.50質量%、0.25質量%~0.40質量%、0.25質量%~0.35質量%、0.25質量%~0.30質量%、0.30質量%~0.80質量%、0.30質量%~0.60質量%、0.30質量%~0.50質量%、0.30質量%~0.40質量%、0.35質量%~0.80質量%、0.35質量%~0.60質量%、0.35質量%~0.50質量%又は0.35質量%~0.40質量%であってよい。なお、多孔性消臭剤の含有率x(質量%)と抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)が大きければ、発塵度が高くなることにより、吸水性樹脂組成物の取り扱い性が低下する可能性がある。この発塵度を考慮すると当該和(x+y)は0.50質量%以下であることが望ましい。
In the entire water absorbent resin composition of the present invention, the sum (x+y) of the content x (mass%) of the porous deodorant and the content y (mass%) of the antibacterial metal-containing deodorant is 0.10 mass% or more. From the viewpoint of more suitably exerting the effects of the present invention, the sum (x+y) is 0.10 mass% to 0.80 mass%, 0.10 mass% to 0.60 mass%, 0.10 mass% to 0.50 mass%, 0.10 mass% to 0.40 mass%, 0.10 mass% to 0.35 mass%, 0.10 mass% to 0.30 mass%, 0.13 mass% to 0.80 mass%, 0.13 mass% to 0.60 mass%, 0. 13 mass% to 0.50 mass%, 0.13 mass% to 0.40 mass%, 0.13 mass% to 0.35 mass%, 0.13 mass% to 0.30 mass%, 0.18 mass% to 0.80 mass%, 0.18 mass% to 0.60 mass%, 0.18 mass% to 0.50 mass%, 0.18 mass% to 0.40 mass%, 0.18 mass% to 0.35 mass% Mass%, 0.18 mass% to 0.30 mass%, 0.20 Mass% to 0.80 mass%, 0.20 mass% to 0.60 mass%, 0.20 mass% to 0.50 mass%, 0.20 mass% to 0.40 mass%, 0.20 mass% to 0.35 mass%, 0.20 mass% to 0.30 mass%, 0.25 mass% to 0.80 mass%, 0.25 mass% to 0.60 mass%, 0.25 mass% to 0.50 mass% , 0.25% by mass to 0.40% by mass, 0.25 quality The content may be 0.35% by mass, 0.25% by mass to 0.30% by mass, 0.30% by mass to 0.80% by mass, 0.30% by mass to 0.60% by mass, 0.30% by mass to 0.50% by mass, 0.30% by mass to 0.40% by mass, 0.35% by mass to 0.80% by mass, 0.35% by mass to 0.60% by mass, 0.35% by mass to 0.50% by mass, or 0.35% by mass to 0.40% by mass. If the sum (x+y) of the content x (mass%) of the porous deodorant and the content y (mass%) of the antibacterial metal-containing deodorant is large, the dust generation rate increases, which may reduce the handleability of the water absorbent resin composition. Considering this dust generation rate, the sum (x+y) is preferably 0.50% by mass or less.
また、本発明の効果をより好適に発揮する観点から、本発明の吸水性樹脂組成物全体における、抗菌性金属含有消臭剤の含有率y(質量%)は、0.020質量%~0.12質量%、0.020質量%~0.08質量%、0.020質量%~0.06質量%、0.020質量%~0.04質量%、0.024質量%~0.12質量%、0.024質量%~0.08質量%、0.024質量%~0.06質量%、0.024質量%~0.04質量%、0.028質量%~0.12質量%、0.028質量%~0.08質量%、0.028質量%~0.06質量%、0.028質量%~0.04質量%、0.05質量%~0.12質量%、0.05質量%~0.08質量%又は0.05質量%~0.06質量%であってよい。
In addition, from the viewpoint of more suitably exerting the effects of the present invention, the content y (mass%) of the antibacterial metal-containing deodorant in the entire water absorbent resin composition of the present invention is 0.020 mass% to 0.12 mass%, 0.020 mass% to 0.08 mass%, 0.020 mass% to 0.06 mass%, 0.020 mass% to 0.04 mass%, 0.024 mass% to 0.12 mass%, 0.024 mass% to 0. 08 mass%, 0.024 mass% to 0.06 mass%, 0.024 mass% to 0.04 mass%, 0.028 mass% to 0.12 mass%, 0.028 mass% to 0.08 mass%, 0.028 mass% to 0.06 mass%, 0.028 mass% to 0.04 mass%, 0.05 mass% to 0.12 mass%, 0.05 mass% to 0.08 mass% % or 0.05% to 0.06% by weight.
また、本発明の吸水性樹脂組成物は、多孔性消臭剤の含有量X(質量部)と、抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8以上である。本発明の効果をより好適に発揮する観点から、当該比率(X/Y)は、0.8~15.0、0.8~12.0、0.8~10.0、0.8~8.0、0.8~5.0、1.0~15.0、1.0~12.0、1.0~10.0、1.0~8.0、1.0~5.0、2.0~15.0、2.0~12.0、2.0~10.0、2.0~8.0、2.0~5.0、3.0~15.0、3.0~12.0、3.0~10.0、3.0~8.0又は3.0~5.0であってよい。
Furthermore, in the water absorbent resin composition of the present invention, the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more. From the viewpoint of more suitably exerting the effects of the present invention, the ratio (X/Y) may be 0.8 to 15.0, 0.8 to 12.0, 0.8 to 10.0, 0.8 to 8.0, 0.8 to 5.0, 1.0 to 15.0, 1.0 to 12.0, 1.0 to 10.0, 1.0 to 8.0, 1.0 to 5.0, 2.0 to 15.0, 2.0 to 12.0, 2.0 to 10.0, 2.0 to 8.0, 2.0 to 5.0, 3.0 to 15.0, 3.0 to 12.0, 3.0 to 10.0, 3.0 to 8.0, or 3.0 to 5.0.
前記の通り、本発明の吸水性樹脂組成物において、抗菌性金属含有消臭剤は、吸水性重合体粒子の表面に配されて(すなわち、抗菌性金属含有消臭剤は、吸水性重合体粒子の表面に存在して)いてもよい。例えば、吸水性重合体粒子と粒子状の抗菌性金属含有消臭剤とを固相の状態で混合することにより、吸水性重合体粒子の表面に抗菌性金属含有消臭剤が付着し、吸水性重合体粒子の表面に抗菌性金属含有消臭剤を配することができる。
As described above, in the water-absorbent resin composition of the present invention, the antibacterial metal-containing deodorant may be disposed on the surface of the water-absorbent polymer particles (i.e., the antibacterial metal-containing deodorant is present on the surface of the water-absorbent polymer particles). For example, by mixing the water-absorbent polymer particles and the particulate antibacterial metal-containing deodorant in a solid phase state, the antibacterial metal-containing deodorant adheres to the surface of the water-absorbent polymer particles, and the antibacterial metal-containing deodorant can be disposed on the surface of the water-absorbent polymer particles.
(多孔性消臭剤)
多孔性消臭剤は、多孔性かつ上述した抗菌性金属を実質的に含まない消臭剤である。ここで、「抗菌性金属を実質的に含まない消臭剤」は、実質的な抗菌性を奏さない程度に抗菌性金属を含む消臭剤および抗菌性金属を全く含まない消臭剤を包含しており、例えば、抗菌性金属の含有量が1質量%未満の消臭剤である。 (Porous deodorant)
The porous deodorant is a deodorant that is porous and does not substantially contain the above-mentioned antibacterial metal. Here, the term "deodorant that does not substantially contain antibacterial metal" includes deodorants that contain antibacterial metal to an extent that they do not exhibit substantial antibacterial properties and deodorants that do not contain antibacterial metal at all, for example, a deodorant that contains less than 1 mass % of antibacterial metal.
多孔性消臭剤は、多孔性かつ上述した抗菌性金属を実質的に含まない消臭剤である。ここで、「抗菌性金属を実質的に含まない消臭剤」は、実質的な抗菌性を奏さない程度に抗菌性金属を含む消臭剤および抗菌性金属を全く含まない消臭剤を包含しており、例えば、抗菌性金属の含有量が1質量%未満の消臭剤である。 (Porous deodorant)
The porous deodorant is a deodorant that is porous and does not substantially contain the above-mentioned antibacterial metal. Here, the term "deodorant that does not substantially contain antibacterial metal" includes deodorants that contain antibacterial metal to an extent that they do not exhibit substantial antibacterial properties and deodorants that do not contain antibacterial metal at all, for example, a deodorant that contains less than 1 mass % of antibacterial metal.
本発明の効果をより好適に発揮する観点から、多孔性消臭剤は、活性炭、二酸化ケイ素及びケイ酸塩からなる群より選択される少なくとも1種を含んでよく、又は活性炭及び二酸化ケイ素のうち少なくとも1種を含んでよい。特に、L-シスチンに対する優れた吸着効果が期待できることから、多孔性消臭剤は少なくとも活性炭を含むことが好ましく、その割合(質量%)は、例えば、80質量%~100質量%、90質量%~100質量%又は95質量%~100質量%である。
In order to more suitably exert the effects of the present invention, the porous deodorant may contain at least one selected from the group consisting of activated carbon, silicon dioxide, and silicates, or may contain at least one of activated carbon and silicon dioxide. In particular, since an excellent adsorption effect on L-cystine can be expected, it is preferable that the porous deodorant contains at least activated carbon, and the proportion (mass %) is, for example, 80% to 100% by mass, 90% to 100% by mass, or 95% to 100% by mass.
本発明の効果をより好適に発揮する観点から、多孔性消臭剤の中位粒子径は、1μm~100μm、1μm~80μm、1μm~60μm、10μm~100μm、10μm~80μm、10μm~60μm、15μm~100μm、15μm~80μm、15μm~60μm、20μm~100μm、20μm~80μm又は20μm~60μmであってよい。
In order to more effectively exert the effects of the present invention, the median particle size of the porous deodorant may be 1 μm to 100 μm, 1 μm to 80 μm, 1 μm to 60 μm, 10 μm to 100 μm, 10 μm to 80 μm, 10 μm to 60 μm, 15 μm to 100 μm, 15 μm to 80 μm, 15 μm to 60 μm, 20 μm to 100 μm, 20 μm to 80 μm, or 20 μm to 60 μm.
多孔性消臭剤の中位粒子径(D50(メジアン径)、体積基準)は、レーザー回折式粒度分布測定装置を用いて測定することができ、具体的には、実施例に記載の方法により測定した値である。
The median particle size (D50 (median size), volume basis) of the porous deodorant can be measured using a laser diffraction particle size distribution measuring device, and specifically, is a value measured by the method described in the Examples.
本発明の効果をより好適に発揮する観点から、多孔性消臭剤の形状は、好ましくは破砕状、円柱状などであり、より好ましくは破砕状である。
In order to more effectively exert the effects of the present invention, the shape of the porous deodorant is preferably crushed or cylindrical, and more preferably crushed.
また、本発明の効果をより好適に発揮する観点から、多孔性消臭剤のBET比表面積は、100m2/g~3000m2/g、100m2/g~2500m2/g、100m2/g~2000m2/g、100m2/g~1500m2/g、500m2/g~3000m2/g、500m2/g~2500m2/g、500m2/g~2000m2/g、500m2/g~1500m2/g、1000m2/g~3000m2/g、1000m2/g~2500m2/g、1000m2/g~2000m2/g又は1000m2/g~1500m2/gであってよい。多孔性消臭剤のBET比表面積が大きければ尿に含まれるL-シスチンを効率的に吸着し得る。一方、多孔性消臭剤のBET比表面積が大きすぎる場合、各細孔が微細化することにより、多孔性消臭剤の強度が低下し、上述した発塵度が増加する可能性があるため、BET比表面積の上限値は2000m2/gであることが好ましい。
From the viewpoint of more suitably exerting the effects of the present invention, the BET specific surface area of the porous deodorant is preferably 100 m 2 /g to 3000 m 2 /g, 100 m 2 /g to 2500 m 2 /g, 100 m 2 /g to 2000 m 2 /g, 100 m 2 /g to 1500 m 2 /g, 500 m 2 /g to 3000 m 2 /g, 500 m 2 /g to 2500 m 2 /g, 500 m 2 /g to 2000 m 2 /g, 500 m 2 /g to 1500 m 2 /g, 1000 m 2 /g to 3000 m 2 /g, 1000 m 2 / g to 2500 m 2 /g, 1000 m 2 The BET specific surface area may be from 1000 m 2 /g to 2000 m 2 /g or from 1000 m 2 /g to 1500 m 2 /g. If the BET specific surface area of the porous deodorant is large, it can efficiently adsorb L-cystine contained in urine. On the other hand, if the BET specific surface area of the porous deodorant is too large, the strength of the porous deodorant decreases due to the individual pores becoming finer, and there is a possibility that the above-mentioned dust generation rate increases, so that the upper limit of the BET specific surface area is preferably 2000 m 2 /g.
多孔性消臭剤のBET比表面積は、比表面積測定装置を用いて測定することができ、具体的には、実施例に記載の方法により測定した値である。
The BET specific surface area of the porous deodorant can be measured using a specific surface area measuring device, and specifically, is a value measured by the method described in the Examples.
本発明の効果をより好適に発揮する観点から、多孔性消臭剤としての活性炭は、表面に極性官能基(親水性官能基)を有する活性炭(すなわち親水性の活性炭)であることが好ましい。極性官能基としては、例えば、ヒドロキシ基、カルボキシ基、フェノール基などが挙げられる。表面に極性官能基を有する活性炭は、例えば、液相用活性炭、水処理用活性炭などとして市販されている。
In order to more effectively exert the effects of the present invention, it is preferable that the activated carbon used as the porous deodorant is activated carbon having a polar functional group (hydrophilic functional group) on the surface (i.e., hydrophilic activated carbon). Examples of polar functional groups include hydroxyl groups, carboxyl groups, and phenol groups. Activated carbon having polar functional groups on the surface is commercially available, for example, as activated carbon for liquid phase and activated carbon for water treatment.
活性炭の由来としては、例えば、ヤシ殻、不融化或いは炭素化した有機質材料、フェノール樹脂等の不融性樹脂等が挙げられる。また、有機質材料としては、例えば、ポリアクリロニトリル、ピッチ、ポリビニルアルコール、セルロース等が挙げられる。これらの中でも、活性炭の由来は、木材(おがくず)、ヤシ殻、ピッチ(例えば石炭ピッチ)であることが好ましい。
Sources of activated carbon include, for example, coconut shells, infusible or carbonized organic materials, and infusible resins such as phenolic resins. Examples of organic materials include polyacrylonitrile, pitch, polyvinyl alcohol, and cellulose. Of these, it is preferable that activated carbon is derived from wood (sawdust), coconut shells, and pitch (for example, coal pitch).
本発明の効果をより好適に発揮する観点から、本発明の吸水性樹脂組成物における多孔性消臭剤の含有率x(質量%)は、例えば、0.05質量%~0.40質量%、0.05質量%~0.35質量%、0.05質量%~0.30質量%、0.08質量%~0.40質量%、0.08質量%~0.35質量%、0.08質量%~0.30質量%、0.10質量%~0.40質量%、0.10質量%~0.35質量%、0.10質量%~0.30質量%、0.15質量%~0.40質量%、0.15質量%~0.35質量%、0.15質量%~0.30質量%、0.20質量%~0.40質量%、0.20質量%~0.35質量%、0.20質量%~0.30質量%、0.25質量%~0.40質量%、0.25質量%~0.35質量%又は0.25質量%~0.30質量%であってよい。
From the viewpoint of more suitably exerting the effects of the present invention, the content x (mass%) of the porous deodorant in the water absorbent resin composition of the present invention is, for example, 0.05 mass% to 0.40 mass%, 0.05 mass% to 0.35 mass%, 0.05 mass% to 0.30 mass%, 0.08 mass% to 0.40 mass%, 0.08 mass% to 0.35 mass%, 0.08 mass% to 0.30 mass%, 0.10 mass% to 0.4 ... % to 0.35 mass%, 0.10 mass% to 0.30 mass%, 0.15 mass% to 0.40 mass%, 0.15 mass% to 0.35 mass%, 0.15 mass% to 0.30 mass%, 0.20 mass% to 0.40 mass%, 0.20 mass% to 0.35 mass%, 0.20 mass% to 0.30 mass%, 0.25 mass% to 0.40 mass% , 0.25% to 0.35% by weight, or 0.25% to 0.30% by weight.
多孔性消臭剤のヨウ素吸着量は、例えば、100mg/g~3000mg/g、100mg/g~2000mg/g、500mg/g~3000mg/g又は500mg/g~2000mg/gであってよい。
The iodine adsorption amount of the porous deodorant may be, for example, 100 mg/g to 3000 mg/g, 100 mg/g to 2000 mg/g, 500 mg/g to 3000 mg/g, or 500 mg/g to 2000 mg/g.
ここで活性炭のヨウ素吸着量とは、JIS K1474:2014に準拠して測定された値である。
The iodine adsorption capacity of activated carbon here is a value measured in accordance with JIS K1474:2014.
多孔性消臭剤の乾燥減量が低い(換言すると、多孔性消臭剤の純分が多い)場合、消臭効果を発揮し易くなる一方、発塵し易くなる傾向にある。これを考慮すると、多孔性消臭剤の乾燥減量は、例えば、0.1%~15.0%、0.1%~10.0%、0.1%~5.0%、0.5%~15.0%、0.5%~10.0%、0.5%~5.0%、1.0%~15.0%、1.0%~10.0%又は1.0%~5.0%であってよい。
When the drying loss of a porous deodorant is low (in other words, the purity of the porous deodorant is high), it is easier to exert a deodorizing effect, but it also tends to generate dust. Taking this into consideration, the drying loss of the porous deodorant may be, for example, 0.1% to 15.0%, 0.1% to 10.0%, 0.1% to 5.0%, 0.5% to 15.0%, 0.5% to 10.0%, 0.5% to 5.0%, 1.0% to 15.0%, 1.0% to 10.0%, or 1.0% to 5.0%.
ここで多孔性消臭剤の乾燥減量とは、JIS K1474:2014に準拠して測定された値である。
The loss on drying of the porous deodorant here is the value measured in accordance with JIS K1474:2014.
多孔性消臭剤のpHは、例えば、3.0~12.0、3.0~11.0、3.0~8.0、3.0~5.0、4.0~12.0、4.0~11.0、4.0~8.0又は4.0~5.0であってよい。
The pH of the porous deodorant may be, for example, 3.0 to 12.0, 3.0 to 11.0, 3.0 to 8.0, 3.0 to 5.0, 4.0 to 12.0, 4.0 to 11.0, 4.0 to 8.0, or 4.0 to 5.0.
ここで多孔性消臭剤のpHとは、JIS K1474:2014に準拠して測定された値である。
The pH of the porous deodorant here is the value measured in accordance with JIS K1474:2014.
前記の通り、本発明の吸水性樹脂組成物において、多孔性消臭剤は、吸水性重合体粒子の表面に配されて(すなわち、多孔性消臭剤は、吸水性重合体粒子の表面に存在して)いてもよい。例えば、吸水性重合体粒子と多孔性消臭剤とを固相の状態で混合することにより、吸水性重合体粒子の表面に多孔性消臭剤が付着し、吸水性重合体粒子の表面に多孔性消臭剤を配することができる。
As described above, in the water-absorbent resin composition of the present invention, the porous deodorant may be disposed on the surface of the water-absorbent polymer particles (i.e., the porous deodorant may be present on the surface of the water-absorbent polymer particles). For example, by mixing the water-absorbent polymer particles and the porous deodorant in a solid phase state, the porous deodorant can be attached to the surface of the water-absorbent polymer particles, and the porous deodorant can be disposed on the surface of the water-absorbent polymer particles.
次に、本発明の吸水性樹脂組成物に含まれる吸水性重合体粒子(吸水性樹脂粒子)について詳述する。
Next, the water-absorbent polymer particles (water-absorbent resin particles) contained in the water-absorbent resin composition of the present invention will be described in detail.
(吸水性重合体粒子)
本発明の吸水性樹脂組成物に含まれる吸水性重合体粒子は、水溶性エチレン性不飽和単量体の重合物を架橋したもの、すなわち水溶性エチレン性不飽和単量体に由来する構造単位を有する架橋重合体により構成されている。 (Water-absorbing polymer particles)
The water-absorbent polymer particles contained in the water-absorbent resin composition of the present invention are crosslinked polymers of water-soluble ethylenically unsaturated monomers, i.e., structural units derived from water-soluble ethylenically unsaturated monomers. The polymer is composed of a crosslinked polymer having the following structure:
本発明の吸水性樹脂組成物に含まれる吸水性重合体粒子は、水溶性エチレン性不飽和単量体の重合物を架橋したもの、すなわち水溶性エチレン性不飽和単量体に由来する構造単位を有する架橋重合体により構成されている。 (Water-absorbing polymer particles)
The water-absorbent polymer particles contained in the water-absorbent resin composition of the present invention are crosslinked polymers of water-soluble ethylenically unsaturated monomers, i.e., structural units derived from water-soluble ethylenically unsaturated monomers. The polymer is composed of a crosslinked polymer having the following structure:
多孔性消臭剤がL-シスチンを十分に吸着する前に吸水性重合体粒子に尿が吸水されることを抑制しつつ実用上十分な吸水能を担保する観点から、吸水性重合体粒子のVortex法による吸水速度は、例えば、10秒~80秒、10秒~60秒、10秒~40秒、20秒~80秒、20秒~60秒、20秒~40秒、30秒~80秒、30秒~60秒又は30秒~40秒であってよい。
From the viewpoint of preventing the water-absorbent polymer particles from absorbing urine before the porous deodorant has sufficiently adsorbed L-cystine while ensuring sufficient water absorption capacity for practical use, the water-absorbent polymer particles' water-absorption speed by the Vortex method may be, for example, 10 to 80 seconds, 10 to 60 seconds, 10 to 40 seconds, 20 to 80 seconds, 20 to 60 seconds, 20 to 40 seconds, 30 to 80 seconds, 30 to 60 seconds, or 30 to 40 seconds.
Vortex法による吸水性重合体粒子の吸水速度は、実施例に記載の方法により測定した値である。
The water absorption rate of water-absorbent polymer particles using the Vortex method is a value measured using the method described in the Examples.
吸水性重合体粒子の生理食塩水保水量は、例えば、20g/g~60g/g、20g/g~55g/g、20g/g~50g/g、25g/g~60g/g、25g/g~55g/g、25g/g~50g/g、30g/g~60g/g、30g/g~55g/g又は30g/g~50g/gであってよい。
The saline water retention capacity of the water-absorbent polymer particles may be, for example, 20 g/g to 60 g/g, 20 g/g to 55 g/g, 20 g/g to 50 g/g, 25 g/g to 60 g/g, 25 g/g to 55 g/g, 25 g/g to 50 g/g, 30 g/g to 60 g/g, 30 g/g to 55 g/g, or 30 g/g to 50 g/g.
吸水性重合体粒子の4.14kPa荷重下での生理食塩水吸水量は、例えば、10mL/g~40mL/g、10mL/g~35mL/g、10mL/g~30mL/g、13mL/g~40mL/g、13mL/g~35mL/g、13mL/g~30mL/g、15mL/g~40mL/g、15mL/g~35mL/g又は15mL/g~30mL/gであってよい。
The physiological saline water absorption capacity of the water-absorbent polymer particles under a load of 4.14 kPa may be, for example, 10 mL/g to 40 mL/g, 10 mL/g to 35 mL/g, 10 mL/g to 30 mL/g, 13 mL/g to 40 mL/g, 13 mL/g to 35 mL/g, 13 mL/g to 30 mL/g, 15 mL/g to 40 mL/g, 15 mL/g to 35 mL/g, or 15 mL/g to 30 mL/g.
吸水性重合体粒子の生理食塩水保水量及び4.14kPa荷重下での生理食塩水吸水量は、それぞれ、実施例に記載の方法により測定した値である。
The saline water retention capacity of the water-absorbent polymer particles and the saline water absorption capacity under a load of 4.14 kPa were each measured using the method described in the Examples.
吸水性重合体粒子の中位粒子径は、例えば、150μm~850μm、150μm~600μm、150μm~550μm、150μm~500μm、150μm~450μm、150μm~400μm、200μm~850μm、200μm~600μm、200μm~550μm、200μm~500μm、200μm~450μm、200μm~400μm、240μm~850μm、240μm~600μm、240μm~550μm、240μm~500μm、240μm~450μm、240μm~400μm、260μm~850μm、260μm~600μm、260μm~550μm、260μm~500μm、260μm~450μm、260μm~400μm、280μm~850μm、280μm~600μm、280μm~550μm、280μm~500μm、280μm~450μm、280μm~400μm、300μm~850μm、300μm~600μm、300μm~550μm、300μm~500μm、300μm~450μm又は300μm~400μmであってよい。
The median particle size of the water-absorbing polymer particles is, for example, 150μm to 850μm, 150μm to 600μm, 150μm to 550μm, 150μm to 500μm, 150μm to 450μm, 150μm to 400μm, 200μm to 850μm, 200μm to 600μm, 200μm to 550μm, 200μm to 500μm, 200μm to 450μm, 200μm to 400μm, 240μm to 850μm, 240μm to 600μm, 240μm to 550μm, 240μm to 500μm, 240μm to 450μm, 240μm It may be up to 400 μm, 260 μm to 850 μm, 260 μm to 600 μm, 260 μm to 550 μm, 260 μm to 500 μm, 260 μm to 450 μm, 260 μm to 400 μm, 280 μm to 850 μm, 280 μm to 600 μm, 280 μm to 550 μm, 280 μm to 500 μm, 280 μm to 450 μm, 280 μm to 400 μm, 300 μm to 850 μm, 300 μm to 600 μm, 300 μm to 550 μm, 300 μm to 500 μm, 300 μm to 450 μm, or 300 μm to 400 μm.
なお、吸水性重合体粒子は、各々が単一の粒子からなる形態のほかに、微細な粒子(一次粒子)が凝集した形態(二次粒子)であってもよい。一次粒子の形状としては、略球状、不定形破砕状、板状等が挙げられる。逆相懸濁重合によって製造される一次粒子である場合には、真球状、楕円球状等のような円滑な表面形状を有する略球状の単粒子形状が挙げられる。
In addition, the water-absorbing polymer particles may be in a form consisting of a single particle, or in a form consisting of an aggregate of fine particles (primary particles) (secondary particles). Examples of the shape of the primary particles include an approximately spherical shape, an irregularly crushed shape, a plate shape, etc. In the case of primary particles produced by reversed-phase suspension polymerization, examples of the shape include an approximately spherical single particle shape having a smooth surface shape such as a perfect sphere or an oval sphere.
吸水性重合体粒子の中位粒子径は、JIS標準篩を用いて測定することができ、具体的には、実施例に記載の方法により測定した値である。
The median particle size of the water-absorbent polymer particles can be measured using a JIS standard sieve, and specifically, is the value measured by the method described in the examples.
水溶性エチレン性不飽和単量体の重合方法は、代表的な重合法である水溶液重合法、乳化重合法、逆相懸濁重合法等が用いられる。水溶液重合法では、水溶性エチレン性不飽和単量体水溶液を、必要に応じて攪拌しながら、加熱することにより重合が行われる。また、逆相懸濁重合法では、水溶性エチレン性不飽和単量体を、炭化水素分散媒中、攪拌下で加熱することにより重合が行われる。
The typical polymerization methods used for polymerizing water-soluble ethylenically unsaturated monomers include aqueous solution polymerization, emulsion polymerization, and reversed-phase suspension polymerization. In the aqueous solution polymerization method, polymerization is carried out by heating an aqueous solution of the water-soluble ethylenically unsaturated monomer, with stirring as necessary. In the reversed-phase suspension polymerization method, polymerization is carried out by heating the water-soluble ethylenically unsaturated monomer in a hydrocarbon dispersion medium, with stirring.
吸水性重合体粒子に関して、その製造方法の一例を、以下に説明する。
One example of a method for producing water-absorbent polymer particles is described below.
吸水性重合体粒子の製造方法の具体例としては、水溶性エチレン性不飽和単量体を炭化水素分散媒中で逆相懸濁重合させて吸水性重合体粒子を製造する方法において、ラジカル重合開始剤の存在下において重合を行う工程と、重合で得られた含水ゲル状物に表面架橋剤の存在下に表面架橋する工程とを有する製造方法が挙げられる。なお、本発明の吸水性重合体粒子の製造方法においては、必要に応じて水溶性エチレン性不飽和単量体に内部架橋剤を添加して内部架橋構造を有する含水ゲル状物としてもよい。
A specific example of a method for producing water-absorbent polymer particles is a method for producing water-absorbent polymer particles by reverse phase suspension polymerization of a water-soluble ethylenically unsaturated monomer in a hydrocarbon dispersion medium, which includes a step of carrying out polymerization in the presence of a radical polymerization initiator and a step of surface cross-linking the hydrogel-like material obtained by polymerization in the presence of a surface cross-linking agent. In the method for producing water-absorbent polymer particles of the present invention, an internal cross-linking agent may be added to the water-soluble ethylenically unsaturated monomer as necessary to form a hydrogel-like material having an internal cross-linking structure.
<重合工程>
[水溶性エチレン性不飽和単量体]
水溶性エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸(本明細書においては、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。以下同様)及びその塩;2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体;N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体及びその4級化物等が挙げられる。これらの水溶性エチレン性不飽和単量体の中でも、工業的に入手が容易であること等の観点から、(メタ)アクリル酸又はその塩、(メタ)アクリルアミド、N,N-ジメチルアクリルアミドが好ましく、(メタ)アクリル酸及びその塩がより好ましい。なお、これらの水溶性エチレン性不飽和単量体は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 <Polymerization step>
[Water-soluble ethylenically unsaturated monomer]
Examples of water-soluble ethylenically unsaturated monomers include (meth)acrylic acid (in the present specification, "acrylic" and "methacrylic" are collectively referred to as "(meth)acrylic", the same applies below) and salts thereof; 2-(meth)acrylamido-2-methylpropanesulfonic acid and salts thereof; nonionic monomers such as (meth)acrylamide, N,N-dimethyl(meth)acrylamide, 2-hydroxyethyl(meth)acrylate, N-methylol(meth)acrylamide, and polyethylene glycol mono(meth)acrylate; and amino group-containing unsaturated monomers and quaternized products thereof such as N,N-diethylaminoethyl(meth)acrylate, N,N-diethylaminopropyl(meth)acrylate, and diethylaminopropyl(meth)acrylamide. Among these water-soluble ethylenically unsaturated monomers, from the viewpoint of industrial ease of availability, etc., (meth)acrylic acid or a salt thereof, (meth)acrylamide, and N,N-dimethylacrylamide are preferred, and (meth)acrylic acid and a salt thereof are more preferred. These water-soluble ethylenically unsaturated monomers may be used alone or in combination of two or more kinds.
[水溶性エチレン性不飽和単量体]
水溶性エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸(本明細書においては、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。以下同様)及びその塩;2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート等の非イオン性単量体;N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体及びその4級化物等が挙げられる。これらの水溶性エチレン性不飽和単量体の中でも、工業的に入手が容易であること等の観点から、(メタ)アクリル酸又はその塩、(メタ)アクリルアミド、N,N-ジメチルアクリルアミドが好ましく、(メタ)アクリル酸及びその塩がより好ましい。なお、これらの水溶性エチレン性不飽和単量体は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 <Polymerization step>
[Water-soluble ethylenically unsaturated monomer]
Examples of water-soluble ethylenically unsaturated monomers include (meth)acrylic acid (in the present specification, "acrylic" and "methacrylic" are collectively referred to as "(meth)acrylic", the same applies below) and salts thereof; 2-(meth)acrylamido-2-methylpropanesulfonic acid and salts thereof; nonionic monomers such as (meth)acrylamide, N,N-dimethyl(meth)acrylamide, 2-hydroxyethyl(meth)acrylate, N-methylol(meth)acrylamide, and polyethylene glycol mono(meth)acrylate; and amino group-containing unsaturated monomers and quaternized products thereof such as N,N-diethylaminoethyl(meth)acrylate, N,N-diethylaminopropyl(meth)acrylate, and diethylaminopropyl(meth)acrylamide. Among these water-soluble ethylenically unsaturated monomers, from the viewpoint of industrial ease of availability, etc., (meth)acrylic acid or a salt thereof, (meth)acrylamide, and N,N-dimethylacrylamide are preferred, and (meth)acrylic acid and a salt thereof are more preferred. These water-soluble ethylenically unsaturated monomers may be used alone or in combination of two or more kinds.
これらの中でも、アクリル酸及びその塩が吸水性重合体粒子の原材料として広く用いられており、これらアクリル酸及び/又はその塩に、前述の他の水溶性エチレン性不飽和単量体を共重合させて用いる場合もある。この場合、アクリル酸及び/又はその塩は、主となる水溶性エチレン性不飽和単量体として、総水溶性エチレン性不飽和単量体に対して70~100モル%用いられることが好ましい。
Among these, acrylic acid and its salts are widely used as raw materials for water-absorbent polymer particles, and these acrylic acid and/or its salts may be copolymerized with the other water-soluble ethylenically unsaturated monomers mentioned above. In this case, it is preferable that acrylic acid and/or its salts are used as the main water-soluble ethylenically unsaturated monomer in an amount of 70 to 100 mol % based on the total water-soluble ethylenically unsaturated monomers.
水溶性エチレン性不飽和単量体は、水溶液の状態で炭化水素分散媒中に分散されて、逆相懸濁重合に供されてもよい。水溶性エチレン性不飽和単量体は、水溶液とすることにより、炭化水素分散媒中での分散効率を上昇させることができる。この水溶液における水溶性エチレン性不飽和単量体の濃度としては、20質量%~飽和濃度以下の範囲であることが好ましい。また、水溶性エチレン性不飽和単量体の濃度としては、55質量%以下であることがより好ましく、50質量%以下であることがさらに好ましく、45質量%以下であることがよりさらに好ましい。一方、水溶性エチレン性不飽和単量体の濃度としては25質量%以上であることがより好ましく、28質量%以上であることがさらに好ましく、30質量%以上であることがよりさらに好ましい。
The water-soluble ethylenically unsaturated monomer may be dispersed in a hydrocarbon dispersion medium in the form of an aqueous solution and subjected to reversed-phase suspension polymerization. By forming the water-soluble ethylenically unsaturated monomer into an aqueous solution, the dispersion efficiency in the hydrocarbon dispersion medium can be increased. The concentration of the water-soluble ethylenically unsaturated monomer in this aqueous solution is preferably in the range of 20% by mass to the saturated concentration or less. The concentration of the water-soluble ethylenically unsaturated monomer is more preferably 55% by mass or less, even more preferably 50% by mass or less, and even more preferably 45% by mass or less. On the other hand, the concentration of the water-soluble ethylenically unsaturated monomer is more preferably 25% by mass or more, even more preferably 28% by mass or more, and even more preferably 30% by mass or more.
水溶性エチレン性不飽和単量体が、(メタ)アクリル酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸等のように酸基を有する場合、必要に応じてその酸基が予めアルカリ性中和剤により中和されたものを用いてもよい。このようなアルカリ性中和剤としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化カリウム、炭酸カリウム等のアルカリ金属塩;アンモニア等が挙げられる。また、これらのアルカリ性中和剤は、中和操作を簡便にするために水溶液の状態にして用いてもよい。なお、上述したアルカリ性中和剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
When the water-soluble ethylenically unsaturated monomer has an acid group, such as (meth)acrylic acid, 2-(meth)acrylamide-2-methylpropanesulfonic acid, etc., the acid group may be neutralized in advance with an alkaline neutralizing agent, if necessary. Examples of such alkaline neutralizing agents include alkali metal salts such as sodium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium hydroxide, potassium carbonate, etc.; ammonia, etc. Furthermore, these alkaline neutralizing agents may be used in the form of an aqueous solution to simplify the neutralization operation. The alkaline neutralizing agents described above may be used alone or in combination of two or more types.
アルカリ性中和剤による水溶性エチレン性不飽和単量体の中和度としては、水溶性エチレン性不飽和単量体が有する全ての酸基に対する中和度として、10~100モル%であることが好ましく、30~90モル%であることがより好ましく、40~85モル%であることがさらに好ましく、50~80モル%であることがよりさらに好ましい。
The degree of neutralization of the water-soluble ethylenically unsaturated monomer by the alkaline neutralizing agent is preferably 10 to 100 mol%, more preferably 30 to 90 mol%, even more preferably 40 to 85 mol%, and even more preferably 50 to 80 mol%, in terms of the degree of neutralization of all acid groups possessed by the water-soluble ethylenically unsaturated monomer.
[ラジカル重合開始剤]
当該重合工程に添加されるラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類、メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、過酸化水素等の過酸化物類、並びに、2,2’-アゾビス(2-アミジノプロパン)2塩酸塩、2,2’-アゾビス〔2-(N-フェニルアミジノ)プロパン〕2塩酸塩、2,2’-アゾビス〔2-(N-アリルアミジノ)プロパン〕2塩酸塩、2,2’-アゾビス{2-〔1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル〕プロパン}2塩酸塩、2,2’-アゾビス{2-メチル-N-〔1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル〕プロピオンアミド}、2,2’-アゾビス〔2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド〕、4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物等を挙げることができる。これらのラジカル重合開始剤の中でも、入手が容易で取り扱いやすいという観点から、好ましくは、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム及び2,2’-アゾビス(2-アミジノプロパン)2塩酸塩が挙げられる。これらラジカル重合開始剤は、単独で用いても、2種以上を組み合わせて用いてもよい。また、前記ラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、及びL-アスコルビン酸等の還元剤と併用して、レドックス重合開始剤として用いることもできる。 [Radical Polymerization Initiator]
Examples of the radical polymerization initiator added to the polymerization step include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate, peroxides such as methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t-butyl peroxyacetate, t-butyl peroxyisobutyrate, t-butyl peroxypivalate, and hydrogen peroxide, as well as 2,2'-azobis(2-amidinopropane) dihydrochloride and 2,2'-azobis[2-(N-phenylenediamine)-2-methylpropane]. Examples of the azo compounds include 2,2'-azobis[2-(N-allylamidino)propane] dihydrochloride, 2,2'-azobis{2-[1-(2-hydroxyethyl)-2-imidazolin-2-yl]propane} dihydrochloride, 2,2'-azobis{2-methyl-N-[1,1-bis(hydroxymethyl)-2-hydroxyethyl]propionamide}, 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)-propionamide], and 4,4'-azobis(4-cyanovaleric acid). Among these radical polymerization initiators, potassium persulfate, ammonium persulfate, sodium persulfate, and 2,2'-azobis(2-amidinopropane) dihydrochloride are preferred from the viewpoint of easy availability and ease of handling. These radical polymerization initiators may be used alone or in combination of two or more. The radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, or L-ascorbic acid.
当該重合工程に添加されるラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩類、メチルエチルケトンパーオキシド、メチルイソブチルケトンパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルクミルパーオキシド、t-ブチルパーオキシアセテート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレート、過酸化水素等の過酸化物類、並びに、2,2’-アゾビス(2-アミジノプロパン)2塩酸塩、2,2’-アゾビス〔2-(N-フェニルアミジノ)プロパン〕2塩酸塩、2,2’-アゾビス〔2-(N-アリルアミジノ)プロパン〕2塩酸塩、2,2’-アゾビス{2-〔1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル〕プロパン}2塩酸塩、2,2’-アゾビス{2-メチル-N-〔1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル〕プロピオンアミド}、2,2’-アゾビス〔2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド〕、4,4’-アゾビス(4-シアノ吉草酸)等のアゾ化合物等を挙げることができる。これらのラジカル重合開始剤の中でも、入手が容易で取り扱いやすいという観点から、好ましくは、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム及び2,2’-アゾビス(2-アミジノプロパン)2塩酸塩が挙げられる。これらラジカル重合開始剤は、単独で用いても、2種以上を組み合わせて用いてもよい。また、前記ラジカル重合開始剤は、亜硫酸ナトリウム、亜硫酸水素ナトリウム、硫酸第一鉄、及びL-アスコルビン酸等の還元剤と併用して、レドックス重合開始剤として用いることもできる。 [Radical Polymerization Initiator]
Examples of the radical polymerization initiator added to the polymerization step include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate, peroxides such as methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, di-t-butyl peroxide, t-butyl cumyl peroxide, t-butyl peroxyacetate, t-butyl peroxyisobutyrate, t-butyl peroxypivalate, and hydrogen peroxide, as well as 2,2'-azobis(2-amidinopropane) dihydrochloride and 2,2'-azobis[2-(N-phenylenediamine)-2-methylpropane]. Examples of the azo compounds include 2,2'-azobis[2-(N-allylamidino)propane] dihydrochloride, 2,2'-azobis{2-[1-(2-hydroxyethyl)-2-imidazolin-2-yl]propane} dihydrochloride, 2,2'-azobis{2-methyl-N-[1,1-bis(hydroxymethyl)-2-hydroxyethyl]propionamide}, 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)-propionamide], and 4,4'-azobis(4-cyanovaleric acid). Among these radical polymerization initiators, potassium persulfate, ammonium persulfate, sodium persulfate, and 2,2'-azobis(2-amidinopropane) dihydrochloride are preferred from the viewpoint of easy availability and ease of handling. These radical polymerization initiators may be used alone or in combination of two or more. The radical polymerization initiator can also be used as a redox polymerization initiator in combination with a reducing agent such as sodium sulfite, sodium hydrogen sulfite, ferrous sulfate, or L-ascorbic acid.
ラジカル重合開始剤の使用量としては、例えば、水溶性エチレン性不飽和単量体1モルに対して0.00005~0.01モルが挙げられる。このような使用量を充足することにより、急激な重合反応が起こるのを回避し、且つ重合反応を適切な時間で完了させることができる。
The amount of radical polymerization initiator used is, for example, 0.00005 to 0.01 mole per mole of water-soluble ethylenically unsaturated monomer. By using such an amount, it is possible to avoid a sudden polymerization reaction and to complete the polymerization reaction within an appropriate time.
[内部架橋剤]
内部架橋剤としては、使用する水溶性エチレン性不飽和単量体の重合体を架橋できるものが挙げられ、例えば、(ポリ)エチレングリコール〔「(ポリ)」とは「ポリ」の接頭語がある場合とない場合を意味する。以下同様〕、(ポリ)プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、トリメチロールプロパン、(ポリ)グリセリン等のジオール、トリオール等のポリオール類と(メタ)アクリル酸、マレイン酸、フマル酸等の不飽和酸とを反応させて得られる不飽和ポリエステル類;N,N-メチレンビスアクリルアミド等のビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ(メタ)アクリル酸エステル類又はトリ(メタ)アクリル酸エステル類;トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のポリイソシアネートと(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N’’-トリアリルイソシアヌレート、ジビニルベンゼン等の重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等のジグリシジル化合物、トリグリシジル化合物等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のエピハロヒドリン化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物等が挙げられる。これらの内部架橋剤の中でも、ポリグリシジル化合物を用いることが好ましく、ジグリシジルエーテル化合物を用いることがより好ましく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテルを用いることが好ましい。これらの内部架橋剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 [Internal crosslinking agent]
The internal crosslinking agent may be one capable of crosslinking the polymer of the water-soluble ethylenically unsaturated monomer used, such as (poly)ethylene glycol (the term "(poly)" refers to the case where the "poly" prefix is used or not). the same applies below)], unsaturated polyesters obtained by reacting polyols such as diols and triols, such as (poly)propylene glycol, 1,4-butanediol, 1,6-hexanediol, trimethylolpropane, and (poly)glycerin, with unsaturated acids, such as (meth)acrylic acid, maleic acid, and fumaric acid; bisacrylamides such as N,N-methylenebisacrylamide; di(meth)acrylic acid esters or tri(meth)acrylic acid esters obtained by reacting polyepoxides with (meth)acrylic acid; di(meth)acrylic acid carbamyl esters obtained by reacting polyisocyanates, such as tolylene diisocyanate and hexamethylene diisocyanate, with hydroxyethyl (meth)acrylate; allylated starch, allylated cellulose, diallyl phthalate, N,N',N''-triallyl isocyanurate, divinyl Examples of the compound include a compound having two or more polymerizable unsaturated groups such as benzene; a diglycidyl compound such as (poly)ethylene glycol diglycidyl ether, (poly)propylene glycol diglycidyl ether, (poly)glycerin diglycidyl ether, and the like, and a polyglycidyl compound such as a triglycidyl compound; an epihalohydrin compound such as epichlorohydrin, epibromohydrin, and α-methylepichlorohydrin; a compound having two or more reactive functional groups such as an isocyanate compound such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; and an oxetane compound such as 3-methyl-3-oxetane methanol, 3-ethyl-3-oxetane methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, and 3-butyl-3-oxetane ethanol. Among these internal cross-linking agents, it is preferable to use a polyglycidyl compound, more preferably a diglycidyl ether compound, and it is preferable to use (poly)ethylene glycol diglycidyl ether, (poly)propylene glycol diglycidyl ether, or (poly)glycerin diglycidyl ether. These internal cross-linking agents may be used alone or in combination of two or more kinds.
内部架橋剤としては、使用する水溶性エチレン性不飽和単量体の重合体を架橋できるものが挙げられ、例えば、(ポリ)エチレングリコール〔「(ポリ)」とは「ポリ」の接頭語がある場合とない場合を意味する。以下同様〕、(ポリ)プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、トリメチロールプロパン、(ポリ)グリセリン等のジオール、トリオール等のポリオール類と(メタ)アクリル酸、マレイン酸、フマル酸等の不飽和酸とを反応させて得られる不飽和ポリエステル類;N,N-メチレンビスアクリルアミド等のビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジ(メタ)アクリル酸エステル類又はトリ(メタ)アクリル酸エステル類;トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のポリイソシアネートと(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;アリル化澱粉、アリル化セルロース、ジアリルフタレート、N,N’,N’’-トリアリルイソシアヌレート、ジビニルベンゼン等の重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等のジグリシジル化合物、トリグリシジル化合物等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のエピハロヒドリン化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物等が挙げられる。これらの内部架橋剤の中でも、ポリグリシジル化合物を用いることが好ましく、ジグリシジルエーテル化合物を用いることがより好ましく、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテルを用いることが好ましい。これらの内部架橋剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 [Internal crosslinking agent]
The internal crosslinking agent may be one capable of crosslinking the polymer of the water-soluble ethylenically unsaturated monomer used, such as (poly)ethylene glycol (the term "(poly)" refers to the case where the "poly" prefix is used or not). the same applies below)], unsaturated polyesters obtained by reacting polyols such as diols and triols, such as (poly)propylene glycol, 1,4-butanediol, 1,6-hexanediol, trimethylolpropane, and (poly)glycerin, with unsaturated acids, such as (meth)acrylic acid, maleic acid, and fumaric acid; bisacrylamides such as N,N-methylenebisacrylamide; di(meth)acrylic acid esters or tri(meth)acrylic acid esters obtained by reacting polyepoxides with (meth)acrylic acid; di(meth)acrylic acid carbamyl esters obtained by reacting polyisocyanates, such as tolylene diisocyanate and hexamethylene diisocyanate, with hydroxyethyl (meth)acrylate; allylated starch, allylated cellulose, diallyl phthalate, N,N',N''-triallyl isocyanurate, divinyl Examples of the compound include a compound having two or more polymerizable unsaturated groups such as benzene; a diglycidyl compound such as (poly)ethylene glycol diglycidyl ether, (poly)propylene glycol diglycidyl ether, (poly)glycerin diglycidyl ether, and the like, and a polyglycidyl compound such as a triglycidyl compound; an epihalohydrin compound such as epichlorohydrin, epibromohydrin, and α-methylepichlorohydrin; a compound having two or more reactive functional groups such as an isocyanate compound such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; and an oxetane compound such as 3-methyl-3-oxetane methanol, 3-ethyl-3-oxetane methanol, 3-butyl-3-oxetane methanol, 3-methyl-3-oxetane ethanol, 3-ethyl-3-oxetane ethanol, and 3-butyl-3-oxetane ethanol. Among these internal cross-linking agents, it is preferable to use a polyglycidyl compound, more preferably a diglycidyl ether compound, and it is preferable to use (poly)ethylene glycol diglycidyl ether, (poly)propylene glycol diglycidyl ether, or (poly)glycerin diglycidyl ether. These internal cross-linking agents may be used alone or in combination of two or more kinds.
内部架橋剤の使用量としては、水溶性エチレン性不飽和単量体1モルに対して、0.000001~0.02モルであることが好ましく、0.00001~0.01モルであることがより好ましく、0.00001~0.005モルであることがさらに好ましく、0.00005~0.002モルであることがよりさらに好ましい。
The amount of the internal crosslinking agent used is preferably 0.000001 to 0.02 mol, more preferably 0.00001 to 0.01 mol, even more preferably 0.00001 to 0.005 mol, and even more preferably 0.00005 to 0.002 mol per mol of the water-soluble ethylenically unsaturated monomer.
[炭化水素分散媒]
炭化水素分散媒としては、例えば、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、n-オクタン等の炭素数6~8の脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、trans-1,3-ジメチルシクロペンタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。これらの炭化水素分散媒の中でも、特に、工業的に入手が容易であり、品質が安定しており且つ安価である点で、n-ヘキサン、n-ヘプタン、シクロヘキサンが好適に用いられる。これらの炭化水素分散媒は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。なお、炭化水素分散媒の混合物の例としては、エクソールヘプタン(エクソンモービル社製:ヘプタン及びその異性体の炭化水素75~85質量%含有)等の市販品を用いても好適な結果を得ることができる。 [Hydrocarbon Dispersion Medium]
Examples of the hydrocarbon dispersion medium include aliphatic hydrocarbons having 6 to 8 carbon atoms, such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, and n-octane; alicyclic hydrocarbons, such as cyclohexane, methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, and trans-1,3-dimethylcyclopentane; and aromatic hydrocarbons, such as benzene, toluene, and xylene. Among these hydrocarbon dispersion media, n-hexane, n-heptane, and cyclohexane are particularly preferred because they are easily available industrially, have stable quality, and are inexpensive. These hydrocarbon dispersion media may be used alone or in combination of two or more types. As an example of a mixture of hydrocarbon dispersion media, a commercially available product such as Exxol Heptane (manufactured by Exxon Mobil Corp.: contains 75 to 85% by mass of heptane and its isomers) can also be used to obtain favorable results.
炭化水素分散媒としては、例えば、n-ヘキサン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、2,3-ジメチルペンタン、3-エチルペンタン、n-オクタン等の炭素数6~8の脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン、メチルシクロペンタン、trans-1,2-ジメチルシクロペンタン、cis-1,3-ジメチルシクロペンタン、trans-1,3-ジメチルシクロペンタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。これらの炭化水素分散媒の中でも、特に、工業的に入手が容易であり、品質が安定しており且つ安価である点で、n-ヘキサン、n-ヘプタン、シクロヘキサンが好適に用いられる。これらの炭化水素分散媒は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。なお、炭化水素分散媒の混合物の例としては、エクソールヘプタン(エクソンモービル社製:ヘプタン及びその異性体の炭化水素75~85質量%含有)等の市販品を用いても好適な結果を得ることができる。 [Hydrocarbon Dispersion Medium]
Examples of the hydrocarbon dispersion medium include aliphatic hydrocarbons having 6 to 8 carbon atoms, such as n-hexane, n-heptane, 2-methylhexane, 3-methylhexane, 2,3-dimethylpentane, 3-ethylpentane, and n-octane; alicyclic hydrocarbons, such as cyclohexane, methylcyclohexane, cyclopentane, methylcyclopentane, trans-1,2-dimethylcyclopentane, cis-1,3-dimethylcyclopentane, and trans-1,3-dimethylcyclopentane; and aromatic hydrocarbons, such as benzene, toluene, and xylene. Among these hydrocarbon dispersion media, n-hexane, n-heptane, and cyclohexane are particularly preferred because they are easily available industrially, have stable quality, and are inexpensive. These hydrocarbon dispersion media may be used alone or in combination of two or more types. As an example of a mixture of hydrocarbon dispersion media, a commercially available product such as Exxol Heptane (manufactured by Exxon Mobil Corp.: contains 75 to 85% by mass of heptane and its isomers) can also be used to obtain favorable results.
炭化水素分散媒の使用量としては、水溶性エチレン性不飽和単量体を均一に分散し、重合温度の制御を容易にする観点から、第1段目の水溶性エチレン性不飽和単量体100質量部に対して、100~1500質量部であることが好ましく、200~1400質量部であることがより好ましい。なお、後述するが、逆相懸濁重合は、1段(単段)もしくは2段以上の多段で行われ、上述した第1段目の重合とは、単段重合もしくは多段重合における1段目の重合反応を意味する(以下も同様)。
The amount of the hydrocarbon dispersion medium used is preferably 100 to 1500 parts by mass, and more preferably 200 to 1400 parts by mass, per 100 parts by mass of the water-soluble ethylenically unsaturated monomer in the first stage, from the viewpoint of uniformly dispersing the water-soluble ethylenically unsaturated monomer and facilitating control of the polymerization temperature. As will be described later, reversed-phase suspension polymerization is carried out in one stage (single stage) or in multiple stages of two or more stages, and the above-mentioned first stage polymerization refers to the polymerization reaction in a single stage or in a multiple stage polymerization (the same applies below).
[分散安定剤]
(界面活性剤)
逆相懸濁重合では、水溶性エチレン性不飽和単量体の炭化水素分散媒中での分散安定性を向上させるために、分散安定剤を用いることもできる。その分散安定剤としては、界面活性剤を用いることができる。 [Dispersion stabilizer]
(Surfactant)
In the reversed-phase suspension polymerization, a dispersion stabilizer can be used to improve the dispersion stability of the water-soluble ethylenically unsaturated monomer in the hydrocarbon dispersion medium. As the dispersion stabilizer, a surfactant can be used.
(界面活性剤)
逆相懸濁重合では、水溶性エチレン性不飽和単量体の炭化水素分散媒中での分散安定性を向上させるために、分散安定剤を用いることもできる。その分散安定剤としては、界面活性剤を用いることができる。 [Dispersion stabilizer]
(Surfactant)
In the reversed-phase suspension polymerization, a dispersion stabilizer can be used to improve the dispersion stability of the water-soluble ethylenically unsaturated monomer in the hydrocarbon dispersion medium. As the dispersion stabilizer, a surfactant can be used.
界面活性剤としては、例えば、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレンポリオキシプロピルアルキルエーテル、ポリエチレングリコール脂肪酸エステル、アルキルグルコシド、N-アルキルグルコンアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルエーテルのリン酸エステル、ポリオキシエチレンアルキルアリルエーテルのリン酸エステル等を用いることができる。これらの界面活性剤の中でも、特に、単量体の分散安定性の面から、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステルを用いることが好ましい。これらの界面活性剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
Surfactants that can be used include, for example, sucrose fatty acid esters, polyglycerin fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene glycerin fatty acid esters, sorbitol fatty acid esters, polyoxyethylene sorbitol fatty acid esters, polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene castor oil, polyoxyethylene hydrogenated castor oil, alkylarylformaldehyde condensed polyoxyethylene ethers, polyoxyethylene polyoxypropylene block copolymers, polyoxyethylene polyoxypropyl alkyl ethers, polyethylene glycol fatty acid esters, alkyl glucosides, N-alkyl gluconamides, polyoxyethylene fatty acid amides, polyoxyethylene alkylamines, phosphate esters of polyoxyethylene alkyl ethers, and phosphate esters of polyoxyethylene alkyl allyl ethers. Among these surfactants, it is particularly preferable to use sorbitan fatty acid esters, polyglycerin fatty acid esters, and sucrose fatty acid esters from the standpoint of dispersion stability of the monomer. These surfactants may be used alone or in combination of two or more.
界面活性剤の使用量としては、第1段目の水溶性エチレン性不飽和単量体100質量部に対して、好ましくは0.1~30質量部であることが好ましく、0.3~20質量部であることがより好ましい。
The amount of surfactant used is preferably 0.1 to 30 parts by mass, and more preferably 0.3 to 20 parts by mass, per 100 parts by mass of the first stage water-soluble ethylenically unsaturated monomer.
(高分子系分散剤)
また、逆相懸濁重合で用いられる分散安定剤としては、上述した界面活性剤と共に、高分子系分散剤を併せて用いてもよい。 (Polymer-based dispersant)
As the dispersion stabilizer used in the reversed phase suspension polymerization, a polymeric dispersant may be used in combination with the above-mentioned surfactant.
また、逆相懸濁重合で用いられる分散安定剤としては、上述した界面活性剤と共に、高分子系分散剤を併せて用いてもよい。 (Polymer-based dispersant)
As the dispersion stabilizer used in the reversed phase suspension polymerization, a polymeric dispersant may be used in combination with the above-mentioned surfactant.
高分子系分散剤としては、例えば、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性EPDM(エチレン・プロピレン・ジエン・ターポリマー)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース等が挙げられる。これらの高分子系分散剤の中でも、特に、単量体の分散安定性の面から、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸・エチレン共重合体、無水マレイン酸・プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体を用いることが好ましい。これらの高分子系分散剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
Examples of polymeric dispersants include maleic anhydride modified polyethylene, maleic anhydride modified polypropylene, maleic anhydride modified ethylene-propylene copolymer, maleic anhydride modified EPDM (ethylene-propylene-diene terpolymer), maleic anhydride modified polybutadiene, maleic anhydride-ethylene copolymer, maleic anhydride-propylene copolymer, maleic anhydride-ethylene-propylene copolymer, maleic anhydride-butadiene copolymer, polyethylene, polypropylene, ethylene-propylene copolymer, oxidized polyethylene, oxidized polypropylene, oxidized ethylene-propylene copolymer, ethylene-acrylic acid copolymer, ethyl cellulose, ethylhydroxyethyl cellulose, etc. Among these polymeric dispersants, it is particularly preferable to use maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene-propylene copolymer, maleic anhydride-ethylene copolymer, maleic anhydride-propylene copolymer, maleic anhydride-ethylene-propylene copolymer, polyethylene, polypropylene, ethylene-propylene copolymer, oxidized polyethylene, oxidized polypropylene, and oxidized ethylene-propylene copolymer, from the viewpoint of dispersion stability of the monomer. These polymeric dispersants may be used alone or in combination of two or more kinds.
高分子系分散剤の使用量としては、第1段目の水溶性エチレン性不飽和単量体100質量部に対して、0.1~30質量部であることが好ましく、0.3~20質量部であることがより好ましい。
The amount of polymeric dispersant used is preferably 0.1 to 30 parts by mass, and more preferably 0.3 to 20 parts by mass, per 100 parts by mass of the first stage water-soluble ethylenically unsaturated monomer.
[その他の成分]
吸水性重合体粒子の製造方法において、所望によりその他の成分を、水溶性エチレン性不飽和単量体を含む水溶液に添加して逆相懸濁重合を行うようにしてもよい。その他の成分としては、増粘剤、連鎖移動剤等の各種の添加剤を添加することができる。 [Other ingredients]
In the method for producing water-absorbing polymer particles, if desired, other components may be added to the aqueous solution containing the water-soluble ethylenically unsaturated monomer to carry out reverse phase suspension polymerization. As other components, various additives such as a thickener and a chain transfer agent can be added.
吸水性重合体粒子の製造方法において、所望によりその他の成分を、水溶性エチレン性不飽和単量体を含む水溶液に添加して逆相懸濁重合を行うようにしてもよい。その他の成分としては、増粘剤、連鎖移動剤等の各種の添加剤を添加することができる。 [Other ingredients]
In the method for producing water-absorbing polymer particles, if desired, other components may be added to the aqueous solution containing the water-soluble ethylenically unsaturated monomer to carry out reverse phase suspension polymerization. As other components, various additives such as a thickener and a chain transfer agent can be added.
一例として、水溶性エチレン性不飽和単量体を含む水溶液に対して増粘剤を添加して逆相懸濁重合を行うことができる。このように増粘剤を添加して水溶液粘度を調整することによって、逆相懸濁重合において得られる中位粒子径を制御することが可能である。
As an example, a thickener can be added to an aqueous solution containing a water-soluble ethylenically unsaturated monomer to carry out reverse suspension polymerization. By adding a thickener in this way to adjust the viscosity of the aqueous solution, it is possible to control the median particle size obtained in reverse suspension polymerization.
増粘剤としては、例えば、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、カルボキシメチルセルロース、ポリアクリル酸、ポリアクリル酸(部分)中和物、ポリエチレングリコール、ポリアクリルアミド、ポリエチレンイミン、デキストリン、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレンオキサイド等を用いることができる。なお、重合時の攪拌速度が同じであれば、水溶性エチレン性不飽和単量体水溶液の粘度が高いほど得られる粒子の一次粒子及び/又は二次粒子は大きくなる傾向にある。
As thickeners, for example, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, carboxymethyl cellulose, polyacrylic acid, partially neutralized polyacrylic acid, polyethylene glycol, polyacrylamide, polyethyleneimine, dextrin, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide, etc. can be used. Note that, if the stirring speed during polymerization is the same, the higher the viscosity of the water-soluble ethylenically unsaturated monomer aqueous solution, the larger the primary particles and/or secondary particles obtained tend to be.
[逆相懸濁重合]
逆相懸濁重合を行うにあたっては、例えば、分散安定剤の存在下に、水溶性エチレン性不飽和単量体を含む単量体水溶液を、炭化水素分散媒に分散させる。このとき、重合反応を開始する前であれば、分散安定剤(界面活性剤や高分子系分散剤)の添加時期は、単量体水溶液添加の前後どちらであってもよい。 [Reverse Phase Suspension Polymerization]
In carrying out the reversed-phase suspension polymerization, for example, an aqueous monomer solution containing a water-soluble ethylenically unsaturated monomer is dispersed in a hydrocarbon dispersion medium in the presence of a dispersion stabilizer. In this case, the dispersion stabilizer (surfactant or polymeric dispersant) may be added either before or after the addition of the aqueous monomer solution, so long as it is before the start of the polymerization reaction.
逆相懸濁重合を行うにあたっては、例えば、分散安定剤の存在下に、水溶性エチレン性不飽和単量体を含む単量体水溶液を、炭化水素分散媒に分散させる。このとき、重合反応を開始する前であれば、分散安定剤(界面活性剤や高分子系分散剤)の添加時期は、単量体水溶液添加の前後どちらであってもよい。 [Reverse Phase Suspension Polymerization]
In carrying out the reversed-phase suspension polymerization, for example, an aqueous monomer solution containing a water-soluble ethylenically unsaturated monomer is dispersed in a hydrocarbon dispersion medium in the presence of a dispersion stabilizer. In this case, the dispersion stabilizer (surfactant or polymeric dispersant) may be added either before or after the addition of the aqueous monomer solution, so long as it is before the start of the polymerization reaction.
その中でも、得られる吸水性重合体粒子に残存する炭化水素分散媒量を低減しやすいという観点から、高分子系分散剤を分散させた炭化水素分散媒に、単量体水溶液を分散させた後に、さらに界面活性剤を分散させてから重合を行うことが好ましい。
Among these, from the viewpoint of facilitating the reduction of the amount of hydrocarbon dispersion medium remaining in the obtained water-absorbent polymer particles, it is preferable to disperse an aqueous monomer solution in a hydrocarbon dispersion medium in which a polymeric dispersant has been dispersed, and then further disperse a surfactant before carrying out polymerization.
このような逆相懸濁重合を、1段もしくは2段以上の多段で行うことが可能である。また、生産性を高める観点から2~3段で行うことが好ましい。
Such reverse phase suspension polymerization can be carried out in one stage or in multiple stages (two or more stages). From the viewpoint of increasing productivity, it is preferable to carry out the polymerization in two to three stages.
2段以上の多段で逆相懸濁重合を行う場合には、1段目の逆相懸濁重合を行った後、1段目の重合反応で得られた反応混合物に水溶性エチレン性不飽和単量体を添加して混合し、1段目と同様の方法で2段目以降の逆相懸濁重合を行えばよい。2段目以降の各段における逆相懸濁重合では、水溶性エチレン性不飽和単量体の他に、ラジカル重合開始剤を、2段目以降の各段における逆相懸濁重合の際に添加する水溶性エチレン性不飽和単量体の量を基準として、上述した水溶性エチレン性不飽和単量体に対する各成分のモル比の範囲内で添加して逆相懸濁重合を行うことが好ましい。なお、2段目以降の重合においても、必要に応じて、水溶性エチレン性不飽和単量体に内部架橋剤を添加してもよい。
When performing reversed-phase suspension polymerization in two or more stages, after the first stage of reversed-phase suspension polymerization, the water-soluble ethylenically unsaturated monomer is added to the reaction mixture obtained in the first stage of polymerization reaction and mixed, and the second and subsequent stages of reversed-phase suspension polymerization can be performed in the same manner as the first stage. In the reversed-phase suspension polymerization in each stage from the second stage onwards, in addition to the water-soluble ethylenically unsaturated monomer, it is preferable to add a radical polymerization initiator within the molar ratio range of each component to the water-soluble ethylenically unsaturated monomer described above, based on the amount of water-soluble ethylenically unsaturated monomer added during the reversed-phase suspension polymerization in each stage from the second stage onwards, to perform reversed-phase suspension polymerization. Note that in the second and subsequent stages of polymerization, an internal crosslinking agent may also be added to the water-soluble ethylenically unsaturated monomer as necessary.
重合反応の反応温度としては、重合を迅速に進行させ、重合時間を短くすることにより、経済性を高めるとともに、容易に重合熱を除去して円滑に反応を行わせる観点から、20~110℃であることが好ましく、40~90℃であることがより好ましい。
The reaction temperature for the polymerization reaction is preferably 20 to 110°C, and more preferably 40 to 90°C, from the viewpoints of promoting rapid polymerization and shortening the polymerization time, thereby improving economy, and of easily removing the heat of polymerization to allow the reaction to proceed smoothly.
<表面架橋工程>
次に、本発明の吸水性重合体粒子は、水溶性エチレン性不飽和単量体を重合して得られた内部架橋構造を有する含水ゲル状物に対して、表面架橋剤を添加して架橋すること(表面架橋反応)で得られる。この表面架橋反応は、水溶性エチレン性不飽和単量体の重合後以降に表面架橋剤の存在下に行うことが好ましい。このように、重合後以降に、内部架橋構造を有する含水ゲル状物に対して表面架橋反応を施すことによって、吸水性重合体粒子の表面近傍の架橋密度を高めて、荷重下吸水能等の諸性能を高めた吸水性重合体粒子を得ることができる。 <Surface cross-linking process>
Next, the water-absorbent polymer particles of the present invention are obtained by adding a surface crosslinking agent to the hydrogel having an internal crosslinked structure obtained by polymerizing a water-soluble ethylenically unsaturated monomer to crosslink (surface crosslinking reaction). This surface crosslinking reaction is preferably carried out in the presence of a surface crosslinking agent after the polymerization of the water-soluble ethylenically unsaturated monomer. In this way, by carrying out a surface crosslinking reaction on the hydrogel having an internal crosslinked structure after the polymerization, the crosslinking density near the surface of the water-absorbent polymer particles can be increased, and water-absorbent polymer particles with improved performance such as water absorption capacity under load can be obtained.
次に、本発明の吸水性重合体粒子は、水溶性エチレン性不飽和単量体を重合して得られた内部架橋構造を有する含水ゲル状物に対して、表面架橋剤を添加して架橋すること(表面架橋反応)で得られる。この表面架橋反応は、水溶性エチレン性不飽和単量体の重合後以降に表面架橋剤の存在下に行うことが好ましい。このように、重合後以降に、内部架橋構造を有する含水ゲル状物に対して表面架橋反応を施すことによって、吸水性重合体粒子の表面近傍の架橋密度を高めて、荷重下吸水能等の諸性能を高めた吸水性重合体粒子を得ることができる。 <Surface cross-linking process>
Next, the water-absorbent polymer particles of the present invention are obtained by adding a surface crosslinking agent to the hydrogel having an internal crosslinked structure obtained by polymerizing a water-soluble ethylenically unsaturated monomer to crosslink (surface crosslinking reaction). This surface crosslinking reaction is preferably carried out in the presence of a surface crosslinking agent after the polymerization of the water-soluble ethylenically unsaturated monomer. In this way, by carrying out a surface crosslinking reaction on the hydrogel having an internal crosslinked structure after the polymerization, the crosslinking density near the surface of the water-absorbent polymer particles can be increased, and water-absorbent polymer particles with improved performance such as water absorption capacity under load can be obtained.
表面架橋剤としては、反応性官能基を2個以上有する化合物を挙げることができる。例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ジエチレングリコール、トリエチレングリコール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物;エピクロルヒドリン、エピブロムヒドリン、α-メチルエピクロルヒドリン等のハロエポキシ化合物;2,4-トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物;3-メチル-3-オキセタンメタノール、3-エチル-3-オキセタンメタノール、3-ブチル-3-オキセタンメタノール、3-メチル-3-オキセタンエタノール、3-エチル-3-オキセタンエタノール、3-ブチル-3-オキセタンエタノール等のオキセタン化合物;1,2-エチレンビスオキサゾリン等のオキサゾリン化合物;エチレンカーボネート、プロピレンカーボネート、4,5-ジメチル-1,3-ジオキソラン-2-オン、4,4-ジメチル-1,3-ジオキソラン-2-オン、4-エチル-1,3-ジオキソラン-2-オン、4-ヒドロキシメチル-1,3-ジオキソラン-2-オン、1,3-ジオキサン-2-オン、4-メチル-1,3-ジオキサン-2-オン、4,6-ジメチル-1,3-ジオキサン-2-オン、1,3-ジオキソパン-2-オン等のカーボネート化合物(例えばアルキレンカーボネート);ビス[N,N-ジ(β-ヒドロキシエチル)]アジプアミド等のヒドロキシアルキルアミド化合物が挙げられる。これらの表面架橋剤の中でも、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル、(ポリ)グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、(ポリ)プロピレングリコールポリグリシジルエーテル、(ポリ)グリセロールポリグリシジルエーテル等のポリグリシジル化合物が好ましい。これらの表面架橋剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
Examples of surface cross-linking agents include compounds having two or more reactive functional groups. For example, polyols such as ethylene glycol, propylene glycol, 1,4-butanediol, diethylene glycol, triethylene glycol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, and polyglycerin; polyglycidyl compounds such as (poly)ethylene glycol diglycidyl ether, (poly)glycerin diglycidyl ether, (poly)glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, (poly)propylene glycol polyglycidyl ether, and (poly)glycerol polyglycidyl ether; haloepoxy compounds such as epichlorohydrin, epibromohydrin, and α-methylepichlorohydrin; isocyanate compounds such as 2,4-tolylene diisocyanate and hexamethylene diisocyanate; 3-methyl-3-oxetane methanol, 3-ethyl-3-oxetane Oxetane compounds such as methanol, 3-butyl-3-oxetanemethanol, 3-methyl-3-oxetaneethanol, 3-ethyl-3-oxetaneethanol, and 3-butyl-3-oxetaneethanol; oxazoline compounds such as 1,2-ethylenebisoxazoline; ethylene carbonate, propylene carbonate, 4,5-dimethyl-1,3-dioxolan-2-one, 4,4-dimethyl-1,3-dioxolan-2-one, 4-ethyl 1,3-dioxolane-2-one, 4-hydroxymethyl-1,3-dioxolane-2-one, 1,3-dioxan-2-one, 4-methyl-1,3-dioxan-2-one, 4,6-dimethyl-1,3-dioxan-2-one, 1,3-dioxopan-2-one, and other carbonate compounds (e.g., alkylene carbonates); and hydroxyalkylamide compounds such as bis[N,N-di(β-hydroxyethyl)]adipamide. Among these surface crosslinking agents, polyglycidyl compounds such as (poly)ethylene glycol diglycidyl ether, (poly)glycerin diglycidyl ether, (poly)glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, (poly)propylene glycol polyglycidyl ether, and (poly)glycerol polyglycidyl ether are preferred. These surface crosslinking agents may be used alone or in combination of two or more.
表面架橋剤の使用量としては、重合に使用した水溶性エチレン性不飽和単量体の総量1モルに対して、0.00001~0.01モルであることが好ましく、0.00005~0.005モルであることがより好ましく、0.0001~0.002モルであることがさらに好ましい。
The amount of the surface cross-linking agent used is preferably 0.00001 to 0.01 mol, more preferably 0.00005 to 0.005 mol, and even more preferably 0.0001 to 0.002 mol, per mol of the total amount of water-soluble ethylenically unsaturated monomers used in the polymerization.
表面架橋剤の添加方法としては、表面架橋剤をそのまま添加しても、水溶液として添加してもよいが、必要に応じて、溶媒として親水性有機溶媒を用いた溶液として添加してもよい。親水性有機溶媒としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール等の低級アルコール類;アセトン、メチルエチルケトン等のケトン類;ジエチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類;N,N-ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類等が挙げられる。これら親水性有機溶媒は、単独で用いてもよく、2種類以上を組み合わせて、又は水との混合溶媒として用いてもよい。
As a method for adding the surface cross-linking agent, the surface cross-linking agent may be added as it is or as an aqueous solution, but if necessary, it may be added as a solution using a hydrophilic organic solvent as a solvent. Examples of hydrophilic organic solvents include lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, etc.; ketones such as acetone and methyl ethyl ketone; ethers such as diethyl ether, dioxane, tetrahydrofuran, etc.; amides such as N,N-dimethylformamide; sulfoxides such as dimethyl sulfoxide, etc. These hydrophilic organic solvents may be used alone, in combination of two or more types, or as a mixed solvent with water.
表面架橋剤の添加時期としては、水溶性エチレン性不飽和単量体の重合反応がほぼすべて終了した後であればよく、水溶性エチレン性不飽和単量体100質量部に対して、1~400質量部の範囲の水分存在下に添加することが好ましく、5~200質量部の範囲の水分存在下に添加することがより好ましく、10~100質量部の範囲の水分存在下に添加することがさらに好ましく、20~60質量部の範囲の水分存在下に添加することがよりさらに好ましい。なお、水分の量は、反応系に含まれる水分と表面架橋剤を添加する際に必要に応じて用いられる水分との合計量を意味する。
The timing of adding the surface cross-linking agent may be after the polymerization reaction of the water-soluble ethylenically unsaturated monomer has been almost completely completed. It is preferable to add the agent in the presence of moisture in the range of 1 to 400 parts by mass, more preferably in the range of 5 to 200 parts by mass, even more preferably in the range of 10 to 100 parts by mass, and even more preferably in the range of 20 to 60 parts by mass, relative to 100 parts by mass of the water-soluble ethylenically unsaturated monomer. The amount of moisture means the total amount of moisture contained in the reaction system and the moisture used as necessary when adding the surface cross-linking agent.
表面架橋反応における反応温度としては、50~250℃であることが好ましく、60~180℃であることがより好ましく、60~140℃であることがさらに好ましく、70~120℃であることがよりさらに好ましい。また、表面架橋反応の反応時間としては、1~300分間であることが好ましく、5~200分間であることがより好ましい。
The reaction temperature in the surface cross-linking reaction is preferably 50 to 250°C, more preferably 60 to 180°C, even more preferably 60 to 140°C, and even more preferably 70 to 120°C. The reaction time in the surface cross-linking reaction is preferably 1 to 300 minutes, and more preferably 5 to 200 minutes.
<乾燥工程>
上述した逆相懸濁重合を行った後、熱等のエネルギーを外部から加えることで、水、炭化水素分散媒等を蒸留により除去する乾燥工程を含んでいてもよい。逆相懸濁重合後の含水ゲルから脱水を行う場合、炭化水素分散媒中に含水ゲルが分散している系を加熱することで、水と炭化水素分散媒を共沸蒸留により系外に一旦留去する。このとき、留去した炭化水素分散媒のみを系内へ返送すると、連続的な共沸蒸留が可能となる。その場合、乾燥中の系内の温度が、炭化水素分散媒との共沸温度以下に維持されるため、樹脂が劣化しにくい等の観点から好ましい。引き続き、水及び炭化水素分散媒を留去することにより、吸水性重合体粒子が得られる。この重合後における乾燥工程の処理条件を制御して脱水量を調整することにより、得られる吸水性重合体粒子の諸性能を制御することが可能である。 <Drying process>
After the above-mentioned reversed-phase suspension polymerization, a drying step may be included in which water, the hydrocarbon dispersion medium, and the like are removed by distillation by adding energy such as heat from the outside. When dehydrating the hydrogel after the reversed-phase suspension polymerization, the system in which the hydrogel is dispersed in the hydrocarbon dispersion medium is heated, and the water and the hydrocarbon dispersion medium are once distilled out of the system by azeotropic distillation. At this time, if only the distilled hydrocarbon dispersion medium is returned to the system, continuous azeotropic distillation is possible. In that case, the temperature in the system during drying is maintained below the azeotropic temperature with the hydrocarbon dispersion medium, which is preferable from the viewpoint of the resin being less likely to deteriorate. Subsequently, the water and the hydrocarbon dispersion medium are distilled off to obtain water-absorbing polymer particles. By controlling the processing conditions of the drying step after this polymerization to adjust the amount of dehydration, it is possible to control the various properties of the obtained water-absorbing polymer particles.
上述した逆相懸濁重合を行った後、熱等のエネルギーを外部から加えることで、水、炭化水素分散媒等を蒸留により除去する乾燥工程を含んでいてもよい。逆相懸濁重合後の含水ゲルから脱水を行う場合、炭化水素分散媒中に含水ゲルが分散している系を加熱することで、水と炭化水素分散媒を共沸蒸留により系外に一旦留去する。このとき、留去した炭化水素分散媒のみを系内へ返送すると、連続的な共沸蒸留が可能となる。その場合、乾燥中の系内の温度が、炭化水素分散媒との共沸温度以下に維持されるため、樹脂が劣化しにくい等の観点から好ましい。引き続き、水及び炭化水素分散媒を留去することにより、吸水性重合体粒子が得られる。この重合後における乾燥工程の処理条件を制御して脱水量を調整することにより、得られる吸水性重合体粒子の諸性能を制御することが可能である。 <Drying process>
After the above-mentioned reversed-phase suspension polymerization, a drying step may be included in which water, the hydrocarbon dispersion medium, and the like are removed by distillation by adding energy such as heat from the outside. When dehydrating the hydrogel after the reversed-phase suspension polymerization, the system in which the hydrogel is dispersed in the hydrocarbon dispersion medium is heated, and the water and the hydrocarbon dispersion medium are once distilled out of the system by azeotropic distillation. At this time, if only the distilled hydrocarbon dispersion medium is returned to the system, continuous azeotropic distillation is possible. In that case, the temperature in the system during drying is maintained below the azeotropic temperature with the hydrocarbon dispersion medium, which is preferable from the viewpoint of the resin being less likely to deteriorate. Subsequently, the water and the hydrocarbon dispersion medium are distilled off to obtain water-absorbing polymer particles. By controlling the processing conditions of the drying step after this polymerization to adjust the amount of dehydration, it is possible to control the various properties of the obtained water-absorbing polymer particles.
乾燥工程では、蒸留による乾燥処理を常圧下で行ってもよく、減圧下で行ってもよい。また、乾燥効率を高める観点から、窒素等の気流下で行ってもよい。乾燥処理を常圧下で行う場合においては、乾燥温度としては、70~250℃であることが好ましく、80~180℃であることがより好ましく、80~140℃であることがさらに好ましく、90~130℃であることがよりさらに好ましい。また、乾燥処理を減圧下で行う場合においては、乾燥温度としては、40~160℃であることが好ましく、50~110℃であることがより好ましい。
In the drying step, the drying process by distillation may be performed under normal pressure or under reduced pressure. From the viewpoint of increasing the drying efficiency, it may also be performed under a stream of nitrogen or the like. When the drying process is performed under normal pressure, the drying temperature is preferably 70 to 250°C, more preferably 80 to 180°C, even more preferably 80 to 140°C, and even more preferably 90 to 130°C. When the drying process is performed under reduced pressure, the drying temperature is preferably 40 to 160°C, and more preferably 50 to 110°C.
なお、逆相懸濁重合により単量体の重合を行った後に表面架橋剤による表面架橋工程を行った場合には、その表面架橋工程の終了後に、上述した蒸留による乾燥工程を行うようにする。または、表面架橋工程と乾燥工程とを同時に行うようにしてもよい。
In addition, when a surface cross-linking step using a surface cross-linking agent is carried out after polymerization of monomers by reversed-phase suspension polymerization, the above-mentioned drying step by distillation is carried out after the surface cross-linking step is completed. Alternatively, the surface cross-linking step and the drying step may be carried out simultaneously.
本発明の吸水性樹脂組成物は、目的に応じた添加剤を含んでいてもよい。このような添加剤としては、無機粉末、界面活性剤、酸化剤、還元剤、金属キレート剤、ラジカル連鎖禁止剤、酸化防止剤、抗菌剤等が挙げられる。例えば、吸水性重合体粒子100質量部に対し、無機粉末として0.05~5質量部の非晶質シリカを添加することで、吸水性樹脂組成物の流動性をさらに向上させることができる。なお、前記添加剤は、親水性または水溶性であることが好ましい。
The water-absorbent resin composition of the present invention may contain additives according to the purpose. Examples of such additives include inorganic powders, surfactants, oxidizing agents, reducing agents, metal chelating agents, radical chain inhibitors, antioxidants, antibacterial agents, and the like. For example, the fluidity of the water-absorbent resin composition can be further improved by adding 0.05 to 5 parts by mass of amorphous silica as inorganic powder per 100 parts by mass of water-absorbent polymer particles. The additives are preferably hydrophilic or water-soluble.
本発明の吸水性樹脂組成物において、吸水性重合体粒子(添加剤を除く)の含有率は、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上である。
In the water-absorbent resin composition of the present invention, the content of water-absorbent polymer particles (excluding additives) is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more.
本発明の吸水性樹脂組成物は、例えば、吸水性重合体粒子と粒子状の抗菌性金属含有消臭剤と多孔性消臭剤とを固相状態で混合することにより、製造することができる。
The water-absorbent resin composition of the present invention can be produced, for example, by mixing water-absorbent polymer particles, a particulate antibacterial metal-containing deodorant, and a porous deodorant in a solid phase.
2.吸収体、吸収性物品
本発明の吸水性樹脂組成物は、例えば、生理用品、紙オムツ等の吸収性物品に用いられる吸収体に好適に用いられる。本発明の吸収性物品は、抗菌性金属含有消臭剤、多孔性消臭剤、及び吸水性重合体粒子を含む、吸収性物品であって、多孔性消臭剤の含有量X(質量部)と、抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8以上であり、抗菌性金属含有消臭剤、多孔性消臭剤、及び吸水性重合体粒子の総量を基準とする多孔性消臭剤の含有率x(質量%)と抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)が、0.10質量%以上である。本発明の吸収性物品のより詳細な構成は、上述した吸水性樹脂組成物と同様に設定することができる。 2. Absorbent, absorbent article The water-absorbing resin composition of the present invention is preferably used for absorbent articles such as sanitary napkins and paper diapers. The absorbent article of the present invention is an absorbent article containing an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbing polymer particles, and the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more, and the sum (x+y) of the content x (% by mass) of the porous deodorant and the content y (% by mass) of the antibacterial metal-containing deodorant based on the total amount of the antibacterial metal-containing deodorant, the porous deodorant, and the water-absorbing polymer particles is 0.10% by mass or more. The more detailed configuration of the absorbent article of the present invention can be set in the same manner as the above-mentioned water-absorbing resin composition.
本発明の吸水性樹脂組成物は、例えば、生理用品、紙オムツ等の吸収性物品に用いられる吸収体に好適に用いられる。本発明の吸収性物品は、抗菌性金属含有消臭剤、多孔性消臭剤、及び吸水性重合体粒子を含む、吸収性物品であって、多孔性消臭剤の含有量X(質量部)と、抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8以上であり、抗菌性金属含有消臭剤、多孔性消臭剤、及び吸水性重合体粒子の総量を基準とする多孔性消臭剤の含有率x(質量%)と抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)が、0.10質量%以上である。本発明の吸収性物品のより詳細な構成は、上述した吸水性樹脂組成物と同様に設定することができる。 2. Absorbent, absorbent article The water-absorbing resin composition of the present invention is preferably used for absorbent articles such as sanitary napkins and paper diapers. The absorbent article of the present invention is an absorbent article containing an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbing polymer particles, and the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more, and the sum (x+y) of the content x (% by mass) of the porous deodorant and the content y (% by mass) of the antibacterial metal-containing deodorant based on the total amount of the antibacterial metal-containing deodorant, the porous deodorant, and the water-absorbing polymer particles is 0.10% by mass or more. The more detailed configuration of the absorbent article of the present invention can be set in the same manner as the above-mentioned water-absorbing resin composition.
ここで、本発明の吸水性樹脂組成物を用いた吸収体は、本発明の粒子状吸水性樹脂組成物を含む。吸収体は、親水性繊維をさらに含んでいてもよい。吸収体の構成としては、吸水性重合体粒子を不織布上あるいは複数の不織布間に固定した形態のシート状構造体、粒子状吸水性樹脂組成物と親水性繊維とを均一な組成となるように混合することによって得られた混合分散体、層状の親水性繊維の間に粒子状吸水性樹脂組成物が挟まれたサンドイッチ構造体、粒子状吸水性樹脂組成物と親水性繊維とをティッシュで包んだ構造体等が挙げられる。なお、吸収体には、他の成分、例えば、吸収体の形態保持性を高めるための熱融着性合成繊維、ホットメルト接着剤、接着性エマルジョン等の接着性バインダーが配合されていてもよい。
Here, the absorbent using the water-absorbing resin composition of the present invention includes the particulate water-absorbing resin composition of the present invention. The absorbent may further include hydrophilic fibers. Examples of the absorbent configuration include a sheet-like structure in which water-absorbing polymer particles are fixed on a nonwoven fabric or between multiple nonwoven fabrics, a mixed dispersion obtained by mixing the particulate water-absorbing resin composition and hydrophilic fibers to a uniform composition, a sandwich structure in which the particulate water-absorbing resin composition is sandwiched between layered hydrophilic fibers, and a structure in which the particulate water-absorbing resin composition and hydrophilic fibers are wrapped in tissue. The absorbent may also contain other components, such as adhesive binders such as heat-fusible synthetic fibers, hot melt adhesives, and adhesive emulsions, in order to improve the shape retention of the absorbent.
吸収体における吸水性樹脂組成物の含有率としては、5~100質量%であることが好ましく、10~95質量%であることがより好ましく、20~90質量%であることがさらに好ましく、30~80質量%であることがよりさらに好ましい。
The content of the water-absorbent resin composition in the absorbent is preferably 5 to 100% by mass, more preferably 10 to 95% by mass, even more preferably 20 to 90% by mass, and even more preferably 30 to 80% by mass.
親水性繊維としては、木材から得られる綿状パルプ、メカニカルパルプ、ケミカルパルプ、セミケミカルパルプ等のセルロース繊維、レーヨン、アセテート等の人工セルロース繊維、親水化処理されたポリアミド、ポリエステル、ポリオレフィン等の合成樹脂からなる繊維等が挙げられる。親水性繊維の平均繊維長は、通常、0.1~10mmであり、又は0.5~5mmであってよい。
Hydrophilic fibers include cellulose fibers such as cotton-like pulp obtained from wood, mechanical pulp, chemical pulp, and semi-chemical pulp, artificial cellulose fibers such as rayon and acetate, and fibers made of synthetic resins such as polyamide, polyester, and polyolefin that have been hydrophilically treated. The average fiber length of hydrophilic fibers is usually 0.1 to 10 mm, or may be 0.5 to 5 mm.
本発明の粒子状吸水性樹脂組成物を用いた吸収体を、液体が通過し得る液体透過性シート(トップシート)と、液体が通過し得ない液体不透過性シート(バックシート)との間に保持することによって、本発明の吸収性物品とすることができる。液体透過性シートは、身体と接触する側に配され、液体不透過性シートは、身体と接する反対側に配される。
The absorbent article of the present invention can be produced by holding an absorbent using the particulate water-absorbent resin composition of the present invention between a liquid-permeable sheet (top sheet) through which liquid can pass and a liquid-impermeable sheet (back sheet) through which liquid cannot pass. The liquid-permeable sheet is placed on the side that comes into contact with the body, and the liquid-impermeable sheet is placed on the opposite side that comes into contact with the body.
液体透過性シートとしては、ポリエチレン、ポリプロピレン、ポリエステル等の繊維からなる、エアスルー型、スパンボンド型、ケミカルボンド型、ニードルパンチ型等の不織布及び多孔質の合成樹脂シート等が挙げられる。また、液体不透過性シートとしては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の樹脂からなる合成樹脂フィルム等が挙げられる。
Liquid-permeable sheets include nonwoven fabrics such as air-through, spunbond, chemical bond, and needle-punch types made of fibers such as polyethylene, polypropylene, and polyester, as well as porous synthetic resin sheets. Liquid-impermeable sheets include synthetic resin films made of resins such as polyethylene, polypropylene, and polyvinyl chloride.
3.付記事項
本明細書は、少なくとも下記(1)~(14)に示す発明を含んでいる。
(1)
抗菌性金属含有消臭剤、多孔性消臭剤、及び吸水性重合体粒子を含む、吸水性樹脂組成物であって、前記多孔性消臭剤の含有量X(質量部)と、前記抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8以上であり、前記吸水性樹脂組成物全体における、前記多孔性消臭剤の含有率x(質量%)と前記抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)が、0.10質量%以上である、吸水性樹脂組成物。
(2)
前記含有率x(質量%)と前記含有率y(質量%)の和(x+y)が0.10質量%~0.80質量%、0.10質量%~0.60質量%、0.10質量%~0.50質量%、0.10質量%~0.40質量%、0.10質量%~0.35質量%、0.10質量%~0.30質量%、0.13質量%~0.80質量%、0.13質量%~0.60質量%、0.13質量%~0.50質量%、0.13質量%~0.40質量%、0.13質量%~0.35質量%、0.13質量%~0.30質量%、0.18質量%~0.80質量%、0.18質量%~0.60質量%、0.18質量%~0.50質量%、0.18質量%~0.40質量%、0.18質量%~0.35質量%、0.18質量%~0.30質量%、0.20質量%~0.80質量%、0.20質量%~0.60質量%、0.20質量%~0.50質量%、0.20質量%~0.40質量%、0.20質量%~0.35質量%、0.20質量%~0.30質量%、0.25質量%~0.80質量%、0.25質量%~0.60質量%、0.25質量%~0.50質量%、0.25質量%~0.40質量%、0.25質量%~0.35質量%、0.25質量%~0.30質量%、0.30質量%~0.80質量%、0.30質量%~0.60質量%、0.30質量%~0.50質量%、0.30質量%~0.40質量%、0.35質量%~0.80質量%、0.35質量%~0.60質量%、0.35質量%~0.50質量%又は0.35質量%~0.40質量%である、上記(1)に記載の吸水性樹脂組成物。
(3)
前記抗菌性金属含有消臭剤に含まれる抗菌性金属が、銀、銅、亜鉛、ビスマス、コバルト、アルミニウム及びニッケルからなる群より選択される少なくとも1種を含む、上記(1)又は(2)に記載の吸水性樹脂組成物。
(4)
前記抗菌性金属含有消臭剤が、銀粉、塩化銀(I)、酸化銀(I)、並びに銀イオン及び亜鉛イオンのうち少なくとも一方の金属イオンが担持された物質からなる群より選択される少なくとも1種を含む、上記(1)~(3)の何れかに記載の吸水性樹脂組成物。
(5)
前記多孔性消臭剤が活性炭、二酸化ケイ素及びケイ酸塩からなる群より選択される少なくとも1種を含む、上記(1)~(4)の何れかに記載の吸水性樹脂組成物。
(6)
前記抗菌性金属含有消臭剤の中位粒子径が、0.1μm~100μmであり、前記多孔性消臭剤の中位粒子径が1μm~100μmである、上記(1)~(5)の何れかに記載の吸水性樹脂組成物。
(7)
前記多孔性消臭剤の含有量X(質量部)と、前記抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8~15.0、0.8~12.0、0.8~10.0、0.8~8.0、0.8~5.0、1.0~15.0、1.0~12.0、1.0~10.0、1.0~8.0、1.0~5.0、2.0~15.0、2.0~12.0、2.0~10.0、2.0~8.0、2.0~5.0、3.0~15.0、3.0~12.0、3.0~10.0、3.0~8.0又は3.0~5.0である、上記(1)~(6)の何れかに記載の吸水性樹脂組成物。
(8)
前記吸水性重合体粒子のVortex法による吸水速度が、10秒~80秒、10秒~60秒、10秒~40秒、20秒~80秒、20秒~60秒、20秒~40秒、30秒~80秒、30秒~60秒又は30秒~40秒である、上記(1)~(7)の何れかに記載の吸水性樹脂組成物。
(9)
抗菌性金属含有消臭剤、多孔性消臭剤、及び吸水性重合体粒子を含む、吸収性物品であって、前記多孔性消臭剤の含有量X(質量部)と、前記抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8以上であり、前記抗菌性金属含有消臭剤、前記多孔性消臭剤、及び前記吸水性重合体粒子の総量を基準とする前記多孔性消臭剤の含有率x(質量%)と前記抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)が、0.10質量%以上である、吸収性物品。
(10)
前記含有率x(質量%)と前記含有率y(質量%)の和(x+y)が0.10質量%~0.50質量%、0.10質量%~0.40質量%、0.10質量%~0.35質量%、0.10質量%~0.30質量%、0.18質量%~0.50質量%、0.18質量%~0.40質量%、0.18質量%~0.35質量%、0.18質量%~0.30質量%、0.30質量%~0.50質量%、又は0.30質量%~0.40質量%である、上記(9)に記載の吸収性物品。
(11)
前記多孔性消臭剤の含有量X(質量部)と、前記抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8~15.0、0.8~12.0、0.8~10.0、0.8~8.0、0.8~5.0、1.0~15.0、1.0~12.0、1.0~10.0、1.0~8.0、1.0~5.0、2.0~15.0、2.0~12.0、2.0~10.0、2.0~8.0、2.0~5.0、3.0~15.0、3.0~12.0、3.0~10.0、3.0~8.0又は3.0~5.0である、上記(9)又は(10)に記載の吸収性物品。
(12)
前記抗菌性金属含有消臭剤が、銀粉、塩化銀(I)、酸化銀(I)、並びに銀イオン及び亜鉛イオンのうち少なくとも一方の金属イオンが担持された物質からなる群より選択される少なくとも1種を含む、上記(9)~(11)の何れかに記載の吸収性物品。
(13)
前記多孔性消臭剤が活性炭、二酸化ケイ素及びケイ酸塩からなる群より選択される少なくとも1種を含む、上記(9)~(12)の何れかに記載の吸収性物品。
(14)
前記吸水性重合体粒子のVortex法による吸水速度が、10秒~80秒、10秒~60秒、10秒~40秒、20秒~80秒、20秒~60秒、20秒~40秒、30秒~80秒、30秒~60秒又は30秒~40秒である、上記(9)~(13)の何れかに記載の吸収性物品。 3. Supplementary Notes This specification includes at least the inventions set forth in (1) to (14) below.
(1)
A water-absorbent resin composition comprising an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbent polymer particles, wherein a ratio (X/Y) of a content X (parts by mass) of the porous deodorant to a content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more, and a sum (x+y) of a content x (% by mass) of the porous deodorant and a content y (% by mass) of the antibacterial metal-containing deodorant in the entire water-absorbent resin composition is 0.10% by mass or more.
(2)
The sum (x+y) of the content x (mass%) and the content y (mass%) is 0.10 mass% to 0.80 mass%, 0.10 mass% to 0.60 mass%, 0.10 mass% to 0.50 mass%, 0.10 mass% to 0.40 mass%, 0.10 mass% to 0.35 mass%, 0.10 mass% to 0.30 mass%, 0.13 mass% to 0.80 mass% %, 0.13% by mass to 0.60% by mass, 0.13% by mass % to 0.50 mass%, 0.13 mass% to 0.40 mass%, 0.13 mass% to 0.35 mass%, 0.13 mass% to 0.30 mass%, 0.18 mass% to 0.80 mass%, 0.18 mass% to 0.60 mass%, 0.18 mass% to 0.50 mass%, 0.18 mass% to 0.40 mass%, 0.18 mass% to 0.35 mass%, 0.18% by mass to 0.30% by mass, 0.20% by mass to 0.8 0 mass%, 0.20 mass% to 0.60 mass%, 0.20 mass% to 0.50 mass%, 0.20 mass% to 0.40 mass%, 0.20 mass% to 0.35 mass%, 0.20 mass% to 0.30 mass%, 0.25 mass% to 0.80 mass%, 0.25 mass% to 0.60 mass%, 0.25 mass% to 0.50 mass%, 0.25 Mass% to 0.40 mass%, 0.25 mass% to 0.35 mass%, 0.25 mass% to 0.30 mass%, 0.30 mass% to 0.80 mass%, 0.30 mass% to 0.60 mass%, 0.30 mass% to 0.50 mass%, 0.30 mass% to 0.40 mass%, 0.35 mass% to 0.80 mass%, 0.35 mass% to 0.60 mass%, 0.35 mass% to 0.50 mass% or 0.35 mass% to 0. The water absorbent resin composition according to (1) above, which has a content of 40% by mass.
(3)
The water absorbent resin composition according to the above (1) or (2), wherein the antibacterial metal contained in the antibacterial metal-containing deodorant comprises at least one selected from the group consisting of silver, copper, zinc, bismuth, cobalt, aluminum and nickel.
(4)
The water absorbent resin composition according to any one of the above (1) to (3), wherein the antibacterial metal-containing deodorant comprises at least one selected from the group consisting of silver powder, silver chloride (I), silver oxide (I), and a substance carrying at least one metal ion selected from the group consisting of silver ion and zinc ion.
(5)
The water-absorbing resin composition according to any one of the above (1) to (4), wherein the porous deodorant comprises at least one selected from the group consisting of activated carbon, silicon dioxide, and silicates.
(6)
The water absorbent resin composition according to any one of (1) to (5), wherein the antibacterial metal-containing deodorant has a median particle diameter of 0.1 μm to 100 μm, and the porous deodorant has a median particle diameter of 1 μm to 100 μm.
(7)
The water absorbent resin composition according to any one of (1) to (6) above, wherein the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 to 15.0, 0.8 to 12.0, 0.8 to 10.0, 0.8 to 8.0, 0.8 to 5.0, 1.0 to 15.0, 1.0 to 12.0, 1.0 to 10.0, 1.0 to 8.0, 1.0 to 5.0, 2.0 to 15.0, 2.0 to 12.0, 2.0 to 10.0, 2.0 to 8.0, 2.0 to 5.0, 3.0 to 15.0, 3.0 to 12.0, 3.0 to 10.0, 3.0 to 8.0, or 3.0 to 5.0.
(8)
The water-absorbing polymer particles have a water-absorbing speed measured by a Vortex method of 10 seconds to 80 seconds, 10 seconds to 60 seconds, 10 seconds to 40 seconds, 20 seconds to 80 seconds, 20 seconds to 60 seconds, 20 seconds to 40 seconds, 30 seconds to 80 seconds, 30 seconds to 60 seconds, or 30 seconds to 40 seconds. The water-absorbing resin composition according to any one of (1) to (7) above.
(9)
An absorbent article comprising an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbent polymer particles, wherein a ratio (X/Y) of a content X (parts by mass) of the porous deodorant to a content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more, and a sum (x+y) of a content x (% by mass) of the porous deodorant and a content y (% by mass) of the antibacterial metal-containing deodorant based on a total amount of the antibacterial metal-containing deodorant, the porous deodorant, and the water-absorbent polymer particles is 0.10% by mass or more.
(10)
The sum (x+y) of the content x (mass%) and the content y (mass%) is 0.10 mass% to 0.50 mass%, 0.10 mass% to 0.40 mass%, 0.10 mass% to 0.35 mass%, 0.10 mass% to 0.30 mass%, 0.18 mass% to 0.50 mass%, 0.18 mass% to 0.40 mass%, 0.18 mass% to 0.35 mass% %, 0.18% by mass to 0.30% by mass, 0.30% by mass to 0.50% by mass, or 0.30% by mass to 0.40% by mass.
(11)
The absorbent article according to (9) or (10) above, wherein the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 to 15.0, 0.8 to 12.0, 0.8 to 10.0, 0.8 to 8.0, 0.8 to 5.0, 1.0 to 15.0, 1.0 to 12.0, 1.0 to 10.0, 1.0 to 8.0, 1.0 to 5.0, 2.0 to 15.0, 2.0 to 12.0, 2.0 to 10.0, 2.0 to 8.0, 2.0 to 5.0, 3.0 to 15.0, 3.0 to 12.0, 3.0 to 10.0, 3.0 to 8.0, or 3.0 to 5.0.
(12)
The absorbent article according to any one of (9) to (11) above, wherein the antibacterial metal-containing deodorant comprises at least one selected from the group consisting of silver powder, silver chloride (I), silver oxide (I), and a substance carrying at least one metal ion selected from the group consisting of silver ions and zinc ions.
(13)
The absorbent article according to any one of the above (9) to (12), wherein the porous deodorant comprises at least one selected from the group consisting of activated carbon, silicon dioxide, and silicates.
(14)
The water absorption speed of the water-absorbent polymer particles by the Vortex method is 10 seconds to 80 seconds, 10 seconds to 60 seconds, 10 seconds to 40 seconds, 20 seconds to 80 seconds, 20 seconds to 60 seconds, 20 seconds to 40 seconds, 30 seconds to 80 seconds, 30 seconds to 60 seconds, or 30 seconds to 40 seconds. The absorbent article according to any one of (9) to (13).
本明細書は、少なくとも下記(1)~(14)に示す発明を含んでいる。
(1)
抗菌性金属含有消臭剤、多孔性消臭剤、及び吸水性重合体粒子を含む、吸水性樹脂組成物であって、前記多孔性消臭剤の含有量X(質量部)と、前記抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8以上であり、前記吸水性樹脂組成物全体における、前記多孔性消臭剤の含有率x(質量%)と前記抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)が、0.10質量%以上である、吸水性樹脂組成物。
(2)
前記含有率x(質量%)と前記含有率y(質量%)の和(x+y)が0.10質量%~0.80質量%、0.10質量%~0.60質量%、0.10質量%~0.50質量%、0.10質量%~0.40質量%、0.10質量%~0.35質量%、0.10質量%~0.30質量%、0.13質量%~0.80質量%、0.13質量%~0.60質量%、0.13質量%~0.50質量%、0.13質量%~0.40質量%、0.13質量%~0.35質量%、0.13質量%~0.30質量%、0.18質量%~0.80質量%、0.18質量%~0.60質量%、0.18質量%~0.50質量%、0.18質量%~0.40質量%、0.18質量%~0.35質量%、0.18質量%~0.30質量%、0.20質量%~0.80質量%、0.20質量%~0.60質量%、0.20質量%~0.50質量%、0.20質量%~0.40質量%、0.20質量%~0.35質量%、0.20質量%~0.30質量%、0.25質量%~0.80質量%、0.25質量%~0.60質量%、0.25質量%~0.50質量%、0.25質量%~0.40質量%、0.25質量%~0.35質量%、0.25質量%~0.30質量%、0.30質量%~0.80質量%、0.30質量%~0.60質量%、0.30質量%~0.50質量%、0.30質量%~0.40質量%、0.35質量%~0.80質量%、0.35質量%~0.60質量%、0.35質量%~0.50質量%又は0.35質量%~0.40質量%である、上記(1)に記載の吸水性樹脂組成物。
(3)
前記抗菌性金属含有消臭剤に含まれる抗菌性金属が、銀、銅、亜鉛、ビスマス、コバルト、アルミニウム及びニッケルからなる群より選択される少なくとも1種を含む、上記(1)又は(2)に記載の吸水性樹脂組成物。
(4)
前記抗菌性金属含有消臭剤が、銀粉、塩化銀(I)、酸化銀(I)、並びに銀イオン及び亜鉛イオンのうち少なくとも一方の金属イオンが担持された物質からなる群より選択される少なくとも1種を含む、上記(1)~(3)の何れかに記載の吸水性樹脂組成物。
(5)
前記多孔性消臭剤が活性炭、二酸化ケイ素及びケイ酸塩からなる群より選択される少なくとも1種を含む、上記(1)~(4)の何れかに記載の吸水性樹脂組成物。
(6)
前記抗菌性金属含有消臭剤の中位粒子径が、0.1μm~100μmであり、前記多孔性消臭剤の中位粒子径が1μm~100μmである、上記(1)~(5)の何れかに記載の吸水性樹脂組成物。
(7)
前記多孔性消臭剤の含有量X(質量部)と、前記抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8~15.0、0.8~12.0、0.8~10.0、0.8~8.0、0.8~5.0、1.0~15.0、1.0~12.0、1.0~10.0、1.0~8.0、1.0~5.0、2.0~15.0、2.0~12.0、2.0~10.0、2.0~8.0、2.0~5.0、3.0~15.0、3.0~12.0、3.0~10.0、3.0~8.0又は3.0~5.0である、上記(1)~(6)の何れかに記載の吸水性樹脂組成物。
(8)
前記吸水性重合体粒子のVortex法による吸水速度が、10秒~80秒、10秒~60秒、10秒~40秒、20秒~80秒、20秒~60秒、20秒~40秒、30秒~80秒、30秒~60秒又は30秒~40秒である、上記(1)~(7)の何れかに記載の吸水性樹脂組成物。
(9)
抗菌性金属含有消臭剤、多孔性消臭剤、及び吸水性重合体粒子を含む、吸収性物品であって、前記多孔性消臭剤の含有量X(質量部)と、前記抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8以上であり、前記抗菌性金属含有消臭剤、前記多孔性消臭剤、及び前記吸水性重合体粒子の総量を基準とする前記多孔性消臭剤の含有率x(質量%)と前記抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)が、0.10質量%以上である、吸収性物品。
(10)
前記含有率x(質量%)と前記含有率y(質量%)の和(x+y)が0.10質量%~0.50質量%、0.10質量%~0.40質量%、0.10質量%~0.35質量%、0.10質量%~0.30質量%、0.18質量%~0.50質量%、0.18質量%~0.40質量%、0.18質量%~0.35質量%、0.18質量%~0.30質量%、0.30質量%~0.50質量%、又は0.30質量%~0.40質量%である、上記(9)に記載の吸収性物品。
(11)
前記多孔性消臭剤の含有量X(質量部)と、前記抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8~15.0、0.8~12.0、0.8~10.0、0.8~8.0、0.8~5.0、1.0~15.0、1.0~12.0、1.0~10.0、1.0~8.0、1.0~5.0、2.0~15.0、2.0~12.0、2.0~10.0、2.0~8.0、2.0~5.0、3.0~15.0、3.0~12.0、3.0~10.0、3.0~8.0又は3.0~5.0である、上記(9)又は(10)に記載の吸収性物品。
(12)
前記抗菌性金属含有消臭剤が、銀粉、塩化銀(I)、酸化銀(I)、並びに銀イオン及び亜鉛イオンのうち少なくとも一方の金属イオンが担持された物質からなる群より選択される少なくとも1種を含む、上記(9)~(11)の何れかに記載の吸収性物品。
(13)
前記多孔性消臭剤が活性炭、二酸化ケイ素及びケイ酸塩からなる群より選択される少なくとも1種を含む、上記(9)~(12)の何れかに記載の吸収性物品。
(14)
前記吸水性重合体粒子のVortex法による吸水速度が、10秒~80秒、10秒~60秒、10秒~40秒、20秒~80秒、20秒~60秒、20秒~40秒、30秒~80秒、30秒~60秒又は30秒~40秒である、上記(9)~(13)の何れかに記載の吸収性物品。 3. Supplementary Notes This specification includes at least the inventions set forth in (1) to (14) below.
(1)
A water-absorbent resin composition comprising an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbent polymer particles, wherein a ratio (X/Y) of a content X (parts by mass) of the porous deodorant to a content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more, and a sum (x+y) of a content x (% by mass) of the porous deodorant and a content y (% by mass) of the antibacterial metal-containing deodorant in the entire water-absorbent resin composition is 0.10% by mass or more.
(2)
The sum (x+y) of the content x (mass%) and the content y (mass%) is 0.10 mass% to 0.80 mass%, 0.10 mass% to 0.60 mass%, 0.10 mass% to 0.50 mass%, 0.10 mass% to 0.40 mass%, 0.10 mass% to 0.35 mass%, 0.10 mass% to 0.30 mass%, 0.13 mass% to 0.80 mass% %, 0.13% by mass to 0.60% by mass, 0.13% by mass % to 0.50 mass%, 0.13 mass% to 0.40 mass%, 0.13 mass% to 0.35 mass%, 0.13 mass% to 0.30 mass%, 0.18 mass% to 0.80 mass%, 0.18 mass% to 0.60 mass%, 0.18 mass% to 0.50 mass%, 0.18 mass% to 0.40 mass%, 0.18 mass% to 0.35 mass%, 0.18% by mass to 0.30% by mass, 0.20% by mass to 0.8 0 mass%, 0.20 mass% to 0.60 mass%, 0.20 mass% to 0.50 mass%, 0.20 mass% to 0.40 mass%, 0.20 mass% to 0.35 mass%, 0.20 mass% to 0.30 mass%, 0.25 mass% to 0.80 mass%, 0.25 mass% to 0.60 mass%, 0.25 mass% to 0.50 mass%, 0.25 Mass% to 0.40 mass%, 0.25 mass% to 0.35 mass%, 0.25 mass% to 0.30 mass%, 0.30 mass% to 0.80 mass%, 0.30 mass% to 0.60 mass%, 0.30 mass% to 0.50 mass%, 0.30 mass% to 0.40 mass%, 0.35 mass% to 0.80 mass%, 0.35 mass% to 0.60 mass%, 0.35 mass% to 0.50 mass% or 0.35 mass% to 0. The water absorbent resin composition according to (1) above, which has a content of 40% by mass.
(3)
The water absorbent resin composition according to the above (1) or (2), wherein the antibacterial metal contained in the antibacterial metal-containing deodorant comprises at least one selected from the group consisting of silver, copper, zinc, bismuth, cobalt, aluminum and nickel.
(4)
The water absorbent resin composition according to any one of the above (1) to (3), wherein the antibacterial metal-containing deodorant comprises at least one selected from the group consisting of silver powder, silver chloride (I), silver oxide (I), and a substance carrying at least one metal ion selected from the group consisting of silver ion and zinc ion.
(5)
The water-absorbing resin composition according to any one of the above (1) to (4), wherein the porous deodorant comprises at least one selected from the group consisting of activated carbon, silicon dioxide, and silicates.
(6)
The water absorbent resin composition according to any one of (1) to (5), wherein the antibacterial metal-containing deodorant has a median particle diameter of 0.1 μm to 100 μm, and the porous deodorant has a median particle diameter of 1 μm to 100 μm.
(7)
The water absorbent resin composition according to any one of (1) to (6) above, wherein the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 to 15.0, 0.8 to 12.0, 0.8 to 10.0, 0.8 to 8.0, 0.8 to 5.0, 1.0 to 15.0, 1.0 to 12.0, 1.0 to 10.0, 1.0 to 8.0, 1.0 to 5.0, 2.0 to 15.0, 2.0 to 12.0, 2.0 to 10.0, 2.0 to 8.0, 2.0 to 5.0, 3.0 to 15.0, 3.0 to 12.0, 3.0 to 10.0, 3.0 to 8.0, or 3.0 to 5.0.
(8)
The water-absorbing polymer particles have a water-absorbing speed measured by a Vortex method of 10 seconds to 80 seconds, 10 seconds to 60 seconds, 10 seconds to 40 seconds, 20 seconds to 80 seconds, 20 seconds to 60 seconds, 20 seconds to 40 seconds, 30 seconds to 80 seconds, 30 seconds to 60 seconds, or 30 seconds to 40 seconds. The water-absorbing resin composition according to any one of (1) to (7) above.
(9)
An absorbent article comprising an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbent polymer particles, wherein a ratio (X/Y) of a content X (parts by mass) of the porous deodorant to a content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more, and a sum (x+y) of a content x (% by mass) of the porous deodorant and a content y (% by mass) of the antibacterial metal-containing deodorant based on a total amount of the antibacterial metal-containing deodorant, the porous deodorant, and the water-absorbent polymer particles is 0.10% by mass or more.
(10)
The sum (x+y) of the content x (mass%) and the content y (mass%) is 0.10 mass% to 0.50 mass%, 0.10 mass% to 0.40 mass%, 0.10 mass% to 0.35 mass%, 0.10 mass% to 0.30 mass%, 0.18 mass% to 0.50 mass%, 0.18 mass% to 0.40 mass%, 0.18 mass% to 0.35 mass% %, 0.18% by mass to 0.30% by mass, 0.30% by mass to 0.50% by mass, or 0.30% by mass to 0.40% by mass.
(11)
The absorbent article according to (9) or (10) above, wherein the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 to 15.0, 0.8 to 12.0, 0.8 to 10.0, 0.8 to 8.0, 0.8 to 5.0, 1.0 to 15.0, 1.0 to 12.0, 1.0 to 10.0, 1.0 to 8.0, 1.0 to 5.0, 2.0 to 15.0, 2.0 to 12.0, 2.0 to 10.0, 2.0 to 8.0, 2.0 to 5.0, 3.0 to 15.0, 3.0 to 12.0, 3.0 to 10.0, 3.0 to 8.0, or 3.0 to 5.0.
(12)
The absorbent article according to any one of (9) to (11) above, wherein the antibacterial metal-containing deodorant comprises at least one selected from the group consisting of silver powder, silver chloride (I), silver oxide (I), and a substance carrying at least one metal ion selected from the group consisting of silver ions and zinc ions.
(13)
The absorbent article according to any one of the above (9) to (12), wherein the porous deodorant comprises at least one selected from the group consisting of activated carbon, silicon dioxide, and silicates.
(14)
The water absorption speed of the water-absorbent polymer particles by the Vortex method is 10 seconds to 80 seconds, 10 seconds to 60 seconds, 10 seconds to 40 seconds, 20 seconds to 80 seconds, 20 seconds to 60 seconds, 20 seconds to 40 seconds, 30 seconds to 80 seconds, 30 seconds to 60 seconds, or 30 seconds to 40 seconds. The absorbent article according to any one of (9) to (13).
以下に実施例及び比較例を示して本発明を詳細に説明する。但し本発明は実施例に限定されるものではない。
The present invention will be explained in detail below with reference to examples and comparative examples. However, the present invention is not limited to the examples.
なお、下記の吸水性重合体粒子、多孔性消臭剤としての活性炭、並びに実施例及び比較例で得られた吸水性樹脂組成物は、以下の各種試験で評価した。なお、特に断りのない場合、測定は温度25±2℃、湿度50±10%の環境下で実施した。
The following water-absorbent polymer particles, activated carbon as a porous deodorant, and water-absorbent resin compositions obtained in the examples and comparative examples were evaluated by the following various tests. Unless otherwise specified, measurements were performed in an environment with a temperature of 25±2°C and a humidity of 50±10%.
[吸水性重合体粒子の製造例]
還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径5cmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン293gをとり、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加し、攪拌しつつ80℃まで昇温して分散剤を溶解した後、50℃まで冷却した。一方、内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)をとり、氷水で冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HEC AW-15F)、水溶性ラジカル重合剤として過硫酸カリウム0.0736g(0.272ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)を加えて溶解し、第1段目の水性液を調製した。そして、上記にて調製した水性液をセパラブルフラスコに添加して、10分間攪拌した後、20mL-バイアル瓶中において、n-ヘプタン6.62gに界面活性剤としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.736gを加熱溶解した界面活性剤溶液を、さらに添加して、撹拌機の回転数を550rpmとして攪拌しながら系内を窒素で十分に置換した後、フラスコを70℃の水浴に浸漬して昇温し、重合を60分間行うことにより、第1段目の重合スラリー液を得た。 [Production Example of Water-Absorbent Polymer Particles]
A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and a volume of 2 L was prepared, which was equipped with a reflux condenser, a dropping funnel, a nitrogen gas inlet tube, and a stirring blade having two stages of four inclined paddle blades with a blade diameter of 5 cm. 293 g of n-heptane was added to this flask as a hydrocarbon dispersion medium, and 0.736 g of maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals, Inc., Hiwax 1105A) was added as a polymeric dispersant. The mixture was heated to 80°C with stirring to dissolve the dispersant, and then cooled to 50°C. Meanwhile, 92.0 g (1.03 mol) of an 80.5 mass% aqueous acrylic acid solution was placed in a 300 mL beaker as a water-soluble ethylenically unsaturated monomer, and while cooling with ice water, 147.7 g of a 20.9 mass% aqueous sodium hydroxide solution was added dropwise to carry out 75 mol% neutralization, and then 0.092 g of hydroxylethyl cellulose (Sumitomo Seika Chemicals Co., Ltd., HEC AW-15F) as a thickener, 0.0736 g (0.272 mmol) of potassium persulfate as a water-soluble radical polymerization agent, and 0.010 g (0.057 mmol) of ethylene glycol diglycidyl ether as an internal crosslinking agent were added and dissolved to prepare a first-stage aqueous liquid. The aqueous liquid prepared above was added to a separable flask and stirred for 10 minutes. A surfactant solution prepared by heating and dissolving 0.736 g of sucrose stearate with an HLB of 3 (Ryoto Sugar Ester S-370, Mitsubishi Chemical Foods Corporation) in 6.62 g of n-heptane as a surfactant in a 20 mL vial was then added. The system was thoroughly purged with nitrogen while stirring at a stirrer speed of 550 rpm, and the flask was immersed in a water bath at 70° C. to raise the temperature, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry.
還流冷却器、滴下ロート、窒素ガス導入管、並びに、攪拌機として、翼径5cmの4枚傾斜パドル翼を2段で有する攪拌翼を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、炭化水素分散媒としてn-ヘプタン293gをとり、高分子系分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加し、攪拌しつつ80℃まで昇温して分散剤を溶解した後、50℃まで冷却した。一方、内容積300mLのビーカーに、水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液92.0g(1.03モル)をとり、氷水で冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HEC AW-15F)、水溶性ラジカル重合剤として過硫酸カリウム0.0736g(0.272ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)を加えて溶解し、第1段目の水性液を調製した。そして、上記にて調製した水性液をセパラブルフラスコに添加して、10分間攪拌した後、20mL-バイアル瓶中において、n-ヘプタン6.62gに界面活性剤としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.736gを加熱溶解した界面活性剤溶液を、さらに添加して、撹拌機の回転数を550rpmとして攪拌しながら系内を窒素で十分に置換した後、フラスコを70℃の水浴に浸漬して昇温し、重合を60分間行うことにより、第1段目の重合スラリー液を得た。 [Production Example of Water-Absorbent Polymer Particles]
A round-bottomed cylindrical separable flask with an inner diameter of 11 cm and a volume of 2 L was prepared, which was equipped with a reflux condenser, a dropping funnel, a nitrogen gas inlet tube, and a stirring blade having two stages of four inclined paddle blades with a blade diameter of 5 cm. 293 g of n-heptane was added to this flask as a hydrocarbon dispersion medium, and 0.736 g of maleic anhydride-modified ethylene-propylene copolymer (Mitsui Chemicals, Inc., Hiwax 1105A) was added as a polymeric dispersant. The mixture was heated to 80°C with stirring to dissolve the dispersant, and then cooled to 50°C. Meanwhile, 92.0 g (1.03 mol) of an 80.5 mass% aqueous acrylic acid solution was placed in a 300 mL beaker as a water-soluble ethylenically unsaturated monomer, and while cooling with ice water, 147.7 g of a 20.9 mass% aqueous sodium hydroxide solution was added dropwise to carry out 75 mol% neutralization, and then 0.092 g of hydroxylethyl cellulose (Sumitomo Seika Chemicals Co., Ltd., HEC AW-15F) as a thickener, 0.0736 g (0.272 mmol) of potassium persulfate as a water-soluble radical polymerization agent, and 0.010 g (0.057 mmol) of ethylene glycol diglycidyl ether as an internal crosslinking agent were added and dissolved to prepare a first-stage aqueous liquid. The aqueous liquid prepared above was added to a separable flask and stirred for 10 minutes. A surfactant solution prepared by heating and dissolving 0.736 g of sucrose stearate with an HLB of 3 (Ryoto Sugar Ester S-370, Mitsubishi Chemical Foods Corporation) in 6.62 g of n-heptane as a surfactant in a 20 mL vial was then added. The system was thoroughly purged with nitrogen while stirring at a stirrer speed of 550 rpm, and the flask was immersed in a water bath at 70° C. to raise the temperature, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry.
一方、別の内容積500mLのビーカーに水溶性エチレン性不飽和単量体として80.5質量%のアクリル酸水溶液128.8g(1.43モル)をとり、氷水で冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、水溶性ラジカル重合開始剤として過硫酸カリウム0.103g(0.381ミリモル)、内部架橋剤としてエチレングリコールジグリシジルエーテル0.0117g(0.067ミリモル)を加えて溶解し、第2段目の水性液を調製した。
Meanwhile, 128.8 g (1.43 mol) of 80.5% by mass acrylic acid aqueous solution was placed in a separate 500 mL beaker as the water-soluble ethylenically unsaturated monomer, and while cooling with ice water, 159.0 g of 27% by mass sodium hydroxide aqueous solution was added dropwise to neutralize 75 mol%, after which 0.103 g (0.381 mmol) of potassium persulfate as a water-soluble radical polymerization initiator and 0.0117 g (0.067 mmol) of ethylene glycol diglycidyl ether as an internal crosslinking agent were added and dissolved to prepare the second stage aqueous liquid.
撹拌機の回転数を1000rpmとして撹拌しながら、上記のセパラブルフラスコ系内を25℃に冷却した後、上記第2段目の水性液の全量を、第1段目の重合スラリー液に添加して、系内を窒素で30分間置換した後、再度、フラスコを70℃の水浴に浸漬して昇温し、重合反応を60分間行って、含水ゲル重合体を得た。
The contents of the separable flask system were cooled to 25°C while stirring at a stirrer speed of 1000 rpm, and then the entire amount of the second-stage aqueous liquid was added to the first-stage polymerization slurry liquid, and the system was replaced with nitrogen for 30 minutes. After that, the flask was again immersed in a 70°C water bath to raise the temperature, and the polymerization reaction was carried out for 60 minutes to obtain a hydrous gel polymer.
その後、125℃に設定した油浴にフラスコを浸漬し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら、259.9gの水を系外へ抜き出した。その後、フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加し、83℃で2時間保持した。
Then, the flask was immersed in an oil bath set at 125°C, and 259.9 g of water was extracted from the system by azeotropic distillation of n-heptane and water while refluxing n-heptane.
Then, 4.42 g (0.507 mmol) of a 2% by mass aqueous solution of ethylene glycol diglycidyl ether was added to the flask as a surface crosslinking agent, and the flask was kept at 83°C for 2 hours.
その後、n-ヘプタンを125℃にて蒸発させて乾燥させ、さらに目開き850μmの篩に通過させることで、吸水性重合体粒子226.1g得た。吸水性重合体粒子の生理食塩水保水量は42g/g、吸水速度は39秒、中位粒子径は360μm、4.14kPa荷重下での生理食塩水吸水量は20ml/gであった。
Then, the n-heptane was evaporated at 125°C to dry the particles, and the particles were passed through a sieve with 850 μm mesh to obtain 226.1 g of water-absorbent polymer particles. The saline water retention capacity of the water-absorbent polymer particles was 42 g/g, the water absorption speed was 39 seconds, the median particle size was 360 μm, and the saline water absorption capacity under a load of 4.14 kPa was 20 ml/g.
[吸水性重合体粒子の評価]
<生理食塩水保水量>
吸水性重合体粒子2.0gを量り取った綿袋(メンブロード60番、横100mm×縦200mm)を500ml容のビーカー内に設置した。吸水性重合体粒子の入った綿袋中に0.9質量%塩化ナトリウム水溶液(生理食塩水)500gをママコができないように一度に注ぎ込み、綿袋の上部を輪ゴムで縛り、30分静置させることで吸水性重合体粒子を膨潤させた。30分経過後の綿袋を、遠心力が167Gとなるよう設定した脱水機(株式会社コクサン、品番:H-122)を用いて1分間脱水し、脱水後の膨潤ゲルを含んだ綿袋の質量Wd(g)を測定した。吸水性重合体粒子を添加せずに同様の操作を行い、綿袋の湿潤時の空質量We(g)を測定し、以下の式から生理食塩水保水量を算出した。
生理食塩水保水量(g/g)=[Wd-We]/2.0 [Evaluation of Water-Absorbent Polymer Particles]
<Saline water retention capacity>
A cotton bag (membrane broad 60, 100 mm wide x 200 mm long) containing 2.0 g of water-absorbent polymer particles was placed in a 500 ml beaker. 500 g of 0.9% by mass sodium chloride aqueous solution (physiological saline) was poured into the cotton bag containing the water-absorbent polymer particles at once so as not to cause the bag to become lumpy, the top of the cotton bag was tied with a rubber band, and the bag was left to stand for 30 minutes to swell the water-absorbent polymer particles. After 30 minutes, the cotton bag was dehydrated for 1 minute using a dehydrator (Kokusan Co., Ltd., product number: H-122) set to a centrifugal force of 167 G, and the mass Wd (g) of the cotton bag containing the swollen gel after dehydration was measured. The same operation was performed without adding the water-absorbent polymer particles, the empty mass We (g) of the cotton bag when wet was measured, and the physiological saline water retention was calculated from the following formula.
Saline water retention capacity (g/g) = [Wd-We]/2.0
<生理食塩水保水量>
吸水性重合体粒子2.0gを量り取った綿袋(メンブロード60番、横100mm×縦200mm)を500ml容のビーカー内に設置した。吸水性重合体粒子の入った綿袋中に0.9質量%塩化ナトリウム水溶液(生理食塩水)500gをママコができないように一度に注ぎ込み、綿袋の上部を輪ゴムで縛り、30分静置させることで吸水性重合体粒子を膨潤させた。30分経過後の綿袋を、遠心力が167Gとなるよう設定した脱水機(株式会社コクサン、品番:H-122)を用いて1分間脱水し、脱水後の膨潤ゲルを含んだ綿袋の質量Wd(g)を測定した。吸水性重合体粒子を添加せずに同様の操作を行い、綿袋の湿潤時の空質量We(g)を測定し、以下の式から生理食塩水保水量を算出した。
生理食塩水保水量(g/g)=[Wd-We]/2.0 [Evaluation of Water-Absorbent Polymer Particles]
<Saline water retention capacity>
A cotton bag (membrane broad 60, 100 mm wide x 200 mm long) containing 2.0 g of water-absorbent polymer particles was placed in a 500 ml beaker. 500 g of 0.9% by mass sodium chloride aqueous solution (physiological saline) was poured into the cotton bag containing the water-absorbent polymer particles at once so as not to cause the bag to become lumpy, the top of the cotton bag was tied with a rubber band, and the bag was left to stand for 30 minutes to swell the water-absorbent polymer particles. After 30 minutes, the cotton bag was dehydrated for 1 minute using a dehydrator (Kokusan Co., Ltd., product number: H-122) set to a centrifugal force of 167 G, and the mass Wd (g) of the cotton bag containing the swollen gel after dehydration was measured. The same operation was performed without adding the water-absorbent polymer particles, the empty mass We (g) of the cotton bag when wet was measured, and the physiological saline water retention was calculated from the following formula.
Saline water retention capacity (g/g) = [Wd-We]/2.0
<Vortex法による吸水速度の測定>
恒温水槽にて25±0.2℃の温度に調整した生理食塩水50±0.1gを100mlビーカーに測りとり、マグネチックスターラーバー(8mmφ×30mmのリング無し)で攪拌して、回転数600rpmで渦を発生させた。吸水性重合体粒子2.0±0.002gを、上記生理食塩水中に一度に添加し、吸水性重合体粒子の添加後から液面の渦が収束する時点までの時間(秒)を測定し、当該時間を吸水性重合体粒子の吸水速度とした。この吸水速度はVortex法又は渦時間とも表現される。 <Measurement of Water Absorption Rate by Vortex Method>
50±0.1 g of physiological saline adjusted to a temperature of 25±0.2°C in a thermostatic water bath was weighed into a 100 ml beaker and stirred with a magnetic stir bar (8 mmφ×30 mm without ring) to generate a vortex at a rotation speed of 600 rpm. 2.0±0.002 g of water-absorbent polymer particles were added to the physiological saline at once, and the time (seconds) from the addition of the water-absorbent polymer particles to the time when the vortex on the liquid surface converged was measured, and this time was taken as the water absorption speed of the water-absorbent polymer particles. This water absorption speed is also expressed as the Vortex method or vortex time.
恒温水槽にて25±0.2℃の温度に調整した生理食塩水50±0.1gを100mlビーカーに測りとり、マグネチックスターラーバー(8mmφ×30mmのリング無し)で攪拌して、回転数600rpmで渦を発生させた。吸水性重合体粒子2.0±0.002gを、上記生理食塩水中に一度に添加し、吸水性重合体粒子の添加後から液面の渦が収束する時点までの時間(秒)を測定し、当該時間を吸水性重合体粒子の吸水速度とした。この吸水速度はVortex法又は渦時間とも表現される。 <Measurement of Water Absorption Rate by Vortex Method>
50±0.1 g of physiological saline adjusted to a temperature of 25±0.2°C in a thermostatic water bath was weighed into a 100 ml beaker and stirred with a magnetic stir bar (8 mmφ×30 mm without ring) to generate a vortex at a rotation speed of 600 rpm. 2.0±0.002 g of water-absorbent polymer particles were added to the physiological saline at once, and the time (seconds) from the addition of the water-absorbent polymer particles to the time when the vortex on the liquid surface converged was measured, and this time was taken as the water absorption speed of the water-absorbent polymer particles. This water absorption speed is also expressed as the Vortex method or vortex time.
<吸水性重合体粒子の中位粒子径(粒度分布)>
吸水性重合体粒子50gを中位粒子径(粒度分布)測定用に用いた。JIS標準篩を上から、目開き850μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、及び受け皿の順に組み合わせた。組み合わせた最上の篩に、吸水性重合体粒子を入れ、ロータップ式振とう器を用いて20分間振とうさせて分級した。分級後、各篩上に残った吸水性重合体粒子の質量を全量に対する質量百分率として算出し粒度分布を求めた。この粒度分布に関して粒子径の大きい方から順に篩上を積算することにより、篩の目開きと篩上に残った吸水性重合体粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径とした。 <Median particle size (particle size distribution) of water-absorbing polymer particles>
50 g of water-absorbing polymer particles were used for measuring the median particle size (particle size distribution). JIS standard sieves were combined in the following order from the top: a sieve with an opening of 850 μm, a sieve with an opening of 500 μm, a sieve with an opening of 425 μm, a sieve with an opening of 300 μm, a sieve with an opening of 250 μm, a sieve with an opening of 180 μm, a sieve with an opening of 150 μm, and a tray. Water-absorbing polymer particles were placed on the top sieve of the combination, and classified by shaking for 20 minutes using a rotor shaker. After classification, the mass of the water-absorbing polymer particles remaining on each sieve was calculated as a mass percentage relative to the total amount to obtain the particle size distribution. The particle size distribution was calculated by accumulating the particles remaining on the sieve in order of particle size from the largest to the smallest, and the relationship between the sieve opening and the accumulated value of the mass percentage of the water-absorbent polymer particles remaining on the sieve was plotted on a logarithmic probability paper. The particle size corresponding to an accumulated mass percentage of 50% by mass was determined as the median particle size by connecting the plots on the probability paper with a straight line.
吸水性重合体粒子50gを中位粒子径(粒度分布)測定用に用いた。JIS標準篩を上から、目開き850μmの篩、目開き500μmの篩、目開き425μmの篩、目開き300μmの篩、目開き250μmの篩、目開き180μmの篩、目開き150μmの篩、及び受け皿の順に組み合わせた。組み合わせた最上の篩に、吸水性重合体粒子を入れ、ロータップ式振とう器を用いて20分間振とうさせて分級した。分級後、各篩上に残った吸水性重合体粒子の質量を全量に対する質量百分率として算出し粒度分布を求めた。この粒度分布に関して粒子径の大きい方から順に篩上を積算することにより、篩の目開きと篩上に残った吸水性重合体粒子の質量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算質量百分率50質量%に相当する粒子径を中位粒子径とした。 <Median particle size (particle size distribution) of water-absorbing polymer particles>
50 g of water-absorbing polymer particles were used for measuring the median particle size (particle size distribution). JIS standard sieves were combined in the following order from the top: a sieve with an opening of 850 μm, a sieve with an opening of 500 μm, a sieve with an opening of 425 μm, a sieve with an opening of 300 μm, a sieve with an opening of 250 μm, a sieve with an opening of 180 μm, a sieve with an opening of 150 μm, and a tray. Water-absorbing polymer particles were placed on the top sieve of the combination, and classified by shaking for 20 minutes using a rotor shaker. After classification, the mass of the water-absorbing polymer particles remaining on each sieve was calculated as a mass percentage relative to the total amount to obtain the particle size distribution. The particle size distribution was calculated by accumulating the particles remaining on the sieve in order of particle size from the largest to the smallest, and the relationship between the sieve opening and the accumulated value of the mass percentage of the water-absorbent polymer particles remaining on the sieve was plotted on a logarithmic probability paper. The particle size corresponding to an accumulated mass percentage of 50% by mass was determined as the median particle size by connecting the plots on the probability paper with a straight line.
<4.14kPa荷重下での生理食塩水吸水量>
4.14kPa荷重下での生理食塩水吸水量(荷重下吸水量)は、図1に概略を示す測定装置を用いて測定した。測定は、1種の吸水性重合体粒子について2回行い、平均値を求めた。測定装置は、ビュレット部1、クランプ3、導管5、架台11、測定台13、及び測定台13上に置かれた測定部4を備えている。ビュレット部1は、目盛が記載されたビュレット管21と、ビュレット管21の上部の開口を密栓するゴム栓23と、ビュレット管21の下部の先端に連結されたコック22と、ビュレット管21の下部に連結された空気導入管25及びコック24とを有する。ビュレット部1はクランプ3で固定されている。平板状の測定台13は、その中央部に形成された直径2mmの貫通孔13aを有しており、高さが可変の架台11によって支持されている。測定台13の貫通孔13aとビュレット部1のコック22とが導管5によって連結されている。導管5の内径は6mmである。 <Saline absorption amount under a load of 4.14 kPa>
The physiological saline water absorption amount under a load of 4.14 kPa (water absorption amount under load) was measured using a measuring device shown in FIG. 1. The measurement was performed twice for one type of water-absorbent polymer particle, and the average value was calculated. The measuring device includes a burette part 1, a clamp 3, a conduit 5, a stand 11, a measurement table 13, and a measurement part 4 placed on the measurement table 13. The burette part 1 has a burette tube 21 with a scale, a rubber plug 23 that seals the opening at the top of the burette tube 21, a cock 22 connected to the tip of the bottom of the burette tube 21, and an air introduction tube 25 and a cock 24 connected to the bottom of the burette tube 21. The burette part 1 is fixed with a clamp 3. The flat measurement table 13 has a through hole 13a with a diameter of 2 mm formed in its center, and is supported by a height-variable stand 11. The through hole 13a of the measuring table 13 and the cock 22 of the burette part 1 are connected by a conduit 5. The inside diameter of the conduit 5 is 6 mm.
4.14kPa荷重下での生理食塩水吸水量(荷重下吸水量)は、図1に概略を示す測定装置を用いて測定した。測定は、1種の吸水性重合体粒子について2回行い、平均値を求めた。測定装置は、ビュレット部1、クランプ3、導管5、架台11、測定台13、及び測定台13上に置かれた測定部4を備えている。ビュレット部1は、目盛が記載されたビュレット管21と、ビュレット管21の上部の開口を密栓するゴム栓23と、ビュレット管21の下部の先端に連結されたコック22と、ビュレット管21の下部に連結された空気導入管25及びコック24とを有する。ビュレット部1はクランプ3で固定されている。平板状の測定台13は、その中央部に形成された直径2mmの貫通孔13aを有しており、高さが可変の架台11によって支持されている。測定台13の貫通孔13aとビュレット部1のコック22とが導管5によって連結されている。導管5の内径は6mmである。 <Saline absorption amount under a load of 4.14 kPa>
The physiological saline water absorption amount under a load of 4.14 kPa (water absorption amount under load) was measured using a measuring device shown in FIG. 1. The measurement was performed twice for one type of water-absorbent polymer particle, and the average value was calculated. The measuring device includes a burette part 1, a clamp 3, a conduit 5, a stand 11, a measurement table 13, and a measurement part 4 placed on the measurement table 13. The burette part 1 has a burette tube 21 with a scale, a rubber plug 23 that seals the opening at the top of the burette tube 21, a cock 22 connected to the tip of the bottom of the burette tube 21, and an air introduction tube 25 and a cock 24 connected to the bottom of the burette tube 21. The burette part 1 is fixed with a clamp 3. The flat measurement table 13 has a through hole 13a with a diameter of 2 mm formed in its center, and is supported by a height-variable stand 11. The through hole 13a of the measuring table 13 and the cock 22 of the burette part 1 are connected by a conduit 5. The inside diameter of the conduit 5 is 6 mm.
測定部4は、プレキシグラス製の円筒31、円筒31の一方の開口部に接着されたポリアミドメッシュ32、及び円筒31内で上下方向に可動な重り33を有している。円筒31は、ポリアミドメッシュ32を介して、測定台13上に載置されている。円筒31の内径は20mmである。ポリアミドメッシュ32の目開きは、75μm(200メッシュ)である。重り33は、直径19mm、質量119.6gであり、後記するようにポリアミドメッシュ32上に均一に配置された吸水性重合体粒子10aに対して4.14kPa(0.6psi)の荷重を加えることができる。
The measuring section 4 has a Plexiglas cylinder 31, a polyamide mesh 32 attached to one opening of the cylinder 31, and a weight 33 that can move up and down inside the cylinder 31. The cylinder 31 is placed on the measuring table 13 via the polyamide mesh 32. The inner diameter of the cylinder 31 is 20 mm. The opening of the polyamide mesh 32 is 75 μm (200 mesh). The weight 33 has a diameter of 19 mm and a mass of 119.6 g, and can apply a load of 4.14 kPa (0.6 psi) to the water-absorbent polymer particles 10a that are uniformly arranged on the polyamide mesh 32 as described below.
まず、ビュレット部1のコック22及びコック24を閉め、25℃に調節された0.9質量%生理食塩水をビュレット管21上部の開口からビュレット管21に入れた。次に、ゴム栓23でビュレット管21の上部開口を密栓した後、コック22及びコック24を開けた。気泡が入らないよう導管5内部を0.9質量%食塩水50で満たした。貫通孔13a内に到達した0.9質量%食塩水の水面の高さが、測定台13の上面の高さと同じになるように、測定台13の高さを調整した。調整後、ビュレット管21内の0.9質量%食塩水50の水面の高さをビュレット管21の目盛で読み取り、その位置をゼロ点(0秒時点の読み値)とした。
First, the stopcocks 22 and 24 of the burette part 1 were closed, and 0.9% by mass physiological saline adjusted to 25°C was poured into the burette tube 21 through the opening at the top of the burette tube 21. Next, the top opening of the burette tube 21 was sealed with a rubber stopper 23, and then the stopcocks 22 and 24 were opened. The inside of the conduit 5 was filled with 0.9% by mass saline 50 to prevent air bubbles from entering. The height of the measurement table 13 was adjusted so that the height of the water surface of the 0.9% by mass saline solution 50 that reached the through hole 13a was the same as the height of the upper surface of the measurement table 13. After the adjustment, the height of the water surface of the 0.9% by mass saline solution 50 in the burette tube 21 was read on the scale of the burette tube 21, and this position was set as the zero point (the reading at 0 seconds).
測定部4では、円筒31内のポリアミドメッシュ32上に0.10gの吸水性重合体粒子10aを均一に配置し、吸水性重合体粒子10a上に重り33を配置し、円筒31を、その中心部が測定台13中心部の導管口に一致するように設置した。吸水性重合体粒子10aが導管5からの生理食塩水を吸水し始めた時から60分後のビュレット管21内の生理食塩水の減少量(すなわち、吸水性重合体粒子10aが吸水した生理食塩水量)Wc(ml)を読み取り、以下の式により吸水性重合体粒子10aの4.14kPa荷重下の生理食塩水吸水能を算出した。
4.14kPa荷重下の生理食塩水吸水能(ml/g)=Wc(ml)/吸水性重合体粒子の質量(g) In the measurement section 4, 0.10 g of water-absorbent polymer particles 10a were uniformly arranged on the polyamide mesh 32 in the cylinder 31, a weight 33 was placed on the water-absorbent polymer particles 10a, and the cylinder 31 was installed so that its center coincided with the conduit port at the center of the measurement table 13. The amount of reduction in the saline solution in the burette tube 21 (i.e., the amount of saline solution absorbed by the water-absorbent polymer particles 10a) Wc (ml) 60 minutes after the water-absorbent polymer particles 10a started to absorb the saline solution from the conduit 5 was read, and the saline solution absorption capacity of the water-absorbent polymer particles 10a under a load of 4.14 kPa was calculated by the following formula.
4. Absorption capacity of physiological saline solution under a load of 14 kPa (ml/g)=Wc (ml)/mass of water-absorbent polymer particles (g)
4.14kPa荷重下の生理食塩水吸水能(ml/g)=Wc(ml)/吸水性重合体粒子の質量(g) In the measurement section 4, 0.10 g of water-absorbent polymer particles 10a were uniformly arranged on the polyamide mesh 32 in the cylinder 31, a weight 33 was placed on the water-absorbent polymer particles 10a, and the cylinder 31 was installed so that its center coincided with the conduit port at the center of the measurement table 13. The amount of reduction in the saline solution in the burette tube 21 (i.e., the amount of saline solution absorbed by the water-absorbent polymer particles 10a) Wc (ml) 60 minutes after the water-absorbent polymer particles 10a started to absorb the saline solution from the conduit 5 was read, and the saline solution absorption capacity of the water-absorbent polymer particles 10a under a load of 4.14 kPa was calculated by the following formula.
4. Absorption capacity of physiological saline solution under a load of 14 kPa (ml/g)=Wc (ml)/mass of water-absorbent polymer particles (g)
[活性炭の準備]
BET比表面積が1345m2/g、中位粒子径が46μm、強熱残分0.4%、乾燥減量3.2%、pHが4.9、形状が破砕状である、活性炭(大阪ガスケミカル株式会社製、カルボラフィン-6)を準備した。 [Preparation of activated carbon]
Activated carbon (Carborafine-6, manufactured by Osaka Gas Chemicals Co., Ltd.) having a BET specific surface area of 1345 m 2 /g, a median particle size of 46 μm, an ignition residue of 0.4%, a loss on drying of 3.2%, a pH of 4.9 and a crushed shape was prepared.
BET比表面積が1345m2/g、中位粒子径が46μm、強熱残分0.4%、乾燥減量3.2%、pHが4.9、形状が破砕状である、活性炭(大阪ガスケミカル株式会社製、カルボラフィン-6)を準備した。 [Preparation of activated carbon]
Activated carbon (Carborafine-6, manufactured by Osaka Gas Chemicals Co., Ltd.) having a BET specific surface area of 1345 m 2 /g, a median particle size of 46 μm, an ignition residue of 0.4%, a loss on drying of 3.2%, a pH of 4.9 and a crushed shape was prepared.
[活性炭の評価]
<活性炭の中位粒子径(レーザー回折)>
使用した活性炭の中位粒子径(D50(メジアン径)、体積基準)は、レーザー回折式粒度分布測定装置(株式会社島津製作所、SALD2300)にて測定した。 [Evaluation of activated carbon]
<Median particle size of activated carbon (laser diffraction)>
The median particle size (D50 (median size), volume basis) of the activated carbon used was measured with a laser diffraction particle size distribution measuring device (Shimadzu Corporation, SALD2300).
<活性炭の中位粒子径(レーザー回折)>
使用した活性炭の中位粒子径(D50(メジアン径)、体積基準)は、レーザー回折式粒度分布測定装置(株式会社島津製作所、SALD2300)にて測定した。 [Evaluation of activated carbon]
<Median particle size of activated carbon (laser diffraction)>
The median particle size (D50 (median size), volume basis) of the activated carbon used was measured with a laser diffraction particle size distribution measuring device (Shimadzu Corporation, SALD2300).
<活性炭のBET比表面積>
測定する活性炭0.1gを前処理装置(MicrotracBel社、BELPREP VAC II)を用いて60℃、24時間加熱真空排気の脱気条件で乾燥した。その後、比表面積測定装置(MicrotracBel社、BELSORP MINI II)により、吸着ガスとして窒素ガスを用いる方法で温度77Kにて吸着等温線を測定し、多点BETプロットから比表面積を求め、活性炭のBET比表面積とした。 <BET specific surface area of activated carbon>
0.1 g of the activated carbon to be measured was dried under degassing conditions of heating and vacuum exhaust at 60° C. for 24 hours using a pretreatment device (MicrotracBel, BELPREP VAC II). Thereafter, an adsorption isotherm was measured at a temperature of 77 K using a method using nitrogen gas as the adsorption gas using a specific surface area measurement device (MicrotracBel, BELSORP MINI II), and the specific surface area was calculated from a multipoint BET plot, which was defined as the BET specific surface area of the activated carbon.
測定する活性炭0.1gを前処理装置(MicrotracBel社、BELPREP VAC II)を用いて60℃、24時間加熱真空排気の脱気条件で乾燥した。その後、比表面積測定装置(MicrotracBel社、BELSORP MINI II)により、吸着ガスとして窒素ガスを用いる方法で温度77Kにて吸着等温線を測定し、多点BETプロットから比表面積を求め、活性炭のBET比表面積とした。 <BET specific surface area of activated carbon>
0.1 g of the activated carbon to be measured was dried under degassing conditions of heating and vacuum exhaust at 60° C. for 24 hours using a pretreatment device (MicrotracBel, BELPREP VAC II). Thereafter, an adsorption isotherm was measured at a temperature of 77 K using a method using nitrogen gas as the adsorption gas using a specific surface area measurement device (MicrotracBel, BELSORP MINI II), and the specific surface area was calculated from a multipoint BET plot, which was defined as the BET specific surface area of the activated carbon.
[吸水性樹脂組成物の製造]
<実施例1>
製造例で得られた吸水性重合体粒子100質量部に対して、抗菌性金属含有消臭剤として銀亜鉛ゼオライト(株式会社シナネンゼオミック製、ゼオミックHD10N、中位粒子径2.1μm、BET比表面積653m2/g)を0.03質量部、多孔性消臭剤として上述の活性炭を0.10質量部加え、明和工業株式会社製のクロスロータリー混合機を用いて、自転回転数50rpm及び公転回転数50rpmの条件で30分間回転させてこれらを混合し、吸水性樹脂組成物を得た。
なお、抗菌性金属含有消臭剤の中位粒子径とBET比表面積は上述の活性炭と同様の測定方法によって測定した。 [Production of water-absorbent resin composition]
Example 1
To 100 parts by mass of the water-absorbent polymer particles obtained in the manufacturing example, 0.03 parts by mass of silver-zinc zeolite (Zeomic HD10N, manufactured by Sinanen Zeomic Co., Ltd., median particle size 2.1 μm, BET specific surface area 653 m2 /g) was added as an antibacterial metal-containing deodorant, and 0.10 parts by mass of the above-mentioned activated carbon was added as a porous deodorant, and these were mixed by rotating them for 30 minutes under conditions of a rotation speed of 50 rpm and a revolution speed of 50 rpm using a cross rotary mixer manufactured by Meiwa Kogyo Co., Ltd., to obtain a water-absorbent resin composition.
The median particle size and BET specific surface area of the antibacterial metal-containing deodorant were measured by the same measuring method as that for the activated carbon described above.
<実施例1>
製造例で得られた吸水性重合体粒子100質量部に対して、抗菌性金属含有消臭剤として銀亜鉛ゼオライト(株式会社シナネンゼオミック製、ゼオミックHD10N、中位粒子径2.1μm、BET比表面積653m2/g)を0.03質量部、多孔性消臭剤として上述の活性炭を0.10質量部加え、明和工業株式会社製のクロスロータリー混合機を用いて、自転回転数50rpm及び公転回転数50rpmの条件で30分間回転させてこれらを混合し、吸水性樹脂組成物を得た。
なお、抗菌性金属含有消臭剤の中位粒子径とBET比表面積は上述の活性炭と同様の測定方法によって測定した。 [Production of water-absorbent resin composition]
Example 1
To 100 parts by mass of the water-absorbent polymer particles obtained in the manufacturing example, 0.03 parts by mass of silver-zinc zeolite (Zeomic HD10N, manufactured by Sinanen Zeomic Co., Ltd., median particle size 2.1 μm, BET specific surface area 653 m2 /g) was added as an antibacterial metal-containing deodorant, and 0.10 parts by mass of the above-mentioned activated carbon was added as a porous deodorant, and these were mixed by rotating them for 30 minutes under conditions of a rotation speed of 50 rpm and a revolution speed of 50 rpm using a cross rotary mixer manufactured by Meiwa Kogyo Co., Ltd., to obtain a water-absorbent resin composition.
The median particle size and BET specific surface area of the antibacterial metal-containing deodorant were measured by the same measuring method as that for the activated carbon described above.
<実施例2>
実施例1の活性炭の添加量を0.30質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 Example 2
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of activated carbon added was changed to 0.30 parts by mass.
実施例1の活性炭の添加量を0.30質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 Example 2
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of activated carbon added was changed to 0.30 parts by mass.
<実施例3>
実施例1の銀亜鉛ゼオライトの添加量を0.10質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 Example 3
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was changed to 0.10 parts by mass.
実施例1の銀亜鉛ゼオライトの添加量を0.10質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 Example 3
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was changed to 0.10 parts by mass.
<実施例4>
実施例1の銀亜鉛ゼオライトの添加量を0.10質量部、活性炭の添加量を0.30質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 Example 4
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.10 parts by mass and the amount of activated carbon added was 0.30 parts by mass.
実施例1の銀亜鉛ゼオライトの添加量を0.10質量部、活性炭の添加量を0.30質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 Example 4
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.10 parts by mass and the amount of activated carbon added was 0.30 parts by mass.
<実施例5>
実施例1の銀亜鉛ゼオライトの添加量を0.06質量部、活性炭の添加量を0.20質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 Example 5
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.06 parts by mass and the amount of activated carbon added was 0.20 parts by mass.
実施例1の銀亜鉛ゼオライトの添加量を0.06質量部、活性炭の添加量を0.20質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 Example 5
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.06 parts by mass and the amount of activated carbon added was 0.20 parts by mass.
<比較例1>
実施例1の銀亜鉛ゼオライトの添加量を0.015質量部、活性炭の添加量を0.05質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 1>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.015 parts by mass and the amount of activated carbon added was 0.05 parts by mass.
実施例1の銀亜鉛ゼオライトの添加量を0.015質量部、活性炭の添加量を0.05質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 1>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.015 parts by mass and the amount of activated carbon added was 0.05 parts by mass.
<比較例2>
実施例1の銀亜鉛ゼオライトの添加量を0.06質量部、活性炭の添加量を0.03質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 2>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.06 parts by mass and the amount of activated carbon added was 0.03 parts by mass.
実施例1の銀亜鉛ゼオライトの添加量を0.06質量部、活性炭の添加量を0.03質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 2>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.06 parts by mass and the amount of activated carbon added was 0.03 parts by mass.
<比較例3>
実施例1の銀亜鉛ゼオライトの添加量を0.015質量部、活性炭を無添加とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 3>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.015 parts by mass and no activated carbon was added.
実施例1の銀亜鉛ゼオライトの添加量を0.015質量部、活性炭を無添加とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 3>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.015 parts by mass and no activated carbon was added.
<比較例4>
実施例1の銀亜鉛ゼオライトの添加量を0.03質量部、活性炭を無添加とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 4>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.03 parts by mass and no activated carbon was added.
実施例1の銀亜鉛ゼオライトの添加量を0.03質量部、活性炭を無添加とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 4>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.03 parts by mass and no activated carbon was added.
<比較例5>
実施例1の銀亜鉛ゼオライトの添加量を0.06質量部、活性炭を無添加とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 5>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.06 parts by mass and no activated carbon was added.
実施例1の銀亜鉛ゼオライトの添加量を0.06質量部、活性炭を無添加とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 5>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.06 parts by mass and no activated carbon was added.
<比較例6>
実施例1の銀亜鉛ゼオライトの添加量を0.10質量部、活性炭を無添加とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 6>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.10 parts by mass and no activated carbon was added.
実施例1の銀亜鉛ゼオライトの添加量を0.10質量部、活性炭を無添加とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 6>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the amount of silver-zinc zeolite added was 0.10 parts by mass and no activated carbon was added.
<比較例7>
実施例1の銀亜鉛ゼオライトを無添加とし、活性炭の添加量を0.03質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 7>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the silver-zinc zeolite was not added and the amount of activated carbon added was 0.03 parts by mass.
実施例1の銀亜鉛ゼオライトを無添加とし、活性炭の添加量を0.03質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 7>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the silver-zinc zeolite was not added and the amount of activated carbon added was 0.03 parts by mass.
<比較例8>
実施例1の銀亜鉛ゼオライトを無添加とし、活性炭の添加量を0.05質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 8>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the silver-zinc zeolite was not added and the amount of activated carbon added was 0.05 parts by mass.
実施例1の銀亜鉛ゼオライトを無添加とし、活性炭の添加量を0.05質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 8>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the silver-zinc zeolite was not added and the amount of activated carbon added was 0.05 parts by mass.
<比較例9>
実施例1の銀亜鉛ゼオライトを無添加とし、活性炭の添加量を0.10質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 9>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the silver-zinc zeolite was not added and the amount of activated carbon added was 0.10 parts by mass.
実施例1の銀亜鉛ゼオライトを無添加とし、活性炭の添加量を0.10質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 9>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the silver-zinc zeolite was not added and the amount of activated carbon added was 0.10 parts by mass.
<比較例10>
実施例1の銀亜鉛ゼオライトを無添加とし、活性炭の添加量を0.20質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 10>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the silver-zinc zeolite was not added and the amount of activated carbon added was 0.20 parts by mass.
実施例1の銀亜鉛ゼオライトを無添加とし、活性炭の添加量を0.20質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 10>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the silver-zinc zeolite was not added and the amount of activated carbon added was 0.20 parts by mass.
<比較例11>
実施例1の銀亜鉛ゼオライトを無添加とし、活性炭の添加量を0.30質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 11>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the silver-zinc zeolite was not added and the amount of activated carbon added was 0.30 parts by mass.
実施例1の銀亜鉛ゼオライトを無添加とし、活性炭の添加量を0.30質量部とした以外は同様の方法で吸水性樹脂組成物を得た。 <Comparative Example 11>
A water-absorbent resin composition was obtained in the same manner as in Example 1, except that the silver-zinc zeolite was not added and the amount of activated carbon added was 0.30 parts by mass.
<参考例1>
製造例で得られた吸水性重合体粒子を参考例1として用いた。 <Reference Example 1>
The water-absorbing polymer particles obtained in the Production Example were used as Reference Example 1.
製造例で得られた吸水性重合体粒子を参考例1として用いた。 <Reference Example 1>
The water-absorbing polymer particles obtained in the Production Example were used as Reference Example 1.
[吸水性樹脂組成物の評価]
<アンモニア発生抑制試験>
蒸留水958.1gに尿素25.0g、塩化ナトリウム9.0g、硫酸マグネシウム・7水和物0.6g、乳酸カルシウム0.7g、硫酸カリウム4.0g、硫酸アンモニウム2.5g、L-シスチン0.1gを溶解して人工尿を調製した。また、ウレアーゼ(MERCK社製、タチナタ豆由来50%グリセリン溶液1000U/mL)を、2U/mLとなるように蒸留水で希釈してウレアーゼ溶液を調製した。吸水性樹脂組成物あるいは吸水性重合体粒子0.500gを滅菌シャーレ(直径88mm、高さ17mm)に入れ、試験液(上述の人工尿30.0mLとウレアーゼ溶液1.0mLを混合して作製)を添加して、試料を膨潤させた。試験液を添加後、試料をポリエステル製2Lサンプリングバッグ(GLサイエンス株式会社製、PAAAK2)に封入し、バッグ内の空気を抜いて代わりに乾燥空気900mLをバッグ内に加えた。次いで35℃で保存し、24時間後にガス検知管(株式会社ガステック社製、アンモニア3L,3La,3M)を用いてアンモニア濃度を計測した。この計測値及び以下の式1より算出した消臭率を表1に示す。
式1:消臭率(%)=[(参考例1のアンモニア濃度-実施例又は比較例のアンモニア濃度)/参考例1のアンモニア濃度]×100 [Evaluation of Water-Absorbent Resin Composition]
<Ammonia generation suppression test>
Artificial urine was prepared by dissolving 25.0 g of urea, 9.0 g of sodium chloride, 0.6 g of magnesium sulfate heptahydrate, 0.7 g of calcium lactate, 4.0 g of potassium sulfate, 2.5 g of ammonium sulfate, and 0.1 g of L-cystine in 958.1 g of distilled water. Urease (MERCK, 50% glycerin solution derived from jack bean, 1000 U/mL) was diluted with distilled water to 2 U/mL to prepare a urease solution. 0.500 g of the water-absorbing resin composition or water-absorbing polymer particles was placed in a sterile petri dish (diameter 88 mm, height 17 mm), and a test liquid (prepared by mixing 30.0 mL of the above-mentioned artificial urine and 1.0 mL of the urease solution) was added to swell the sample. After adding the test liquid, the sample was sealed in a 2L polyester sampling bag (GL Science Co., Ltd., PAAAK2), the air in the bag was removed, and 900mL of dry air was added to the bag instead. The sample was then stored at 35°C, and after 24 hours, the ammonia concentration was measured using a gas detector (Gastec Co., Ltd., Ammonia 3L, 3La, 3M). The measured value and the deodorization rate calculated from the following formula 1 are shown in Table 1.
Formula 1: Deodorization rate (%) = [(ammonia concentration in Reference Example 1 - ammonia concentration in Examples or Comparative Examples) / ammonia concentration in Reference Example 1] x 100
<アンモニア発生抑制試験>
蒸留水958.1gに尿素25.0g、塩化ナトリウム9.0g、硫酸マグネシウム・7水和物0.6g、乳酸カルシウム0.7g、硫酸カリウム4.0g、硫酸アンモニウム2.5g、L-シスチン0.1gを溶解して人工尿を調製した。また、ウレアーゼ(MERCK社製、タチナタ豆由来50%グリセリン溶液1000U/mL)を、2U/mLとなるように蒸留水で希釈してウレアーゼ溶液を調製した。吸水性樹脂組成物あるいは吸水性重合体粒子0.500gを滅菌シャーレ(直径88mm、高さ17mm)に入れ、試験液(上述の人工尿30.0mLとウレアーゼ溶液1.0mLを混合して作製)を添加して、試料を膨潤させた。試験液を添加後、試料をポリエステル製2Lサンプリングバッグ(GLサイエンス株式会社製、PAAAK2)に封入し、バッグ内の空気を抜いて代わりに乾燥空気900mLをバッグ内に加えた。次いで35℃で保存し、24時間後にガス検知管(株式会社ガステック社製、アンモニア3L,3La,3M)を用いてアンモニア濃度を計測した。この計測値及び以下の式1より算出した消臭率を表1に示す。
式1:消臭率(%)=[(参考例1のアンモニア濃度-実施例又は比較例のアンモニア濃度)/参考例1のアンモニア濃度]×100 [Evaluation of Water-Absorbent Resin Composition]
<Ammonia generation suppression test>
Artificial urine was prepared by dissolving 25.0 g of urea, 9.0 g of sodium chloride, 0.6 g of magnesium sulfate heptahydrate, 0.7 g of calcium lactate, 4.0 g of potassium sulfate, 2.5 g of ammonium sulfate, and 0.1 g of L-cystine in 958.1 g of distilled water. Urease (MERCK, 50% glycerin solution derived from jack bean, 1000 U/mL) was diluted with distilled water to 2 U/mL to prepare a urease solution. 0.500 g of the water-absorbing resin composition or water-absorbing polymer particles was placed in a sterile petri dish (diameter 88 mm, height 17 mm), and a test liquid (prepared by mixing 30.0 mL of the above-mentioned artificial urine and 1.0 mL of the urease solution) was added to swell the sample. After adding the test liquid, the sample was sealed in a 2L polyester sampling bag (GL Science Co., Ltd., PAAAK2), the air in the bag was removed, and 900mL of dry air was added to the bag instead. The sample was then stored at 35°C, and after 24 hours, the ammonia concentration was measured using a gas detector (Gastec Co., Ltd., Ammonia 3L, 3La, 3M). The measured value and the deodorization rate calculated from the following formula 1 are shown in Table 1.
Formula 1: Deodorization rate (%) = [(ammonia concentration in Reference Example 1 - ammonia concentration in Examples or Comparative Examples) / ammonia concentration in Reference Example 1] x 100
<発塵度試験>
容量500mLのガラス製吸引瓶を用意した。吸引瓶の底からホッパーの排出口までの高さが180mmとなるように、SUS製ホッパー(上部内径88mm×足部内径18mm)をセットし、吸引瓶の吸引口と発塵計(柴田科学社製、デジタルインジケーターLD-5R型)とをガラス管(内径7.7mm×長さ300mm)で接続した。試料として吸水性樹脂組成物3.0g±0.1gをホッパーに投入し、ホッパーのダンパーを引き抜くと同時に発塵計のスタートボタンを押し、1分後のカウンター(試料に対するカウンター(A))を記録した。試料を測定する前に空試験を実施して空試験時のカウンター(B)を求め、発塵度を次式により算出した。
発塵度(cpm)=A-B
式中、Aは試料に対するカウンター(cpm)を表し、Bは空試験時のカウンター(cpm)を表す。
一種類の試料に対し、上記発塵度の測定を3度実施し、その平均値を当該試料の発塵度とし手採用した。結果を表2に示す。 <Dust generation test>
A glass suction bottle with a capacity of 500 mL was prepared. A SUS hopper (upper inner diameter 88 mm x foot inner diameter 18 mm) was set so that the height from the bottom of the suction bottle to the outlet of the hopper was 180 mm, and the suction port of the suction bottle and a dust generation meter (manufactured by Shibata Scientific Co., Ltd., digital indicator LD-5R type) were connected with a glass tube (inner diameter 7.7 mm x length 300 mm). 3.0 g ± 0.1 g of a water-absorbent resin composition was put into the hopper as a sample, and the start button of the dust generation meter was pressed at the same time as the damper of the hopper was pulled out, and the counter after 1 minute (counter (A) for the sample) was recorded. A blank test was performed before measuring the sample to determine the counter (B) during the blank test, and the dust generation rate was calculated by the following formula.
Dust generation level (cpm) = AB
In the formula, A represents the counter (cpm) for the sample, and B represents the counter (cpm) for the blank test.
The above-mentioned dust generation rate was measured three times for each type of sample, and the average value was used as the dust generation rate of the sample. The results are shown in Table 2.
容量500mLのガラス製吸引瓶を用意した。吸引瓶の底からホッパーの排出口までの高さが180mmとなるように、SUS製ホッパー(上部内径88mm×足部内径18mm)をセットし、吸引瓶の吸引口と発塵計(柴田科学社製、デジタルインジケーターLD-5R型)とをガラス管(内径7.7mm×長さ300mm)で接続した。試料として吸水性樹脂組成物3.0g±0.1gをホッパーに投入し、ホッパーのダンパーを引き抜くと同時に発塵計のスタートボタンを押し、1分後のカウンター(試料に対するカウンター(A))を記録した。試料を測定する前に空試験を実施して空試験時のカウンター(B)を求め、発塵度を次式により算出した。
発塵度(cpm)=A-B
式中、Aは試料に対するカウンター(cpm)を表し、Bは空試験時のカウンター(cpm)を表す。
一種類の試料に対し、上記発塵度の測定を3度実施し、その平均値を当該試料の発塵度とし手採用した。結果を表2に示す。 <Dust generation test>
A glass suction bottle with a capacity of 500 mL was prepared. A SUS hopper (upper inner diameter 88 mm x foot inner diameter 18 mm) was set so that the height from the bottom of the suction bottle to the outlet of the hopper was 180 mm, and the suction port of the suction bottle and a dust generation meter (manufactured by Shibata Scientific Co., Ltd., digital indicator LD-5R type) were connected with a glass tube (inner diameter 7.7 mm x length 300 mm). 3.0 g ± 0.1 g of a water-absorbent resin composition was put into the hopper as a sample, and the start button of the dust generation meter was pressed at the same time as the damper of the hopper was pulled out, and the counter after 1 minute (counter (A) for the sample) was recorded. A blank test was performed before measuring the sample to determine the counter (B) during the blank test, and the dust generation rate was calculated by the following formula.
Dust generation level (cpm) = AB
In the formula, A represents the counter (cpm) for the sample, and B represents the counter (cpm) for the blank test.
The above-mentioned dust generation rate was measured three times for each type of sample, and the average value was used as the dust generation rate of the sample. The results are shown in Table 2.
表1に示されるように、吸水性樹脂組成物中の多孔性消臭剤の含有率xが0.10質量%である比較例9の消臭率は20%であり、吸水性樹脂組成物中の抗菌性金属含有消臭剤の含有率yが0.10質量%である比較例6の消臭率は60%である。これに対して、吸水性樹脂組成物中の多孔性消臭剤の含有率xが0.10質量%であり、かつ、抗菌性金属含有消臭剤の含有率yが0.10質量%である実施例3の消臭率は、98%と極めて高く、比較例6と比較例9の結果(比較例6と比較例9の消臭率を合計しても80%である)からは予見することができない、抗菌性金属含有消臭剤と多孔性消臭剤との相乗効果が発揮されていることが分かる。表2に示された吸水性樹脂組成物の消臭率の相乗効果は、実施例の消臭率を、各消臭剤を単体で使用した比較例の消臭率の和で割ったものであり、例えば、実施例3の相乗効果は、実施例3の消臭率(98)/(比較例9の消臭率(20)+比較例6の消臭率(60))によって算出された値である。基準値1.00を超えると相乗効果が発揮されているといえる。
As shown in Table 1, the deodorizing rate of Comparative Example 9, in which the content x of the porous deodorant in the water absorbent resin composition is 0.10 mass%, is 20%, and the deodorizing rate of Comparative Example 6, in which the content y of the antibacterial metal-containing deodorant in the water absorbent resin composition is 0.10 mass%, is 60%. In contrast, the deodorizing rate of Example 3, in which the content x of the porous deodorant in the water absorbent resin composition is 0.10 mass% and the content y of the antibacterial metal-containing deodorant is 0.10 mass%, is extremely high at 98%, and it can be seen that a synergistic effect between the antibacterial metal-containing deodorant and the porous deodorant is exerted, which cannot be predicted from the results of Comparative Examples 6 and 9 (the sum of the deodorizing rates of Comparative Examples 6 and 9 is 80%). The synergistic effect of the deodorizing rate of the water-absorbent resin composition shown in Table 2 is the deodorizing rate of the example divided by the sum of the deodorizing rates of the comparative examples in which each deodorant was used alone. For example, the synergistic effect of Example 3 is a value calculated by deodorizing rate of Example 3 (98) / (deodorizing rate of Comparative Example 9 (20) + deodorizing rate of Comparative Example 6 (60)). If the standard value exceeds 1.00, it can be said that a synergistic effect is being exerted.
また、表2に示される結果から、実施例1~5の吸水性樹脂組成物の中では、実施例1、2、及び5が発塵度に優れ、実施例1が特に優れていることが分かる。
The results shown in Table 2 also show that, among the water-absorbent resin compositions of Examples 1 to 5, Examples 1, 2, and 5 are excellent in terms of dust generation, with Example 1 being particularly excellent.
1 ビュレット部
3 クランプ
4 測定部
5 導管
10a 吸水性重合体粒子
11 架台
13 測定台
13a 貫通孔
21 ビュレット管
22 コック
23 ゴム栓
24 コック
25 空気導入管
31 円筒
32 ポリアミドメッシュ
33 重り
50 食塩水 Reference Signs List 1 burette part 3 clamp 4 measurement part 5 conduit 10a water-absorbent polymer particles 11 stand 13 measurement stand 13a through hole 21 burette tube 22 cock 23 rubber stopper 24 cock 25 air introduction tube 31 cylinder 32 polyamide mesh 33 weight 50 saline solution
3 クランプ
4 測定部
5 導管
10a 吸水性重合体粒子
11 架台
13 測定台
13a 貫通孔
21 ビュレット管
22 コック
23 ゴム栓
24 コック
25 空気導入管
31 円筒
32 ポリアミドメッシュ
33 重り
50 食塩水 Reference Signs List 1 burette part 3 clamp 4 measurement part 5 conduit 10a water-absorbent polymer particles 11 stand 13 measurement stand 13a through hole 21 burette tube 22 cock 23 rubber stopper 24 cock 25 air introduction tube 31 cylinder 32 polyamide mesh 33 weight 50 saline solution
Claims (7)
- 抗菌性金属含有消臭剤、多孔性消臭剤、及び吸水性重合体粒子を含む、吸水性樹脂組成物であって、
前記多孔性消臭剤の含有量X(質量部)と、前記抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8以上であり、
前記吸水性樹脂組成物全体における、前記多孔性消臭剤の含有率x(質量%)と前記抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)が、0.10質量%以上である、吸水性樹脂組成物。 A water-absorbing resin composition comprising an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbing polymer particles,
the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more;
A water absorbent resin composition, wherein the sum (x+y) of a content rate x (mass%) of the porous deodorant and a content rate y (mass%) of the antibacterial metal-containing deodorant in the entire water absorbent resin composition is 0.10 mass% or more. - 前記含有率x(質量%)と前記含有率y(質量%)の和(x+y)が0.50質量%以下である、請求項1に記載の吸水性樹脂組成物。 The water-absorbent resin composition according to claim 1, wherein the sum (x+y) of the content x (mass%) and the content y (mass%) is 0.50 mass% or less.
- 前記抗菌性金属含有消臭剤に含まれる抗菌性金属が、銀、銅、亜鉛、ビスマス、コバルト、アルミニウム及びニッケルからなる群より選択される少なくとも1種を含む、請求項1又は2に記載の吸水性樹脂組成物。 The water-absorbent resin composition according to claim 1 or 2, wherein the antibacterial metal contained in the antibacterial metal-containing deodorant contains at least one selected from the group consisting of silver, copper, zinc, bismuth, cobalt, aluminum, and nickel.
- 前記抗菌性金属含有消臭剤が、銀粉、塩化銀(I)、酸化銀(I)、並びに銀イオン及び亜鉛イオンのうち少なくとも一方の金属イオンが担持された物質からなる群より選択される少なくとも1種を含む、請求項1又は2に記載の吸水性樹脂組成物。 The water-absorbent resin composition according to claim 1 or 2, wherein the antibacterial metal-containing deodorant contains at least one selected from the group consisting of silver powder, silver chloride (I), silver oxide (I), and a substance carrying at least one of silver ions and zinc ions.
- 前記多孔性消臭剤が活性炭、二酸化ケイ素及びケイ酸塩からなる群より選択される少なくとも1種を含む、請求項1又は2に記載の吸水性樹脂組成物。 The water-absorbent resin composition according to claim 1 or 2, wherein the porous deodorant contains at least one selected from the group consisting of activated carbon, silicon dioxide, and silicates.
- 前記抗菌性金属含有消臭剤の中位粒子径が、0.1μm~100μmであり、前記多孔性消臭剤の中位粒子径が1μm~100μmである、請求項1又は2に記載の吸水性樹脂組成物。 The water-absorbent resin composition according to claim 1 or 2, wherein the antibacterial metal-containing deodorant has a median particle diameter of 0.1 μm to 100 μm, and the porous deodorant has a median particle diameter of 1 μm to 100 μm.
- 抗菌性金属含有消臭剤、多孔性消臭剤、及び吸水性重合体粒子を含む、吸収性物品であって、
前記多孔性消臭剤の含有量X(質量部)と、前記抗菌性金属含有消臭剤の含有量Y(質量部)の比率(X/Y)が、0.8以上であり、
前記抗菌性金属含有消臭剤、前記多孔性消臭剤、及び前記吸水性重合体粒子の総量を基準とする前記多孔性消臭剤の含有率x(質量%)と前記抗菌性金属含有消臭剤の含有率y(質量%)の和(x+y)が、0.10質量%以上である、吸収性物品。 An absorbent article comprising an antibacterial metal-containing deodorant, a porous deodorant, and water-absorbing polymer particles,
the ratio (X/Y) of the content X (parts by mass) of the porous deodorant to the content Y (parts by mass) of the antibacterial metal-containing deodorant is 0.8 or more;
The sum (x+y) of the content x (mass%) of the porous deodorant and the content y (mass%) of the antibacterial metal-containing deodorant based on the total amount of the antibacterial metal-containing deodorant, the porous deodorant, and the water-absorbent polymer particles is 0.10 mass% or more.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-026373 | 2023-02-22 | ||
JP2023026373 | 2023-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024176758A1 true WO2024176758A1 (en) | 2024-08-29 |
Family
ID=92501023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2024/003048 WO2024176758A1 (en) | 2023-02-22 | 2024-01-31 | Water-absorbing resin composition |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024176758A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0411948A (en) * | 1990-04-27 | 1992-01-16 | Hagiwara Giken:Kk | Antibacterial water absorbing formed body |
JPH0810616A (en) * | 1994-06-30 | 1996-01-16 | Hokuriku Fine Chem:Kk | Water absorbing composition and production thereof |
-
2024
- 2024-01-31 WO PCT/JP2024/003048 patent/WO2024176758A1/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0411948A (en) * | 1990-04-27 | 1992-01-16 | Hagiwara Giken:Kk | Antibacterial water absorbing formed body |
JPH0810616A (en) * | 1994-06-30 | 1996-01-16 | Hokuriku Fine Chem:Kk | Water absorbing composition and production thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12150844B2 (en) | Water absorbent resin particles | |
TW201313752A (en) | Water-absorbent resin particle, method of manufacturing the same, absorbent, absorbent article and water-stopping material | |
WO2012108253A1 (en) | Water-absorbing resin manufacturing method | |
WO2018180864A1 (en) | Water-absorbing resin | |
US20250001393A1 (en) | Water-absorbent resin composition, absorbent material and absorbent article | |
EP4424779A1 (en) | Water-absorbing resin composition, absorber, absorbent article, and method for separation processing of water-absorbing resin particles from absorbent article | |
WO2024176758A1 (en) | Water-absorbing resin composition | |
EP4442230A1 (en) | Absorbent article | |
JP7165589B2 (en) | Water absorbent resin composition, absorbent body, and absorbent article | |
WO2024176759A1 (en) | Water-absorbing resin composition | |
EP4144792B1 (en) | Particulate water-absorbent resin composition, absorbent body and absorbent article | |
JP7470496B2 (en) | Particulate water-absorbent resin composition | |
EP4424777A1 (en) | Water-absorbent resin composition, absorber, and water-absorbent article | |
EP4424780A1 (en) | Water-absorbing resin composition, absorbent, and absorbent article | |
WO2020122211A1 (en) | Water-absorbent resin particles | |
WO2024262592A1 (en) | Deodorant composition | |
WO2025004971A1 (en) | Method for producing water-absorbing resin particles, water-absorbing resin particles, absorber, and absorbent article | |
CN115443312B (en) | Water-absorbent resin composition, absorber, and absorbent article | |
WO2024214752A1 (en) | Method for producing water-absorbing resin particles, water-absorbing resin particles, absorber, and absorbent article | |
JP7470494B2 (en) | Water-absorbent resin particles | |
WO2022085643A1 (en) | Water-absorbing resin, absorber, and absorbent article | |
WO2024071258A1 (en) | Method for producing water absorbent resin particles | |
WO2023190492A1 (en) | Method for producing water-absorbing resin composition | |
WO2022210678A1 (en) | Water-absorbent resin, absorbent body and absorbent article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24760065 Country of ref document: EP Kind code of ref document: A1 |