WO2024176421A1 - Air-conditioning device - Google Patents
Air-conditioning device Download PDFInfo
- Publication number
- WO2024176421A1 WO2024176421A1 PCT/JP2023/006658 JP2023006658W WO2024176421A1 WO 2024176421 A1 WO2024176421 A1 WO 2024176421A1 JP 2023006658 W JP2023006658 W JP 2023006658W WO 2024176421 A1 WO2024176421 A1 WO 2024176421A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- indoor
- pressure
- control device
- room
- indoor expansion
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
- F24F11/84—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2120/00—Control inputs relating to users or occupants
- F24F2120/10—Occupancy
Definitions
- This disclosure relates to an air conditioning device equipped with a control device.
- Patent Document 1 discloses an air conditioner in which a constant speed compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected by piping.
- Patent Document 1 is configured so that the refrigerant is bypassed from the discharge side to the suction side of the constant speed compressor via an on-off valve and a pressure reducing device. Patent Document 1 aims to reduce the pressure value on the high-pressure side in this way.
- Patent Document 1 requires the provision of a pressure reducing device such as a solenoid valve on the bypass circuit, which increases costs. Also, when an attempt is made to reduce the pressure on the high-pressure side by increasing the opening of the expansion section connected to the stopped indoor unit, refrigerant flow noise is generated and the indoor temperature rises excessively. This can cause discomfort to people.
- a pressure reducing device such as a solenoid valve
- This disclosure has been made to solve the problems described above, and provides an air conditioner that reduces the pressure on the high-pressure side without causing discomfort to people or increasing costs.
- the air conditioner disclosed herein comprises an outdoor unit having a compressor and an outdoor heat exchanger, a number of indoor units connected to the outdoor unit and each having an indoor expansion section and an indoor heat exchanger, a bypass pipe having an on-off valve connecting between the outdoor heat exchanger and the indoor expansion section and the suction side of the compressor, and a control device that opens the on-off valve when the pressure on the high-pressure side is higher than the high-pressure threshold, and increases the opening degree of at least one indoor expansion section so as not to cause discomfort to people.
- the opening degree of at least one indoor expansion section is increased so as not to cause discomfort to people. Therefore, the pressure on the high pressure side can be reduced without providing a pressure reducing device such as an electromagnetic valve in the bypass piping. In addition, there is no risk of causing discomfort to people. In this way, the pressure on the high pressure side can be reduced without causing discomfort to people and without increasing costs.
- 1 is a schematic diagram showing an air conditioning apparatus according to a first embodiment.
- 1 is a circuit diagram showing an air conditioning apparatus according to a first embodiment.
- 4 is a table showing a high pressure suppression operation according to the first embodiment.
- 4 is a flowchart showing the operation of the control device according to the first embodiment.
- 5 is a flowchart showing selection of an operation of the control device according to the first embodiment.
- FIG. 1 is a schematic diagram showing an air conditioning device 1 according to embodiment 1.
- the air conditioning device 1 is a device that adjusts the air in a space to be air-conditioned, and as shown in FIG. 1, an outdoor unit 2 and a plurality of indoor units 3 are connected by a refrigerant pipe 5.
- an indoor unit 3 is provided in each of four rooms, but the number of rooms and the number of indoor units 3 can be changed as appropriate.
- Each room is provided with a human detection unit 20 that detects the presence or absence of a person in the room.
- the first room 15a and the second room 15b are provided with a built-in human detection unit 21 built into the indoor unit 3, and the third room 15c and the fourth room 15d are provided with a separate human detection unit 22 installed separately from the indoor unit 3.
- FIG. 2 is a circuit diagram showing an air conditioner 1 according to the first embodiment.
- the air conditioner 1 includes an outdoor unit 2 and an indoor unit 3.
- the outdoor unit 2 includes, for example, a compressor 6, a flow path switching device 7, an outdoor heat exchanger 8, an outdoor blower 9, an outdoor expansion section 10a, an accumulator 13, a bypass piping 40, and a control device 30.
- Each indoor unit 3 includes, for example, an indoor expansion section 10b, an indoor heat exchanger 11, and an indoor blower 12. Note that FIG. 2 illustrates an example in which two indoor units 3 are provided, but the number of indoor units 3 can be changed as appropriate.
- each room includes a human detection section 20 and an indoor temperature detection section 23. Furthermore, a discharge pressure detection section 24 is provided on the discharge side of the compressor 6.
- the compressor 6, the flow path switching device 7, the outdoor heat exchanger 8, the outdoor expansion section 10a, the indoor expansion section 10b, the indoor heat exchanger 11, and the accumulator 13 are connected by the refrigerant piping 5 to form the refrigerant circuit 4.
- the compressor 6 draws in a refrigerant in a low-temperature and low-pressure state, compresses the drawn refrigerant, and discharges it as a refrigerant in a high-temperature and high-pressure state.
- the compressor 6 is, for example, a capacity-controllable inverter compressor.
- the flow path switching device 7 switches the direction in which the refrigerant flows in the refrigerant circuit 4, and is, for example, a four-way valve.
- the outdoor heat exchanger 8 exchanges heat between, for example, the outdoor air and the refrigerant.
- the outdoor heat exchanger 8 acts as a condenser during cooling operation and as an evaporator during heating operation.
- the outdoor expansion section 10a is a pressure reducing valve or an expansion valve that reduces the pressure of the refrigerant and expands it.
- the outdoor expansion section 10a is, for example, an electronic expansion valve whose opening is adjustable.
- the outdoor expansion section 10a may be omitted.
- the accumulator 13 stores liquid refrigerant and sends only gaseous refrigerant to the compressor 6. The accumulator 13 may be omitted.
- the indoor expansion section 10b is a pressure reducing valve or expansion valve that reduces the pressure of the refrigerant to expand it.
- the indoor expansion section 10b is, for example, an electronic expansion valve whose opening degree is adjustable.
- the indoor heat exchanger 11 exchanges heat between, for example, indoor air and the refrigerant.
- the indoor heat exchanger 11 acts as an evaporator during cooling operation and as a condenser during heating operation.
- the indoor blower 12 is a device that sends indoor air to the indoor heat exchanger 11.
- the bypass pipe 40 connects between the outdoor expansion section 10a and the indoor expansion section 10b and the suction side of the accumulator 13. If the outdoor expansion section 10a or the accumulator 13 is not provided, the bypass pipe 40 may connect between the outdoor heat exchanger 8 and the indoor expansion section 10b and the suction side of the compressor 6.
- the bypass pipe 40 is provided with an on-off valve 41. Since the on-off valve 41 is normally closed, refrigerant does not flow into the bypass pipe 40 under normal conditions. On the other hand, the on-off valve 41 is opened when the pressure on the high pressure side increases. As a result, refrigerant flows into the bypass pipe 40.
- cooling operation the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high-temperature, high-pressure gas state.
- the high-temperature, high-pressure gas state refrigerant discharged from the compressor 6 passes through the flow switching device 7 and flows into the outdoor heat exchanger 8 acting as a condenser, where it is heat exchanged with the outdoor air sent by the outdoor blower 9, and condensed and liquefied.
- the condensed liquid state refrigerant flows into the outdoor expansion section 10a, where it is expanded and decompressed.
- the refrigerant then flows into each indoor unit 3, where it is expanded and decompressed in each indoor expansion section 10b, and becomes a low-temperature, low-pressure gas-liquid two-phase refrigerant.
- the gas-liquid two-phase refrigerant then flows into the indoor heat exchanger 11 acting as an evaporator, where it is heat exchanged with the indoor air sent by the indoor blower 12, and evaporates and gasifies. At this time, the indoor air is cooled, and cooling is performed in the room.
- the evaporated low-temperature and low-pressure gaseous refrigerant flows out of each indoor unit 3, merges with the other refrigerants, passes through the flow path switching device 7, and reaches the accumulator 13.
- the liquid refrigerant is stored in the accumulator 13, and only the gaseous refrigerant is drawn into the compressor 6.
- the heating operation In the heating operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high-temperature, high-pressure gas state.
- the high-temperature, high-pressure gas state refrigerant discharged from the compressor 6 passes through the flow switching device 7 and flows into each indoor unit 3.
- the refrigerant flows into each indoor heat exchanger 11 acting as a condenser, where it is heat exchanged with the indoor air sent by the indoor blower 12, condensed, and liquefied. At this time, the indoor air is warmed, and heating is performed in the room.
- the condensed liquid state refrigerant flows into each indoor expansion section 10b, where it is expanded and decompressed.
- the refrigerant flows out of each indoor unit 3, merges, and becomes a low-temperature, low-pressure gas-liquid two-phase refrigerant in the outdoor expansion section 10a.
- the refrigerant in the gas-liquid two-phase state then flows into the outdoor heat exchanger 8 acting as an evaporator, where it exchanges heat with outdoor air sent by an outdoor blower 9, evaporating and gasifying.
- the evaporated low-temperature, low-pressure gaseous refrigerant passes through the flow switching device 7 and reaches the accumulator 13.
- the liquid refrigerant is stored in the accumulator 13, and only the gaseous refrigerant is drawn into the compressor 6.
- the air conditioner 1 does not have to have a flow path switching device 7. In this case, the air conditioner 1 becomes a dedicated cooling or heating unit.
- the human detection unit 20 detects the presence or absence of a person in the room, and is, for example, a human presence sensor.
- the human detection unit 20 is composed of a built-in human detection unit 21 and a separately installed human detection unit 22.
- the built-in human detection unit 21 is provided in the indoor unit 3 and is integrated with the indoor unit 3.
- the separately installed human detection unit 22 is provided in a location separate from the indoor unit 3, for example, on a wall of a room. In this way, the human detection unit 20 is linked to the air conditioning device 1, and is not limited to a location where it is installed as long as it is installed indoors.
- the indoor temperature detection unit 23 detects the room temperature and is, for example, a temperature sensor.
- the indoor temperature detection unit 23 may be provided in the indoor unit 3, or may be provided in a location separate from the indoor unit 3. In this way, the indoor temperature detection unit 23 is also linked to the air conditioning device 1, and is not limited to a location where it is provided, so long as it is provided indoors.
- the discharge pressure detection unit 24 detects the pressure of the refrigerant discharged from the compressor 6, and is provided on the discharge side of the compressor 6.
- the pressure of the refrigerant discharged from the compressor 6 is referred to as the high-pressure side pressure.
- the control device 30 is a CPU (also called a central processing unit, processing device, arithmetic device, microprocessor, microcomputer, or processor) that executes a program stored in dedicated hardware or a storage device.
- the control device 30 is dedicated hardware, the control device 30 corresponds to, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination of these.
- Each of the functional units realized by the control device 30 may be realized by individual hardware, or each functional unit may be realized by a single piece of hardware.
- each function executed by the control device 30 is realized by software, firmware, or a combination of software and firmware.
- the software and firmware are written as programs and stored in a storage device (not shown).
- the CPU realizes each function by reading and executing the programs stored in the storage device.
- some of the functions of the control device 30 may be realized by dedicated hardware, and some by software or firmware.
- the storage device may be configured as a hard disk, or as a volatile storage device such as a random access memory (RAM) that can temporarily store data.
- RAM random access memory
- the storage device may also be configured as a non-volatile storage device such as a flash memory that can store data for the long term.
- control device 30 is provided in the outdoor unit 2.
- the control device 30 may also be provided in the indoor unit 3, or outside the air conditioning device 1. In this way, the location where the control device 30 is installed is not limited.
- the control device 30 opens the on-off valve 41 and increases the opening degree of at least one indoor expansion section 10b so as not to cause discomfort to people.
- the on-off valve 41 is opened with the opening degree of the indoor expansion section 10b increased, the pressure of the refrigerant that has passed through the indoor heat exchanger 11 becomes extremely low, and the low-pressure refrigerant passes through the bypass piping 40 and is bypassed to the discharge side of the compressor 6.
- the control device 30 reduces the pressure on the high-pressure side.
- the high-pressure side pressure is the pressure of the refrigerant detected by the discharge pressure detection unit 24.
- the high-pressure pressure threshold has a first reference value and a second reference value.
- the first reference value is higher than the second reference value.
- the control device 30 performs an operation to reduce the pressure on the high-pressure side. In this case, even if the pressure on the high-pressure side becomes equal to or lower than the first reference value, the control device 30 continues the operation without stopping. Then, when the pressure on the high-pressure side falls below a second reference value that is lower than the first reference value, the control device 30 stops operation. In this way, by providing a differential for the high-pressure threshold, it is possible to sufficiently reduce the pressure on the high-pressure side while suppressing overshooting when the control device 30 is released from operation.
- FIG. 3 is a table showing the high pressure suppression operation according to the first embodiment.
- the control device 30 performs three operations, namely, operation A, operation B, and operation C.
- the control device 30 increases the opening degree of the indoor expansion part 10b selected preferentially from the indoor expansion part 10b of the indoor unit 3 installed in a room where no one is present, the indoor expansion part 10b of the indoor unit 3 in operation, and the indoor expansion part 10b of the indoor unit 3 installed in a room where the room temperature is equal to or lower than the room temperature threshold.
- the control device 30 increases the opening degree preferentially in the order of the indoor expansion part 10b of the indoor unit 3 installed in a room where no one is present, the indoor expansion part 10b of the indoor unit 3 in operation, and the indoor expansion part 10b of the indoor unit 3 installed in a room where the room temperature is equal to or lower than the room temperature threshold.
- the priority order of operation A, operation B, and operation C can be changed as appropriate.
- the priority order may be any priority order desired by the user.
- operation A, operation B, and operation C may be performed simultaneously.
- operation A As operation A, when the high-pressure side pressure is higher than the high-pressure threshold, the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in a room where no one is present. More specifically, the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in a room where the absence of a person is confirmed by the human detection section 20. As a result, even if refrigerant flow noise occurs and the indoor temperature rises excessively, no one is present in the room and therefore no one feels uncomfortable. As shown in FIG. 3, operation A has the highest priority among operations A, B, and C.
- operation B As operation B, when the high-pressure side pressure is higher than the high-pressure threshold, the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 in operation. In the indoor unit 3 in operation, the indoor blower 12 is driven. Therefore, even if a refrigerant flow sound occurs, the refrigerant flow sound is drowned out by the driving sound of the indoor blower 12 and is not noticeable. As shown in FIG. 3, operation B has the second highest priority among operations A, B, and C.
- operation C when the pressure on the high-pressure side is higher than the high-pressure threshold, the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in a room where the room temperature is equal to or lower than the room temperature threshold. More specifically, the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in a room where the room temperature detected by the indoor temperature detection section 23 is equal to or lower than the room temperature threshold.
- the control device 30 may also be configured to increase the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in a room where the room temperature is low among rooms where people are present and is stopped. As a result, even if the room temperature rises excessively, the temperature of the room, which was originally low, simply rises to an appropriate temperature, and no discomfort is caused. As shown in FIG. 3, operation C has the third highest priority among operations A, B, and C.
- FIG. 4 is a flowchart showing the operation of the control device 30 according to the first embodiment. Next, the operation of the control device 30 will be described.
- the control device 30 determines whether the pressure on the high-pressure side is greater than the first reference value of the high-pressure threshold (step S2). When the pressure on the high-pressure side is equal to or less than the first reference value of the high-pressure threshold (NO in step S2), step S2 is repeated. When the pressure on the high-pressure side is greater than the first reference value of the high-pressure threshold (YES in step S2), information is received from the human detection unit 20 and a predetermined operation is performed (step S3). The specific content of step S3 will be described later with reference to FIG. 5.
- the control device 30 determines whether the pressure on the high-pressure side is less than the second reference value of the high-pressure threshold (step S4). If the pressure on the high-pressure side is equal to or greater than the second reference value of the high-pressure threshold (NO in step S4), the control device 30 returns to step S3 and continues the specified operation. If the pressure on the high-pressure side is less than the second reference value of the high-pressure threshold (YES in step S4), the control device 30 releases the operation on the indoor expansion section 10b (step S5). After that, the control device 30 returns to step S2 and continues monitoring the pressure on the high-pressure side.
- FIG. 5 is a flowchart showing the selection of the operation of the control device 30 according to the first embodiment.
- the control device 30 judges whether there is an empty room (step S10). Specifically, the control device 30 receives information from the human detection unit 20 installed in each room and judges whether there is an empty room. If there is an empty room (YES in step S10), as operation A, the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in the room where the absence of a person is confirmed by the human detection unit 20. As a result, even if a refrigerant flow sound is generated and the indoor temperature rises excessively, people will not feel uncomfortable because there is no person in the room.
- the control device 30 judges whether the opening degree of the indoor expansion section 10b of the indoor unit 3 that is operating among all the indoor units 3 is fully open (step S11). If the opening degree of the indoor expansion section 10b of the indoor unit 3 that is operating is not fully open (NO in step S11), as operation B, the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 that is operating (step S14). At this time, even if a refrigerant flow sound occurs, it is drowned out by the driving sound of the indoor blower 12 and is difficult to notice.
- the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in a room where the room temperature is equal to or lower than the room temperature threshold (step S12). More specifically, the control device 30 increases the opening of the indoor expansion section 10b of the indoor unit 3 that is installed in a room where the room temperature is low among rooms where people are present and that is stopped. As a result, even if the room temperature rises excessively, the room temperature, which was originally low, simply rises to an appropriate temperature and no discomfort is caused.
- the opening degree of at least one indoor expansion section 10b is increased so as not to cause discomfort to people. Therefore, the pressure on the high-pressure side can be reduced without providing a pressure reducing device such as an electromagnetic valve in the bypass piping 40. In addition, there is no risk of causing discomfort to people. In this way, the pressure on the high-pressure side can be reduced without causing discomfort to people and without increasing costs.
- the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in a room where no one is present when the pressure on the high-pressure side is higher than the high-pressure threshold. As a result, even if refrigerant flow noise occurs and the indoor temperature rises excessively, people will not feel uncomfortable because there is no one in the room. In addition, when the pressure on the high-pressure side is higher than the high-pressure threshold, the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 in operation. As a result, even if refrigerant flow noise occurs, it is drowned out by the driving noise of the indoor blower 12 and is less noticeable.
- the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in a room where the room temperature is equal to or lower than the room temperature threshold. As a result, even if the room temperature rises excessively, the room temperature, which was originally low, simply rises to an appropriate temperature and no discomfort is caused.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
This air-conditioning device comprises: an outdoor unit having a compressor and an outdoor heat exchanger; a plurality of indoor units connected to the outdoor unit, each of the plurality of indoor units having an indoor expansion unit and an indoor heat exchanger; bypass piping that connects sites between the outdoor heat exchanger and the indoor expansion valves to the intake side of the compressor, the bypass piping having an opening/closing valve; and a control device that, in cases in which a high-pressure-side pressure is higher than a high-pressure pressure threshold value, opens the opening/closing valve and increases the opening degree of at least one of the indoor expansion units so that no sense of discomfort is imparted to people.
Description
本開示は、制御装置を備える空気調和装置に関する。
This disclosure relates to an air conditioning device equipped with a control device.
従来、制御装置を備える空気調和装置が知られている。室内の温度及び室外の温度が比較的高い状態で、暖房小容量運転が行われると、高圧側の圧力が上昇する傾向がある。高圧側の圧力が基準の圧力を超過すると、空気調和装置を停止する必要があるため、運転を継続することができない。ここで、暖房小容量運転とは、容量が小さい室内機且つ室内機の運転台数が最小台数、例えば1台である運転をいう。温度環境として、室内の温度が高いとき、高圧側の圧力が上昇し易く、厳しい運転となる。特許文献1には、一定速圧縮機、四方弁、室外熱交換器、膨張弁及び室内熱交換器が配管により接続された空気調和装置が開示されている。特許文献1は、一定速圧縮機の吐出側から吸入側に、開閉弁及び減圧装置を介して、冷媒がバイパスする構成となっている。特許文献1は、これにより、高圧側の圧力値を低減させようとするものである。
Conventionally, air conditioners equipped with a control device are known. When low-volume heating operation is performed when the indoor and outdoor temperatures are relatively high, the pressure on the high-pressure side tends to rise. When the pressure on the high-pressure side exceeds the reference pressure, the air conditioner needs to be stopped, and operation cannot be continued. Here, low-volume heating operation refers to operation with a small capacity indoor unit and the minimum number of indoor units in operation, for example, one. When the indoor temperature is high as a temperature environment, the pressure on the high-pressure side is likely to rise, resulting in severe operation. Patent Document 1 discloses an air conditioner in which a constant speed compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected by piping. Patent Document 1 is configured so that the refrigerant is bypassed from the discharge side to the suction side of the constant speed compressor via an on-off valve and a pressure reducing device. Patent Document 1 aims to reduce the pressure value on the high-pressure side in this way.
しかしながら、特許文献1に開示された空気調和装置は、バイパスする回路上に電磁弁のような減圧装置を設ける必要があるため、コストが増加する。また、停止した室内機に接続される膨張部の開度を上げることによって、高圧側の圧力を低減しようとすると、冷媒流動音が発生すると共に室内の温度が過剰に上昇する。従って、人に不快感を与えるおそれがある。
However, the air conditioning system disclosed in Patent Document 1 requires the provision of a pressure reducing device such as a solenoid valve on the bypass circuit, which increases costs. Also, when an attempt is made to reduce the pressure on the high-pressure side by increasing the opening of the expansion section connected to the stopped indoor unit, refrigerant flow noise is generated and the indoor temperature rises excessively. This can cause discomfort to people.
本開示は、上記のような課題を解決するためになされたもので、人に不快感を与えることなく、コストを増加させずに高圧側の圧力を低減する空気調和装置を提供するものである。
This disclosure has been made to solve the problems described above, and provides an air conditioner that reduces the pressure on the high-pressure side without causing discomfort to people or increasing costs.
本開示に係る空気調和装置は、圧縮機と室外熱交換器とを有する室外機と、室外機に接続され、室内膨張部と室内熱交換器とをそれぞれ有する複数の室内機と、室外熱交換器と室内膨張部との間と、圧縮機の吸入側とを接続し、開閉弁を有するバイパス配管と、高圧側の圧力が高圧圧力閾値よりも高い場合、開閉弁を開き、人に不快感を与えないように少なくとも1つの室内膨張部の開度を上げる制御装置と、を備える。
The air conditioner disclosed herein comprises an outdoor unit having a compressor and an outdoor heat exchanger, a number of indoor units connected to the outdoor unit and each having an indoor expansion section and an indoor heat exchanger, a bypass pipe having an on-off valve connecting between the outdoor heat exchanger and the indoor expansion section and the suction side of the compressor, and a control device that opens the on-off valve when the pressure on the high-pressure side is higher than the high-pressure threshold, and increases the opening degree of at least one indoor expansion section so as not to cause discomfort to people.
本開示によれば、高圧側の圧力が高圧圧力閾値よりも高い場合、人に不快感を与えないように少なくとも1つの室内膨張部の開度を上げる。従って、バイパス配管に電磁弁のような減圧装置を設けることなく、高圧側の圧力を低減することができる。また、人に不快感を与えるおそれがない。このように、人に不快感を与えることなく、コストを増加させずに高圧側の圧力を低減することができる。
According to the present disclosure, when the pressure on the high pressure side is higher than the high pressure threshold, the opening degree of at least one indoor expansion section is increased so as not to cause discomfort to people. Therefore, the pressure on the high pressure side can be reduced without providing a pressure reducing device such as an electromagnetic valve in the bypass piping. In addition, there is no risk of causing discomfort to people. In this way, the pressure on the high pressure side can be reduced without causing discomfort to people and without increasing costs.
以下、本開示の空気調和装置の実施の形態について、図面を参照しながら説明する。なお、本開示は、以下に説明する実施の形態によって限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の説明において、本開示の理解を容易にするために方向を表す用語を適宜用いるが、これは本開示を説明するためのものであって、これらの用語は本開示を限定するものではない。方向を表す用語としては、例えば、「上」、「下」、「右」、「左」、「前」又は「後」等が挙げられる。
Below, an embodiment of the air conditioning apparatus of the present disclosure will be described with reference to the drawings. Note that the present disclosure is not limited to the embodiment described below. Furthermore, in the following drawings, including FIG. 1, the size relationships of the components may differ from the actual ones. Furthermore, in the following description, terms indicating directions are used as appropriate to facilitate understanding of the present disclosure, but these terms are for the purpose of explaining the present disclosure and do not limit the present disclosure. Examples of terms indicating directions include "up", "down", "right", "left", "front" and "rear".
実施の形態1.
図1は、実施の形態1に係る空気調和装置1を示す模式図である。空気調和装置1は、空調対象空間の空気を調整する装置であり、図1に示すように、室外機2と、複数の室内機3とが冷媒配管5により接続されている。本実施の形態1では、4つの部屋にそれぞれ室内機3が設けられている場合について例示しているが、部屋の数及び室内機3の数は、適宜変更可能である。各部屋には、室内の人の有無を検出する人検出部20が設けられている。ここで、第1の部屋15a及び第2の部屋15bには、室内機3に内蔵された内蔵型人検出部21が設けられており、第3の部屋15c及び第4の部屋15dには、室内機3とは別に設置された別設置型人検出部22が設けられている。Embodiment 1.
FIG. 1 is a schematic diagram showing anair conditioning device 1 according to embodiment 1. The air conditioning device 1 is a device that adjusts the air in a space to be air-conditioned, and as shown in FIG. 1, an outdoor unit 2 and a plurality of indoor units 3 are connected by a refrigerant pipe 5. In this embodiment 1, an example is shown in which an indoor unit 3 is provided in each of four rooms, but the number of rooms and the number of indoor units 3 can be changed as appropriate. Each room is provided with a human detection unit 20 that detects the presence or absence of a person in the room. Here, the first room 15a and the second room 15b are provided with a built-in human detection unit 21 built into the indoor unit 3, and the third room 15c and the fourth room 15d are provided with a separate human detection unit 22 installed separately from the indoor unit 3.
図1は、実施の形態1に係る空気調和装置1を示す模式図である。空気調和装置1は、空調対象空間の空気を調整する装置であり、図1に示すように、室外機2と、複数の室内機3とが冷媒配管5により接続されている。本実施の形態1では、4つの部屋にそれぞれ室内機3が設けられている場合について例示しているが、部屋の数及び室内機3の数は、適宜変更可能である。各部屋には、室内の人の有無を検出する人検出部20が設けられている。ここで、第1の部屋15a及び第2の部屋15bには、室内機3に内蔵された内蔵型人検出部21が設けられており、第3の部屋15c及び第4の部屋15dには、室内機3とは別に設置された別設置型人検出部22が設けられている。
FIG. 1 is a schematic diagram showing an
図2は、実施の形態1に係る空気調和装置1を示す回路図である。図2に示すように、空気調和装置1は、室外機2と、室内機3とを備えている。室外機2には、例えば圧縮機6、流路切替装置7、室外熱交換器8、室外送風機9、室外膨張部10a、アキュムレータ13、バイパス配管40及び制御装置30が設けられている。それぞれの室内機3には、それぞれ例えば室内膨張部10b、室内熱交換器11及び室内送風機12が設けられている。なお、図2では、室内機3が2台設けられている場合について例示しているが、室内機3の数は適宜変更可能である。また、各室内には、それぞれ人検出部20及び室内温度検出部23が設けられている。更に、圧縮機6の吐出側には、吐出圧力検出部24が設けられている。
FIG. 2 is a circuit diagram showing an air conditioner 1 according to the first embodiment. As shown in FIG. 2, the air conditioner 1 includes an outdoor unit 2 and an indoor unit 3. The outdoor unit 2 includes, for example, a compressor 6, a flow path switching device 7, an outdoor heat exchanger 8, an outdoor blower 9, an outdoor expansion section 10a, an accumulator 13, a bypass piping 40, and a control device 30. Each indoor unit 3 includes, for example, an indoor expansion section 10b, an indoor heat exchanger 11, and an indoor blower 12. Note that FIG. 2 illustrates an example in which two indoor units 3 are provided, but the number of indoor units 3 can be changed as appropriate. In addition, each room includes a human detection section 20 and an indoor temperature detection section 23. Furthermore, a discharge pressure detection section 24 is provided on the discharge side of the compressor 6.
圧縮機6、流路切替装置7、室外熱交換器8、室外膨張部10a、室内膨張部10b、室内熱交換器11及びアキュムレータ13が冷媒配管5により接続されて冷媒回路4が構成されている。圧縮機6は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。圧縮機6は、例えば容量制御可能なインバータ圧縮機である。流路切替装置7は、冷媒回路4において冷媒が流れる方向を切り替えるものであり、例えば四方弁である。室外熱交換器8は、例えば室外空気と冷媒との間で熱交換するものである。室外熱交換器8は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。室外膨張部10aは、冷媒を減圧して膨張する減圧弁又は膨張弁である。室外膨張部10aは、例えば開度が調整される電子式膨張弁である。なお、室外膨張部10aは、省略されてもよい。アキュムレータ13は、液状の冷媒を貯留し、ガス状態の冷媒のみを圧縮機6に送るものである。なお、アキュムレータ13は、省略されてもよい。
The compressor 6, the flow path switching device 7, the outdoor heat exchanger 8, the outdoor expansion section 10a, the indoor expansion section 10b, the indoor heat exchanger 11, and the accumulator 13 are connected by the refrigerant piping 5 to form the refrigerant circuit 4. The compressor 6 draws in a refrigerant in a low-temperature and low-pressure state, compresses the drawn refrigerant, and discharges it as a refrigerant in a high-temperature and high-pressure state. The compressor 6 is, for example, a capacity-controllable inverter compressor. The flow path switching device 7 switches the direction in which the refrigerant flows in the refrigerant circuit 4, and is, for example, a four-way valve. The outdoor heat exchanger 8 exchanges heat between, for example, the outdoor air and the refrigerant. The outdoor heat exchanger 8 acts as a condenser during cooling operation and as an evaporator during heating operation. The outdoor expansion section 10a is a pressure reducing valve or an expansion valve that reduces the pressure of the refrigerant and expands it. The outdoor expansion section 10a is, for example, an electronic expansion valve whose opening is adjustable. The outdoor expansion section 10a may be omitted. The accumulator 13 stores liquid refrigerant and sends only gaseous refrigerant to the compressor 6. The accumulator 13 may be omitted.
室内膨張部10bは、冷媒を減圧して膨張する減圧弁又は膨張弁である。室内膨張部10bは、例えば開度が調整される電子式膨張弁である。室内熱交換器11は、例えば室内空気と冷媒との間で熱交換するものである。室内熱交換器11は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。室内送風機12は、室内熱交換器11に室内空気を送る機器である。
The indoor expansion section 10b is a pressure reducing valve or expansion valve that reduces the pressure of the refrigerant to expand it. The indoor expansion section 10b is, for example, an electronic expansion valve whose opening degree is adjustable. The indoor heat exchanger 11 exchanges heat between, for example, indoor air and the refrigerant. The indoor heat exchanger 11 acts as an evaporator during cooling operation and as a condenser during heating operation. The indoor blower 12 is a device that sends indoor air to the indoor heat exchanger 11.
(バイパス配管40)
バイパス配管40は、室外膨張部10aと室内膨張部10bとの間と、アキュムレータ13の吸入側とを接続するものである。ここで、室外膨張部10a又はアキュムレータ13が設けられていない場合、バイパス配管40は、室外熱交換器8と室内膨張部10bとの間と、圧縮機6の吸入側とを接続するものであればよい。バイパス配管40には、開閉弁41が設けられている。開閉弁41は、通常時に閉じられているため、通常時には、バイパス配管40に冷媒が流入しない。一方、開閉弁41は、高圧側の圧力が高まったとき開かれる。これにより、バイパス配管40に冷媒が流入する。 (Bypass piping 40)
Thebypass pipe 40 connects between the outdoor expansion section 10a and the indoor expansion section 10b and the suction side of the accumulator 13. If the outdoor expansion section 10a or the accumulator 13 is not provided, the bypass pipe 40 may connect between the outdoor heat exchanger 8 and the indoor expansion section 10b and the suction side of the compressor 6. The bypass pipe 40 is provided with an on-off valve 41. Since the on-off valve 41 is normally closed, refrigerant does not flow into the bypass pipe 40 under normal conditions. On the other hand, the on-off valve 41 is opened when the pressure on the high pressure side increases. As a result, refrigerant flows into the bypass pipe 40.
バイパス配管40は、室外膨張部10aと室内膨張部10bとの間と、アキュムレータ13の吸入側とを接続するものである。ここで、室外膨張部10a又はアキュムレータ13が設けられていない場合、バイパス配管40は、室外熱交換器8と室内膨張部10bとの間と、圧縮機6の吸入側とを接続するものであればよい。バイパス配管40には、開閉弁41が設けられている。開閉弁41は、通常時に閉じられているため、通常時には、バイパス配管40に冷媒が流入しない。一方、開閉弁41は、高圧側の圧力が高まったとき開かれる。これにより、バイパス配管40に冷媒が流入する。 (Bypass piping 40)
The
(運転モード、冷房運転)
次に、空気調和装置1の運転モードについて説明する。先ず、冷房運転について説明する。冷房運転において、圧縮機6に吸入された冷媒は、圧縮機6によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機6から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置7を通過して、凝縮器として作用する室外熱交換器8に流入し、室外熱交換器8において、室外送風機9によって送られる室外空気と熱交換されて凝縮して液化する。凝縮された液状態の冷媒は、室外膨張部10aに流入し、室外膨張部10aにおいて膨張及び減圧される。その後、冷媒は、各室内機3に流れ、各室内膨張部10bにおいて膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、それぞれ蒸発器として作用する室内熱交換器11に流入し、室内熱交換器11において、室内送風機12によって送られる室内空気と熱交換されて蒸発してガス化する。このとき、室内空気が冷やされ、室内において冷房が実施される。蒸発した低温且つ低圧のガス状態の冷媒は、各室内機3から流出したのちに合流し、流路切替装置7を通過してアキュムレータ13に至る。アキュムレータ13において液状態の冷媒は貯留し、ガス状態の冷媒のみが圧縮機6に吸入される。 (Operation mode, cooling operation)
Next, the operation modes of theair conditioner 1 will be described. First, the cooling operation will be described. In the cooling operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high-temperature, high-pressure gas state. The high-temperature, high-pressure gas state refrigerant discharged from the compressor 6 passes through the flow switching device 7 and flows into the outdoor heat exchanger 8 acting as a condenser, where it is heat exchanged with the outdoor air sent by the outdoor blower 9, and condensed and liquefied. The condensed liquid state refrigerant flows into the outdoor expansion section 10a, where it is expanded and decompressed. The refrigerant then flows into each indoor unit 3, where it is expanded and decompressed in each indoor expansion section 10b, and becomes a low-temperature, low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant then flows into the indoor heat exchanger 11 acting as an evaporator, where it is heat exchanged with the indoor air sent by the indoor blower 12, and evaporates and gasifies. At this time, the indoor air is cooled, and cooling is performed in the room. The evaporated low-temperature and low-pressure gaseous refrigerant flows out of each indoor unit 3, merges with the other refrigerants, passes through the flow path switching device 7, and reaches the accumulator 13. The liquid refrigerant is stored in the accumulator 13, and only the gaseous refrigerant is drawn into the compressor 6.
次に、空気調和装置1の運転モードについて説明する。先ず、冷房運転について説明する。冷房運転において、圧縮機6に吸入された冷媒は、圧縮機6によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機6から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置7を通過して、凝縮器として作用する室外熱交換器8に流入し、室外熱交換器8において、室外送風機9によって送られる室外空気と熱交換されて凝縮して液化する。凝縮された液状態の冷媒は、室外膨張部10aに流入し、室外膨張部10aにおいて膨張及び減圧される。その後、冷媒は、各室内機3に流れ、各室内膨張部10bにおいて膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、それぞれ蒸発器として作用する室内熱交換器11に流入し、室内熱交換器11において、室内送風機12によって送られる室内空気と熱交換されて蒸発してガス化する。このとき、室内空気が冷やされ、室内において冷房が実施される。蒸発した低温且つ低圧のガス状態の冷媒は、各室内機3から流出したのちに合流し、流路切替装置7を通過してアキュムレータ13に至る。アキュムレータ13において液状態の冷媒は貯留し、ガス状態の冷媒のみが圧縮機6に吸入される。 (Operation mode, cooling operation)
Next, the operation modes of the
(運転モード、暖房運転)
次に、暖房運転について説明する。暖房運転において、圧縮機6に吸入された冷媒は、圧縮機6によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機6から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置7を通過して、各室内機3に流れる。冷媒は、凝縮器として作用する各室内熱交換器11に流入し、室内熱交換器11において、室内送風機12によって送られる室内空気と熱交換されて凝縮して液化する。このとき、室内空気が暖められ、室内において暖房が実施される。凝縮された液状態の冷媒は、各室内膨張部10bに流入し、室内膨張部10bにおいて膨張及び減圧される。冷媒は、各室内機3から流出したのちに合流し、室外膨張部10aにおいて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室外熱交換器8に流入し、室外熱交換器8において、室外送風機9によって送られる室外空気と熱交換されて蒸発してガス化する。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置7を通過してアキュムレータ13に至る。アキュムレータ13において液状態の冷媒は貯留し、ガス状態の冷媒のみが圧縮機6に吸入される。 (Operation mode, heating operation)
Next, the heating operation will be described. In the heating operation, the refrigerant sucked into thecompressor 6 is compressed by the compressor 6 and discharged in a high-temperature, high-pressure gas state. The high-temperature, high-pressure gas state refrigerant discharged from the compressor 6 passes through the flow switching device 7 and flows into each indoor unit 3. The refrigerant flows into each indoor heat exchanger 11 acting as a condenser, where it is heat exchanged with the indoor air sent by the indoor blower 12, condensed, and liquefied. At this time, the indoor air is warmed, and heating is performed in the room. The condensed liquid state refrigerant flows into each indoor expansion section 10b, where it is expanded and decompressed. The refrigerant flows out of each indoor unit 3, merges, and becomes a low-temperature, low-pressure gas-liquid two-phase refrigerant in the outdoor expansion section 10a. The refrigerant in the gas-liquid two-phase state then flows into the outdoor heat exchanger 8 acting as an evaporator, where it exchanges heat with outdoor air sent by an outdoor blower 9, evaporating and gasifying. The evaporated low-temperature, low-pressure gaseous refrigerant passes through the flow switching device 7 and reaches the accumulator 13. The liquid refrigerant is stored in the accumulator 13, and only the gaseous refrigerant is drawn into the compressor 6.
次に、暖房運転について説明する。暖房運転において、圧縮機6に吸入された冷媒は、圧縮機6によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機6から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置7を通過して、各室内機3に流れる。冷媒は、凝縮器として作用する各室内熱交換器11に流入し、室内熱交換器11において、室内送風機12によって送られる室内空気と熱交換されて凝縮して液化する。このとき、室内空気が暖められ、室内において暖房が実施される。凝縮された液状態の冷媒は、各室内膨張部10bに流入し、室内膨張部10bにおいて膨張及び減圧される。冷媒は、各室内機3から流出したのちに合流し、室外膨張部10aにおいて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室外熱交換器8に流入し、室外熱交換器8において、室外送風機9によって送られる室外空気と熱交換されて蒸発してガス化する。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置7を通過してアキュムレータ13に至る。アキュムレータ13において液状態の冷媒は貯留し、ガス状態の冷媒のみが圧縮機6に吸入される。 (Operation mode, heating operation)
Next, the heating operation will be described. In the heating operation, the refrigerant sucked into the
なお、空気調和装置1は、流路切替装置7を有していなくてもよい。この場合、空気調和装置1は、冷房専用機又は暖房専用機となる。
The air conditioner 1 does not have to have a flow path switching device 7. In this case, the air conditioner 1 becomes a dedicated cooling or heating unit.
(人検出部20)
人検出部20は、室内の人の有無を検出するものであり、例えば人感センサである。人検出部20は、前述の如く、内蔵型人検出部21と別設置型人検出部22とからなる。内蔵型人検出部21は、図1に示すように、室内機3に設けられており、室内機3と一体化されている。別設置型人検出部22は、図1に示すように、室内機3とは別の場所に設置されており、例えば部屋の壁に設けられている。このように、人検出部20は、空気調和装置1と連動した形態であって、室内に設けられていれば、その設置場所に限定されるものではない。 (Human detection unit 20)
Thehuman detection unit 20 detects the presence or absence of a person in the room, and is, for example, a human presence sensor. As described above, the human detection unit 20 is composed of a built-in human detection unit 21 and a separately installed human detection unit 22. As shown in FIG. 1, the built-in human detection unit 21 is provided in the indoor unit 3 and is integrated with the indoor unit 3. As shown in FIG. 1, the separately installed human detection unit 22 is provided in a location separate from the indoor unit 3, for example, on a wall of a room. In this way, the human detection unit 20 is linked to the air conditioning device 1, and is not limited to a location where it is installed as long as it is installed indoors.
人検出部20は、室内の人の有無を検出するものであり、例えば人感センサである。人検出部20は、前述の如く、内蔵型人検出部21と別設置型人検出部22とからなる。内蔵型人検出部21は、図1に示すように、室内機3に設けられており、室内機3と一体化されている。別設置型人検出部22は、図1に示すように、室内機3とは別の場所に設置されており、例えば部屋の壁に設けられている。このように、人検出部20は、空気調和装置1と連動した形態であって、室内に設けられていれば、その設置場所に限定されるものではない。 (Human detection unit 20)
The
(室内温度検出部23)
室内温度検出部23は、部屋の室温を検出するものであり、例えば温度センサである。室内温度検出部23は、室内機3に設けられていてもよいし、室内機3とは別の場所に設置されていてもよい。このように、室内温度検出部23も、空気調和装置1と連動した形態であって、室内に設けられていれば、その設置場所に限定されるものではない。 (Indoor temperature detection unit 23)
The indoortemperature detection unit 23 detects the room temperature and is, for example, a temperature sensor. The indoor temperature detection unit 23 may be provided in the indoor unit 3, or may be provided in a location separate from the indoor unit 3. In this way, the indoor temperature detection unit 23 is also linked to the air conditioning device 1, and is not limited to a location where it is provided, so long as it is provided indoors.
室内温度検出部23は、部屋の室温を検出するものであり、例えば温度センサである。室内温度検出部23は、室内機3に設けられていてもよいし、室内機3とは別の場所に設置されていてもよい。このように、室内温度検出部23も、空気調和装置1と連動した形態であって、室内に設けられていれば、その設置場所に限定されるものではない。 (Indoor temperature detection unit 23)
The indoor
(吐出圧力検出部24)
吐出圧力検出部24は、圧縮機6から吐出される冷媒の圧力を検出するものであり、圧縮機6の吐出側に設けられている。本実施の形態1では、圧縮機6から吐出される冷媒の圧力を、高圧側の圧力と呼称する。 (Discharge pressure detection unit 24)
The dischargepressure detection unit 24 detects the pressure of the refrigerant discharged from the compressor 6, and is provided on the discharge side of the compressor 6. In the first embodiment, the pressure of the refrigerant discharged from the compressor 6 is referred to as the high-pressure side pressure.
吐出圧力検出部24は、圧縮機6から吐出される冷媒の圧力を検出するものであり、圧縮機6の吐出側に設けられている。本実施の形態1では、圧縮機6から吐出される冷媒の圧力を、高圧側の圧力と呼称する。 (Discharge pressure detection unit 24)
The discharge
(制御装置30)
制御装置30は、専用のハードウェア又は記憶装置に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ又はプロセッサともいう)である。制御装置30が専用のハードウェアである場合、制御装置30は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。制御装置30が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。 (Control device 30)
Thecontrol device 30 is a CPU (also called a central processing unit, processing device, arithmetic device, microprocessor, microcomputer, or processor) that executes a program stored in dedicated hardware or a storage device. When the control device 30 is dedicated hardware, the control device 30 corresponds to, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination of these. Each of the functional units realized by the control device 30 may be realized by individual hardware, or each functional unit may be realized by a single piece of hardware.
制御装置30は、専用のハードウェア又は記憶装置に格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ又はプロセッサともいう)である。制御装置30が専用のハードウェアである場合、制御装置30は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。制御装置30が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。 (Control device 30)
The
制御装置30がCPUの場合、制御装置30が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、記憶装置(図示せず)に格納される。CPUは、記憶装置に格納されたプログラムを読み出して実行することにより、各機能を実現する。なお、制御装置30の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。記憶装置は、ハードディスクとして構成されてもよいし、データを一時的に記憶することができるランダムアクセスメモリ(RAM)等の揮発性記憶装置として構成されてもよい。また、記憶装置は、データを長期的に記憶することができるフラッシュメモリ等の不揮発性記憶装置として構成されてもよい。
When the control device 30 is a CPU, each function executed by the control device 30 is realized by software, firmware, or a combination of software and firmware. The software and firmware are written as programs and stored in a storage device (not shown). The CPU realizes each function by reading and executing the programs stored in the storage device. Note that some of the functions of the control device 30 may be realized by dedicated hardware, and some by software or firmware. The storage device may be configured as a hard disk, or as a volatile storage device such as a random access memory (RAM) that can temporarily store data. The storage device may also be configured as a non-volatile storage device such as a flash memory that can store data for the long term.
図2に示すように、制御装置30は、室外機2に設けられている。なお、制御装置30は、室内機3に設けられていてもよいし、空気調和装置1外に設けられていてもよい。このように、制御装置30の設置場所は限定されない。
As shown in FIG. 2, the control device 30 is provided in the outdoor unit 2. The control device 30 may also be provided in the indoor unit 3, or outside the air conditioning device 1. In this way, the location where the control device 30 is installed is not limited.
制御装置30は、高圧側の圧力が高圧圧力閾値よりも高い場合、開閉弁41を開き、人に不快感を与えないように少なくとも1つの室内膨張部10bの開度を上げる。室内膨張部10bの開度を上げた状態で、開閉弁41を開くと、室内熱交換器11を通過した冷媒の圧力が極端に低くなり、低圧化した冷媒がバイパス配管40を通って、圧縮機6の吐出側にバイパスされる。これにより、制御装置30は、高圧側の圧力を下げる。ここで、高圧側の圧力は、吐出圧力検出部24によって検出された冷媒の圧力である。高圧圧力閾値は、第1の基準値及び第2の基準値を有している。第1の基準値は、第2の基準値よりも高い。高圧側の圧力が第1の基準値を超えている場合、制御装置30が高圧側の圧力を下げる操作を行う。この場合、高圧側の圧力が第1の基準値以下となっても、制御装置30は操作を停止せず継続する。そして、高圧側の圧力が第1の基準値よりも低い第2の基準値よりも低くなったとき、制御装置30は操作を停止する。このように、高圧圧力閾値にディファレンシャルを設けることによって、制御装置30における操作を解除する際にオーバーシュートすることを抑えつつ、高圧側の圧力を十分に低下させることができる。
When the pressure on the high-pressure side is higher than the high-pressure threshold, the control device 30 opens the on-off valve 41 and increases the opening degree of at least one indoor expansion section 10b so as not to cause discomfort to people. When the on-off valve 41 is opened with the opening degree of the indoor expansion section 10b increased, the pressure of the refrigerant that has passed through the indoor heat exchanger 11 becomes extremely low, and the low-pressure refrigerant passes through the bypass piping 40 and is bypassed to the discharge side of the compressor 6. As a result, the control device 30 reduces the pressure on the high-pressure side. Here, the high-pressure side pressure is the pressure of the refrigerant detected by the discharge pressure detection unit 24. The high-pressure pressure threshold has a first reference value and a second reference value. The first reference value is higher than the second reference value. When the pressure on the high-pressure side exceeds the first reference value, the control device 30 performs an operation to reduce the pressure on the high-pressure side. In this case, even if the pressure on the high-pressure side becomes equal to or lower than the first reference value, the control device 30 continues the operation without stopping. Then, when the pressure on the high-pressure side falls below a second reference value that is lower than the first reference value, the control device 30 stops operation. In this way, by providing a differential for the high-pressure threshold, it is possible to sufficiently reduce the pressure on the high-pressure side while suppressing overshooting when the control device 30 is released from operation.
図3は、実施の形態1に係る高圧抑制操作を示す表である。次に、制御装置30が高圧側の圧力を下げる操作について説明する。図3に示すように、制御装置30は、操作A、操作B及び操作Cという3つの操作を実施する。ここで、制御装置30は、人が不在の部屋に設置された室内機3の室内膨張部10b、運転中の室内機3の室内膨張部10b及び室温が室温閾値以下の部屋に設置された室内機3の室内膨張部10bのうち優先的に選択された室内膨張部10bの開度を上げる。本実施の形態1では、制御装置30は、人が不在の部屋に設置された室内機3の室内膨張部10b、運転中の室内機3の室内膨張部10b、室温が室温閾値以下の部屋に設置された室内機3の室内膨張部10bの順に優先的に開度を上げる。なお、操作A、操作B及び操作Cの優先順位は、適宜変更可能である。優先順位は、ユーザが所望する任意の優先順位であればよい。また、操作A、操作B及び操作Cが同時に実施されてもよい。
FIG. 3 is a table showing the high pressure suppression operation according to the first embodiment. Next, the operation of the control device 30 to reduce the pressure on the high pressure side will be described. As shown in FIG. 3, the control device 30 performs three operations, namely, operation A, operation B, and operation C. Here, the control device 30 increases the opening degree of the indoor expansion part 10b selected preferentially from the indoor expansion part 10b of the indoor unit 3 installed in a room where no one is present, the indoor expansion part 10b of the indoor unit 3 in operation, and the indoor expansion part 10b of the indoor unit 3 installed in a room where the room temperature is equal to or lower than the room temperature threshold. In the first embodiment, the control device 30 increases the opening degree preferentially in the order of the indoor expansion part 10b of the indoor unit 3 installed in a room where no one is present, the indoor expansion part 10b of the indoor unit 3 in operation, and the indoor expansion part 10b of the indoor unit 3 installed in a room where the room temperature is equal to or lower than the room temperature threshold. Note that the priority order of operation A, operation B, and operation C can be changed as appropriate. The priority order may be any priority order desired by the user. In addition, operation A, operation B, and operation C may be performed simultaneously.
(操作A)
操作Aとして、制御装置30は、高圧側の圧力が高圧圧力閾値よりも高い場合、人が不在の部屋に設置された室内機3の室内膨張部10bの開度を上げる。より具体的には、制御装置30は、人検出部20によって人の不在が確認された部屋に設置された室内機3の室内膨張部10bの開度を上げる。これにより、冷媒流動音が発生すると共に室内の温度が過剰に上昇しても、室内に人がいないため、人が不快になることがない。図3に示すように、操作Aは、操作A、操作B及び操作Cのうち、優先順位が1位である。 (Operation A)
As operation A, when the high-pressure side pressure is higher than the high-pressure threshold, thecontrol device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in a room where no one is present. More specifically, the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in a room where the absence of a person is confirmed by the human detection section 20. As a result, even if refrigerant flow noise occurs and the indoor temperature rises excessively, no one is present in the room and therefore no one feels uncomfortable. As shown in FIG. 3, operation A has the highest priority among operations A, B, and C.
操作Aとして、制御装置30は、高圧側の圧力が高圧圧力閾値よりも高い場合、人が不在の部屋に設置された室内機3の室内膨張部10bの開度を上げる。より具体的には、制御装置30は、人検出部20によって人の不在が確認された部屋に設置された室内機3の室内膨張部10bの開度を上げる。これにより、冷媒流動音が発生すると共に室内の温度が過剰に上昇しても、室内に人がいないため、人が不快になることがない。図3に示すように、操作Aは、操作A、操作B及び操作Cのうち、優先順位が1位である。 (Operation A)
As operation A, when the high-pressure side pressure is higher than the high-pressure threshold, the
(操作B)
操作Bとして、制御装置30は、高圧側の圧力が高圧圧力閾値よりも高い場合、運転中の室内機3の室内膨張部10bの開度を上げる。運転中の室内機3では、室内送風機12が駆動している。このため、冷媒流動音が発生しても、室内送風機12の駆動音にかき消されて、冷媒流動音が目立ち難い。図3に示すように、操作Bは、操作A、操作B及び操作Cのうち、優先順位が2位である。 (Operation B)
As operation B, when the high-pressure side pressure is higher than the high-pressure threshold, thecontrol device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 in operation. In the indoor unit 3 in operation, the indoor blower 12 is driven. Therefore, even if a refrigerant flow sound occurs, the refrigerant flow sound is drowned out by the driving sound of the indoor blower 12 and is not noticeable. As shown in FIG. 3, operation B has the second highest priority among operations A, B, and C.
操作Bとして、制御装置30は、高圧側の圧力が高圧圧力閾値よりも高い場合、運転中の室内機3の室内膨張部10bの開度を上げる。運転中の室内機3では、室内送風機12が駆動している。このため、冷媒流動音が発生しても、室内送風機12の駆動音にかき消されて、冷媒流動音が目立ち難い。図3に示すように、操作Bは、操作A、操作B及び操作Cのうち、優先順位が2位である。 (Operation B)
As operation B, when the high-pressure side pressure is higher than the high-pressure threshold, the
(操作C)
操作Cとして、制御装置30は、高圧側の圧力が高圧圧力閾値よりも高い場合、室温が室温閾値以下の部屋に設置された室内機3の室内膨張部10bの開度を上げる。より具体的には、制御装置30は、室内温度検出部23によって検出された室温が室温閾値以下の部屋に設置された室内機3の室内膨張部10bの開度を上げる。また、制御装置30は、人がいる部屋のうち室温が低い部屋に設置されて且つ停止している室内機3の室内膨張部10bの開度を上げるように構成されてもよい。これにより、室温が過剰に上昇しても、元々低温であった部屋の温度が適切な温度に上昇するだけで、不快感は生じない。図3に示すように、操作Cは、操作A、操作B及び操作Cのうち、優先順位が3位である。 (Operation C)
As operation C, when the pressure on the high-pressure side is higher than the high-pressure threshold, thecontrol device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in a room where the room temperature is equal to or lower than the room temperature threshold. More specifically, the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in a room where the room temperature detected by the indoor temperature detection section 23 is equal to or lower than the room temperature threshold. The control device 30 may also be configured to increase the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in a room where the room temperature is low among rooms where people are present and is stopped. As a result, even if the room temperature rises excessively, the temperature of the room, which was originally low, simply rises to an appropriate temperature, and no discomfort is caused. As shown in FIG. 3, operation C has the third highest priority among operations A, B, and C.
操作Cとして、制御装置30は、高圧側の圧力が高圧圧力閾値よりも高い場合、室温が室温閾値以下の部屋に設置された室内機3の室内膨張部10bの開度を上げる。より具体的には、制御装置30は、室内温度検出部23によって検出された室温が室温閾値以下の部屋に設置された室内機3の室内膨張部10bの開度を上げる。また、制御装置30は、人がいる部屋のうち室温が低い部屋に設置されて且つ停止している室内機3の室内膨張部10bの開度を上げるように構成されてもよい。これにより、室温が過剰に上昇しても、元々低温であった部屋の温度が適切な温度に上昇するだけで、不快感は生じない。図3に示すように、操作Cは、操作A、操作B及び操作Cのうち、優先順位が3位である。 (Operation C)
As operation C, when the pressure on the high-pressure side is higher than the high-pressure threshold, the
図4は、実施の形態1に係る制御装置30の動作を示すフローチャートである。次に、制御装置30の動作について説明する。図4に示すように、空気調和装置1が暖房運転を実施している場合(ステップS1)、制御装置30は、高圧側の圧力が高圧圧力閾値の第1の基準値より大きいか否かを判定する(ステップS2)。高圧側の圧力が高圧圧力閾値の第1の基準値以下の場合(ステップS2のNO)、ステップS2を繰り返す。高圧側の圧力が高圧圧力閾値の第1の基準値より大きい場合(ステップS2のYES)、人検出部20からの情報を受信し、所定の操作を実施する(ステップS3)。ステップS3の具体的な内容は、図5を用いて後述する。
FIG. 4 is a flowchart showing the operation of the control device 30 according to the first embodiment. Next, the operation of the control device 30 will be described. As shown in FIG. 4, when the air conditioning device 1 is performing heating operation (step S1), the control device 30 determines whether the pressure on the high-pressure side is greater than the first reference value of the high-pressure threshold (step S2). When the pressure on the high-pressure side is equal to or less than the first reference value of the high-pressure threshold (NO in step S2), step S2 is repeated. When the pressure on the high-pressure side is greater than the first reference value of the high-pressure threshold (YES in step S2), information is received from the human detection unit 20 and a predetermined operation is performed (step S3). The specific content of step S3 will be described later with reference to FIG. 5.
所定の操作を実施しているとき、制御装置30は、高圧側の圧力が高圧圧力閾値の第2の基準値より小さいか否かを判定する(ステップS4)。制御装置30は、高圧側の圧力が高圧圧力閾値の第2の基準値以上の場合(ステップS4のNO)、ステップS3に戻り、所定の操作を継続する。制御装置30は、高圧側の圧力が高圧圧力閾値の第2の基準値より小さい場合(ステップS4のYES)、室内膨張部10bへの操作を解除する(ステップS5)。その後、ステップS2に戻り、制御装置30は高圧側の圧力の監視を継続する。
When the specified operation is being performed, the control device 30 determines whether the pressure on the high-pressure side is less than the second reference value of the high-pressure threshold (step S4). If the pressure on the high-pressure side is equal to or greater than the second reference value of the high-pressure threshold (NO in step S4), the control device 30 returns to step S3 and continues the specified operation. If the pressure on the high-pressure side is less than the second reference value of the high-pressure threshold (YES in step S4), the control device 30 releases the operation on the indoor expansion section 10b (step S5). After that, the control device 30 returns to step S2 and continues monitoring the pressure on the high-pressure side.
図5は、実施の形態1に係る制御装置30の操作の選択を示すフローチャートである。次に、図4のステップS3の操作について詳細に説明する。図5に示すように、制御装置30は、人がいない部屋があるか否かを判定する(ステップS10)。具体的には、制御装置30は、各部屋に設置された人検出部20からの情報を受信して、人がいない部屋の有無を判断する。人がいない部屋が存在する場合(ステップS10のYES)、操作Aとして、制御装置30は、人検出部20によって人の不在が確認された部屋に設置された室内機3の室内膨張部10bの開度を上げる。これにより、冷媒流動音が発生すると共に室内の温度が過剰に上昇しても、室内に人がいないため、人が不快になることがない。
FIG. 5 is a flowchart showing the selection of the operation of the control device 30 according to the first embodiment. Next, the operation of step S3 in FIG. 4 will be described in detail. As shown in FIG. 5, the control device 30 judges whether there is an empty room (step S10). Specifically, the control device 30 receives information from the human detection unit 20 installed in each room and judges whether there is an empty room. If there is an empty room (YES in step S10), as operation A, the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in the room where the absence of a person is confirmed by the human detection unit 20. As a result, even if a refrigerant flow sound is generated and the indoor temperature rises excessively, people will not feel uncomfortable because there is no person in the room.
一方、全ての部屋に人がいる場合(ステップS10のNO)、制御装置30は、全ての室内機3のうち、運転している室内機3の室内膨張部10bの開度が全開であるか否かを判定する(ステップS11)。運転している室内機3の室内膨張部10bの開度が全開ではない場合(ステップS11のNO)、操作Bとして、制御装置30は、運転中の室内機3の室内膨張部10bの開度を上げる(ステップS14)。このとき、冷媒流動音が発生しても、室内送風機12の駆動音にかき消されて、冷媒流動音が目立ち難い。これに対し、運転している室内機3の室内膨張部10bの開度が全開である場合(ステップS11のYES)、操作Cとして、制御装置30は、室温が室温閾値以下の部屋に設置された室内機3の室内膨張部10bの開度を上げる(ステップS12)。より具体的には、制御装置30は、人がいる部屋のうち室温が低い部屋に設置されて且つ停止している室内機3の室内膨張部10bの開度を上げる。これにより、室温が過剰に上昇しても、元々低温であった部屋の温度が適切な温度に上昇するだけで、不快感は生じない。
On the other hand, if there are people in all the rooms (NO in step S10), the control device 30 judges whether the opening degree of the indoor expansion section 10b of the indoor unit 3 that is operating among all the indoor units 3 is fully open (step S11). If the opening degree of the indoor expansion section 10b of the indoor unit 3 that is operating is not fully open (NO in step S11), as operation B, the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 that is operating (step S14). At this time, even if a refrigerant flow sound occurs, it is drowned out by the driving sound of the indoor blower 12 and is difficult to notice. On the other hand, if the opening degree of the indoor expansion section 10b of the indoor unit 3 that is operating is fully open (YES in step S11), as operation C, the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in a room where the room temperature is equal to or lower than the room temperature threshold (step S12). More specifically, the control device 30 increases the opening of the indoor expansion section 10b of the indoor unit 3 that is installed in a room where the room temperature is low among rooms where people are present and that is stopped. As a result, even if the room temperature rises excessively, the room temperature, which was originally low, simply rises to an appropriate temperature and no discomfort is caused.
本実施の形態1によれば、高圧側の圧力が高圧圧力閾値よりも高い場合、人に不快感を与えないように少なくとも1つの室内膨張部10bの開度を上げる。従って、バイパス配管40に電磁弁のような減圧装置を設けることなく、高圧側の圧力を低減することができる。また、人に不快感を与えるおそれがない。このように、人に不快感を与えることなく、コストを増加させずに高圧側の圧力を低減することができる。
According to the first embodiment, when the pressure on the high-pressure side is higher than the high-pressure threshold, the opening degree of at least one indoor expansion section 10b is increased so as not to cause discomfort to people. Therefore, the pressure on the high-pressure side can be reduced without providing a pressure reducing device such as an electromagnetic valve in the bypass piping 40. In addition, there is no risk of causing discomfort to people. In this way, the pressure on the high-pressure side can be reduced without causing discomfort to people and without increasing costs.
人に不快感を与えないようにするために、制御装置30は、高圧側の圧力が高圧圧力閾値よりも高い場合、人が不在の部屋に設置された室内機3の室内膨張部10bの開度を上げる。これにより、冷媒流動音が発生すると共に室内の温度が過剰に上昇しても、室内に人がいないため、人が不快になることがない。また、制御装置30は、高圧側の圧力が高圧圧力閾値よりも高い場合、運転中の室内機3の室内膨張部10bの開度を上げる。このため、冷媒流動音が発生しても、室内送風機12の駆動音にかき消されて、冷媒流動音が目立ち難い。更に、制御装置30は、高圧側の圧力が高圧圧力閾値よりも高い場合、室温が室温閾値以下の部屋に設置された室内機3の室内膨張部10bの開度を上げる。これにより、室温が過剰に上昇しても、元々低温であった部屋の温度が適切な温度に上昇するだけで、不快感は生じない。
In order to avoid causing discomfort to people, the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in a room where no one is present when the pressure on the high-pressure side is higher than the high-pressure threshold. As a result, even if refrigerant flow noise occurs and the indoor temperature rises excessively, people will not feel uncomfortable because there is no one in the room. In addition, when the pressure on the high-pressure side is higher than the high-pressure threshold, the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 in operation. As a result, even if refrigerant flow noise occurs, it is drowned out by the driving noise of the indoor blower 12 and is less noticeable. Furthermore, when the pressure on the high-pressure side is higher than the high-pressure threshold, the control device 30 increases the opening degree of the indoor expansion section 10b of the indoor unit 3 installed in a room where the room temperature is equal to or lower than the room temperature threshold. As a result, even if the room temperature rises excessively, the room temperature, which was originally low, simply rises to an appropriate temperature and no discomfort is caused.
1 空気調和装置、2 室外機、3 室内機、4 冷媒回路、5 冷媒配管、6 圧縮機、7 流路切替装置、8 室外熱交換器、9 室外送風機、10a 室外膨張部、10b 室内膨張部、11 室内熱交換器、12 室内送風機、13 アキュムレータ、15a 第1の部屋、15b 第2の部屋、15c 第3の部屋、15d 第4の部屋、20 人検出部、21 内蔵型人検出部、22 別設置型人検出部、23 室内温度検出部、24 吐出圧力検出部、30 制御装置、40 バイパス配管、41 開閉弁。
1 air conditioner, 2 outdoor unit, 3 indoor unit, 4 refrigerant circuit, 5 refrigerant piping, 6 compressor, 7 flow path switching device, 8 outdoor heat exchanger, 9 outdoor blower, 10a outdoor expansion section, 10b indoor expansion section, 11 indoor heat exchanger, 12 indoor blower, 13 accumulator, 15a first chamber, 15b second chamber, 15c third chamber, 15d fourth chamber, 20 human detection section, 21 built-in human detection section, 22 separately installed human detection section, 23 indoor temperature detection section, 24 discharge pressure detection section, 30 control device, 40 bypass piping, 41 opening and closing valve.
Claims (8)
- 圧縮機と室外熱交換器とを有する室外機と、
前記室外機に接続され、室内膨張部と室内熱交換器とをそれぞれ有する複数の室内機と、
前記室外熱交換器と前記室内膨張部との間と、前記圧縮機の吸入側とを接続し、開閉弁を有するバイパス配管と、
高圧側の圧力が高圧圧力閾値よりも高い場合、前記開閉弁を開き、人に不快感を与えないように少なくとも1つの前記室内膨張部の開度を上げる制御装置と、
を備える空気調和装置。 an outdoor unit having a compressor and an outdoor heat exchanger;
A plurality of indoor units connected to the outdoor unit, each of which has an indoor expansion section and an indoor heat exchanger;
a bypass pipe that connects a portion between the outdoor heat exchanger and the indoor expansion section and a suction side of the compressor and has an on-off valve;
a control device that opens the on-off valve and increases the opening degree of at least one of the indoor expansion parts so as not to cause discomfort to a person when the pressure on the high-pressure side is higher than a high-pressure threshold;
An air conditioning device comprising: - 前記制御装置は、
高圧側の圧力が高圧圧力閾値よりも高い場合、人が不在の部屋に設置された前記室内機の前記室内膨張部の開度を上げる
請求項1記載の空気調和装置。 The control device includes:
The air conditioner according to claim 1 , wherein when the pressure on the high-pressure side is higher than the high-pressure threshold, the opening degree of the indoor expansion section of the indoor unit installed in an unoccupied room is increased. - 室内の人の有無を検出する人検出部を更に備え、
前記制御装置は、
前記人検出部によって人の不在が確認された部屋に設置された前記室内機の前記室内膨張部の開度を上げる
請求項2記載の空気調和装置。 A human detection unit is further provided for detecting the presence or absence of a human in the room,
The control device includes:
The air-conditioning apparatus according to claim 2 , wherein the opening degree of the indoor expansion section of the indoor unit installed in a room in which the absence of a person is confirmed by the human detection section is increased. - 前記制御装置は、
高圧側の圧力が高圧圧力閾値よりも高い場合、運転中の前記室内機の前記室内膨張部の開度を上げる
請求項1~3のいずれか1項に記載の空気調和装置。 The control device includes:
The air conditioner according to any one of claims 1 to 3, wherein when the pressure on the high pressure side is higher than a high pressure threshold value, the degree of opening of the indoor expansion section of the indoor unit in operation is increased. - 前記制御装置は、
高圧側の圧力が高圧圧力閾値よりも高い場合、室温が室温閾値以下の部屋に設置された前記室内機の前記室内膨張部の開度を上げる
請求項1~4のいずれか1項に記載の空気調和装置。 The control device includes:
The air conditioning apparatus according to any one of claims 1 to 4, wherein when the high-pressure side pressure is higher than the high-pressure threshold, the opening degree of the indoor expansion section of the indoor unit installed in a room whose room temperature is equal to or lower than the room temperature threshold is increased. - 室温を検出する室内温度検出部を更に備え、
前記制御装置は、
前記室内温度検出部によって検出された室温が室温閾値以下の部屋に設置された前記室内機の前記室内膨張部の開度を上げる
請求項5記載の空気調和装置。 Further comprising an indoor temperature detection unit for detecting an indoor temperature,
The control device includes:
The air conditioner according to claim 5 , wherein the degree of opening of the indoor expansion section of the indoor unit is increased when the room temperature detected by the indoor temperature detection section is equal to or lower than a room temperature threshold value. - 前記制御装置は、
高圧側の圧力が高圧圧力閾値よりも高い場合、人が不在の部屋に設置された前記室内機の前記室内膨張部、運転中の前記室内機の前記室内膨張部及び室温が室温閾値以下の部屋に設置された前記室内機の前記室内膨張部のうち優先的に選択された前記室内膨張部の開度を上げる
請求項1~6のいずれか1項に記載の空気調和装置。 The control device includes:
The air conditioning apparatus according to any one of claims 1 to 6, wherein, when the pressure on the high-pressure side is higher than the high-pressure threshold, the opening degree of the indoor expansion part that is preferentially selected from the indoor expansion part of the indoor unit installed in an unoccupied room, the indoor expansion part of the indoor unit in operation, and the indoor expansion part of the indoor unit installed in a room whose room temperature is equal to or lower than the room temperature threshold is increased. - 前記制御装置は、
人が不在の部屋に設置された前記室内機の前記室内膨張部、運転中の前記室内機の前記室内膨張部、室温が室温閾値以下の部屋に設置された前記室内機の前記室内膨張部の順に優先的に開度を上げる
請求項7記載の空気調和装置。 The control device includes:
The air conditioning apparatus according to claim 7, wherein the opening degree is increased in the following order: the indoor expansion part of the indoor unit installed in an unoccupied room, the indoor expansion part of the indoor unit in operation, and the indoor expansion part of the indoor unit installed in a room whose room temperature is equal to or lower than a room temperature threshold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/006658 WO2024176421A1 (en) | 2023-02-24 | 2023-02-24 | Air-conditioning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2023/006658 WO2024176421A1 (en) | 2023-02-24 | 2023-02-24 | Air-conditioning device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024176421A1 true WO2024176421A1 (en) | 2024-08-29 |
Family
ID=92500549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/006658 WO2024176421A1 (en) | 2023-02-24 | 2023-02-24 | Air-conditioning device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024176421A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02287062A (en) * | 1989-04-26 | 1990-11-27 | Hitachi Ltd | Air conditioner |
JPH03175241A (en) * | 1989-09-13 | 1991-07-30 | Mitsubishi Electric Corp | Separate type multiple-room air conditioner |
JPH0526531A (en) * | 1991-07-18 | 1993-02-02 | Toshiba Corp | Air-conditioner |
JPH0849943A (en) * | 1994-08-08 | 1996-02-20 | Yamaha Motor Co Ltd | Engine driven heat pump equipment |
JPH1114177A (en) * | 1997-06-26 | 1999-01-22 | Mitsubishi Heavy Ind Ltd | Air conditioner |
-
2023
- 2023-02-24 WO PCT/JP2023/006658 patent/WO2024176421A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02287062A (en) * | 1989-04-26 | 1990-11-27 | Hitachi Ltd | Air conditioner |
JPH03175241A (en) * | 1989-09-13 | 1991-07-30 | Mitsubishi Electric Corp | Separate type multiple-room air conditioner |
JPH0526531A (en) * | 1991-07-18 | 1993-02-02 | Toshiba Corp | Air-conditioner |
JPH0849943A (en) * | 1994-08-08 | 1996-02-20 | Yamaha Motor Co Ltd | Engine driven heat pump equipment |
JPH1114177A (en) * | 1997-06-26 | 1999-01-22 | Mitsubishi Heavy Ind Ltd | Air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2339256B1 (en) | Air conditioner and method for controlling the same | |
JP3925545B2 (en) | Refrigeration equipment | |
JP6595288B2 (en) | Air conditioner | |
CN116097049A (en) | Heat source unit and refrigeration device | |
JP2021131182A (en) | Air conditioner | |
CN114110739A (en) | One-driving-multiple refrigerating and heating air conditioner | |
KR102082881B1 (en) | Multi-air conditioner for heating and cooling operations at the same time | |
EP1669695A2 (en) | Air conditioner | |
WO2024176421A1 (en) | Air-conditioning device | |
JP3187167B2 (en) | Air conditioner | |
JP7252442B2 (en) | Refrigerant cycle device | |
JP6849036B1 (en) | Heat source unit and refrigeration equipment | |
WO2021156901A1 (en) | Refrigeration cycle device | |
JP6257812B2 (en) | Air conditioner | |
KR101186326B1 (en) | Air-Condition and the control method for the same | |
EP1677058A2 (en) | Method of controlling over-load cooling operation of air conditioner | |
JP7557952B2 (en) | Air conditioner, processing method and program | |
JP7424870B2 (en) | air conditioner | |
JP3306455B2 (en) | Air conditioner | |
JP3228135B2 (en) | Refrigeration equipment | |
JP3059886B2 (en) | Refrigeration equipment | |
JP2002277098A (en) | Refrigeration equipment | |
JPH07318184A (en) | Air conditioner | |
JP7345655B2 (en) | Refrigeration cycle equipment | |
WO2024161488A1 (en) | Air conditioning unit and refrigeration cycle device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23924071 Country of ref document: EP Kind code of ref document: A1 |