[go: up one dir, main page]

WO2024176280A1 - Integrated device - Google Patents

Integrated device Download PDF

Info

Publication number
WO2024176280A1
WO2024176280A1 PCT/JP2023/005895 JP2023005895W WO2024176280A1 WO 2024176280 A1 WO2024176280 A1 WO 2024176280A1 JP 2023005895 W JP2023005895 W JP 2023005895W WO 2024176280 A1 WO2024176280 A1 WO 2024176280A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
layer
transistor
integrated device
resistance adjustment
Prior art date
Application number
PCT/JP2023/005895
Other languages
French (fr)
Japanese (ja)
Inventor
幸祐 濱中
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to PCT/JP2023/005895 priority Critical patent/WO2024176280A1/en
Publication of WO2024176280A1 publication Critical patent/WO2024176280A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/20Spin-polarised current-controlled devices

Definitions

  • the present invention relates to an integrated device.
  • next-generation non-volatile memory Attention is being focused on next-generation non-volatile memory to replace flash memory and other memory devices, which are reaching the limits of miniaturization.
  • MRAM Magneticoresistive Random Access Memory
  • ReRAM Resistance Random Access Memory
  • PCRAM Phase Change Random Access Memory
  • MRAM is a memory element that uses a magnetoresistive element.
  • the resistance value of the magnetoresistive element changes depending on the difference in the relative angle between the magnetization directions of the two magnetic films.
  • MRAM records the resistance value of the magnetoresistive element as data.
  • Two-terminal and three-terminal magnetoresistance elements There are two-terminal and three-terminal magnetoresistance elements. Two-terminal elements have the same current path when writing and reading data, and operate by controlling the potential difference between two terminals. Three-terminal elements have different current paths when writing and reading data, and operate by controlling the potential difference between three terminals.
  • a spin-orbit torque type magnetoresistance element that uses spin-orbit torque (SOT) e.g., Patent Document 1
  • a domain wall motion type magnetic recording element that uses domain wall motion e.g., Patent Document 2
  • Three-terminal elements are connected to semiconductor elements such as transistors by wiring and are controlled.
  • a three-terminal element In order for a three-terminal element to operate properly, at least two transistors are required. Depending on where the two transistors are connected in the magnetic element, there may be a difference in the amount of write current when a write current is applied in the forward direction and when a write current is applied in the reverse direction.
  • the present invention was made in consideration of the above circumstances, and aims to provide an integrated device in which the difference in the amount of write current depending on the direction in which the write current is applied is small.
  • the integrated device includes a magnetic element, a first transistor, a second transistor, a first via wiring, a second via wiring, a write line, and a resistance adjustment wiring.
  • the magnetic element includes a wiring layer and a stack including a first ferromagnetic layer connected to the wiring layer.
  • the first transistor is electrically connected to the stack.
  • the second transistor has a first active region and a second active region. The first active region of the second transistor and the wiring layer of the magnetic element are connected via the first via wiring. The second active region of the second transistor is connected to the second via wiring.
  • the second via wiring and the write line are connected by the resistance adjustment wiring having a higher resistivity than the second via wiring and the write line.
  • the integrated device disclosed herein has little difference in the amount of write current depending on the direction in which the write current is applied.
  • FIG. 2 is a circuit diagram of an integrated device according to the first embodiment.
  • 3 is a cross-sectional view of a characteristic portion of the integrated device according to the first embodiment.
  • FIG. 3 is a cross-sectional view of a first example of a wiring adjustment layer of the integrated device according to the first embodiment.
  • FIG. 4 is a cross-sectional view of a second example of the wiring adjustment layer of the integrated device according to the first embodiment.
  • FIG. 1 is a cross-sectional view of a magnetoresistive effect element according to a first embodiment.
  • 1 is a plan view of a magnetoresistive effect element according to a first embodiment;
  • 10A to 10C are diagrams illustrating the operation of an integrated device according to a comparative example.
  • FIG. 11 is a circuit diagram of an integrated device according to a second embodiment.
  • FIG. 11 is a cross-sectional view of a magnetoresistive effect element according to a third embodiment.
  • FIG. 13 is a cross-sectional view of a magnetization rotating element according to a fourth embodiment.
  • FIG. 13 is a cross-sectional view of a magnetoresistive effect element according to a fifth embodiment.
  • FIG. 11 is a cross-sectional view of a magnetoresistive effect element according to a first modified example.
  • the x-direction is, for example, the longitudinal direction of the wiring layer 20.
  • the z-direction is a direction perpendicular to the x-direction and y-direction.
  • the z-direction is an example of the stacking direction in which each layer is stacked.
  • the +z direction may be expressed as "up” and the -z direction as "down". Up and down do not necessarily coincide with the direction in which gravity is applied.
  • extending in the x-direction means, for example, that the dimension in the x-direction is greater than the smallest dimension among the dimensions in the x-direction, y-direction, and z-direction. The same applies to extending in other directions.
  • FIG. 1 is a circuit diagram of an integrated device 200 according to a first embodiment.
  • the integrated device 200 includes a plurality of magnetoresistance effect elements 100, a plurality of write wirings WL, a plurality of common wirings CL, a plurality of read wirings RL, a plurality of first transistors Tr1, a plurality of second transistors Tr2, and a plurality of third transistors Tr3.
  • the write wirings WL are an example of a first wiring.
  • the magnetoresistance effect elements 100 are arranged in an array within the integrated device 200.
  • the magnetoresistance effect elements 100 are an example of a magnetic element.
  • gate wirings connected to the gates of the first transistor Tr1, the second transistor Tr2, and the third transistor Tr3 are omitted.
  • Each of the write wirings WL electrically connects a power supply to one or more magnetoresistance effect elements 100.
  • Each of the common wirings CL is a wiring that is used both when writing and reading data.
  • Each of the common wirings CL electrically connects a reference potential to one or more magnetoresistance effect elements 100. The reference potential is, for example, ground.
  • the common wiring CL may be provided for each of the multiple magnetoresistance effect elements 100, or may be provided across the multiple magnetoresistance effect elements 100.
  • Each of the read wirings RL electrically connects a power supply to one or more magnetoresistance effect elements 100. The power supply is connected to the integrated device 200 during use.
  • Each magnetoresistance effect element 100 is connected to a first transistor Tr1, a second transistor Tr2, and a third transistor Tr3.
  • the first transistor Tr1 is connected between the magnetoresistance effect element 100 and a read wiring RL.
  • the second transistor Tr2 is connected between the magnetoresistance effect element 100 and a write wiring WL.
  • the third transistor Tr3 is connected to a common wiring CL that spans the multiple magnetoresistance effect elements 100.
  • FIG. 2 is a cross-sectional view of a characteristic portion of an integrated device 200 according to the first embodiment.
  • FIG. 2 is a cross-section of the magnetoresistance effect element 100 cut in an xz plane passing through the center of the width in the y direction of the wiring layer 20, which will be described later.
  • the magnetoresistance effect element 100 is connected to the second transistor Tr2 and the via wiring V3.
  • the via wiring V3 is connected to the common wiring CL.
  • the first transistor Tr1 and the second transistor Tr2 are both field effect transistors.
  • the first transistor Tr1 and the second transistor Tr2 each have a gate electrode G, a gate insulating film GI, and a first active region A1 and a second active region A2 formed in a substrate Sub.
  • the first active region A1 and the second active region A2 are sometimes called a source or a drain. The positional relationship between the source and the drain is determined by the direction of current flow.
  • the substrate Sub is a semiconductor substrate.
  • the first active region A1 and the second active region A2 are semiconductors doped with carriers.
  • the first active region A1 of the first transistor Tr1 is connected to the readout wiring RL by a via wiring V5.
  • the second active region A2 of the first transistor Tr1 is connected to a via wiring V4.
  • the via wiring V4 is connected to an in-plane wiring P1.
  • the in-plane wiring P1 is connected to an electrode E of the magnetoresistive effect element 100.
  • the magnetoresistive effect element 100 and the first transistor Tr1 are electrically connected.
  • the magnetoresistive effect element 100 and the first transistor Tr1 are connected, for example, via the in-plane wiring P1, the via wiring V4, and the electrode E.
  • the first active region A1 of the second transistor Tr2 is connected to the via wiring V1.
  • the via wiring V1 is an example of a first via wiring.
  • the first active region A1 of the second transistor Tr2 and the magnetoresistance effect element 100 are connected via the via wiring V1.
  • the second active region A2 of the second transistor Tr2 is connected to the via wiring V2.
  • the via wiring V2 is an example of a second via wiring.
  • the via wiring V2 is connected to the resistance adjustment wiring R1.
  • the resistance adjustment wiring R1 is connected to the write wiring WL.
  • the second transistor Tr2 and the write wiring WL are connected via the via wiring V2 and the resistance adjustment wiring R1.
  • the resistance adjustment wiring R1 is a wiring that connects the via wiring V2 and the write wiring WL.
  • the via wiring V2 is a wiring that extends in the z direction.
  • the write wiring WL is a wiring that extends in one direction, either the x direction or the y direction.
  • the resistance adjustment wiring R1 is, for example, a wiring that extends in any direction within the xy plane, and extends in a direction that intersects with both the via wiring V2 and the write wiring WL.
  • the resistance adjustment wiring R1 has a higher resistance than the via wiring V2, for example.
  • the resistance of the resistance adjustment wiring R1 may be higher than the resistance of the via wiring V2 due to its shape, or may be higher than the resistance of the via wiring V2 due to its material.
  • the resistance of the resistance adjustment wiring R1 may also be higher than the via wiring V2 due to its shape and material.
  • FIG. 3 is an xy cross-sectional view of the resistance adjustment wiring R1 according to the first example.
  • the resistance adjustment wiring R1 shown in FIG. 3 has a narrow portion R1A and a wide portion R1B.
  • the wide portion R1B is the portion that contacts the via wiring V2.
  • the cross-sectional area perpendicular to the current flow direction in the resistance adjustment wiring R1 is narrower in the narrow portion R1A than in the wide portion.
  • the width L1 in the y direction of the narrow portion R1A is narrower than the width L2 in the y direction of the wide portion R1B. Due to the shape of the resistance adjustment wiring R1 according to the first example, the resistance of the resistance adjustment wiring R1 can be made higher than that of the via wiring V2. In this case, the material of the resistance adjustment wiring R1 does not matter.
  • FIG. 4 is an xy cross-sectional view of the resistance adjustment wiring R1 according to the second example.
  • the resistance adjustment wiring R1 shown in FIG. 4 is a meander wiring.
  • the resistance adjustment wiring R1 shown in FIG. 4 has, for example, a first portion R1C extending in the y direction and a second portion R1D extending in the x direction.
  • the resistance adjustment wiring R1 only needs to have portions extending in different directions in the xy plane, and may have a zigzag shape. Due to the shape of the resistance adjustment wiring R1 according to the second example, the resistance of the resistance adjustment wiring R1 can be made higher than the via wiring V2. In this case, the material of the resistance adjustment wiring R1 does not matter.
  • the resistance adjustment wiring R1 may have a higher resistivity than, for example, the via wiring V2 and the write wiring WL. In this case, the resistance of the resistance adjustment wiring R1 can be made higher than the resistance of the via wiring V2 due to the material.
  • the resistance adjustment wiring R1 includes, for example, any one selected from the group consisting of W, Pt, Ta, Ti, and Hf. Any one selected from the group consisting of W, Pt, Ta, Ti, and Hf may exist as an elemental metal, or may exist as an oxide, fluoride, or nitride. These materials have a higher resistivity than Al, Ag, Cu, etc., used in the via wiring V2 and the write wiring WL. It is preferable that the resistance adjustment wiring R1 includes the same material as the wiring layer 20 described below. If this configuration is satisfied, it is easy to make the forward and reverse write current amounts equal.
  • the ratio of the length of the resistance adjustment wiring R1 divided by the cross-sectional area may be, for example, 90% or more and 110% or less of the ratio of the length of the wiring layer described below divided by the cross-sectional area.
  • the length of the resistance adjustment wiring R1 is the length in the direction of current flow. For example, if the resistance adjustment wiring R1 is a meander wiring as shown in Figure 4, it is the length of the current path between the via wiring V2 and the write wiring WL.
  • the via wirings V1, V2, V3, V4, and V5 are each wiring that extends in the z direction.
  • the write wiring WL, read wiring RL, common wiring CL, and in-plane wiring P1 are each wiring that extends in one of the xy planes.
  • the electrode E is the contact point between the magnetoresistance effect element 100 and the wiring.
  • the via wirings V1, V2, V3, V4, and V5, the write wiring WL, read wiring RL, common wiring CL, in-plane wiring P1, and the electrode E are all made of a highly conductive material, such as Al, Ag, or Cu.
  • the magnetoresistance effect element 100, the first transistor Tr1, and the second transistor Tr2 are covered with an insulating layer 90.
  • the insulating layer 90 is an insulating layer that insulates between the wirings of the multilayer wiring and between the elements.
  • the insulating layer 90 is, for example, silicon oxide (SiO x ), silicon nitride (SiN x ), silicon carbide (SiC), chromium nitride, silicon carbonitride (SiCN), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO x ), magnesium oxide (MgO), aluminum nitride (AlN), or the like.
  • FIG. 5 is a cross-sectional view of the magnetoresistance effect element 100 according to the first embodiment.
  • FIG. 5 is a cross-section of the magnetoresistance effect element 100 cut in the xz plane passing through the center of the width of the wiring layer 20 in the y direction.
  • FIG. 6 is a plan view of the magnetoresistance effect element 100 according to the first embodiment as viewed from the z direction.
  • the magnetoresistance effect element 100 includes, for example, a laminate 10 and a wiring layer 20.
  • the magnetoresistance effect element 100 is a magnetic element that utilizes spin orbit torque (SOT), and may be referred to as a spin orbit torque type magnetoresistance effect element, a spin injection type magnetoresistance effect element, or a spin current magnetoresistance effect element.
  • the wiring layer 20 may be referred to as spin orbit torque wiring.
  • the magnetoresistance effect element 100 is an element that records and stores data.
  • the magnetoresistance effect element 100 records data as the resistance value in the z direction of the stack 10.
  • the resistance value in the z direction of the stack 10 changes when a write current is applied along the wiring layer 20 and spins are injected from the wiring layer 20 into the stack 10.
  • the resistance value in the z direction of the stack 10 can be read by applying a read current in the z direction of the stack 10.
  • the stack 10 is electrically connected to the first transistor Tr1.
  • the laminate 10 is connected to the wiring layer 20.
  • the laminate 10 shown in FIG. 5 is laminated on the wiring layer 20, for example.
  • the laminate 10 is a columnar body.
  • the planar shape of the laminate 10 in the z direction is, for example, circular, elliptical, or rectangular.
  • the side surface of the laminate 10 is, for example, inclined with respect to the z direction.
  • the laminate 10 includes, for example, a first ferromagnetic layer 1, a second ferromagnetic layer 2, a nonmagnetic layer 3, an underlayer 4, a cap layer 5, and a mask layer 6.
  • the resistance value of the laminate 10 changes according to the difference in the relative angle of magnetization between the first ferromagnetic layer 1 and the second ferromagnetic layer 2, which sandwich the nonmagnetic layer 3.
  • the first ferromagnetic layer 1 faces, for example, the wiring layer 20.
  • the first ferromagnetic layer 1 may be in direct contact with the wiring layer 20, or indirect contact with the wiring layer 20 via the underlayer 4.
  • the first ferromagnetic layer 1 is stacked, for example, on the wiring layer 20.
  • the magnetization of the first ferromagnetic layer 1 is subjected to spin-orbit torque (SOT) by the injected spins, and the orientation direction of the magnetization changes.
  • SOT spin-orbit torque
  • the first ferromagnetic layer 1 is called a magnetization free layer.
  • the first ferromagnetic layer 1 includes a ferromagnetic material.
  • the ferromagnetic material is, for example, a metal selected from the group consisting of Cr, Mn, Co, Fe, and Ni, an alloy containing one or more of these metals, or an alloy containing these metals and at least one of the elements B, C, and N.
  • the ferromagnetic material is, for example, a Co-Fe, Co-Fe-B, Ni-Fe, Co-Ho alloy, Sm-Fe alloy, Fe-Pt alloy, Co-Pt alloy, or CoCrPt alloy.
  • the first ferromagnetic layer 1 may include a Heusler alloy.
  • the Heusler alloy includes an intermetallic compound having a chemical composition of XYZ or X 2 YZ.
  • X is a transition metal element or a noble metal element of the Co, Fe, Ni, or Cu group on the periodic table
  • Y is a transition metal element or an element type of X of the Mn, V, Cr, or Ti group
  • Z is a typical element of groups III to V.
  • Examples of the Heusler alloy include Co 2 FeSi, Co 2 FeGe, Co 2 FeGa, Co 2 MnSi, Co 2 Mn 1-a Fe a Al b Si 1-b , and Co 2 FeGe 1-c Ga c .
  • the Heusler alloy has a high spin polarizability.
  • the second ferromagnetic layer 2 faces the first ferromagnetic layer 1 with a nonmagnetic layer 3 sandwiched therebetween.
  • the second ferromagnetic layer 2 includes a ferromagnetic material.
  • the magnetization of the second ferromagnetic layer 2 is less likely to change orientation than the magnetization of the first ferromagnetic layer 1 when a predetermined external force is applied.
  • the second ferromagnetic layer 2 is called a magnetization fixed layer and a magnetization reference layer.
  • the laminate 10 shown in FIG. 5 has the magnetization fixed layer on the side away from the substrate Sub, and is called a top pin structure.
  • the material constituting the second ferromagnetic layer 2 is the same as the material constituting the first ferromagnetic layer 1.
  • the second ferromagnetic layer 2 may have a synthetic antiferromagnetic structure (SAF structure).
  • a synthetic antiferromagnetic structure is composed of two magnetic layers sandwiching a nonmagnetic layer.
  • the second ferromagnetic layer 2 may have two magnetic layers and a spacer layer sandwiched between them. The coercive force of the second ferromagnetic layer 2 increases when the two ferromagnetic layers are antiferromagnetically coupled.
  • the ferromagnetic layer is, for example, IrMn, PtMn, etc.
  • the spacer layer includes, for example, at least one selected from the group consisting of Ru, Ir, and Rh.
  • the non-magnetic layer 3 is sandwiched between the first ferromagnetic layer 1 and the second ferromagnetic layer 2.
  • the non-magnetic layer 3 includes a non-magnetic material.
  • its material can be, for example, Al 2 O 3 , SiO 2 , MgO, and MgAl 2 O 4.
  • materials in which a part of Al, Si, and Mg is replaced with Zn, Be, etc. can also be used.
  • MgO and MgAl 2 O 4 are materials that can realize coherent tunneling, so that spins can be efficiently injected.
  • the non-magnetic layer 3 When the non-magnetic layer 3 is a metal, its material can be Cu, Au, Ag, etc. Furthermore, when the non-magnetic layer 3 is a semiconductor, its material can be Si, Ge, CuInSe 2 , CuGaSe 2 , Cu(In,Ga)Se 2 , etc.
  • the underlayer 4 is, for example, between the first ferromagnetic layer 1 and the wiring layer 20.
  • the underlayer 4 may be omitted.
  • the underlayer 4 includes, for example, a buffer layer and a seed layer.
  • the buffer layer is a layer that relieves lattice mismatch between different crystals.
  • the seed layer enhances the crystallinity of the layer stacked on the seed layer.
  • the seed layer is formed, for example, on the buffer layer.
  • the buffer layer is, for example, Ta (single element), TaN (tantalum nitride), CuN (copper nitride), TiN (titanium nitride), NiAl (nickel aluminum).
  • the seed layer is, for example, Pt, Ru, Zr, NiCr alloy, NiFeCr.
  • the cap layer 5 is on the second ferromagnetic layer 2.
  • the cap layer 5, for example, strengthens the magnetic anisotropy of the second ferromagnetic layer 2.
  • the cap layer 5 is, for example, magnesium oxide, W, Ta, Mo, etc.
  • the film thickness of the cap layer 5 is, for example, 0.5 nm or more and 5.0 nm or less.
  • the mask layer 6 is on the cap layer 5.
  • the mask layer 6 is part of a hard mask used to process the stack 10 during manufacturing.
  • the mask layer 6 also functions as an electrode.
  • the mask layer 6 includes, for example, Al, Cu, Ta, Ti, Zr, NiCr, nitrides (e.g., TiN, TaN, SiN), and oxides (e.g., SiO2 ).
  • the laminate 10 may have layers other than the first ferromagnetic layer 1, the second ferromagnetic layer 2, the nonmagnetic layer 3, the underlayer 4, and the cap layer 5.
  • the wiring layer 20 extends in the x direction, for example, with its length in the x direction being longer than that in the y direction when viewed from the z direction.
  • the write current flows in the x direction along the wiring layer 20 between the via wiring V1 and the via wiring V3.
  • the wiring layer 20 induces a spin current by spin-orbit interaction and the interface Rashba effect, and injects spin into the first ferromagnetic layer 1.
  • the wiring layer 20 applies a spin-orbit torque (SOT) to the magnetization of the first ferromagnetic layer 1 that is sufficient to reverse the magnetization of the first ferromagnetic layer 1, for example.
  • SOT spin-orbit torque
  • the spin Hall effect is a phenomenon in which, when electric current is passed, a spin current is induced in a direction perpendicular to the direction of electric current flow due to spin-orbit interaction.
  • the spin Hall effect is similar to the regular Hall effect in that the direction of movement of moving charges (electrons) can be bent.
  • the regular Hall effect the direction of movement of charged particles moving in a magnetic field is bent by the Lorentz force.
  • the direction of spin movement can be bent simply by the movement of electrons (the flow of electric current) even in the absence of a magnetic field.
  • the first spins polarized in one direction and the second spins polarized in the opposite direction to the first spins are bent by the spin Hall effect in a direction perpendicular to the direction of the current flow.
  • the first spins polarized in the -y direction are bent from the x direction, which is the direction of travel, to the +z direction
  • the second spins polarized in the +y direction are bent from the x direction, which is the direction of travel, to the -z direction.
  • the number of electrons in the first spin and the number of electrons in the second spin caused by the spin Hall effect are equal.
  • the number of electrons in the first spin facing the +z direction is equal to the number of electrons in the second spin facing the -z direction.
  • the first spins and second spins flow in a direction that eliminates the uneven distribution of spins. When the first spins and second spins move in the z direction, the flow of charges cancels each other out, so the amount of current is zero. Spin current without current is specifically called pure spin current.
  • the flow of electrons of the first spin is represented as J ⁇
  • the flow of electrons of the second spin is represented as J ⁇
  • the spin current is represented as JS
  • JS J ⁇ - J ⁇
  • the spin current JS is generated in the z direction.
  • the first spins are injected into the first ferromagnetic layer 1 from the wiring layer 20.
  • the wiring layer 20 includes any of a metal, alloy, intermetallic compound, metal boride, metal carbide, metal silicide, metal phosphide, and metal nitride that has the function of generating a spin current.
  • the wiring layer 20 includes, for example, any material selected from the group consisting of heavy metals with atomic numbers of 39 or more, metal oxides, metal nitrides, metal oxynitrides, and topological insulators.
  • the wiring layer 20 may also include a magnetic material.
  • the wiring layer 20 contains, for example, a nonmagnetic heavy metal as a main component.
  • Heavy metal means a metal having a specific gravity equal to or greater than that of yttrium (Y).
  • the nonmagnetic heavy metal is, for example, a nonmagnetic metal having a large atomic number of 39 or greater and having d electrons or f electrons in the outermost shell.
  • stronger spin-orbit interaction occurs than in other metals.
  • the spin Hall effect occurs due to spin-orbit interaction, which tends to cause spins to be unevenly distributed in the wiring layer 20, making it easier for spin current J S to be generated.
  • the integrated device 200 is formed by a lamination process of each layer and a processing process of processing a part of each layer into a predetermined shape.
  • the lamination of each layer can be performed using a sputtering method, a chemical vapor deposition (CVD) method, an electron beam evaporation method (EB evaporation method), an atomic laser deposition method, or the like.
  • the processing of each layer can be performed using photolithography, or the like.
  • the substrate Sub may be a commercially available semiconductor circuit substrate on which transistors are formed.
  • an insulating layer 90 is formed to cover the transistors.
  • the via wirings V1, V2, V3, V4, and V5 are fabricated by forming holes in the insulating layer 90 and filling the holes with a conductor.
  • the write wiring WL, common wiring CL, read wiring RL, in-plane wiring P1, and resistance adjustment wiring R1 are fabricated by forming grooves in the insulating layer 90 that extend in either direction within the xy plane, and filling the grooves with a conductor.
  • the magnetoresistance effect element 100 is obtained by stacking the layers that will become the wiring layer 20 and the layers that will become the laminate 10 in that order, and then processing them into a predetermined shape.
  • the integrated device 200 has a resistance adjustment wiring R1, so that the voltage difference between the gate and source of the second transistor Tr2 is the same whether the write current is applied in the forward direction or the reverse direction, and the amount of write current is the same in the forward and reverse directions.
  • FIG. 7 is a diagram explaining the operation of an integrated device according to a comparative example.
  • the magnetoresistance effect element 100 stores information in the binary form of "1" and "0.” For example, when storing information "1" in the magnetoresistance effect element 100, a current I1 is applied in the forward direction, and when storing information "0" in the magnetoresistance effect element 100, a current I2 is applied in the reverse direction.
  • the upper left diagram in Figure 7 is a schematic diagram of the application of a current I1 in the forward direction, and the lower left diagram in Figure 7 shows the voltage drop when the current I1 is applied in the forward direction.
  • the upper right diagram in Figure 7 is a schematic diagram of the application of a current I2 in the reverse direction, and the lower right diagram in Figure 7 shows the voltage drop when the current I2 is applied in the reverse direction.
  • the potential of the write wiring WL is made higher than the potential of the common wiring CL.
  • the first active region A1 of the second transistor Tr2 becomes the drain D
  • the second active region A2 becomes the source S.
  • the voltage drop between the write wiring WL, which has a high potential, and the source S is caused by the second transistor Tr2. Therefore, the voltage difference V GS between the gate and source of the second transistor Tr2 corresponds to the voltage drop of the second transistor Tr2.
  • the potential of the common line CL is made higher than the potential of the write line WL.
  • the second active region A2 of the second transistor Tr2 becomes the drain D
  • the first active region A1 becomes the source S.
  • the voltage drop between the common line CL and the source S which becomes a high potential, is caused by the second transistor Tr2 and the wiring layer 20. Therefore, the voltage difference V GS between the gate and source of the second transistor Tr2 corresponds to the sum of the voltage drop of the second transistor Tr2 and the voltage drop of the wiring layer 20.
  • the voltage difference V GS between the gate and source of the second transistor Tr2 is different when a current is applied in the forward direction and when a current is applied in the reverse direction. If the voltage difference between the gate and source of the second transistor Tr2 is different when a write current is applied in the forward direction and when a write current is applied in the reverse direction, the amount of write current flowing through the wiring layer 20 is different. In this case, even if the current I2 is applied in the reverse direction, writing of information may become unstable. Furthermore, stabilizing writing when the current I2 is applied in the reverse direction would result in applying an excessive current I1 in the forward direction.
  • FIG. 8 is a diagram explaining the operation of the integrated device 200 according to the first embodiment.
  • the upper left diagram of FIG. 8 is a schematic diagram of application of a forward current I1, and the lower left diagram of FIG. 8 shows the voltage drop when the forward current I1 is applied.
  • the upper right diagram of FIG. 8 is a schematic diagram of application of a reverse current I2, and the lower right diagram of FIG. 8 shows the voltage drop when the reverse current I2 is applied.
  • the potential of the write wiring WL is made higher than the potential of the common wiring CL.
  • the first active region A1 of the second transistor Tr2 becomes the drain D
  • the second active region A2 becomes the source S.
  • the voltage drop between the write wiring WL and the source S which is at a high potential, is caused by the resistance adjustment wiring R1 and the second transistor Tr2. Therefore, the voltage difference V GS between the gate and source of the second transistor Tr2 corresponds to the sum of the voltage drop of the resistance adjustment wiring R1 and the voltage drop of the second transistor Tr2.
  • the potential of the common line CL is made higher than the potential of the write line WL.
  • the second active region A2 of the second transistor Tr2 becomes the drain D
  • the first active region A1 becomes the source S.
  • the voltage drop between the common line CL and the source S which becomes a high potential, is caused by the second transistor Tr2 and the wiring layer 20. Therefore, the voltage difference V GS between the gate and source of the second transistor Tr2 corresponds to the sum of the voltage drop of the second transistor Tr2 and the voltage drop of the wiring layer 20.
  • the difference between the gate-source voltage difference VGS when a current is applied in the forward direction and the gate-source voltage difference VGS when a current is applied in the reverse direction is smaller than that in the integrated device according to the comparative example by the voltage drop of the resistance-adjusting wiring R1 .
  • the gate-source voltage difference VGS when a current is applied in the forward direction and the gate-source voltage difference VGS when a current is applied in the reverse direction match.
  • the voltage difference between the gate and source of the second transistor Tr2 is small when a write current is applied in the forward direction and when it is applied in the reverse direction, and the difference in the amount of write current flowing through the wiring layer 20 is small. This makes it possible to suppress the occurrence of a difference in the write probability when writing information "1" and when writing information "0.”
  • the first embodiment has been illustrated as an example, and a preferred aspect of the present invention has been illustrated, but the present invention is not limited to the first embodiment.
  • FIG. 9 is a circuit diagram of an integrated device 201 according to the second embodiment.
  • the integrated device 201 includes a plurality of magnetoresistance effect elements 100, a plurality of bit lines BL, a plurality of source lines SL, a plurality of write gate lines WGL, a plurality of read gate lines RGL, a plurality of first transistors Tr1, a plurality of second transistors Tr2, and a plurality of third transistors Tr3.
  • the bit line BL is an example of a first wiring.
  • the bit line BL functions as both the write wiring WL and the read wiring RL in the first embodiment.
  • the integrated device 201 according to the second embodiment differs from the integrated device 200 according to the first embodiment in that the write wiring WL and the read wiring RL are combined into the bit line BL.
  • the source line SL is the same as the common wiring CL.
  • the via wiring V2 and the bit line BL are connected by a resistance adjustment wiring R1 having a higher resistivity than the via wiring V2 and the bit line BL.
  • the via wiring V2 and the bit line BL may be connected by a resistance adjustment wiring R1 having a higher resistance than the via wiring V2.
  • the integrated device 201 has the same effect as the integrated device 200.
  • the integrated device 201 shown in FIG. 9 shares a single bit line BL as the write wiring WL and the read wiring RL, which reduces the number of wiring lines and provides excellent integration.
  • FIG. 10 is a cross-sectional view of a magnetoresistance effect element 101 according to the third embodiment.
  • the magnetoresistance effect element 101 can be substituted for the magnetoresistance effect element 100 of the integrated device 200.
  • the magnetoresistance effect element 101 according to the third embodiment has a laminate 11 and a wiring layer 20.
  • the stacking order of the laminate 11 and the wiring layer 20 is different from the stacking order of the laminate 10 and the wiring layer 20 of the magnetoresistance effect element 100 according to the first embodiment.
  • the wiring layer is stacked on the laminate 11.
  • the laminate 11 has, in order from the side closest to the substrate Sub, an underlayer 4, a second ferromagnetic layer 2, a non-magnetic layer 3, a first ferromagnetic layer 1, and a cap layer 5.
  • the second ferromagnetic layer 2 which is a magnetization fixed layer, is closer to the substrate Sub than the first ferromagnetic layer 1, and is called a bottom pin structure.
  • the via wiring V1 and the via wiring V3 are connected to the upper surface of the wiring layer 20.
  • the via wiring V1 and the via wiring V3 may be connected to the lower surface of the wiring layer 20.
  • the integrated device according to the third embodiment has the same effects as the integrated device 200 according to the first embodiment.
  • FIG. 11 is a cross-sectional view of a magnetization rotation element 110 according to the fourth embodiment.
  • the magnetization rotation element 100 in FIG. 1 can be replaced with the magnetization rotation element 110.
  • the magnetization rotation element 110 differs from the magnetization rotation element 100 in that the laminate 12 does not have a second ferromagnetic layer 2 or a nonmagnetic layer 3.
  • the same components as those in the magnetization rotation element 100 are denoted by the same reference numerals and will not be described.
  • the magnetization rotation element 110 is an example of a magnetic element.
  • the magnetization rotation element 110 for example, irradiates light onto the first ferromagnetic layer 1 and evaluates the light reflected by the first ferromagnetic layer 1. When the magnetization orientation direction changes due to the magnetic Kerr effect, the polarization state of the reflected light changes.
  • the magnetization rotation element 110 can be used, for example, as an optical element for an image display device or the like that utilizes the difference in the polarization state of light.
  • the magnetized rotating element 110 can be used alone as an anisotropic magnetic sensor, an optical element using the magnetic Faraday effect, etc.
  • the magnetization rotation element 110 according to the fourth embodiment is the magnetoresistive element 100 except that the nonmagnetic layer 3 and the second ferromagnetic layer 2 have been removed, and provides the same effects as the magnetoresistive element 100 according to the first embodiment.
  • FIG. 12 is a cross-sectional view of the magnetoresistance effect element 120 according to the fifth embodiment.
  • FIG. 12 is a cross-section of the magnetoresistance effect element 120 cut in an xz plane passing through the center of the width of the wiring layer 21 in the y direction.
  • the magnetoresistance effect element 120 is an example of a magnetic element.
  • the magnetoresistance effect element 100 in FIG. 1 can be replaced with the magnetoresistance effect element 120.
  • the magnetoresistance effect element 120 has a stack 13, a wiring layer 21, a first magnetization pinned layer 31, and a second magnetization pinned layer 32.
  • the magnetoresistance effect element 120 is an element in which the resistance value changes due to the movement of the domain wall DW, and may be called a domain wall motion element or a domain wall motion type magnetoresistance effect element.
  • the laminate 13 has a nonmagnetic layer 7 and a first ferromagnetic layer 8 from the side closest to the wiring layer 21.
  • the nonmagnetic layer 7 is made of the same material as the nonmagnetic layer 3.
  • the first ferromagnetic layer 8 is made of the same material as the first ferromagnetic layer 1.
  • the first ferromagnetic layer 1 is a magnetization fixed layer in which the magnetization is fixed.
  • the wiring layer 21 is a magnetic layer.
  • the wiring layer 21 includes a ferromagnetic material.
  • the magnetic material constituting the wiring layer 21 can be a metal selected from the group consisting of Cr, Mn, Co, Fe, and Ni, an alloy containing one or more of these metals, or an alloy containing these metals and at least one of the elements B, C, and N. Specific examples include Co-Fe, Co-Fe-B, and Ni-Fe.
  • the wiring layer 21 is a layer capable of magnetically recording information by changing the internal magnetic state.
  • the wiring layer 21 has a first magnetic domain and a second magnetic domain inside.
  • the magnetization M21A of the first magnetic domain and the magnetization M21B of the second magnetic domain are oriented in opposite directions, for example.
  • the boundary between the first magnetic domain and the second magnetic domain is a domain wall DW.
  • the wiring layer 21 can have a domain wall DW inside.
  • the resistance adjustment wiring R1 preferably contains, for example, the same material as the wiring layer 21. If this configuration is met, it is easy to make the forward and reverse write current amounts equal.
  • the magnetoresistance effect element 120 according to the fifth embodiment can also obtain the same effect as the magnetoresistance effect element 100 according to the first embodiment. Also, like the magnetoresistance effect element 101 according to the third embodiment, the positional relationship between the wiring layer 21 and the first ferromagnetic layer 8 may be reversed, as shown in FIG. 13.

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

This integrated device comprises: a magnetic element; a first transistor; a second transistor; first via wiring; second via wiring; a write wire; and resistance adjustment wiring. The magnetic element comprises a wiring layer, and a layered body including a first ferromagnetic layer connected to the wiring layer. The first transistor is electrically connected to the layered body. The second transistor has a first active region and a second active region. The first active region of the second transistor and the wiring layer of the magnetic element are connected through the first via wiring. The second active region of the second transistor is connected to the second via wiring. The second via wiring and the write wire are connected by the resistance adjustment wiring, which has a higher resistivity than the second via wiring and the write wire.

Description

集積装置Integration device
 本発明は、集積装置に関する。 The present invention relates to an integrated device.
 微細化に限界が見えてきたフラッシュメモリ等に代わる次世代の不揮発性メモリに注目が集まっている。例えば、MRAM(Magnetoresistive Random Access Memory)、ReRAM(Resistance Randome Access Memory)、PCRAM(Phase Change Random Access Memory)等が次世代の不揮発性メモリとして知られている。 Attention is being focused on next-generation non-volatile memory to replace flash memory and other memory devices, which are reaching the limits of miniaturization. For example, MRAM (Magnetoresistive Random Access Memory), ReRAM (Resistance Random Access Memory), and PCRAM (Phase Change Random Access Memory) are known as next-generation non-volatile memories.
 MRAMは、磁気抵抗効果素子を用いたメモリ素子である。磁気抵抗効果素子の抵抗値は、二つの磁性膜の磁化の向きの相対角の違いによって変化する。MRAMは、磁気抵抗効果素子の抵抗値をデータとして記録する。 MRAM is a memory element that uses a magnetoresistive element. The resistance value of the magnetoresistive element changes depending on the difference in the relative angle between the magnetization directions of the two magnetic films. MRAM records the resistance value of the magnetoresistive element as data.
 磁気抵抗効果素子には、2端子型の素子と3端子型の素子がある。2端子型の素子は、データの書き込み時と読出し時との電流経路が同じであり、2つの端子間の電位差を制御することで動作する。3端子型の素子は、データの書き込み時と読出し時との電流経路が異なり、3つの端子間の電位差を制御することで動作する。スピン軌道トルク(SOT)を利用したスピン軌道トルク型磁気抵抗効果素子(例えば、特許文献1)及び磁壁の移動を利用した磁壁移動型磁気記録素子(例えば、特許文献2)は、3端子型の素子の一例である。3端子型の素子は、トランジスタ等の半導体素子と配線で接続されて制御される。 There are two-terminal and three-terminal magnetoresistance elements. Two-terminal elements have the same current path when writing and reading data, and operate by controlling the potential difference between two terminals. Three-terminal elements have different current paths when writing and reading data, and operate by controlling the potential difference between three terminals. A spin-orbit torque type magnetoresistance element that uses spin-orbit torque (SOT) (e.g., Patent Document 1) and a domain wall motion type magnetic recording element that uses domain wall motion (e.g., Patent Document 2) are examples of three-terminal elements. Three-terminal elements are connected to semiconductor elements such as transistors by wiring and are controlled.
特開2017-216286号公報JP 2017-216286 A 特許第5441005号公報Patent No. 5441005
 3端子型の素子を正常に動作させるためには、少なくとも2つのトランジスタが必要である。2つのトランジスタを磁性素子のどこに接続するかによって、順方向に書き込み電流を印加した場合と逆方向に書き込み電流を印加した場合とで、書き込み電流量に差が生じる場合がある。 In order for a three-terminal element to operate properly, at least two transistors are required. Depending on where the two transistors are connected in the magnetic element, there may be a difference in the amount of write current when a write current is applied in the forward direction and when a write current is applied in the reverse direction.
 本発明は上記事情に鑑みてなされたものであり、書き込み電流の印加方向による書き込み電流量の差が少ない集積装置を提供することを目的とする。 The present invention was made in consideration of the above circumstances, and aims to provide an integrated device in which the difference in the amount of write current depending on the direction in which the write current is applied is small.
 この集積装置は、磁性素子と、第1トランジスタと、第2トランジスタと、第1ビア配線と、第2ビア配線と、書き込み線と、抵抗調整配線と、を備える。前記磁性素子は、配線層と、前記配線層に接続された第1強磁性層を含む積層体と、を備える。前記第1トランジスタは、前記積層体と電気的に接続されている。前記第2トランジスタは、第1活性領域と第2活性領域とを有する。前記第2トランジスタの前記第1活性領域と前記磁性素子の前記配線層とは、前記第1ビア配線を介して接続されている。前記第2トランジスタの前記第2活性領域は、前記第2ビア配線に接続されている。前記第2ビア配線と前記書き込み線とは、前記第2ビア配線及び前記書き込み線より抵抗率の高い前記抵抗調整配線で接続されている。 The integrated device includes a magnetic element, a first transistor, a second transistor, a first via wiring, a second via wiring, a write line, and a resistance adjustment wiring. The magnetic element includes a wiring layer and a stack including a first ferromagnetic layer connected to the wiring layer. The first transistor is electrically connected to the stack. The second transistor has a first active region and a second active region. The first active region of the second transistor and the wiring layer of the magnetic element are connected via the first via wiring. The second active region of the second transistor is connected to the second via wiring. The second via wiring and the write line are connected by the resistance adjustment wiring having a higher resistivity than the second via wiring and the write line.
 本開示にかかる集積装置は、書き込み電流の印加方向による書き込み電流量の差が少ない。 The integrated device disclosed herein has little difference in the amount of write current depending on the direction in which the write current is applied.
第1実施形態にかかる集積装置の回路図である。FIG. 2 is a circuit diagram of an integrated device according to the first embodiment. 第1実施形態にかかる集積装置の特徴部分の断面図である。3 is a cross-sectional view of a characteristic portion of the integrated device according to the first embodiment. FIG. 第1実施形態にかかる集積装置の配線調整層の第1例の断面図である。3 is a cross-sectional view of a first example of a wiring adjustment layer of the integrated device according to the first embodiment. FIG. 第1実施形態にかかる集積装置の配線調整層の第2例の断面図である。4 is a cross-sectional view of a second example of the wiring adjustment layer of the integrated device according to the first embodiment. FIG. 第1実施形態にかかる磁気抵抗効果素子の断面図である。1 is a cross-sectional view of a magnetoresistive effect element according to a first embodiment. 第1実施形態にかかる磁気抵抗効果素子の平面図である。1 is a plan view of a magnetoresistive effect element according to a first embodiment; 比較例にかかる集積装置の動作を説明する図である。10A to 10C are diagrams illustrating the operation of an integrated device according to a comparative example. 第1実施形態にかかる集積装置の動作を説明する図である。5A to 5C are diagrams illustrating the operation of the integration device according to the first embodiment. 第2実施形態にかかる集積装置の回路図である。FIG. 11 is a circuit diagram of an integrated device according to a second embodiment. 第3実施形態にかかる磁気抵抗効果素子の断面図である。FIG. 11 is a cross-sectional view of a magnetoresistive effect element according to a third embodiment. 第4実施形態にかかる磁化回転素子の断面図である。FIG. 13 is a cross-sectional view of a magnetization rotating element according to a fourth embodiment. 第5実施形態にかかる磁気抵抗効果素子の断面図である。FIG. 13 is a cross-sectional view of a magnetoresistive effect element according to a fifth embodiment. 第1変形例にかかる磁気抵抗効果素子の断面図である。FIG. 11 is a cross-sectional view of a magnetoresistive effect element according to a first modified example.
 以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。 The present embodiment will now be described in detail with reference to the drawings as appropriate. The drawings used in the following description may show characteristic parts in an enlarged scale for the sake of clarity, and the dimensional ratios of each component may differ from the actual ones. The materials, dimensions, etc. exemplified in the following description are merely examples, and the present invention is not limited to them. Appropriate modifications can be made within the scope of the effects of the present invention.
 まず方向について定義する。後述する基板Sub(図2参照)の一面の一方向をx方向、x方向と直交する方向をy方向とする。x方向は、例えば、配線層20の長手方向である。z方向は、x方向及びy方向と直交する方向である。z方向は、各層が積層される積層方向の一例である。以下、+z方向を「上」、-z方向を「下」と表現する場合がある。上下は、必ずしも重力が加わる方向とは一致しない。 First, let us define the directions. One direction on one surface of the substrate Sub (see FIG. 2), which will be described later, is the x-direction, and the direction perpendicular to the x-direction is the y-direction. The x-direction is, for example, the longitudinal direction of the wiring layer 20. The z-direction is a direction perpendicular to the x-direction and y-direction. The z-direction is an example of the stacking direction in which each layer is stacked. Below, the +z direction may be expressed as "up" and the -z direction as "down". Up and down do not necessarily coincide with the direction in which gravity is applied.
 本明細書で「x方向に延びる」とは、例えば、x方向、y方向、及びz方向の各寸法のうち最小の寸法よりもx方向の寸法が大きいことを意味する。他の方向に延びる場合も同様である。 In this specification, "extending in the x-direction" means, for example, that the dimension in the x-direction is greater than the smallest dimension among the dimensions in the x-direction, y-direction, and z-direction. The same applies to extending in other directions.
 図1は、第1実施形態にかかる集積装置200の回路図である。集積装置200は、複数の磁気抵抗効果素子100と、複数の書き込み配線WLと、複数の共通配線CLと、複数の読出し配線RLと、複数の第1トランジスタTr1と、複数の第2トランジスタTr2と、複数の第3トランジスタTr3と、を備える。書き込み配線WLは、第1配線の一例である。磁気抵抗効果素子100は、集積装置200内に、アレイ状に配列されている。磁気抵抗効果素子100は、磁性素子の一例である。図1では、第1トランジスタTr1、第2トランジスタTr2及び第3トランジスタTr3のゲートに接続されるゲート配線を省略している。 FIG. 1 is a circuit diagram of an integrated device 200 according to a first embodiment. The integrated device 200 includes a plurality of magnetoresistance effect elements 100, a plurality of write wirings WL, a plurality of common wirings CL, a plurality of read wirings RL, a plurality of first transistors Tr1, a plurality of second transistors Tr2, and a plurality of third transistors Tr3. The write wirings WL are an example of a first wiring. The magnetoresistance effect elements 100 are arranged in an array within the integrated device 200. The magnetoresistance effect elements 100 are an example of a magnetic element. In FIG. 1, gate wirings connected to the gates of the first transistor Tr1, the second transistor Tr2, and the third transistor Tr3 are omitted.
 書き込み配線WLのそれぞれは、電源と1つ以上の磁気抵抗効果素子100とを電気的に接続する。共通配線CLのそれぞれは、データの書き込み時及び読み出し時の両方で用いられる配線である。それぞれの共通配線CLは、基準電位と1つ以上の磁気抵抗効果素子100とを電気的に接続する。基準電位は、例えば、グラウンドである。共通配線CLは、複数の磁気抵抗効果素子100のそれぞれに設けられてもよいし、複数の磁気抵抗効果素子100に亘って設けられてもよい。それぞれの読出し配線RLは、電源と1つ以上の磁気抵抗効果素子100とを電気的に接続する。電源は、使用時に集積装置200に接続される。 Each of the write wirings WL electrically connects a power supply to one or more magnetoresistance effect elements 100. Each of the common wirings CL is a wiring that is used both when writing and reading data. Each of the common wirings CL electrically connects a reference potential to one or more magnetoresistance effect elements 100. The reference potential is, for example, ground. The common wiring CL may be provided for each of the multiple magnetoresistance effect elements 100, or may be provided across the multiple magnetoresistance effect elements 100. Each of the read wirings RL electrically connects a power supply to one or more magnetoresistance effect elements 100. The power supply is connected to the integrated device 200 during use.
 それぞれの磁気抵抗効果素子100は、第1トランジスタTr1、第2トランジスタTr2、第3トランジスタTr3のそれぞれに接続されている。第1トランジスタTr1は、磁気抵抗効果素子100と読出し配線RLとの間に接続されている。第2トランジスタTr2は、磁気抵抗効果素子100と書き込み配線WLとの間に接続されている。第3トランジスタTr3は、複数の磁気抵抗効果素子100に亘る共通配線CLに接続されている。 Each magnetoresistance effect element 100 is connected to a first transistor Tr1, a second transistor Tr2, and a third transistor Tr3. The first transistor Tr1 is connected between the magnetoresistance effect element 100 and a read wiring RL. The second transistor Tr2 is connected between the magnetoresistance effect element 100 and a write wiring WL. The third transistor Tr3 is connected to a common wiring CL that spans the multiple magnetoresistance effect elements 100.
 所定の第2トランジスタTr2及び第3トランジスタTr3をONにすると、所定の磁気抵抗効果素子100に接続された書き込み配線WLと共通配線CLとの間に書き込み電流が流れる。書き込み電流が流れることで、所定の磁気抵抗効果素子100にデータが書き込まれる。所定の第1トランジスタTr1及び第3トランジスタTr3をONにすると、所定の磁気抵抗効果素子100に接続された共通配線CLと読出し配線RLとの間に読み出し電流が流れる。読出し電流が流れることで、所定の磁気抵抗効果素子100からデータが読み出される。 When a specific second transistor Tr2 and third transistor Tr3 are turned ON, a write current flows between the write wiring WL and the common wiring CL connected to the specific magnetoresistance effect element 100. The write current flows, and data is written to the specific magnetoresistance effect element 100. When a specific first transistor Tr1 and third transistor Tr3 are turned ON, a read current flows between the common wiring CL and the read wiring RL connected to the specific magnetoresistance effect element 100. The read current flows, and data is read from the specific magnetoresistance effect element 100.
 図2は、第1実施形態に係る集積装置200の特徴部分の断面図である。図2は、磁気抵抗効果素子100を後述する配線層20のy方向の幅の中心を通るxz平面で切断した断面である。 FIG. 2 is a cross-sectional view of a characteristic portion of an integrated device 200 according to the first embodiment. FIG. 2 is a cross-section of the magnetoresistance effect element 100 cut in an xz plane passing through the center of the width in the y direction of the wiring layer 20, which will be described later.
 磁気抵抗効果素子100は、第2トランジスタTr2とビア配線V3とに接続されている。ビア配線V3は、共通配線CLに接続されている。 The magnetoresistance effect element 100 is connected to the second transistor Tr2 and the via wiring V3. The via wiring V3 is connected to the common wiring CL.
 第1トランジスタTr1と第2トランジスタTr2は、いずれも電界効果型のトランジスタである。第1トランジスタTr1と第2トランジスタTr2はそれぞれ、ゲート電極Gとゲート絶縁膜GIと基板Subに形成された第1活性領域A1及び第2活性領域A2とを有する。第1活性領域A1及び第2活性領域A2は、ソース又はドレインと呼ばれることがある。ソースとドレインの位置関係は、電流の流れ方向で決まる。基板Subは、半導体基板である。第1活性領域A1及び第2活性領域A2は、キャリアがドープされた半導体である。 The first transistor Tr1 and the second transistor Tr2 are both field effect transistors. The first transistor Tr1 and the second transistor Tr2 each have a gate electrode G, a gate insulating film GI, and a first active region A1 and a second active region A2 formed in a substrate Sub. The first active region A1 and the second active region A2 are sometimes called a source or a drain. The positional relationship between the source and the drain is determined by the direction of current flow. The substrate Sub is a semiconductor substrate. The first active region A1 and the second active region A2 are semiconductors doped with carriers.
 第1トランジスタTr1の第1活性領域A1は、読出し配線RLとビア配線V5で接続されている。 The first active region A1 of the first transistor Tr1 is connected to the readout wiring RL by a via wiring V5.
 第1トランジスタTr1の第2活性領域A2は、ビア配線V4に接続されている。ビア配線V4は、面内配線P1に接続されている。面内配線P1は、磁気抵抗効果素子100の電極Eと接続されている。磁気抵抗効果素子100と第1トランジスタTr1とは電気的に接続されている。磁気抵抗効果素子100と第1トランジスタTr1とは、例えば、面内配線P1、ビア配線V4及び電極Eを介して接続されている。 The second active region A2 of the first transistor Tr1 is connected to a via wiring V4. The via wiring V4 is connected to an in-plane wiring P1. The in-plane wiring P1 is connected to an electrode E of the magnetoresistive effect element 100. The magnetoresistive effect element 100 and the first transistor Tr1 are electrically connected. The magnetoresistive effect element 100 and the first transistor Tr1 are connected, for example, via the in-plane wiring P1, the via wiring V4, and the electrode E.
 第2トランジスタTr2の第1活性領域A1は、ビア配線V1に接続されている。ビア配線V1は、第1ビア配線の一例である。第2トランジスタTr2の第1活性領域A1と磁気抵抗効果素子100とは、ビア配線V1を介して接続されている。 The first active region A1 of the second transistor Tr2 is connected to the via wiring V1. The via wiring V1 is an example of a first via wiring. The first active region A1 of the second transistor Tr2 and the magnetoresistance effect element 100 are connected via the via wiring V1.
 第2トランジスタTr2の第2活性領域A2は、ビア配線V2に接続されている。ビア配線V2は、第2ビア配線の一例である。ビア配線V2は、抵抗調整配線R1と接続されている。抵抗調整配線R1は、書き込み配線WLと接続されている。第2トランジスタTr2と書き込み配線WLとは、ビア配線V2及び抵抗調整配線R1を介して接続されている。 The second active region A2 of the second transistor Tr2 is connected to the via wiring V2. The via wiring V2 is an example of a second via wiring. The via wiring V2 is connected to the resistance adjustment wiring R1. The resistance adjustment wiring R1 is connected to the write wiring WL. The second transistor Tr2 and the write wiring WL are connected via the via wiring V2 and the resistance adjustment wiring R1.
 抵抗調整配線R1は、ビア配線V2と書き込み配線WLとを繋ぐ配線である。ビア配線V2は、z方向に延びる配線である。書き込み配線WLは、x方向又はy方向に一方向に延びる配線である。抵抗調整配線R1は、例えば、xy面内のいずれかの方向に延びる配線であり、ビア配線V2と書き込み配線WLのいずれとも交差する方向に延びる。 The resistance adjustment wiring R1 is a wiring that connects the via wiring V2 and the write wiring WL. The via wiring V2 is a wiring that extends in the z direction. The write wiring WL is a wiring that extends in one direction, either the x direction or the y direction. The resistance adjustment wiring R1 is, for example, a wiring that extends in any direction within the xy plane, and extends in a direction that intersects with both the via wiring V2 and the write wiring WL.
 抵抗調整配線R1は、例えば、ビア配線V2より抵抗が高い。抵抗調整配線R1の抵抗は、形状に起因してビア配線V2の抵抗より高くてもよいし、材料に起因してビア配線V2の抵抗より高くてもよい。また抵抗調整配線R1の抵抗は、形状及び材料に起因してビア配線V2より高くてもよい。 The resistance adjustment wiring R1 has a higher resistance than the via wiring V2, for example. The resistance of the resistance adjustment wiring R1 may be higher than the resistance of the via wiring V2 due to its shape, or may be higher than the resistance of the via wiring V2 due to its material. The resistance of the resistance adjustment wiring R1 may also be higher than the via wiring V2 due to its shape and material.
 図3は、第1例に係る抵抗調整配線R1のxy断面図である。図3に示す抵抗調整配線R1は、狭窄部R1Aと幅広部R1Bとを有する。幅広部R1Bは、ビア配線V2と接する部分である。抵抗調整配線R1における電流の流れ方向と直交する断面積は、狭窄部R1Aの方が幅広部より狭い。例えば、狭窄部R1Aのy方向の幅L1は、幅広部R1Bのy方向の幅L2より狭い。第1例に係る抵抗調整配線R1は、形状に起因して、抵抗調整配線R1の抵抗をビア配線V2より高くできる。この場合、抵抗調整配線R1の材料は問わない。 FIG. 3 is an xy cross-sectional view of the resistance adjustment wiring R1 according to the first example. The resistance adjustment wiring R1 shown in FIG. 3 has a narrow portion R1A and a wide portion R1B. The wide portion R1B is the portion that contacts the via wiring V2. The cross-sectional area perpendicular to the current flow direction in the resistance adjustment wiring R1 is narrower in the narrow portion R1A than in the wide portion. For example, the width L1 in the y direction of the narrow portion R1A is narrower than the width L2 in the y direction of the wide portion R1B. Due to the shape of the resistance adjustment wiring R1 according to the first example, the resistance of the resistance adjustment wiring R1 can be made higher than that of the via wiring V2. In this case, the material of the resistance adjustment wiring R1 does not matter.
 図4は、第2例に係る抵抗調整配線R1のxy断面図である。図4に示す抵抗調整配線R1は、ミアンダ配線である。図4に示す抵抗調整配線R1は、例えば、y方向に延びる第1部分R1Cと、x方向に延びる第2部分R1Dと、を有する。抵抗調整配線R1は、xy面内の異なる方向に延びる部分を有していればよく、ジグザグ形状でもよい。第2例に係る抵抗調整配線R1は、形状に起因して、抵抗調整配線R1の抵抗をビア配線V2より高くできる。この場合、抵抗調整配線R1の材料は問わない。 FIG. 4 is an xy cross-sectional view of the resistance adjustment wiring R1 according to the second example. The resistance adjustment wiring R1 shown in FIG. 4 is a meander wiring. The resistance adjustment wiring R1 shown in FIG. 4 has, for example, a first portion R1C extending in the y direction and a second portion R1D extending in the x direction. The resistance adjustment wiring R1 only needs to have portions extending in different directions in the xy plane, and may have a zigzag shape. Due to the shape of the resistance adjustment wiring R1 according to the second example, the resistance of the resistance adjustment wiring R1 can be made higher than the via wiring V2. In this case, the material of the resistance adjustment wiring R1 does not matter.
 抵抗調整配線R1は、例えば、ビア配線V2及び書き込み配線WLより抵抗率が高くてもよい。この場合、材料に起因して抵抗調整配線R1の抵抗をビア配線V2の抵抗より高くできる。 The resistance adjustment wiring R1 may have a higher resistivity than, for example, the via wiring V2 and the write wiring WL. In this case, the resistance of the resistance adjustment wiring R1 can be made higher than the resistance of the via wiring V2 due to the material.
 抵抗調整配線R1は、例えば、W、Pt、Ta、Ti、Hfからなる群から選択されるいずれか一つを含む。W、Pt、Ta、Ti、Hfからなる群から選択されるいずれか一つは、単体金属として存在してもよいし、酸化物、フッ化物又は窒化物として存在してもよい。これらの材料は、ビア配線V2及び書き込み配線WLに使用されるAl、Ag、Cu等と比較して、抵抗率が高い。抵抗調整配線R1は、後述する配線層20と同じ材料を含むことが好ましい。当該構成を満たすと、順方向と逆方向の書き込み電流量を同等にすることを簡単に行うことができる。 The resistance adjustment wiring R1 includes, for example, any one selected from the group consisting of W, Pt, Ta, Ti, and Hf. Any one selected from the group consisting of W, Pt, Ta, Ti, and Hf may exist as an elemental metal, or may exist as an oxide, fluoride, or nitride. These materials have a higher resistivity than Al, Ag, Cu, etc., used in the via wiring V2 and the write wiring WL. It is preferable that the resistance adjustment wiring R1 includes the same material as the wiring layer 20 described below. If this configuration is satisfied, it is easy to make the forward and reverse write current amounts equal.
 また抵抗調整配線R1の長さを断面積で割った比は、例えば、後述する配線層の長さを断面積で割った比の90%以上110%以下でもよい。抵抗調整配線R1の長さは、電流の流れ方向の長さである。例えば、抵抗調整配線R1が図4に示すようにミアンダ配線の場合は、ビア配線V2と書き込み配線WLとの間の電流経路の長さである。 The ratio of the length of the resistance adjustment wiring R1 divided by the cross-sectional area may be, for example, 90% or more and 110% or less of the ratio of the length of the wiring layer described below divided by the cross-sectional area. The length of the resistance adjustment wiring R1 is the length in the direction of current flow. For example, if the resistance adjustment wiring R1 is a meander wiring as shown in Figure 4, it is the length of the current path between the via wiring V2 and the write wiring WL.
 ビア配線V1、V2、V3、V4、V5はそれぞれ、z方向に延びる配線である。書き込み配線WL、読出し配線RL、共通配線CL、面内配線P1はそれぞれ、xy面内のいずれかの方向に延びる配線である。電極Eは、磁気抵抗効果素子100と配線との接点となる部分である。ビア配線V1、V2、V3、V4、V5、書き込み配線WL、読出し配線RL、共通配線CL、面内配線P1及び電極Eはいずれも、導電性の高い材料からなり、例えば、Al、Ag、Cuである。 The via wirings V1, V2, V3, V4, and V5 are each wiring that extends in the z direction. The write wiring WL, read wiring RL, common wiring CL, and in-plane wiring P1 are each wiring that extends in one of the xy planes. The electrode E is the contact point between the magnetoresistance effect element 100 and the wiring. The via wirings V1, V2, V3, V4, and V5, the write wiring WL, read wiring RL, common wiring CL, in-plane wiring P1, and the electrode E are all made of a highly conductive material, such as Al, Ag, or Cu.
 磁気抵抗効果素子100、第1トランジスタTr1及び第2トランジスタTr2の周囲は、絶縁層90で覆われている。絶縁層90は、多層配線の配線間や素子間を絶縁する絶縁層である。絶縁層90は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、炭化シリコン(SiC)、窒化クロム、炭窒化シリコン(SiCN)、酸窒化シリコン(SiON)、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)、酸化マグネシウム(MgO)、窒化アルミニウム(AlN)等である。 The magnetoresistance effect element 100, the first transistor Tr1, and the second transistor Tr2 are covered with an insulating layer 90. The insulating layer 90 is an insulating layer that insulates between the wirings of the multilayer wiring and between the elements. The insulating layer 90 is, for example, silicon oxide (SiO x ), silicon nitride (SiN x ), silicon carbide (SiC), chromium nitride, silicon carbonitride (SiCN), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO x ), magnesium oxide (MgO), aluminum nitride (AlN), or the like.
 図5は、第1実施形態に係る磁気抵抗効果素子100の断面図である。図5は、配線層20のy方向の幅の中心を通るxz平面で磁気抵抗効果素子100を切断した断面である。図6は、第1実施形態に係る磁気抵抗効果素子100をz方向から見た平面図である。 FIG. 5 is a cross-sectional view of the magnetoresistance effect element 100 according to the first embodiment. FIG. 5 is a cross-section of the magnetoresistance effect element 100 cut in the xz plane passing through the center of the width of the wiring layer 20 in the y direction. FIG. 6 is a plan view of the magnetoresistance effect element 100 according to the first embodiment as viewed from the z direction.
 磁気抵抗効果素子100は、例えば、積層体10と配線層20とを備える。 The magnetoresistance effect element 100 includes, for example, a laminate 10 and a wiring layer 20.
 磁気抵抗効果素子100は、スピン軌道トルク(SOT)を利用した磁性素子であり、スピン軌道トルク型磁気抵抗効果素子、スピン注入型磁気抵抗効果素子、スピン流磁気抵抗効果素子と言われる場合がある。配線層20は、スピン軌道トルク配線と言われる場合がある。 The magnetoresistance effect element 100 is a magnetic element that utilizes spin orbit torque (SOT), and may be referred to as a spin orbit torque type magnetoresistance effect element, a spin injection type magnetoresistance effect element, or a spin current magnetoresistance effect element. The wiring layer 20 may be referred to as spin orbit torque wiring.
 磁気抵抗効果素子100は、データを記録、保存する素子である。磁気抵抗効果素子100は、積層体10のz方向の抵抗値でデータを記録する。積層体10のz方向の抵抗値は、配線層20に沿って書き込み電流を印加し、配線層20から積層体10にスピンが注入されることで変化する。積層体10のz方向の抵抗値は、積層体10のz方向に読出し電流を印加することで読み出すことができる。積層体10は、第1トランジスタTr1と電気的に接続されている。 The magnetoresistance effect element 100 is an element that records and stores data. The magnetoresistance effect element 100 records data as the resistance value in the z direction of the stack 10. The resistance value in the z direction of the stack 10 changes when a write current is applied along the wiring layer 20 and spins are injected from the wiring layer 20 into the stack 10. The resistance value in the z direction of the stack 10 can be read by applying a read current in the z direction of the stack 10. The stack 10 is electrically connected to the first transistor Tr1.
 積層体10は、配線層20に接続されている。図5に示す積層体10は、例えば、配線層20上に積層されている。 The laminate 10 is connected to the wiring layer 20. The laminate 10 shown in FIG. 5 is laminated on the wiring layer 20, for example.
 積層体10は、柱状体である。積層体10のz方向からの平面視形状は、例えば、円形、楕円形、四角形である。積層体10の側面は、例えば、z方向に対して傾斜する。 The laminate 10 is a columnar body. The planar shape of the laminate 10 in the z direction is, for example, circular, elliptical, or rectangular. The side surface of the laminate 10 is, for example, inclined with respect to the z direction.
 積層体10は、例えば、第1強磁性層1と第2強磁性層2と非磁性層3と下地層4とキャップ層5とマスク層6とを備える。積層体10は、非磁性層3を挟む第1強磁性層1と第2強磁性層2との磁化の相対角の違いに応じて抵抗値が変化する。 The laminate 10 includes, for example, a first ferromagnetic layer 1, a second ferromagnetic layer 2, a nonmagnetic layer 3, an underlayer 4, a cap layer 5, and a mask layer 6. The resistance value of the laminate 10 changes according to the difference in the relative angle of magnetization between the first ferromagnetic layer 1 and the second ferromagnetic layer 2, which sandwich the nonmagnetic layer 3.
 第1強磁性層1は、例えば、配線層20と面する。第1強磁性層1は、配線層20と直接接してもよいし、下地層4を介して間接的に接してもよい。第1強磁性層1は、例えば、配線層20上に積層されている。 The first ferromagnetic layer 1 faces, for example, the wiring layer 20. The first ferromagnetic layer 1 may be in direct contact with the wiring layer 20, or indirect contact with the wiring layer 20 via the underlayer 4. The first ferromagnetic layer 1 is stacked, for example, on the wiring layer 20.
 第1強磁性層1には配線層20からスピンが注入される。第1強磁性層1の磁化は、注入されたスピンによりスピン軌道トルク(SOT)を受け、配向方向が変化する。第1強磁性層1は磁化自由層と言われる。 Spins are injected into the first ferromagnetic layer 1 from the wiring layer 20. The magnetization of the first ferromagnetic layer 1 is subjected to spin-orbit torque (SOT) by the injected spins, and the orientation direction of the magnetization changes. The first ferromagnetic layer 1 is called a magnetization free layer.
 第1強磁性層1は、強磁性体を含む。強磁性体は、例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属、これらの金属を1種以上含む合金、これらの金属とB、C、及びNの少なくとも1種以上の元素とが含まれる合金等である。強磁性体は、例えば、Co-Fe、Co-Fe-B、Ni-Fe、Co-Ho合金、Sm-Fe合金、Fe-Pt合金、Co-Pt合金、CoCrPt合金である。 The first ferromagnetic layer 1 includes a ferromagnetic material. The ferromagnetic material is, for example, a metal selected from the group consisting of Cr, Mn, Co, Fe, and Ni, an alloy containing one or more of these metals, or an alloy containing these metals and at least one of the elements B, C, and N. The ferromagnetic material is, for example, a Co-Fe, Co-Fe-B, Ni-Fe, Co-Ho alloy, Sm-Fe alloy, Fe-Pt alloy, Co-Pt alloy, or CoCrPt alloy.
 第1強磁性層1は、ホイスラー合金を含んでもよい。ホイスラー合金は、XYZまたはXYZの化学組成をもつ金属間化合物を含む。Xは周期表上でCo、Fe、Ni、あるいはCu族の遷移金属元素または貴金属元素であり、YはMn、V、CrあるいはTi族の遷移金属又はXの元素種であり、ZはIII族からV族の典型元素である。ホイスラー合金は、例えば、CoFeSi、CoFeGe、CoFeGa、CoMnSi、CoMn1-aFeAlSi1-b、CoFeGe1-cGa等である。ホイスラー合金は高いスピン分極率を有する。 The first ferromagnetic layer 1 may include a Heusler alloy. The Heusler alloy includes an intermetallic compound having a chemical composition of XYZ or X 2 YZ. X is a transition metal element or a noble metal element of the Co, Fe, Ni, or Cu group on the periodic table, Y is a transition metal element or an element type of X of the Mn, V, Cr, or Ti group, and Z is a typical element of groups III to V. Examples of the Heusler alloy include Co 2 FeSi, Co 2 FeGe, Co 2 FeGa, Co 2 MnSi, Co 2 Mn 1-a Fe a Al b Si 1-b , and Co 2 FeGe 1-c Ga c . The Heusler alloy has a high spin polarizability.
 第2強磁性層2は、非磁性層3を挟んで、第1強磁性層1と対向する。第2強磁性層2は、強磁性体を含む。第2強磁性層2の磁化は、所定の外力が印加された際に第1強磁性層1の磁化よりも配向方向が変化しにくい。第2強磁性層2は、磁化固定層、磁化参照層と言われる。図5に示す積層体10は、磁化固定層が基板Subから離れた側にあり、トップピン構造と呼ばれる。 The second ferromagnetic layer 2 faces the first ferromagnetic layer 1 with a nonmagnetic layer 3 sandwiched therebetween. The second ferromagnetic layer 2 includes a ferromagnetic material. The magnetization of the second ferromagnetic layer 2 is less likely to change orientation than the magnetization of the first ferromagnetic layer 1 when a predetermined external force is applied. The second ferromagnetic layer 2 is called a magnetization fixed layer and a magnetization reference layer. The laminate 10 shown in FIG. 5 has the magnetization fixed layer on the side away from the substrate Sub, and is called a top pin structure.
 第2強磁性層2を構成する材料として、第1強磁性層1を構成する材料と同様のものが用いられる。 The material constituting the second ferromagnetic layer 2 is the same as the material constituting the first ferromagnetic layer 1.
 第2強磁性層2は、シンセティック反強磁性構造(SAF構造)でもよい。シンセティック反強磁性構造は、非磁性層を挟む二つの磁性層からなる。第2強磁性層2は、二つの磁性層とこれらに挟まれるスペーサ層とを有してもよい。二つの強磁性層が反強磁性カップリングすることで、第2強磁性層2の保磁力が大きくなる。強磁性層は、例えば、IrMn,PtMn等である。スペーサ層は、例えば、Ru、Ir、Rhからなる群から選択される少なくとも一つを含む。 The second ferromagnetic layer 2 may have a synthetic antiferromagnetic structure (SAF structure). A synthetic antiferromagnetic structure is composed of two magnetic layers sandwiching a nonmagnetic layer. The second ferromagnetic layer 2 may have two magnetic layers and a spacer layer sandwiched between them. The coercive force of the second ferromagnetic layer 2 increases when the two ferromagnetic layers are antiferromagnetically coupled. The ferromagnetic layer is, for example, IrMn, PtMn, etc. The spacer layer includes, for example, at least one selected from the group consisting of Ru, Ir, and Rh.
 非磁性層3は、第1強磁性層1と第2強磁性層2とに挟まれる。非磁性層3は、非磁性体を含む。非磁性層3が絶縁体の場合(トンネルバリア層である場合)、その材料としては、例えば、Al、SiO、MgO、及び、MgAl等を用いることができる。また、これらの他にも、Al、Si、Mgの一部が、Zn、Be等に置換された材料等も用いることができる。これらの中でも、MgOやMgAlはコヒーレントトンネルが実現できる材料であるため、スピンを効率よく注入できる。非磁性層3が金属の場合、その材料としては、Cu、Au、Ag等を用いることができる。さらに、非磁性層3が半導体の場合、その材料としては、Si、Ge、CuInSe、CuGaSe、Cu(In,Ga)Se等を用いることができる。 The non-magnetic layer 3 is sandwiched between the first ferromagnetic layer 1 and the second ferromagnetic layer 2. The non-magnetic layer 3 includes a non-magnetic material. When the non-magnetic layer 3 is an insulator (when it is a tunnel barrier layer), its material can be, for example, Al 2 O 3 , SiO 2 , MgO, and MgAl 2 O 4. In addition to these, materials in which a part of Al, Si, and Mg is replaced with Zn, Be, etc. can also be used. Among these, MgO and MgAl 2 O 4 are materials that can realize coherent tunneling, so that spins can be efficiently injected. When the non-magnetic layer 3 is a metal, its material can be Cu, Au, Ag, etc. Furthermore, when the non-magnetic layer 3 is a semiconductor, its material can be Si, Ge, CuInSe 2 , CuGaSe 2 , Cu(In,Ga)Se 2 , etc.
 下地層4は、例えば、第1強磁性層1と配線層20との間にある。下地層4は、無くてもよい。 The underlayer 4 is, for example, between the first ferromagnetic layer 1 and the wiring layer 20. The underlayer 4 may be omitted.
 下地層4は、例えば、バッファ層とシード層とを含む。バッファ層は、異なる結晶間の格子不整合を緩和する層である。シード層は、シード層上に積層される層の結晶性を高める。シード層は、例えば、バッファ層上に形成される。 The underlayer 4 includes, for example, a buffer layer and a seed layer. The buffer layer is a layer that relieves lattice mismatch between different crystals. The seed layer enhances the crystallinity of the layer stacked on the seed layer. The seed layer is formed, for example, on the buffer layer.
 バッファ層は、例えば、例えば、Ta(単体)、TaN(窒化タンタル)、CuN(窒化銅)、TiN(窒化チタン)、NiAl(ニッケルアルミニウム)である。シード層は、例えば、Pt、Ru、Zr、NiCr合金、NiFeCrである。 The buffer layer is, for example, Ta (single element), TaN (tantalum nitride), CuN (copper nitride), TiN (titanium nitride), NiAl (nickel aluminum). The seed layer is, for example, Pt, Ru, Zr, NiCr alloy, NiFeCr.
 キャップ層5は、第2強磁性層2上にある。キャップ層5は、例えば、第2強磁性層2の磁気異方性を強める。キャップ層5は、例えば、第2強磁性層2の垂直磁気異方性を強める。キャップ層5は、例えば酸化マグネシウム、W、Ta、Mo等である。キャップ層5の膜厚は、例えば、0.5nm以上5.0nm以下である。 The cap layer 5 is on the second ferromagnetic layer 2. The cap layer 5, for example, strengthens the magnetic anisotropy of the second ferromagnetic layer 2. The cap layer 5, for example, strengthens the perpendicular magnetic anisotropy of the second ferromagnetic layer 2. The cap layer 5 is, for example, magnesium oxide, W, Ta, Mo, etc. The film thickness of the cap layer 5 is, for example, 0.5 nm or more and 5.0 nm or less.
 マスク層6は、キャップ層5上にある。マスク層6は、製造時に積層体10を加工する際に用いられるハードマスクの一部である。マスク層6は、電極としても機能する。マスク層6は、例えば、Al、Cu、Ta、Ti、Zr、NiCr、窒化物(例えばTiN、TaN、SiN)、酸化物(例えばSiO)を含む。 The mask layer 6 is on the cap layer 5. The mask layer 6 is part of a hard mask used to process the stack 10 during manufacturing. The mask layer 6 also functions as an electrode. The mask layer 6 includes, for example, Al, Cu, Ta, Ti, Zr, NiCr, nitrides (e.g., TiN, TaN, SiN), and oxides (e.g., SiO2 ).
 積層体10は、第1強磁性層1、第2強磁性層2、非磁性層3、下地層4及びキャップ層5以外の層を有してもよい。 The laminate 10 may have layers other than the first ferromagnetic layer 1, the second ferromagnetic layer 2, the nonmagnetic layer 3, the underlayer 4, and the cap layer 5.
 配線層20は、例えば、z方向から見てx方向の長さがy方向より長く、x方向に延びる。書き込み電流は、ビア配線V1とビア配線V3との間を、配線層20に沿ってx方向に流れる。 The wiring layer 20 extends in the x direction, for example, with its length in the x direction being longer than that in the y direction when viewed from the z direction. The write current flows in the x direction along the wiring layer 20 between the via wiring V1 and the via wiring V3.
 配線層20は、スピン軌道相互作用及び界面ラシュバ効果によってスピン流を誘起し、第1強磁性層1にスピンを注入する。配線層20は、例えば、第1強磁性層1の磁化を反転できるだけのスピン軌道トルク(SOT)を第1強磁性層1の磁化に与える。 The wiring layer 20 induces a spin current by spin-orbit interaction and the interface Rashba effect, and injects spin into the first ferromagnetic layer 1. The wiring layer 20 applies a spin-orbit torque (SOT) to the magnetization of the first ferromagnetic layer 1 that is sufficient to reverse the magnetization of the first ferromagnetic layer 1, for example.
 スピンホール効果は、電流を流した場合にスピン軌道相互作用に基づき、電流の流れる方向と直交する方向にスピン流が誘起される現象である。スピンホール効果は、運動(移動)する電荷(電子)が運動(移動)方向を曲げられる点で、通常のホール効果と共通する。通常のホール効果は、磁場中で運動する荷電粒子の運動方向がローレンツ力によって曲げられる。これに対し、スピンホール効果は磁場が存在しなくても、電子が移動するだけ(電流が流れるだけ)でスピンの移動方向が曲げられる。 The spin Hall effect is a phenomenon in which, when electric current is passed, a spin current is induced in a direction perpendicular to the direction of electric current flow due to spin-orbit interaction. The spin Hall effect is similar to the regular Hall effect in that the direction of movement of moving charges (electrons) can be bent. In the regular Hall effect, the direction of movement of charged particles moving in a magnetic field is bent by the Lorentz force. In contrast, with the spin Hall effect, the direction of spin movement can be bent simply by the movement of electrons (the flow of electric current) even in the absence of a magnetic field.
 例えば、配線層20に電流が流れると、一方向に偏極した第1スピンと、第1スピンと反対方向に偏極した第2スピンとが、それぞれ電流の流れる方向と直交する方向にスピンホール効果によって曲げられる。例えば、-y方向に偏極した第1スピンは、進行方向であるx方向から+z方向に曲げられ、+y方向に偏極した第2スピンは、進行方向であるx方向から-z方向に曲げられる。 For example, when a current flows through the wiring layer 20, the first spins polarized in one direction and the second spins polarized in the opposite direction to the first spins are bent by the spin Hall effect in a direction perpendicular to the direction of the current flow. For example, the first spins polarized in the -y direction are bent from the x direction, which is the direction of travel, to the +z direction, and the second spins polarized in the +y direction are bent from the x direction, which is the direction of travel, to the -z direction.
 非磁性体(強磁性体ではない材料)は、スピンホール効果により生じる第1スピンの電子数と第2スピンの電子数とが等しい。すなわち、+z方向に向かう第1スピンの電子数と-z方向に向かう第2スピンの電子数とは等しい。第1スピンと第2スピンは、スピンの偏在を解消する方向に流れる。第1スピン及び第2スピンのz方向への移動において、電荷の流れは互いに相殺されるため、電流量はゼロとなる。電流を伴わないスピン流は特に純スピン流と呼ばれる。 In non-magnetic materials (materials that are not ferromagnetic), the number of electrons in the first spin and the number of electrons in the second spin caused by the spin Hall effect are equal. In other words, the number of electrons in the first spin facing the +z direction is equal to the number of electrons in the second spin facing the -z direction. The first spins and second spins flow in a direction that eliminates the uneven distribution of spins. When the first spins and second spins move in the z direction, the flow of charges cancels each other out, so the amount of current is zero. Spin current without current is specifically called pure spin current.
 第1スピンの電子の流れをJ、第2スピンの電子の流れをJ、スピン流をJと表すと、J=J-Jで定義される。スピン流Jは、z方向に生じる。第1スピンは、配線層20から第1強磁性層1に注入される。 If the flow of electrons of the first spin is represented as J , the flow of electrons of the second spin is represented as J , and the spin current is represented as JS , then JS = J - J . The spin current JS is generated in the z direction. The first spins are injected into the first ferromagnetic layer 1 from the wiring layer 20.
 配線層20は、スピン流を発生させる機能を有する金属、合金、金属間化合物、金属硼化物、金属炭化物、金属珪化物、金属燐化物、金属窒化物のいずれかを含む。 The wiring layer 20 includes any of a metal, alloy, intermetallic compound, metal boride, metal carbide, metal silicide, metal phosphide, and metal nitride that has the function of generating a spin current.
 配線層20は、例えば、原子番号が39以上の重金属、金属酸化物、金属窒化物、金属酸窒化物、トポロジカル絶縁体からなる群から選択される何れかを含む。また配線層20は、磁性材料を含んでもよい。 The wiring layer 20 includes, for example, any material selected from the group consisting of heavy metals with atomic numbers of 39 or more, metal oxides, metal nitrides, metal oxynitrides, and topological insulators. The wiring layer 20 may also include a magnetic material.
 配線層20は、例えば、主成分として非磁性の重金属を含む。重金属は、イットリウム(Y)以上の比重を有する金属を意味する。非磁性の重金属は、例えば、最外殻にd電子又はf電子を有する原子番号39以上の原子番号が大きい非磁性金属である。非磁性の重金属は、その他の金属よりスピン軌道相互作用が強く生じる。スピンホール効果はスピン軌道相互作用により生じ、配線層20内にスピンが偏在しやすく、スピン流Jが発生しやすくなる。 The wiring layer 20 contains, for example, a nonmagnetic heavy metal as a main component. Heavy metal means a metal having a specific gravity equal to or greater than that of yttrium (Y). The nonmagnetic heavy metal is, for example, a nonmagnetic metal having a large atomic number of 39 or greater and having d electrons or f electrons in the outermost shell. In nonmagnetic heavy metals, stronger spin-orbit interaction occurs than in other metals. The spin Hall effect occurs due to spin-orbit interaction, which tends to cause spins to be unevenly distributed in the wiring layer 20, making it easier for spin current J S to be generated.
 次いで、集積装置200の製造方法について説明する。集積装置200は、各層の積層工程と、各層の一部を所定の形状に加工する加工工程により形成される。各層の積層は、スパッタリング法、化学気相成長(CVD)法、電子ビーム蒸着法(EB蒸着法)、原子レーザデポジッション法等を用いることができる。各層の加工は、フォトリソグラフィー等を用いて行うことができる。 Next, a method for manufacturing the integrated device 200 will be described. The integrated device 200 is formed by a lamination process of each layer and a processing process of processing a part of each layer into a predetermined shape. The lamination of each layer can be performed using a sputtering method, a chemical vapor deposition (CVD) method, an electron beam evaporation method (EB evaporation method), an atomic laser deposition method, or the like. The processing of each layer can be performed using photolithography, or the like.
 まず基板Subの所定の位置に、不純物をドープし第1活性領域A1及び第2活性領域A2を形成する。次いで、第1活性領域A1と第2活性領域A2との間に、ゲート絶縁膜GI、ゲート電極Gを形成する。第1活性領域A1、第2活性領域A2、ゲート絶縁膜GI及びゲート電極Gが第1トランジスタTr1及び第2トランジスタTr2となる。基板Subは、トランジスタが形成された市販の半導体回路基板を用いてもよい。 First, impurities are doped into predetermined positions of the substrate Sub to form a first active region A1 and a second active region A2. Next, a gate insulating film GI and a gate electrode G are formed between the first active region A1 and the second active region A2. The first active region A1, the second active region A2, the gate insulating film GI, and the gate electrode G become the first transistor Tr1 and the second transistor Tr2. The substrate Sub may be a commercially available semiconductor circuit substrate on which transistors are formed.
 次いで、トランジスタを覆うように絶縁層90を形成する。ビア配線V1、V2、V3、V4、V5は、絶縁層90にホールを形成し、ホール内に導電体を充填することで作製される。書き込み配線WL、共通配線CL、読出し配線RL、面内配線P1及び抵抗調整配線R1は、絶縁層90にxy面内のいずれか方向に延びる溝を形成し、溝を導電体で充填することで作製される。 Then, an insulating layer 90 is formed to cover the transistors. The via wirings V1, V2, V3, V4, and V5 are fabricated by forming holes in the insulating layer 90 and filling the holes with a conductor. The write wiring WL, common wiring CL, read wiring RL, in-plane wiring P1, and resistance adjustment wiring R1 are fabricated by forming grooves in the insulating layer 90 that extend in either direction within the xy plane, and filling the grooves with a conductor.
 磁気抵抗効果素子100は、配線層20となる層、積層体10となる層を順に積層したのち。所定の形状に加工することで得られる。 The magnetoresistance effect element 100 is obtained by stacking the layers that will become the wiring layer 20 and the layers that will become the laminate 10 in that order, and then processing them into a predetermined shape.
 第1実施形態に係る集積装置200は、抵抗調整配線R1を有することで、第2トランジスタTr2のゲート-ソース間の電圧差が、書き込み電流を順方向に印加した場合でも逆方向に印加した場合でも同等になり、順方向と逆方向とで書き込み電流量が同等になる。 The integrated device 200 according to the first embodiment has a resistance adjustment wiring R1, so that the voltage difference between the gate and source of the second transistor Tr2 is the same whether the write current is applied in the forward direction or the reverse direction, and the amount of write current is the same in the forward and reverse directions.
 図7は、比較例にかかる集積装置の動作を説明する図である。磁気抵抗効果素子100は、「1」と「0」の2値で情報を記憶する。例えば、磁気抵抗効果素子100に「1」の情報を記憶する場合は、順方向に電流I1を印加し、磁気抵抗効果素子100に「0」の情報を記憶する場合は、逆方向に電流I2を印加する。 FIG. 7 is a diagram explaining the operation of an integrated device according to a comparative example. The magnetoresistance effect element 100 stores information in the binary form of "1" and "0." For example, when storing information "1" in the magnetoresistance effect element 100, a current I1 is applied in the forward direction, and when storing information "0" in the magnetoresistance effect element 100, a current I2 is applied in the reverse direction.
 図7の左上図は、順方向への電流I1印加の模式図であり、図7の左下図は順方向への電流I1印加時における電圧降下を示す。図7の右上図は、逆方向への電流I2印加の模式図であり、図7の右下図は逆方向への電流I2印加時における電圧降下を示す。 The upper left diagram in Figure 7 is a schematic diagram of the application of a current I1 in the forward direction, and the lower left diagram in Figure 7 shows the voltage drop when the current I1 is applied in the forward direction. The upper right diagram in Figure 7 is a schematic diagram of the application of a current I2 in the reverse direction, and the lower right diagram in Figure 7 shows the voltage drop when the current I2 is applied in the reverse direction.
 順方向に電流を印加する際は、書き込み配線WLの電位を共通配線CLの電位より高くする。この場合、第2トランジスタTr2の第1活性領域A1がドレインDとなり、第2活性領域A2がソースSとなる。高電位となる書き込み配線WLとソースSとの間の電圧降下は、第2トランジスタTr2に起因する。そのため、第2トランジスタTr2のゲート-ソース間の電圧差VGSは、第2トランジスタTr2の電圧降下分に対応する。 When applying a forward current, the potential of the write wiring WL is made higher than the potential of the common wiring CL. In this case, the first active region A1 of the second transistor Tr2 becomes the drain D, and the second active region A2 becomes the source S. The voltage drop between the write wiring WL, which has a high potential, and the source S is caused by the second transistor Tr2. Therefore, the voltage difference V GS between the gate and source of the second transistor Tr2 corresponds to the voltage drop of the second transistor Tr2.
 これに対し、逆方向に電流を印加する際は、共通配線CLの電位を書き込み配線WLの電位より高くする。この場合、第2トランジスタTr2の第2活性領域A2がドレインDとなり、第1活性領域A1がソースSとなる。高電位となる共通配線CLとソースSとの間の電圧降下は、第2トランジスタTr2及び配線層20に起因する。そのため、第2トランジスタTr2のゲート-ソース間の電圧差VGSは、第2トランジスタTr2の電圧降下分と配線層20の電圧降下分との和に対応する。 On the other hand, when a current is applied in the reverse direction, the potential of the common line CL is made higher than the potential of the write line WL. In this case, the second active region A2 of the second transistor Tr2 becomes the drain D, and the first active region A1 becomes the source S. The voltage drop between the common line CL and the source S, which becomes a high potential, is caused by the second transistor Tr2 and the wiring layer 20. Therefore, the voltage difference V GS between the gate and source of the second transistor Tr2 corresponds to the sum of the voltage drop of the second transistor Tr2 and the voltage drop of the wiring layer 20.
 つまり、抵抗調整配線R1を有さない比較例に係る集積装置は、順方向に電流を印加した際と逆方向に電流を印加した際とで、第2トランジスタTr2のゲート-ソース間の電圧差VGSが異なる。第2トランジスタTr2のゲート-ソース間の電圧差が、書き込み電流を順方向に印加した場合と逆方向に印加した場合とで異なると、配線層20を流れる書き込み電流量が異なる。この場合、逆方向に電流I2を印加しても情報の書き込みが不安定になる場合がある。また逆方向に電流I2を印加した際の書き込みを安定化させると、順方向に過剰な電流I1を印加することになる。 That is, in the integrated device according to the comparative example that does not have the resistance adjustment wiring R1, the voltage difference V GS between the gate and source of the second transistor Tr2 is different when a current is applied in the forward direction and when a current is applied in the reverse direction. If the voltage difference between the gate and source of the second transistor Tr2 is different when a write current is applied in the forward direction and when a write current is applied in the reverse direction, the amount of write current flowing through the wiring layer 20 is different. In this case, even if the current I2 is applied in the reverse direction, writing of information may become unstable. Furthermore, stabilizing writing when the current I2 is applied in the reverse direction would result in applying an excessive current I1 in the forward direction.
 これに対し、図8は、第1実施形態にかかる集積装置200の動作を説明する図である。図8の左上図は、順方向への電流I1印加の模式図であり、図8の左下図は順方向への電流I1印加時における電圧降下を示す。図8の右上図は、逆方向への電流I2印加の模式図であり、図8の右下図は逆方向への電流I2印加時における電圧降下を示す。 In contrast, FIG. 8 is a diagram explaining the operation of the integrated device 200 according to the first embodiment. The upper left diagram of FIG. 8 is a schematic diagram of application of a forward current I1, and the lower left diagram of FIG. 8 shows the voltage drop when the forward current I1 is applied. The upper right diagram of FIG. 8 is a schematic diagram of application of a reverse current I2, and the lower right diagram of FIG. 8 shows the voltage drop when the reverse current I2 is applied.
 順方向に電流を印加する際は、書き込み配線WLの電位を共通配線CLの電位より高くする。この場合、第2トランジスタTr2の第1活性領域A1がドレインDとなり、第2活性領域A2がソースSとなる。高電位となる書き込み配線WLとソースSとの間の電圧降下は、抵抗調整配線R1及び第2トランジスタTr2に起因する。そのため、第2トランジスタTr2のゲート-ソース間の電圧差VGSは、抵抗調整配線R1の電圧降下分と第2トランジスタTr2の電圧降下分の和に対応する。 When applying a forward current, the potential of the write wiring WL is made higher than the potential of the common wiring CL. In this case, the first active region A1 of the second transistor Tr2 becomes the drain D, and the second active region A2 becomes the source S. The voltage drop between the write wiring WL and the source S, which is at a high potential, is caused by the resistance adjustment wiring R1 and the second transistor Tr2. Therefore, the voltage difference V GS between the gate and source of the second transistor Tr2 corresponds to the sum of the voltage drop of the resistance adjustment wiring R1 and the voltage drop of the second transistor Tr2.
 これに対し、逆方向に電流を印加する際は、共通配線CLの電位を書き込み配線WLの電位より高くする。この場合、第2トランジスタTr2の第2活性領域A2がドレインDとなり、第1活性領域A1がソースSとなる。高電位となる共通配線CLとソースSとの間の電圧降下は、第2トランジスタTr2及び配線層20に起因する。そのため、第2トランジスタTr2のゲート-ソース間の電圧差VGSは、第2トランジスタTr2の電圧降下分と配線層20の電圧降下分との和に対応する。 On the other hand, when a current is applied in the reverse direction, the potential of the common line CL is made higher than the potential of the write line WL. In this case, the second active region A2 of the second transistor Tr2 becomes the drain D, and the first active region A1 becomes the source S. The voltage drop between the common line CL and the source S, which becomes a high potential, is caused by the second transistor Tr2 and the wiring layer 20. Therefore, the voltage difference V GS between the gate and source of the second transistor Tr2 corresponds to the sum of the voltage drop of the second transistor Tr2 and the voltage drop of the wiring layer 20.
 第1実施形態にかかる集積装置200は、抵抗調整配線R1の電圧降下分だけ、比較例に係る集積装置より、順方向に電流を印加した際のゲート-ソース間の電圧差VGSと逆方向に電流を印加した際のゲート-ソース間の電圧差VGSとの差が小さい。例えば、配線層20の電圧降下分と抵抗調整配線R1の電圧降下分とが一致すると、順方向に電流を印加した際のゲート-ソース間の電圧差VGSと逆方向に電流を印加した際のゲート-ソース間の電圧差VGSとが一致する。 In the integrated device 200 according to the first embodiment, the difference between the gate-source voltage difference VGS when a current is applied in the forward direction and the gate-source voltage difference VGS when a current is applied in the reverse direction is smaller than that in the integrated device according to the comparative example by the voltage drop of the resistance-adjusting wiring R1 . For example, when the voltage drop of the wiring layer 20 and the voltage drop of the resistance-adjusting wiring R1 match, the gate-source voltage difference VGS when a current is applied in the forward direction and the gate-source voltage difference VGS when a current is applied in the reverse direction match.
 つまり、第1実施形態に係る集積装置200は、書き込み電流を順方向に印加した場合と逆方向に印加した場合とで、第2トランジスタTr2のゲート-ソース間の電圧差が小さく、配線層20を流れる書き込み電流量の差が小さい。そのため、「1」の情報を書き込み際と「0」の情報を書き込む際とで、書き込み確率に差が生じることを抑制できる。 In other words, in the integrated device 200 according to the first embodiment, the voltage difference between the gate and source of the second transistor Tr2 is small when a write current is applied in the forward direction and when it is applied in the reverse direction, and the difference in the amount of write current flowing through the wiring layer 20 is small. This makes it possible to suppress the occurrence of a difference in the write probability when writing information "1" and when writing information "0."
 ここまで、第1実施形態を例示し、本発明の好ましい態様を例示したが、本発明は第1実施形態に限られるものではない。 So far, the first embodiment has been illustrated as an example, and a preferred aspect of the present invention has been illustrated, but the present invention is not limited to the first embodiment.
 例えば、図9は、第2実施形態に係る集積装置201の回路図である。集積装置201は、複数の磁気抵抗効果素子100と、複数のビット線BLと、複数のソース線SLと、複数の書き込みゲート線WGLと、複数の読出しゲート線RGLと、複数の第1トランジスタTr1と、複数の第2トランジスタTr2と、複数の第3トランジスタTr3と、を備える。 For example, FIG. 9 is a circuit diagram of an integrated device 201 according to the second embodiment. The integrated device 201 includes a plurality of magnetoresistance effect elements 100, a plurality of bit lines BL, a plurality of source lines SL, a plurality of write gate lines WGL, a plurality of read gate lines RGL, a plurality of first transistors Tr1, a plurality of second transistors Tr2, and a plurality of third transistors Tr3.
 第2実施形態に係る集積装置201において、第1実施形態に係る集積装置200と同様の構成は同様の符号を付し、説明を省く。 In the integrated device 201 according to the second embodiment, configurations similar to those in the integrated device 200 according to the first embodiment are given the same reference numerals and will not be described.
 ビット線BLは、第1配線の一例である。ビット線BLは、第1実施形態における書き込み配線WLと読出し配線RLの両方の機能を担う。第2実施形態に係る集積装置201は、書き込み配線WLと読出し配線RLとがビット線BLにまとまっている点が、第1実施形態に係る集積装置200と異なる。ソース線SLは、共通配線CLと同様である。 The bit line BL is an example of a first wiring. The bit line BL functions as both the write wiring WL and the read wiring RL in the first embodiment. The integrated device 201 according to the second embodiment differs from the integrated device 200 according to the first embodiment in that the write wiring WL and the read wiring RL are combined into the bit line BL. The source line SL is the same as the common wiring CL.
 ビア配線V2とビット線BLとは、ビア配線V2及びビット線BLより抵抗率の高い抵抗調整配線R1で接続されている。ビア配線V2とビット線BLとは、ビア配線V2より抵抗の高い抵抗調整配線R1で接続されていてもよい。 The via wiring V2 and the bit line BL are connected by a resistance adjustment wiring R1 having a higher resistivity than the via wiring V2 and the bit line BL. The via wiring V2 and the bit line BL may be connected by a resistance adjustment wiring R1 having a higher resistance than the via wiring V2.
 集積装置201は、集積装置200と同等の効果を奏する。また図9に示す集積装置201は、書き込み配線WLと読出し配線RLとを一つのビット線BLで共用しているため、配線の本数を減らすことができ、集積性に優れる。 The integrated device 201 has the same effect as the integrated device 200. In addition, the integrated device 201 shown in FIG. 9 shares a single bit line BL as the write wiring WL and the read wiring RL, which reduces the number of wiring lines and provides excellent integration.
 図10は、第3実施形態に係る磁気抵抗効果素子101の断面図である。磁気抵抗効果素子101は、集積装置200の磁気抵抗効果素子100と置き換え可能である。 FIG. 10 is a cross-sectional view of a magnetoresistance effect element 101 according to the third embodiment. The magnetoresistance effect element 101 can be substituted for the magnetoresistance effect element 100 of the integrated device 200.
 第3実施形態に係る集積装置において、第1実施形態に係る集積装置200と同様の構成は同様の符号を付し、説明を省く。 In the integrated device of the third embodiment, configurations similar to those of the integrated device 200 of the first embodiment are given the same reference numerals and will not be described.
 第3実施形態に係る磁気抵抗効果素子101は、積層体11と配線層20とを有する。積層体11と配線層20の積層順は、第1実施形態に係る磁気抵抗効果素子100の積層体10と配線層20の積層順と異なる。配線層は、積層体11上に積層されている。 The magnetoresistance effect element 101 according to the third embodiment has a laminate 11 and a wiring layer 20. The stacking order of the laminate 11 and the wiring layer 20 is different from the stacking order of the laminate 10 and the wiring layer 20 of the magnetoresistance effect element 100 according to the first embodiment. The wiring layer is stacked on the laminate 11.
 積層体11は、基板Subに近い側から順に、下地層4、第2強磁性層2、非磁性層3、第1強磁性層1、キャップ層5を有する。磁気抵抗効果素子101は、磁化固定層である第2強磁性層2が第1強磁性層1より基板Subの近くにあり、ボトムピン構造と呼ばれる。 The laminate 11 has, in order from the side closest to the substrate Sub, an underlayer 4, a second ferromagnetic layer 2, a non-magnetic layer 3, a first ferromagnetic layer 1, and a cap layer 5. In the magnetoresistance effect element 101, the second ferromagnetic layer 2, which is a magnetization fixed layer, is closer to the substrate Sub than the first ferromagnetic layer 1, and is called a bottom pin structure.
 またビア配線V1及びビア配線V3は、配線層20の上面に接続されている。ビア配線V1及びビア配線V3は、配線層20の下面に接続されていてもよい。 Also, the via wiring V1 and the via wiring V3 are connected to the upper surface of the wiring layer 20. The via wiring V1 and the via wiring V3 may be connected to the lower surface of the wiring layer 20.
 第3実施形態に係る集積装置は、第1実施形態に係る集積装置200と同様の効果を奏する。 The integrated device according to the third embodiment has the same effects as the integrated device 200 according to the first embodiment.
 図11は、第4実施形態に係る磁化回転素子110の断面図である。図1における磁気抵抗効果素子100は、磁化回転素子110と置き換えられる。磁化回転素子110は、積層体12が第2強磁性層2、非磁性層3を有さない点が、磁気抵抗効果素子100と異なる。磁化回転素子110において、磁気抵抗効果素子100と同様の構成には同様の符号を付し、説明を省く。磁化回転素子110は、磁性素子の一例である。 FIG. 11 is a cross-sectional view of a magnetization rotation element 110 according to the fourth embodiment. The magnetization rotation element 100 in FIG. 1 can be replaced with the magnetization rotation element 110. The magnetization rotation element 110 differs from the magnetization rotation element 100 in that the laminate 12 does not have a second ferromagnetic layer 2 or a nonmagnetic layer 3. In the magnetization rotation element 110, the same components as those in the magnetization rotation element 100 are denoted by the same reference numerals and will not be described. The magnetization rotation element 110 is an example of a magnetic element.
 磁化回転素子110は、例えば、第1強磁性層1に対して光を入射し、第1強磁性層1で反射した光を評価する。磁気カー効果により磁化の配向方向が変化すると、反射した光の偏向状態が変わる。磁化回転素子110は、例えば、光の偏向状態の違いを利用した例えば映像表示装置等の光学素子として用いることができる。 The magnetization rotation element 110, for example, irradiates light onto the first ferromagnetic layer 1 and evaluates the light reflected by the first ferromagnetic layer 1. When the magnetization orientation direction changes due to the magnetic Kerr effect, the polarization state of the reflected light changes. The magnetization rotation element 110 can be used, for example, as an optical element for an image display device or the like that utilizes the difference in the polarization state of light.
 この他、磁化回転素子110は、単独で、異方性磁気センサ、磁気ファラデー効果を利用した光学素子等としても利用できる。 In addition, the magnetized rotating element 110 can be used alone as an anisotropic magnetic sensor, an optical element using the magnetic Faraday effect, etc.
 第4実施形態に係る磁化回転素子110は、磁気抵抗効果素子100から非磁性層3及び第2強磁性層2が除かれているだけであり、第1実施形態にかかる磁気抵抗効果素子100と同様の効果が得られる。 The magnetization rotation element 110 according to the fourth embodiment is the magnetoresistive element 100 except that the nonmagnetic layer 3 and the second ferromagnetic layer 2 have been removed, and provides the same effects as the magnetoresistive element 100 according to the first embodiment.
 図12は、第5実施形態に係る磁気抵抗効果素子120の断面図である。図12は、配線層21のy方向の幅の中心を通るxz平面で磁気抵抗効果素子120を切断した断面である。磁気抵抗効果素子120は、磁性素子の一例である。図1における磁気抵抗効果素子100は、磁気抵抗効果素子120と置き換えられる。 FIG. 12 is a cross-sectional view of the magnetoresistance effect element 120 according to the fifth embodiment. FIG. 12 is a cross-section of the magnetoresistance effect element 120 cut in an xz plane passing through the center of the width of the wiring layer 21 in the y direction. The magnetoresistance effect element 120 is an example of a magnetic element. The magnetoresistance effect element 100 in FIG. 1 can be replaced with the magnetoresistance effect element 120.
 磁気抵抗効果素子120は、積層体13と配線層21と第1磁化固定層31と第2磁化固定層32とを有する。磁気抵抗効果素子120において、磁気抵抗効果素子100と同様の構成は、同様の符号を付し、説明を省く。磁気抵抗効果素子120は、磁壁DWの移動により抵抗値が変化する素子であり、磁壁移動素子、磁壁移動型磁気抵抗効果素子と言われる場合がある。 The magnetoresistance effect element 120 has a stack 13, a wiring layer 21, a first magnetization pinned layer 31, and a second magnetization pinned layer 32. In the magnetoresistance effect element 120, the same configuration as the magnetoresistance effect element 100 is given the same reference numerals and description is omitted. The magnetoresistance effect element 120 is an element in which the resistance value changes due to the movement of the domain wall DW, and may be called a domain wall motion element or a domain wall motion type magnetoresistance effect element.
 積層体13は、配線層21に近い側から非磁性層7と第1強磁性層8とを有する。非磁性層7は、非磁性層3と同様の材料からなる。第1強磁性層8は、第1強磁性層1と同様の材料からなる。第1強磁性層1は、磁化が固定される磁化固定層である。 The laminate 13 has a nonmagnetic layer 7 and a first ferromagnetic layer 8 from the side closest to the wiring layer 21. The nonmagnetic layer 7 is made of the same material as the nonmagnetic layer 3. The first ferromagnetic layer 8 is made of the same material as the first ferromagnetic layer 1. The first ferromagnetic layer 1 is a magnetization fixed layer in which the magnetization is fixed.
 配線層21は、磁性層である。配線層21は、強磁性体を含む。配線層21を構成する磁性体は、Cr、Mn、Co、Fe及びNiからなる群から選択される金属、これらの金属を1種以上含む合金、これらの金属とB、C、及びNの少なくとも1種以上の元素とが含まれる合金等を用いることができる。具体的には、Co-Fe、Co-Fe-B、Ni-Feが挙げられる。 The wiring layer 21 is a magnetic layer. The wiring layer 21 includes a ferromagnetic material. The magnetic material constituting the wiring layer 21 can be a metal selected from the group consisting of Cr, Mn, Co, Fe, and Ni, an alloy containing one or more of these metals, or an alloy containing these metals and at least one of the elements B, C, and N. Specific examples include Co-Fe, Co-Fe-B, and Ni-Fe.
 配線層21は、内部の磁気的な状態の変化により情報を磁気記録可能な層である。配線層21は、内部に第1磁区と第2磁区とを有する。第1磁区の磁化M21Aと第2磁区の磁化M21Bとは、例えば、反対方向に配向する。第1磁区と第2磁区との境界が磁壁DWである。配線層21は、磁壁DWを内部に有することができる。 The wiring layer 21 is a layer capable of magnetically recording information by changing the internal magnetic state. The wiring layer 21 has a first magnetic domain and a second magnetic domain inside. The magnetization M21A of the first magnetic domain and the magnetization M21B of the second magnetic domain are oriented in opposite directions, for example. The boundary between the first magnetic domain and the second magnetic domain is a domain wall DW. The wiring layer 21 can have a domain wall DW inside.
 抵抗調整配線R1は、例えば、配線層21と同じ材料を含むことが好ましい。当該構成を満たすと、順方向と逆方向の書き込み電流量を同等にすることを簡単に行うことができる。 The resistance adjustment wiring R1 preferably contains, for example, the same material as the wiring layer 21. If this configuration is met, it is easy to make the forward and reverse write current amounts equal.
 第5実施形態にかかる磁気抵抗効果素子120も、第1実施形態にかかる磁気抵抗効果素子100と同様の効果を得ることができる。また第3実施形態に係る磁気抵抗効果素子101と同様に、図13に示すように、配線層21と第1強磁性層8の位置関係は反対でもよい。 The magnetoresistance effect element 120 according to the fifth embodiment can also obtain the same effect as the magnetoresistance effect element 100 according to the first embodiment. Also, like the magnetoresistance effect element 101 according to the third embodiment, the positional relationship between the wiring layer 21 and the first ferromagnetic layer 8 may be reversed, as shown in FIG. 13.
 ここまで、いくつかの実施形態を例示し、本発明の好ましい態様を例示したが、本発明はこれらの実施形態に限られるものではない。例えば、それぞれの実施形態における特徴的な構成を他の実施形態に適用してもよい。 Thus far, several embodiments have been illustrated as examples of preferred aspects of the present invention, but the present invention is not limited to these embodiments. For example, the characteristic configurations of each embodiment may be applied to other embodiments.
1、8 第1強磁性層
2 第2強磁性層
3、7 非磁性層
4 下地層
5 キャップ層
6 マスク層
10、11、12、13 積層体
20、21 配線層
31 第1磁化固定層
32 第2磁化固定層
90 絶縁層
100、101、120 磁気抵抗効果素子
110 磁化回転素子
200、201 集積装置
A1 第1活性領域
A2 第2活性領域
BL ビット線
CL 共通配線
R1 抵抗調整配線
R1A 狭窄部
R1B 幅広部
R1C 第1部分
R1D 第2部分
RL 読出し配線
WL 書き込み配線
SL ソース線
Tr1 第1トランジスタ
Tr2 第2トランジスタ
Tr3 第3トランジスタ
V1、V2、V3、V4、V5 ビア配線
1, 8 First ferromagnetic layer 2 Second ferromagnetic layer 3, 7 Non-magnetic layer 4 Underlayer 5 Cap layer 6 Mask layer 10, 11, 12, 13 Stacked body 20, 21 Wiring layer 31 First magnetization fixed layer 32 Second magnetization fixed layer 90 Insulating layer 100, 101, 120 Magnetoresistance effect element 110 Magnetization rotation element 200, 201 Integrated device A1 First active region A2 Second active region BL Bit line CL Common wiring R1 Resistance adjustment wiring R1A Narrowed portion R1B Wide portion R1C First portion R1D Second portion RL Read wiring WL Write wiring SL Source line Tr1 First transistor Tr2 Second transistor Tr3 Third transistor V1, V2, V3, V4, V5 Via wiring

Claims (11)

  1.  磁性素子と、第1トランジスタと、第2トランジスタと、第1ビア配線と、第2ビア配線と、第1配線と、抵抗調整配線と、を備え、
     前記磁性素子は、配線層と、前記配線層に接続された第1強磁性層を含む積層体と、を備え、
     前記第1トランジスタは、前記積層体と電気的に接続され、
     前記第2トランジスタは、第1活性領域と第2活性領域とを有し、
     前記第2トランジスタの前記第1活性領域と前記磁性素子の前記配線層とは、前記第1ビア配線を介して接続され、
     前記第2トランジスタの前記第2活性領域は、前記第2ビア配線に接続され、
     前記第2ビア配線と前記第1配線とは、前記第2ビア配線及び前記第1配線より抵抗率の高い前記抵抗調整配線で接続されている、集積装置。
    a magnetic element, a first transistor, a second transistor, a first via wiring, a second via wiring, a first wiring, and a resistance adjustment wiring;
    the magnetic element includes a wiring layer and a stack including a first ferromagnetic layer connected to the wiring layer;
    the first transistor is electrically connected to the stack;
    the second transistor has a first active region and a second active region;
    the first active region of the second transistor and the wiring layer of the magnetic element are connected through the first via wiring;
    the second active region of the second transistor is connected to the second via wiring;
    The second via wiring and the first wiring are connected by the resistance adjustment wiring having a higher resistivity than the second via wiring and the first wiring.
  2.  前記抵抗調整配線は、W、Pt、Ta、Ti、Hfからなる群から選択されるいずれか一つを含む、単体金属、酸化物、フッ化物又は窒化物のいずれかを含む、請求項1に記載の集積装置。 The integrated device of claim 1, wherein the resistance adjustment wiring includes any one of an elemental metal, an oxide, a fluoride, or a nitride, including any one selected from the group consisting of W, Pt, Ta, Ti, and Hf.
  3.  前記抵抗調整配線は、前記配線層と同じ材料を含む、請求項1に記載の集積装置。 The integrated device of claim 1, wherein the resistance adjustment wiring includes the same material as the wiring layer.
  4.  前記抵抗調整配線の長さを断面積で割った比は、前記配線層の長さを断面積で割った比の90%以上110%以下である、請求項2に記載の集積装置。 The integrated device according to claim 2, wherein the ratio of the length of the resistance adjustment wiring divided by its cross-sectional area is 90% or more and 110% or less of the ratio of the length of the wiring layer divided by its cross-sectional area.
  5.  前記抵抗調整配線は、ミアンダ配線である、請求項1に記載の集積装置。 The integrated device according to claim 1, wherein the resistance adjustment wiring is meander wiring.
  6.  前記抵抗調整配線は、電流の流れ方向と直交する断面積が狭くなる狭窄部を有する、請求項1に記載の集積装置。 The integrated device according to claim 1, wherein the resistance adjustment wiring has a narrowed portion in which the cross-sectional area perpendicular to the direction of current flow is narrowed.
  7.  前記積層体は、第2強磁性層と非磁性層とを備え、
     前記非磁性層は、前記第1強磁性層と前記第2強磁性層とに挟まれる、請求項1に記載の集積装置。
    the laminate comprises a second ferromagnetic layer and a nonmagnetic layer;
    The integrated device of claim 1 , wherein the nonmagnetic layer is sandwiched between the first ferromagnetic layer and the second ferromagnetic layer.
  8.  磁性素子と、第1トランジスタと、第2トランジスタと、第1ビア配線と、第2ビア配線と、第1配線と、抵抗調整配線と、を備え、
     前記磁性素子は、配線層と、前記配線層に接続された第1強磁性層を含む積層体と、を備え、
     前記第1トランジスタは、前記積層体と電気的に接続され、
     前記第2トランジスタは、第1活性領域と第2活性領域とを有し、
     前記第2トランジスタの前記第1活性領域と前記磁性素子の前記配線層とは、前記第1ビア配線を介して接続され、
     前記第2トランジスタの前記第2活性領域は、前記第2ビア配線に接続され、
     前記第2ビア配線と前記第1配線とは、前記第2ビア配線より抵抗が高い前記抵抗調整配線で接続されている、集積装置。
    a magnetic element, a first transistor, a second transistor, a first via wiring, a second via wiring, a first wiring, and a resistance adjustment wiring;
    the magnetic element includes a wiring layer and a stack including a first ferromagnetic layer connected to the wiring layer;
    the first transistor is electrically connected to the stack;
    the second transistor has a first active region and a second active region;
    the first active region of the second transistor and the wiring layer of the magnetic element are connected through the first via wiring;
    the second active region of the second transistor is connected to the second via wiring;
    An integrated device, wherein the second via wiring and the first wiring are connected by the resistance adjustment wiring having a higher resistance than the second via wiring.
  9.  前記抵抗調整配線は、ミアンダ配線である、請求項8に記載の集積装置。 The integrated device according to claim 8, wherein the resistance adjustment wiring is meander wiring.
  10.  前記抵抗調整配線は、電流の流れ方向と直交する断面積が狭くなる狭窄部を有する、請求項8に記載の集積装置。 The integrated device according to claim 8, wherein the resistance adjustment wiring has a narrowed portion in which the cross-sectional area perpendicular to the direction of current flow is narrowed.
  11.  前記積層体は、第2強磁性層と非磁性層とを備え、
     前記非磁性層は、前記第1強磁性層と前記第2強磁性層とに挟まれる、請求項8に記載の集積装置。
    the laminate comprises a second ferromagnetic layer and a nonmagnetic layer;
    The integrated device of claim 8 , wherein the non-magnetic layer is sandwiched between the first ferromagnetic layer and the second ferromagnetic layer.
PCT/JP2023/005895 2023-02-20 2023-02-20 Integrated device WO2024176280A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/005895 WO2024176280A1 (en) 2023-02-20 2023-02-20 Integrated device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/005895 WO2024176280A1 (en) 2023-02-20 2023-02-20 Integrated device

Publications (1)

Publication Number Publication Date
WO2024176280A1 true WO2024176280A1 (en) 2024-08-29

Family

ID=92500621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005895 WO2024176280A1 (en) 2023-02-20 2023-02-20 Integrated device

Country Status (1)

Country Link
WO (1) WO2024176280A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130245A (en) * 2016-01-18 2017-07-27 日本放送協会 Nonvolatile memory and driving method thereof, and storage device
WO2019171715A1 (en) * 2018-03-08 2019-09-12 Tdk株式会社 Spin element and magnetic memory
US20200202914A1 (en) * 2018-12-20 2020-06-25 Imec Vzw Spin orbit torque magnetoresistive random access memory device
JP7140294B2 (en) * 2020-02-07 2022-09-21 Tdk株式会社 Magnetic recording array and reservoir element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017130245A (en) * 2016-01-18 2017-07-27 日本放送協会 Nonvolatile memory and driving method thereof, and storage device
WO2019171715A1 (en) * 2018-03-08 2019-09-12 Tdk株式会社 Spin element and magnetic memory
US20200202914A1 (en) * 2018-12-20 2020-06-25 Imec Vzw Spin orbit torque magnetoresistive random access memory device
JP7140294B2 (en) * 2020-02-07 2022-09-21 Tdk株式会社 Magnetic recording array and reservoir element

Similar Documents

Publication Publication Date Title
JPWO2019230341A1 (en) Spin orbit torque type magnetization rotating element, spin orbit torque type magnetoresistive element and magnetic memory
CN113366662B (en) Magnetic domain wall moving element, magnetic recording array and semiconductor device
JP7670581B2 (en) Domain wall motion element and magnetic array
US20240138267A1 (en) Domain wall displacement element, magnetic array, and method of manufacturing domain wall displacement element
US11676751B2 (en) Magnetic device
WO2024176280A1 (en) Integrated device
WO2023112087A1 (en) Magnetized rotary element, magneto-resistance effect element, and magnetic memory
US20230215480A1 (en) Magnetoresistance effect element and magnetic recording array
JP7512116B2 (en) Magnetic memory
JP7608291B2 (en) Magnetoresistance effect element, magnetic array and magnetization rotation element
WO2024189673A1 (en) Magnetic element and magnetic memory
US20250204263A1 (en) Magnetization rotating element, magnetoresistive effect element, and magnetic memory
JP7712196B2 (en) Magnetization rotation element, magnetoresistance effect element, and magnetic memory
WO2024171324A1 (en) Magnetic element, magnetic array, and method for manufacturing magnetic element
WO2024189675A1 (en) Magnetic element and magnetic memory
TWI870910B (en) Magnetization rotation element, magneto-impedance effect element and magnetic memory
JP7520651B2 (en) Magnetoresistance effect element and magnetic memory
JP7384068B2 (en) Rotating magnetization elements, magnetoresistive elements and magnetic memory
US20240385263A1 (en) Magnetization rotational element, magnetoresistance effect element, and magnetic memory
US11778925B2 (en) Magnetic device
CN113614920B (en) Magnetic Recording Array
CN113939913B (en) Magnetic recording array, neuromorphic device, and method for controlling magnetic recording array
WO2024195091A1 (en) Magnetoresistive device and magnetic memory
JP2023131598A (en) Magnetic element and integrated device
WO2023162121A1 (en) Magnetized rotary element, magnetoresistive element, and magnetic memory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23923936

Country of ref document: EP

Kind code of ref document: A1